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Abstract

We study the effects of disorder in epithelial confluent tissues through the Voronoi model for
dense tissues. The modeling of epithelial tissues relies on three different mechanisms: cell-cell
and cell-medium interactions, and propulsion or activity. First, we focus on the role of cell-cell
interaction in this model by exploring, in the athermal limit, its anomalous jamming behavior. We
introduce a new metric that allows us to find a hierarchical structure in its energy landscape similar to
colloidal particle systems. We then introduce a cell-medium interaction by explicitly considering an
interaction between the cells and their underlying substrate. We consider that the targeted geometry
of the cells changes according to their spatial position and in turn affects the cells motility. We show
that when the characteristic length scale of the disorder is smaller than the cell size, the cell motility
increases when compared to its homogeneous counterpart. This result is in sharp contrast to what
has been reported for tissues with heterogeneity in the mechanical properties of the individual cells,
where the disorder favors rigidity. Due to the internal biological complexity of the cells, changes
to the cell-substrate interaction should trigger a hierarchy of biochemical responses in the cell that
lead to its adaptation to the new substrate region. As such, the process of cell adaptation to its
underlying structure is not instantaneous but requires a finite time that in many cases competes with
other relevant timescales for the dynamics such as, for example, the diffusion timescale. With this in
mind, we then introduce a characteristic adaptation time of the cells to the cell-substrate interaction
changes. We study how the competition between the adaptation of the cells and their mobility can
compromise the fidelity of the substrate and by relating this with the previous disordered substrate
propose a typical time scale for the adaptation of cells that is relevant for experiments. Lastly, we
consider non-confluent tissues by allowing the cells to break from one another and create empty
spaces. This change opens the door to the study of the surface properties of cell colonies and it is a
first step towards the study of the transition from a single cell to confluent tissue. Implications of our
findings in the field of Soft Condensed Matter Physics are discussed.

KEYWORDS:
Epithelial confluent tissues, Self-propelled Voronoi model, Glass transition, Cell-substrate inter-

action.
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Resumo

Nesta tese estudámos as respostas fı́sicas de tecidos confluentes epiteliais a perturbações do
meio e como estas são influenciadas pela presença de heterogeneidades ao nı́vel da interação célula-
substrato. Sendo um sistema intrinsecamente fora do equilı́brio, as ferramentas existentes da fı́sica
estatı́stica de equilı́brio deixam de ser úteis e passa a ser necessário desenvolver novas ferramentas
que possam auxiliar no estudo do problema. Dada a extrema complexidade dos sistemas biológicos,
tanto do ponto de vista fı́sico como quı́mico, nós usamos uma abordagem coarse grained, onde ape-
nas temos em conta algumas propriedades dos tecidos, para os podermos modelar computacional-
mente e assim ter acesso às várias escalas relevantes do problema, desde a célula individual ao tecido
de múltiplas células. Devido à simplicidade desta abordagem, podemos introduzir novas interações,
como por exemplo, interações ao nı́vel da célula-substrato que desencadeiam uma resposta do tecido,
que tem relevância tanto do ponto de vista teórico, mas também prático no estudo de engenharia de
tecidos e cancro.

A abordagem computacional começa com o desenvolvimento do modelo que consiga descrever,
de uma maneira simplificada, mas fisicamente adequada, as propriedades do tecido. Para isso nós
decidimos utilizar um método já desenvolvido na literatura, o modelo de Voronoi para tecidos con-
fluentes. Este descreve o tecido confluente como um conjunto de células, sem espaços vazios. Cada
célula é descrita por um ponto que marca a posição do seu centro geométrico e que é análogo ao
núcleo da célula. A sua forma é obtida usando a tecelagem de Voronoi do espaço, o que leva a que
cada ponto corresponda a uma região com forma poligonal. A interação célula-célula é introduzida
por um funcional de energia, ou em termos mais comuns de fı́sica estatı́stica o Hamiltoniano, que
penaliza as células por terem uma forma muito diferente da sua área e perı́metro preferenciais. Por
fim, a atividade das células também é considerada, para descrever a habilidade de converter nutri-
entes do meio e transformar em energia que depois é usada para o movimento. Esta atividade da
célula é modelada através de um simples movimento de propulsão com persistência, onde a célula
tem memória da direção anterior. Assim, vai existir um fluxo constante de energia para o sistema que
o afasta do equilı́brio. Apesar de ser um modelo maioritariamente geométrico que tenta simplificar
todos os processos bioquı́micos que se desencadeiam ao nı́vel da célula, ele tem tido sucesso em
reproduzir várias propriedades dos tecidos principalmente relacionados com as suas propriedades
mecânicas.

Uma das propriedades dos tecidos que é capturada pelo modelo descrito, é a sua habilidade de
transitar de um estado mais rı́gido, onde o tecido tem uma resposta forte a perturbações comparável a
um sólido, para um estado semelhante ao de um fluido, onde o tecido consegue fluir facilmente como
resposta à perturbação. Do ponto de vista fı́sico, algo ainda mais relevante, é que esta transição
pode ser descrita através de argumentos puramente geométricos. Quando o rácio entre o perı́metro
e a área é menor que 3.81, as células não vão ter espaço suficiente para satisfazer a sua geometria
preferencial (dada pelo Hamiltoniano) e por isso cada uma vai estar enjaulada pelos seus vizinhos
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que tentam aumentar o seu tamanho. Por outro lado, se este rácio for maior que um dado valor limite,
isto já não se verifica e as células vão poder mover-se livremente pelo tecido, fazendo com que ele,
como um todo, se comporte como um fluido. Este comportamento é muito semelhante a outro tipo de
sistemas, chamados vidros ou materiais amorfos, usualmente constituı́dos por partı́culas granulares
ou coloidais.

Um dos principais impactos desta descoberta, é contribuir para a mudança no paradigma de
problemas biológicos. Assim, um problema que poderia apenas ser considerado como algo rele-
vante do ponto de vista biológico passa a ser também relevante do ponto de vista fı́sico. Apesar desta
descoberta, muitas perguntas ficaram por responder e muitas outras foram abertas. Tal como foi men-
cionado previamente, fazer a ponte entre sistemas amorfos inorgânicos e estes sistemas biológicos
pode ser uma porta para compreender muito mais sobre tecidos epiteliais e o seu comportamento
tanto in vivo como in vitro. Algo que não foi explorado em estudos anteriores é a interação entre
as células constituintes do tecido e o seu suporte fı́sico. Tanto em laboratório como no revestimento
de órgãos, tecidos epiteliais são sempre suportados por uma superfı́cie fı́sica, seja outras células, a
matriz extracelular ou um substrato sintético criado em laboratório. As interações entre as células e o
seu meio envolvente são por isso um ingrediente relevante nas propriedades do tecido como um todo.
Nesta tese, exploramos algumas destas questões no contexto da transição de rigidez dos tecidos.

No primeiro capı́tulo é feita uma introdução ao tópico onde para lá da motivação também é
discutida a questão da universalidade na biologia. No segundo capı́tulo discutimos as principais
interações no contexto de tecidos epiteliais. Também fazemos uma introdução mais detalhada ao
modelo de Voronoi com atividade e o que já foi feito e quais as perguntas ainda por responder.

Os capı́tulos seguintes são relativos aos resultados desenvolvidos durante o perı́odo de doutora-
mento. No capı́tulo três introduzimos o modelo de Voronoi sem atividade para estudar a transição
de rigidez puramente de um ponto de vista geométrico. Aqui usamos técnicas desenvolvidas para
sistemas amorfos inorgânicos para explorar ao detalhe esta transição. Para isso medimos as pro-
priedades hierárquicas do espaço de energias. Nós propomos uma nova métrica que nos possibilita
a medição destas propriedades e assim identificamos uma região do espaço de parâmetros onde o
tecido apresenta duas fases rı́gidas com um espaço de energias distinto. Sendo assim, o tecido não
apresenta apenas a transição entre a fase rı́gida e a fase fluida, mas existe também uma transição entre
fases rı́gidas. Por fim, propomos potenciais consequências para o estudo de tecidos e sugerimos uma
possivel ponte entre os sistemas biológicos e os materiais amorfos inorgânicos.

No capı́tulo quatro introduzimos a atividade das células no tecido e também adicionamos uma
interação entre a célula e o substrato. Esta interação é introduzida no modelo de uma maneira simpli-
ficada onde alteramos um dos parâmetros do Hamiltoniano que controla a forma das células. Como
estamos interessados em estudar substratos heterogéneos, esta interação vai depender da posição es-
pacial da célula. Aqui, estudamos como uma distribuição aleatória afeta a transição de rigidez do
tecido. Do ponto de vista fı́sico este problema assemelha-se ao estudo de sistemas com desordem.
Assim traçamos uma comparação entre dois tipos de desordem, a primeira ao nı́vel do substrato e a
segunda ao nı́vel da célula, e observamos que enquanto a segunda apenas torna o tecido mais rı́gido,
a primeira pode torná-lo mais fluido dependendo da preparação do substrato.

No capı́tulo cinco introduzimos uma escala de tempo de adaptação da célula ao substrato, de
modo a que quando esta se move de uma região do substrato para outra com propriedades diferentes,
a célula não se adapte instantaneamente, mas demore um tempo caracterı́stico. Este tempo está
relacionado com o motor bioquı́mico da célula que desencadeia várias reações que alteram a forma
da célula dependendo da região do substrato em que se encontra. Aqui observamos que existe uma
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competição entre a escala de tempo de adaptação das células e a escala de tempo caracterı́stica para
a sua mobilidade que pode comprometer a fidelidade do padrão. Também introduzimos um modelo
contı́nuo que está em concordância com os resultados numéricos. Usando este estudo e o do capı́tulo
anterior conseguimos estabelecer limites ao tempo caracterı́stico de adaptação das células que pode
ser relevante para sistemas experimentais.

Por fim, no capı́tulo seis introduzimos espaços vazios ao tecido de modo a poder modelar um
sistema não confluente. É feita uma análise numérica do modelo onde exploramos o comportamento
de colónias de células e como as propriedades da sua interface evoluem à medida que a colónia cresce
ou quando as células ficam mais ativas. Deste modo tentamos criar uma ponte entre o sistema das
células individuais e o do tecido confluente, que ainda ilude a comunidade cientı́fica.

PALAVRAS-CHAVE:
Tecidos epiteliais confluentes, Modelo de Voronoi com propulsão, Transição vı́trea, Interação

célula-substrato
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4.3 Phase diagram of the tissue for substrate or cell disorder. On the vertical axis is
the standard deviation of the Gaussian distribution, σ, and on the horizontal axis
the mean, p0. The color gradient represents the diffusion coefficient of the tissue
when using the random substrate disorder (given by Eq. (4.8)), in units of D∗ ≈
9.04× 10−5, which corresponds to the value of the diffusion coefficient at the onset
of rigidity in the homogeneous system, i. e. , p0 = 3.8. The white (dashed) line
defines the threshold where the fraction of rigid cells (cells with pi < 3.8), forms
a percolating cluster, σ(p0) = −11.2p0 + 42.7. Thus, it sets the onset of rigidity,
in the presence of a disordered substrate. Results were obtained for N = 1024 and
averaged over 10 samples. The gray (dot-dashed) line is obtained from Ref. [8] for
a tissue with heterogeneity in the mechanical properties of individual cells described
by a cell-dependent shape index p0,i, which is also drawn from a normal distribution
with the same mean and standard deviation. In this case, the onset of rigidity is given
by σ(p0) = 1.2p0− 4.7. The brown (dashed) line gives the onset of rigidity when an
averaged substrate is used with correlation length of the order of the cell diameter.
Here, the line is given by σ(p0) = 3.3p0 − 12.5. This figure highlights the different
effects of disorder. When the disorder is at the cell level the tissue becomes more
rigid, while when it is spatially dependent (i.e., on the substrate) the tissue becomes
less rigid when the substrate correlation length is less than the diameter of the cells,
but more rigid when it is larger. The different phases are shown in the figure, where
the tissue is marked solid or fluid. The lines do not meet at σ = 0 since in Ref. [8]
the Vertex model was used rather than the Voronoi model used in this work. . . . . . 34
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4.7 Effect of substrate heterogeneities on cell motility. In a) the diffusion coefficients
are plotted for different types of heterogeneity: “S” is for substrate disorder, not
averaged for a correlation length ξ = 0.03125 and averaged for ξ = 2. “C” is for cell
disorder, as in Ref. [8], where each cell has a random shape index p0,i from a normal
distribution, which remains constant. “H” is for the homogeneous tissue. Panel b)
illustrates how the diffusion coefficient varies with the substrate correlation length
ξ, for a mean p0 = 3.85 and σ = 0.184, 0.242, 0.3. In c) the diffusion coefficient
re-scaled by the standard deviation (σ) is plotted as a function of the fraction of rigid
cells, fr, for four different correlation lengths, ξ. In d) are schematic representations
of the tissue (top) and the substrate (bottom) for correlation lengths ξ = 0.125, 0.5, 2

respectively. These results were obtained using N = 1024 and averaged over 10

different samples. We found that although the mechanical properties of the tissue
change with the correlation length, ξ, the curves collapse with the fraction of rigid
cells, fr, suggesting that the percolation of rigid cells still drives the tissue rigidity.
A correlation length of ξ = 1, is found above which the response of the tissue to the
substrate disorder changes, with higher disorder, σ, leading to a more rigid tissue. . . 38
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5.3 Dependence of the demixing parameterDMP on the two relevant time scales: adap-
tation τ and diffusion τD times. (a) Time dependence of the demixing parameter,
where time is rescaled by the adaptation time τ . Different curves are for different
values of τ/τD, namely, 10−4, 10−3, and 10−2. The vertical dashed line corresponds
to ln[(pB − pA)/ε], which is the time it takes for the target shape index of a cell
i that crosses to the right-hand side, with p0,i = pB to become p0,i = pA + ε, as
given by Eq. (5.4).(b) Demixing parameter as a function of τ/τD for different sys-
tem sizes, where the number density of cells is kept constant at 1, i.e., L =

√
N .

The (black)-solid line is given by Eq. (5.8), derived from a continuum model, with
α = 0.0866 ± 0.0009. (c) Snapshots of the confluent tissue obtained numerically
at time 10τ , for three different values of τ/τD, namely, 10−5, 10−3, and 10−2 (re-
spectively I, II and III). The color of each cell depends on the demixing parameter:
green (DMP = 1), red (DMP = 0), and blue (0 < DMP < 1). It is clear that
the cluster of red cells is formed around the line dividing the substrate into two parts
(see Fig. 5.1) and it grows with τ/τD until it spans the entire tissue. Results in (a)
and (b) are averages over ten independent samples. . . . . . . . . . . . . . . . . . . 47
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6.1 Schematic representation of the different phases of the model. In the Gas phase,
the two and three-cell interactions are repulsive which makes cells move away from
each other. In the Cluster phase, two-cell interactions are repulsive but three-cell
ones are attractive leading to small clusters of cells that are formed at the start and
never break, since two different clusters cannot merge given that they need two-cell
contacts. Some two-cell cluster configurations are also stable, if during the initializa-
tion protocol they start sufficiently close together, since for small distances between
two cell centers, the two-cell interaction can be attractive. The Hexagonal phase is
characterized by attractive two-cell interactions but repulsive three-cell ones. This
leads to a packing similar to hexagonal with multiple two-cell contacts. In the bot-
tom row are the phases with both attractive two and three-cell interactions. In the
Non confluent phase, cells are constrained by their maximal radius leading to holes
in the tissue. In the Minimal phase the energy of the cells is close to their minimum
(Pi = P0 and Ai = A0). In the Confluent phase the tissue is in a glassy state. . . . . 56
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Chapter 1

Introduction

Is there universality in biology? As physicists interested in studying biological systems, we
believe that the answer is yes. Otherwise, we would be left with no way to substantially contribute to
the field, as physics aims at finding universal laws [9–11]. On the bright side, the general consensus
seems to be shifting towards this answer as well. Recent studies have made breakthrough findings
on the universality of biological systems, from the scaling laws of phylogenetic trees [12–15], to the
flocking of animals [16–21], to the mechanical properties of confluent tissues [1, 2, 22–28], to the
complex motion of individual cells [29–35] and even to the understanding of the behavior of cell
organelles [36–40]. So far, Soft Matter physics has been able to capture multiple universal properties
of biological systems at wildly different length and time scales, pushing the boundaries of physics
even further as a multidisciplinary field. More conservative people will reply that Soft Matter is about
systems at the microscale where the interaction strength is comparable with the thermal energy. What
we have succeeded in doing is to extend the same ideas and methods to systems at different scales.

The study of epithelial tissues is a relevant example, in the context of this thesis, of the current
shift. Undoubtedly a biological system that has attracted physicists for several years [41–44], but only
with the recent advances in computer imaging and tracking one has been able to truly grasp some of
the universal behavior of these systems [1, 24, 28, 45, 46]. Even with these technological advances
many conceptual difficulties remain. The fact that cells are living systems with a biochemically
complex internal motor which transforms nutrients into energy that is then used for its own motion,
drives the system far from equilibrium [1,29,32,34]. Importantly, the driving is local, it occurs at the
level of single cells. Thus, conventional thermodynamic tools developed for equilibrium systems are
no longer useful and require a conceptual change to be applied to these new systems. This property
also allows cells to move autonomously without the need for externally applied forces.

Cells also feel their surroundings. Thus, changes in their environment can trigger a hierarchy of
biochemical processes that change the properties of individual cells. This can be seen in multiple
situations, but the most straightforward is when a cell is on a heterogeneous substrate. For example,
it is well established that cells tend to move towards stiffer regions of the substrate where they can
more easily anchor [47–54]. In this context, there is another relevant topic to mention. Epithelial
tissues are usually studied from a confluent point of view, meaning that the tissue is made of a vast
number of cells with no empty space [55]. It is therefore a many body problem with a truly many
body (non reciprocal) interaction. This is in contrast with typical soft matter systems like colloidal
particles where interaction are usually considered as symmetric pair-wise [56–60]. This raises several
challenges to the generalization of ideas and methods developed in the context of passive systems to
living ones [61–65]. Understanding the role of cell-cell and cell-environment interaction is of major
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importance for morphogenesis, collective cell motion, and wound healing [65–73].

Understanding the cell collective behavior in biological tissues has become one of the major
interdisciplinary challenges of recent years [53, 64, 65, 74–76]. Through both theoretical and ex-
perimental efforts, key properties of these tissues have been discovered. One example is that they
may be either rigid or flexible depending on the properties of individual cells and external condi-
tions [28, 63, 76–78]. This behavior is not exclusive to biological tissues. Particulate systems, such
as colloidal suspensions or granular media exhibit similar dynamical slowing down when density
is increased or temperature decreased, which leads to disordered amorphous materials kinetically
arrested in jammed or glassy states [79–81]. In living tissues, although the nature and properties
of the rigid states are still under debate [28, 63, 76, 77], it is undoubtedly a collective phenomenon.
This is in contrast with the mesenchymal to epithelial transition usually discussed in the context of
epithelial tissues. During development, cells undergo a mesenchymal to epithelial transition and the
tissue goes from a state with more irregularly shaped cells (mesenchymal) to another where cells
adopt more regular shapes (epithelial). The consequence of this transition is that the tissue also goes
from a fluid to a rigid state. But more importantly, this is a transition at the level of the chemistry
of the individual cell. Only when a significant portion of the cells have undergone this change, can
the tissue actually flow. On the other hand, the rigidity transition, described previously, is a purely
collective behavior [82]. It does not happen due to a biochemical change in the individual cell but due
to a collective interacting aggregate of cells [1, 2, 22, 25, 45, 46, 61, 61, 76, 83–86]. This suggests that
there is something universal about epithelial confluent tissues where physicists can play a relevant
role.

From a theoretical point of view, developing a model to tackle these issues is not a simple task.
Due to their extreme complexity, it is intractable to actually describe all the biochemical processes
happening inside the individual cell when trying to describe phenomena at the tissue level. Thus,
one needs coarse-grained models in order to develop a good insight of these systems [23, 87]. An
instinctive first approach is to use models already developed for inorganic particles, like colloidal
systems, where interactions are pairwise and the individual constituents are modeled as isotropic
spherical particles [16, 20, 21]. On the one hand, the particle description has been able to properly
capture collective migration of tissue cells in a simplistic way [20, 21, 88–91]. On the other, particle
models miss details related to cell shape and its coupling to polarity, which are relevant for some
aspects of epithelial dynamics [63, 76, 77, 82, 92–98]. As such, other models have been adapted to
provide a proper insight into the problem. A family of models taken from the physics of foams that
has been quite successful at capturing the mechanical properties of epithelial confluent tissues are
the active network models [76, 82, 92, 94]. The Vertex and Voronoi models, in 2D or 3D, constitute
this family of models which are represented as multiple vertices connected by straight lines (edges),
forming a system spanning network. The major difference between the two lies in the degrees of
freedom. The Vertex model uses the vertices of the network as degrees of freedom, while the Voronoi
model uses the vertices in the dual of this network [42,44]. The Vertex model is more tractable since
there is more control over the individual cell shape. The Voronoi model has one third of the degrees
of freedom allowing more robust simulations. Although both models seem quite similar, not only
from an aesthetic point of view but also from a physical one [2,22,62,84], there are major differences
between the two which can severely impact our view of epithelial confluent tissue [99].

In these models, the cell-cell interaction is usually described by an energy functional that dictates
the interaction between cells and is analogous to the Hamiltonian in standard equilibrium physical
systems [2, 83]. This energy functional penalizes the cells for deviating from a preferential area and
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perimeter (or surface area and volume in 3D). In the Vertex model the geometry of the cell is given
by the edges connecting the different vertices which enclose empty spaces of the simulation box into
regularly shaped polygons [45,46]. In the Voronoi model, the geometry of the cell is calculated using
the Voronoi tesselation of the degrees of freedom [100]. In both, since the area and perimeter of a
given cell depend on its neighbors, the interactions will thus be many body. In chapter two of this
thesis we will discuss in more detail the different models used to describe biological systems and
how they compare to one another. In these models a dynamical slowing down is observed when the
ratio between the preferential perimeter and the area of the cell decreases [2,22,83]. Cells are caged
by their neighbors and are unable to break free. This rigidity transition, as described above, has been
one of the staple predictions of this model with applications ranging from disease diagnosis [76] to
organ development [94]. For cells to move they need to exchange neighbors, commonly referred
to as T1 transitions. In the rigid regime, the characteristic energy barrier for these T1 transitions
is too high and cells are unable to move. This happens since when the ratio between the preferred
perimeter of the cells and the square root of their area is smaller than a given threshold, the cells tend
to expand until they become geometrically constrained by their neighbors. As this ratio increases,
the cells are able to deform and the energy barriers associated with T1 transitions decrease, allowing
the tissue to flow. As in particulate systems [101–107], this glassy behavior appears due to the high
degree of roughness of the energy landscape, as one approaches the rigid regime, populated with
several local minima that trap the system in a specific configuration which can be far from the global
minimum [108]. Aside from these similarities, the Vertex and Voronoi models actually have quite
anomalous glassy dynamics, with sub-Arrhenius scaling of the relaxation time with temperature and
the appearance of collective low frequency modes [84]. This raises the question, are these two models
different from a physical point of view?

This topic is explored in the third chapter of the thesis, where we study the Voronoi model in the
athermal limit, without activity or thermal fluctuations. As mentioned above, the number of degrees
of freedom of each model is quite different. In both models there are two constraints per cell, one
coming from the area and another from the perimeter terms in the energy functional. This energy
functional can be thought of as a spring which tries to push cells towards a preferred perimeter and
area, which when under tension acts as a constraint. Since the Vertex model has three times more
degrees of freedom than cells, the system is underconstrained [105, 109]. Recent work has shown
that these underconstrained models undergo a rigidity transition at a critical point [61, 62]. This can
be thought of as a minimal edge length problem, thinking of the edges between vertices as springs.
When the springs are under tension the vertices are constrained and unable to move. These tensions
act as additional constraints to the cells making it rigid and overconstrained. After a given threshold,
this tension disappears and they are able to move freely. More recent work has suggested a mech-
anism of energetic rigidity since this tension is directly related to the energy of the cells [110]. In
the Voronoi model, the number of degrees of freedom is equal to the number of constraints, thus it is
marginal [105, 109]. Due to this, it is unlikely that the model becomes fluid and recent results have
hypothesized that it might be rigid throughout the parameter space in the athermal regime since there
are always tensions, or more commonly residual stresses, constraining the cells movement [99].
In chapter three we discuss these results and use methods developed in the particulate glassy sys-
tems [111] to show that although there is no sign of a rigidity transition, the energy landscape of the
tissue undergoes a transition between rigid states which alter significantly its properties. This new
rigid state is no longer typical, in the sense that the energy landscape is no longer populated with
multiple distinct well-defined minima, but is partially flat. We draw similarities between this transi-
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tion and the Gardner transition observed in particulate systems in infinite dimensions [102, 112] and
probed in finite ones [103, 111, 113].

As mentioned previously, there are three main ingredients in the study of epithelial confluent
tissues, cell-cell and cell-environment interactions, and activity. In chapter three we focus on the
cell-cell interaction and neglect activity. In chapters four and five we consider cell activity and
consider explicitly the interaction between the cell and its supporting physical structure. An exten-
sive body of research shows that the cell morphology and dynamics are sensitive to the physical
and chemical properties of their underlying structure, be it the extracellular matrix or a culture sub-
strate [47–54, 64]. For example, it has been shown that substrate stiffness can significantly affect
the geometry of cultured cells, including their spreading area [54, 114], volume [115], and shape
elongation [116]. Furthermore, the epithelial layer of cells is supported by a complex polymeric
structure, the extracellular matrix (ECM), which plays a pivotal role in the tissues collective behav-
ior [47, 117–120]. Although the ECM is often quantified by bulk metrics, it has a high degree of
heterogeneity, which in turn influences the tissue itself. In chapter four we explore how a hetero-
geneous substrate, consisting of a rough landscape that changes the preferred geometry of the cells
depending on their position, influences the mechanical properties of an epithelial confluent tissue.
Previous work has already established that cell shapes change as a function of substrate proper-
ties [114] and cell shape in turn governs the rate of cell diffusion in monolayers [76]. Heterogeneity
at the cell level is known to substantially change the tissue dynamics [121,122], with implications in
cancer research where some cancer cells are found to be softer than normal cells [123–125]. Studies
using the Vertex model observed that a tissue always becomes more rigid in the presence of hetero-
geneity [8]. We show that it is possible to change the motility of the cells using a heterogeneous
substrate by controlling its dispersion. By tuning the characteristic length scale of the disorder to be
smaller than the typical cell size, it is possible to make the tissue more fluid.

In chapter five we shed light on the motility of the cells. There is a sustained interest in the
possibility of generating spatial patterns of cells with different properties, which is critical for mor-
phogenesis, collective cell motion, and wound healing [65–73]. A possible approach is to culture a
single cell type on a patterned substrate, and allow the patterned substrate to change the properties
of cells to generate a pattern [67, 68, 70, 71]. Patterned substrates have been used to a large extent in
the context of inorganic materials [126–129]. However, their use for biological systems raises sev-
eral additional difficulties. Besides the need for biocompatible materials, the transduction of external
stimuli into biological signals that control the cell morphology and mechanics is not instantaneous.
It requires a hierarchy of biochemical processes, which sets a characteristic adaptation time that can
extend over hours [130], for example, cells in rigid substrates reorganize their cytoskeleton through
stresses applied to the actin network to conform to the substrates properties [131]. The problem
is that, within the adaptation time scale, cells might move around and explore other regions of the
substrate. Thus, the fidelity of patterns in the regulation of cell tissues should depend on how the
adaptation time compares with the other relevant time scales. This is precisely what we study here.

The three chapters described previously cover the three facets of confluent epithelial tissues, cell-
cell and cell-environment interaction, and activity. In chapter six we focus on the bridge between the
single cell system and the fully grown confluent tissue [23–25,29,35,39,52,67,132–136]. For this, we
change the Voronoi model to allow for gaps between the cells, similar to Ref. [137]. Thus, for weaker
cell-cell adhesion, the cells will be able to break apart and take a more circular isotropic shape, while
for stronger adhesion they will still be able to adhere to each other and form a cell colony. Recent
studies have suggested that while the surface tension of cell colonies is quite heterogeneous and
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anisotropic, simple homogeneous continuum models are able to capture its behavior [132]. Using
the non-confluent Voronoi model we are able to simulate small cell colonies. We investigate how
the surface tension of the cell colonies change as it grows and try to understand how the different
properties of the cells, cell-cell interaction and activity, affect this scaling.

1.1 List of publications from the thesis

1. Diogo E. P. Pinto, Gonca Erdemci-Tandogan, M. Lisa Manning and Nuno A. M. Araújo, The
Cell Adaptation Time Sets a Minimum Length Scale for Patterned Substrates, Byophys. J. 119,
2299 (2020).

I performed the simulation studies and developed the continuum reaction-diffusion model. I
was also involved in the writing of the paper. The results from this paper are presented in
chapter 5

2. Diogo E. P. Pinto, Daniel M. Sussman, Margarida M. Telo da Gama and Nuno A. M. Araújo,
Hierarchical structure of the energy landscape in the Voronoi model of dense tissue, submitted.

I performed the numerical studies and implemented the GPU optimizations necessary for the
simulations. I was also involved in the writing of the paper. The results from this paper are
presented in chapter 3

3. Diogo E. P. Pinto, Margarida M. Telo da Gama and Nuno A. M. Araújo, Substrate disorder
promotes cell motility in confluent tissues, submitted.

I performed the simulation studies. I was also involved in the writing of the paper. The results
from this paper are presented in chapter 4
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Chapter 2

The model

The last decade saw groundbreaking technical [138] and conceptual [32, 37] advances in the
study and characterization of biological systems. On the technical side, time-lapse imaging and flu-
orescence microscopy have become standard tools in life-science laboratories, technologies such as
particle imaging velocimetry enabled a detailed mapping of velocity fields and strain tensors in the
tissue [139], and new technologies such as traction microscopy have enabled the direct mapping of
the forces that cells exert on their surroundings as they migrate [24]. All mechanical variables rele-
vant to the problem of collective cell migration have thus become available in time and space. This
technological revolution has coincided with the development of the theory of active matter [30, 32],
which provides an ideal framework to rationalize the collective movement of cells. These accom-
plishments centered condensed matter physics in the study of collective cell behavior and shifted the
conceptual reductionist framework to a picture of emerging collective phenomena characteristic of
soft matter systems [25].

Despite these advancements, a general theory of active matter is still out of reach, especially
concerning biological systems. The vast variability characteristic of cells or bacteria is still one of
the major challenges [1, 29]. Physics is concerned with the universality of these phenomena, if they
depend too much on the details, e.g. cell species or organelles, then general theories will not be
possible and only system dependent conclusions can be taken. From a theoretical point of view, it is
then ideal to develop coarse-grained models that properly capture the correct physics of the problem.
As such, over the last decades, multiple models have been proposed that try capturing the different
phenomena of biological systems, from single particle to continuum based theories [23, 35, 87]. In
this chapter we explore the main ingredients of these models to study collective behavior in cells
and tissues. Then, we focus on active network models, more specifically the Self-Propelled Voronoi
model and introduce the relevant properties that will be useful for the following chapters. We also
make a detailed description of the numerical implementation and some of our contributions to the
optimization of the code used for the simulations.

2.1 Numerical modeling of living tissues

Even though cells and tissues are complex systems, efforts have been made into isolating the
relevant interactions that play a role in their collective behavior [24, 27, 29, 63, 136]. These can be
divided into three main interactions (Fig. 2.1), cell-environment, cell-cell and activity or orienta-
tion [23]. Most of the progress done on these systems has been performed in vitro, since in vivo
measurements of traction forces and velocity fields are still quite challenging. As such, cells are
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Figure 2.1: Schematic representation of a monolayers top (right figure) and side (top left figure) views, based on Fig. 2
of Ref. [1]. We have color coded symbols that represent the different interactions and relevant biological structures in
cells. When modeling an epithelial tissue these different components should be taken into account as appropriate for the
behavior it is meant to describe.

usually cultured in a substrate where they adhere and develop into a fully confluent monolayer. In
these configurations, the cell-environment interaction is usually attributed to a substrate, be it the
ECM or the physical culture substrate [47, 117–120]. This interaction is commonly divided into two
contributions: the active traction forces and the friction forces.

The active traction forces stem from the cell’s actomyosin cytoskeleton, where the action of
myosin molecular motors on actin filaments generates contractile forces which are then transmitted
to the substrate through focal adhesions [136]. For this, the cell must first break its symmetry and
polarize. This front to rear polarization is usually accomplished through the formation of actin-based
protrusions which generate an inward-pointing active traction resulting in a force that propels the
cell forward in the direction of its polarity. Thus, in models, the force that drives cell migration
is usually assumed proportional to a cell polarity vector, with a coefficient that depends on both
cell–substrate adhesion and the active force–generating processes in the cytoskeleton [35]. The cell-
substrate friction forces balance the active ones and are mediated by the attachment and detachment
of proteins at focal adhesions [75]. This friction is expected to be proportional to the velocity of the
cell relative to the substrate and, in a first approximation, cell–substrate friction is often modeled as
a viscous damping force with a coefficient that reflects cell–substrate adhesion [35].

Cell-cell interactions can also be described using four different types of intercellular forces. The
first is the cell-cell adhesion. Especially relevant for tissues, this force is mediated by specific trans-
membrane protein complexes, which build cell–cell junctions that physically link the actomyosin
cortices of the adhering cells, thereby enabling force transmission between them [55]. Cell–cell junc-
tions endow tissues with cohesion energy and surface tension, as well as with a bulk modulus. Thus,
different modeling frameworks account for cell–cell adhesion by either an interfacial energy con-
tribution, a short-range attraction that opposes cell–cell detachment, or a tissue bulk modulus [87].
Since cells are adhered, friction will also play a role as they move past each other. Cell–cell friction
is based on the sliding, turnover, and attachment kinetics of cell–cell junction proteins [55]. This
friction is usually modeled as a shear force proportional to the relative velocity between the cells
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or, in tissue-level descriptions, as shear viscous stresses. Aside from attraction, cells also repel each
other. Cell compression is resisted by the cytoskeleton elasticity, which, in epithelial monolayers,
gives rise to an area compressibility [140]. This interaction can also lead to more extreme behavior
like cell insertion or extrusion which directly influences the monolayers area [26, 134, 141–143], but
these effects will not be explored in the context of this thesis. Lastly, active cell-cell forces are gen-
erated by myosin molecular motors in the cytoskeleton and transmitted through cell–cell junctions.
The cell cortex and the apical actin belt generate a roughly isotropic tension at the cell scale, thus
giving rise to isotropic active stress at the tissue level. However, migrating cells are polarized, and
hence their cytoskeleton exhibits highly anisotropic structures such as stress fibers which generate
anisotropic tension and give rise to anisotropic active stresses at the tissue scale [144, 145]. Due to
this high level of anisotropy, some models only take it into account when it is introduced explicitly
in the models framework, while others consider it isotropic for simplicity [23].

The orientation interaction between cells might be one of the most debated and, depending on
the model, can vary wildly on its interpretation. The problem lies in the fact that the orientation
of the cells can be changed through a variety of different methods, either from cell-cell interations
or cell-substrate ones [35]. The most prominent ones are polarity alignments, where cells tend to
align their polarities and is often explicitly implemented via either Vicsek-like rules, torques on
cell polarity or orientational stiffness of the polarity field in continuum models [20, 87]. Cells also
tend to align with the flow induced in the tissue, shear tissue flows reorient cell polarity in the fly
wing [146], as well as the cell division axis in epithelial monolayers [147]. Cell polarity-shape
alignments have also been discussed in previous works [35,87,148]. There are also several processes
whereby cells tune their migration direction upon contact interactions with other cells, which is
sometimes termed contact regulation of locomotion [23]. Lastly, the polarization of the cells can also
be influenced by the substrate. This can be through a substrate induced polarization given that cells
exert larger tractions on more adhesive substrates and thus, gradients of substrate adhesivity/stiffness
can polarize cells (durotaxis) [47, 70, 96, 149]. Through their interaction with the substrate, cells
may be able to align their polarity to their velocity, thus tending to align self-propulsion with drag
cell–substrate forces [51]. This can induce a polarity-velocity alignment. Although used in some
models, this interaction is still poorly understood due to the dominance of cell–cell interactions in
cell monolayers [23, 35, 87].

Due to the complexity of the interactions, models should be properly coarse-grained to take into
account the relevant ones when trying to describe a specific phenomenon. The more interactions one
takes into account the more difficult it is to grasp the model itself and understand which interactions
play a relevant role. As such, multiple models have been proposed to tackle different problems in
cell monolayers. From single particle descriptions to continuum models, each one excels at different
levels [23, 87]. For example, single particle descriptions have been developed for several years to
describe collective motion in large aggregates of cells, but usually fail at taking cell-cell adhesion into
account or fail at describing the mechanics of cell tissues as the relevant length and time scales are out
of reach [20,35,88]. On the other end of the spectrum, continuum models are often more analytically
tractable which can yield insights into the problem without having to explore the parameter space in
simulation, but cell–cell interactions are not implemented at the cellular level but rather encoded in
phenomenological couplings whose relationship to cellular processes may be unclear [33, 34, 132].
Others lie in the middle, like Phase Field models, or lattice models like the Cellular Potts model [23].
In this thesis, we focus on a specific family of models, the active network models [45,46]. With roots
in the study of foams [150], network models have been adapted to describe cell monolayers where
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each cell has a polygonal shape [42,44]. Although not as detailed as the Cellular Potts model or Phase
Field models they still have been able to capture some relevant geometrical properties of tissues [76,
82,94]. A current limitation of network models is that they account for neither internal dissipation nor
anisotropic active stresses in the tissue. Recent efforts to include cell–cell friction [151] and to relate
network geometry to the tissue stress tensor [152] offer possible ways to address these limitations.

This family of models can be divided into two subtypes, the Vertex and the Voronoi models.
When describing cell monolayers, both consider that cells have a regular polygon shape. The Vertex
model uses the vertices of the polygons as degrees of freedom, while the Voronoi model uses their
geometrical center as degrees of freedom and makes use of the Voronoi tessellation of these points
to extract the shape of the individual cells [2, 83]. Given the disparity in the degrees of freedom,
both models will differ on how the topological changes to the network are performed. While in the
Voronoi model, topological changes are carried automatically through the tessellation, in the Vertex
model they need to be introduced explicitly [45]. Both models have been studied in 3D [61, 62, 153]
and 2D [2,22,45,46,83]. Although the 3D Voronoi model shows interesting properties that have been
used to highlight the uniqueness of these network models [61, 62], the shape of the cells becomes
too unnatural when comparing to typical cell monolayers. Due to the Voronoi tessellation, the cells
will have a spherical shape which conflicts with the typical columnar shape seen in epithelial tissues,
and thus Vertex models are usually used to describe the tissues in 3D [153]. Since the degrees of
freedom are in the vertices of the polygon, there is more freedom to model the shape of the cells
and make a proper columnar tissue. Furthermore, this also allows for a more detailed description of
the cell by separating the dynamics of its apical and basal sides, which can be of relevance for some
studies [93,153]. In our case, we will be focusing on 2D models. For the applications we aim for, the
height of the monolayer does not play a relevant role and as such we do not need to take into account
the apical and basal sides explicitly [55]. Thus, all the relevant dynamics will be at the level of the
cross-sectional area of the tissue. Both the Vertex and Voronoi models are usually described, in the
cell monolayer context, by an energy functional [2, 45, 46, 83],

Ei = KA[Ai −A0]2 + ΛPi + ΓP 2
i , (2.1)

whereAi and Pi are the area and perimeter of cell i, respectively, andA0 is the target area value. The
first term accounts for the cell incompressibility and the resistance to height fluctuations. The second
term accounts for the effective cell membrane tension, due to cell-cell adhesion and cortical tension,
while the third term accounts for the active contractility of the actomyosin subcellular cortex. This
term is a key difference between models of tissues and foams; for the latter, Λ is always positive
and the quadratic perimeter term is absent [150]. KA is the area moduli, Λ is the line tension of the
cell–cell interfaces and Γ is related to the strength of the contractility.

2.2 The 2D Self-Propelled Voronoi model

In this thesis, we focus primarily on the 2D Self-Propelled Voronoi model. The differences in
implementation between the Voronoi and Vertex models are explained in the following subsection
and we also give a general overview of the relevant results in the literature from the two models.

We model the confluent tissue as a monolayer of N cells (Fig. 2.2). Each cell i is represented by
its center ri and its shape is given by the Voronoi tesselation of the space. The stochastic trajectories
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Figure 2.2: Schematic representation of the rules of the model. On the left are snapshots of the different steps of the
simulation. First, one distributes points in a box corresponding to the centers of the cells. Then, the interactions are
calculated using the energy functional Eq. (2.5), where the area and perimeter of the cells are calculated using the Voronoi
tessellation. The cells are then displaced using an overdamped Langevin equation of motion (Eq. (2.2)), which takes into
account an interaction term and a self-propelled term, that describes in a simplified way the front to rear polarization of the
cells. The last step of the simulation is tasked with calculating the new network topology of the tissue.

of cells are obtained from a set of overdamped Langevin equations of motion,

dri
dt

= µFi + v0n̂i, (2.2)

where Fi is the net force acting on cell i, µ is the mobility of the cell, v0 the self-propulsion speed,
and n̂i = (cos θi, sin θi) is a polarity vector which sets the direction of the self-propulsion force. For
simplicity, we consider that θi is described by a Brownian process given by,

θ̇i = ηi(t), 〈ηi(t)ηj(t′)〉 = 2Drδ(t− t′)δij , (2.3)

where ηi(t) is an uncorrelated random process of zero mean and its variance sets the rotational
diffusionDr. This is a simplistic way of introducing the front to rear polarization of the cells explored
previously [23, 87].

The net force Fi describes the multibody cell-cell interaction and it is given by Fi = −∇iE,
where E =

∑
Ei is the energy functional for the whole tissue and Ei is the energy functional for

each cell i as shown in Eq.(2.1) [45, 46]. The gradient operator ∇i = ∂/∂ri, where ri are the
coordinate positions of cell i. One can further simplify the energy functional,

Ei = KA[Ai −A0]2 +KP [Pi − P0]2 , (2.4)

where Ai and Pi are the area and perimeter of cell i, respectively, and A0 and P0 are their target val-
ues. The first term accounts for the same effects as described previously. The second term accounts
for both the active contractility of the actomyosin subcellular cortex and effective cell membrane ten-
sion, due to cell-cell adhesion and cortical tension. KA and KP are the area and perimeter moduli.
There is an additional constant term when compared to Eq. (2.1), which vanishes when the forces
are calculated. Since we use periodic boundary conditions with a fixed box size, the preferred area,
A0, only renormalizes the pressure and does not affect the forces between the cells [61, 137]. Thus,
without loss of generality, we set A0 = Ā ≡ (

∑
iAi)/N = L2/N and adimensionalize the model

using the length
√
Ā and the energy KP Ā units, leading to the dimensionless energy:
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ei = kA(ai − 1)2 + (pi − p0)2 , (2.5)

with four adimensional quantities: two that characterize the area and the perimeter of the cell (ai =

Ai/Ā and pi = Pi/
√
Ā), a shape parameter p0 = P0/

√
Ā, and the ratio kA = KAĀ/KP .

2.2.1 The 2D Vertex model

The Vertex and Voronoi model share the same energy functional given by Eq. (2.1), the difference
being the way they are calculated since in the Voronoi model the area and perimeter of the cell is
given by the Voronoi tessellation of the degrees of freedom, while in the Vertex model these are the
vertices, and the area and perimeter are calculated through the edges of the network which connect
the different vertices to form the cells [45]. The main difference is in the self-propulsion term.
Some studies consider the simplest case where each vertex moves with Brownian motion, where
n̂i becomes a simple white noise term. More recent studies have introduced a self-propulsion term
by considering an effective energy similar to Eq. (2.1) but with an additional term related to the
self-propulsion,

Ei = KA[Ai −A0]2 + ΛPi + ΓP 2
i − γv0

∑
cells−a

n̂(θa) · ra (2.6)

where ra is the geometrical center of the cell and γ the substrate friction. The last term is a sum
on all vertices belonging to a given cell a. In this way, when taking the gradient of the energy, the
equations of motion become identical to those of the SPV model [98].

Another major difference comes in the way topological changes to the network are handled.
In the SPV model, topological changes are carried automatically through the tessellation. In the
AVM or BVM they need to be introduced into the model explicitly. These are usually termed T1

transitions, which correspond to the process through which cells exchange neighbors. In practice,
this is carried out by checking if after each timestep there is any edge in the network with a length
smaller than a given threshold la. If so, a T1 transition is performed, in which two vertices sharing
a short edge merge into a single vertex, which then decomposes into two new vertices, forming an
edge perpendicular to the previous one, such that the local network topology is changed [45].

2.3 Rigidity transition and anomalous glassy dynamics

Recently it has been reported that both the Vertex and Voronoi models undergo a rigidity tran-
sition at a threshold value p0 ≈ 3.81 [2, 83]. In the Vertex model, this transition is accompanied
by a reduction of the shear modulus of the tissue for p0 < 3.81, vanishing for values above this
threshold [83]. In the Voronoi model, this transition was characterized using the diffusion coefficient
of the tissue which increases substantially close to the same critical point [2]. In both models the
phenomenology of the transition is similar, for p0 < 3.81 the tissue is in a rigid phase where cells
are caged by their neighbors. The energy barriers for cell rearrangement are large and the tissue is
arrested [22]. In this phase, the edges of the cells are under large tensions, referred commonly as
residual stresses, and are not able to decrease sufficiently in length such that a T1 transition, or a cell
neighbor exchange, occurs. For p0 ≥ 3.81, the residual stresses decrease significantly and cells are
able to adopt more asymmetrical shapes. This is accompanied by a reduction of the energy barriers
and the tissue is able to flow. This new phase is the fluid-like phase [2,22,83]. Figure. 2.3 shows how
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Figure 2.3: Heat map of the diffusion coefficient of the tissue for different p0 and v0. As shown in previous studies [2],
the diffusion coefficient increases with p0 or v0. For low values of these parameters, the cells are caged by their neighbors
and the tissue is arrested. As p0 or v0 increase, the cells break free from their cages and move more easily throughout
the tissue. On the right are snapshots of the tissue and sample trajectories of the cells corresponding to the two different
phases.

the diffusion coefficient of the tissue in the SPV model changes as a function of p0 and v0 (similar
to Ref. [2]). We observe an increase of the diffusion coefficient as the tissue enters the fluid phase as
shown in previous studies.

Aside from the rigidity transition, both models show anomalous glassy dynamics when com-
pared to more typical glassy systems like colloids or granular matter [80]. In Ref. [84], the glassy
dynamics of the Brownian version of the Voronoi and Vertex models was studied. It was found that
the low-frequency modes are collective, rather than the quasi-localized modes typically seen in par-
ticulate glasses. Furthermore, the models display sub-Arrhenius scaling of the relaxation time as
the temperature is lowered, suggesting that either typical glassy energy barriers decrease in colder
glasses, or that a local picture of activated dynamics, characteristic of particulate glasses, does not
hold. It is also heavily hinted that nonlinearities are a key to understanding structural length scales
in these models.

Although both models have quite similar dynamics, they diverge substantially in the athermal
regime (no activity or temperature). As observed in Ref. [154], the 2D athermal Voronoi model,
parameterized by Eq. (2.5), does not have a rigidity transition around the critical value (p0 = 3.81),
and is rigid throughout the parameter space explored. It was also suggested, using larger simulations,
that in the SPV model (with activity), the critical point no longer plays a special role (the values do
not converge at this point), and that the implied dynamical transition is a strong function of Dr. This
is consistent with the decoupling of the glass and jamming transitions observed in self-propelled
particle models [106]. By contrast, for the special case kA = 0, where there are more degrees of
freedom than constraints, a mechanically floppy regime was reported with a rigidity transition close
to that observed in the 2D Vertex model. Similar to the 3D Voronoi model and the 2D Vertex model,
this transition is also followed by a substantial decrease of the residual stresses [61, 62].

These results suggest that it is possible to distinguish these models depending on the number
of constraints. On one hand, the underconstrained models, like the 2D Vertex model, 3D Voronoi
model or 2D Voronoi model with kA = 0, exhibit a clear rigidity transition driven by the presence
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of residual stresses [61, 62, 110]. On the other hand, the 2D Voronoi model with kA > 0, which is
marginal (number of degrees of freedom equals the number of constraints) [109], is always rigid,
with a dynamical transition similar to self-propelled particle models when activity or temperature is
introduced in the equations of motion [84, 106, 154].

Recent studies have worked towards unifying the rigidity in underconstrained models using a
minimal length approach [61, 62, 110]. These systems are rigid due to geometrical incompatibility.
Similar to a guitar string, before it is tightened, the floppy string is underconstrained, with fewer
constraints than degrees of freedom and there are many ways to deform the string at no energetic cost.
As the distance between the two ends is increased above the rest length of the string, this geometric
incompatibility together with the accompanying creation of a self-stress rigidifies the system and any
deformation will be associated with an energetic cost. Just as with the guitar string, the description
of the geometry given by a minimal length then allows one to calculate many features of the elastic
response, including the bulk and shear moduli [62]. In the 2D Vertex model this minimal length
corresponds to a given preferred perimeter, p0, while for 3D is a surface area. Even more recent
work [110] further emphasis this idea and introduces the concept of energetic rigidity to these models.
They suggest that standard constraint counting is not enough to predict the onset of rigidity, it is
required for small displacements to increase the energy of the system for it to be rigid. This result is
in contrast to typical particulate models which have focused on rigidity trough constraint counting,
when motion preserves constraints [101, 107, 155].

In contrast, the 2D Voronoi model with kA > 0 is marginal and it is still unknown whether the
same theory applies. Nonetheless, as pointed out previously, the Voronoi and Vertex models share the
anomalous glassy dynamics and although the Voronoi model does not have a rigidity transition in the
athermal regime, the shear modulus of the tissue still decreases by orders of magnitude close to the
expected thermal transition point [154]. Recent results with the 2D Brownian Voronoi model have
also suggested a change in the energy landscape close to p0 ≈ 3.81, where there is an emergence
of a fractal-like energy landscape and cells become virtually free to diffuse in specific phase space
directions up to a small distance [108]. All these results suggest that for high values of p0, even
though the tissue might not be fluid, the rigidity still changes. We explore this in more detail in
chapter two.

Aside from the rigidity transition and glassy dynamics, some works have also explored collective
cell motion like flocking in these models, by introducing Vicksek-like orientation interactions or
similar [23, 156]. Other works have also explored the effects of cell apoptosis and mitosis in the
transition [98, 157]. Some studies have introduced a coupling between network geometry and the
tissue stress tensor. Due to the anisotropy of the network, this could resolve the problem of the active
stresses in the tissue not being anisotropic [92, 97, 158]. Although the simple Vertex model only
takes into account simple vertices (shared by three cells), some studies have considered the effects
of multi-fold vertices and rosettes in the tissue, observing that these higher order nonlinear terms
increase the constraints of the tissue promoting its rigid state [159]. The 3D Vertex model has also
garnered some attention due to the possibility of creating columnar like monolayers and being able
to separate the apical and basal dynamics [153]. Aside from the standard planar description, recent
studies have looked at the effects of curvature in the mechanical properties of the tissue and the
rigidity transition, highlighting the effects of curvature in the collective motion of the cells [85, 86].
In chapter four of this thesis, we explore more how heterogeneity affects the rigidity of the tissue,
which has been discussed in previous work with significant impact for cancer research [8]. Lastly,
we also consider in chapter six the case of a non-confluent tissue which also shows a wide array of
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Figure 2.4: Schematic representation of the lemma used for the optimization. The image on the left shows how the local
lemma applies to the triangulation of a specific point (red). In green are four points which are chosen as the initial vertices
of the trial polygon. The circumcircles are shown in blue and in black are the points that are inside the circumcircles. The
lemma states that while there are points inside the circumcircles we have not reached the final Delaunay triangulation. In
the middle is a schematic representation of the half plane intersection routine. Here, a point inside a circumcircle is chosen
as a trial vertex and a segment is drawn between it and the red point. Then a perpendicular to that line is drawn which
divides the box into two half planes. In this case, since there is only one circumcircle center in the same side as the trial
vertex, no vertex of the trial polygon is removed and this trial vertex is added to the trial polygon. On the right is the correct
Delaunay triangulation.

different phases, starting in a gas-like phase until reaching the fully confluent phase [137, 160].

2.4 Code optimization

To run the simulations we use a C++ code entitled cellGPU. This is an hybrid CPU and GPU
code that efficiently simulates a confluent tissue using the SPV model [99]. The routine is a standard
molecular dynamics simulation with an Euler integration, and an additional layering which is the
Delaunay triangulation. In order to access large system sizes and long time scales, we optimized
the existing open source code as follows: previously, this code used a CPU only C++ library named
CGAL to compute the periodic Delaunay triangulation of the cell points, which is the dual graph
of the one given by the Voronoi tessellation. This library uses a standard edge flipping algorithm
to perform this triangulation [3]. Although these pre-established routines are extremely optimized
for their task, the constant memory transfers between CPU and GPU hinders the codes performance.
Furthermore, since only the Delaunay triangulation of the points are stored at each timestep, it is
possible that only local topological rearrangements of this network are needed between successive
timesteps, instead of a global triangulation. Since the CGAL routine does not take this into account,
it is not optimized for this problem in particular, and given that the Delaunay triangulation is the
most demanding task of the whole routine, we decided to implement a GPU and multi-threaded CPU
routine that allows for faster local triangulations. Recently, a multi-threaded CPU implementation of
the Delaunay triangulation was studied and compared to other state of the art algorithms [161]. It
takes advantage of the following local lemma to triangulate the points: given a subset of points X of
the entire set N , if the points in X form a closed simple polygon that contains a given point i, then
the actual Delaunay neighbors of i are contained in the union of the circumcircles formed by i and
each ordered pair of vertices in the polygon. This lemma makes it easier to calculate the Delaunay
triangulation since one only needs to look at points closer to i and not to the whole set, thus allowing
for local repairs of the topology of the network. We took advantage of the same lemma to develop a
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Figure 2.5: Runtime of the Delaunay triangulation code as a function of the number of points used. The runtime is
measured in seconds and for all methods used, the initialization time was removed from the total in order to take into
account the relevant time for triangulation. We compare between different CPU and GPU implementations. delGPU is our
implementation and we show its runtime when using the GPU, the CPU with one core and with four cores. CGAL is used
as a CPU implementation with only one core [3]. gdel2D is a GPU implementation as described in Refs. [4,5]. All results
were averaged through 100 different samples. The hardware used for the CPU is a AMD Ryzen 3 2200g with radeon vega
graphics, while for the GPU we used a Nvidia GeForce RTX 2080 Ti. These results were calculated using only uniform
distributions of points.

GPU routine to use in the simulations of the Voronoi model.

Figure 2.4 shows some of the steps of the implementation, a more thorough explanation is given
in Ref. [161]. To find the Delaunay neighbors of a given point we start by creating the trial polygon
that encloses the point. We choose to always take a four point trial polygon since, in this way, it
becomes less expensive to check relative positions, we only need to make sure that the points are in
different quadrants with respect to the point we are trying to triangulate. If a fifth is added we need
to check its relative position to the others, while for only three we do not always guarantee that the
trial polygon encloses the triangulation point. To find this trial polygon we create a squared grid that
divides the simulation box into multiple squares. We choose the grid size such that, on average, there
is one point per square grid. We start from the grid square of the triangulation point and search the
nearby grid squares, in a spiral like way, until we find four points, one in each quadrant (with respect
to the triangulation point). We need to make sure that this trial polygon is regular and convex. As
the lemma states, we can create a circumcircle between the triangulation point and each ordered pair
of the trial polygon, leading to a total of four circumcircles. If there are no other points inside these
circumcircles, the vertices of the trial polygon are the actual Delaunay neighbors, if there are others,
the polygon needs to be adjusted. We use a half plane intersection routine, as explained in Ref. [161]
to go from the trial polygon to the actual Delaunay triangulation. For a given pair of vertices in the
trial polygon with other points inside its circumcircle, we choose the closest one (the trial vertex)
to the triangulation point and run the half plane intersection. First, we calculate the line segment
that goes from the triangulation point to the trial vertex. From that line, we calculate another that is
perpendicular and intersects it at half its length, which creates two half planes, one which contains the
triangulation point and the other which contains the trial vertex. Lastly, we check which circumcircle
centers (of the trial polygon) are on the side of the trial vertex. Each polygon vertex generates two
different circumcircles. Thus, if there is only one circumcircle center on the half plane of the trial
vertex, the trial vertex is added to the trial polygon. If there is more than one center on that half
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plane, then the vertices which have their two circumcircle centers on the side of the trial vertex are
removed and the trial vertex is added to the polygon. This half plane routine is carried out until the
final polygon is found. To reduce the redundancy of the method, one can choose to calculate only two
triangles per triangulation point, but we chose to calculate the whole triangulation since we needed
the full ordered list of Delaunay neighbors to use in the SPV routine.

In Fig. 2.5 we show a comparison between our GPU routine (delGPU) and the single-core im-
plementation used previously in cellGPU (CGAL). We observe that the difference between the two
routines increases with the number of points, being almost three orders of magnitude faster to tri-
angulate for larger sets. In this comparison, only uniform point distributions are used since they
highlight the strength of this implementation. Furthermore, when using this routine to simulate the
Voronoi model, it is probable that a large percentage of the triangulations will be done on uniform
point distributions. In Fig. 2.5 we also show a comparison between our implementation and a state
of the art routine for the GPU [4, 5].

One of the advantages of this technique is that it allows for a fast and local triangulation of the
point set. Thus, aside from the clear optimization resulting from a full GPU implementation, we
also have the added advantage of using only local topological changes of the Delaunay triangulation
network. For this, we go through each triangle in the Delaunay triangulation and check whether the
circumcircle area formed by those three points contains any other point of the N − 3 set inside. The
local topological change only needs to happen if the answer is yes, in which case the three points
belonging to that triangle need to be updated.
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Chapter 3

Hierarchical structure of the energy
landscape in the Voronoi model of dense
tissue

The Voronoi model is a popular tool for studying confluent living tissues. It exhibits an anoma-
lous glassy behavior even at very low temperatures or weak active self-propulsion, and at zero tem-
perature the model exhibits a disordered solid structure with no evidence of a rigidity transition.
Here we investigate the properties of the energy landscape in this limit. We find two disordered solid
phases that have similar structural features but that differ in the ultrametricity of their energy land-
scapes; the crossover between these two states shares properties of a Gardner transition. We further
highlight how the metric used to calculate distances between configurations influences the ability to
detect hierarchical arrangements of the basins in the energy landscape.

3.1 Motivation

Understanding the collective behavior of cells in biological tissues has become one of the major
interdisciplinary challenges of recent years, with applications ranging from wound healing to cancer
treatment [53, 64, 65, 74–76]. Both experimental and theoretical efforts have been crucial in under-
standing the properties of these tissues and the mechanisms by which tissue properties are regulated,
for example in the way that tissues can transition from rigid to flexible as the properties of individual
cells are regulated [28, 63, 76–78, 94, 116]. Rigidity transitions are also seen in particulate systems,
such as granular materials and colloidal suspensions, in which changes in particle density and tem-
perature can lead to disordered materials in kinetically arrested jammed or glassy states [79–81]. In
living tissues, the nature and properties of the rigid states are still under debate [28, 63, 76, 77], ow-
ing both to the explicitly non-equilibrium nature of cellular motion and the many-body interactions
found in confluent tissue [16]. These differences raise several challenges to the generalization of
ideas and methods developed in the context of well-studied particulate matter [61–65].

Several models have been proposed to understand the collective behavior of cellular systems,
from single particle descriptions to density field models [22, 45, 46, 83, 87, 148]. The Voronoi model
represents a confluent tissue as a space filling polygonal tiling, where each positional degree of
freedom corresponds to a cell whose shape is obtained by an instantaneous Voronoi tessellation [2,
100, 162]. The dynamics is controlled by an energy functional that is quadratic in the area and
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Figure 3.1: Representation of the perturbation protocol. On the left is represented the original minimized configuration
(red) with the perturbation vectors in the center of each cell. In the middle is the original minimized configuration (red)
and the perturbed one (green). On the right is the original minimized configuration (red) and the one minimized after the
perturbation (blue).

perimeter of each cell (described in more detail below), and the mechanical properties of the tissue
can be either solid-like or fluid-like depending on the temperature and a shape parameter, p0, which
quantifies the target shape of the individual cells [2].

At zero temperature (or in the absence of cellular activity) it has been argued that the Voronoi
model possesses a finite shear modulus over its entire range of model parameters [84]. This is in sharp
contrast with particulate systems, in which a zero-temperature rigidity transition can be observed by
changing the system density [102, 105, 112, 155]. The particulate jamming transition is typically
interpreted in the context of constraint counting, in which the transition occurs when the number
of independent particle-particle contacts equals the number of degrees of freedom [109, 163]. As
described below, the 2D Voronoi model is always at this point of marginal stability [84], and thus an
analysis based only on the balance between constraints and degrees of freedom is insufficient. It has
been proposed instead that energetic rigidity, in which not only simple constraints but also residual
stresses play a key role [61, 62, 110, 159], is a better framework for understanding Voronoi model
rigidity in the athermal limit [110].

Here, we explore this unusual athermal regime of the Voronoi model and show that, even in
the absence of a zero-temperature rigidity transition, there is a profound change in the statistics of
the energy landscape in different regions of the model parameter space. We find evidence for a
transition to an ultrametric, hierarchical arrangement of basins in the energy landscape, suggesting
two different phases of a disordered solid [101, 103, 111, 113]. The ultrametric state is characterized
by energy minima forming a tree-like structure in phase space where minima within a given sub-basin
are much closer to one another than they are to minima in any other sub-basin [102, 112]. This is
consistent with a Gardner phenomenology [102,112]; the phenomenological properties of this phase
have been studied in multiple experimental and computational systems [101,103,111,113,164,165].

3.2 Methods

We model the confluent tissue as a monolayer of N cells [2, 22, 83] in a square domain of side-
length L with periodic boundary conditions. Each cell i is represented by its center ri with a shape
given by an instantaneous Voronoi tessellation of the space. We choose the unit of length to be given
by the square root of the average area of all the cells. We can then write a dimensionless version of
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Figure 3.2: Scatter plot of the distribution of normalized metric distance to the original minimum for different norms of
the perturbation vector, using the contact metric. The metric distance defined in Eq. (3.2) is normalized by

√
|a||b|, where

|a| = d(a, 0). For p0 = 3.81, all sizes collapse onto the same curve when using this scaling. We choose εmax = 0.5
√
N .

the contribution of each cell to the energy functional as [45, 46, 61, 137]

ei = kA(ai − 1)2 + (pi − p0)2. (3.1)

Here ai and pi are the dimensionless area and perimeter of cell i, p0 is the target perimeter, and
kA represents the ratio between the relative stiffness of the area and perimeter elasticity of the cell.
To simulate the tissue we use cellGPU [99] and initialize N cells distributed randomly in a square
periodic box of linear size

√
N in units of

√
Ā. We consider a monodisperse system with Ā = 1.

After initialization, the tissue is relaxed using a FIRE minimization algorithm [166]. This relax-
ation algorithm moves the cell centers at each step in order to minimize the energy, described by the
functional form given in Eq. (3.1). The algorithm uses the standard Molecular Dynamics equations
(with velocity Verlet integration) and two adaptive quantities, the time-step ∆t and α, the latter to
adjust the integration step and the former to control the velocities. During the relaxation, when an
uphill in the energy landscape is found, both decrease in order to minimize the amount of time spent
there and then increase again when a downhill is encountered. For our simulations, we have chosen
∆tmin = 0.001, ∆tmax = 0.1 and αstart = 0.99. We have tested other values and have found that
they do not affect substantially the minimization procedure. Thus, they were kept the same in all
the simulations. The minimization is halted once the maximum force on all cells is less than 10−12

in natural units. Due to numerical constraints, we consider p0 ≤ 3.85, since it has been shown for
athermal systems that, above this value, configurations with multi-fold vertices are obtained which
lead to numerical instabilities in the minimization protocol [84]

To probe the structure of the energy landscape, we start from an initial configuration that cor-
responds to a local minimum and perturb it to find new stable configurations. In our primary per-
turbation protocol, we displace the position of each cell according to the vector

−→
P ε = [X0, X1, ...

, X2N−1], where N is the number of cells, X2i = ε cos(θi) is the perturbation to cell i along the
x-axis, X2i+1 = ε sin(θi) is that along the y-axis, and θi is a random angle uniformly distributed
between 0 and 2π. We considered a random length ε drawn from a uniform distribution between 0

and εmax, to guarantee the possibility of visiting minima in the same and different top-level basins.
The norm of the perturbation vector is |

−→
P ε| = Pε = ε

√
N . After the perturbation, we subtract the

global translation of the tissue, and then let the tissue relax to a new minimum. An example of this
process is shown in Fig. 3.1; details of alternate “perturb-and-minimize” schemes can be found in

19



Chapter 3. Hierarchical structure of the energy landscape in the Voronoi model of dense tissue

Figure 3.3: Ultrametric structure of the energy landscape using the contact vector metric. (Left) The normalized general-
ized distance to ultrametricity as measured using the contact vector metric, DX/

√
N , as a function of p0, for N = 1024,

2048, 4096, 8192, 16384. The inset shows the same results without the scaling. (Right) A schematic representation of the
distances between minima according to the contact metric, dX(a, b), and the subdominant ultrametric constructed from
it using a minimum spanning tree [6, 7]. Matrices corresponding to N = 4096 and p0 = 3.75, 3.83 are shown, where
the different distances are grouped using a single-linkage clustering algorithm which clusters the minima sequentially by
distance. All results are averages of 10 initial configurations subject to 100 perturbations and minimizations each.

the following sections, where we show that our results are not qualitatively sensitive to these details.

3.3 Results and discussion

We will be exploring different metrics to characterize distances between minima in the energy
landscape. To begin quantifying these distances we consider the contact metric (denoted by the
superscripted X) discussed in Refs. [103, 111, 113],

dX(a, b) =

√∑
ij

(~Caij − ~Cbij)
2, (3.2)

where dX(a, b) is the distance between configuration a and b, and ~Caij is the 2D contact vector
between two cells, where each component Caij,x = xai − xaj is the distance along the respective
axis between cells i and j if those cells share an edge, and ~Caij = ~0 otherwise. Figure 3.2 shows
how the normalized distance to the original minimum (dXN (a, b) = dX(a, b)/

√
|a||b|), using this

contact metric, scales with the norm of the perturbation vector applied, computed after subtracting

the global translation, where |a| =
√∑

ij(C
ij
a )2 corresponds to dX(a, b) for which Cijb = 0. Here,

a is fixed and corresponds to the initial configuration, while b is the minimum after the perturbation.
We observe that the distance to the original minimum scales approximately linearly with the norm
of the perturbation. Furthermore, as in ref. [111], rescaling the perturbation by

√
N we find the

collapse of the curves for different system sizes. To properly parameterize εmax, we need to choose
a value that is large enough so that the perturbed configuration does not always relax to the initial
minimum but small enough so that we can guarantee that, in principle, any minimum that has some
structural resemblance (a normalized distance smaller than one) to the unperturbed one is accessible.
We choose εmax = 0.5

√
N for all p0, based on these results.

Figure 3.3 depicts matrices where the color corresponds to the distance between minima, for all
pairs of minima found for p0 = 3.75 and 3.83. These matrices were constructed for 103 minima
obtained for a tissue of 4096 cells. Each element of the matrix corresponds to the distance between
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Figure 3.4: Scatter plot of the distribution of normalized metric distance to the original minimum for different norms of
the perturbation vector, using the energy metric. The metric distance defined in Eq. (3.2) is normalized by

√
|a||b|, where

|a| = d(a, 0). For p0 = 3.81, all sizes collapse onto the same curve when using this scaling. We choose εmax = 0.1
√
N .

two minima, a and b, given by Eq. (3.2). The distances are sorted using the single-linkage clustering
algorithm on the metric of the fully minimized systems, which groups them sequentially based on
their relative distance [167]. The colors represent different distances. In white are the minima that
are closest to each other. We find groups of minima that are all at this minimum distance, forming a
white region that corresponds to sub-basins. The matrices do not show any substantial visual change
with p0.

A Gardner phase is characterized by an ultrametric phase space consisting of a tree-like structure,
where minima within a given sub-basin are all much closer to one another than to minima in any other
sub-basin. This property is codified by an ultrametric inequality,

dX(a, c) ≤ max[dX(a, b), dX(b, c)], (3.3)

where a, b and c are three different configurations in phase space and dX(a, b) is the distance between
configurations. To verify if the properties of the tissue are consistent with a Gardner phase, we com-
pute how close the metric is to being ultrametric. To do so, we first find the subdominant ultrametric,
d<(a, b), i.e., the ultrametric that is closest to dX(a, b) itself. The subdominant ultrametric can be
found by first computing the distances in the minimum spanning tree of the space of minima. Then,
for each pair of minima a and b, we compute the path between them in the minimum spanning tree
and define d<(a, b) as the largest distance between two neighboring minima along the path [7]. The
corresponding matrices are shown in Fig. 3.3.

Having found d<(a, b), we finally calculate the generalized distance between the metric and the
subdominant ultrametric using

DX =
√
〈(dX(a, b)− d<(a, b))2〉, (3.4)

where 〈·〉 denotes the average over all pairs of configuration a and b. If DX = 0 then the energy
landscape is ultrametric, while DX > 0 quantifies how far it is from ultrametricity. In the inset of
Fig. 3.3, we show that DX increases slightly with p0, but more importantly it depends strongly on
N . In the main plot we re-scale DX by

√
N and obtain a reasonable collapse of the data. Since the

typical distance between minima and the distance to ultrametricity both scale with
√
N , the space

with this contact metric is not ultrametric in the thermodynamic limit [111].
Using distances based on the contact vectors suggests that the landscape of the Voronoi model

is not ultrametric, but does the choice of metric itself influence this result? We note that in the
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Figure 3.5: Ultrametric structure of the energy landscape using the contact vector metric for small perturbations. On the
right is a schematic representation of the distances between minima according to the contact metric and its corresponding
subdominant ultrametric. We show the matrices for p0 = 3.75, 3.83, with 1000 different minima and N = 4096.
The different distances are grouped using a single-linkage clustering algorithm. On the left is a plot of the normalized
distance to ultrametricity (Eq. (3.4)) as a function of (p∗0 − p0), where we have chosen p∗0 = 3.92 ± 0.01, for N =

1024, 2048, 4096, 8192, 16384. The inset shows the same results without this scaling. All results are averages of 10 initial
configurations subject to 100 perturbations and minimizations each.

Voronoi model, the contact network of the tissue does not change significantly even as the tissue
rigidity changes substantially [62, 110]. We further note that the energy functional in Eq. (3.1) is
a simple collection of harmonic springs, in a coordinate basis of shape space rather than in the
positional basis of the degrees of freedom generating the shapes. This suggests a different metric
might be more appropriate, and in this context, we propose one based on the contribution of each
cell i to the total energy of the tissue, Ei. We take the same form for the metric as Eq. (3.2), but
where ~Caij → Caij = Eai − Eaj , if i and j are neighbors and zero otherwise. We call this metric
the “energy metric”, dE(a, b). We adopt the same perturb-and-minimize protocol as before, using
εmax = 0.1

√
N for all p0 (see Fig. 3.4). As such, we keep biasing the perturbations to nearby

minima in the new metric, otherwise more simulations would be needed to probe the same volume of
configuration space. In Fig. 3.5 we show that the results using the contact metric remain qualitatively
the same using the new εmax. It is possible to see the structure of the basins more clearly but the
system still does not appear to be ultrametric. Just like the contact metric, the energy metric scales
with system size, dE(a, b) ∼

√
N , since it depends on the total number of cell-cell contacts. We

observe in the inset of Fig. 3.6 that, for the energy metric, the distance to ultrametricity (DE) does not
scale with N and decreases with p0 (inset of Fig. 3.6). Since the distance between minima scales as
dE(a, b) ∼

√
N , while the generalized distance does not depend on the system size, this suggests that

the system does, in fact, become ultrametric in the thermodynamic limit: DE/dE(a, b) ∼ 1/
√
N .

In the case of the contact metric the calculated values are already normalized since we increase
the box size with N , while the typical cell size is fixed. In the case of the energy metric this is no
longer the case. Thus, to properly compare the system properties at different p0 (since 〈Ei〉 varies
with p0), we also consider a normalized version of the energy metric: dEN (a, b) = dE(a, b)/

√
|a||b|,

for which the typical distance between configurations does not depend on either p0 or N . Figure 3.6
shows the schematic representation of the normalized energy metric, dEN (a, b), and its subdominant
ultrametric. From this representation, we can already observe changes in the structure of the energy
landscape. As p0 increases, the color gradient is less smooth and the boxes corresponding to the
different sub-basins become sharper. Furthermore, it is also observed that more minima fall into the
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Figure 3.6: Ultrametric structure of the energy landscape using the normalized energy metric. (Left) The normalized
generalized distance to ultrametricity as measured using the normalized energy metric, DE

N , as a function of (p∗0−p0)Nν ,
for N = 1024, 2048, 4096, 8192, 16384, p∗0 = 3.89 ± 0.01 and ν = 0.4 ± 0.01. The inset shows the generalized
distance to ultrametricity, DE , calculated using the energy metric, dE(a, b), as a function of p0, for the same N . (Right)
Schematic matrix representation of the distances between minima according to the normalized energy metric, dEN (a, b),
and its subdominant ultrametric, as in Fig. 3.3. Matrices are shown for p0 = 3.75, 3.83 and N = 4096. All results are
averages of 10 initial configurations subject to 100 perturbations and minimizations each.

same sub-basin. These properties suggest that, when the value of p0 decreases, the structure of the
energy landscape becomes more hierarchical [111].

We also compute the generalized distance to ultrametricity when using dEN . Again we see that
ultrametricity is approached with increasing system size. Furthermore, with the scaling shown in the
main panel of Fig. 3.6 we can collapse the different curves. The values of p∗0 and ν were chosen
such that we obtain the best data collapse. Recent work in particulate systems interpreted a similar
scaling as a distance to jamming [111, 155]. This suggests not only that the Voronoi model has an
ultrametric structure in the thermodynamic limit, but that there is a transition between two different
solid phases. Previously, it was shown that the athermal Voronoi model did not have a rigidity
transition [84]. Nevertheless, we show that there is a clear difference between the energy landscape
for low and high p0: at low p0 the glass state is characterized by large residual stresses and an
ultrametric energy landscape, and at high p0 the energy landscape is not ultrametric. We find that the
change in the structure of the energy landscape occurs for preferred shape parameters in the range
p0 = 3.75−3.83, which is close to where the zero-temperature shear modulus changes markedly [84]
and where the dynamics at finite temperature changes in character [2, 108, 162].

As p0 increases, fewer sub-basins are found inside each basin (as represented by the different
unconnected clusters in Fig. 3.6), suggesting that the energy landscape flattens out. Another way
of exploring this flattening of the energy landscape is by studying the behavior of the model as the
relative area modulus kA is varied. In the limit kA = 0, the Voronoi model is no longer marginally
constrained, and it exhibits a residual-stress-based rigidity transition as a function of p0 at T =

0 [84]. As shown in Fig. 3.7, for p0 < 3.79 we find that the tissue is both rigid and the energy
landscape is ultrametric. For slightly larger p0, the energy landscape deviates from ultrametricity and
the variance of DN

E increases significantly. In this regime, the energy landscape consists of a mixture
of hierarchical basins and several nearly flat basins and so, in many cases, small perturbations will
not drive the system to a different minimum. Due to finite size effects, it is difficult to establish if
a new solid phase exists. In the following subsections, we use a simple technique to estimate the
transition from the solid to the fluid phase. Using the fraction of configurations with zero energy we
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Figure 3.7: A plot as in Fig. 3.6 but for kA = 0, highlighting a similar scaling in the two cases. Here, we use p∗0 =

3.798 ± 0.001 and ν = 0.4 ± 0.01. All results are averages of 10 initial configurations subject to 100 perturbations and
minimizations each.

estimate a transition around p∗0 = 3.8022±0.0001, while in Fig. 3.7, p∗0 = 3.798±0.001 seems to be
more appropriate to collapse the data. We used ν = 0.4 ± 0.01, which was found the best value for
the collapse. More simulations would be needed to conclude whether a new solid phase at kA = 0

exists before the fluid phase, or if the observations are finite size effects and both transitions actually
coincide. For p0 > 3.8 the energy landscape is flat, characteristic of a fluid-like tissue. For any
kA > 0, different energy minima are found for all p0, consistent with previous work that reported
a finite shear modulus for the whole range of model parameters investigated [84]. Although we
have not explored the thermal case, recent studies with the thermal 2D Voronoi model also suggest
a change in the energy landscape close to p0 ≈ 3.81, where there is the emergence of a fractal-like
energy landscape and cells become virtually free to diffuse in specific phase space directions up to a
small distance [108].

Figure 3.8: Estimation of the rigid to fluid transition point. On the left is plotted the probability of finding a configuration
with zero energy, P [E = 0], as a function of p0 for different N . These results were averaged over 1000 samples. We also
show a fit of Eq. (3.8) to the data. On the right is the estimation of the transition point, p∗0, which is calculated using the
peak value of the probability distribution function of the transition points, P (p∗0) = dp∗0P [E = 0](p∗0).
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Figure 3.9: Log-log plot of the absolute distance of the estimated transition points for different Ns (from Fig. 3.8) to the
thermodynamic value, p∗0(∞), as a function of 1/N . We find p∗0(∞) = 3.8022±0.0001 as the value which gives the best
linear fit for N > 1024 and take it as the estimation of the transition point.

3.3.1 Estimation of the rigid to fluid transition point

To estimate the transition point from a rigid to a fluid tissue we use a technique based on recent
work on the vertex model [61]. We use the minimized configurations calculated previously and count
the fraction of configurations with zero energy (thus, where there are no residual stresses and for all
cells Pi = P0 and Ai = A0), P [E = 0], for different p0 and N . Since we have less data for the
different p0 than in Ref. [61], we use the following ansatz to fit our data:

P [E = 0](p0) = 0.5
[
1− tanh

(
− p0 − a

2b

)]
, (3.5)

where a and b are fitting parameters. Even though we do not expect that the actual function is
Eq. (3.5), it is a good approximation for the N explored here. By using this function we are able to
differentiate it and calculate the probability distribution of the transition points, P (p∗0) = dp∗0P [E =

0](p∗0), from which we can extract the peak value corresponding to the (probable) transition point
p∗0 for a given N . Figure 3.8 shows how P [E = 0](p0) increases with p0 and the corresponding fit
given by Eq. (3.5), which are in good agreement. The right plot shows the derivative of Eq. (3.5)
as a function of p∗0. We use the value corresponding to the peak of the distribution to estimate the
transition points for the different N .

To estimate the transition point in the thermodynamic limit we find the best linear fit in a log-
log plot, of the distance of the estimated p∗0 for each N (given by Fig. 3.8) to the thermodynamic
transition point p∗0(∞), as a function of 1/N . Figure 3.9 shows the different curves for multiple
p∗0(∞) where we estimate the actual value from the best linear fit. We focus only on N > 1024 and
estimate p∗0(∞) = 3.8022± 0.0001. Although more simulations and a more appropriate estimation
protocol could be used to quantify this value, our simple estimation is close to the one reported in
previous work [84].

3.3.2 kA 6= 1

Here we explore the changes to the energy landscape for different kA. We explore the values
kA = {0, 10−2, 100, 102}. For finite kA a transition to the fluid-like state never occurs and the
system is always rigid. Nonetheless, features of a transition between rigid states are still present for
all kA.
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Figure 3.10: Ultrametric structure of the energy landscape using the normalized energy metric for different kA. (Left)
Generalized distance to ultrametricity, for the normalized energy metric, DE

N , as a function of p0. Here, we show a
comparison between different kA, using systems with size N = 1024. All results are averages of 10 initial configurations
subject to 100 perturbations and minimizations each. (Right) Schematic representations of the normalized energy metrics,
dEN (a, b), of systems with size N = 4096, kA = 0, 0.01, 1, 100 and p0 = 3.75, 3.77, 3.83. For kA = 0 and p0 = 3.83

the metrics only show one color since Ei − Ef ≈ 0 and thus the normalized metric distance diverges.

In Fig. 3.10, we can observe how the different kA change the hierarchy of the energy landscape,
using the generalized distance to ultrametricity (Eq. (3.4)). We find that the results are similar for
the different kA, especially kA = 1 and kA = 100. For kA = 0.01, the variance of DE

N increases
significantly around p0 = 3.81, while for the other systems this is not as pronounced. This is due
to the fact that the energy landscape partially flattens and there is coexistence between basins with
multiple sub-basins and basins which are almost flat where any (small) perturbation always leads to
the same minimum.

Although the variance seems to reduce significantly for p0 = 3.83, this might be due to the
presence of multi-fold vertices. Since we are not able to take these vertices into account in our
simulations, we have to discard these configurations. This leaves a smaller pool of minima to sample
which might lead to smaller fluctuations. The qualitative properties of the different phases described
in the main text can be seen in the matrices shown in Fig. 3.10.

3.3.3 Energy metric with similar distance distributions

There is a dependence of the distances explored with p0 when using the energy metric, with
increasing p0 leading to larger distances. Here, we change εmax for different p0, in such a way that
similar ranges of normalized energy metric distance are explored. In Fig. 3.11 we show how the
generalized distance to ultrametricity, DE

N , changes as a function of p0, using a constant εmax and a
variable one that depends on p0. We observe that although the values change slightly, the qualitative
description of the results remains the same.

3.3.4 Different perturbation protocols

To analyze the sensitivity to the perturbation protocol, we tested different approaches. In addition
to the protocol described previously, we introduce two new ones, one based on Gaussian perturba-
tions and another where some skeweness is added.
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Figure 3.11: Generalized distance to ultrametricity, for the normalized energy metric, DE
N , as a function of p0, for N =

1024. All results are averages of 10 initial configurations subject to 100 perturbations and minimizations each. The results
represent the values measured using the constant εmax as in the main text, and a variable one that depends on p0.

In the Gaussian perturbation (G), we start by creating a perturbation vector
−→
P ε = [X0, X1, X2, X3,

... , X2N−1], where N is the number of cells, X2i = N (0, 1) is the perturbation to cell i along the
x-axis and X2i+1 = N (0, 1) is the one along the y-axis. Here,N (0, 1) represents a normal distribu-
tion with mean µ = 0 and standard deviation σ = 1. Then we subtract the global translation of the
system after the perturbation. Finally, we multiply the perturbation vector by ε, which is a uniformly
distributed random variable between 0 and εmax. With this formulation, the norm of the perturbation
vector will scale as |

−→
P ε| = Pε = ε

√
2Nσ.

In the Skewed perturbation (S), we start by defining a perturbation vector
−→
P ε = [X0, X1, X2, X3,

... , X2N−1], where X2i = N (0, 1) + E(0.5) is the perturbation to cell i along the x-axis and
X2i+1 = N (0, 1)+E(0.5) is the one along the y-axis. Here, E(0.5) represents a Poisson distribution
with rate λ = 0.5. Then we subtract the global translation of the system after the perturbation. Fi-
nally, we multiply the perturbation vector by ε, which is a uniformly distributed random variable be-
tween 0 and εmax. By adding a Poisson distribution, we are skewing the positive Gaussian tail. With
this formulation, the norm of the perturbation vector will scale as |

−→
P ε| = Pε = ε

√
2N(σ2 + 1/λ2).

In Fig. 3.12 is represented the generalized distance to ultrametricity, DE
N , as a function of p0,

calculated using multiple perturbations to the same minimum. The maximum perturbation displace-
ment was fixed at εmax = 0.1

√
N for all protocols. We observe that the different perturbations do

not lead to different results and thus the range of distances found will only depend on the norm of
the perturbation vector.

3.4 Conclusion

In summary, we have found indications of a hierarchical structure of the energy landscape in
a model of dense biological tissue whose zero-temperature rigidity is quite different from that of
constraint-based particulate systems. Strikingly, we find that the choice of metric to characterize
distances between minima is crucial: defining distance based on changes in neighboring contact
vectors vs contributions to the energy give qualitatively different interpretations of the structure of
the energy landscape. In particulate systems, the contact vectors enter explicitly in the relevant
energy functional – i.e., the energy of a soft harmonic repulsion or a Lennard-Jones interaction is a
simple function of the contact vector between interacting particles. In Voronoi models, the energy
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Figure 3.12: Generalized distance to ultrametricity, DE
N , as a function of p0 for the different perturbations, using the

normalized energy metric, dEN (a, b). U represents the uniform perturbation described previously. The size of the system is
N = 1024 and εmax = 0.1

√
N for all. The individual parameters of the perturbations are summarized in the text.

cannot be decomposed into independent pairwise contributions, which we speculate is the reason
that choosing a distance metric based on the total energy associated with each degree of freedom
is required to reveal the hierarchical structure of the landscape. We further speculate that this may
point more generally to the importance of the choice of metric for systems in which many-body
interactions dominate over pairwise ones. An avenue for future research could be relating these
tissue-like systems to particulate ones, such as soft or hard spheres [111,113]. This could be done by
establishing the relation between the effects of p0 in the Voronoi model and pressure in particulate
systems. Since both exhibit an ultrametric landscape, this could allow a generalization of glassy
physics outside of particulate systems and glass-forming materials [80, 81, 112].
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Chapter 4

Substrate disorder promotes cell motility
in confluent tissues

In vivo and in vitro cells rely on the support of an underlying biocompatible substrate, such as the
extracellular matrix or a culture substrate, to spread and proliferate. The mechanical and chemical
properties of such structures play a central role in the dynamical and statistical properties of the
tissue. At the cell scale, these substrates are highly disordered. Here, we investigate how spatial
heterogeneities of the cell-substrate interaction influence the motility of the cells in a model confluent
tissue. We use the Self-Propelled Voronoi model and describe the disorder as a spatially dependent
preferred geometry of the individual cells. We found that when the characteristic length scale of
the preferred geometry is smaller than the cell size, the tissue is less rigid than its homogeneous
counterpart, with a consequent increase in cell motility. This result is in sharp contrast to what
has been reported for tissues with heterogeneity in the mechanical properties of the individual cells,
where the disorder favors rigidity. Using the fraction of rigid cells, we observe a collapse of the
motility data for different model parameters and provide evidence that the rigidity transition in the
model tissue is accompanied by the emergence of a spanning cluster of rigid cells.

4.1 Motivation

The idea of growing artificial cell tissues and organs has been around for several decades [168,
169]. This has spurred a truly multidisciplinary effort to understand the mechanisms responsible for
the development of cell tissues and to search for novel strategies to tune the shape and mechanical
properties of the tissue. Among those strategies is the use of biocompatible substrates [168,170,171].
An extensive body of research shows that the cell morphology and dynamics are sensitive to the phys-
ical and chemical properties of their underlying structure, be it the extracellular matrix or a culture
substrate [47–54,64]. For example, it has been shown that the substrate stiffness can significantly af-
fect the geometry of cultured cells, including their spreading area [54,114], volume [115], and shape
elongation [116]. The mechanical properties of cells have been shown to change when they adhere
to substrates due to the influence of cell-matrix adhesion complexes. For example, cells adhered to
rigid substrates develop stresses at the level of the actin network which lead to polarization [131].
Recent studies have also shown that the nanotopography of the substrate can significantly change the
cell shape and motility [68–71]. Thus, irrespective of the biological effects, the physical interaction
between the cells and their supporting structure plays a critical role in the mechanical properties of
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the tissue. This poses a great challenge due to the typical level of disorder involved [172–174].
Both in vivo and in vitro, the epithelial layer of cells is supported by a complex polymeric struc-

ture, the extracellular matrix (ECM), which constrains the collective behavior of the tissue [47, 117–
120]. For example, it has been observed that cancerous cells alter the ECM in order to promote in-
vasion through healthy tissue [175, 176]. The tumor microenvironment supports diverse mechanical
and biochemical interactions during cancer progression, which plays a significant role in the degree
of tumor malignancy and metastatic potential [177,178]. Tumors act as local sources of ECM remod-
eling, resulting in heterogeneous spatial profiles of the ECM network [179]. These profiles can then
influence the migration of surrounding cells [180]. By generating cell-scaled tracks along migratory
paths, cells will not need to squeeze through or clear constrictive mechanical barriers [180]. Thus,
although the ECM is often quantified by bulk metrics, it has a high degree of heterogeneity, which in
turn influences the tissue itself, in a way that is largely unclear.

Despite the broad range of physico-chemical processes, which in many cases are system de-
pendent [169], there are convincing arguments that simple, mechanistic models can provide valu-
able insight into the dynamics of living systems [23, 45, 46, 87]. Several models have been pro-
posed to understand their collective behavior, from single particle descriptions to density field mod-
els [22, 45, 46, 83, 87, 148, 181, 182]. The Self-Propelled Voronoi model (SPV) has been one of the
models of choice to study confluent tissues [2, 162]. The degrees of freedom are the positions of
the center of each cell and the cell shape is obtained by Voronoi tessellation [100]. The dynamics is
governed by an energy functional that is quadratic in the area and perimeter of each (Voronoi) cell,
thus making the interactions truly many body. The mechanical properties of the tissue are either solid
or fluid like, depending on the strength of activity and shape parameter, p0, of the individual cells [2].
The solid-like regime is characterized by a finite shear modulus, while in the fluid-like regime the
shear modulus drops significantly [2, 84]. These results agree both quantitatively and qualitatively
with experiments on monolayer tissues [76, 78].

Here, we investigate how heterogeneities on the substrate affect the mechanical properties of
confluent tissues (see Fig. 4.1 a)). We describe the confluent tissue using the Self-Propelled Voronoi
model, with a position-dependent shape parameter to account for spatial heterogeneities in the cell-
substrate interaction. Previous works have established that cell shapes change as a function of sub-
strate properties [114] and in turn the cell shape governs the rate of cell diffusion in the tissue [76].
Heterogeneity in the mechanical properties of the individual cells is known to substantially affect cell
motility [121, 122]. For example, numerical simulations of the Vertex model suggest that, a hetero-
geneous distribution of the mechanical properties of individual cells favors rigidity and thus hinders
cell motility [8]. This particular type of cell disorder leads to larger tensions between adhered cells,
which in turn gives rise to a percolating cluster of rigid cells responsible for the increase in the tissue
rigidity. This result sheds light on the dynamics of cancer propagation, for cancer cells are usually
softer than healthy ones [123–125]. Here, we show that the opposite behavior is observed when the
disorder is on the substrate (position dependent). For values of the characteristic length scale of the
disorder lower than the typical cell size, the tissue is less rigid and cell motility is enhanced.

4.2 Methods

We model the confluent tissue as a monolayer of N cells using the Self-Propelled Voronoi
model [2]. Each cell i is represented by its center ri and its shape is given by an instantaneous
Voronoi tessellation of the space. The stochastic trajectory of each cell is obtained by solving a set
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Figure 4.1: a) Model illustration. We consider the 2D projection of the tissue (top, in green), described using the Self-
Propelled Voronoi model, on a 2D heterogeneous substrate (bottom) where the value of the target shape index of the cells
depends on the position. The color of the substrate is related to the value of the shape index in the square tiles, p0,j , with
red corresponding to higher values and yellow to lower ones. The height profile in the substrate is only meant to illustrate
this heterogeneity. b) Schematic representation of the averaging process used on the random substrate. The averaging is
performed by sweeping through each square tile and calculating the average of all points at a distance less than ξ/2. The
white circle corresponds to the averaging radius of a given square tile close to a cell center. The blue shape corresponds to
the square tiles used for the averaging. Here we have used approximately 80 blue square tiles, where each tile has a length
two orders of magnitude smaller than the typical length of a cell. The color of the substrate on the last panel represents the
averaged substrate.

of equations of motion in the overdamped regime,

dri
dt

= µFi + v0n̂i, (4.1)

where Fi is the net force acting on cell i, µ is the mobility of the cell, v0 the self-propulsion speed, and
n̂i = (cos θi, sin θi) is a polarity vector which sets the direction of self-propulsion. For simplicity,
we consider that θi is modeled by a stochastic process given by,

θ̇i = ηi(t), 〈ηi(t)ηj(t′)〉 = 2Drδ(t− t′)δij , (4.2)

where ηi(t) is an uncorrelated random process of zero mean and variance set by a rotational diffusion
coefficient Dr.

The force Fi describes the many-body cell-cell interaction and is given by Fi = −∇iE, where
E =

∑
Ei and Ei is the energy functional for cell i. We choose the unit of length to be given by

the square root of the average area of all the cells. We can then write a dimensionless version of the
contribution of each cell to the energy functional as [45, 46],

ei = kA(ai − 1)2 + (pi − p0,i)
2 , (4.3)

where ai and pi are the dimensionless area and perimeter of cell i, p0,i is the target perimeter of cell
i, and kA represents the ratio between the relative stiffness of the area and perimeter elasticity of the
cell.
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Figure 4.2: Correlation function versus distance for a substrate with averaging radius ξ = 2, 5, 10, mean p0 = 0 and
standard deviation σ = 1, 2, 3. We re-scale the correlation by the standard deviation in order to collapse the different
curves with the same ξ.

4.2.1 Substrate properties

We consider a square substrate of length L =
√
N , where the value of the target shape index

(p0,i) is spatially dependent. The substrate is divided into square tiles with lattice constant δ, in units
of the cell diameter. Each square tile has a value of the target parameter randomly drawn from a
Gaussian distribution with mean p0 and standard deviation σ. Throughout the dynamics, the value of
the shape index, p0,i, for each cell corresponds to the one in the underlying square tile. When a cell
moves from one square tile to another, its target shape index (in Eq. (4.3)) changes accordingly. We
expect that cells take a characteristic time to adapt to changes in the underlying substrate [130, 183].
We first consider this adaptation time to be negligible and in the following chapter, we discuss its
effect when it is comparable to the other relevant time scales.

Since cells spread over an area larger than that of a square tile, we average the shape index
over a distance on the random substrate to mimic, in a simplified way, the cells ability to probe its
surroundings (see Fig. 4.1 b)). The averaged substrate has the same size as the random substrate and
thus the same lattice constant δ. The shape index on each square tile j, of the averaged substrate,
is calculated by taking the average of the shape indices of the square tiles in the original substrate
which have their centers at a distance smaller than ξ/2 from the centers of j. Thus, for a given ξ the
averaged substrate has mean p0 and standard deviation σ/

√
n, where n is the number of square tiles

inside the corresponding averaging circle.
As ξ increases, the correlations in the substrate also increase. In Fig. 4.2 we show how the

correlations in the averaged substrate change for different correlation lengths and standard deviations
of the initial substrate. We find that for r > ξ, the correlations are zero. This is due to the fact that
two substrate sites at a distance larger than ξ no longer share sites in their averaging areas. By re-
scaling the correlations by σ2 we are able to collapse the different curves for the same ξ. We also
note the approximately linear decrease of the correlations with distance.

To shed light on these results, we calculate explicitly the averaging effects in a 1D substrate. In
this case, each site i on the averaged substrate is an average of the j sites which are at a distance
r ≤ ξ/2, in the initial substrate. The initial substrate is generated by randomly assigning a number
drawn from a normal distribution with mean p0 and standard deviation σ, to each site, Xin

i , where i
is the site and in represents the initial substrate. The second substrate is an average of the initial one,
thus the value on site i will be,
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Xav
i =(Xin

i−ξ/2 +Xin
i−ξ/2+1 +Xin

i−ξ/2+2 + ...

+Xin
i+ξ/2−2 +Xin

i+ξ/2−1 +Xin
i+ξ/2)/(ξ + 1).

(4.4)

The correlation between two sites at a distance r on the averaged substrate is given by,

C(r) = 〈Xav
i X

av
i+r〉 − 〈Xav

i 〉〈Xav
i+r〉. (4.5)

By substituting Eq. (4.4) into Eq. (4.5), the only terms that remain after expanding the multiplication
are the quadratic terms that overlap in both intervals. For example, when i = 1, r = 2 and ξ = 2,
one finds,

C(r) =〈Xav
1 Xav

3 〉 − 〈Xav
1 〉〈Xav

3 〉
= 〈Xin

2 X
in
2 〉 − 〈Xin

2 〉〈Xin
2 〉 = σ2.

(4.6)

Generalizing for any ξ and r,

C(r) =
(ξ + 1− r)σ2

(ξ + 1)2
, (4.7)

where (ξ+ 1− r)/(ξ+ 1)2 corresponds to the number of sites on the line shared by sites i and i+ r

for any ξ.
In the 2D case we consider a circle of diameter ξ centered on site i, thusC(r) = A(r, ξ)σ2, where

A(r, ξ) depends on the geometry of the grid and quantifies how many points overlap and contribute
to the correlations. In the model used, this term is not easily calculated. Nonetheless, the 1D case
gives us insight on the behavior of the correlation function shown in Fig. 4.2. We recover the σ2

scaling and it highlights its linear dependence with distance. These results are valid for r ≤ ξ, since
for r > ξ the sites are uncorrelated.

4.3 Results and discussion

To simulate the confluent tissue, we used a hybrid CPU/GPU software package, cellGPU [99],
for the self-propelled Voronoi model. The equations of motion, Eq. (4.1), are integrated using the
Euler method, with a time step of ∆t = 10−2. We impose periodic boundary conditions, Dr = 1,
v0 = 0.1, and kA = 1. For the initial configuration, we generate N positions at random and let the
system relax over 104 time steps. The random substrate consists of square tiles with lattice constant
δ = 0.03125, in units of the cell diameter. This small value guarantees that there are no spatial
correlations at the scale of the cell size and that cells are able to explore more than one substrate
square tile even when they have very low motility. After the initial relaxation, the simulation is
performed for another 106 additional time steps.

4.3.1 Overview

To characterize the fluidity of the tissue, we measure the mean squared displacement from the
initial position, averaging over all the cells (〈∆r2(t)〉) and we estimate the diffusion coefficient using:

D =
〈∆r2(t)〉

4t
, t� 1. (4.8)
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Figure 4.3: Phase diagram of the tissue for substrate or cell disorder. On the vertical axis is the standard deviation of the
Gaussian distribution, σ, and on the horizontal axis the mean, p0. The color gradient represents the diffusion coefficient of
the tissue when using the random substrate disorder (given by Eq. (4.8)), in units ofD∗ ≈ 9.04×10−5, which corresponds
to the value of the diffusion coefficient at the onset of rigidity in the homogeneous system, i. e. , p0 = 3.8. The white
(dashed) line defines the threshold where the fraction of rigid cells (cells with pi < 3.8), forms a percolating cluster,
σ(p0) = −11.2p0 + 42.7. Thus, it sets the onset of rigidity, in the presence of a disordered substrate. Results were
obtained for N = 1024 and averaged over 10 samples. The gray (dot-dashed) line is obtained from Ref. [8] for a tissue
with heterogeneity in the mechanical properties of individual cells described by a cell-dependent shape index p0,i, which
is also drawn from a normal distribution with the same mean and standard deviation. In this case, the onset of rigidity is
given by σ(p0) = 1.2p0 − 4.7. The brown (dashed) line gives the onset of rigidity when an averaged substrate is used
with correlation length of the order of the cell diameter. Here, the line is given by σ(p0) = 3.3p0 − 12.5. This figure
highlights the different effects of disorder. When the disorder is at the cell level the tissue becomes more rigid, while when
it is spatially dependent (i.e., on the substrate) the tissue becomes less rigid when the substrate correlation length is less
than the diameter of the cells, but more rigid when it is larger. The different phases are shown in the figure, where the
tissue is marked solid or fluid. The lines do not meet at σ = 0 since in Ref. [8] the Vertex model was used rather than the
Voronoi model used in this work.

This quantity is obtained numerically by running the simulations for 106 time steps and calcu-
lating the slope of a linear fit, using the least squares method, of the mean squared displacement
averaged over all the cells for all time steps above 105. In the solid-like phase the cells are caged
by their neighbors and few cell rearrangements occur. Thus, the mean squared displacement is char-
acterized by an initial ballistic behavior (〈∆r2〉 ∼ t2) but rapidly saturates. On the other hand, in
the fluid-like phase, the cells are able to break free from their cages and the tissue flows. Thus, the
mean squared displacement is diffusive (〈∆r2〉 ∼ t) asymptotically [2]. We have found that we
can measure the diffusion coefficient reliably for time steps above 105, in the fluid-like phase. As
the solid-like phase is approached the fitting worsens, as the diffusion coefficient decreases to zero.
Nonetheless, we still use the same technique.

A recent work reported the effect of heterogeneities in the mechanical properties of individual
cells using the Vertex model [8]. In this study, heterogeneity is introduced at the cell level by endow-
ing each cell with a random shape index, p0,i, chosen from a Gaussian distribution with mean p0 and
standard deviation σ. The shape index of each cell is then constant over time. It was observed that the
shear modulus increases with the disorder, σ, corresponding to a more rigid tissue. In what follows
we compare the effect of the two types of disorder: substrate disorder, where the shape parameter is
spatially dependent, and cell disorder, where the shape parameter is a time independent property of
the cell as discussed in Ref. [8]. For cell disorder, we have chosen the probability distribution of the
shape index (p0,i) to be Gaussian, parameterized by the same mean (p0) and standard deviation (σ).
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Figure 4.4: Average cell diffusion coefficient as a function of the fraction of rigid cells, fr . The diffusion coefficient is
re-scaled by the standard deviation σ to collapse the curves. These results were obtained for N = 1024, σ = 0.068− 0.3

in steps of 0.058, p0 = 3.75− 3.95 in steps of 0.01 and averaged over 100 samples. The scaling suggests that the fraction
of rigid cells drives the rigidity transition. In the inset are the individual curves to highlight the increase of the diffusion
coefficient with the disorder (σ). Below the main plot are snapshots for different fractions of rigid cells (fr), where rigid
cells in black have a shape index below a given threshold (p0,i < p∗0) and fluid cells in gray have, p0,i > p∗0. We recall
that p∗0 = 3.8 is the threshold for rigid cells.

We note that both types of disorder are quenched as they do not evolve with the dynamics. Neverthe-
less, the substrate disorder is fixed in space, while that of the cells is carried by their motion in the
fluid phase. In the rigid phase, both types of disorder are fixed in space, as cell motion practically
ceases.

Figure 4.3 shows a diagram of the two-parameter space explored for a random substrate, where
the color represents the average diffusion coefficient of the cells in the tissue using the random
substrate disorder. We explored different values of the mean (p0) and standard deviation (σ) of the
Gaussian distribution and observed that the diffusion coefficient increases for larger values of the
disorder (σ), suggesting that the motility of the cells increases for substrates with larger dispersion of
the target shape index. We also show in the inset of Fig. 4.4 the increase of the diffusion coefficient
with p0 and σ. This is in contrast with the cell disorder case where the rigidity of the tissue increases
with increasing disorder [8].

We plot three lines that give the onset of rigidity for the different types of disorder: cell disorder
and substrate disorder with and without averaging (as described in the previous section). In depth
details on how these lines are calculated are given in the following sections. We observe that the
onset of rigidity in the tissue is accompanied by a percolation of rigid cells, defined as the cells with
a perimeter smaller than a given shape index threshold, pi < p∗0. When the substrate disorder is not
averaged, the line is given by σ(p0) = −11.2p0 + 42.7, highlighting the increase in motility when
the disorder (σ) increases. The cell disorder line is taken from Ref. [8], σ(p0) = 1.2p0 − 4.7, and
highlights the opposite behavior. Lastly, when the substrate with averaged disorder has a correlation
length of the order of the cell diameter, ξ = 2, the rigidity threshold is given by σ(p0) = 3.3p0−12.5,
which also exhibits an increase of tissue rigidity with disorder (σ). Thus, while for small correlation
lengths the substrate disorder promotes cell motility, for correlation lengths of the order of the cell
diameter, it gives rise to tissues with increased rigidity. Furthermore, the results for the averaged
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Figure 4.5: Percolation of rigid cells. In the main plot is the fraction of rigid cells in the largest cluster, φ, as a function
of (fr − f∗

r ), where f∗
r ≈ 0.484, was calculated from the peak in the variance (top left inset). In the bottom right inset

is φ as a function of the fraction of rigid cells, fr . From the slope of the curve in the main plot we estimate the exponent
β ≈ 0.239± 0.006. The results were obtained for N = 16384 and averaged over 10 samples.

substrate approach those of cell disorder as the correlation length increases, as seen in the slopes of
the two lines, suggesting a close relation between these types of disorder. We also note that the lines
do not meet at σ = 0 most likely because in Ref. [8] a different model, i.e., the Vertex model was
used.

4.3.2 Random substrate

First, we focus on a random substrate with a lattice constant smaller than the cell size (δ =

0.03125). To calculate the lines separating the different regimes, we use a scaling Ansatz to collapse
the numerical data and estimate the transition between the solid and fluid-like regions. In Ref. [8]
a scaling Ansatz is proposed for the shear modulus, which depends on the ratio between σ and the
distance to a threshold |p0 − p∗0|, where p∗0 is the threshold value. The data was indeed observed to
collapse. At p0 = p∗0, 50% of the cells are rigid with p0,i < p∗0. This fraction decreases or increases
above or below p∗0. This suggests that the fraction of rigid cells (cells with p0,i < p∗0) plays an
important role in driving the rigidity of the tissue. The fraction of rigid cells is defined as,

fr =

∫ p∗0

−∞
Fp0,σ(p0)dp0 =

1

2
erfc[(p0 − p∗0)/

√
2σ], (4.9)

where σ and p0 are the standard deviation and mean of the Gaussian distribution F , respectively. For
substrate disorder, the cells shape index changes frequently. Thus, the probability density function
should also depend on the spatial distribution of the cells and we have no control over F in Eq. (4.9).
Nonetheless, for the parameters explored, we found that the cells have a distribution of the shape
index, p0,i, similar to the Gaussian used to generate the substrate disorder, with the same mean (p0)
and standard deviation (σ). Thus, we use Eq. (4.9) to estimate the threshold of the transition, with p0

and σ the same as those used for the substrate.
Figure 4.4 illustrates the data collapse for the diffusion coefficient re-scaled by the standard

deviation as a function of the fraction of rigid cells, fr. To collapse the different curves we used
p∗0 = 3.80±0.01 in Eq. (4.9). We estimate this value numerically by using different threshold values
(p∗0) and choosing the one for which we obtained the best data collapse. Figure 4.4 (bottom panels)
illustrates the evolution of the rigid cluster, which corresponds to the largest cluster of rigid cells
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Figure 4.6: Percolation at the rigidity transition. In the main plot is the fraction of rigid cells in the largest cluster, φ, as
a function of (fr − f∗

r ), where f∗
r ≈ 0.5353, was calculated from the peak in the variance (top left inset). In the bottom

right inset is φ as a function of the fraction of rigid cells, fr . From the slope of the curve in the main plot we estimate
the exponent β ≈ 0.194 ± 0.007, which is consistent with that for 2D random percolation, β = 5/36. The results were
obtained for N = 16384 and averaged over 10 samples.

(p0,i < p∗0) in black. We found that this cluster decreases as the standard deviation (σ) or the mean
(p0) increase. The scaling Ansatz suggests that the rigidity is driven by cells with a shape index,
p0,i, smaller than a threshold p∗0. As a result, we can estimate the onset of rigidity by measuring the
threshold where the rigid cells form a system spanning cluster.

To analyze the percolation of rigid cells, we measure the fraction φ of all rigid cells (p0,i < p∗0)
in the largest cluster. To estimate the percolation threshold, f∗r , we consider the value at which the
variance χ = 〈φ2〉 − 〈φ〉2 is maximal. In Fig. 4.5 it is shown that χ has a peak around f∗r ≈ 0.484

signaling the onset of percolation. When comparing to the data collapse in Fig. 4.4, this threshold
is not consistent with the point at which the diffusion coefficient starts increasing from small values
(D > 10−4). From the numerical results, the distribution of perimeters of the cells, pi, also follows
a Gaussian distribution with mean p0 and standard deviation σ. Thus, we now consider a different
criteria for rigid cells. We redefine a rigid cell as one with a perimeter (pi) below the shape index
threshold, pi < p∗0. We considered the same threshold, p∗0, since the distribution of perimeters (pi)
and shape index (p0,i) are similar. Thus, Eq. (4.9) is equivalent when using the distribution for either
pi or p0,i. We hypothesize that since pi is related to the tension in the cells (τ ∼ pi − p0,i) it may be
responsible for the increased or decreased rigidity of the tissue, as detailed in previous works [2, 8].
We observe from the inset of Fig. 4.6 that the corresponding χ has a peak around f∗r ≈ 0.534

signaling the onset of percolation, in line with the results from the data collapse in Fig. 4.4. From
a finite size scaling analysis, using the shift of the peak in the variance (χ) with N , we estimate the
threshold f∗r ≈ 0.5353± 0.0003. Using this value, we calculate the scaling exponent (shown in the
main plot), β ≈ 0.194± 0.007. Larger simulations are needed to estimate the exponents with higher
precision, which is beyond the scope of this work. Nonetheless, the obtained value of β, is consistent
with that for random percolation, β = 5/36 [184, 185].

In Fig. 4.3 we plot in white the line corresponding to f∗r ≈ 0.5353 which sets the percolation
threshold for the disordered substrate. The gray line corresponds to f∗r ≈ 0.21 taken from Ref. [8]
as the onset of rigidity in the cell disordered system. This highlights the differences between the two
types of disorder and how they change the mechanical properties of the tissue. In the cell disordered
case, the heterogeneity increases the tensions, τ ∼ pi − p0,i, leading to a more rigid tissue. For the
substrate disorder, larger tensions can be observed at higher values of the disorder (σ) but the average
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Figure 4.7: Effect of substrate heterogeneities on cell motility. In a) the diffusion coefficients are plotted for different types
of heterogeneity: “S” is for substrate disorder, not averaged for a correlation length ξ = 0.03125 and averaged for ξ = 2.
“C” is for cell disorder, as in Ref. [8], where each cell has a random shape index p0,i from a normal distribution, which
remains constant. “H” is for the homogeneous tissue. Panel b) illustrates how the diffusion coefficient varies with the
substrate correlation length ξ, for a mean p0 = 3.85 and σ = 0.184, 0.242, 0.3. In c) the diffusion coefficient re-scaled by
the standard deviation (σ) is plotted as a function of the fraction of rigid cells, fr , for four different correlation lengths, ξ.
In d) are schematic representations of the tissue (top) and the substrate (bottom) for correlation lengths ξ = 0.125, 0.5, 2

respectively. These results were obtained usingN = 1024 and averaged over 10 different samples. We found that although
the mechanical properties of the tissue change with the correlation length, ξ, the curves collapse with the fraction of rigid
cells, fr , suggesting that the percolation of rigid cells still drives the tissue rigidity. A correlation length of ξ = 1, is found
above which the response of the tissue to the substrate disorder changes, with higher disorder, σ, leading to a more rigid
tissue.

tension in the tissue decreases. Furthermore the distribution of tensions becomes more symmetrical,
which promotes the fluid-like state (see following sections).

4.3.3 Averaged substrate

In a cell tissue, one expects that one cell senses a region of the substrate rather than a single point.
In order to account for this effect, we consider next the averaged substrate described in the methods
section. The averaging is aimed to mimic the process through which a cell senses a given area under
it and thus responds. To each square tile j in the averaged substrate corresponds a value of the shape
index, p0,j , which is the average of the shape index in the square tiles within a distance ξ/2 from j.
The length scale ξ sets the diameter of the circle used to calculate the averaged substrate disorder and
thus sets the substrate correlation length. Figure 4.7 d) shows some examples of averaged substrates
(bottom row) with the corresponding tissues (top row).
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Figure 4.8: Dispersion of the tensions as a function of the dispersion in the substrate, for averaged substrates with
ξ = 0.03125, 0.125, 0.5, 2. These results were taken for N = 1024 and were averaged over 10 samples.

Figure 4.7 a) depicts the diffusion coefficients measured for four different systems as a function
of the mean, p0. We consider a random substrate (S, ξ = 0.03125), a homogeneous tissue (H), a
tissue with cell disorder (C) and an averaged substrate (S, ξ = 2). Both substrate and cell disordered
systems have a disorder dispersion σ = 0.184. We confirm that, the cell disorder decreases the
motility of the cells while the random substrate increases it. However, if the correlation length of the
substrate is of the order of the typical cell diameter (or larger) then the cells become less mobile than
in the homogeneous case. Thus, substrate disorder with large correlation lengths can also lead to
more rigid tissues. In Fig. 4.7 b) this is shown for three different values of the standard deviation (σ).
We find that while for correlation lengths lower than the typical cell diameter, ξ < 1, more disordered
substrates lead to larger diffusion coefficients than in the homogeneous case, for correlation lengths
above the typical cell diameter, ξ > 1, substrate disorder decreases cell diffusion. This happens
since for large correlation lengths the cells adapt to the substrate smoothly as the gradient of the
shape index, p0,i, is small. By contrast, for smaller correlation lengths, ξ, the cells change their shape
index p0,i quite rapidly (the dependence of the diffusion coefficient with ξ is further explored in the
following sections). This leads to different behaviors of the tension distribution in the tissue. For
ξ < 1, as the dispersion, σ, increases, the variance of the tensions also increases while its average
value decreases promoting fluid-like tissues. For ξ > 1 the variance of the tensions is almost constant
while their average value increases leading to more rigid tissues.

Both types of behavior, however, are related to the percolation argument developed above. In
Fig. 4.7 c) we report data for different values of the correlation length (ξ) which is collapsed using
the same scaling as in Fig. 4.4. Thus, the behavior is driven by the percolation of rigid cells. As the
correlation length (ξ) changes, the threshold values for the percolation transition also change (p∗0(ξ)

and f∗r (ξ)). We note that for ξ = 2, where the tissue is the most rigid, the percolation threshold for
the fraction of rigid cells, f∗r ≈ 0.38, tends to the value reported in Ref. [8], which is consistent with
a more rigid tissue than for the homogeneous substrate.

4.3.4 Tension distribution

The main driving force for the decreased rigidity of the tissue is the dispersion of the perimeters
of each cell, pi. As such, the higher this dispersion, the more the tissue becomes fluid like. After a
certain point the pi, of each cell does not have time to decrease to the preferred value, p0,i. Figure 4.8
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Figure 4.9: Average tension as a function of the dispersion in the substrate, for averaged substrates with ξ =

0.03125, 0.125, 0.5, 2. These results were taken for N = 1024 and were averaged over 10 samples.

shows how the dispersion of the tensions (calculated with τ = pi − p0,i) in the cells, στ , increases
with the dispersion of the substrate, σs, for ξ = 0.03125. We find that for σs > 0.1, the dispersion
of the tensions grows linearly with that of the substrate. This means that cells do not have enough
time to adapt before moving to different square tiles. This in turn leads to a more fluid-like tissue as
cells are being perturbed frequently. As ξ increases, the correlations of the substrate will span longer
distances and thus the cells will have more time to relax. This leads to a more rigid tissue, which is
also observed in the average tensions (Fig. 4.9), which increase with ξ, characteristic of rigid tissues.

4.3.5 Different size of square tiles

Instead of averaging through multiple square tiles in the substrate, one can also introduce corre-
lations in the tissue by increasing the lattice constant, δ. The comparison between the two is reported
in Fig. 4.10. We find that the results are similar. The differences may arise from the fact that, in this
case, the substrate has larger discontinuities between square tiles while for the averaged substrate the
gradient in p0,i is smaller. This result also suggests that the percolation transition observed in the
tissue is not an artifact of the substrate, itself.

Figure 4.10: Diffusion coefficient as a function of ξ. Two curves are shown, the first corresponds to the data in Fig. 4.7,
while the second corresponds to a non-averaged substrate with a larger lattice constant, δ. The Gaussian distributions have
p0 = 3.81 and σ = 0.184. The two horizontal lines correspond to the cell disorder and homogeneous cases.
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Figure 4.11: Histogram of the distance moved by the cells between the perturbation and the new minimized state. Results
were taken for N = 64, p0 = 3.75, 3.8, 3.85, σ = 0.184 and averaged over 100 samples.

4.3.6 Perturbations in the athermal model

To shed light on the maximum of the diffusion coefficient as a function of ξ (seen in Fig 4.7 b))
we introduce the following athermal perturbation: we consider the tissue without activity (v0 = 0)
and relax it with the same p0,i for all cells. We consider that the tissue is fully relaxed when the
maximum force on any cell is smaller than 10−12. Then we perturb the minimized configuration
by changing the p0,i of each cell to another randomly distributed p0,i generated from a Gaussian
distribution with mean p0 and standard deviation σ. After the perturbation we let the tissue relax
again.

Figure 4.11 shows the results for three different p0 and σ = 0.184. On average, cells move a
length of approximately 0.1 to 0.2 after the perturbation. This is consistent with the maximum value
found in Fig. 4.7 b).

4.4 Conclusion

We studied the effects of spatial disorder of the cell-substrate interaction on the motility of the
cells in a confluent tissue. We used the self-propelled Voronoi model, where the preferred geometry
of each cell, p0,i, depends on its spatial position. To model the spatial heterogeneities we divided the
surface of the substrate into square tiles, where each tile has a value of the shape index, p0,j , drawn
from a Gaussian distribution with mean p0 and standard deviation σ. We also considered a more
realistic description of an averaged substrate, where cells respond to a local averaged disorder. We
introduced a correlation length for such an average and showed that for correlation lengths smaller
than the cell diameter, the motility of the cells increases. For correlation lengths larger than the cell
diameter, the disorder makes the tissue more rigid, by decreasing the cell motility. This is in contrast
to what is known for tissues with disorder in the mechanical properties of the cells. For those tissues,
the rigidity increases with the level of disorder [8]. Our results suggest that, for smaller correlation
lengths, the random change in the shape index leads to a more symmetrical tension distribution with
lower average values, characteristic of more motile cells. For larger correlation lengths, the cells will
have more time to adapt and the distribution of tensions shifts towards larger values characteristic of
a more rigid tissue. We also note that for the largest values of the correlation length where the tissue
is most solid like, our results approach those of the cell disorder reported in Ref. [8]. This suggests
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that these two types of disorder are closely related.
We also show that our results for a given correlation length may be collapsed onto a single curve

if we use the fraction of rigid cells (Eq. (4.9)) as the control parameter. This suggests that the changes
to the mechanics of the tissue are a consequence of the percolation of rigid cells, characterized by
a perimeter smaller than a given threshold pi < p∗0. Using the fraction of rigid cells in the largest
cluster, we obtained the threshold for the reported increase in motility, f∗r ≈ 0.5353 ± 0.0003, for
a completely random substrate without averaging, and a scaling exponent β ≈ 0.194 ± 0.007. For
larger values of the correlation length, our results suggest that the value of the threshold changes.
Due to the symmetries of the model and the short-range nature of the correlations in the spatial
distribution of the disorder, we hypothesize that the percolation transition belongs to the 2D random
percolation universality class, as corroborated by the value of the obtained exponents.

Although we focused on changes to the shape of the cells, more specifically the cells perimeter,
it is expected that the substrate can affect other properties. Previous works [186] have shown that
the dynamics of mixtures is much less sensitive to differences in cell area than perimeter. Thus, we
expect that, changes in area will lead to more subtle and potentially less marked effects.

These results can play an important role not only in tissue engineering, where the mechanical
properties of the tissue are important [169], but also in the study of cancer where cells change the
surrounding ECM in order to enhance their motility. Our results suggest that the underlying structure
supporting the tissue, either the ECM or a culture substrate, should not be described using generalized
bulk metrics since heterogenieties can play a relevant role in the tissue mechanics. Although we used
a simplistic approach, these results should be robust to different substrate geometries. This also
extends to curved substrates as long as the curvature does not play a major role in the tissue rigidity,
as reported in previous studies [85].

Here, we focused on a 2D description, but a 3D generalization is possible. In a simple general-
ization of the model to 3D [61], we expect similar results since a fluid to solid transition is present
and the cells are able to diffuse throughout the tissue. If we consider a more realistic description
of a 3D epithelial monolayer, then we would need a Vertex model along the lines of Ref. [153] and
characterize the apical and basal sides of the cells differently. Then, it is expected that the competi-
tion between the basal and apical perimeter difference plays a role in the diffusion of the cells. This
would be interesting to explore in future studies.

We have also neglected both cell death and division. Due to modeling constraints, it is required
that the number of cells remains constant throughout the simulation. Other works explored the effect
of cellular division [98], and in the context of disordered media, it would be interesting to focus on
how cell division or death play a role in tissue cell motility.
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Chapter 5

The cell adaptation time sets a minimum
length scale for patterned substrates

The structure and dynamics of tissue cultures depend strongly on the physical and chemical
properties of the underlying substrate. Inspired by previous advances in the context of inorganic
materials, the use of patterned culture surfaces has been proposed as an effective way to induce
space-dependent properties in cell tissues. However, cells move and diffuse and the transduction of
external stimuli to biological signals is not instantaneous. Here, we show that the fidelity of patterns
to demix tissue cells depends on the relation between the diffusion (τD) and adaptation (τ ) times.
Numerical results for the self-propelled Voronoi model reveal that the fidelity decreases with τ/τD,
a result that is reproduced by a continuum reaction-diffusion model. Based on recent experimental
results for single cells, we derive an adaptation time scale for the cells in the substrate which is in
line with those measured in experiments.

5.1 Motivation

The regulated growth and maintenance of a living tissue under controlled conditions is a major
challenge for cell biology and tissue engineering. The standard procedure consists in the use of
culture surfaces to support and guide the cells [47, 64, 76, 187, 188]. An extensive body of research
shows that the cell morphology and dynamics are sensitive to the physical and chemical properties
of the substrate [47–54, 64]. For example, it has been shown that substrate stiffness can significantly
affect the geometry of cultured cells, including their spreading area [54, 114], volume [115], and
shape elongation [116]. By adhering to a given substrates, the cells are influenced by the cell-
matrix adhesion complexes which lead to different changes in the properties of cells, e. g., when
cells are in contact with rigid substrates, its cytoskeleton develops stresses at the level of the actin
network which leads to polarization [131]. In addition, the nanotopography of the substrate can
alter cell polarization, shape, and motility [68–71]. Thus, the effort has been made in the design of
biocompatible substrates that regulate the individual and collective dynamics of cells.

There is a sustained interest in the possibility of generating spatial patterns of cells with different
properties, which is critical for morphogenesis, collective cell motion, and wound healing [65–73].
In development, the processes that typically generate two tissue types separated by a boundary have
been studied extensively [189–193], and often occur because two different cell types, through various
mechanisms, prefer to be surrounded by cells of the same type [55, 162, 186, 194, 195]. However, in
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vitro, an alternative approach is to culture a single cell type on a patterned substrate, and allow the
patterned substrate to change the properties of cells to generate a pattern [67, 68, 70, 71].

Patterned substrates have been used to a large extent in the context of inorganic materials [126–
129]. However, their use for biological systems raises several additional difficulties. Besides the need
for biocompatible materials, the transduction of external stimuli into biological signals that control
the cell morphology and mechanics is not instantaneous. It requires a hierarchy of biochemical
processes, which sets a characteristic adaptation time that can extend over hours [130],for example,
cells on rigid substrates reorganize their cytoskeleton through stresses applied to the actin network
to conform to the substrates properties [131]. The problem is that, within the adaptation time scale,
cells might move around and explore other regions of the substrate. Thus, the fidelity of patterns
in the regulation of cell tissues should depend on how the adaptation time compares with the other
relevant time scales. This is precisely what we study here.

We consider an epithelial confluent tissue on a simple patterned substrate, consisting of two
halves that solely differ in the cell-substrate interaction (see Fig. 5.1). We describe the tissue with
the self-propelled Voronoi model, where the cell-substrate interaction is included in the preferential
geometry of each cell, as cell shapes change as a function of substrate properties [114], and cell
shape in turn governs the rate of cell diffusion in monolayers [76]. We show that the fidelity of the
pattern in the regulation of the tissue properties is compromised significantly when the adaptation
time competes with the diffusion time of cells.

5.2 Methods

We model the confluent tissue as a monolayer ofN cells using the self-propelled Voronoi model [2,
22, 83]. Each cell i is represented by its center ri and its shape is given by the Voronoi tessellation
of the space. The stochastic trajectories of cells are obtained from a set of Langevin equations of
motion,

dri
dt

= µFi + v0n̂i, (5.1)

where Fi is the net force acting on cell i, µ is the mobility of the cell, v0 the self-propulsion speed,
and n̂i = (cos θi, sin θi) is a polarity vector which sets the direction of the self-propulsion force. For

Figure 5.1: Schematic representation of the system. We consider the 2D projection of a confluent tissue on a squared
2D substrate with two regions of equal linear length L/2, which differ in the target value of the shape index p0 of cells:
p0,i = pA on the brighter side (left) of the substrate and p0,i = pB on the darker one (right), with pB > pA. The color of
the cells is related to their actual shape index p0,i(t), which is equal to pA for the ones on the left and pB for the ones on
the right. The darker cells (in the middle) have an intermediate value of p0,i(t), i.e., pA < p0,i(t) < pB .
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simplicity, we consider that θi is a Brownian process given by,

θ̇i = ηi(t), 〈ηi(t)ηj(t′)〉 = 2Drδ(t− t′)δij , (5.2)

where ηi(t) is an uncorrelated random process of zero mean and its variance sets the rotational
diffusion Dr.

The net force Fi describes the multibody cell-cell interaction and it is given by Fi = −∇iE,
where E =

∑
Ei and Ei is the energy functional for cell i. We choose the unit of length to be given

by the square root of the average area of all the cells. We can then write a dimensionless version of
the contribution of each cell to the energy functional as [45, 46],

ei = kA(ai − 1)2 + (pi − p0,i)
2 , (5.3)

where ai and pi are the dimensionless area and perimeter of cell i, p0,i is the target perimeter of cell
i, and kA represents the ratio between the relative stiffness of the area and perimeter elasticity of the
cell.

We consider a squared substrate of linear length L =
√
N , where the value of the target shape

index (p0,i) is spatially dependent. As schematized in Fig. 5.1, we split the substrate in half, with
different values of p0,i on each side. Thus, cells on the left-hand side have a target p0,i = pA, while
the ones on the right-hand side have p0,i = pB , where pB > pA. When a cell diffuses from one
side to the other, their target value of the shape index in Eq. (5.3) changes accordingly, within a
characteristic adaptation time τ (Fig. 5.2). Thus, we consider that the time dependence of the shape
index p0,i for cell i is given by,

ṗ0,i(∆ti) =
1

τ
[p0,i(∞)− p0,i(∆ti)], (5.4)

where ∆ti is the time interval since the cell crossed the line dividing the substrate, for the last time.
p0,i(0) is the shape index of cell i before crossing and p0,i(∞) is the target value in the new side. By
changing this characteristic adaptation time τ , it is possible to control the time it takes for a cell to
change from one shape index to the other.

To simulate the confluent tissue, we used a recently developed hybrid CPU/GPU software pack-
age, cellGPU [99], for the self-propelled Voronoi model. The equations of motion, Eq. (5.1), are
integrated using the Euler method, with a time step of ∆t = 10−3. We impose periodic boundary
conditions, Dr = 1, v0 = 0.3, and kA = 100, the latter to guarantee that fluctuations in the cell area
are negligible when compared to the ones in the perimeter. For the considered set of parameters, the
rigidity transition occurs for p0 ≈ 3.725 [2]. To generate the initial configuration, we generate N
positions at random and let the system relax over 104 time steps, with p0 = pB for all cells. Then,
we set p0,i(0) = pA for the cells on the left- and p0,i(0) = pB for the ones on the right-hand side of
the substrate.

5.3 Results and discussion

To study the role of the adaptation time τ , we first consider a pair of values for the shape index
for which the confluent tissue is in a fluid-like state on both sides of the substrate: pA = 3.875 and
pB = 3.9. For these values, the cell diffusion coefficients on each side differ by less than 15%:
DA = 3.61× 10−3 and DB = 4.13× 10−3, obtained from the mean squared displacement. Below,
we assume DA = DB = D.

45



Chapter 5. The cell adaptation time sets a minimum length scale for patterned substrates

Figure 5.2: Schematic representation of the rules of the substrate. On the left is a snapshot of the tissue at the start of
the simulation where the two sides are completely segregated. As cells go from one side of the substrate to the other they
will start to adapt and change color. On the right are the equations associated with this adaption, which is modeled as an
exponential decay with a characteristic time scale for adaptation τ .

Initially, all cells are fully adapted to the underlying substrate (see Methods). As time evolves,
cells diffuse and cross from one side to the other. However, due to the finite adaptation time, their
target shape index p0,i changes in time, as given by Eq. (5.4), and thus cells of different shape indices
mix on both sides of the substrate. To characterize this mixing, we measure the demixing parameter,
DMP , defined as,

DMP =
1

N

N∑
i

1

Ni,neigh

Ni,neigh∑
j

H(ε− |p0,i − p0,j |), (5.5)

where the out sum is over all cells and the inner sum is over the Ni,neigh neighbors of cell i [186].
H(ε − |p0,i − p0,j |) is the Heaviside step function and ε is a threshold that we set to ε = 10−5 (see
following sections for the dependence on ε). For DMP = 1 the cells in the confluent tissue are
completely segregated by their shape index, whereas for DMP = 0 they are fully mixed, i.e., each
cell is surrounded by cells with a different shape index.

Figure 5.3(a) shows the time dependence of the demixing parameter for different values of the
adaptation time τ , where time is rescaled by τ . As cells mix, DMP decreases and saturates asymp-
totically. Different curves are for different values of τ/τD, where τD = L2/D is the diffusion time
which we define as the characteristic time it takes for a cell to diffuse a distance L. In Fig. 5.3(b) is
the asymptotic value of DMP as a function of τ/τD for different numbers of cells (same density).
A data collapse is observed, which shows that finite-size effects are negligible. The monotonic de-
crease of the asymptotic value of DMP with τ/τD hints at a competition between two time scales:
the adaptation and the diffusion time. When the adaptation time is negligible (τ � τD), cells adapt
rapidly to the underlying substrate, with DMP ≈ 1. When the two time scales compete, the value
of DMP should depend on the ratio between the two. In the limit where they are of the same order,
DMP should vanish, for the cell changes sides before fully adapting to the new shape index. Thus,
large values of the adaptation time compromise the control over the shape of the tissue boundaries
via patterned substrates.

The demixing parameter is not uniformly distributed in space. In Fig. 5.3(c) are three snapshots
of the tissue obtained at time 10τ , for different values of τ/τD. The color of cells depends on the
value of the demixing parameter. Cells that are surrounded by cells of the same target shape index
p0 are in green (DMP = 1), the ones surrounded by cells of a different p0 are in red (DMP = 0).
The ones with intermediate values of DMP are in blue. One clearly sees that the green cells are in
the center of each half-space, whereas red cells are concentrated around the boundaries: middle and
borders, due to the periodic boundary conditions. However, the width of the regions of green and red
cells depends on the value of τ/τD.
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Figure 5.3: Dependence of the demixing parameter DMP on the two relevant time scales: adaptation τ and diffusion τD
times. (a) Time dependence of the demixing parameter, where time is rescaled by the adaptation time τ . Different curves
are for different values of τ/τD , namely, 10−4, 10−3, and 10−2. The vertical dashed line corresponds to ln[(pB−pA)/ε],
which is the time it takes for the target shape index of a cell i that crosses to the right-hand side, with p0,i = pB to become
p0,i = pA + ε, as given by Eq. (5.4).(b) Demixing parameter as a function of τ/τD for different system sizes, where the
number density of cells is kept constant at 1, i.e., L =

√
N . The (black)-solid line is given by Eq. (5.8), derived from a

continuum model, with α = 0.0866± 0.0009. (c) Snapshots of the confluent tissue obtained numerically at time 10τ , for
three different values of τ/τD , namely, 10−5, 10−3, and 10−2 (respectively I, II and III). The color of each cell depends
on the demixing parameter: green (DMP = 1), red (DMP = 0), and blue (0 < DMP < 1). It is clear that the cluster
of red cells is formed around the line dividing the substrate into two parts (see Fig. 5.1) and it grows with τ/τD until it
spans the entire tissue. Results in (a) and (b) are averages over ten independent samples.

We define u(x, t) as the fraction of cells that are green (DMP = 1) at time t, where x ∈ [0, L]

is the spatial coordinate along the horizontal direction. To compute u(x, t) numerically, we divide
the system into vertical slices and measure the fraction of cells with DMP = 1 within each slice.
The results for u(x, 10τ), for different values of τ/τD are shown in Fig. 5.4(a), for x ∈ [0, L/2]. As
suggested by Fig. 5.3(c), there are more green cells at x = L/4 but, the fraction of cells and the width
of the profile decreases with τ/τD. The latter scales with

√
τ/τD as expected for a diffusive process.

To highlight this, we plot the length of the interface, defined by the length l∗ at which u(x, 10τ) is
equal to 0.25, 0.5 and 0.75 respectively (see Fig. 5.4(b)).

To describe the competition between cell diffusion and adaptation time, we now propose a con-
tinuum model to describe the time evolution of u(x, t). For simplicity, we take advantage of the
symmetry of the problem and focus on x ∈ [0, L/2]. We consider a reaction-diffusion equation for
u(x, t),

ut(x, t) = D∗uxx(x, t) + T [1− u(x, t)]. (5.6)
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Figure 5.4: Spatial distribution of N = 16384 cells with DMP = 1. (a) Profile u(x, t) of the fraction of cells with
DMP = 1, for different values of τ/τD , where x is the spatial coordinate along the horizontal direction, t = 10τ , τ is
the adaptation time, and τD the diffusion time. The lines are given by Eq. (5.7), which is derived from a continuum model,
using φ as a fitting parameter. (b) Value of x = `∗ at which u(`∗, 10τ) is 0.25 (squares), 0.50 (triangles) or 0.75 (circles),
as a function of τ/τD . The slope of the curves is given in the plot as 0.5. Results are averages over ten independent
samples.

where ut is the time derivative and uxx is the second space derivative. The first term on the right-
hand side is a diffusive term that describes the collective diffusion of cells, with an effective diffusion
coefficient D∗. The second term is a reaction term, which describes the adaptation of cells to the
local environment. The adaptation is proportional to the fraction of cells that are not adapted, i.e.
1 − u(x, t), and occurs at a rate T that is proportional to the inverse of the adaptation time τ . Since
we start from a demixed state, the initial conditions are u(x, 0) = 1 and the boundary conditions are
u(0, t) = u(L/2, t) = 0 at all times.

As derived in Appendix A, the control parameter for the dynamics of the continuum model is
the ratio φ2 = T (L/2)2/D∗. Since T ∼ τ−1 and D∗ ∼ D, then φ2 ∼ L2/τD = τD/τ , which is
the ratio between the diffusion and adaptation time scales. We define φ2 = αL2/τD, where α is a
prefactor that depends on the 2D geometry of the substrate and the value of the shape index on both
sides. Asymptotically, u(x, t) converges to a stationary state uE(x̂),

uE(x̂) =
1 + eφ − e−φ(x̂−1) − eφx̂

1 + eφ
, (5.7)

where x̂ = 2x/L. As shown in Fig. 5.4(a), this analytical solution (solid lines) is in qualitative and
quantitative agreement with the numerical results for the self-propelled Voronoi model, where we set
α = 0.0866± 0.0009 for all curves, obtained by a fit using the least squares method.

To compute the demixing parameter from the profile in the stationary state, uE(x), we consider
a mean-field approach, where the probability density that two neighboring cells are in the same state
is u2

E(x) and so DMP =
∫ 1

0 u
2
E(x̂)dx̂, which gives,

DMP = 1 +
1

1 + cosh(φ)
− 3 tanh(φ/2)

φ
. (5.8)

This solution is the solid line in Fig. 5.3(b), which is in quantitative agreement with the numerical
results.

The numerical and analytical results suggest that the fidelity of a patterned substrate in the control
of the morphology of a tissue is significantly dependent on the ratio between the diffusion and the
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Figure 5.5: Dependence of the demixing parameter for the solid-fluid case. (a) Time dependence of the demixing parame-
ter, where time is rescaled by the adaptation time (τ = 5000), for N = 2048. Different curves are for the side A, B, and
both sides. (b) Demixing parameter as a function of τ/τD for both sides, obtained at 50τ . The (black)-solid line is given
by Eq. (5.8), derived from the continuum model, with α = 0.276± 0.003. (c) Snapshots of the confluent tissue, obtained
numerically for different values of τ/τD , namely, 10−3, 10−2, and 10−1. The color of each cell depends on the demixing
parameter: green (DMP = 1), red (DMP = 0), and blue (0 < DMP < 1). Results in (a) and (b) are averages over ten
independent samples and the value of τD is obtained for the liquid-like side.

adaptation time. Ideally, full control would imply DMP = 1. The lower the value of DMP , the
less efficient is the use of a pattern. Let us define δ such that a tissue with DMP < δ is considered
mixed. Since DMP increases monotonically with φ (see Fig. 5.3(b)), we take the limit of vanishing
φ and DMP . From a Taylor expansion about φ = 0, we obtain DMP = φ4/120 + O(φ5). Thus,
there is a minimum length,

Lmin =

[
τD

α

√
120δ

] 1
2

, (5.9)

below which the cells in the tissue are mixed, which sets a lower bound for the size of the patterns.
So far, we considered a pair of target shape indices such that both sides are in a fluid-like state.

We study now the solid-fluid case, by setting pA = 3.65 and pB = 3.9 (as before). Figure 5.5(a)
shows the time dependence of the demixing parameter for the side A, B, and both sides. Different
from the fluid-fluid case, where the time dependence of DMP was similar in both sides, here we
observe that DMP vanishes for the liquid-like side, whereas in the solid-like side it saturates at
≈ 0.8. This break of symmetry is observed for a wide range of parameters, as seen in Fig. 5.5(b)
from the dependence of the value of DMP on the left- and right-hand sides on τ/τD, where τD is
that for the liquid-like state. For all values of τ/τD the demixing parameter is higher in the solid-like
state than in the liquid one. This asymmetry stems from the difference in the effective value of the
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Figure 5.6: Asymptotic demixing parameter DMP as a function of τ/τD , for N = 4096. Different curves are for
different values of ε, namely, 10−5, 10−4, and 10−3. All the other parameters are the same as in the fluid-fluid case. In the
inset, a data collapse is obtained when time is rescaled as proposed in Eq. 5.10. Results are averages over ten independent
samples.

diffusion coefficient D in both sides. For the solid-like state, D ≈ 0 and thus adaptation is much
faster than diffusion. Cells have enough time to adapt to the new target shape index, which yields a
high value ofDMP that does not depend strongly on τ (see also snapshot for different values of τ in
Fig. 5.3(c)). By contrast, for the liquid-like state, the value of DMP strongly depends on the value
of τ as in the liquid-liquid case, see Fig. 5.3. In fact, the dependence of DMP on τ/τD in Fig. 5.5
for the liquid-like side is well described by Eq. (5.8), solid curve in Fig. 5.5(b) (further results for
different substrates are discussed in the following subsections).

As in the fluid-fluid case it is important to highlight that the interface formed between adapted
cells and the mixed ones for larger adaptation timescales is purely dynamical. Since the diffusion
coefficient of the solid cells is almost negligible the time it takes for them to reach the boundary of
the substrate increases with the distance to it. Thus, while the fluid side can mix with some of the
solid cells that are closer to the boundaries, the rest of the solid cluster does not change significantly.
Unfortunately, since the timescale for solid cells neighbor exchanges diverges when the tissues are in
the solid state, we expect that the time for solid side mixing might be unreachable for any reasonable
simulation efforts (or experimental)

5.3.1 Influence of ε on the results

In Eq. (5.5), the definition of alike cells depends on a threshold ε, which we fixed at ε = 10−5.
In practice, the value of these ε will depend on the experimental resolution to segregate cells by their
type. Here, we study the dependence on ε.

Figure 5.6 shows the time dependence of the demixing parameter DMP for different values of
ε for the fluid-fluid case. The larger the value of ε, the more cells are considered to be alike and
therefore, the value of DMP is larger. To compare results for different values of ε, we compute the
time tε that takes a cell to adapt to a new target shape index, within a threshold ε. The time evolution
of the shape index is given by Eq. (5.4),

tε =

∫ ∆p0

ε
−τ ln

(
ε

δp

)
dδp , (5.10)

where ∆p0 = pB − pA is the change in shape index. In the inset of Fig. 5.6 we show that a data
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Figure 5.7: Time dependence of the demixing parameter DMP , where time is rescaled by tmax = − ln(ε/∆p0), with
N = 256. Different curves are for different values of ∆p0 = pB − pA, where pB = 3.9. In the inset is the asymptotic
value of DMP as a function of ∆p0. Results are averages over 102 samples.

collapse is obtained for a wide range of values of ε (three orders of magnitude), if we plot DMP as
a function of tε.

5.3.2 Dependence on ∆p0

As discussed previously, the properties of the tissue on each side of the substrate depend, not
only on the target shape index of that side but also on the target value on the other side. Here, we
explore the dependence on ∆p0 = pB − pA, defined as the difference in the target shape indices of
both sides. For simplicity, we fix pB = 3.9 and change pA.

Figure 5.7 shows the time dependence of the demixing parameter for different values of ∆p0. For
all values,DMP initially decreases and saturates asymptotically. In the inset, we plot the asymptotic
value of DMP as a function of ∆p0, which reveals a non-monotonic behavior. From Eq. 5.10, we
see that the time it takes for a cell to fully adapt to the new side depends on both τ and ∆p0. So,
for vanishing ∆p0, cells crossing sides swiftly adapt to the local target shape index, leading to an
increase in DMP .

5.4 Conclusion

We included the adaptation time of cells to external stimuli in a minimal model for confluent
tissues. We found that the use of patterned substrates to regulate the tissue properties is compromised
significantly when the adaptation time competes with the cell diffusion time. The latter depends
on the characteristic length of the pattern L∗. From a continuum description based on a reaction-
diffusion equation, we derived an analytic expression for the minimum length Lmin for the pattern to
be effective. For L∗ > Lmin, cells have enough time to adapt to the local cell-substrate interaction
and the heterogeneous distribution of cell shapes reproduces the symmetries of the pattern, with a
clear segregation by shape index. By contrast, for L∗ < Lmin, cells do not fully adapt to the local
cell-substrate interaction and their shape index depends on their individual trajectories.

In the previous chapter we concluded that the cell size sets the relevant length scale for adaptation,
thus the typical size of epithelial cells in confluent tissues (Lmin ≈ 20µm) sets the minimum length
scale of the pattern for cells to be able to fully adapt. We can then calculate the expected adaptation
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time using the theory developed in this chapter. Using a typical diffusion coefficient for tissue cells of
the order of D ≈ 0.1µm2min−1, we estimate, using Eq. (5.9) with α = 0.276 (large heterogeneity
in substrate) and δ = 0.01 (experimental resolution), that the typical time for a cell to adapt in a tissue
interacting with a heterogeneous substrate is of the order of τ ≈ 16 hours. We have no knowledge
of such measurements for cells in confluent tissues, but they fall within the relevant ranges for single
cells adapting to heterogeneous substrates [130].

We considered a simple pattern but, it is straightforward to extend the conclusions to other pat-
terns. In fact, the competition between diffusion and adaptation is so general that it should apply
even to heterogeneous random substrates. These substrates are usually characterized by a correlation
length ξ that plays the role of L∗, as seen in the previous chapter. So, only for ξ > Lmin, cells
are expected to segregate based on their shape index, as defined by the local properties of the sub-
strate. These results should be quite robust for different substrate patterns, even when the substrate is
slightly curved, as long as one can assume that the curvature does not affect significantly cell-cell ad-
hesion or the elasticity of the tissue [85]. However, for more extreme cases, it is known that curvature
might lead to short and long-range collective motions [86].

The identification of the mechanisms responsible for the emergence of spatial cell patterns in
a developing organism has been a subject of intensive research and discussion over the years [55,
132, 189, 194]. A recent study combines theory and experiments to show that cell sorting and com-
partmentalization in living organisms might be driven by surface tension due to differential adhe-
sion [186]. However, the use of cell mixtures in vitro encompasses multiple challenges, which
include the lack of control over the spatial distribution of cell types. We have shown that, above
a certain length scale, the spatial distribution of cell properties can be controlled by the substrate
pattern.

Although we only focused on changes to the shape of the cells, more specifically the cells perime-
ter, it is expected that the substrate can affect other properties. Previous works [186] have shown that
the dynamics of mixtures is much less sensitive to differences in cell area than perimeter. Thus, we
expect that, changes in area will lead to more subtle and potentially less consequential effects.

For simplicity, we assumed that the cell-cell and cell-substrate interactions depend on the sub-
strate but not on the cell itself. A recent study shows that a broad distribution of the shape index of
cells affects the tissue rigidity and, consequently, the cell diffusion coefficient [8]. Furthermore, we
considered the adaptation time to be the same for all cells, but in a more realistic description this
adaptation time might depend on other properties, like the cell geometry. Understanding the role of
cell heterogeneities in the adaptation time is a question of interest for future studies.

In this study, for simplicity, we focused strictly on a 2D description, but a 3D generalization
is possible. In the case of a simple generalization of the model to 3D [61], then we would expect
similar results since a similar fluid to solid transition is present and cells are able to diffuse through
the tissue. If we consider a more realistic description of a 3D epithelial monolayer, then we would
need to go to a vertex model description that would follow something along the lines of [153] and
characterize the apical and basal sides of the cells differently. Here, it could be expected that the
competition between the basal and apical perimeter difference to play a role in the diffusion of the
cells in the tissue. This would be something interesting to explore in future studies.

Here, we also neglected both cell death and division. Due to modelling constraints, it is required
that the number of cells remains constant throughout the simulation. Other works explore the effect
of cellular division [98], and in the context of patterned substrates it would be interesting for future
studies to focus on how cell division or death could play a role in the mixing of the tissue.

52





Chapter 6

Non-confluent Self-Propelled Voronoi
model

The dynamics of cell adhesion, motility, and proliferation on substrates poses technological and
fundamental challenges in studies of morphogenesis, wound healing, and cancer. The dynamics
evolves through (cell) shape changes and local rearrangements in response to stimuli from the sur-
rounding medium as a result of the cell-cell correlations. Despite the inherent complexity, the rele-
vant mechanisms can be isolated and used to develop realistic but tractable models. In this chapter
we explore the Self-Propelled Non-Confluent Voronoi Model to shed light on some of the theoretical
challenges in describing tissue development. We focus on the region of parameters which promotes
cell adhesion and characterize some of the different properties of cell colonies, from colony growth
to force distribution.

6.1 Motivation

In vitro experiments of cell-tissue morphogenesis, wound healing, and cancer rely on the capa-
bility of growing tissues on substrates [100, 196]. This poses practical and fundamental challenges
that are motivating an enthusiastic and exciting body of research [1, 25, 32, 169]. For practitioners, it
is key to control the morphology and mechanical robustness of the growing tissue, while guarantee-
ing a sustained delivery of nutrients to all cells. Theoretically, this problem resonates with traditional
topics of soft-condensed matter: nonequilibrium dynamics, adhesion/wetting, transport in disordered
media, and membrane mechanics [57, 60, 129].

For simplicity, most discrete models have considered either rigid or soft particles, mainly non-
deformable, isotropic, and passive [59, 129, 197, 198]. Such extreme simplification provided us with
a solid theoretical knowledge on how the equilibrium and some of the non-equilibrium properties
depend on the type of interactions and competing timescales, and on the role of chemical/physical
patterns imprinted on the substrate. However, for cells, this simplification is not satisfactory for two
main reasons. 1) Cells are active particles, as they can collect energy from their surroundings and
convert it into directed motion. 2) Cells shape changes in response to several stimuli. These two
features are important in the dynamics and cannot be neglected [29].

Theoretical studies of cells have focused on two opposite limits: very detailed descriptions of a
single cell [31,33,142,199] or coarse-grained descriptions of the entire tissue [2,22,45,46]. While the
former describes the mechanical and biochemical behavior at very short length and time scales, the
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latter focus on the macroscopic mechanical properties of the tissue, but requires apriori knowledge
of the spatial distribution of cells and cell features. The bridge between these very relevant limits is
still elusive.

In this chapter we expand the previously introduced SPV model to allow for holes in the tissue.
For this, a new length scale is introduced, the maximum radius of the cells, l. Thus, as cells grow
apart, they will eventually separate and adopt a circular form. Recent studies on the Non-Confluent
Voronoi model have established its different phases, from the individual cell system (Gas phase)
to the fully confluent tissue [137]. Building on top of it, we explore the parameter region which
promotes cell adhesion and focus on the growth of cell colonies. We try to elucidate some of the
relevant mechanisms of tissue growth. We introduce activity to the equations of motion and focus on
the study of the colonies surface tension. We observe that there is a linear dependence of the surface
tension on activity strength and quantify the growth of the colony as a function of the geometrical
parameters of the model.

6.2 Methods

We model the non-confluent tissue of N cells using the Self-Propelled Non-Confluent Voronoi
model [137]. Each cell i is represented by its center ri and its shape is given by the Voronoi tes-
sellation of the space. To consider tissue boundaries, we introduce a new length scale l, which
corresponds to the maximal radius of the cell. Thus, after performing the Voronoi tessellation, we
check if all vertices are within a circle of radius l centered in i. The ones that are at a distance larger
than l are excluded from the triangulation and a circumference arc of radius l between the uncon-
nected vertices is drawn. This new curved interface corresponds to a boundary between the cell and
the surrounding medium, while straight line interfaces connecting two cells perform the same role as
in the previous model. The stochastic trajectories of cells are obtained from the equation of motion,

dri
dt

= µFi + v0n̂i, (6.1)

where Fi is the net force acting on cell i, µ is the mobility of the cell, v0 the self-propulsion speed,
and n̂i = (cos θi, sin θi) is a polarity vector which sets the direction of the self-propulsion force. For
simplicity, we consider that θi is a Brownian process given by,

θ̇i = ηi(t), 〈ηi(t)ηj(t′)〉 = 2Drδ(t− t′)δij , (6.2)

where ηi(t) is an uncorrelated random process of zero mean and its variance sets the rotational
diffusion Dr.

The net force Fi describes the many body cell-cell and cell-environment interaction and it is
given by Fi = −∇iE, where E =

∑
Ei and Ei is the energy functional for cell i,

Ei = KA[Ai −A0]2 + ΓP 2
i + Λ<i,j>Pi , (6.3)

where Ai and Pi are the area and perimeter of cell i, respectively, and A0 is the target area value.
KA is the area modulus, Λ is the line tension of the cell interfaces and Γ is related to the strength
of the contractility. The main difference to the previous confluent model is the Λ term which not
only accounts for the line tension between adhered cells but also between cells and their surrounding
medium. For simplicity, we consider that the tension is equal in both cases and thus the energy
functional reduces to the standard:
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Ei = KA[Ai −A0]2 +KP [Pi − P0]2 , (6.4)

where Ai and Pi are the area and perimeter of cell i, respectively, and A0 and P0 are their target
values. KA and KP are the area and perimeter moduli. Physically, it is more appropriate to consider
different tensions for cell-cell and cell-environment interfaces. However, this does not affect the
phase diagram qualitatively, but merely moves the location of the phase boundaries, as shown in
Ref. [137]. Without loss of generality, below, all lengths are in units of l and time is in units of
1/(µKP l).

In Ref. [137], the different phases of the model are explored. In addition to the confluent phase for
high adhesion, five other phases are reported, a schematic summary is shown in Fig. 6.1. These can be
understood in the context of cell-cell interactions and geometrical constraints. In this model, vertices
can be shared by either two or three cells. One can estimate analytically what is the typical force
between an isolated pair (in a line configuration) and a triplet of cells (in a triangular configuration).
These two and three-cell interactions can be calculated from Eq. (6.4), for a given P0 and A0. In the
case where both interactions are negative, all cells repel each other and the system is in the gas phase.
When the two-cell interaction is positive but the three-cell one is negative, one finds the hexagonal
phase, where cells are able to overlap but do not form three cell connections, thus, large clusters
cannot be formed. Due to this, each cell will have six neighbors leading to a configuration similar to
the hexagonal packing. The inverse case, positive three-cell and negative two-cell interaction, leads
to the cluster phase. Here, clusters of cells are formed due to the initialization protocol of the model.
Since the position of cells is randomly generated, some are close to each other and the ones which
form a three cell cluster will stay connected since three-cell interactions promote aggregation. On the
other hand, since the two-cell interaction is repulsive, the clusters will not be able to merge leading to
multiple segregated clusters. The last three phases are characterized by geometrical constraints since
the two and three-cell interactions are positive. These interactions promote cell aggregation which
leads to a large cell cluster that contains all cells. As mentioned, there is a phase corresponding to
the confluent tissue where all cells are connected without any gaps. Then, there is also a minimal
phase which can have small gaps and is observed when the constraints set by the energy functional
are met, P̄i = P0 and Āi = A0. This phase is like the fluid-like phase of the SPV model since there
are no barriers for cell rearrangements, while the confluent phase is similar to the solid-like one [2].
Lastly, there is a non-confluent phase, where all cells still form a large connected cluster but there
are gaps in the tissue, due to the maximal radial size of the cells. This happens for large P0 and small
A0, where cells want to expand but still want to aggregate, since the two and three-cell interactions
are positive. This leads to some cells distancing far apart, no longer satisfying their maximal radius
constraint and a hole is formed.

For the simulations, we used a recently developed hybrid CPU/GPU software package, cell-
GPU [99], for the Self-Propelled Voronoi model and introduced the mechanism for non-confluent
tissues described above. The equations of motion, Eq. (5.1), are integrated using the Euler method,
with a time step of ∆t = 10−3. We impose periodic boundary conditions, Dr = 1, v0 = 0.1, and
KA = KP = 1. To generate the initial configuration, we generate N positions at random and let the
system relax over 104 time steps.
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Figure 6.1: Schematic representation of the different phases of the model. In the Gas phase, the two and three-cell
interactions are repulsive which makes cells move away from each other. In the Cluster phase, two-cell interactions are
repulsive but three-cell ones are attractive leading to small clusters of cells that are formed at the start and never break,
since two different clusters cannot merge given that they need two-cell contacts. Some two-cell cluster configurations
are also stable, if during the initialization protocol they start sufficiently close together, since for small distances between
two cell centers, the two-cell interaction can be attractive. The Hexagonal phase is characterized by attractive two-cell
interactions but repulsive three-cell ones. This leads to a packing similar to hexagonal with multiple two-cell contacts. In
the bottom row are the phases with both attractive two and three-cell interactions. In the Non confluent phase, cells are
constrained by their maximal radius leading to holes in the tissue. In the Minimal phase the energy of the cells is close to
their minimum (Pi = P0 and Ai = A0). In the Confluent phase the tissue is in a glassy state.

6.3 Results and discussion

We focus on the parameter space where the cells are in the confluent phase (see Fig. 6.1), which
corresponds to P0 < q5

√
A0, where q5 ≈ 3.8 is the shape parameter of a regular polygon with five

sides. This is the same curve that separates the solid to fluid transition in the space-filling confluent
tissues in the SPV model. As the tissue is able to form five sided polygons, the energy barriers for
cell rearrangements decrease significantly leading to more frequent neighbor exchanges. This sector
of the parameter space will allow us to probe several properties of cell colonies and how they develop
until a fully confluent tissue is formed.

In Fig. 6.2 we show how the energy of the cells in the periphery of the colony changes with cell
number. Since we focus on the confluent phase, the periphery of the colony is defined as the cells
which share an interface with the surrounding medium, while cells in the bulk only share interfaces
with other cells. As such, we sum the energy of each individual cell in the periphery of the colony
(Eper) and normalize it by the total energy (Etotal), as given by Eq. (6.4). Note that, from Eq. (6.4),
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Figure 6.2: Normalized periphery energy of the colony as a function of the number of cells. These results were averaged
over 10 samples. For small colonies, all cells are at the boundary, thus Eper = Etotal. As N increases the main
contribution to the cell colony shifts to the bulk.

since the cell-cell and cell-environment line tensions are considered equal, the difference between
cells in the periphery and in the bulk is purely geometrical. Cells in the bulk will be surrounded by
other cells and thus have a regular polygonal shape, while cells in the periphery are missing neighbors
and thus have a curved arc which sets the border with the surrounding medium. We observe that for
smallN , all cells are in the periphery of the colony and as suchEper = Etotal, but asN increases, the
number of cells in the bulk increases and the largest fraction of the energy in the colony is that of bulk
cells. While different P0 and A0 change the distribution of energy in the colony, these parameters do
not change its behavior significantly. For higher N , the largest fraction of the energy comes from the
bulk where cells share similar shape distributions, thus similar energy.

Although the energy of the periphery of the cluster is still non-negligible (around 10% of the
total) for the largest colony sizes (N = 1024), in Fig. 6.3, we show that the way the colony grows
is similar for smaller values of N . Here, we show how the radius of the colony grows with N . The
radius is measured by approximating the colony to a circle of radius R. As such, we measure the
total area of the colony and calculate its radius using, R =

√
Atotal/π, where Atotal =

∑
iAi.

We observe that the radius of the colony increases as
√
N for N ≥ 10. These results suggest that

although the contribution of the bulk to the total energy of the tissue is still small (around 20%), it
already has the required number of cells for the colony to form a more regular circular shape. Since
the periphery grows with

√
N and the bulk with N , eventually the contribution of the periphery to

the total energy of the tissue is negligible.
We quantify how the different parameters play a role in shaping the periphery of the colony by

analyzing its surface tension (γ). We measure γ by a least squares linear fit of the periphery energy
(Eper) as a function of

√
N . Since this dependence is linear in the asymptotic limit, we can use its

slope to quantify the surface tension of the colony. Figure 6.4 shows how the surface tension of the
colony changes with the activity of the cells (left) and with P0 and A0 (right). The left plot shows
that the surface tension of the colony grows approximately linearly with the activity of the cells. In
the right plot, the blue circles correspond to simulations where we fix A0 = 3 and change P0, while
the green triangles correspond to simulations where we fix P0 = 2.5 and vary A0. We have plotted
this data as a function of the shape parameter P0/

√
Ā, where Ā corresponds to the average area of

all the cells in the colony. This is one of the adimensional quantities commonly used in the literature
as a control parameter [2, 61, 83, 137]. We observe data collapse, but more simulations would be
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Figure 6.3: Radius of the cluster as a function of the number of cells in the colony. These results were averaged over 10

samples. A straight dashed line for
√
N is shown in black. The radius of the colony is calculated by approximating it to

a circle, thus R =
√
Atotal/π, where Atotal =

∑
iAi. For larger cell colonies we can see that their radius follows the

straight line. This happens at N & 10.

needed to thoroughly verify its validity. We find that changes to A0 play a much larger role to the
periphery mechanics than changes to P0. This is in contrast to space-filling tissue simulations where
the relevant parameter is P0 and Ā is usually fixed [2, 61, 83, 137]. Recent work has also shown how
different A0 do not seem to play a relevant role in the dynamics of the tissue [186]. These results
highlight the difference between bulk and periphery mechanics. While bulk is mainly controlled
by P0, the periphery changes more with A0. This is also supported by the phase diagram of the
model [137], where by increasing P0 the colony always stays connected but the dynamics changes
significantly from the Confluent, to the Minimal and finally the Non Confluent phase. By contrast,
when increasing A0, the colony eventually breaks since there is not enough adhesion between cells.
Thus, the colony will survive while the adhesion is kept between the peripheral cells, which is mostly
affected by A0.

6.4 Conclusion

In this chapter we analysed the surface properties of the Non-Confluent Voronoi model. We
focused on the confluent phase of the model where cells attract each other to form a cohesive cell
colony and studied how it grows and its surface properties. We found that, as the number of cells
in the colony increases, the contribution of the cells in the bulk to the total energy of the colony
dominates over the cells in the periphery. We show that for N > 10, the periphery will typically
grow with the radius of the colony, while the bulk grows with the area. Thus, as N increases, there
is a crossover between a colony where the periphery contributes significantly to its properties to a
tissue where the bulk completely dominates and the periphery can be neglected. We also show that
the surface tension of the colony scales linearly with the activity of the cells. We observed a data
collapse of our results for the surface tension as a function of P0/

√
Ā.

More simulations are needed to assess the data collapse in Fig. 6.4, but the results already pro-
vide insight into the relevant parameters of the model. As in the confluent version, this geometrical
parameter seems to play a relevant role in controlling the dynamics of the cells [2, 45, 46, 83]. In
the confluent models, the parameter simplifies since Ā = 1, but in the non-confluent one, the colony
does not span the entire simulation box and, as such, different cells will have varying areas, espe-
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Figure 6.4: Surface tension in cell colonies. On the left is the surface tension (γ) as a function of activity (v0). Note that
the surface tension of the colony increases linearly with activity. The black line is given by γ(v0) = 8.8v0 + 41.9. These
results were taken for P0 = 2.5 and A0 = 3.0. On the right is the surface tension (γ) as a function of P0/

√
Ā. These

results were taken for v0 = 0.1. This scaling was used to collapse the data but more simulations are needed to assess its
validity. The results in blue (circles) were taken by fixing A0 = 3 and varying P0 from 2.5 to 3.5 in steps of 0.2. The ones
in green (triangles) were taken by fixing P0 = 2.5 and varying A0 from 2 to 4 in steps of 0.5. The surface tension was
calculated through a linear fit of the energy of the peripheral cells as a function of

√
N for large cell numbers (N ≥ 128).

All results were averaged over 10 samples.

cially when comparing cells in the bulk to cells in the periphery. Recent works have developed a
minimal length approach to unify rigidity in underconstrained systems like the Vertex model and
spring networks [61,62]. This approach may also be extended to non-confluent models, especially if
the same parameter controls the properties of the cells.

Previous work has focused on a similar non-confluent system using the Vertex model [160],
where the interactions between cells are changed to differentiate between cells and surrounding
medium. The model remains similar to its confluent counterpart but since some cells now corre-
spond to empty space, the tissue is allowed to reach a non-confluent state. The model also introduces
tension fluctuations on the cell edges to mimic real cell colonies. Given the similarities between the
dynamics of the confluent Voronoi and Vertex models [84], it would be interesting to extend this fea-
ture to the non-confluent regime. From a qualitative point of view, the phases observed in Ref. [160]
are similar to the ones of Fig. 6.1, suggesting that both models remain similar in the non-confluent
regime.

The mechanical properties of the tissues have been shown to be driven by universal properties
related to topology and geometry of the individual cells [76, 94, 200]. These results have also been
supported by simulations of the Vertex and Voronoi models [2, 83]. In the non-confluent model, our
results suggest that this universality can be extended to colonies with as little as 20 cells. In the case
of smaller colonies, especially when there are no cells in the bulk, the colonies can become unstable.
This is due to the irregular shapes that result from the Voronoi tessellation when the number of cells
is small. This may lead to instabilities when the cell centers are too close and are pushed out of the
cluster. In the future, steps should be taken towards improving the model for small cell numbers. One
possibility is adding empty cells as in Ref. [160] which are meant to model the holes in the tissue but
allow for the addition of more stabilizing elements to the model. Being able to reach colonies with
small number of cells is necessary to bridge the results known for tissues [76,94,200] to what is seen
in small colonies [132].
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The results reported here considered equal interactions between cells and cell-environment. Other
works have shown that this simplification does not play a qualitative role in the phases of the
model [137]. Furthermore, recent work has shown that the topology of tissues is universal even
for different substrates [200]. Nonetheless, an interesting avenue for future studies is to introduce a
different interaction between the cells and the environment. One possibility is to introduce hetero-
geneity via a substrate, as we explored in previous chapters, to understand if the cell-environment
interaction can play a more relevant role.
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Chapter 7

Conclusions

In this thesis, we explored the properties of epithelial confluent tissues using the Self-Propelled
Voronoi model, which describes the cells using a Voronoi tilling of the space. The cell-cell interaction
is given by an energy functional, quadratic in the perimeter and area of the cells. Using the shape
index as a control parameter (ratio between the preferred perimeter and square root of the average
area), previous works have shown that the model has a crossover between a solid-like and a fluid-like
state, set by the increase of cell motility in the tissue. This is reminiscent of the glassy behavior in
particulate systems, although recent work revealed an anomalous glassy dynamics. Its athermal limit
also shows atypical behavior by being rigid throughout the whole range of parameters previously
explored. In chapter two, we have discussed in detail these results and shed light on the state of the
model, as well as on some open questions. This allowed us to highlight which relevant biological
aspects the model captures, as well as its shortcomings.

In chapter three, we focused on the athermal limit. We explored the structure of the energy
landscape with the objective of rationalizing conflicting results in the literature. We showed that to
uncover the hierarchy of the energy landscape one needs to introduce a new metric. While using a
standard contact metric, as is typical in particulate systems, we observed no structure. By chang-
ing to a metric that takes into account the energy of the cells, the hierarchical structure becomes
apparent. While for particle systems the inter-particle distance enters in the pair-wise interactions,
in the Voronoi model, the interactions are many body and depend on the perimeter and area of the
cell. This means that, even if the contact network does not change substantially, the energy contact
metric does. This result allowed us to uncover a new disordered state. While for low shape index
the tissue is rigid and ultrametric, for high values of the shape index the rigidity remains, but there is
a change in the energy landscape. In this second regime, the landscape is populated by flat minima
(which always relax the tissue to the same state) and is no longer ultrametric. This has consequences
to other systems where many body interactions are relevant given that such hierarchy can depend on
the metric.

When introducing activity to the model, the cells are able to overcome some of these small energy
barriers and eventually diffuse throughout the tissue. In chapter four, we introduced the substrate as
a component of the model. We considered a heterogeneous substrate interaction that is spatially
dependent and changes the shape index of the cell. By making a comparison between substrate
and cell disorder, where the heterogeneity is in the shape index of the individual cells, we are able
to understand how different types of disorder can change the mechanical properties of the tissue.
Although both cases may be considered as quenched, the main difference comes from the source
of the disorder and may lead to different outcomes. In the cell disorder, the tissue always becomes

61



Chapter 7. Conclusions

more rigid with increasing disorder. On the other hand, the substrate disorder can either increase
or decrease the tissues rigidity. When using an averaging protocol to smooth the substrate disorder
we are able to show that when the correlation length in the spatial distribution of the shape index is
smaller than the typical cell size, the cells become more motile, while when it is greater, they become
less motile. We found that this increase (or decrease) in rigidity is accompanied by percolation of
rigid cells. For the most rigid tissues, the results resemble those of cell disorder. This highlights
the differences between disorders. When cells explore different regions of the substrate with a small
correlation length, the mechanical properties of the tissue are substantially different. By contrast, for
larger correlation lengths, the averaging of the substrate disorder provides a larger area for the cells
to relax, leading to similar behavior as cell disorder. Thus, although the quench is different in both
types of disorder, the cell disorder provides a self-averaging mechanism that is similar to that of the
substrate.

Given the complex internal biochemical structure of the cells, the response to the interaction with
the substrate is not always instantaneous but might take a characteristic time set by the chemical and
physical response of its internal structures. In chapter five, we introduced a characteristic time scale
for cell adaptation into the substrate interaction to complement the previous work. To simplify the
problem we considered a different geometry for the substrate pattern consisting of two half-planes.
We focused on the segregation effect of the substrate as a function of the adaptation and motility of
the cells. While for lower values of the characteristic time scale for adaptation (or lower motility of
the cells), the substrate fully segregates the tissue based on the shape index, as this time increases, the
tissue cells eventually mix. We introduced a continuum model which captures this behavior using a
simple reaction-diffusion equation, which takes into account the diffusion of the cells and the rate at
which they adapt to the substrate. We found very good agreement between this analytically solvable
model and the simulation results. The results of the previous chapter allowed us to set a minimum
length for substrate patterns, the typical cell size. By combining this result with the continuum model,
we were able to estimate the adaptation time of the cells in tissues. Although we are not aware of such
measurements, our results fall within relevant ranges of single cell values, highlighting the impact of
the results for experiments.

Lastly, we focused on a non-confluent version of the model to shed light on the bridge between
small colonies of cells and large confluent tissues. In chapter six, we explored the properties of cell
colonies as the number of cells increases. We showed that even with a small number of cells in the
bulk, cell colonies exhibit a similar growth for as low as 10 cells. We then calculated the surface
tension and showed that it increases linearly with activity. We also found indications of data collapse
of the surface tension as a function of the shape index in the non-confluent tissue. More simulations
are needed to confirm this collapse. Recent studies have proposed a minimum length approach to
understand the transition from the solid to fluid tissues, which could possibly be extended to non-
confluent models. Other studies have also focused on non-confluent versions of the Vertex model.
Given the similarities between the confluent limits, it would be interesting to explore the similarities
in the non-confluent phases. The non-confluent models can also provide a link between standard
particle models and confluent tissues. In the non-confluent cases, density plays a more explicit role
which may allow a simpler relation between them, thus providing a complementary approach to
investigate the differences of their glassy behavior and the understanding of the glass transition.

Is there universality in biology? The results presented in this thesis suggest that the answer is
yes. The SPV model has been quite successful at predicting the mechanical properties of different
epithelial tissues, in different organisms, from human bronchial cells [76] to Zebrafish [94]. The
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similarities between these network models and standard particulate systems, also highlights the uni-
versality of biological systems. Even though they are complex and intrinsically out of equilibrium,
their properties have been, in many cases, explained using existing physical models. Continuum
models or simple discrete ones, like the example studied in this thesis, have been remarkably suc-
cessful at capturing the relevant physics of biological systems, but also at predicting their behavior.
Even if a generalized theory of out of equilibrium statistical mechanics is out of reach, current results
have pointed in the direction that there is universality in certain classes of these systems that can be
captured by simple models. One just needs to formulate them in its proper language.
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[60] N. A. M. Araújo, C. S. Dias, and M. M. Telo da Gama, “Nonequilibrium self-organization
of colloidal particles on substrates: adsorption, relaxation, and annealing,” J. Phys. Condens.
Matter, vol. 29, p. 014001, 2017.

[61] M. Merkel and M. L. Manning, “A geometrically controlled rigidity transition in a model for
confluent 3D tissues,” New J. Phys., vol. 20, p. 22002, 2018.

[62] M. Merkel, K. Baumgarten, B. P. Tighe, and M. L. Manning, “A minimal-length approach uni-
fies rigidity in underconstrained materials,” Proc. Natl. Acad. Sci. U. S. A., vol. 116, p. 6560,
2019.

67



Bibliography

[63] T. E. Angelini, E. Hannezo, X. Trepatc, M. Marquez, J. J. Fredberg, and D. A. Weitz, “Glass-
like dynamics of collective cell migration,” Proc. Natl. Acad. Sci. U. S. A., vol. 108, pp. 4714–
4719, 2011.

[64] D. T. Tambe, C. Corey Hardin, T. E. Angelini, K. Rajendran, C. Y. Park, X. Serra-Picamal,
E. H. Zhou, M. H. Zaman, J. P. Butler, D. A. Weitz, J. J. Fredberg, X. Trepat, C. C. Hardin,
T. E. Angelini, K. Rajendran, C. Y. Park, X. Serra-Picamal, E. H. Zhou, M. H. Zaman, J. P.
Butler, D. A. Weitz, J. J. Fredberg, and X. Trepat, “Collective cell guidance by cooperative
intercellular forces,” Nat. Mater., vol. 10, p. 469, 2011.
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[129] A. Cadilhe, N. A. M. Araújo, and V. Privman, “Random Sequential Adsorption: From Con-
tinuum to Lattice and Pre-Patterned Substrates,” J. Phys. Condens. Matter, vol. 19, p. 65124,
2007.

[130] M. Ebara, “Shape-memory surfaces for cell mechanobiology,” Sci. Technol. Adv. Mater.,
vol. 16, p. 14804, 2015.

[131] B. L. Dossa, M. Pan, M. Gupta, G. Grenci, R.-M. Mège, C. T. Lim, M. P. Sheetz, R. Voi-
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Appendix A

Derivation of the continuum equations

A.1 Time dependent solution for the continuum model in chapter 5

To solve Eq. (5.6), we define a characteristic length L∗ = L/2 and time T ∗ = L2/4D∗, respec-
tively, and introduce two adimensional variables,

x̂ =
2x

L
t̂ =

4D∗t

L2
. (A.1)

Using the chain rule, we get the following identities,

ut =
1

T ∗
ut̂ and uxx =

1

(L∗)2
ux̂x̂. (A.2)

By replacing them in Eq. (5.6), we obtain,

ut̂(x̂, t̂) = ux̂x̂(x̂, t̂) + φ2[1− u(x̂, t̂)] (A.3)

where φ2 = TL2/4D∗. The initial and boundary conditions are then,

u(0, t̂) = u(1, t̂) = 0, t̂ > 0, (A.4)

u(x̂, 0) = 1, 0 < x̂ < 1. (A.5)

In chapter 5, we present the stationary state solution uE(x̂) obtained by setting ut̂ = 0. Here, to
derive the time dependent solution, we define,

v(x̂, t̂) = u(x̂, t̂)− uE(x̂). (A.6)

Substituting in Eq. A.3 gives,

vt(x̂, t̂) = vxx(x̂, t̂)− φ2v(x̂, t̂) , (A.7)

and the boundary conditions are now,

v(0, t̂) = v(1, t̂) = 0, t̂ > 0, (A.8)

v(x̂, 0) = 1− uE(x̂), 0 < x̂ < 1. (A.9)

This set of equations is solved by separation of variables, v(x̂, t̂) = X(x̂)T (t̂), which gives,

T ′(t̂)

T (t̂)
+ φ2 =

X ′′(x̂)

X(x̂)
. (A.10)
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Appendix A. Derivation of the continuum equations

Imposing the initial and boundary conditions, we obtain,

u(x̂, t̂) =
4

π

∞∑
n=1

{[
1− φ2

(2n− 1)2π2 + φ2

]
sin[(2n− 1)πx̂]

(2n− 1)
e−[(2n−1)2π2+φ2]t̂

}
+

1 + eφ − e−φ(−1+x̂) − eφx̂

1 + eφ
,

(A.11)
which, in the limit t̂→∞ gives the stationary solution.
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