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There’s only two or three things I know for sure.
Only two or three things. That’s right.
Of course it’s never the same things,

and I’m never as sure as I’d like to be.

D. Allison

Ho cercato di non affezionarmi alle mie idee
in modo da liberarmene senza troppo dolore

non appena arrivasse qualcuno
in grado di dimostrarmi che erano false.

E. Albinati



Resumo

O objetivo desta tese é o estudo de diferentes aspectos das teorias de gauge definidas em duas,
três e cinco dimensões, utilizando modelos matriciais. Mais especificamente, vamos considerar a
teoria de Yang–Mills pura num espaço-tempo bidimensional, bem como deformações da mesma,
e teorias de gauge supersimétricas em três e cinco dimensões que incluem termos de Yang–Mills
e de Chern–Simons, além de acoplamentos supersimétricos a campos de matéria. As ferramentas
fornecidas pela teoria das matrizes aleatórias vão-nos permitir explorar quantitativamente uma
vasta gama de propiedades e facetas das teorias de gauge, incluindo transições de fase, operadores
de linha e as simetŕıas generalizadas associadas, e integrabilidade.

O foco deste trabalho está no estudo e caraterização de funções de partição e de operadores
circulares de Wilson nestes modelos, através da aplicação de resultados de matrizes aleatórias
a estas quantidades f́ısicas, cuja apresentação em forma de modelos matricias é obtida por um
mecanismo de localização. Vamos seguir duas linhas principais de investigação: o cálculo exato e
expĺıcito das quantidades, e a busca de transições de fase quânticas para N grande.

A apresentação dos resultados obtidos está dividida em três partes, de acordo com a seguinte
classificação:

I. resultados exatos em teorias de Chern–Simons supersimétricas com matéria,

II. transições de fase quânticas em teorias supersimétricas com matéria, e

III. deformações da teoria de Yang–Mills em duas dimensões.

A Parte I está baseada nos artigos [1, 2]. Nesta parte vamos calcular de forma exata as funções
de partição de algumas famı́lias de teorias tridimensionais de Chern–Simons supersimétricas, us-
ando a integral de Mordell. Vamos também propor uma expansão em caracteres expressada com
polinômios de Schur, cujos coeficientes são dados por invariantes topológicos.

Além disto, vamos mostrar uma correspondência entre dois modelos matriciais, um que com-
puta invariantes topológicos na teoria tridimensional de Chern–Simons pura e o outro surgindo
de uma teoria quântica de campos não-comutativa em duas dimensões. A correspondência é es-
tendida a modelos de supermatrizes. Neste caso, a teoria supersimétrica ABJ(M) vai substituir a
teoria topológica de Chern–Simons.

A Parte II está baseada em [3–7] e constitui o centro da tese. Nesta parte vamos analizar
transições de fase quânticas para N grande em teorias de gauge usando os modelos matriciais.
Apresentamos um estudo sistemático e a subseqüente classificação das transições de fase em teorias
de gauge supersimétricas em esferas de três e cinco dimensões. Para toda teoria que tenha um
limite superconforme conhecido, vamos demostrar que as transições são sempre de terceira ordem,
enquanto teorias U(N) em cinco dimensões mostram transições de segunda ordem.

São estudadas também várias familias de modelos de matrizes unitarias, para as quais deter-
minamos os diagramas de fases.

Nesta parte, incluimos o estudo de teorias supersimétricas com grupo de gauge de caracteŕıstica
pequena acopladas a campos quânticos de matéria, para valores fixos destes campos de matéria,
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estabelecendo uma correspondência com o sistema integrável de Calogero–Moser, assim como no
limite de um número grande de campos de matéria, establecendo a presença de uma transiçãos
de fase de segunda ordem.

A Parte III está baseada em [8–10]. Vamos aplicar o método de localização à teoria de Yang–
Mills supersimétrica em cinco dimensões, posta numa variedade da forma S3b × Σ, onde S3b repre-
senta uma esfera topológica com uma deformação da metrica e Σ é uma superf́ıcie de Riemann
orientada e fechada. Desta forma, introduzimos uma nova deformação de origem geométrica da
teoria efetiva de Yang–Mills, já q-deformada, definida sobre Σ.

Prosseguindo no estudo das deformações das teorias de Yang–Mills em duas dimensões, vamos
analisar a sua perturbação pelo operador irrelevante TT e demostramos que a Abelianização é
mantida por esta deformação, embora outras propriedades caracteŕısticas sejam perdidas.

Finalmente, mostramos que a transição de fase de Douglas–Kazakov se estende ao caso defor-
mado com TT . Quando esta deformação e a q-deformação são conjuntamente presentes, os dois
efeitos contribuem para a determinação do diagrama de fases. Uma das duas fases desaparece
no regime de TT -deformação forte, enquanto a outra fase desaparece no regime de q-deformação
forte.

Outros artigos não inclúıdos nesta dissertação são [11–14].

Palavras-chave: Teoria quântica de campos, modelos matriciais, transições de fase, teoria de
gauge.
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Abstract

Aspects of gauge theories in two, three and five dimensions are investigated using matrix models.
Specifically, we consider pure Yang–Mills theory and its deformations in two dimensions, and
supersymmetric Yang–Mills and Chern–Simons-matter theories in three and five dimensions. The
random matrix approach allows us to explore a vast range of features of the gauge theories,
including phase transitions, one-form symmetries and integrability.

Partition functions and Wilson loops are studied in these setups by exploiting their matrix
model presentation derived by localization. Two main lines of research are pursued: the compu-
tation of exact results at fixed N and the quest for quantum phase transitions at large N .

The partition functions of several three-dimensional quiver Chern–Simons-matter theories are
computed exactly using Mordell integrals, and we put forward a character expansion in terms of
Schur polynomials, with coefficients given by topological invariants. A correspondence between
two matrix models is provided as well, one computing topological invariants in pure Chern–Simons
theory and the other arising from a two-dimensional, noncommutative scalar field theory. The
correspondence is extended to supermatrix models, with ABJ(M) theory replacing topological
Chern–Simons theory in this case. Partition functions and Wilson loop expectation values in
three-dimensional N = 4 gauge theories are also computed, uncovering a relation with Calogero–
Moser integrable systems.

Furthermore, we apply localization to five-dimensional supersymmetric Yang–Mills theory on
compact product manifolds S3 × Σ, where Σ is a closed oriented Riemann surface, and introduce
in this way a novel, “squashed” deformation of q-deformed Yang–Mills theory on Σ. Proceeding in
the study of deformations of two-dimensional Yang–Mills theory, we analyze their perturbation by
the operator TT and prove that Abelianization still holds, although other characteristic properties
such as factorization of the partition function break down.

The analysis of large N quantum phase transitions in matrix models and gauge theories consti-
tutes the core of the thesis. We present a systematic study and classification of phase transitions
for supersymmetric gauge theories on three- and five-dimensional spheres of large radius. The
transitions are always third order for gauge theories connected to a known superconformal point,
but are second order for generic five-dimensional U(N) theories. Several multi-parameter families
of unitary matrix models are also considered and their phase diagrams are established.

Finally, we show how the Douglas–Kazakov transition of two-dimensional Yang–Mills on the
sphere extends to its newly derived deformations. When both TT and q-deformations are turned
on, the two effects compete, and the system has two phases in the most part of the parameter
space, but the weak coupling phase is removed in the regime of strong TT -deformation, whereas
the strong coupling phase is removed in the strong q-deformation regime.

Keywords: Quantum field theory, matrix models, phase transitions, gauge theory.
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Chapter 1

Introduction

Quantum Field Theory (QFT) is an ubiquitous and terrifically effective formalism which, to the
date, represents our best description of physical phenomena at the quantum level. However, most
QFTs remain hardly accessible beyond the perturbative regime. Finding exact solutions that
compute physical observables in the QFT realm seems therefore a pressing challenge in theoretical
and mathematical physics.

The situation is greatly ameliorated when additional assumptions are imposed on a theory.
Requiring it to satisfy certain selected properties constrains its degrees of freedom and renders it
tractable. One option is to restrict to low enough spacetime dimensions and specific choices of field
content. Additional distinguishing properties that characterize theories amenable to analytic study
are: topological invariance, supersymmetry and integrability, to name a few. These categories,
and even more those theories that lie in their intersection, have received an enormous amount of
attention over the years, with the goal of extracting exact, non-perturbative answers and testing
general properties that would be untamed in less constrained QFTs.

The present thesis is carved out of such conceptual framework and adds on this vast program.

Topological

QFTs

Supersymmetric

QFTs

Integrable

QFTs

QFTs

This dissertation is devoted to the study of gauge theories. The main characters of these
theories are the gauge fields, which are connections in a principal bundle over the spacetime. We
refer to the mathematically-oriented textbook [15] or to [16] for a comprehensive account. A
cornerstone of gauge theories is thus the presence of matrix-valued fields. The large N limit is a
powerful tool that yields a firm grasp on the dynamics and phase structure of any theory with
matrix degrees of freedom [17, 18], see [19, Ch.8] for an early review.
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The importance of the role played by the large N limit is hardly overstated: it impulsed
developments spanning from QCD [17, 20] and lattice simulations [21–25], to two-dimensional
quantum gravity [26, 27] and the AdS/CFT correspondence [28–31]. The reasons to be interested
in large N limits are several. The most obvious one is that, even for phenomenological theories
with small N , it gives a first approximation which is exact in the ’t Hooft coupling. More precise
predictions are then obtained by computing higher order corrections in the 1/N expansion [32].
There are many instances, though, in which the physical fields are approximated by finite-rank
matrices, and physical predictions are only valid in the large N limit. A prototypical example in
this class is two-dimensional quantum gravity [27]. Additionally, the large N limit is instrumental
to explore the landscape of critical phenomena [33, 34].

Among all those QFTs that show nuances of solvability, the focus of this thesis is on the
so-called cohomological field theories [35]. Topological field theories and theories with extended
supersymmetry, for instance, belong to this class.1 The underlying cohomological structure guar-
antees that the computation of a great deal of protected physical observables reduces to a matrix
model. This statement schematically asserts the content of the localization principle [37, 38].

Random matrix theory [39–41] provides us with the proper mathematical toolkit to evaluate
matrix integrals like the ones produced by localization. Entering the domain of random matrices
has a two-fold advantage. On one hand, analytic treatment of physical quantities becomes feasible,
as random matrix theory oftentimes yields closed-form expressions, or at least explicit multi-
parametric expansions, for them. On the other hand, the integral representation is well-suited for
a steepest descent analysis at large N .

Throughout this dissertation we pursue both lines. The cohomological field theories we con-
sider are supersymmetric Chern–Simons-matter theories in three and five dimensions, supersym-
metric QCD in three dimension, and Yang–Mills theory and its deformations in two dimensions.
Moreover, we include the analysis of unitary matrix models which, despite not coming from local-
ization, show intriguing features and serve as toy models for low-dimensional QFTs.

We study matrix models derived from gauge theory and solve them exactly in a long list of
examples in three spacetime dimensions. We also put forward a character expansion for a class
of supersymmetry-protected observables, the expectation values of half-BPS Wilson loops on the
sphere, in three-dimensional Chern–Simons-matter theories, which expresses these quantities as a
generating polynomial written in the Schur polynomial basis. The coefficients of these polynomials
are given by topological invariants, computed by Chern–Simons quantum field theory [42] and
evaluated explicitly.

The random matrix formulation is instrumental in uncovering correspondences between oth-
erwise seemingly unrelated QFTs. Two of the results of this thesis are inserted in this framework.
In Chapter 3, a family of spectra of noncommutative field theories in two dimensions is proved to
be equivalent with a family of topological invariants in Chern–Simons theory; the relation extends
to supermatrix models, with ABJ(M) theory [43, 44] replacing pure Chern–Simons in the su-
permatrix version. Moreover, a correspondence between certain mass-deformed three-dimensional
N = 4 gauge theories and hyperbolic Calogero–Moser integrable systems is established in Chapter
7.

Furthermore, in the central part of this work, we analyze the large N limit of matrix models
of different kinds. This will lead us to establish the phase diagram of the corresponding theories,
uncovering rich patterns of quantum phase transitions and, along the way, demystifying certain
subtle aspects that are often overlooked in the physics literature.

1These two families of QFTs overlap, as one may trade a supersymmetric theory for a topological one via a
topological twist [36].
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One of the central results of this thesis, for what concerns the large N limit, is to question the
common assumption that SU(N) gauge theories are well approximated by U(N) theories at large
N . We provide explicit and quantitative examples that clarify this issue. Most importantly, the
mathematical results are supported by the physical expectations. Concretely, our study of large
N three-dimensional Chern–Simons-matter theories in Chapter 5 shows that there is no essential
difference between SU(N) and U(N) gauge theories, in agreement with the fact that both gauge
theories flow to superconformal points that are easily connected by gauging an Abelian symmetry.
In contrast, our study of five-dimensional Chern–Simons-matter theories at large N proves a
discrepancy between the SU(N) and the U(N) theories, a reflection of the intuition that the
superconformal limits of the latter, if they exist, need not belong to the same universality class of
the superconformal limits of the former gauge theories.

Another major achievement of this work is to explore and enhance the landscape of deforma-
tions of two-dimensional Yang–Mills theory. We derive a new, one-parameter deformation from
reducing topologically twisted super-Yang–Mills in five dimensions on a product manifold S3b ×Σ,
with Σ a closed Riemann surface and S3b a squashed sphere. The geometric parameter b deforms
the effective 2d theory on Σ in such a way that the resulting matrix ensemble is a biorthogonal
version of the discrete q-ensemble that characterizes q-deformed Yang–Mills.

Finally, we study the consequences of turning on the operator TT [45, 46] in the family of
two-dimensional Yang–Mills theories. We prove that the cohomological localization of the path
integral survives the perturbation by TT , but introduces non-local interactions, reflected in multi-
trace terms in the matrix model. This effect leads to the breakdown of some of the characteristic
properties of two-dimensional pure Yang–Mills theories, such as the factorization of the partition
function. The phase transition of pure Yang–Mills persists in the TT -deformed model, but the
weak coupling phase is eventually ruled out in the strong deformation regime. When both TT
and q-deformation are turned on, the two effects compete in determining the phase diagram.

1.1 Organization of the material and summary

This dissertation is organized as follows. The topics covered are grouped in three parts, approx-
imately tracing the three impacts my research had on mathematical physics. Part I investigates
exact solutions in three-dimensional Chern–Simons theories. Part II is devoted to the study of
phase transitions in gauge theories, derived from the matrix models. Part III introduces and
analyzes new deformations of two-dimensional Yang–Mills theory.

A chart of the QFTs considered, the corresponding results and the chapters in which they are
presented, is sketched in Figure 1.1.

Part I contains two contributions. Chapter 2 is based on [1]. We study several quiver Chern–
Simons-matter theories on the three-sphere, combining the matrix model formulation with a sys-
tematic use of Mordell’s integral, computing partition functions and checking dualities. We also
consider Wilson loops in ABJ(M) theories. Using the Berele–Regev factorization of supersym-
metric Schur polynomials [47], we express the expectation value of the Wilson loops in terms of
sums of observables of two factorized copies of U(N) pure Chern–Simons theory on the sphere.
Then, we use the Cauchy identity to study the partition functions of a number of quiver Chern–
Simons-matter models and the result is interpreted as a perturbative expansion in the parameters
tj = −e2πmj , where mj are the masses.

Chapter 3 is based on [2]. The starting point of the analysis is the Langmann–Szabo–Zarembo
(LSZ) matrix model, a complex matrix model with a quartic interaction and two external matrices
that appears in the study of a scalar field theory on the noncommutative plane [48, 49]. We
prove that the LSZ matrix model computes the probability of atypically large fluctuations in the
Stieltjes–Wigert matrix model, which is a q-ensemble describing U(N) Chern–Simons theory on
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1.1. Organization of the material and summary

Exact results Large N phase transitions

Ch. 2 Ch. 5

Ch. 3

Ch. 7

Ch. 8 Ch. 9

Ch. 12
Ch. 11 Ch. 6

3d supersymmetric

Chern–Simons-matter theories

5d supersymmetric

gauge theories

unitary matrix models

3d SQED & SQCD

2d gauge theories

3d supersymmetric 5d supersymmetric 2d unitary
gauge theories gauge theories gauge theories matrix models

Exact results Ch. 2,3,7 Ch. 11 Ch. 11,12 Ch. 8
Phase transitions Ch. 5,7 Ch. 6 Ch. 11,12 Ch. 8,9

Figure 1.1. Organization of the contents.

the three-sphere. The correspondence holds in a generalized sense: depending on the spectra of
the two external matrices, the LSZ matrix model either describes probabilities of large fluctuations
in the Chern–Simons partition function, in the unknot invariant or in the two-unknot invariant.
We extend the result to supermatrix models, and show that a generalized LSZ supermatrix model
describes the probability of atypically large fluctuations in the ABJ(M) matrix model.

Part II is the most extensive part of the thesis and consists of six chapters. Chapter 4 is an
introduction to the large N method. It mostly reviews well-known results, but rephrased so to
enlighten the ensuing discussion. In particular, Section 4.2 compares the large N limit of SU(N)
and U(N) theories and may be of independent interest.

Chapters 5-6 are devoted to the study of phase transitions in three- and five-dimensional
Chern–Simons-matter theories, respectively. In Chapter 5 we study N = 3 U(N) Chern–Simons
theory on S3 coupled to an arbitrary number of massive hypermultiplet in the fundamental repre-
sentation. We consider the large N limit and characterize the phase diagram in the large volume
regime, uncovering a series of third order phase transitions. The results are checked to satisfy the
F-theorem. We then study Wilson loops in the fundamental and antisymmetric representations,
with the latter that introduce an additional scaling parameter corresponding to the size of the
representation. Additionally, we discuss the large N limit of three-dimensional N = 4 SQCD at
fixed radius.

The chapter is partly based on [3]. It contains the salient aspects of [3], but is completely
rewritten and enhanced with novel observations and results, that substantiate physical conclusions
on the low-energy behaviour of U(N) supersymmetric Chern–Simons-matter theories. The large
N analysis of SQCD on S3 is new and extends previous results in the literature, which used
different methods from our saddle point analysis.

Five-dimensional N = 1 theories with gauge group U(N), SU(N), USp(2N) and SO(N) on
a large S5 are studied at large N in Chapter 6, based on [4]. The phase diagram of theories with
fundamental hypermultiplets is universal and characterized by third order phase transitions, with
the exception of U(N), that shows both second and third order transitions. The phase diagram
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of theories with adjoint or (anti-)symmetric hypermultiplets is also determined and found to be
universal. Wilson loops in fundamental and antisymmetric representations are analyzed in this
limit as well. All the results substantiate the F-theorem.

In Chapter 7, we study supersymmetric Yang–Mills theories on S3, with massive matter and
Fayet–Iliopoulos parameter, showing second order phase transitions in the limit of a large number
of flavours. We study both partition functions and Wilson loops. Moreover, two interpretations
of the partition function as eigenfunctions of the A1 and free AN−1 hyperbolic Calogero–Moser
integrable model are given. This chapter is taken from [5].

Chapters 8-9 are devoted to the analysis of unitary matrix models at large N . Following [6],
we analyze two families of unitary matrix models, with weight functions that can be interpreted
as characteristic polynomial insertions, in Chapter 8. We find phase transitions of the second and
third order, depending on the model. A relationships between the unitary matrix models and
continuous random matrix ensembles on the real line, of Cauchy–Romanovski type, is presented
and studied both exactly and asymptotically.

Chapter 9 is based on [7]. In it, we study a unitary matrix model with Gross–Witten–Wadia
weight function and determinant insertions. After some exact evaluations, we characterize the
intricate phase diagram. There are five possible phases: an ungapped phase, two different one-cut
gapped phases and two other two-cut gapped phases. The transition from the ungapped phase to
any gapped phase is third order, but the transition between any one-cut and any two-cut phase
appears to be second order. The physics of tunneling from a metastable vacuum to a stable one
and of different releases of instantons is discussed. Wilson loops, β-functions and aspects of chiral
symmetry breaking are investigated as well. Furthermore, we study in detail the meromorphic
deformation of a general class of unitary matrix models, in which the integration contour is not
anchored to the unit circle.

The focus of Part III is on Yang–Mills theories in two dimensions. We find two new solvable
deformations of that theory, that we study both exactly and asymptotically. The basics of Yang–
Mills theory in two dimensions are reviewed in Chapter 10.

Chapter 11 contains the results from [8]. We revisit the duality between five-dimensional
supersymmetric gauge theories and deformations of two-dimensional Yang–Mills theory from a
new perspective. We give a unified treatment of supersymmetric gauge theories in three and five
dimensions using cohomological localization techniques and the Atiyah–Singer index theorem.
We survey various known results in a unified framework and provide simplified derivations of
localization formulas, as well as various extensions including the case of irregular Seifert fibrations.
We describe the reductions to four-dimensional gauge theories, and give an extensive description
of the dual two-dimensional Yang–Mills theory when the three-dimensional part of the geometry
is a squashed three-sphere, including its extension to non-zero area, and a detailed analysis of
the resulting matrix model. The squashing parameter b yields a further deformation of the usual
q-deformation of two-dimensional Yang–Mills theory, which for rational values b2 = p/s yields a
new correspondence with Chern–Simons theory on lens spaces L(p, s).

Finally, in Chapter 12, we derive the TT -perturbed version of two-dimensional q-deformed
Yang-Mills theory on an arbitrary Riemann surface by coupling the unperturbed theory in the
first order formalism to Jackiw–Teitelboim gravity. We show that the TT -deformation results in
a breakdown of the connection with a Chern-Simons theory on a Seifert manifold, and of the large
N factorization into chiral and anti-chiral sectors. For the U(N) gauge theory on the sphere,
we show that the large N phase transition persists, and that it is of third order and induced
by instantons. The effect of the TT -deformation is to decrease the critical value of the ’t Hooft
coupling, and also to extend the class of line bundles for which the phase transition occurs. The
same results are shown to hold for (q, t)-deformed Yang-Mills theory. Chapter 12 is largely based
on [10], with the inclusion of an additional section that presents the results of [9].
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1.1. Organization of the material and summary

We include a brief appendix that collects notation and conventions recurrently used throughout
the thesis.

Other results not included in the dissertation have been presented in the articles [11–14]. The
work [11] is similar in spirit to Chapter 8: we studied unitary matrix models that compute certain
quantum amplitudes in a multi-parametric family of spin chains, both exactly and at large N ,
with special emphasis on the appearance of phase transitions.

In [12] we showed how the use of random matrix theory and q-ensembles provides exact results
on the geometry of collections of data, while in [13] we computed a character expansion in terms
of Schur polynomials, akin to those in Chapters 2-3, for random matrix reproducing kernels [39].

In [14] we put forward a new tool to study the Coulomb branches of three-dimensional su-
persymmetric gauge theories. Expanding on the web of correspondences among these Coulomb
branches [50, 51], Hanany–Witten brane setups in type IIB string theory [52] and the affine Grass-
mannian [53], we introduced a combinatorial approach hinged upon Kashiwara crystals [54, 55].
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Part I

Exact results in supersymmetric
gauge theories
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Chapter 2

Exact results and Schur expansions in
quiver Chern–Simons-matter theories

2.1 Introduction to the chapter

In the last decade, the combined use of random matrix techniques together with the application
of the supersymmetric localization method [56] has produced a wealth of analytical results in the
study of supersymmetric gauge theories on compact manifolds, in a number of dimensions [57].
Both finite N properties and large N phenomena such as phase transitions have been elucidated
by applying standard matrix model tools.

A very tractable set of theories in this area corresponds to Chern–Simons theories with su-
persymmetric matter in three dimensions [58] (see [59] for an overview on localization in three
dimensions and [60] for an early review of Chern–Simons-matter matrix models). While a large
number of results have already been uncovered for these models, we develop here further exact
analytical characterizations of such theories, using the matrix model formulation. For this, we
will be supplementing the matrix model approach with other analytical tools, such as the consid-
eration of the so-called Mordell integral [61] which, in spite of its deceptively simple appearance,
unpacks a wealth of analytical and physical information.

In Section 2.2 we will be presenting the necessary details, not only on Mordell’s integral but
on the other mathematical tools used. This section will provide physics background as well, while
we sketch now the results and methods followed in a more panoramic manner.

In contrast to previous works following a similar approach to the one in the first part of this
chapter [62–64], our study will include quiver Chern–Simons-matter theories. In this way, in this
first part, contained in Section 2.3, we compute exactly the partition functions of various examples
of Chern–Simons-matter theories on the three-sphere, systematically exploiting and interpreting
the above mentioned result by Mordell [61]. The theories to be studied will be mostly Abelian
quiver models whose computation is nevertheless laborious, but made possible by Mordell’s result.

Some of these evaluations are actually duality checks. For example, we compute explicitly
the partition function of the U(1)3 theory, which, once particularized to Chern–Simons levels
(k1, k2, k3) = (1,−1, 1), becomes the so-called Model III of Jafferis and Yin [65], and we obtain,
as expected by duality, the equality with the simpler to compute, and known, partition function
of SQED with two fundamental hypermultiplets and no Chern–Simons coupling.

Non-Abelian quiver theories, with the U(1)k1×U(2)k2 theory as main example, are also briefly
discussed and moreover we present the setup and sufficient conditions to evaluate the partition
function of Abelian linear Chern–Simons quivers of arbitrary rank by iterative application of
Mordell integrals.

We shall also be studying ABJ theories [44], that are N = 6 U(N1)k × U(N2)−k Chern–
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Exact results and Schur expansions in quiver Chern–Simons-matter theories

Simons theories with two bi-fundamental hypermultiplets. As it is well-known, they generalize
ABJM theory [43], which is recovered when N1 = N2 =: N . There are exact computations of
observables in ABJM theory when N = 2 in [66], and in [67] when mass and Fayet–Iliopoulos
deformations are turned on. Besides, the partition function of ABJ theory with arbitrary rank has
been evaluated in [68] using the continuation from Chern–Simons theory on the lens space L(2, 1)
as introduced in [69]. In [70], the result was confirmed through a direct integral transformation.

Thus, in Subsection 2.3.4, we complement these works by extending this type of analytical
evaluations. We will give mass to the bi-fundamental hypermultiplets and add a Fayet–Iliopoulos
parameter, and consider the deformed Abelian ABJM theory with Chern–Simons levels k1 and
k2, reflecting the presence of a Romans mass in the dual gravitational theory [71].

Then, in Section 2.4, we will focus our attention on the vacuum expectation values of correlators
of Wilson loops in ABJ(M) theory on S3. Among the various order loop operators in ABJ(M)
theories [72], we will consider 1

2 -BPS Wilson loops [73], whose expectation value is captured by
a matrix model that corresponds to the insertion of supersymmetric Schur polynomials in the
ABJ(M) matrix model [73, 69].

As a novel consideration in the context of the study of such averages, we distinguish between
typical (long) and atypical (short) representations and focus on the former, using the so-called
Berele–Regev factorization of supersymmetric Schur polynomials [47] to give expressions in terms
of sums of observables of U(N) Chern–Simons theory on S3. The necessary background is given
in the introductory Subsections 2.4.1 and 2.4.2.

As a matter of fact, the case of correlators is often simpler, with this approach, than the
study of a single Wilson loop average. For example, by considering the case of two Wilson loops,
we shall show that a consequence of the Berele–Regev factorization [47], is that the interacting
term of the ABJ two-matrix model cancels out directly, and we immediately obtain the direct,
disentangled product of two correlators of pairs of Wilson loops in U(N) Chern–Simons on S3,
each one computed independently, giving quantum dimensions. Furthermore, we will show in
Subsection 2.4.5 how this formalism extends to quivers.

Then, in Section 2.5, we discuss a broad class of quiver Chern–Simons theories and our main
tool will be the Cauchy identity. Its use entails expanding the matter contribution in a basis of
symmetric functions, the Schur basis. As we shall show, these Schur expansions in the matrix
model are perturbative evaluations of the observables described by the matrix model representa-
tion.

The perturbative meaning of the results has its roots in the nature of the Cauchy identity,
reviewed in Subsection 2.2.4. Importantly, the results are not perturbative in the gauge couplings,
but in certain other variables playing the role of fugacities for the flavour symmetries. In Sub-
section 2.5.4 we will combine the Cauchy identity with the Berele–Regev factorization and the
results of Section 2.4 to study the expectation value of a single Wilson loop in ABJ theory.

2.2 Physics background and mathematical setup

2.2.1 Chern–Simons theories on S3

We consider Chern–Simons-matter theories with N ≥ 3 supersymmetry in three dimensions.
These theories are obtained deforming the action of N = 4 theories of vector and hypermultiplets
by Chern–Simons couplings that preserve at least six of the eight supercharges. The resulting
theories have a SU(2)R R-symmetry, but when the microscopic, non-conformal theory is put on
S3, only a maximal torus U(1)R ⊂ SU(2)R is manifest. On a practical level, this amount of
supersymmetry guarantees that:

• the Chern–Simons levels are not renormalized, and that
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2.2. Physics background and mathematical setup

• we can identify the R-charges in the UV, where our computations are performed, with the
R-charges in the IR, where the theory is strongly coupled.

There exists a vast literature describing the moduli spaces of vacua of these gauge theories,
the most directly relevant for the present work being [74–77]. All the theories we discuss can be
engineered in type IIB string theory [78, 79].

We first recall how to write the partition function of a 3d N ≥ 3 theory on S3 [58], which also
serves as a presentation of our notation and conventions. The Chern–Simons theories we study
have unitary gauge groups of the form

U(N1)× U(N2)× · · · × U(Nr).

Besides, we mainly consider hypermultiplets in the fundamental representation of a gauge group
factor U(Np), as well as in the bi-fundamental representation of U(Np)× U(Np+1).

In quiver notation, the number of nodes is r, with the node p corresponding to a gauge
factor U(Np), for p = 1, . . . , r. Unoriented edges between two nodes represent the bi-fundamental
hypermultiplets.

The partition function receives the contributions [58]:

vector multiplet at node p:
∏

1≤a<b≤Np

(2 sinhπ(xp,a − xp,b))2 ,

CS term at node p:

Np∏
a=1

eiπkp(xp,a)
2
,

bi-fund. hypers between p and p′:

Np∏
a=1

Np′∏
a′=1

(
2 coshπ(xp,a − xp′,a′)

)−1
.

The Chern–Simons levels are kp, which are required to be integers when Np > 1 but can be
rational for an Abelian gauge factor, Np = 1. The isomorphism U(N) ≃ [U(1) × SU(N)]/ZN
shows that each node yields an Abelian factor, to which there corresponds a topological global
U(1)top symmetry. Real Fayet–Iliopoulos (FI) parameters ζp are introduced as background values
of a twisted Abelian vector multiplet for the U(1)top,1 × · · · × U(1)top,r symmetry. Furthermore,
if we attach Nf,p fundamental hypermultiplets to the node p, we can turn on real masses m⃗ =

(mp,j)
p=1,...,r
j=1,...,Nf,p

as background values of a vector multiplet for the global symmetry PS[U(Nf,1)×
· · ·×U(Nf,r)] rotating the fundamentals. The tracelessness condition constrains the masses |m⃗| =
0. The contributions of FI terms and massive hypermultiplets to the partition function are:

FI term at node p:

Np∏
a=1

ei2πζpxp,a ,

fund. hypers at node p:

Nf,p∏
j=1

Np∏
a=1

(2 coshπ(xp,a +mp,j))
−1 .

Eventually, we have to integrate over all the xp,a. These variables parametrize the Cartan subal-
gebra of the gauge group,

x⃗ = (xp,a)
p=1,...,r
a=1,...,Np

∈ u(1)N1 × · · · × u(1)Nr ∼= RN1+···+Nr .

If we let r be the radius of S3, these adimensional variables are x⃗ = rσ|loc, where σ|loc is the
value of the real scalar σ in the vector multiplet at the localization locus. The parameters m⃗ are
adimensional as well, m⃗ = rσb.g. for σb.g. the scalar in the background vector multiplet.
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ABJ(M) theories and Chern–Simons levels

ABJ(M) theories [43, 44] are U(N1)×U(N2) Chern–Simons theories with N = 6 supersymmetry,
which forces the Chern–Simons level to be (k1, k2) = (k,−k). In quiver notation, these are
extended Â1 quiver theories. They have their origin in string/M-theory, and have been conceived
as the gauge theory dual to the supergravity solution on AdS4 × CP3.

A natural question on the gauge theory side is whether there exists a theory with generic
levels (k1, k2). This point has been addressed in the early days of ABJM theory by Gaiotto and
Tomasiello in [71]. It is possible to deform ABJ(M) theories to arbitrary levels deforming the
gravity dual solution by a Romans mass, commonly denoted F0. There are different ways to do
so [71], and we will only consider the N = 3 supersymmetric solution. The resulting gauge theory
has the same field content of the ABJ(M) theory, but with Chern–Simons levels (k1, k2) that obey
k1 + k2 = F0. For the deformation of other Chern–Simons-matter theories by a Romans mass in
the gravity dual, see for example [80, 81].

We remark that, by mass deformations, we will never refer to a Romans mass, and instead
always mean the procedure described above to give mass to the hypermultiplets promoting the
masses to background scalar fields.

1
2-BPS Wilson loops

In N ≥ 3 supersymmetric Chern–Simons theories, supersymmetry-preserving Wilson loops in a
representation R of the gauge group wrap a great circle in S3. Their vacuum expectation value
(vev) is computed by localization [58]:

⟨WR⟩ =
〈
TrRe

2πrσ|loc
〉
.

In the formula, 2πr is the length of the great circle, σ|loc is the value of the real scalar σ at
the localization locus as explained above, TrR is the normalized trace in the representation R
and ⟨· · · ⟩ means the average of the quantity in the ensemble obtained from localization, which of
course depends on the theory under study.

In quiver Chern–Simons theories it is possible to construct Wilson loops charged under a U(N)
factor of the gauge group that preserve (at least) two supercharges. For the special case of ABJ
theories, however, it is possible to consider Wilson loops in a representation R of the supergroup
U(N1|N2) that preserve half of the N = 6 supersymmetry, that is 1

2 -BPS Wilson loops [73, 82].

Unknot invariant in pure Chern-Simons theory

The vev of a Wilson loop in bosonic pure Chern–Simons theory computes the unknot invariant
[42]. It was first evaluated with the Chern–Simons matrix model in [83], giving:

⟨Wµ⟩CS(N) = (dimq µ) q
− 1

2
C2;N (µ). (2.2.1)

In the computation in [83] it was shown that the integration of a Schur polynomial in a Stieltjes–
Wigert ensemble (and equivalently, in the Chern–Simons matrix model [84]) gives the principal
specialization of the Schur polynomial, leading to the expression (2.2.1). This property has been
discussed, later on, in a broader sense in [85, 86] (see also [87] for a general discussion of two Schur
polynomial insertions).

In (2.2.1) the q-parameter was taken to be real 0 < q = e−g < 1 and is related to the
q-parameter of Chern–Simons theory at level k through the analytic continuation

g 7→ i2π

k
, (2.2.2)
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2.2. Physics background and mathematical setup

dimq µ is the quantum dimension of the representation µ and C2;N (µ) is the quadratic Casimir of
U(N) in the representation µ. Knot and link invariants computed in Chern–Simons theory come
equipped with a framing [42], and we stress that (2.2.1) is computed not in canonical framing but
in the matrix model framing, which is a specific case of Seifert framing.

2.2.2 Mordell integrals

The two integrals we will exploit are [61]:

Ψ+(ξ, λ;κ, ϱ) :=

∫ +∞

−∞
dx
e
iπ κ

ϱ
x2−2πxξ

e2πx − ei2πλ

=
e
−iπλ

(
2+2ξ+κ

ϱ
λ
)

e
iπϱ
(
2ξ+2κ

ϱ
λ−κ

)
− 1

−√ iϱ

κ

κ∑
α=1

e
iπ ϱ

κ

(
ξ+κ

ϱ
λ+α

)2
+ i

ϱ∑
β=1

e
iπβ
(
2ξ+2κ

ϱ
λ−κ

ϱ
β
) (2.2.3)

and

Ψ−(ξ, λ;κ, ϱ) :=

∫ +∞

−∞
dx
e
−iπ κ

ϱ
x2−2πxξ

e2πx − ei2πλ

=
e
−iπλ

(
2+2ξ−κ

ϱ
λ
)

e
iπϱ
(
2ξ−2κ

ϱ
λ−κ

)
− 1

√− iϱ
κ

κ−1∑
α=0

e
−iπ ϱ

κ

(
ξ−κ

ϱ
λ−α

)2
+ i

ϱ∑
β=1

e
iπβ
(
2ξ−2κ

ϱ
λ+κ

ϱ
β
) ,
(2.2.4)

valid for κ, ϱ ∈ Z>0 and 0 < ℜλ < 1. Note that the left-hand side only depends on the ratio
κ/ϱ. Strictly speaking, these identities only appear in [61, Eq.s (8.1)-(8.2)] for λ = 0, but can
be easily extended mimicking the manipulations that lead to [61, Eq. (3.8)]. Since, in doing so,
there is a subtlety in the choice of integration contour, we spell the details in Appendix 2.A for
completeness.

The interest in the closed form evaluations (2.2.3)-(2.2.4) arose originally in the context of
number theory. Related expressions, that in the gauge theory setup correspond to massless hy-
permultiplets, where first considered by Ramanujan [88].

The building blocks of our solutions will be the integrals

Ik(y, ξ̌) :=
∫ +∞

−∞
dx
eiπkx

2+2πxξ̌

e2πx + e2πy
, (2.2.5)

for rational k. Comparing with (2.2.3) and (2.2.4), it is clear that

Ik(y, ξ̌) =

{
Ψ+(ξ = −ξ̌, λ = 1

2 − iy;κ, ϱ) if k = +κ
ϱ ;

Ψ−(ξ = −ξ̌, λ = 1
2 − iy;κ, ϱ) if k = −κ

ϱ ,
(2.2.6)

for κ, ϱ ∈ Z>0.

2.2.3 Moments of the log-normal

We introduce the moments of the log-normal distribution, which will appear in our computations.
Using a change of variables of the form Xa = e2πxa , it was shown in [84] that the partition function
of U(N) Chern–Simons theory on S3, analytically continued to q = e−g, g > 0, is proportional the
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partition function of the Stieltjes–Wigert (SW) ensemble. Hence, pure Chern–Simons is solved by
polynomials orthogonal with respect to the measure

e
− 1

2g
(logX)2

dX,

on 0 < X < ∞, after the continuation g 7→ i2π
k introduced in (2.2.2). The moments of the

log-normal measure are

µα(g) =

∫ +∞

0

dX

2πX
Xαe

− 1
2g

(logX)2
=

∫ ∞

−∞
dxe

− 4π
g
x2+2παx

,

defined for ℜg > 0 and α ∈ Z. We immediately find

µα(g) =

√
g

2π
eg

α2

2 =

√
g

2π
q−

α2

2 .

We can collect these moments into a formal generating series:

P (z; g) =
∑
α∈Z

zαµα(g). (2.2.7)

In the present work, as usual for Chern–Simons theories, we are interested in the analytic contin-
uation (2.2.2), and we write

µ̃α(k) =

√
i

k
q−

α2

2 (2.2.8)

to denote the moment continued as prescribed in (2.2.2). When q is a κth root of unity, namely
|k| = κ

ϱ , the generating series (2.2.7) only contains |κ| different terms, hence we can resum it:

P̃ (z; k) =
∑
n∈Z

κ∑
α=1

znκ+αµ̃α+nκ(k) =
κ∑

α=1

zαµ̃α(k)

[∑
n∈Z

znκµ̃nκ(k)

]

=
κ∑

α=1

zαµ̃α(k). (2.2.9)

This type of resummation is the reason [89] why only integrable U(N) representations con-
tribute to the partition function of Chern–Simons theory on S3 with q root of unity [42], while all
the unitary irreducible representations contribute when q is analytically continued to q = e−g.

Looking back at the Mordell integrals (2.2.3)-(2.2.4) we notice that the first of the two sums
in Ψ± when ξ ∈ Z gives precisely

eiπkλ
2
P̃
(
ei2πλsign(k); k

)
,

up to an irrelevant shift in the range of the variable α, now running on 1+ ξ, . . . , κ+ ξ in Ψ+ and
on −ξ, . . . , κ − ξ − 1 in Ψ−. The overall Gaussian coefficient is cancelled by a contribution from
the numerator of the overall term in (2.2.3)-(2.2.4). We will see that the fugacity ei2πλ will play
a central role, as further discussed in Sections 2.3.3 and 2.5.

2.2.4 Cauchy identities, Gauss sums and notation

We state here relevant mathematical identities which we will exploit in the text.
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Cauchy identity

The Cauchy identity [90, 91]:

N1∏
a=1

N2∏
ȧ=1

1

1−XaYȧ
=
∑
ν

sν(X1, . . . , XN1)sν(Y1, . . . , YN2) (2.2.10)

where sν is the Schur polynomial [90, 91] labelled by the Young diagram ν satisfying

length(ν) ≤ min {N1, N2} .

This is a well-known identity, which has become increasingly familiar, and useful, in many contexts,
especially in random matrix theory, see e.g. [92, 93].

Note that the equality in (2.2.10) holds analytically if |Xa| < 1 and |Yȧ| < 1, and algebraically
otherwise [92].

When N2 = 1, the Cauchy identity reduces to the generating function of the complete homo-
geneous symmetric polynomials hν [90]:

N∏
a=1

1

1−XaY
=

∞∑
ν=0

Y νhν(X1, . . . , XN ), (2.2.11)

where
hν(X1, . . . , XN ) =

∑
1≤a1≤a2≤···≤aν≤N

Xa1 · · ·Xaν .

Equivalently,

hν(X1, . . . , XN ) =
∑

µ,|µ|=ν

mµ(x1, · · · , xN ), ∀ν ∈ Z≥0,

with mµ(x1, . . . , xN ) = xµ11 · · ·x
µN
N being the monomials [90] and the sum running over all parti-

tions µ of size |µ| = ν.

There exists a related identity, known as dual Cauchy identity [91]:

N1∏
a=1

N2∏
ȧ=1

(1 +XaYȧ) =
∑
ν

sν′(X1, . . . , XN1)sν(Y1, . . . , YN2) (2.2.12)

with ν ′ the conjugate partition, obtained transposing rows and columns of the Young diagram
of the partition ν. An important aspect of (2.2.12) is that, differently from (2.2.10), the sum
contains a finite number of terms, due to the restriction

length(ν ′) = ν1 ≤ N ≡ min {N1, N2} .

Therefore the sum in (2.2.12) only involves partitions whose Young diagrams fit in a N×N square.
When N2 = 1, this latter Cauchy identity reduces to the generating function of the elementary

symmetric polynomials eν [90]:

N∏
a=1

(1 +XaY ) =
N∑
ν=0

Y νeν(X1, . . . , XN ), (2.2.13)

where
eν(X1, . . . , XN ) =

∑
1≤a1<a2<···<aν≤N

Xa1 · · ·Xaν .
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Gauss sums

The Gauss sum identity:

1√
iκ

κ−1∑
α=0

e
iπ
κ (α−ℓ−

κ
2 )

2

= 1, (2.2.14)

valid for κ ∈ Z>0 and for every ℓ ∈ Z. This formula will be instrumental to obtain the massless
limit of all the computations in Section 2.3.

Remarks on notation

To avoid clutter, whenever possible we will change the notation xp,a for a more suitable one. For
example, for r = 2, we will write (xa, yȧ) instead of (x1,a, x2,a′). Similarly, we will mostly denote
the masses simply {mj}, when it is clear from the context to which node each one is attached.
Besides, throughout the work, we will sometimes switch to exponentiated variables, which we will
denote with upper case letters. So, for example, we will use Xa = e2πxa , Mj = e2πmj and so on.
Moreover, for a given Chern–Simons level k, we define as usual

q = exp

(
− i2π

k

)
. (2.2.15)

The field content of the theories we study is conveniently encoded in A-type Dynkin diagrams
or in affine Â-type Dynkin diagrams. We will interchangeably call the first class A quivers or
linear quivers, and the second class Â quivers, extended quivers or necklace quivers.

We draw such quivers in the 3d N = 4 quiver notation, so the edges represent hypermultiplets
in the bi-fundamental representations and are not directed. The Chern–Simons levels will be
implicit in the quiver diagrams.

2.3 Evaluation of partition functions

2.3.1 U(1)k Chern–Simons theory with a fundamental hypermultiplet

We start our analysis revisiting the simplest Chern–Simons theory that includes matter: U(1)k
Chern–Simons theory with a fundamental hypermultiplet, represented in Figure 2.1.

1 1

Figure 2.1. U(1)k theory with Nf = 1 fundamental flavour. This is an Abelian A1 quiver.

The moduli space of vacua of the theory in flat space has been analyzed in [94], with a focus on
its S-duality properties. The Chern–Simons term gives a topological mass to the vector multiplet,
lifting the Coulomb branch. The moduli space has a non-compact one-dimensional Higgs branch,
which is also lifted turning on a real mass deformation. In an Abelian Chern–Simons theory,
admitting rational k, S-duality acts as the S-matrix of the SL(2,Z) group on the coupling while
exchanging mass and FI terms

k 7→ −1

k
, ζ 7→ m m 7→ −ζ. (2.3.1)

The theory with gauge group U(1) and Nf = 1 is self-dual under S-duality [94].
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The partition function at rational Chern–Simons level k and with mass and FI parameters
turned on is

ZU(1),1 (k,m, ζ) =

∫ +∞

−∞
dx

eiπx
2k+i2πζx

2 coshπ(x+m)
. (2.3.2)

We do not need to consider both deformations: shifting variables x′ = x+m we get

ZU(1),1 (k,m, ζ) = eiπkm
2+i2πmζZU(1),1 (k, 0, ζ − km) , (2.3.3)

while shifting variables x′ = x+ ζ/k we get

ZU(1),1 (k,m, ζ) = e−i
π
k
ζ2ZU(1),1

(
k,m− ζ

k
, 0

)
. (2.3.4)

Therefore, it is sufficient to take one of the two deformations, and the more general result follows
immediately. Note how the prefactor suffers a change k 7→ − 1

k when the roles of m and ζ are
exchanged, as well as the presence of the additional phase ei2πζm in (2.3.3), coupling the FI
background twisted vector multiplet to the flavour background vector multiplet.2

From the integral representation (2.3.2) the self-duality is easily proven:

ZU(1),1 (k,m, ζ) =

∫ +∞

−∞
dx

∫ +∞

−∞
dy
eiπx

2k−i2πx(y−ζ)e−i2πym

2 cosh(πy)

=

√
i

k
e−i2πmζ

∫ +∞

−∞
dy

e−i
π
k
y2−i2πym

2 coshπ(y + ζ)
=

√
i

k
e−i2πmζZU(1),1

(
−k−1, ζ,−m

)
,

where we have used the fact that (coshπx)−1 is Fourier transformed into itself.
We now use Mordell’s formula to evaluate exactly the partition function. Starting with m ̸= 0

and ζ = 0 in (2.3.2) we have

ZU(1),1 (k,m, 0) = e−πmIk
(
−m, 1

2

)
, (2.3.5)

given in terms of a Mordell integral. For rational k with |k| = κ
ϱ , (2.2.6) gives

ZU(1),1 (k > 0,m, 0) =
1

1− (−1)κϱ−κ+ϱe−2πκm

−eiπk(m− i
2)

2
ϱ∑

β=1

(
−e−2πkm

)β
e−iπkβ(β−1)

+

√
i

k

κ∑
α=1

(
−e−2πm

)α− 1
2 ei

π
k (α−

1
2)

2

}
, (2.3.6)

ZU(1),1 (k < 0,m, 0) =
1

1− (−1)κϱ−κ−ϱe2πκm

eiπk(m− i
2)

2
ϱ∑

β=1

(
−e−2πkm

)β
e−iπkβ(β−1)

+

√
i

|k|

κ−1∑
α=0

(
−e2πm

)α− 1
2 ei

π
k (α−

1
2)

2

}
. (2.3.7)

The factor e−πm in (2.3.5) is cancelled against a contribution from the overall factor in the Mordell
integrals (2.2.3)-(2.2.4).

2The minus sign m 7→ −ζ in (2.3.1) comes from our conventions, presented in Subsection 2.2.1. The necessity
of that sign can be checked applying S-duality to (2.3.3) and (2.3.4). It is a ZC

2 twist by charge conjugation that
compensates the fact that both ζ and m are in the conjugate representation than the one required by S-duality.
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When k ∈ Z, hence ϱ = 1, these latter two expressions reduce to

ZU(1),1 (k > 0,m, 0) =
eiπk(m

2− 1
4)+πm

2 cosh(πkm)
+

1

1 + e−2πkm

√
i

k

k∑
α=1

(
−e−2πm

)α− 1
2 q−

1
2(α−

1
2)

2

,

ZU(1),1 (k < 0,m, 0) = −e
iπk(m2− 1

4)+πm

2 cosh(πkm)
+

1

1 + e−2πkm

√
i

k

|k|−1∑
α=0

(
−e2πm

)α− 1
2 q−

1
2(α−

1
2)

2

.

The result is a real analytic function of m, and is holomorphic in the usual “physical” strip
−1

2 < ℑm < 1
2 . Note that, using the relation λ = 1

2 + im (see (2.2.6)) between the physical
variable m and the variable λ of [61], the result is holomorphic in 0 < ℜλ < 1, in agreement with
the proof in Appendix 2.A, based on [61].

Setting instead m = 0, ζ ̸= 0 in (2.3.2) we have

ZU(1),1 (k, 0, ζ) = Ik
(
0, ξ̌ =

1

2
+ iζ

)
.

The solution is read off from (2.2.6) for any rational k,

ZU(1),1 (k > 0, 0, ζ) =− e−i
π
4
k−πζ

1− (−1)κ−ϱ−κϱe2πϱζ
ϱ∑

β=1

(
−e2πζ

)β
e−iπkβ(β−1)

− ie−i
π
k
ζ2

1− (−1)κ−ϱ−κϱe2πϱζ

√
i

k

κ∑
α=1

(
−e2

π
k
ζ
)α− 1

2
ei

π
k (α−

1
2)

2

, (2.3.8)

ZU(1),1 (k < 0, 0, ζ) =− e−i
π
4
k−πζ

1− (−1)κ+ϱ+κϱe2πϱζ
ϱ∑

β=1

(
−e2πζ

)β
e−iπkβ(β−1)

− ie−i
π
k
ζ2

1− (−1)κ+ϱ+κϱe2πϱζ

√
i

|k|

κ∑
α=1

(
−e−2π

k
ζ
)α− 1

2
ei

π
k (α−

1
2)

2

. (2.3.9)

When k ∈ Z it takes the simpler form:

ZU(1),1 (k > 0) =
e−iπ

k
4

2 cosh(πζ)
− 1

e2πζ + 1

√
i

k

k∑
α=1

(−1)αq−
1
2(α−

1
2
−iζ)

2

,

ZU(1),1 (k < 0) =
e−iπ

k
4

2 cosh(πζ)
− 1

e2πζ + 1

√
i

k

|k|∑
α=1

(−1)αq−
1
2(α−

1
2
+iζ)

2

,

where we recall that q = e−i2π/k from (2.2.15). The solution is real analytic in ζ ∈ R and
holomorphic in the strip −1

2 < ℑζ <
1
2 .

We recognize the generating polynomial of the moments of the SW distribution when q is a
kth root of unity, P̃ (z; k), evaluated at z = −e−sign(k)2πm for the theory with only mass term and

at z = −qξ̌ for the theory with only FI term.
Direct inspection shows that

(2.3.6) =

√
i

k
× [(2.3.9) with −ζ = m and κ↔ ϱ] ,

and likewise for (2.3.7) and (2.3.8). This together with the relations (2.3.3)-(2.3.4) gives a full
check of the self S-duality of the solution.
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2.3. Evaluation of partition functions

Figure 2.2. Left: Plot of ZU(1),1 with k = κ
ϱ , ζ = 0, m = 0.2 at fixed κ = 5 and varying ϱ = 1, . . . , 104.

Right: Same plot, with points obtained from consecutive values of ϱ joined by a segment.

We plot the result (2.3.6) of ZU(1),1 with positive rational k and ζ = 0 in Figure 2.2 and 2.3.

Being q a κth root of unity, at fixed κ and varying ϱ the values of the partition function are placed
along rays in C. Increasing κ increases the number of rays.

As the result holds upon complexification of the mass with |ℑm| < 1
2 , it is instructive as well

to plot the partition function at fixed κ and increasing ϱ for complex values of m, as we do in
Figure 2.4 (for κ = 5) and Figure 2.5 (for κ = 8).

2.3.2 Single node quivers

Abelian A1 theory with two flavours

We consider a U(1) Chern–Simons theory with two massive hypermultiplets in the fundamental
representation, see Figure 2.6. The result we present for this theory has been first derived in [62],
and we revisit it here as a warm up.

The theory has SU(2) flavour symmetry and the hypermultiplets have masses (+m,−m). The
partition function is

ZU(1),2(k,m) =

∫ ∞

−∞
dx

eiπkx
2

4 coshπ (x−m) coshπ (x+m)

=
1

2 sinh(2πm)

∫ ∞

−∞
dxeiπkx

2+2πx

[
1

e2πx + e−2πm
− 1

e2πx + e2πm

]
=
Ik(−m, 1)− Ik(m, 1)

2 sinh(2πm)
,

where in the last line we have recognized (2.2.5). The solution in terms of the Mordell integrals
(2.2.3) (when k > 0) or (2.2.4) (when k < 0) holds for any non-zero rational Chern–Simons level.
However, the expressions are clearer for k ∈ Z. Under such assumption, from equation (2.2.6) and
simple manipulations, we obtain

ZU(1),2(k,m) =
1

2 sinh(2πm)

[
− ie

iπk(m2− 1
4)

sinh(πkm)
− P̃ (−e−2πm; k)

e−2π|k|m − 1
+
P̃ (−e2πm; k)
e2π|k|m − 1

]
, (2.3.10)
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Figure 2.3. Plot of ZU(1),1 with k = κ
ϱ , ζ = 0, m = 0.02 at fixed κ and varying ϱ. The points obtained

from consecutive values of ϱ are joined by a segment. Left: κ = 8, ϱ = 1, . . . , 2 × 104. Right: κ = 13,
ϱ = 1, . . . , 104.

with the polynomial P̃ (z; k) defined in (2.2.9). We also have shifted the summation range hidden
in P̃ (z; k), so that the sum runs over α = 0, . . . , k − 1 if k > 0 and α = 1, . . . , |k| if k < 0.

The masses of the hypermultiplets have played a central role in the derivation, but we can take
the massless limit of our final result [62]. Despite each term being divergent, a careful analysis and
the application of the Gauss sum identity (2.2.14) show that the result is finite and well defined,
and reads

ZU(1),2(k > 0,m→ 0+) =
e−iπ

k
4

(2πm)2k

[
−i+ i

1√
ik

k−1∑
α=0

e
iπ
k (α+

k
2 )

2
(
1 + 2π2m2

(
α2 +

k2

6
− αk

))]

=

√
i

k

k−1∑
α=0

(−1)αq−
α2

2

[
1

k

(
α− k

2

)2

− k

12

]
,

where to go from the first to the second line we have used (2.2.14). The analogous result when
k < 0 is derived by the same steps.

The solution of the Mordell integrals Ψ± requires 0 < ℜλ < 1, and we have used λ = 1
2 ± im.

Therefore we can complexify the masses in the strip −1
2 < ℑm < 1

2 , which is the usual “physical”
region in which the integrals from localization do not develop singularities.

Abelian A1 theory with Nf flavours

The analysis of the Abelian A1 theory with two flavours is easily generalized to the case of Nf

flavours, represented in Figure 2.7. We assume the hypermultiplets have distinct masses, ms ̸= mj

for s ̸= j, j = 1, . . . , Nf , and also turn on a FI parameter ζ ∈ R. Using the identity

Nf∏
j=1

1

1 +MjX
=

Nf∑
j=1

1

1 +MjX

∏
s ̸=j

1

1− Ms
Mj

, (2.3.11)
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2.3. Evaluation of partition functions

Figure 2.4. Plot of ZU(1),1 with k = κ
ϱ , at fixed κ = 5. Left: m =

√
0.03+ i0.1 and ϱ = 1, . . . , 104. Right:

m = 0.1 + i
√
0.03 and ϱ = 1, . . . , 2× 104.

Figure 2.5. Plot of ZU(1),1 with k = κ
ϱ , at fixed κ = 8 and varying ϱ = 1, . . . , 104. Left: m =

√
0.03+ i0.1.

Right: m = 0.1 + i
√
0.03.

we can rewrite the partition function of the theory as

ZU(1),Nf
(k, m⃗, ζ) =

∫
dx

eiπkx
2+i2πζx∏Nf

j=1 2 coshπ(x+mj)

=

Nf∑
j=1

e2πmj(Nf−2)∏
s ̸=j (e

2πmj − e2πms)
Ik
(
−mj ,

Nf

2
+ iζ

)
,
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1 2

Figure 2.6. Abelian A1 quiver with Nf = 2 fundamental flavours.

1 Nf

Figure 2.7. Abelian A1 quiver with Nf fundamental flavours.

where we have used
∑Nf

j=1mj = 0. From (2.2.6) we obtain an explicit solution in terms of a sum
of Mordell integrals for every rational value of the Chern–Simons level k:

ZU(1),Nf
(k > 0, m⃗, ζ = 0) =

Nf∑
j=1

eπmj(Nf−2)+iπ
Nf
2∏

s ̸=j (e
2πmj − e2πms)

1

1− (−1)ϱ
(
Nf+1−κ+κ

ϱ

)
e−2πkmj

×

ie−iπk( 1
2
+imj)

2
ϱ∑

β=1

(−1)βNf e−iπkβ(β−1)−2πkmjβ

−
√
i

k

κ∑
α=1

(
−e−2πmj

)α+Nf
2 q

− 1
2

(
α+

Nf
2

)2]
,

and

ZU(1),Nf
(k < 0, m⃗, ζ = 0) =

Nf∑
j=1

eπmj(Nf−2)+iπ
Nf
2∏

s ̸=j (e
2πmj − e2πms)

1

1− (−1)ϱ
(
Nf+1−κ−κ

ϱ

)
e−2πkmj

×

ie−iπk( 1
2
+imj)

2
ϱ∑

β=1

(−1)βNf e−iπkβ(β−1)−2πkmjβ

+

√
i

k

κ−1∑
α=0

(
−e2πmj

)α−Nf
2 q

− 1
2

(
α−

Nf
2

)2]
,

When the number of flavours is even the sums in the last line of each expression become (cf.
(2.2.9))

P̃
(
−e−sign(k)2πmj ; k

)
,

but with the summation range shifted by −Nf

2 . As we have already pointed out in Subsection

2.2.3, these are polynomials in the variable ei2πλsign(k), hence are holomorphic in C \ R≥0.

The effect of reintroducing the FI parameter ζ can be reabsorbed in a change of variable, and
the result is the same as above up to a shift of the masses, as in (2.3.4). Besides, the result holds

upon complexification of the masses and FI parameters, as long as
∣∣∣ℑmj − ℑζ

k

∣∣∣ < 1
2 .

The solution relied on the assumption of generic masses, but the theory has a well defined
confluent limit when two masses become equal. One approach to this case is based on a direct
analysis of the cancellations in the formula above. An alternative and especially convenient ap-
proach is to interpret the partition function as the average of inverse characteristic polynomials
in the Stieltjes–Wigert ensemble, expressing it then as a Nf ×Nf determinant, whose limit is well
known to give a Wronskian determinant [95]. We discuss this approach in Subsection 2.5.5. A
third approach, valid for all equal masses, was taken in [63].
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2.3. Evaluation of partition functions

Wilson loops from Mordell integrals: Abelian A1 theory

We consider again the Abelian Chern–Simons theory with Nf massive fundamental hypermulti-
plets and insert a circular Wilson loop in a complex irreducible U(1) representation µ, identified
with an integer µ ∈ Z. Its expectation value is:

⟨Wµ⟩U(1),Nf
=

1

ZU(1),Nf

∫ ∞

−∞
dx

eiπkx
2+2πµx∏Nf

j=1 2 coshπ(x+mj)

=
1

ZU(1),Nf

Nf∑
j=1

e2πmj(Nf−2)∏
s ̸=j (e

2πmj − e2πms)
Ik
(
−mj ,

Nf

2
+ µ

)
,

hence the result can be easily extracted from the above analysis or directly from (2.2.6). When
Nf = 2 we have the particularly simple relation

⟨Wµ⟩U(1),Nf=2 =
ZU(1),2µ+2

ZU(1),2
.

Non-Abelian A1 theory with Nf flavours

The next example is the U(N) theory with Nf flavours, as in Figure 2.8. The partition function
at Nf = 2 and no FI term has been solved in [62], using a change of variables of the form
Xa = e2π(xa−c) and writing the resulting expression as a Hankel determinant [84]. The crucial
difference from [62, 63] is that we consider generic masses and also allow a FI term. In flat space,
this choice lifts the Higgs branch and reduces the moduli space to isolated vacua.

N Nf

Figure 2.8. Non-Abelian A1 quiver with Nf fundamental flavours.

We get [62]:

ZU(N),Nf
(k, m⃗) =

N∏
a=1

∫ ∞

−∞
dxa

eiπkx
2
a+i2πζxa

∏
b ̸=a 2 sinhπ(xb − xa)∏Nf

j=1 2 coshπ (xa +mj)

= eiπ
N
k [N(Nf−2N)−ζ2] det

1≤a,b≤N

e iπ
k (Nf−2N)(a+b−1)

∫ +∞

−∞
dx

eiπkx
2+2πxℓab∏Nf

j=1

(
1 + e2π(x−m

′
j)
)


where we defined for shortness ℓab = a+ b − 1 −N +
Nf

2 and m′
j = mj − ζ

k . Using (2.3.11) each
entry of the determinant is written as a sum of Nf Mordell integrals:

ZU(N),Nf
(k, m⃗) = eiπ

N
k [N(Nf−2N)−ζ2] det

1≤a,b≤N

[
e

iπ
k (Nf−2N)(a+b−1)

×
Nf∑
j=1

e2πm
′
j(Nf−2)∏

s ̸=j

(
e2πm

′
j − e2πm′

s

)Ik (−m′
j , ℓab

) . (2.3.12)

This results extends [62, 63] to generic deformations, using a different approach than [95]. The
massless limit can be taken, exploiting the identity (2.2.14) to see the cancellation of the singulari-
ties, cf. [62, Eq. (2.38)], while the limit of coinciding masses is better understood in the formalism
of [95].
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2.3.3 Lessons so far

Before discussing quiver gauge theories, we pause to analyze the information that can be extracted

by the exact solutions in terms of Ik
(
−m, Nf

2

)
, as defined in (2.2.5).

A first observation is that the sums appearing in the right-hand side of the Mordell integrals
are all of the form

∼
k∑

α=1

(
−e−2πm

)α
q
− 1

2

(
α−

Nf
2

)2
(k > 0),

∼
−k−1∑
α=0

(
−e2πm

)α
q
− 1

2

(
α+

Nf
2

)2
(k < 0).

Here we are considering ζ = 0 for clarity, but the argument goes through in exactly the same way
turning on a real FI parameter. The shift in the Gaussian factor in each summand accounts for
the shift k 7→ k − Nf

2 from integrating out massive hypermultiplets.

Another important aspect is that Mordell’s solution is a holomorphic function of λ = 1
2 + im

[61]. We notice that λ is precisely the variable t
2 + im identified by Jafferis [96] (see also the

exhaustive discussion in [97]), with respect to which the partition function on S3 is holomorphic.
Here t parametrizes the trial U(1)R R-charge of the hypermultiplet in the microscopic theory, and
in our case is fixed to t = 1 by the N = 3 extended supersymmetry.

Related to the just mentioned aspect, we stress the role of the numerator in the overall multi-
plicative term in (2.2.3) and (2.2.4). This term always generates an overall factor e−iπkλ

2
, which

is a Chern–Simons coupling for the background vector multiplet of the global symmetry, precisely
given in terms of the holomorphic variable λ = 1

2 + im. On the other hand, a pure U(1)k Chern–
Simons theory coupled to a background vector multiplet generates an effective Chern–Simons term
ei

π
k
λ2 [98, 97], which emerges from the integrals. We also know that, for Nf = 1, the theory must

be self-dual under k 7→ − 1
k [94], as we have extensively discussed in Subsection 2.3.1. Therefore,

the overall factor derived in [61] is essential to guarantee the invariance of the partition function
under the S-duality when Nf = 1, or more in general to reproduce the correct Chern–Simons
couplings for the background vector multiplets [98, 97].3

U(1)k theory at rational k

As we have learned from the plots in Subsection 2.3.2 and the surrounding discussion, the study
of the partition function ZU(1),Nf

∈ C at fixed m as a function of k = κ
ϱ uncovers a rich structure

when ϱ is increased keeping κ fixed. This observation is compatible with the insight provided
by the theory of Gauss sums [99, 100]. Pushing the analogy further, it may be interesting to
understand the behaviour of ZU(1),Nf

when k becomes irrational. This is not allowed in gauge
theory for compact gauge group. However, the iterative application of the elementary Fourier
transform identity

∫ +∞

−∞
dx

∫ +∞

−∞
dy

eiπa1x
2+iπa2y2+i2πxy∏Nf

j=1 2 coshπ(x+mj)
=

√
i

a2

∫ +∞

−∞
dx

e
iπ
(
a1− 1

a2

)
x2∏Nf

j=1 2 coshπ(x+mj)

3logZU(1),Nf
does not take a simple form, which prevents us from reading off the precise form of the mixed

flavour-R Chern–Simons couplings.

23



2.3. Evaluation of partition functions

allows to interpret the partition function at rational k, with continued fraction expansion

k =
κ

ϱ
= a1 −

1

a2 −
1

· · · −
1

an

as a chain of U(1)ap theories at integer Chern–Simons levels ap, p = 1, . . . , n, with matter insertion
only at the first node. Notice that this theory would correspond to a completely disconnected
quiver (no bi-fundamentals), and the various nodes are coupled only through the mixed Chern–
Simons terms kp,p+1 = 1. The Chern–Simons level of the original theory attains an irrational
value in the limit of infinitely many coupled Chern–Simons theories.

It would therefore be desirable to look further into the behaviour of ZU(1),Nf
when the number

of integers ap in the continued fraction expansion of k is increased, and eventually understand the
n→∞ limit.

2.3.4 Abelian quivers

We consider now Chern–Simons theories classified by Dynkin diagram of type Ar, which corre-
spond to linear quivers. We consider Abelian theories with gauge group G = U(1)r.

Abelian A2 theory

The first example is a two node quiver with Abelian gauge group, see Figure 2.9. The matter
content consists only of the bi-fundamental hypermultiplet joining the nodes, to which we assign
a mass m. We set the FI parameters to zero, as they can be reintroduced at the end by the usual
shift of the masses and overall coefficient, as in (2.3.4).

11

Figure 2.9. Abelian A2 quiver.

The partition function is:

ZU(1)2(k⃗,m) =

∫ +∞

−∞
dx

∫ +∞

−∞
dy

eiπk1x
2+iπk2y2

2 coshπ(x− y +m)

=

∫ +∞

−∞
dyeiπk2y

2+π(y−m)Ik1
(
y −m, 1

2

)
.

We take for concreteness k1 = κ1
ϱ1

> 0 with either κ1 even or ϱ1 odd. This restriction is not

necessary, but simplifies the expressions as we do not need to carry factors (−1)κ1(ϱ1−1). From
(2.2.3) and a rescaling of the integration variable, we get:

ZU(1)2(k⃗,m) =
1

κ1

eiπk1(m2− 1
4

ϱ1∑
β=0

(−e−2πk1m)βeiπk1β(β−1)Ikeff(0, ξ̌1(β))

+i

√
iϱ1
κ1

κ1∑
α=1

q
− 1

2(α−
1
2)

2

1 (−e−2πm)(α−
1
2)Ik′eff

(
0, ξ̌2(α)

)]
,
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where

keff =
k2ϱ1 + κ1

κ21
, ξ̌1(β) =

1

ϱ1

(
−im+ β − 1

2

)
,

k′eff =
k2
κ21
, ξ̌2(α) =

1

κ1

(
α− 1

2

)
.

The solution can be made explicit plugging (2.2.6). When k1 + k2 = 0, it takes a much simpler
form. We introduce both the mass and the FI parameter explicitly, assume k > 0 without loss of
generality, and write

ZU(1)2(k⃗,m, ζ) =

∫ +∞

−∞
dx

∫ +∞

−∞
dy
eiπk(x

2−y)+i2πζ(x+y)

2 coshπ(x− y +m)

=

∫ +∞

−∞
dv

∫ +∞

−∞
dx
e−iπkv

2+i2πζv−i2πx(kv−ζ)

2 coshπ(v −m)

=
eiπ

ζ2

k

2k coshπ
(
m− ζ

k

) ,
where we have used the centre of mass variable v = y − x.

In Subsection 2.3.4 we present the computations of the lowest-rank non-Abelian A2 theory
extending the ideas presented here.

Abelian A3 theory

The Abelian A3 quiver is depicted in Figure 2.10. We turn on a real FI parameter ζ in the middle
node, and give masses m1 and m2 to the hypermultiplets.

11 1

Figure 2.10. Abelian A3 quiver.

The partition function is:

ZU(1)3(k⃗, ζ, m⃗) =

∫ +∞

−∞
dv

∫ +∞

−∞
dx

∫ +∞

−∞
dy

eiπ(k1v
2+k2x2+k3y2)+i2πζx

2 coshπ(v − x+m1)2 coshπ(x− y +m2)
.

Instead of directly applying (2.2.6), we first use the change of variables

v′ = v − x, y′ = y − x (2.3.13)

(henceforth we drop the prime). We work under the assumption [74]

3∑
p=1

kp = 0.

Integrating over x we get

ZU(1)3(k⃗, ζ, m⃗) =
1

|k1|

∫ +∞

−∞
dv

eiπkeffv
2

2 coshπ(v −m2)2 coshπ
(
k3
k1
v −m2 +

ζ
k1

)
)
,
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2.3. Evaluation of partition functions

where we have defined the effective Chern–Simons level

keff =
k3
k1

(k1 − k3).

At this point, from the denominator, we see that the tractable cases correspond to k3 = ±k1.
The first choice, k3 = k1, means that we restrict to the one-parameter family of theories with
Chern–Simons levels

(k1, k2, k3) = (k,−2k, k),

in which case we get

ZU(1)3((k,−2k, k), ζ, (m1,m2)) =
1

|k|
ZSQED
Nf=2

(
−m1 −

ζ

k
,−m2

)
,

where we have recognized the partition function of a single-node theory without Chern–Simons
term and two fundamental flavour of mass −m1 − ζ

k and −m2, respectively. Note that the
hypermultiplet is off-shell, as it does not respect the SU(2) flavour symmetry, unless we tune
ζ
k = −m1 − m2. We can safely turn off the FI parameter ζ, as it only shifts m1, and it is

convenient to introduce an FI parameter ζ̃ in the third node. We get [101]

ZU(1)3((k,−2k, k), ζ, (m1,m2)) =
(ei2πm2ζ̃ − ei2πm1ζ̃)

4i|k| sinhπ(m2 −m1) sinh(πζ̃)
.

The other tractable case corresponds to the one-parameter family of Chern–Simons theories
with levels

(k1, k2, k3) = (k, 0,−k).

In this case keff = −2k, and the U(1)3 partition function is given by

ZU(1)3((k, 0,−k), ζ, (m1,m2)) =
1

2|k| sinhπ
(
m2 +m1 +

ζ
k

) [Ikeff(−m1, 1)− Ikeff(−m2, 1)] ,

which, up to the factor |k|−1, is the partition function of the A1 Abelian theory with Nf = 2
studied in [62] and in Subsection 2.3.2, at level keff = −2k.

A third instance in which the Abelian U(1)3 theory is exactly solvable corresponds to the
so-called Model III of Jafferis and Yin [65], with Chern–Simons levels k⃗ = (1,−1, 1). This theory
is dual to SQED with two fundamental hypermultiplets and no Chern–Simons couplings [65].
The equality of the two partition functions, up to a phase, is easily proved from their integral
representation,

ZSQED
Nf=2 (m

′, ζ ′) = ei2πm
′ζ′
∫ +∞

−∞
dx

ei2πζ
′x

[2 coshπ(x+ 2m′)][2 cosh(πx)]

=
1√
i

[
e−iπm1m2 ZU(1)3((1,−1, 1), ζ⃗ = 0⃗,m1,m2)

]
m1=ζ′,m2=2m′

(2.3.14)

with the last equality following from the change of variables (2.3.13). The proof extends straight-
forwardly to the vev of a Wilson loop charged under one of the three U(1)’s.

An exact evaluation of ZSQED
Nf=2 has been given in [101, 102]. In turn, we are able to evaluate

the partition function on the A3 side using (2.2.6):

ZU(1)3((1,−1, 1), m⃗) = eπ(−m1+m2)

∫ +∞

−∞
dx e−iπx

2+2πxI+1

(
x−m1,

1

2

)
I+1

(
x+m2,

1

2

)
26



Exact results and Schur expansions in quiver Chern–Simons-matter theories

which, using (2.3.21), becomes

ZU(1)3((1,−1, 1), m⃗) =
1

2 sinhπ(m1 +m2)

[
ZJY
1 (m1,m2) + ZJY

2 (m1,m2) + ZJY
3 (m1,m2)

]
,

(2.3.15)
where we have defined

ZJY
1 (m1,m2) ≡ I+1(m1, 1− im1 + im2)− I+1(−m2, 1− im1 + im2)

ZJY
2 (m1,m2) ≡ ieiπ(m

2
1+m

2
2) [I+1(m1, 1− im1 + im2)− I+1(−m2, 1− im1 + im2)]

ZJY
3 (m1,m2) ≡ −

√
i

∫ +∞

−∞
dxe2πx

(
eiπm

2
1−i2πxm1 + eiπm

2
2+i2πxm2

)[ 1

e2πx + e2πm1
− 1

e2πx + e−2πm2

]
The first piece, which we have named ZJY

1 , is given in (2.3.22) and contributes

ZJY
1 (m1,m2) =

√
−i

[
1

1− e2πm1
− 1

1− e−2πm2
+

e−iπm
2
1

2 sinh(πm1)
− e−iπm

2
2

2 sinh(πm2)

]
.

The second piece is

ZJY
2 (m1,m2) =

√
−iei2πm1m2

[
1

e2πm2 − 1
− e−iπm

2
2

2 sinh(πm2)
− 1

e−2πm2 − 1
− eiπm

2
1

2 sinh(πm1)

]
.

The last contribution is

ZJY
3 (m1,m2) =

√
i

[
eiπm

2
1+i2πm1m2

2 sinh (πm1)
− e−iπm

2
1

2 sinh(πm1)

]
+
√
−i

[
eiπm

2
2+i2πm1m2

2 sinh (πm2)
− e−iπm

2
2

2 sinh(πm2)

]
.

Plugging these three expressions back in (2.3.15) and simplifying, we get

ZU(1)3((1,−1, 1), m⃗) =
√
−i

(
e−i2πm1m2 − 1

)
[2 sinh(πm1)][2 sinh(πm2)]

. (2.3.16)

From (2.3.14), the result we find agrees with [101, 102].

Abelian ABJM

We consider mass-deformed Abelian ABJM theory. This is U(1)k×U(1)−k Chern–Simons theory
with two massive bi-fundamental hypermultiplets, represented in Figure 2.11.

11

−m

+m

Figure 2.11. Mass deformed Abelian ABJM theory.

The partition function of the theory is:

ZABJ(1|1)(k,m) =

∫ +∞

−∞
dy

∫ +∞

−∞
dx

eiπk(x
2−y2)

4 coshπ(x− y +m) coshπ(x− y −m)
(2.3.17)

where the variables x and y parametrize the two u(1)’s. From (2.2.5) we rewrite it as:

ZABJ(1|1)(k,m) =
1

2 sinh(2πm)

∫ +∞

−∞
dye−iπky

2
[Ik(y −m, 1)− Ik(y +m, 1)] .
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2.3. Evaluation of partition functions

As one may expect, the contribution from a single node coincides with the partition function of
U(1)k theory with two massive hypermultiplets with masses y±m. Without loss of generality, we
take k > 0 and, from (2.2.6) together with (2.2.3) we get

ZABJ(1|1)(k,m) =
1

2 sinh(2πm)

{
ieiπk(m

2− 1
4)
[∫ +∞

−∞
dy

e−i2πkmy

2 sinh(πk(y −m))
−
∫ +∞

−∞
dy

ei2πkmy

2 sinh(πk(y +m))

]
+

√
i

k

k−1∑
α=0

(−1)αq−
α2

2

∫ +∞

−∞
dye−iπky

2

[
e2πα(y+m)

e2πk(y+m) − 1
− e2πα(y−m)

e2πk(y−m) − 1

]}
.

The two integrals in the first line are the Fourier transform of sinh(πx) and are immediately
solved. The two integrals in the second line, after a change of variables y′ = k(y±m) are reduced
again to Mordell integrals:

ZABJ(1|1)(k,m) =
1

2k sinh(2πm)

{
e−iπk(m

2+ 1
4) tanh(πm)

+e−iπkm
2

√
i

k

k−1∑
α=0

(−1)αq−
α2

2

[
Ψ−

(
−α
k
− im, 0; 1, k

)
−Ψ−

(
−α
k
+ im, 0; 1, k

)]}
.

Plugging the solution (2.2.4) and after some simplification,

ZABJ(1|1)(k,m) =
e−iπkm

2

2k sinh(2πm)

{
e−iπ

k
4 tanh(πm)

+

k−1∑
α=0

(−1)α
[
eiπkm

2

(
e2πmα

(−1)ke2πkm − 1
− e−2πmα

(−1)ke−2πkm − 1

)

+i

√
i

k

k∑
β=1

q−
(α−β)2

2

(
e2πmβ

(−1)ke2πkm − 1
− e−2πmβ

(−1)ke−2πkm − 1

) .

The second line is a geometric sum, with a prefactor eiπkm
2
. Using the Gauss sum identity (2.2.14)

to sum over α in the third line, we find another geometric sum, over β this time, which cancels
the contribution of the first line. After these simplifications we get:

ZABJ(1|1)(k,m, ζ = 0) =
1

4k cosh(πm)2
.

In general, unitary Âr quivers have topological symmetry [
∏r
p=0 U(1)top,p]/U(1). This allows

us to introduce an FI parameter ζ turning on a background twisted vector multiplet for the U(1)top
topological symmetry of ABJM. This can be reabsorbed in a simple change of variables, and the
result is directly obtained from above replacing ±m 7→ 2ζ

k ±m. We get

ZABJ(1|1)(k,m, ζ) =
1

4k coshπ
(
m− 2ζ

k

)
coshπ

(
m+ 2ζ

k

) . (2.3.18)

The partition function, as written in (2.3.17), is invariant under k ↔ −k but the final expression
(2.3.18) is not because, without loss of generality, we have assumed k > 0 in the intermediate
steps. The result agrees with [64], where the answer was obtained in a straightforward way using
a change of variables x′ = x− y in (2.3.17). Nevertheless, with our approach we can consider the
more general case with arbitrary rational k1 and k2, which corresponds to deform the gravity dual
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by a Romans mass F0 = k1 + k2, cf. Subsection 2.2.1. Letting k2 ̸= −k1 and also allowing generic
masses m1,m2 and a FI parameter ζ, the partition function is

ZABJ(1|1)(k1, k2, m⃗, ζ) =

∫ +∞

−∞
dx

∫ +∞

−∞
dy

eiπk1x
2+iπk2y2+i2πζ(x+y)

2 coshπ(x− y +m1)2 coshπ(y − x+m2)

= e
−iπ ζ2

keff

∫ +∞

−∞
dv

∫ +∞

−∞
dy

eiπk1v
2+iπ(k1+k2)y2−i2πk1vy

2 coshπ(v +m+)2 coshπ(v +m−)

= e
−iπ ζ2

keff

√
i

k1 + k2

∫ +∞

−∞
dv

eiπkeffv
2

2 coshπ(v +m+)2 coshπ(v +m−)
.

To pass from the first to the second line we have used the change of variables [64]

v =

(
x+

ζ

k1

)
−
(
y +

ζ

k2

)
together with a redefinition of the parameters

m+ := m1 −
ζ

k1
+

ζ

k2
, m− := −m2 −

ζ

k1
+

ζ

k2
, keff =

(
1

k1
+

1

k2

)−1

.

In the last line, we recognize the partition function of the U(1) Chern–Simons theory with two
fundamentals at level keff , studied in Subsection 2.3.2. For generic k1 and k2 ̸= k1 the effective
Chern–Simons level keff is rational, and we assume keff = κ

ϱ > 0. The partition function is

ZABJ(1|1)(k1, k2, m⃗, ζ) =
e
−iπ ζ2

keff

2 sinhπ(m1 +m2)

{
1

(−1)κ(−1ϱ)e−2πκm+ − 1

[
1√
κ

κ−1∑
α=0

(−e−2πm+)αeiπ
ϱ
κ
α2

+
1√
iϱ

ϱ∑
β=1

e
−iπ κ

ϱ
β(β−1)−2π κ

ϱ
m+β

 − ( replace m+ with m− )

 .

The theory has a well defined m→ 0 limit. For k2 = −k1 equation (2.3.18) gives directly 1
4k ,

while the limit m → 0 for generic k1 and k2 is given in Subsection (2.3.18) making use of the
Gauss sum identity (2.2.14), and follows straightforwardly from [62].

Non-Abelian A2 theory

This Subsection contains an example of the application of the ideas of this section to a non-Abelian
quiver. We consider the simplest such theory, the A2 quiver with gauge group U(1)k1 × U(2)k2
and without any additional insertion, as in Figure 2.12. The bi-fundamental hypermultiplet has
a real mass m.

21

Figure 2.12. The simplest non-Abelian A2 quiver.

The partition function is

ZU(2)×U(1)(k1, k2,m) =
1

2!

∫
R2
dx1dx2

∫ +∞

−∞
dy

eiπk1(x
2
1+x

2
2)+iπk2y (2 sinhπ(x1 − x2))2

2 coshπ(x1 − y +m)2 coshπ(x2 − y +m)
.
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2.3. Evaluation of partition functions

A change of variables

u = x1 − y, v = x2 − y, y′ = y +
k1

2k1 + k2
(u+ v)

allows to directly integrate out y′, leaving

ZU(2)×U(1)(k1, k2,m) =

√
i

2k1 + k2

∫
R2

dudv

2

e
iπ

(
k1−

k21
2k1+k2

)
(u2+v2)−i2π k21

2k1+k2
uv

(2 sinhπ(x1 − x2))2

2 coshπ(u+m)2 coshπ(v +m)
.

We discuss the two cases k1 + k2 = 0 and k1 + k2 ̸= 0 separately.

When k1 = −k2 ≡ k, the Chern–Simons coupling disappears after integrating over y′. Ex-
panding sinhπ(u− v)2 and integrating over v we get

ZU(2)×U(1)(k,−k,m) = −
√
i

k

∫ +∞

−∞
du

ei2πkmu(e2π(u+m) + 1)

2 coshπ(u+m)2 cosh(πku)

= −
√
i

k

eπm

2k
[
cosh(πm) cos

(
π
2k

)
+ i sinh(πm) sin

(
π
2k

)] .
When k = ±1 the partition function takes the specially simple form

ZU(2)×U(1)(±1,∓1,m) =

√
∓i

|k|(1− e−2πm)
.

When k1 ̸= −k2 we have to invoke the Mordell integrals. It is convenient to slightly deform
the denominator, replacing

2∏
a=1

2 coshπ(xa − y +m) 7→ 2 coshπ(x1 − y +m1)2 coshπ(x2 − y +m2),

and eventually take the limit m1,m2 → m in the final expression. Besides, it is also more efficient
to integrate first over x1 and x2 obtaining

ZU(2)×U(1)(k⃗, m⃗) = 2e−π(m1+m2)

∫ +∞

−∞
dy eiπk2y

2+2πy

[
Ik1
(
y −m1,

3

2

)
Ik1
(
y −m2,−

1

2

)
−Ik1

(
y −m1,

1

2

)
Ik1
(
y −m2,

1

2

)]
.

The Ik1 integrals give an overall denominator

1

[e2πk1(y−m1) + 1][e2πk1(y−m2) + 1]
,

whence we see that, thanks to the splitting of the masses, the last integral over y can be solved again
using the formula (2.2.6), this time with a rational effective Chern–Simons level k2k1 . The resulting
expression is a long multiple sum, which however admits a well-defined limit m1,m2 → m, despite
an overall factor [2 sinhπ(m2 −m1)]

−1, which can be dealt with in exactly the same manner as
we have done in Subsection 2.3.2. We conclude mentioning that the argument presented here is
easily extended to ABJ theory with ranks 1 and 2 and arbitrary, possibly rational Chern–Simons
levels k1, k2, although it requires a convenient rewriting of the denominator and produces twice
the number of terms than the theory with a single bi-fundamental that we have just discussed.
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2.3.5 Abelian quivers at k = ±1

Beyond selected example that can be analyzed with the methods herein for a whole family of
Chern–Simons levels k⃗, the iterative application of Mordell’s formula gives the quiver partition
function when the Chern–Simons levels are an alternating string of +1 and −1,

k⃗ = (1,−1, 1, . . . ,−1). (2.3.19)

In particular, when the rank is even, say 2r, then k⃗ consists of alternating +1 and −1, with
exactly r of each sign. When the rank is odd, say 2r + 1, then we take the middle node without
Chern–Simons couplings, in order to ensure

2r+1∑
p=1

kp = 0

for every rank. With such choice, the quiver is invariant under k⃗ ↔ −k⃗. This symmetry is the
diagonal action of the S-duality in the space of couplings. Let us stress that the restrictive choice
of k⃗ is a sufficient condition that ensures the solvability through iterative application of Mordell’s
formula, but not necessary, as proved explicitly in the previous Subsections.

With this condition, an example of theory solvable with the methods presented in the present
work is the linear Ar quiver, with gauge group U(1)r, represented in Figure 2.13.

11· · ·11

Figure 2.13. Abelian Ar quiver.

On one hand, inspection of formula (2.2.5) has led us to a sufficient condition for the partition
function of a linear quiver Chern–Simons theory to be solved by iterative application of Mordell
integrals. On the other hand, these theories are simple enough to be studied from a different
angle. Let us focus on the even rank case. The partition function of the A2r quiver in Figure 2.13
with Chern–Simons levels (2.3.19) is

ZU(1)2r(m⃗) =

∫ +∞

−∞
dx1e

iπx21

2r∏
p=2

∫ +∞

−∞
dxp

eiπ(−1)p−1x2p

2 coshπ(xp − xp−1 +mp−1)
.

We change variables

v1 = x1

v2 = x2 − v1
v3 = x3 − (v2 + v1)

...

v2r = x2r −
2r∑
p=1

vp

and get

ZU(1)2r(m⃗) =

∫ +∞

−∞
dv1e

−i2πv1(v2+v4+···+v2r)
2r∏
p=2

∫ +∞

−∞
dvp

( CS couplings )

2 coshπ(vp +mp−1)
,

31



2.3. Evaluation of partition functions

with the bracket containing the Chern–Simons couplings and mixed Chern–Simons couplings in
terms of the new variables (v2, . . . , v2r). The denominator, which carries the matter dependence,
is completely factorized. The integral over the first variable yields a constraint on the variables
at even nodes,

δ

 r∑
p′=1

v2p′

 . (2.3.20)

Besides, one can check that, thanks to the choice (2.3.19), there is no Chern–Simons level at the
odd nodes, except for mixed Chern–Simons couplings

exp

−i2πvp r∑
p′=(p−1)/2

v2p′

 , p odd.

Thus the integral over vp can be solved straightforwardly for all odd p, yielding∫ +∞

−∞
dvp

e
−i2πvp

∑r
p′=(p−1)/2 vp′

2 coshπ(vp +mp−1)
=

1

2 coshπ
(∑r

p′=(p−1)/2 v2p′ +mp−1

) , p odd.

We are left with the integral over the variables v2p′ , p
′ = 1, . . . , r, but we have the delta function

(2.3.20) to get rid of one of the variables, for example v2. The advantage is that all the Chern–
Simons couplings are cancelled by (2.3.20), and we find:

ZU(1)2r(m⃗) =

∫
Rr−1

1

2 coshπ(
∑r

p′=1 v2p′ −m1)

r∏
p′=2

dv2p′

2 coshπ
(∑r

s=p′ v2s +m2p′−2

)
2 coshπ

(
v2p′ +m2p′−1

)
Therefore the Chern–Simons interactions can be removed from the computations, which are now
reduced to r − 1 integrals. We change again variables

y1 = v2r

y2 = v2r−2 + y1

y3 = v2r−4 + y2
...

yr−1 = v4 + yr−2

and arrive at

ZU(1)2r(m⃗) =

∫
Rr−1

1

2 coshπ(y1 +m′′
1)

r−1∏
p=1

dyp
2 coshπ(yp +m′

p)2 coshπ(yp − yp+1 +m′′
p)

where in the formula yr ≡ 0 and we have renamed the masses

m′
p = m2r−2p, m′′

p = m2r−2p+1.

In the latter form, we recognize the partition function of a linear quiver gauge theory of type Ar−1,
without Chern–Simons term and with additional fundamental matter insertions, one at each node
except for the first and last node, that yield two fundamentals. This is represented in Figure 2.14.
This last theory has manifest N = 4 theory, which was expected from the choice (2.3.19). The
partition function in this new form can be evaluated introducing FI terms ζp′ [101], which can
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11· · ·11

2112

Figure 2.14. Abelian Ar−1 quiver with one fundamental at each interior node and two fundamentals at
the outermost nodes. In this picture the Chern–Simons levels are all set to zero.

either be related to FI couplings in the original theory or we can take the limit ζp′ → 0 at the
end. Note also that both the iterative application of Mordell formula and the method of [101]
require the masses to be generic, but the limit of equal masses can be safely taken at the end of
the calculations.

For the special case r = 2 our formula states the equality of the partition function of the A4

quiver with alternating Chern–Simons levels +1 and−1 with that of SQED with three fundamental
flavours (Nf = 3 can be seen by direct computations, or starting with r = 2 and ungauging the
second node in the A2 quiver), which are known to be dual [65].

The particularly suitable choice of Chern–Simons levels (2.3.19) allows us to study a much
wider class of quivers, such as extended Âr quivers with insertion of fundamental matter at any
node, as in Figure 2.15. Specializing to np = 0 for all p, the resulting theories are Abelian sub-cases

of [75, 76]. The Abelian Âr quiver with Chern–Simons levels (2.3.19) corresponds to the gauge
theoretical realization of the M-crystal model [103] derived in [104, 105]. Although a complete
analytical solution seems hard to find, it should be possible to obtain explicit solutions for every
r through an algorithmic iteration of formula (2.2.6).

The building blocks in the solution are the integrals Ik(y, ξ̌) defined in (2.2.5) at k = ±1 and
ξ̌ = 1, or ξ̌ = 1

2 for boundary nodes of a linear quiver without additional matter insertion. They
are evaluated as:

Ik
(
y,

1

2

)
=

ik

e2πy + 1

[
1− ekiπ(y2+

1
4)
]
, k ∈ {±1} (2.3.21)

and

Ik (y, 1) =
e

iπ
4
k

e2πy − 1

[
−1 + ekiπy

2+πy
]
, k ∈ {±1} . (2.3.22)

1 n1

1 n2

· · ·

1nr−1

1nr

1 n0

Figure 2.15. Abelian Âr extended quiver.

2.4 Wilson loops in ABJ theory

This section is dedicated to the study of vacuum expectation values of 1
2 -BPS Wilson loops in

ABJ(M) theories [73, 82], whenever the Wilson loop is in a type of representation of U(N1|N2)
called typical representation (also known as long representation in more physical settings). This
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distinction between types of representations emerges when considering Lie supergroups and su-
peralgebras and has not been discussed in the context of Wilson loops of ABJ(M) theories before.
Hence, we explain this first.

2.4.1 On Lie superalgebras representations

While every finite-dimensional g-module of a semi-simple Lie algebra g is completely reducible
(that is, every representation decomposes into a direct sum of irreducible representations), this no
longer holds for Lie superalgebras. A consequence of the classical Djokovic–Hochschild theorem
[106] states that all simple Lie superalgebras, with the exception of the family {osp(1, 2n), n ≥ 1}
of ortho-symplectic Lie superalgebras, have indecomposable (that is, not completely reducible)
representations.

This leads to the definition of two types of irreducible representations for a Lie superalgebra
g. Let µ be a highest weight for a finite dimensional irreducible representation R (µ) of g. If
the representation cannot be extended to an indecomposable representation of g, then it is called
a typical representation. These are the ones that satisfy the usual properties of the irreducible
representations of a Lie algebra. More involved are the atypical representations, which can be
extended, with another g-module, in a manner that the new representation is an indecomposable
representation of g. Atypical representations appear, for example, in the decomposition of the
tensor product of two typical representations.

By focusing on Wilson loops with typical representations we will be able to exploit a powerful
mathematical factorization property for the characters of such representations [47].

2.4.2 Wilson loops in typical representations

1
2 -BPS Wilson loops in ABJ(M) theories can be constructed as the trace of the holonomy of a
u(N1|N2)-valued superconnection [73]. We therefore consider an irreducible representation R(µ)
of the supergroup U(N1|N2) with highest weight labelled by a partition µ. We henceforth identify
R(µ) ≃ µ, further identified with the Young diagram representing the partition µ.

The vev of the 1
2 -BPS Wilson loop in the representation µ is [69]:

⟨Wµ⟩N1,N2;k =
1

ZABJ(N1|N2)(k)

∫
RN1

dN1x

∫
RN2

dN2y sµ (e2πx|e2πy)eiπk
(∑N1

a=1 x
2
a−
∑N2

ȧ=1 y
2
ȧ

)

×
∏

1≤a<b≤N1
(2 sinhπ(xb − xa))2

∏
1≤ȧ<ḃ≤N2

(
2 sinhπ(yḃ − yȧ)

)2∏N1
a=1

∏N2
ȧ=1 (2 coshπ(xa − yȧ))

2
.

ZABJ(N1|N2)(k) is the ABJ partition function, and we are denoting ⟨· · · ⟩N1,N2;k the vevs taken in
U(N1)k × U(N2)−k ABJ theory. Indices associated to the first node are labelled a, b, . . . while
indices corresponding to the second node are labelled by ȧ, ḃ, . . . , hence undotted indices are al-
ways meant to run from 1 to N1 and dotted indices run from 1 to N2. Moreover, sµ(·|·) is the
supersymmetric Schur polynomial [90, 92] (also known as hook Schur polynomial) associated to
the partition µ, and e2πx and e2πy stand for (e2πx1 , . . . , e2πxN1 ) and (e2πy1 , . . . , e2πyN2 ) respectively.
Vevs of correlators of Wilson loops are taken inserting additional supersymmetric Schur polyno-
mials in the matrix model. Notice that if N1 = 0 or N2 = 0 the supersymmetric Schur polynomial
degenerates in the usual Schur polynomial, and the vev of a Wilson loop in U(N1)k or U(N2)−k
pure Chern–Simons theory is recovered.

We now assume µ to be a typical representation of U(N1|N2), which implies that its associated
Young diagram fills the upper-left N1 ×N2 rectangle. These representations have the remarkable
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factorization property [47, Thm 6.20]

sµ(X|Y ) = sγ(X)sη′(Y )

N1∏
a=1

N2∏
ȧ=1

(Xa + Yȧ) , (2.4.1)

with µ = (κ+ γ) ⊔ η, with κ the N1 × N2 rectangular Young diagram, γ the Young diagram
consisting of the boxes of µ on the right of κ and η the Young diagram consisting of the boxes
below κ, as in Figure 2.16. The representation η′ appearing in the factorization formula (2.4.1) is
the conjugate representation of η, corresponding to the conjugate Young diagram.

Figure 2.16. Decomposition of a typical (i.e. long) representation µ. In this example, N1 = 4, N2 = 3,
the representation µ ≃ (7, 5, 4, 3, 2) is decomposed into κ ≃ (4, 4, 4) (white), γ ≃ (3, 1) (gray) and η ≃ (3, 2)
(yellow). Note that in the decomposition of sµ it appears η′ ≃ (2, 2, 1), and not η.

2.4.3 Two Wilson loops

One can foresee from (2.4.1) that part of the contribution from a long representation µ will cancel
against the contribution from a bi-fundamental hypermultiplet. When the correlator of two Wilson
loops is considered, one gets rid of the denominator in the two-matrix model, simplifying the
computations. Taking the vev ⟨WµWµ̃⟩N1,N2;k, with µ⃗ := (µ, µ̃) a pair of long representations, and
using (2.4.1) we obtain:

⟨WµWµ̃⟩N1,N2;k =
1

ZABJ

∫
RN1

sγ(e
2πx)sγ̃(e

2πx)
∏

1≤a<b≤N1

(2 sinhπ(xb − xa))2
N1∏
a=1

eiπkx
2
a+2πN2xa dxa

×
∫
RN2

sη′(e
2πy)sη̃′(e

2πy)
∏

1≤ȧ<ḃ≤N2

(
2 sinhπ(yḃ − yȧ)

)2 N2∏
ȧ=1

e−iπky
2
ȧ+2πN1yȧ dyȧ.

(2.4.2)

The correlator of two such Wilson loops in ABJ theory is therefore factorized into two pairs of
Wilson loops, one pair for each node. Shifting variables and using basic properties of the Schur
polynomials [90] we obtain:

⟨WµWµ̃⟩N1,N2;k = C µ⃗N1,N2;k

ZN1;kZN2;−k
ZABJ(N1|N2)k

⟨WγWγ̃⟩N1;k⟨Wη′Wη̃′⟩N2;−k. (2.4.3)

Here ZNp,k is the partition function of pure U(Np) bosonic Chern–Simons theory at renormalized
level k, and ⟨· · · ⟩Np,k is the average in the pure Chern–Simons theory at node p = 1, 2. The shift
of variables moves the integration cycle away from the real axis, but it can be translated back
without changing the answer. The overall coefficient arising from the shift of variables is

C µ⃗N1,N2;k
= exp

[
iπ

k

(
N2 (N1N2 + 2|γ⃗|)−N1

(
N1N2 + 2|η⃗′|

))]
,
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where |γ⃗| is a shorthand for |γ|+ |γ̃|, and the same for |η⃗′|. Recall that |γ| is the number of boxes
in the Young diagram γ. Closely related results have been obtained in [107], where the operator
formalism was used to prove the factorization of the Hopf link invariant.

The factorization property (2.4.3) is stable under deformation of the gravity dual theory by a
Romans mass, taking different levels k1, k2. The procedure goes identically as above and gives

⟨WµWµ̃⟩N1,N2;k1,k2 =
ZN1;k1ZN2;k2

ZABJ(N1|N2)k1,k2

C µ⃗N1,N2;k1,k2
⟨WγWγ̃⟩N1;k1⟨Wη′Wη̃′⟩N2;k2 , (2.4.4)

with refined coefficient

C µ⃗N1,N2;k1,k2
= exp

[
iπN2

k1
(N1N2 + 2|γ⃗|) + iπN1

k2

(
N1N2 + 2|η⃗′|

)]
.

The expression (2.4.4) can be further reduced using a character expansion:

⟨WγWγ̃⟩N1;k1 =
∑
ν

Nγγ̃
ν⟨Wν⟩N1;k1 ,

with Nγγ̃
ν the Littlewood–Richardson coefficients, and analogously for ⟨Wη′Wη̃′⟩N2;k2 . The vev of

a Wilson loop in Chern–Simons theory along an unknot wrapping a great circle is known [83], see
(2.2.1), and the final form of (2.4.4) is:

⟨WµWµ̃⟩N1,N2;k1,k2 =
ZN1;k1ZN2;k2

ZABJ(N1|N2)k1,k2

C µ⃗N1,N2;k1,k2

∑
ν,ν̃

Nγγ̃
νNηη̃

ν̃(dimq1 ν)(dimq2 ν̃)e
iπ

[
C2;N1

(ν)

k1
+

C2;N2
(ν̃)

k2

]
.

There exists an equivalent derivation, which consists in inverting the variables of one of the
two Schur polynomials in each integrals in (2.4.2), using the identity

sν(X
−1
1 , . . . , X−1

N ) =

N∏
a=1

X−ν1
a sν∗(X1, . . . , XN ), (2.4.5)

with the starred partition defined as

ν∗ = (ν1 − νN , ν1 − νN−1, . . . , ν1 − ν2) . (2.4.6)

We work directly with generic k1, k2 as the computations are identical. Exploiting (2.4.5) we
recognize in each factorized integral the vev of a Wilson loop wrapping a Hopf link in pure Chern–
Simons theory [107]:

⟨WµWµ̃⟩N1,N2;k1,k2 =
ZN1;k1ZN2;k2

ZABJ(N1|N2)k1,k2

e
−iπ

[
N1
k1
γ̃21+

N2
k2

(η̃′1)
2
]
C µ⃗N1,N2;k1,k2

⟨Wγγ̃∗⟩N1;k1⟨Wη′(η̃′)∗⟩N2;k2 .

(2.4.7)

Inverting one of the two Wilson loops

A different correlator of two 1
2 -BPS Wilson loops than (2.4.2) was considered in [108], with one

loop carrying inverted variables, mimicking the Hopf link invariant of [107]. This correlator has
the integral representation

⟨WµW µ̃⟩ =
1

ZABJ

∫
RN1

∫
RN2

sµ(e
2πx|e2πy)sµ̃(e−2πx|e−2πy)

N1∏
a=1

eiπk1x
2
a dxa

N2∏
ȧ=1

eiπk2y
2
ȧ dyȧ∏

1≤a<b≤N1
(2 sinhπ(xb − xa))2

∏
1≤ȧ<ḃ≤N2

(
2 sinhπ(yḃ − yȧ)

)2∏N1
a=1

∏N2
ȧ=1 (2 coshπ(xa − yȧ))

2
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where in the left-hand side we have omitted the subscript, ⟨WµW µ̃⟩ ≡ ⟨WµW µ̃⟩N1,N2;k1,k2 , to
avoid clutter. We have also considered generic Chern–Simons levels k1, k2 as we have seen that
the argument holds with no difference. Using (2.4.1) on both supersymmetric Schur polynomial,
with

sµ̃(e
−2πx|e−2πy) = sγ̃(e

−2πx)sη̃′(e
−2πy)

N1∏
a=1

N2∏
ȧ=1

(2 coshπ(xa − yȧ)) e−πxa−πyȧ ,

we get

⟨WµW µ̃⟩ =
1

ZABJ

∫
RN1

sγ(e
2πx)sγ̃(e

−2πx)
∏

1≤a<b≤N1

(2 sinhπ(xb − xa))2
N1∏
a=1

eiπk1x
2
a dxa

×
∫
RN2

sη′(e
2πy)sη̃′(e

−2πy)
∏

1≤ȧ<ḃ≤N2

(
2 sinhπ(yḃ − yȧ)

)2 N2∏
ȧ=1

eiπk2y
2
ȧ dyȧ.

We find that the factorization persists, but the observables we get now are Hopf link invariants
in U(N1)k1 and U(N2)k2 pure Chern–Simons theory, instead of the correlator of two unlinked
unknots:

⟨WµW µ̃⟩N1,N2;k1,k2 =
ZN1;k1ZN2;k2

ZABJ(N1|N2)k1,k2

⟨Wγγ̃⟩N1;k1⟨Wη′η̃′⟩N2;k2 .

We could as well run the argument that led to (2.4.7) backwards. Inverting the variables in
one of the two (ordinary) Schur polynomials in each integral using (2.4.5) disentangles the Hopf
link and gives the correlator of two circular Wilson loops,

⟨WµW µ̃⟩ =
ZN1;k1ZN2;k2

ZABJ(N1|N2)k1,k2

e
iπ
[
N1
k1
γ̃21+

N2
k2

(η̃′1)
2
]
⟨WγWγ̃∗⟩N1;k1⟨Wη′W(η̃′)∗⟩N2;k2 .

The upshot is that having the variables of one of the two supersymmetric Schur polynomials
inverted has the effect to switch the role of the partitions γ̃ and η̃′ with that of the starred ones
γ̃∗ and (η̃′)∗.

2.4.4 Three or more Wilson loops

Consider three long U(N1|N2) representations µ⃗ =
(
µ(1), µ(2), µ(3)

)
, and let

〈
Wµ⃗

〉
≡

〈
3∏
j=1

Wµ(3)

〉
N1,N2;k1,k2

(2.4.8)

denote the correlator of three 1
2 -BPS Wilson loops carrying the representations µ⃗ in ABJ theory

with ranks N1 and N2, and we have allowed generic Chern–Simons levels k1 and k2. We also
denote for shortness sγ⃗(e

2πx) =
∏3
j=1 sγ(j)(e

2πx), and likewise for sη⃗′(e
2πy). The correlator of the

three Wilson loops, using (2.4.1), is

〈
Wµ⃗

〉
=

1

ZABJ

∫
RN1

∫
RN2

∏
1≤a<b≤N1

(2 sinhπ(xb − xa))2
∏

1≤ȧ<ḃ≤N2

(
2 sinhπ(yḃ − yȧ)

)2
× sγ⃗(e

2πx)sη⃗′(e
2πy)

[
N1∏
a=1

N2∏
ȧ=1

(
e2πxa + e2πyȧ

)
e2π(xa+yȧ)

]
N1∏
a=1

eiπkx
2
a dxa

N2∏
ȧ=1

e−iπky
2
ȧ dyȧ.
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The term in square bracket on the second line is a symmetric polynomials both in the variables
e2πxa and e2πyȧ , and we can expand it in the Schur basis using the dual Cauchy identity (2.2.12):[

N1∏
a=1

N2∏
ȧ=1

(
e2πxa + e2πyȧ

)
e2π(xa+yȧ)

]
=

(
N1∏
a=1

e2πN2xa

)(
N2∏
ȧ=1

e3πN1yȧ

)∑
ν

sν′(e
2πx)sν(e

−2πy),

(2.4.9)
with the sum running over all partition of length at most min {N1, N2}. At this point, the
correlator is given by a finite sum of terms, each one completely factorized between the two nodes.
We can exploit (2.4.5) to invert the variables in the second Schur polynomial in (2.4.9), and get
the partition ν∗ instead of ν. We find〈

Wµ⃗

〉
=
ZN1;k1ZN2;k2

ZABJ

∑
ν

C̃0(ν1)C̃1 (γ⃗, ν) C̃2

(
η⃗′, ν∗

) 〈
Wν′Wγ⃗

〉
N1;k1

〈
Wν∗Wη⃗′

〉
N2;k2

, (2.4.10)

where the coefficients are defined as

C̃0(ν1) = exp

[
iπ
N1N

2
2

k1
+ iπ

N2

k2

(
3

2
N1 − ν1

)2
]
,

C̃1 (γ⃗, ν) = exp

[
i2π

N2

k1
(|γ⃗|+ |ν|)

]
,

C̃2

(
η⃗′, ν∗

)
= exp

[
i2π

N1

k2
(|η⃗|+ |ν∗|)

]
.

We are using, as in (2.4.8), the shorthand notation Wγ⃗ ≡
∏
jWγ(j) , |γ⃗| =

∑
j |γ(j)| and so on. We

have also used |η′| = |η|, but note that |ν∗| ≠ |ν|.
Formula (2.4.10) is factorized into two correlators of four ordinary Wilson loops is two pure

Chern–Simons theories, disconnected and without matter. Each correlator can be further sim-
plified expanding pairwise the products of two Schur polynomials in the Schur basis, using the
Littlewood–Richardson rule. Repeating this step twice reduces completely the vev ⟨Wµ⃗⟩ to a finite
sum of products of two ordinary Wilson loop vevs is two pure Chern–Simons theories:

〈
Wµ⃗

〉
=
ZN1;k1ZN2;k2

ZABJ

∑
ν

C̃0(ν1)C̃1 (γ⃗, ν)

∑
ν̃,ν̂,ν̌

Nν′γ(1)
ν̃Nγ(2)γ(3)

ν̂Nν̃ν̂
ν̌ ⟨Wν̌⟩N1;k1


× C̃2

(
η⃗′, ν∗

)∑
σ̃,σ̂,σ̌

Nν∗η(1)′
σ̃Nη(2)′η(3)′

σ̂Nσ̃σ̂
σ̌ ⟨Wσ̌⟩N2;k2

 .
The Wilson loop vevs are known, cf. (2.2.1), and the coefficients Nµν

ν̃ are the Littlewood–
Richardson coefficients, and recall that the sum over ν only includes a finite number of terms.

From the derivation, it is clear that the method applies to the correlator of any number of
Wilson loops greater than two. Consider ABJ theory with ranks N1 and N2 and Chern–Simons
levels k1 and k2. Let µ⃗ be a set of nW ≥ 2 irreducible typical U(N1|N2) representations, and take
the correlator of the nW

1
2 -BPS Wilson loops in the representations µ⃗. The recipe to compute the

correlator is:

• apply the factorization (2.4.1) to all the nW supersymmetric Schur polynomials, and

• simplify two of the products arising from (2.4.1) with the denominator coming from the
bi-fundamental hypermultiplets.
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• Apply nW− 2 times the dual Cauchy identity (2.2.12) to expand all the remaining products
in the numerator in the Schur basis.

• Use (2.4.5) to bring all the Schur polynomials with variables e−2πx or e−2πy into functions
of e2πx and e2πy.

• Expand the product of ordinary Schur polynomials pairwise using the Littlewood–Richardson
rule. Repeat this step until the products are completely reduced.

• The final result is a finite sum of Wilson loop vevs in pure Chern–Simons theory, wrapping
a great circle in S3.

Besides, we notice that if some of the supersymmetric Schur polynomials have inverted variables
[108], the recipe does not change and they are taken care of in the fourth step.

As a sample application, consider the particular case of four rectangular N1 × N2 Young
diagrams, µ⃗ = (κ, κ, κ, κ). From (2.4.1) we obtain

⟨(Wκ)
4⟩ = 1

ZABJ

∫
RN1

∫
RN2

∏
1≤a<b≤N1

(2 sinhπ(xb − xa))2
∏

1≤ȧ<ḃ≤N2

(
2 sinhπ(yḃ − yȧ)

)2
×

[
N1∏
a=1

N2∏
ȧ=1

2 coshπ(xa − yȧ)

]2 N1∏
a=1

eiπkx
2
a+4πN2xa dxa

N2∏
ȧ=1

e−iπky
2
ȧ+4πN1yȧ dyȧ,

which, except for the normalization by ZABJ, is the partition function of pure U(N1+N2) Chern–
Simons theory on the lens space L(2, 1) ≃ S3/Z2, evaluated in the background of a fixed, generic
flat connection that breaks the gauge symmetry

U(N1 +N2) −→ U(N1)× U(N2).

Following the steps listed above, we get

⟨(Wκ)
4⟩ =

ZN1;k1ZN2;k2

ZABJ

∑
ν,ν̃

Ĉ(ν, ν̃)

[∑
ν̂

Nν′ν̃′
ν̂(dimq1 ν̂)q

− 1
2
C2;N1

(ν̂)

1

]

×

[∑
σ̂

Nν∗ν̃∗
σ̂(dimq1 σ̂)q

− 1
2
C2;N1

(σ̂)

1

]
,

with coefficient

Ĉ(ν, ν̃) = exp

[
iπ
N1

k1

(
N2

2 + 2|ν|+ 2|ν̃|
)
+ iπ

N2

k2

(
(2N1 − ν1 − ν̃1)2 + |ν∗|+ |ν̃∗|

)]
.

The complete partition function of pure U(N) Chern–Simons theory on L(2, 1) is obtained from
this expression, dropping the overall normalization and summing over all N1 and N2 with N1 +
N2 = N fixed.

2.4.5 Necklace quivers

We now discuss the insertion of supersymmetric Schur polynomials in the matrix model describing
quiver Chern–Simons theories

U(N0)k0 × U(N1)k1 × · · · × U(Nr)kr .
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We focus for clarity on an extended Âr-type quiver, periodically identifying the nodes r + 1 ≡ 0,
being the discussion for linear quivers completely analogous. Let us fix p ∈ {0, . . . , r} and consider
a typical U(Np|Np+1) representation µ. The average of the supersymmetric Schur polynomial sµ
is

⟨sµ⟩ =
∫
Rr+1

sµ
(
e2πxp |e2πxp+1

) r∏
p=1

Np∏
a=1

eiπkpx
2
adxa∏

1≤a<b≤Np
(2 sinhπ(xp,a − xp,b))2

∏
1≤ȧ<ḃ≤Np+1

(2 sinhπ(xp+1,a − xp+1,b))
2∏Np

a=1

∏Np+1

ȧ=1 2 coshπ(xp,a − xp+1,ȧ)
.

The identity (2.4.1) has the net effect to cut the edge joining the pth node to the (p+1)th, leaving
behind the correlator of two Wilson loops, one in the U(Np) representation γ and the other in the
U(Np+1) representation η

′, computed in a Ar+1 linear quiver gauge theory.
The correlator of more than one supersymmetric Schur polynomial, taken in typical represen-

tations of different supergroups U(Np|Np+1), cuts the edges joining each pair of nodes involved
in the definition of the supersymmetric Schur polynomials. The final expression is factorized into
the correlators of Wilson loops in disconnected linear quivers, with the loop operator inserted at
the first or last node of each sub-quiver.

Consider, for example, a necklace quiver with four nodes, and take a typical U(N0|N1) repre-
sentations µ and a typical U(N1|N2) representations µ̃, as in Figure 2.17. We find

⟨sµsµ̃⟩Â3
=
ZN1;k1ZA3

Z
Â3

⟨WγWη̃′⟩A3⟨Wη′Wγ̃⟩N1;k1 .

N0 N1

N2N3 N0

N1

N2N3

•
•

••

Figure 2.17. Left: Â3 quiver with two supersymmetric Schur polynomial insertions, represented as a blue
and a red line respectively. Right: the same quantity is factorized into two disjoint sub-quivers, with blue
and red dots denoting ordinary Schur polynomial insertions.

The special case〈
r∏
p=0

sµ(p)

〉
with µ(p) a typical U(Np|Np+1) representation

is completely factorized into correlators of pairs of Wilson loops in ordinary, bosonic U(Np) Chern–
Simons theory with renormalized Chern–Simons level kp, for all p = 0, 1, . . . , r.

2.5 Schur expansion and its perturbative meaning

In this section, we exploit the Cauchy identity (2.2.10) in different classes of Chern–Simons-matter
theories and uncover a relation between the partition function of such theories and formal power
series encoding topological invariants of simple links and (un)knots. As we will see, the series that
appear are coarse-grained versions of generating functions. The invariants we obtain on the right-
hand side are associated to either the unknot, a collection of unlinked unknots, or the Hopf link,
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coloured by U(N) or SU(N) representations. If we denote by t the variable in the generating-like
series of such link invariants, we find that it is related to the physical quantities of the gauge
theory we started with through

t = −e2πm (2.5.1)

where m is a real mass parameter. If there are more mass parameters, associated to the Cartan
subalgebra of the flavour symmetry, we get a collection {tj} =

{
−e2πmj

}
.

The simple rewriting

t = e−i2π(
1
2
+im) ≡ e−i2πλ

shows that t is a fugacity for the variable λ = 1
2 + im, which is ubiquitous in the calculations of

Section 2.3. More accurately stated, in Sections 2.2.3 and 2.3 we have found that the results are
functions of the fugacity ei2πλ signℜk, but it is in fact a matter of conventions whether we choose
to expand in positive or negative powers of t, as will be clear from the examples below.

As we already pointed out in Subsection 2.3.3, the partition function is holomorphic in λ,
which is precisely the holomorphic variables of Jafferis [96], but further constrained by the N ≥
3 supersymmetry in all the theories considered in the present work. Besides, we have found
holomorphy in the vertical strip {0 < ℜλ < 1,−∞ < ℑλ < +∞} [61], thus the partition functions
are holomorphic functions of t ∈ C \R≥ 0.

The fact that turning off background values for the flavour symmetry corresponds to “take
the Euler characteristic”, t→ −1, may point toward an interpretation in terms of categorification
of link invariants [109, 110], although not in the direction of the Khovanov–Rozansky homology.
However, as we will see explicitly in the examples below, the quantities we obtain with our
prescription have a too simple structure to capture homological data. In conclusion, there are
obstructions in embedding the results presented in this section into some homological theory of
knots.

Before diving into the detailed analysis, a remark is in order. It is important to bear in mind
that the Cauchy identity (2.2.10) is algebraic, and is meant as an equality of the coefficients of
the book-keeping variables {tj} order by order in a (possibly formal) series expansion.4 We will

use the symbol “
pert.
= ” to signify that the equality between the left- and the right-hand side will be

understood as equating the coefficients of each variable tj order by order. Note that the distinction
between perturbative and non-perturbative in all the formulas in this section is meant as functions
of the fugacities {tj} of the global symmetries, and not as functions of the gauge or Chern–Simons
couplings.

A toy example: Dawson’s integral

To set the ground for the Schur expansion of physically sensible theories in the forthcoming
Subsections, we firstly present our argument in a toy model. Consider the integral

FDawson(t
−1) =

∫ +∞

−∞

dx√
π

e−x
2

x+ t−1
=
√
πe−i

π
2
sign(t)− 1

t2︸ ︷︷ ︸
non-pert.

+t+
1

2
t3+

3

4
t5+

15

8
t7+

105

16
t9+ . . . (2.5.2)

known as Dawson’s integral [111]. The Gaussian damping term plays the role of the Chern–Simons
coupling in this toy example, and moreover we ave chosen to write t−1 instead of t to mimic what
we get from massive hypermultiplets in the physical theories. In the right-hand side we have
identified a non-perturbative part in t and a formal power series in t. The customary expansion of

4The dual Cauchy identity (2.2.12), instead, is a finite sum and this issue does not show up.
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2.5. Schur expansion and its perturbative meaning

a Stieltjes transform such as (2.5.2) consists in considering the denominator as a geometric series,
giving:

FDawson(t
−1)

pert.
= t+

1

2
t3 +

3

4
t5 +

15

8
t7 +

105

16
t9 + . . .

The agreement of this solution with (2.5.2) can be checked to arbitrarily high order in t, once the
non-perturbative term is discarded.

2.5.1 Schur expansion of A1 theories with adjoint matter

Schur expansion: SU(2) Chern–Simons theory with one adjoint hypermultiplet

Let us consider the partition function of SU(2)k Chern–Simons theory with one adjoint hypermul-
tiplet. We turn on a real mass m associated to the U(1) flavour symmetry rotating the adjoint,
and define the fugacity t = −e2πm, as in (2.5.1). The partition function is

ZSU(2),1adj(m) =

∫ +∞

−∞
dx1

∫ +∞

−∞
dx2 δ(x1 + x2)

(2 sinhπ(x1 − x2))2 eiπk(x
2
1+x

2
2)

(2 coshπ(x1 − x2 +m))(2 coshπ(x2 − x1 +m))

=

∫ +∞

−∞
dx

4 sinh(2πx)2 ei2πkx
2

(2 coshπ(2x+m))(2 coshπ(2x−m))
.

Rewriting the denominator and using the Cauchy identity (2.2.10) we arrive at

ZSU(2)k,1adj(m)

ZSU(2)k

pert.
=

∞∑
ν=0

tν+1⟨Wνν⟩SU(2), (2.5.3)

where we have used the definition (2.5.1). The sum runs over isomorphism classes of irreducible
SU(2) representations, in one-to-one correspondence with non-negative integers ν. We recognize
the generating function of the vevs of a Wilson loops running along a Hopf link in S3, computed
in SU(2) Chern–Simons theory with renormalized coupling k = kbare + 2. These vevs in turn are
given by coloured Jones polynomials [42].

Schur expansion: SU(N) Chern–Simons theory with one adjoint hypermultiplet

We now generalize the discussion above to higher rank, considering SU(N) theory. We may
consider U(N) theory as well, and the procedure goes through in precisely the same way.

The partition function of SU(N) Chern–Simons theory coupled to one adjoint is

ZSU(N)k,1adj(m) =

∫
RN

dNx δ

(
N∑
a=1

xa

) ∏
1≤a̸=b≤N 2 sinhπ(xa − xb)∏N
a,b=1 2 cosh(xa − xb +m)

eiπk
∑N

a=1 x
2
a .

The usual manipulations on the denominator, taking advantage of the δ function in the integrand
to simplify the expression, and the application of the Cauchy identity (2.2.10) lead us to

N∏
a=1

N∏
b=1

(
1 + e2πxae−2πxb+2πm

)−1
=
∑
ν

sν(e
2πx)sν(−e−2πx+2πm),

where the sum is over irreducible representation of SU(N), which are equivalently represented by
Young diagrams with at most N − 1 rows. We also adopted a shorthand notation sν(e

2πx) :=
sν(e

2πx1 , e2πx2 , . . . , e2πxN ). We obtain the expansion of the partition function

ZSU(N)k,1adj(m)

ZSU(N)k

pert.
= t

N(N−1)
2

∑
ν

t|ν| ⟨Wνν⟩SU(N) . (2.5.4)
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Exact results and Schur expansions in quiver Chern–Simons-matter theories

We have used the definition (2.5.1) of the fugacity t, and |ν| is the number of boxes in the Young
diagram ν.

We find a (formal) polynomial in two variables (q, t), which as a function of the variable t, looks
similar to a generating function of HOMFLY-PT polynomials of the Hopf link coloured by SU(N)
representation. Note that the Hopf link is non-generic, since it is yields equal representations on
the two components. Note also that it is not truly a generating function, because each summand
is weighted by t|ν|, which does not distinguish between representation with the same value of |ν|.

Schur expansion: SU(N) Chern–Simons theory with Nadj adjoint hypermultiplets

The computations can be extended to an arbitrary number Nadj = n of adjoint hypermultiplets
with generic masses. The SU(N) partition function is

ZSU(N)k,1adj(m) =

∫
RN

dNx δ

(
N∑
a=1

xa

) ∏
1≤a̸=b≤N 2 sinhπ(xa − xb)∏Nadj

j=1

∏N
a,b=1 2 cosh(xa − xb +mj)

eiπk
∑N

a=1 x
2
a .

We mimic the steps above and apply the Cauchy identity n times, arriving at

ZSU(N)k,Nadj
(m)

ZSU(N)k

pert.
=

 n∏
j=1

t
N(N−1)

2
j

 ∑
ν(1)

t
|ν(1)|
1 · · ·

∑
ν(n)

t|ν
(n)|

n

〈
n∏
j=1

Wν(j)ν(j)

〉
SU(N)

.

The average computes the correlator of n = Nadj pairwise unlinked Hopf links, each one with
equally coloured components.

2.5.2 Schur expansion of A1 theories with fundamental matter

Schur expansion: U(1) theory with Nf hypermultiplets

We now go back to the Abelian A1 Chern–Simons theory with Nf massive hypermultiplets, dis-
cussed in Subsection 2.3.2. We assume an even number of hypermultiplets Nf = 2n and write the
partition function in the form

ZU(1),2n(k, m⃗) =

∫ +∞

−∞
dx

eiπkx
2+2πnx∏2n

j=1 (1− tje2πx)
,

where tj = −e2πmj , as defined in (2.5.1), and we used
∑Nf

j=1mj = 0 to drop an overall factor. We
now exploit the Cauchy identity (2.2.10). We thus write

2n∏
j=1

(
1− tje2πx

)−1
=

∞∑
ν=0

sν(e
2πx)sν(t1, . . . , t2n) (2.5.5)

and obtain:
ZU(1),2n(k, m⃗)

ZCS(1)k

pert.
=

∞∑
ν=0

sν(t1, . . . , t2n)⟨Wν+n⟩U(1)k

where ⟨Wν+n⟩U(1)k stands for the vev of the Wilson loop in the U(1) representation corresponding
to ν+n ∈ Z>0 computed in pure Chern–Simons theory on S3 at level k. Recall that the fugacities
tj are defined in (2.5.1) as minus the fugacities for the maximal torus of the flavour symmetry.
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2.5. Schur expansion and its perturbative meaning

This Abelian case is particularly simple: recall from (2.2.11) that equation (2.5.5) gives in
fact the generating function of the homogeneous symmetric polynomials hν(t1, . . . , t2n) [90], and
besides the Wilson loop is captured by a simple Gaussian integral. We get:

ZU(1),2n(k, m⃗)
pert.
=

√
i

k
e

iπ
k
n2

∞∑
ν=0

e
iπ
k
(ν2+2νn)hν(t1, . . . , t2n) (2.5.6)

=

√
i

k

{
e

iπ
k
n2 − e

iπ
k
(n+1)2h1(t1, . . . , t2n) + e

iπ
k
(n+2)2h2(t1, . . . , t2n) + . . .

}
,

where h1(t1, . . . , t2n) =
∑2n

j=1 tj , h2(t1, . . . , t2n) =
∑

1≤j≤l≤2n tjtl and so on, and recall that the
number of flavours is Nf = 2n. The result is a symmetric polynomial in the fugacities tj .

We can compare the result (2.5.6) with the exact one obtained in Section 2.3.2, but in doing
so we have to bear in mind a few caveats:

• While the physical parameters satisfy
∏2n
j=1 tj = 1, we should treat these as formal indeter-

minates, thus expanding for each tj independently.

• The formal expansion is in positive powers of tj , hence it will be compared with k < 0
in Subsection 2.3.2. We could as well have begun with the expansion in negative powers
of tj , to be compared with k > 0 in 2.3.2. In each case, the choice must be made at
the beginning, through the manipulations of the denominator before plugging the identity
(2.2.10). Nevertheless, the summation variable ν plays the role of a real irreducible U(1)
representation, and through the isomorphism with its conjugate representation we could
extract the expansion for k > 0.

• The Schur expansion will miss non-perturbative terms in tj , namely those ∝ e−iπk(
1
2
+imj)

2

.

After elementary manipulations of the result in Subsection 2.3.2 and dropping non-perturbative
terms, the expansion relative to a single tj is

1

1− (−tj)|k|

|k|−1∑
α=0

tαj e
iπ
k
(α+n)2

∏
s ̸=j

∞∑
βs=0

(
ts
tj

)βs
.

The prefactor should be expanded as a geometric series to compare with the Schur expansion. In

this way, the terms t
β|k|
j kick in extending the summation range beyond α = |k| − 1,

∞∑
β=0

|k|−1∑
α=0

(−1)β|k|e
iπ
k
(α+n)2t

α+β|k|
j

∏
s̸=j

∞∑
βs=0

(
ts
tj

)βs
. (2.5.7)

To check the agreement of the two expressions requires care in the power counting. So, for example,
tho compare at order t1j , one should take into account all the combinations, which in particular
include a term from all the homogeneous polynomials in the Schur expansion, which contribute

e
iπ
k
(n+1)2tj +

∑
s ̸=j

e
iπ
k
(n+2)2tjts +

∑
s1,s2 ̸=j

e
iπ
k
(n+3)2tjts1ts2 + . . .

For hν with ν > |k| − 1 write ν = α+ β|k| and use

e
iπ
k
(n+ν)2 = e

iπ
k
(n+α)2+iπβ2|k| = (−1)β|k|e

iπ
k
(n+α)2 .

On the side of the exact evaluation (2.5.7) in turn we see that all α and β contribute, as they

are partially cancelled by the t−βsj . Term by term comparison shows that the Schur expansion
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Exact results and Schur expansions in quiver Chern–Simons-matter theories

correctly reproduces the exact answer, with the non-perturbative contributions already discarded.
Let us stress once again that the agreement is understood in an algebraic sense, reading off the
coefficients of the multiple expansion in {tj}.

To conclude the analysis of the present theory, we note that the same expressions have been
analyzed in [112], in the context of topological strings with non-compact branes. To make contact
with that setting we specialize the masses

mj = m

(
n− j + 1

2

)
(recall that Nf = 2n) and define t = −e2πm. The homogeneous polynomials become a q-binomial,
with q-parameter t:

hν

(
tn−

1
2 , . . . , t−n+

1
2

)
=

[
n
ν

]
t

.

Then, our expressions differ from [112] only in the Gaussian term in the sum. This mismatch is
exactly the factor due to the difference in the framing, as the Wilson loop vev on S3 in [112] is
computed in the natural framing instead of the matrix model framing.

Schur expansion: U(N) and SU(N) theory with Nf hypermultiplets

The manipulations above have been presented in the Abelian theory for clarity, but are straight-
forwardly generalized to the non-Abelian setting. The partition function of U(N)k Chern–Simons
theory with Nf fundamental hypermultiplets, studied in Section 2.3.2, is more suitably written
for our purposes in the form

ZU(N),Nf
=

∫
RN

∏
1≤a<b≤N (2 sinhπ(xb − xa))2∏N

a=1

∏Nf

j=1 (1− tje2πxa)

N∏
a=1

eiπkx
2
a+πNfxa dxa.

When the gauge group is SU(N) the partition function includes a δ-function δ
(∑N

a=1 xa

)
in the

measure.

Using the Cauchy identity (2.2.10), we identify the average of a Schur polynomial in the
Chern–Simons random matrix ensemble, which computes the vev of a Wilson loop. Note however
that in principle we cannot reabsorb the πNfxa in the exponential because it would move the
integration contour away from the real axis, and the integrand has poles in the complex plane.
Equivalently, the problem can be seen reabsorbing the shift into a redefinition of the masses, which
would acquire half-integer imaginary part, rendering the integrand singular. To handle this, we
pass from q = e−i2π/k to q = e−g, g > 0. Doing so, we can safely complete the square in the
matrix model, and the change of variables shifts 2πmj 7→ 2πmj +

g
2Nf .

This problem does not arise in the SU(N) theory, since the δ-constraint on the eigenvalues
would cancel the linear shift, and we are allowed to work directly with q root of unity.

With this distinction in mind, we get for the U(N) case

ZU(N),Nf

ZCS(N)

pert.
= q−

N2
f
8

∑
ν

sν

(
q−

Nf
2 t1, . . . , q

−
Nf
2 tNf

)
⟨Wν⟩CS(N). (2.5.8)

The sum runs over Young diagrams associated to irreducible U(N) representations, and the basic
properties of the symmetric polynomials imply that all contributions with

length(ν) > min {N,Nf}
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2.5. Schur expansion and its perturbative meaning

vanish. The average ⟨· · · ⟩CS(N) means the vev in U(N) Chern–Simons theory with real q = e−g.
The overall factor in (2.5.8) is reminiscent of the effective Chern–Simons coupling associated

to a mixed flavour-R contact term [98]. Besides, we again notice how the result is more naturally
written in terms of fugacities for the holomorphic variables λj = 1

2 + imj rather than for the
masses mj alone. The q-shift of the mass parameters seem likewise to originate from an effective
coupling for the background fields. This q-shift can be brought out of the Schur polynomials and

contributes a factor q−
Nf
2

|ν| to each summand.
The Wilson loop vev is known [83] and has been presented in equation (2.2.1), which we report

here for clarity:

⟨Wν⟩CS(N) = (dimq ν) q
− 1

2
C2;N (ν).

In the SU(N) theory instead we obtain

ZSU(N),Nf

ZSU(N)k

pert.
=
∑
ν

sν
(
t1, . . . , tNf

)
⟨Wν⟩SU(N)k . (2.5.9)

The difference, besides the overall factor q−
N2
f
8 , is the specialization of the variables in the argument

of the Schur polynomial, which are not renormalized by a q-shift.
We have therefore written the partition function of Chern–Simons theory with Nf fundamental

hypermultiplets as a generating-like function of unknot invariants. From (2.5.8) we can also obtain

the Schur expansion of the A2 quiver theory, simply dropping the constraint
∏Nf

j=1 tj = (−1)Nf

(this would introduce a factor
∏Nf

j=1(−tj)N in the matrix model, which we have set to 1) and
gauging the U(Nf ) symmetry. Adding a Chern–Simons term to the newly gauge node and using
(2.2.1) we find for the A2 quiver U(N1)× U(N2) Chern–Simons theory

ZA2

ZCS(N1)ZCS(N2)

pert.
= q

−
N2
f
8

1

∑
ν

(
−q−

N2
2

1

)|ν|
(dimq1 ν)(dimq2 ν) q

− 1
2
C2;N1

(ν)

1 q
− 1

2
C2;N2

(ν)

2

where q1 and q2 are the q-parameters of the two pure Chern–Simons theories obtained removing
the edge joining the two nodes of the A2 quiver.

Schur expansion: SU(N) theory with fundamental and adjoint hypermultiplets

We can consider a theory with both Nf fundamental and Nadj adjoint hypermultiplets. We will
limit ourselves to Nadj = 1, being the effect of adding more adjoint matter studied in Subsection
2.5.1. We work with gauge group SU(N) for concreteness, being the U(N) theory completely
analogous, up to a change of variables which generates a q-shift of the fugacities tj .

ZSU(N),Nf ,1adj(m⃗,m0) =

∫
RN

δ

(
N∑
a=1

xa

) ∏
1≤a<b≤N (2 sinhπ(xb − xa))2∏N

a,b=1 (1− t0e2πxa−2πxb)

N∏
a=1

eiπkx
2
a dxa∏Nf

j=1 (1− tje2πxa)
.

Here the variables {tj} are as in (2.5.1), and we have denoted m0 the mass of the adjoint and
t0 = −e2πm0 the corresponding fugacity. Combining the manipulations of Subsection 2.5.1 with
those of 2.5.2 we arrive at

ZSU(N),Nf ,1adj(m⃗,m0)

ZSU(N)k

pert.
=
∑
µ,ν

t
|µ|
0 sν(t1, . . . , tNf

)⟨WµWνµ⟩SU(N)k .

From the matrix model description we see that, adding fundamental matter to the theory with
one adjoint, we have produced more interesting observables, which are correlators of two Wilson
loops, one along an unknot and one along a Hopf link, with the latter not necessarily coloured by
two equal representations.
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Schur expansion: 4d N = 4 super-Yang–Mills with defects

We now apply the ideas presented in this section to a special case of four-dimensional gauge
theory, namely N = 4 U(N) super-Yang–Mills (SYM) on S4 with codimension-one matter defects
placed at the equatorial S3 ⊂ S4 [113]. The partition function of such theory, as obtained from
localization, is [113, 114]

Z4d+defect
U(N),Nf

=

∫
RN

∏
1≤a<b≤N

(xa − xb)2
N∏
a=1

e
− 8π2

g4d
x2a dxa∏Nf

j=1 2 coshπ(xa +mj)
.

Applying identical manipulations as in Subsection 2.5.2, we arrive at a perturbative expansion
in the parameters tj , exactly as in the purely 3d framework, but now the summands are vevs of

Wilson loops computed in 4d N = 4 SYM (with q4d = e−g4d/16π
2
):

Z4d+defect
U(N),Nf

Z4d N=4
U(N),Nf

pert.
= q

−
N2
f
8

4d

∑
ν

sν

(
q
−

Nf
2

4d t1, . . . , q
−

Nf
2

4d tNf

)
⟨Wν⟩4d N=4

U(N) .

2.5.3 Schur expansion of necklace quiver theories

The focus of this Subsection is on quiver gauge theories of type Âr.

Schur expansion: ABJ

We now consider the mass-deformed ABJ theory, whose partition function reads:

ZABJ(N1|N2)(k,m) =

∫
RN1

dN1 x⃗eiπk
∑N1

a=1 x
2
a

∫
RN2

dN2 y⃗e−iπk
∑N2

ȧ=1 y
2
ȧ

×
∏

1≤a<b≤N1
(2 sinhπ(xb − xa))2

∏
1≤ȧ<ḃ≤N1

(
2 sinhπ(yḃ − yȧ)

)2∏N1
a=1

∏N2
ȧ=1 2 coshπ(xa − yȧ +m−) 2 coshπ(xa − yȧ +m+)

where the physical values of the masses are m± = ±m, but here we treat them as independent.
This can be achieved turning on a FI parameter which, upon changing variables, shifts the real
masses. The second line is more conveniently written as

eπ(N1+N2)(m+−m−)

[
N1∏
a=1

N2∏
ȧ=1

(
1 + e2πxae−2π(yȧ+m−)

) (
1 + e−2πxae2π(yȧ+m+)

)]−1

.

We now apply the Cauchy identity (2.2.10)

[
N1∏
a=1

N2∏
ȧ=1

(
1 + e±2πxae∓2π(yȧ+m∓)

)]−1

=
∑
ν

sν(−e±2πx)sν(e
∓2π(y+m∓)),

adopting the usual shorthand e2πx for (e2πx1 , . . . , e2πxN1 ) and likewise for e2πy, and the sum runs
over all partitions ν with

length(ν) ≤ min(N1, N2). (2.5.10)
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Therefore, bringing the common factors e∓2πm∓ out of the Schur polynomials in e2πy we get

ZABJ(N1|N2)(k,m)
pert.
= eπ(N1+N2)(m+−m−)

∑
µ

∑
ν

(−e2πm+)|µ|(−e−2πm−)|ν|

×
∫
RN1

sµ(e
2πx)sν(e

−2πx)
∏

1≤a<b≤N1

(2 sinhπ(xb − xa))2
N1∏
a=1

eiπkx
2
adxa

×
∫
RN2

sµ(e
−2πy)sν(e

2πy)
∏

1≤ȧ<ḃ≤N2

(
2 sinhπ(yḃ − yȧ)

)2 N2∏
ȧ=1

e−iπky
2
ȧdyȧ.

We find that the integrals are factorized into vevs of Wilson loops in pure Chern–Simons theory
[107] at each node:

ZABJ(N1|N2)(k,m)
pert.
= eπ(N1+N2)(m+−m−)

∑
µ

∑
ν

(−e2πm+)|µ|(−e2πm−)−|ν|⟨Wµν⟩N1;k⟨Wνµ⟩N2;−k

where the equality is understood order by order in the Laurent expansion in the parameters
t± = −e2πm± , and the two vevs compute Hopf link invariants respectively in U(N1) and U(N2)
pure Chern–Simons theory on S3 with renormalized levels k and −k. Note also how the roles of
the two representations µ, ν are swapped between the two nodes. The restriction (2.5.10), which
arises here from an elementary property of the symmetric polynomials, matches with the analysis
of the quiver variety of Â1, which only includes U(N) representations for N = min {N1, N2}.

The result does not rely on the specific choice of Chern–Simons levels and immediately extends
to generic (k1, k2).

Schur expansion: necklace quivers

ABJ theory belongs to the class of extended Âr quivers. We now show how the Schur expansion
holds for the whole Âr family of theories, with mass deformation and without any additional
matter content beyond the bi-fundamental hypermultiplets linking the gauge nodes, as depicted
in quiver notation in Figure 2.18. These N = 3 Chern–Simons theories have been constructed
in [75, 76]. The result we find is a series expansion in the parameters tp = −e2πmp , with the
coefficients being vevs of a Wilson loop in pure Chern–Simons theory with gauge group U(Np)
and level kp.

N0

N1

N2

Nr

Nr−1

· · ·

m1

m2mr−2

mr−1

mr m0

Figure 2.18. Mass-deformed non-Abelian Âr extended quiver.
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The partition function of the theory is:

Z
Âr

(k⃗, m⃗) =

∫
RN0

dN0 x⃗0

∫
RN1

dN1 x⃗1 · · ·
∫
RNr

dNr x⃗r

r∏
p=0

eiπkp
∑Np

a=1 x
2
p,a

×
r∏
p=0

∏
1≤a<b≤Np

(2 sinhπ(xp,b − xp,a))2∏Np

a=1

∏Np+1

ḃ=1
2 coshπ(xp+1,ḃ − xp,a +mp)

,

with periodic identification of the labels, r + 1 ≡ 0. At the level of the matrix model, the
eigenvalues associated to each gauge node interact among themselves as in pure U(Np)kp Chern–
Simons theory, and also interact with the nearest neighbours through the denominator.

We apply the Cauchy identity (2.2.10) at each edge of the quiver in Figure 2.18, expanding
in the fugacities associated to the masses of the bi-fundamental hypermultiplets. We obtain the
expressions

1∏Np

a=1

∏Np+1

ḃ=1
2 coshπ(xp,a − xp+1,ḃ +mp)

=

Np∏
a=1

Np+1∏
ḃ=1

eπ(xp,a+mp)−πxp+1,ḃ

1 + e2π(xp,a+mp)e−2πxp+1,ḃ

= e
π(Np+1+Np)mp−πNp+1

∑Np
a=1 xp,a−πNp

∑Np+1

ḃ=1
xp+1,ḃ

×
∑
ν(p)

(−1)|ν(p)|sν(p)(e
2π(xp+mp))sν(p)(e

−2πxp+1),

where the sum runs over partitions ν(p) satisfying

length(ν(p)) ≤ min(Np, Np+1). (2.5.11)

Each set of variables e2πxp appears with plus sign in the exponent in the Schur sν(p) and with
minus sign in sν(p−1) . Besides, as above, we have written sν(p)(e

2πxp) as a shorthand for the Schur
polynomial in the Np variables (e2πxp,1 , . . . , e2πxp,Np ). Putting all such contributions together we
get

Z
Âr

(k⃗, m⃗)
pert.
=

∫
RN0

∫
RN1

· · ·
∫
RNr

r∏
p=0

Np∏
a=1

e[iπkpx
2
p,a+π(Np+1−Np−1)xp,a] dxp,a

×
r∏
p=0

∏
1≤a<b≤Np

(2 sinhπ(xp,b − xp,a))2

× eπ
∑r

p=0(−1)pmp(Np+1+Np)
∑
ν⃗

(−1)|ν⃗|
r∏
p=0

e(−1)p2πmp|ν(p)| sν(p−1)(e−2πxp)sν(p)(e
2πxp),

with the sum running over (r + 1)-tuples of partitions

ν⃗ = (ν(0), . . . , ν(r)),

with all partitions ν(p) constrained according to (2.5.11). The integrals are now suitably factorized
in each summand. Completing the squares in the Gaussian term at each node and comparing with
[107], we obtain

Z
Âr

(k⃗, m⃗)∏r
p=0ZCS(Np);kp

pert.
= e

π
∑r

p=0

[
mp(Np+1+Np)+

i
2kp

Np(Np+1−Np−1)2
]

(2.5.12)

×
∑
ν⃗

r∏
p=0

tp|ν(p)| e
i

2kp
(Np+1−Np−1)(|ν(p)|−|ν(p−1)|) ⟨Wν(p)ν(p−1)⟩Np;kp ,
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2.5. Schur expansion and its perturbative meaning

where the average in each summand is the vev of a Wilson loop in U(Np)kp Chern–Simons theory,

computing the Hopf link invariant in the representations (ν(p), ν(p−1)). As always, the two sides
of the equality are understood as formal series expansions in the parameters tp = −e2πmp . These
global symmetry fugacities serve as book-keeping variables in the expansion, while all other vari-
ables are integrated. Furthermore, if we think of each ⟨W••⟩Np;kp as a ring homomorphism from
the ring of U(Np) representations to C[qp, q−1

p ], we notice the emergence of a trace of the product
of r + 1 such maps as a direct consequence of the quiver being necklace-shaped. This trace is
taken on the ring of U(Nmax) representations, with Nmax = maxpNp and ⟨Wµν⟩Np;kp understood
to vanish if either µ or ν is not a U(Np) representation. The trace structure appears more clearly
when Np = N and kp = ±k for all p = 0, 1, . . . , r.

From the properties of pure Chern–Simons theory and its relation with the level k WZW
model [42], only integrable representations contribute to each Hopf link invariant. This introduces
an effective “mod kp” periodicity [89] of the coefficients of each tp.

Schur expansion: the M-crystal model

A simple yet interesting example of the above setting corresponds to the Abelian model with
alternating ±1 Chern–Simons levels, k⃗ = (+1,−1, . . . ,−1). This quiver gauge theory describes
the M-crystal model [104, 105], see for example Figure 2.19. Specializing the computations above
and after a few simplifications we get

Z
Âr

(±1, m⃗)∏r
p=0ZCS(1);(−1)p

pert.
= e2π|m⃗|

∑
ν⃗∈Zr+1

≥0

r∏
p=0

(
−e2πmpν(p)+i2π(−1)pν(p−1)ν(p)

)
.

The series is clearly not convergent, but this was expected as the right-hand side has the meaning
of an algebraic expansion in multiple variables. In conclusion, a perturbative expansion of the
partition function of the M-crystal model has all the terms tν

(0)

0 · · · tν(r)r with coefficient 1.

11

11

m0

m1

m2

m3

Figure 2.19. Mass-deformed Â3 extended quiver. For k⃗ = (1,−1, 1,−1) the associated Chern–Simons
theory is the gauge theoretical realization of the M-crystal model with four vertices.

A simple generalization of the above formula to the Abelian necklace quiver with arbitrary k⃗
gives

Z
Âr

(k⃗, m⃗)∏r
p=0ZCS(1);kp

pert.
= (−1)r

 r∏
p=0

tp

 ∑
ν⃗∈Zr+1

≥0

r∏
p=0

tν
(p)

p e
−iπν(p)

(
1
kp

+ 1
kp−1

)
+i 2π

kp
ν(p)ν(p−1)

. (2.5.13)

When r = 1 and k2 = −k1 we get the Abelian ABJM theory, exactly solved in Subsection 2.3.4.
As a consistency check, we expand the geometric series

k−1∑
α=0

tαj

tkj − 1
= −

k−1∑
α=0

∞∑
β=0

tα+βkj = −
∞∑
α=0

tαj

in the answer from Subsection 2.3.4, and confirm that the Schur expansion reproduces the correct
coefficients to all orders in t1, t2, although, as expected, it misses all the terms proportional to

eiπm
2
j .
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2.5.4 Schur expansion for Wilson loops

It is possible to combine the ideas used in this section with those of Section 2.4 to study Wilson
loops.

We come back to the setting of Section 2.4 and consider the vev of a single 1
2 -BPS Wilson loop

in ABJ theory, with ranks N1 and N2. We assume the Wilson loop carries a typical representation
µ of the supergroup U(N1|N2) [73]. We write

sµ(e
2πx|e2πy)∏N1

a=1

∏N2
ȧ=1 (2 coshπ(xa − yȧ))

2
= sγ(e

2πx)sη′(e
2πy)

N1∏
a=1

N2∏
ȧ=1

e2πxa+2πyȧ

e2πxa + e2πyȧ

= sγ(e
2πx)sη′(e

2πy)

(
N1∏
a=1

e2πxa

)∑
ν

(−1)|ν|sν(e2πx)sν(e−2πy),

where the first equality follows from the factorization property (2.4.1), while to pass from the first
to the second line we have used the Cauchy identity (2.2.10) and brought out the factor (−1) from
sν(−e−2πy). The sum over ν runs over all partitions

{ν : length(ν) ≤ min(N1, N2)} .

It is important to stress the difference between the results we present in this subsection and the
ones we have found in Section 2.4. There, the correlator of two or more Wilson loops in ABJ
has been taken into account, and the factorization of the final result into vevs of Wilson loops in
Chern–Simons theories without matter is exact. Here, instead, we consider a single Wilson loop
in ABJ, and we use the Cauchy identity to expand the interaction between the two nodes. In
turn, the latter is the Schur expansion of the A2 quiver of Subsection 2.5.2.

With the Schur expansion, the expectation value of the Wilson loop decomposes into a sum
of contributions, indexed by the partition ν, factorized into two multiple integrals, one for each
node:

⟨Wµ⟩N1,N2;k
pert.
=

1

ZABJ

∑
ν

(−1)|ν|W(1)
γνW

(2)
νη′ , (2.5.14)

W(1)
γν :=

∫
RN1

∏
1≤a<b≤N1

(2 sinhπ(xb − xa))2 sγ(e
2πx)sν(e

2πx)

N1∏
a=1

eiπkx
2
a+2πxa dxa,

W(2)
νη′ :=

∫
RN2

∏
1≤ȧ<ḃ≤N1

(
2 sinhπ(yḃ − yȧ)

)2
sν(e

2πy)sη′(e
−2πy)

N2∏
ȧ=1

e−iπky
2
ȧ dyȧ.

The first function corresponds to integration over the Cartan subalgebra of u(N1) and the second
to integration over the Cartan subalgebra of u(N2). In the integral over the second node, we have

reflected variables yȧ 7→ −yȧ. The term
∏
a e

2πxa in W(1)
γν can be removed with a shift of variables

and translating back the integration cycle onto R, obtaining

W(1)
γν = e

iπ
k
(N1+2|γ|+2|ν|)

∫
RN1

sγ(e
2πx)sν(e

2πx)
∏

1≤a<b≤N1

(2 sinhπ(xb − xa))2
N1∏
a=1

eiπkx
2
adxa.
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Rectangular partition

The simplest case is the expectation value of a Wilson loop in a rectangular representation µ = κ,
so γ = ∅ = η. We get:

W(1)
∅ν = e

iπ
k
(N1+2|ν|)

∫
RN1

sν(e
2πx)

∏
1≤a<b≤N1

(2 sinhπ(xb − xa))2
N1∏
a=1

eiπkx
2
adxa

= ZN1;k q
−

C2;N1
(ν)

2
−N1

2
−|ν| dimq ν

and

W(2)
ν∅ =

∫
RN2

dN2y sν(e
2πx) e−

∑N2
ȧ=1 iπky

2
ȧ

∏
1≤ȧ<ḃ≤N2

(
2 sinhπ(yḃ − yȧ)

)2
= ZN2;−k q

C2;N2
(ν)

2 dimq−1 ν

In both evaluations, the second line follows from the Wilson loop vev (2.2.1) and ZN1,k and ZN2,−k
are the corresponding normalizations. Noting that dimq−1 ν = dimq ν, the vev of the Wilson loop
in a rectangular representation κ of the supergroup U(N1|N2) is then

⟨Wκ⟩N1,N2;k
pert.
=
ZN1;kZN2;−k
ZABJ(N1|N2)k

q−
N
2

∑
ν

(−q)−|ν| (dimq ν)
2 q

C2;N2
(ν)−C2;N1

(ν)

2 .

In particular, for ABJM theory, N1 = N = N2, the quadratic Casimir cancels and we arrive at
the simpler formula

⟨Wκ⟩N,N ;k
pert.
=
ZN ;kZN ;−k
ZABJM(N)k

q−
N
2

∑
ν

(−q)−|ν| (dimq ν)
2 .

Arbitrary typical representation

We now tackle the general case of a typical (long) but otherwise arbitrary representation µ, and
give two equivalent, and in fact related, evaluations of the vev of the Wilson loop in ABJ theory.

Both approaches require to invert the variables in a Schur polynomial, which can be done
using the identity (2.4.5).

The first procedure mimics [107], and extends the result to the unknot Wilson loop. Inverting

variables in W(1)
γν using (2.4.5) we identify W(1)

γν and W(2)
νη′ with Hopf link invariants computed in

U(N1)k and U(N2)−k Chern–Simons theory on S3, respectively. Explicitly:

⟨Wµ⟩N1,N2;k =
ZN1;kZN2;−k
ZABJ(N1|N2)k

∑
ν

Cγν(q) ⟨Wγν∗⟩N1;k⟨Wνη′⟩N2;−k, (2.5.15)

where the averages in the sum are the Hopf link invariants and the summands are weighted by

Cγν(q) = (−1)|ν|q−(1+ν1)
(
|γ|+|ν|+ 1+ν1

2
N1

)
. (2.5.16)

The partition ν∗ has been defined in (2.4.6). In the operator formalism the expansion (2.5.15)
takes the form

⟨0|TST |µ⟩N1,N2;k =
ZN1;kZN2;−k
ZABJ(N1|N2)k

∑
ν

Cγν(q) ⟨η|TST |ν⟩N1,k⟨ν∗|TST |γ⟩N2,−k,
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where T, S are the SL(2,Z) modular matrices. Note that the two ν’s are treated differently: one
is considered as a U(N1) representation and the other as a U(N2) representation, with the latter
twisted by the starred partition. The appearance of the operator TST rather than S is because the
matrix model presentation computes the observables in a special instance of the Seifert framing,
rather than in the natural S3 framing.

The alternative path consists in applying the inversion formula (2.4.5) to sν(e
2πy). Similar

manipulations lead to:

⟨Wµ⟩N1,N2;k =
ZN1;kZN2;−k
ZABJ(N1|N2)k

q−
N1
2

−|γ|
∑
ν

C̃νη′(q)⟨WγWν⟩N1;k⟨Wν∗Wη′⟩N2;−k (2.5.17)

with coefficient
C̃νη′(q) = (−q)|ν|q−ν1(|η′|+|ν|− ν1

2
N2).

The expression (2.5.17) is expressed as a sum of correlators of two pairs of (unlinked) unknots,
one pair in each Chern–Simons theory. These correlators can be further reduced with a character
expansion in the Schur basis:

⟨Wµ⟩N1,N2;k =
ZN1;kZN2;−k
ZABJ(N1|N2)k

q−
N1
2

−|γ|
∑
ν

C̃νη′(q)
∑
ν̃,ν̂

Nγν
ν̃⟨Wν̃⟩N1;kNη′ν∗

ν̂⟨Wν̂⟩N2;−k,

where, as above, Nγν
ν̃ are the Littlewood–Richardson coefficients.

The solvability is again preserved if we turn on a Romans mass in the dual theory as prescribed
in [71]. The above computation is straightforwardly generalized to k2 ̸= −k1 and gives:

⟨Wµ⟩N1,N2;k1,k2 =
ZN1;k1ZN2;k2

ZABJ(N1|N2)k1,k2

∑
ν

Cγν(q1) ⟨Wγν∗⟩N1;k1⟨Wνη′⟩N2;k2

with summands weighted by (2.5.16) with q = q1 = e
− i2π

k1 , hence independent of k2.
Our derivation complements previous results [115, 116] extending the analysis to a broader

class of representations.

2.5.5 Comments on the U(N) theory with Nf fundamental hypermultiplets

As a final observation, and departing from the previous use of Schur expansions, we discuss further
the partition function ZU(N),Nf

. The expression (2.5.8) appears in topological string theory [112]
in the study of non-compact branes on the resolved conifold. There, the fugacities tj correspond
to diagonal holonomies of the gauge fields along a circle S1, determined as the locus where a
non-compact brane intersects S3. Replacing a brane with an anti-brane in the framework of [112]
corresponds here to exchange the Cauchy identity (2.2.10) with the dual Cauchy identity (2.2.12),
which describes the Schur expansion of the matrix model

Z ferm.
U(N),Nf

=

∫
RN

∏
1≤a<b≤N

(2 sinhπ(xb − xa))2
N∏
a=1

Nf∏
j=1

2 coshπ(xa +mj)

 e
− 1

2g
(2πxa)2 dxa.

The choice of notation “ferm.” for this matrix model will be justified momentarily.
In the Abelian theory, in particular, replacing a brane with an anti-brane [112] switches from

the generating function of the complete homogeneous symmetric polynomials to that of the ele-
mentary symmetric polynomials eα [90], cf. (2.2.13).

We compare now ZU(N),Nf
with Z ferm.

U(N),Nf
. The former is the partition function of U(N)

Chern–Simons theory at level k on S3 coupled to Nf fundamental hypermultiplets. We have
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introduced the latter to mimic the pair of identities (2.2.10)-(2.2.12) at the level of matrix integrals.
Nevertheless, there are several physical motivations to study both ZU(N),Nf

and Z ferm.
U(N),Nf

.

As we have already mentioned, in topological string theory on the conifold it is important to
have both functions [112, 117]. Moreover, the matrix model Z ferm.

U(N),Nf
with all the masses vanishing,

has been studied in [118] in the context of fermionic quantum mechanics, and solved in [119] for
any {mj} ⊂ RNf . A third motivation for the introduction of the “fermionic” partition function
comes from looking at each summand in the Schur expansions. Consider a fixed ν in the sums over
representations which corresponds to a symmetric SU(N) representation. The associated reduced
coloured knot invariants have been categorified in [120, 121]. The corresponding homologies posses
a mirror symmetry which exchanges the symmetric representation ν with the totally antisymmetric
representation ν ′. Generalizing this operation to the present context, replacing one representation
by its conjugate, switches from the Cauchy identity (2.2.10), to the dual Cauchy identity (2.2.12).

A fourth, heuristic argument to consider the pair ZU(N),Nf
Z ferm.
U(N),Nf

is presented below.

Averages of characteristic polynomials

It has been shown in [95] that ZU(N),Nf
computes the average of the inverse of the product of

characteristic polynomials in the Stieltjes–Wigert random matrix ensemble, which describes the
Chern–Simons matrix model [84]. Explicitly:

ZU(N),Nf

ZCS(N)
∝

〈Nf∏
j=1

det
(
t̃∨j −X

)−1〉
SW(N)

,

with X a random Hermitian matrix whose eigenvalues are (x1, . . . , xN ). The spectral parameters
t̃∨j are related to the physical quantities through

t̃∨j = −q−N−
Nf
2 e−2πmj = q−N−

Nf
2 t−1

j ,

with q = e−g.
The average of the inverse product of characteristic polynomials in the Hermitian random

matrix ensemble with Stieltjes–Wigert weight is calculated exactly, and is a Nf ×Nf determinant:

ZU(N),Nf

ZCS(N)
=

cN,Nf∏
1≤j<l≤Nf

(
t̃∨j − t̃∨l

) det
1≤j,l≤Nf

[
p∨N+l−1

(
t̃∨j
)]
, (2.5.18)

where p∨n(t̃
∨) are the Cauchy transform of the Stieltjes–Wigert orthogonal polynomials, and the

constant cN,Nf
in (2.5.18) does not depend on the spectral parameters t̃∨j . We refer to [95] for

more details, proofs and references.
We obtain the analogous expression for the other matrix integral considered, in terms of

averages of products of characteristic polynomials in the Stieltjes–Wigert ensemble [119]:

Z ferm.
U(N),Nf

ZCS(N)
∝

〈Nf∏
j=1

det
(
t̃j −X

)〉
SW(N)

,

Here, the spectral parameters t̃j are related to the parameters of the gauge theory as

t̃j = −q−N+
Nf
2 e−2πmj = q−N

(
q−

Nf
2 tj

)−1

.
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The average of the product of characteristic polynomials is explicitly given by a Nf ×Nf deter-
minant

Z ferm.
U(N),Nf

ZCS(N)
=

cferm.
N,Nf∏

1≤j<l≤Nf
(t̃j − t̃l)

det
1≤j,l≤Nf

[
pN+l−1

(
t̃j
)]
,

where pn(t̃) are the Stieltjes–Wigert polynomials, and cferm.
N,Nf

is a numerical constant. We refer to

[119] for details and a detailed list of references. A closely related result was obtained in [117], in
the context of topological string theory on the conifold.

Bosonic versus fermionic matrix models

We can recast the two expressions in a unified formalism, integrating over auxiliary variables:

ZϵU(N),Nf
=

∫
dX e

− 1
2g

Tr(logX)2
Nf∏
j=1

∫
e−ψ̄

j(X−t̃ϵj)ψj
N∏
a=1

dψ̄jadψ
j
a

2π
. (2.5.19)

In this expression, ϵ ∈ {±1}, with ϵ = −1 giving ZU(N),Nf
and ϵ = +1 giving Z ferm.

U(N),Nf
. The

spectral parameters are respectively t̃∨j and t̃j for ϵ = −1,+1. The integration is over Nf N -

component vectors ψj = (ψja)a=1,...,N , for j = 1, . . . , Nf , and their conjugates ψ̄j = (ψ̄ja)a=1,...,N .
These vectors have Grassmann-even entries when ϵ = −1 and Grassmann-odd entries when ϵ = +1.
We recall that t̃∨j , t̃j < 0 from their definition in terms of the physical variables, which guarantees
that the inner integral in (2.5.19) is well posed. Besides, we have dropped an overall constant.

Written in the form (2.5.19), we see that switching from the Cauchy identity (2.2.10) to the
dual Cauchy identity (2.2.12) passes from the Schur expansion of the matrix model (2.5.19) with
bosonic fields to the Schur expansion of (2.5.19) with fermionic fields.5

The ideas of the present subsection can be applied to 4d N = 4 SYM with codimension-one
matter defects sitting on a great S3 inside S4. The analogue of (2.5.19) is

Z4d+defect,ϵ
U(N),Nf

=

∫
dX

∫
dψ̄dψ

(2π)N
e
−Tr

[
8π2

g4d
X2+

∑
j=1 ψ̄

j(eX−t̃ϵj)ψj
]
. (2.5.20)

Here ϵ = −1 corresponds to the physical 4d N = 4 theory and ϵ = +1 is its counterpart using
a fermionic matrix representation. Compared to the purely three-dimensional theory, we have
removed the log2-interaction, at the cost of an exponential term in the action. Rescaling Xab →√
g4d/16π2Xab we can expand the interaction term in (2.5.20) in a power series in

geff =

√
g4d
4π

.

The resulting effective action includes infinitely many vertices:

ψ̄j
(
eX − t̃ϵj

)
ψj = ψ̄ja

(
1− t̃ϵj

)
δabψ

j
b + geffψ̄

j
aXabψ

j
b +

g2eff
2
ψ̄jaXacXcbψ

j
b + . . .

and can be analyzed by standard perturbative techniques in random matrix theory [122].
The upshot of this digression is that we may as well describe four-dimensional N = 4 SYM

with defects using random matrix theory, and equivalently represent it as a theory of massive
scalars ψ̄j , ψj in the vector representation of U(N) which interact with a (zero-dimensional) gluon
X in the adjoint representation of U(N). We also naturally get an associated theory in which the
bosons are replaced by zero-dimensional fermions.

5The suggestive form (2.5.19) does not seem to allow a unified treatment of fermionic and bosonic versions of the
quantum mechanical model of [118], because the matrix model representation Z ferm.

U(N),Nf
has been originally derived

using a Wick rotation that is forbidden in the bosonic counterpart.
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2.A. Mordell integrals at λ ̸= 0

2.A Mordell integrals at λ ̸= 0

In this appendix we explain some subtlety related to the integrals (2.2.3)-(2.2.4). We mainly
review results from [61] and comment on how to properly combine them.

In his seminal paper, Mordell gave the formulas [61, Eq.s (8.1)-(8.2)]

Ψ+(ξ) :=

∫ +∞

−∞
dx
e
iπ κ

ϱ
x2−2πxξ

e2πx − 1
=

1

eiπϱ(2ξ−κ) − 1

−√ iϱ

κ

κ∑
α=1

eiπ
ϱ
κ
(ξ+α)2 + i

ϱ∑
β=1

e
iπβ
(
2ξ−κ

ϱ
β
) ,
(2.A.1)

Ψ−(ξ) :=

∫ +∞

−∞
dx
e
−iπ κ

ϱ
x2−2πxξ

e2πx − 1
=

1

eiπϱ(2ξ−κ) − 1

√− iϱ
κ

κ−1∑
α=0

e−iπ
ϱ
κ
(ξ−α)2 + i

ϱ∑
β=1

e
iπβ
(
2ξ+κ

ϱ
β
) ,

(2.A.2)

valid for κ, ϱ ∈ Z>0. The integration contour can be taken either along the real axis avoiding x = 0
by a small semicircle, or on a straight line inclined with respect to the real axis and intersecting
the imaginary axis between 0 and −i. The inclination should be a negative angle for Ψ+ and
a positive angle for Ψ−. We follow this latter choice, and represent the inclined straight line in
Figure 2.20. The final result is independent of the angle θ between the integration axis and the
real axis.

Figure 2.20. Choice of integration contour for the Mordell integrals, shifted and rotated by a small angle
with respect to the real axis. Left: contour for Ψ+, rotated by a negative angle −θ < 0. Right: contour
for Ψ−, rotated by a positive angle θ > 0.

On the other hand, the integral

Ψ̃(λ, ξ) :=

∫
R−iλ

dx
eiπκ̃x

2−2πx(ξ+k̃λ)

e2πx − 1

with
ℑ(κ̃) > 0, 0 < ℜλ < 1

is equivalent to [61, Eq. (3.8)]

Ψ̃(λ, ξ) = eiπλ(2+2ξ+κ̃λ)

∫ +∞

−∞
dx

eiπκ̃x
2−2πxξ

e2πx − ei2πλ

now with the integration cycle along the real axis. The proof of this formula [61] makes explicit
that one can move the original integration contour in the region 0 < ℜλ < 1 without changing the
result. The same is true for the contour of Ψ±, where we are free to chose where to intersect the
imaginary axis. We can therefore introduce the parameter λ also in Ψ±, obtaining the integrals
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defined in (2.2.3)-(2.2.4). However, in order not to get out of the proper region, we must impose
θ-dependent restrictions on λ, as can be seen from Figure 2.21. So the formula (2.2.3) for Ψ+ hold
for

r sin θ < ℜλ < 1 + r sin θ, −r cos θ < ℑλ < r cos θ

where r ≥ 0 is arbitrary, and similarly for Ψ−. Rotating θ → 0+ we recover the constraints
0 < ℜλ < 1 and ℑλ arbitrary for Ψ̃ defined above. In particular we can fix 0 < ℜλ < 1 and
0 < θ ≪ π

2 , so that we are free to chose ℑλ arbitrarily large. With this choice, we change variables
in (2.A.1) and recover (2.2.3), and likewise in (2.A.2) to recover (2.2.4), with the integration
contour now arbitrarily close to the real axis.

Figure 2.21. Choice of integration contour for the Mordell integral Ψ+. The angle 0 < θ < π
2 is arbitrary,

and −iλ must lie in the shaded region.

Another subtle aspect is that the denominators in the right-hand side of (2.2.3)-(2.2.4) seem
to have a sign ambiguity when κ is a multiple of ϱ and |ℜξ| = 1

2 and ℜλ = 1
2 . This happens

because the result for ℜ
(
ξ − κ

ϱλ
)
∈ Z is obtained by analytic continuation, and this should be

performed at the end of the computations. The result is unique and unambiguous if we move
slightly away from such points, for example by a shift ξ 7→ ξ + ε for a small ε, and take the
limit at the end. Stated differently, the apparent sign ambiguity would only be an artefact of
the intermediate steps and will disappear after simplifications in the final answer. We have also
checked it for the solutions in Section 2.3.
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Chapter 3

Complex (super)-matrix models with
external sources and q-ensembles of
Chern–Simons and ABJ(M) type

3.1 Introduction to the chapter

The idea of introducing non-zero commutators among position or momentum coordinates in dif-
ferent directions goes back to the 1940s [123]. In the late 1990s there was a boost of interest in
noncommutative field theories, in great part due to the fact that low energy string theory can
be related to noncommutative field theory [124, 125]. However, it was soon established that the
expectation that washing out the space-time points could weaken UV divergences in quantum
field theory, and consequently simplify renormalization, did not work as expected. Rather the
opposite turned out to hold: renormalization gets harder due to noncommutativity, because in
planar diagrams of a perturbative expansion the UV divergences simply persist. Second, in the
non-planar diagrams, they tend to “mix” with IR divergences [126]. We refer to [127, 128] for
classical reviews of the topic, and to [129] for insights into the relation between fuzzy spaces and
matrix models.

Langmann, Szabo and Zarembo (LSZ) introduced and studied a scalar field theory on the
Moyal plane, and showed that its partition function admits a matrix model representation [48, 49].
The LSZ matrix model has the explicit form

ZLSZ

(
E, Ẽ

)
=

∫
DMDM † exp

(
−N Tr

{
MEM † +M †ẼM + V̂

(
M †M

)})
, (3.1.1)

whereM is a N ×N complex matrix, E, Ẽ are external matrices with real eigenvalues determined
by the model and V̂ is a polynomial potential with quadratic and quartic interaction terms.
Recently, a Hermitian matrix model with external field E and quartic interaction has been studied
in the context of noncommutative scalar field theories [130–132]. It is worthwhile to stress that,
despite the similarities, the fact that the LSZ model is a complex random matrix ensemble leads to
a different analysis and very different set of results. In particular, we will establish a relationship
between this model and a family of matrix models that appear in Chern–Simons theory and are
related to q-deformed random matrix ensembles.

We will also consider a supersymmetric extension of the LSZ model (sLSZ), which we define
as the supermatrix model

ZsLSZ

(
E, Ẽ

)
=

∫
DMDM † exp

(
−(N1 +N2) STr

{
MEM † +M †ẼM + V̂

(
M †M

)})
,

(3.1.2)
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where now M is a (N1 +N2) × (N1 +N2) complex supermatrix and STr is the supertrace. The
details are given in Section 3.4.

On the other hand, a number of different matrix models have been studied in gauge theory,
more precisely in the study of certain topological and supersymmetric gauge theories in compact
three-manifolds such as Seifert manifolds. The simplest case is that of S3, where the partition
function of U(N) Chern–Simons theory, admits the expression [133]

ZCS =

∫
RN

∏
1≤a<b≤N

(
2 sinh

(
xa − xb

2

))2 N∏
a=1

e
− x2a

2gs dxa, (3.1.3)

with gs a coupling constant, which can be related to the level k ∈ Z of Chern–Simons theory by
gs =

2πi
N+k . A review of early results is [134]. The matrix model description can also be obtained

and further understood by using different types of localization of the path integral [135–137].
Interestingly, expressions such as (3.1.3), or generalizations thereof, with Schur polynomial

insertions, describing then Wilson loop observables in the Chern–Simons theory, are completely
solvable using random matrix theory methods [84, 83, 138]. We will give an interpretation of the
LSZ matrix model in terms of probabilities in the random matrix description of the observables of
U(N) Chern–Simons theory on S3. This type of probability is a classical object in random matrix
theory [39]. However, we will be naturally lead to the consideration of atypically large fluctuations
rather than any bulk spectral quantity (like for the GUE model [139], the model (3.1.3) being a
q-deformation of the GUE). In addition, we shall see that different insertions of external matrices
E, Ẽ will be related to different Chern–Simons observables.

Further examples beyond the topological U(N)k Chern–Simons theory are the ABJ(M) theo-
ries [43, 44], supersymmetric U(N1)k×U(N2)−k Chern–Simons-matter theories preserving twelve
supercharges. The partition function of ABJ theory on S3 is [58] (cf. Subsection 2.2.1)

ZABJ =

∫
RN1

∫
RN2

∏
1≤a<b≤N1

(
2 sinh

(
xa−xb

2

))2∏
1≤ȧ<ḃ≤N2

(
2 sinh

(
wȧ−wḃ

2

))2
∏N1
a=1

∏N2

ḃ=1

(
2 cosh

(
xa−wḃ

2

))2
×

N1∏
a=1

e
− x2a

2gs dxa

N2∏
ȧ=1

e
− w2

ȧ
2gs dwȧ,

(3.1.4)

where, again, we have continued the Chern–Simons level into the string coupling gs > 0. It was
shown in [69] that equation (3.1.4) defines a supermatrix model related to the ordinary matrix
model for U(N) Chern–Simons theory on the lens space S3/Z2 [140, 141]. The approach of [69]
has been applied in [68] to evaluate exactly the ABJ partition function. We will show how the
relation uncovered between LSZ and Chern–Simons matrix models extends to the supermatrix
models (3.1.2)-(3.1.4).

In this chapter, we establish the relationship between the two sets of matrix models described
above. This is a random matrix result, linking two families of models: complex matrix models
with external sources on one hand, q-ensembles that appear in Chern–Simons theory on the
other. Importantly, the relationship is not between the same observables. On one hand, we have
partition functions (albeit generalized via different choices of external matrices) and on the other
hand probabilities in the q-ensembles, corresponding to different observables in the Chern–Simons
theory. This result can also be appreciated independently of the gauge theoretic origin of both sets
of models. The Chern–Simons matrix model for example, plays a prominent role in the subject of
non-intersecting Dyson Brownian motion [142, 143], see [144, 145]. It also appears in the study
of Riemannian Gaussian distributions and their geometry, with applications to data analysis, as
we have shown in [12].
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3.2. Noncommutative scalar theory with background field

The chapter is organized as follows. A field-theoretical background for the matrix model of
interest is provided in Section 3.2, where we review the derivation of the LSZ matrix model from a
noncommutative scalar theory. After that, we analyze the LSZ matrix model and explain its close
relation with the Chern–Simons matrix model in Section 3.3. We emphasize that the connection
holds in a generalized sense, as the external matrices are not restricted to come from a kinetic
operator of a scalar field theory, and different spectra of the external matrices will be interpreted
in terms of different observables in Chern–Simons theory. In Subsection 3.3.4 we show that the
generalized LSZ partition function encodes certain probabilities in the random matrix description
of topological invariants computed from Chern–Simons theory. Then, in Section 3.4, we extend
the analysis to the sLSZ supermatrix model, and establish an analogous relation between the sLSZ
generalized partition function and observables in ABJ theory. These are the central results of the
present chapter. Finally, the Appendix 3.A contains technical details about Schur polynomials.

3.2 Noncommutative scalar theory with background field

In this section we review the LSZ model: in the first subsection, the geometric construction of
the Moyal plane in the presence of a background magnetic field is sketched, while the second
subsection is dedicated to the construction of a scalar field theory with quartic interaction. This
provides a motivation and a physical background for the study of the matrix model (3.1.1), that
will be thoroughly analyzed in Section 3.3.

The content of this section follows [49], although for the derivation of the matrix model in
Subsection 3.2.2 we use a slightly different formalism than the original work, that will allow us a
more direct comparison with the results in the next section.

3.2.1 Moyal plane with magnetic field

The Moyal plane is defined through the commutation relations[
qj , qk

]
= iθϵjk,

where θ is the essential parameter of the theory, with dimension of length squared. A Moyal plane
can always be seen as a harmonic system, in the sense that passing to dimensionless complex
coordinates one has [z, z̄] = 1. The noncommutative plane needs not to arise from a modification
of space-time. In fact, an example is given by a particle moving on a plane with a magnetic field
of intensity B in the transverse direction; the momentum space then becomes noncommutative
R2, as the momentum operators modify according to:

pj 7→ Pj := pj −
1

2
Bϵjkq

k.

In this case the covariant momenta Pj satisfy the commutation relation [Pj , Pk] = −iBϵjk.
If the two frameworks are put together, that is, a transverse magnetic field is plugged in on a

noncommutative plane, three possible harmonic oscillator pictures arise:

(i) on the two-dimensional position space, with annihilation and creation operators given by the
complex coordinates as above;

(ii) on the two-dimensional momentum space, with annihilation and creation operator defined
analogously;

(iii) a pair of canonical harmonic oscillators, one on each phase space plane.
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Complex (super)-matrix models with external sources and q-ensembles

However, the most suitable choice for us is none of them, and we will take a mixture of all
these ingredients to form two commuting copies of annihilation and creation operators, in such a
way that the problem decouples into two one-dimensional harmonic systems. To do so, define:

z :=
q1 + iq2√

2θ
, z̄ :=

q1 − iq2√
2θ

,

v :=
p1 + ip2√

2θ−1
, v̄ =

p1 − ip2√
2θ−1

,

and use them to introduce the operators:

a1 =
z + iv√

2
, a†1 =

z̄ − iv̄√
2
,

a2 =
z̄ + iv̄√

2
, a†2 =

z − iv√
2
.

Straightforward calculations provide:[
aα, a

†
β

]
= δαβ,

[aα, aβ] = 0 =
[
a†α, a

†
β

]
,

for α, β = 1, 2, hence we got a pair of decoupled harmonic oscillators.

Remark. Lifting the obstruction θ shifts the canonical symplectic structure on the cotangent
bundle. It turns out that such shifted 2-form is still symplectic. One can then rotate to Darboux
coordinates so that the new symplectic structure on the phase space T ∗R2 is block-diagonal. The
calculations above are precisely the explicit change of coordinates.

Consider now the differential operator Dj associated to the covariant momenta Pj , and D̃j

analogous but carrying a reflected magnetic field −B. If we take the arbitrary combination
−σD2 − σ̃D̃2 and evaluate it at the symmetric point σ = σ̃ = 1

2 , we obtain:

(
−σD2 − σ̃D̃2

)
σ=σ̃= 1

2

= |p⃗|2 + B2

4
|q⃗|2 = θ−1

(
B2θ2

4
{z, z̄}+ {v, v̄}

)
,

where the curly bracket in the right-hand side stands for anticommutation. On the other hand,
in terms of the harmonic oscillators description, we have:

2∑
α=1

a†αaα =
1

2
({z, z̄}+ {v, v̄} − i[v, z̄] + i[z, v̄]) ,

which means (
−σD2 − σ̃D̃2

)
σ=σ̃= 1

2

=
2

θ

2∑
α=1

(
a†αaα +

1

2

)
(3.2.1)

at points B2θ2 = 4. The preferred curves B2θ2

4 = 1 correspond to the self-dual points of the
Langmann–Szabo symmetry [146]. The theory is independent of the actual choice of curve in
parameter space we restrict to, namely B = ±2θ−1. In fact, the two theories we obtain are
equivalent, in the sense that they are dual descriptions of the same theory [146]. The invariance
reflects the fact that the operators Dj , D̃j only differ by a reflection B 7→ −B, thus the symmetric
choice σ = σ̃ drops the dependence on the sign of the magnetic field.
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3.2. Noncommutative scalar theory with background field

3.2.2 LSZ model

Given a scalar field Φ on the Moyal plane, we can expand it in terms of the Landau basis, consisting
of eigenstates of both harmonic oscillators, as:

Φ =
∞∑

ℓ1,ℓ2=1

Mℓ1ℓ2 |ℓ1, ℓ2⟩.

This expression naturally defines an infinite matrix M associated to the field Φ. Now recall the
kinetic operator in (3.2.1); using the property

a†αaα|ℓ1, ℓ2⟩ = (ℓα − 1) |ℓ1, ℓ2⟩, ℓα = 1, 2, . . . , α = 1, 2,

it is possible to write:(
2∑

α=1

(
a†αaα +

1

2

))
Φ =

∑
ℓ1,ℓ2

Mℓ1ℓ2

{(
ℓ1 −

1

2

)
+

(
ℓ2 −

1

2

)}
|ℓ1, ℓ2⟩

=
∑
ℓ1,ℓ2

(
ℓ1 −

1

2

)
{Mℓ1ℓ2 |ℓ1, ℓ2⟩+Mℓ2ℓ1 |ℓ2, ℓ1⟩} .

Therefore one obtains:

Φ†

(
2∑

α=1

(
a†αaα +

1

2

))
Φ =

∑
ℓ1,ℓ2

(
ℓ1 −

1

2

){
M †
ℓ2ℓ1

Mℓ1ℓ2 +Mℓ2ℓ1M
†
ℓ1ℓ2

}
= Tr

{
M †EM +MEM †

}
,

(3.2.2)

where in the last line we have introduced the diagonal matrix

Eℓ1ℓ2 =

(
ℓ1 −

1

2

)
4π

N
δℓ1ℓ2 . (3.2.3)

Consider the action [48, 49]

SLSZ

(
Φ,Φ†

)
=

∫
R2
θ

{
1

2
Φ†
(
−σD2 − σ̃D̃2

)
Φ+

1

2
Φ
(
−σD2 − σ̃D̃2

)
Φ†

+m2
0Φ

†Φ+
g20
2

(
Φ†Φ

)2}
.

Evaluated at the symmetric point σ = σ̃ = 1
2 it becomes:

SLSZ

(
Φ,Φ†

)
= N Tr

{
M †EM +MEM † + m̂2M †M +

ĝ2

2

(
M †M

)2}
(3.2.4)

where we have introduced the dimensionless couplings

m̂2 =

(
2πθ

N

)
m2

0, ĝ2 =

(
2πθ

N

)
g20.

We have also used equations (3.2.1) and (3.2.2), and the matrix E defined in (3.2.3). In Section
3.3 we will solve the matrix model with action (3.2.4).

Notice that, to regularize the integral, we truncate the matrix M to its top-left N ×N block,

which introduces a finite cutoff at short distance
√

2πθ
N . The full theory is recovered in the large

N limit. As expected from general features of noncommutative field theory [128], the original
noncommutativity of the phase space is eventually encoded in the noncommutativity of matrix
multiplication. Consistently, integrals over the spacetime become traces.
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3.3 Solving the matrix model

As we have seen in Section 3.2, different noncommutative field theories reduce to a matrix model
of the form (3.1.1)

ZLSZ

(
E, Ẽ

)
=

∫
DMDM † exp

(
−N Tr

{
MEM † +M †ẼM + V̂

(
M †M

)})
in terms of N × N complex matrices, depending on the insertion of two external matrices. The
potential V̂

(
M †M

)
is a quadratic polynomial with dimensionless coefficients

V̂
(
M †M

)
= m̂2

(
M †M

)
+
ĝ2

2

(
M †M

)2
. (3.3.1)

We also let the external fields E, Ẽ have arbitrary eigenvalues which, for convenience and con-
sistently with the noncommutative field theory setting (recall (3.2.3)), we write as 4π

N ηℓ,
4π
N η̃ℓ

respectively, for ℓ = 1, . . . , N . In particular, the original LSZ model, discussed in Section 3.2,
corresponds to external matrices with ηℓ = η̃ℓ given by consecutive integers plus a constant shift,
see (3.2.3). The unconventional presence of Ẽ explicitly breaks U(N) symmetry, but the system
is still tractable.

We now reduce this matrix model to an ordinary multiple integral in terms of the spectra of
the external fields, and show that the results can be written in terms of the observables of U(N)
Chern–Simons theory in S3, with q = e−gs real.

3.3.1 General solution

As shown in [49], we can approach the solution using the singular value decomposition of a generic
N ×N complex matrix M :

M = U †
1diag (λ1, . . . , λN )U2,

with Uα=1,2 unitary matrices and λℓ ≥ 0.6 The measure becomes

DM DM † = [dU1] [dU2]
N∏
ℓ=1

dyℓ ∆N [y]2 ,

where [dUα] is the invariant Haar measure over U(N), and yℓ := λ2ℓ and

∆N [y] =
∏

1≤ℓ<ℓ′≤N
(yℓ − yℓ′) (3.3.2)

is the Vandermonde determinant.

As shown in [49], the use of this transformation implies that integrals over Uα=1,2 ∈ U(N)
decouple over the two types of external field terms. Denoting by Y = diag (y1, . . . , yN ), the angular
degrees of freedom Uα can be integrated out using the Harish-Chandra–Itzykson–Zuber (HCIZ)
formula [148, 149]:∫

U(N)
[dU2] exp

{
−N Tr

(
EU †

2Y U2

)}
= CN

det1≤ℓ,ℓ′≤N
(
e−4πηℓyℓ′

)
∆N [η] ∆N [y]

, (3.3.3)

6See [147] for comments on this parametrization with regards to the more usual one in terms of eigenvalues [39].
In any case, this transformation is much used and very useful when studying complex matrix models, such as the
LSZ.
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where we have used the explicit form of the eigenvalues of E and denoted

CN := (4π)−
N(N−1)

2

N−1∏
j=1

j! = (4π)−
N(N−1)

2 G(N + 1),

where G(·) is the Barnes G-function.
Analogous expression is obtained for integration over U1 replacing E by Ẽ. For a potential

V̂
(
M †M

)
as in (3.3.1), one gets:

ZLSZ

(
E, Ẽ

)
=

∫
[0,∞)N

∆N [y]2
N∏
ℓ=1

e
−
(
m̂2yℓ+

ĝ2

2
y2ℓ

)
dyℓ

×
∫

[dU2] exp
(
−NEU †

2Y U2

) ∫
[dU1] exp

(
−NẼU †

1Y U1

) (3.3.4)

Plugging HCIZ (3.3.3) into (3.3.4), simplifying a Vandermonde squared and suitably rescaling the
integration variables, we note that the partition function for the matrix model is:

ZLSZ

(
E, Ẽ

)
=

C′N
∆N [η] ∆N [η̃]

∫
[0,∞)N

det
1≤ℓ,ℓ′≤N

(
e−ηℓyℓ′

)
det

1≤ℓ,ℓ′≤N

(
e−η̃ℓyℓ′

) N∏
ℓ=1

e−m
2yℓ− g2

2
y2ℓ dyℓ,

(3.3.5)
where we recall that ηℓ (respectively η̃ℓ) stand for the eigenvalues of E (respectively Ẽ), up to a
factor 4π

N , and with coefficients redefined as:

m2 =
m̂2

4π
, g2 =

ĝ2

(4π)2
, (3.3.6)

and

C′N = (4π)−N C2N =
G(N + 1)2

(4π)N2 =
2−N(N−1)πN

vol (U(N))2
,

where vol(·) is the volume of the gauge group. Note that this normalization is essentially the
square of the partition function of the Gaussian unitary ensemble (GUE) [39].

In the theory of non-intersecting Brownian motion, the determinants in (3.3.5) are very fa-
miliar. This whole theory of determinantal processes is known to be directly related to U(N)
Chern–Simons theory on S3 and with the Wess–Zumino–Witten (WZW) model [144], where such
connection was shown to follow from specializations of the determinants

det
1≤ℓ,ℓ′≤N

(
e−ηℓyℓ′

)
, det

1≤ℓ,ℓ′≤N

(
e−η̃ℓyℓ′

)
in (3.3.5). However, it is more direct to show the relation through the corresponding matrix model
formulation. Recall for this the definition of a Schur polynomial [90]

sµ (x1, . . . , xN ) =
det1≤ℓ,ℓ′≤N

(
x
µℓ′+N−ℓ′
ℓ

)
det1≤ℓ,ℓ′≤N

(
xN−ℓ′
ℓ

) ,

and hence we rewrite the scaled eigenvalues ηℓ, η̃ℓ of the external matrices E, Ẽ, assuming they
are integers, as:

ηℓ = µℓ +N − ℓ,
η̃ℓ = νℓ +N − ℓ,

(3.3.7)
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for ℓ = 1, . . . , N . Without loss of generality, we can relabel the eigenvalues so that µ1 ≥ µ2 ≥
· · · ≥ µN ≥ 0, and likewise for ν1 ≥ · · · ≥ νN . Then, using

∏
1≤ℓ<ℓ′≤N

(eyℓ − eyℓ′ )2 =
∏

1≤ℓ<ℓ′≤N

(
2 sinh

(
yℓ − yℓ′

2

))2 N∏
m=1

e(N−1)ym

and reflecting the variables yℓ 7→ −yℓ, we immediately have:

ZLSZ (µ, ν) =
(−1)NC′N

∆N [η]∆N [η̃]

∫
(−∞,0]N

∏
1≤ℓ<ℓ′≤N

(
2 sinh

(
yℓ − yℓ′

2

))2 N∏
ℓ=1

dyℓ e
βyℓ− g2

2
y2ℓ

×sµ (ey1 , . . . , eyN ) sν (ey1 , . . . , eyN ) ,

(3.3.8)

with β = m2−N+1.7 We henceforth write ZLSZ (µ, ν) for ZLSZ

(
E, Ẽ

)
, stressing the dependence

on the partitions µ = (µ1, . . . , µN ) and ν = (ν1, . . . , νN ). Except for the integration domain, the
expression (3.3.8) is close to the general version of the U(N) Chern–Simons on S3 matrix model,
with two different insertions of Schur polynomials, whose evaluation gives the topological invariant
of a pair of unknots [134, 107] carrying the U(N) representations µ and ν. Furthermore, if the
external matrix E has positive integer eigenvalues while Ẽ has negative integers eigenvalues, or
vice versa, the relation then is with the Hopf link invariant carrying representations µ and ν.

Instead, after a shift of variables in (3.3.8) and using the identity (3.A.1), we obtain the matrix
model representation

ZLSZ (µ, ν) = AN (µ, ν)

∫
(−∞,−γ]N

N∏
j=1

dxj e
− g2

2

∑N
j=1 x

2
j

∏
1≤j<k≤N

(
2 sinh

(
xj − xk

2

))2

×sµ (ex1 , . . . , exN ) sν (ex1 , . . . , exN ) ,

where γ = β/g2 and

AN (µ, ν) :=
(−1)NC′N

∆N [η]∆N [η̃]
exp

(
γ2N

2
+ γ (|µ|+ |ν|)

)
. (3.3.9)

Notice also that the Vandermonde factors in the denominator of (3.3.9), which depend ex-
clusively on the eigenvalues of the external matrices, can be written, using Weyl’s denominator
formula (see Appendix 3.A), as

∆N [η] =
∏

1≤ℓ<ℓ′≤N

(
µℓ − µℓ′ − ℓ+ ℓ′

)
= G(N + 1) dimµ,

∆N [η̃] =
∏

1≤ℓ<ℓ′≤N

(
νℓ − νℓ′ − ℓ+ ℓ′

)
= G(N + 1) dim ν.

These Barnes G-functions in (3.3.9) cancel against the ones coming from the double application
of HCIZ formula. We finally obtain

ZLSZ (µ, ν) = CN (γ, |µ|, |ν|)
ZCS

〈
WµWν 11(−∞,−γ]N

〉
CS

dimµ dim ν
, (3.3.10)

7With our definition, ηℓ and η̃ℓ are non-negative integers, which is the physical choice motivated by the LSZ
model. If we want them to be non-positive integers, we simply do not reflect yℓ and define ηℓ, η̃ℓ with opposite sign.
The discussion would be exactly the same, except for the integration domain being [0,∞).
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where the relation between the partitions µ, ν and the external matrices of the generalized LSZ
model is given in equation (3.3.7), and

CN (γ, |µ|, |ν|) = (−1)Ne
γ2N
2

+γ(|µ|+|ν|)

(4π)N2 .

In formula (3.3.10), ZCS is the U(N) Chern–Simons partition function on S3, which is a quantum
topological invariant also known as Witten–Reshetikhin–Turaev invariant [42, 150, 151], defined as
the matrix model (3.1.3) and whose explicit evaluation we give below. Besides, Wµ is the trace of
the holonomy of the gauge connection along an unknot inside S3, taken in the U(N) representation
corresponding to the partition µ, and likewise for Wν . In (3.3.10), the Chern–Simons coupling is
gs =

1
g2
. In Chern–Simons theory, gs is related to the Chern–Simons level k by gs =

2πi
N+k , while

the real string coupling constant gs is used when describing topological strings. That is the same
type of description here, since g2 is real. Finally, ⟨· · · ⟩CS in (3.3.10) means the average in the
Chern–Simons matrix model (3.1.3), and 11(−∞,−γ]N is the N -dimensional indicator function

11(−∞,−γ]N (x1, . . . , xN ) =
N∏
j=1

11(−∞,−γ](xj) =

{
1, xj ≤ −γ ∀ j = 1, . . . , N,

0, otherwise.

Therefore,
〈
WµWν11(−∞,−γ]N

〉
CS

would correspond to the two-unknot invariant, but averaged

only using variables xj ≤ −γ (instead of xj ∈ R). Its relation with the actual invariant of a pair
of unknots is further discussed in Subsection 3.3.4 through the lenses of random matrix theory.

3.3.2 Quantum dimensions

An important particular case of the above general setting is when one of the partitions in (3.3.7)
is void. That is, in terms of LSZ theory, one has an external matrix with the equispaced spectra
and the other one generalized with a partition, see the definitions (3.2.3) and (3.3.7). This case
corresponds, as we shall see, to quantum dimensions in the Chern–Simons interpretation [83].
Quantum dimension of a representation associated to the partition µ is given by the following
hook-content formula [90, 83]

dimqµ :=
∏
□∈µ

⌊N + c(□)⌋q
⌊h(□)⌋q

,

where for each box □ ≡ (j, k) of the Young diagram determined by µ, the quantity h(□) :=
µj+µ

′
k−j−k+1 is the hook length, with the prime meaning conjugate diagram, and c(x) := j−k

is known as the content of the box x. The operation ⌊·⌋q denotes the symmetric q-number, that is

⌊n⌋q =
qn/2 − q−n/2

q1/2 − q−1/2
.

In Chern–Simons theory on S3, the unknot invariant is given by quantum dimensions [134, 83].
Since one of the two external matrices has harmonic oscillator spectrum the matrix model above
reduces to

ZLSZ (µ, ∅) = AN (µ, ∅)
∫
(−∞,−γ]N

∏
1≤j<k≤N

(
2 sinh

(
xj − xk

2

))2 N∏
j=1

e−
g2

2
x2jdxj

×sµ (ex1 , . . . , exN ) ,
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whose evaluation leads to

ZLSZ (µ, ∅) = CN (γ, |µ|, 0)
ZCS

〈
Wµ 11(−∞,−γ]N

〉
CS

dimµ
. (3.3.11)

This should be compared with the unknot invariant computed in Chern–Simons theory, which
differs from the present setting in the fact that the integral is taken over RN instead of (−∞,−γ]N .
We will come back to this point in Subsection 3.3.4. The exact evaluation of the unknot invariant
gives [83]

⟨Wµ⟩ = q−
1
2
C2(µ)dimqµ,

where q = e−1/g2 . Besides, in the expression above the term

C2 (µ) = (N + 1) |µ|+
N∑
ℓ=1

(
µ2ℓ − 2ℓµℓ

)
is the U(N) quadratic Casimir of the representation µ, labelled by the Young diagram associated
to the partition µ, with µℓ boxes in the ℓ-th row, with rows understood to be aligned on the left.

The appearance of quantum dimensions is interesting in that they appear as well in the study
of noncommutative gauge theories through the analysis of D-branes [152, 153]. However, as we
have seen in Section 3.2, only the simpler setting, where the two external matrices are equal and
have harmonic oscillator spectra, is directly linked to a noncommutative scalar theory.

3.3.3 Chern–Simons and LSZ partition function

We have shown in Section 3.2 that our study of noncommutative scalar field theory naturally leads
to a LSZ matrix model with E = Ẽ and spectra 4π

N

(
ℓ− 1

2

)
for ℓ = 1, ..., N , cf. (3.2.3). Thus,

we consider now the case in which both partitions are void: this corresponds to the two external
matrices having harmonic oscillator spectra. In particular, from (3.3.7), we have that ηℓ = N − ℓ
for ℓ = 1, ..., N . The fact that the two physical spectra have an overall energy shift only has an
impact at the level of renormalization of the mass parameter. This follows immediately from a
simple property of Schur polynomials, given in Appendix 3.A.

Then one obtains the matrix model without Schur polynomial insertions, and the correspond-
ing matrix integral is related to the one for the Chern–Simons partition function, given in (3.1.3)
(recall that gs = 1/g2). The Chern–Simons matrix model has the exact solution [84]:

ZCS =

(
2π

g2

)N/2
N ! e

N(N+1)(N−1)

6g2

N−1∏
j=1

(
1− qj

)N−j
, (3.3.12)

with q = e−1/g2 as above. The product can also be written as a q-deformed Barnes function,
which, in the limit g → ∞ (which is q → 1), reduces to the Barnes G-function. Then, the LSZ
matrix model partition function is

ZLSZ (∅, ∅) =
(−1)Ne

γ2N
2

(4π)N
2 ZCS ⟨11(−∞,−γ]N ⟩CS. (3.3.13)

Notice that, apart from the simple prefactor, the ratio between the LSZ and the Chern–Simons
partition function is the average ⟨11(−∞,−γ]N ⟩CS of the N -dimensional indicator function. This
aspect is further analyzed the next subsection.
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3.3.4 Probabilistic interpretation

The main result (3.3.10) and its specializations (3.3.11) and (3.3.13) admit an interpretation in
terms of probabilities of large deviations of the smallest or largest eigenvalue of Hermitian random
matrices. Consider a generic weight function w(x), and let Zw be the associated Hermitian random
matrix ensemble,

Zw =

∫
RN

∆N [x]
2
N∏
j=1

w(xj) dxj . (3.3.14)

The probability that the largest eigenvalue of a random matrix in the ensemble (3.3.14) is smaller
than a given threshold s ∈ R is

Probw(xmax ≤ s) = Probw(x1 ≤ s, . . . , xN ≤ s)

=
1

Zw

∫
(−∞,s]N

∆N [x]
2

N∏
j=1

w(xj)dxj =
〈
11(−∞,s]N

〉
w
,

(3.3.15)

where in the last expression ⟨·⟩w means the average in the ensemble (3.3.14) and 11(−∞,s]N is
the N -dimensional indicator function. In the Coulomb gas picture, replacing the weight w(x)
by w(x)11(−∞,s](x) introduces a hard wall placed at x = s which leaves the charges on its left.
See [154] for the large N limit of matrix models in presence of hard walls. For the GUE, the
probabilities of large fluctuations at large N have been found in [155, 139].

We immediately see from equation (3.3.13) that

ZLSZ(∅, ∅)
ZCS

=
(−1)Ne

γ2N
2

(4π)N
2 ProbCS(xmax ≤ −γ),

hence the ratio between the partition function of the LSZ model and that of Chern–Simons theory
is effectively computing the probability of large deviations of eigenvalues in the Chern–Simons
ensemble (3.1.3) (or, strictly speaking, in the Stieltjes–Wigert ensemble [84], see below), up to
a completely determined, parameter-dependent overall factor. More in general, formula (3.3.10)
states that

ZLSZ(µ, ν)

ZCS
= CN (γ, |µ|, |ν|)

⟨WµWν⟩CS

dimµ dim ν
ProbCS;WµWν (xmax ≤ −γ),

where by ProbCS;WµWν (·) we mean the probability in the matrix ensemble computing the in-
variant of two unknots, that is, in the Chern–Simons ensemble (3.1.3) with the insertion of two
Schur polynomials. This probability must be normalized by ZCS · ⟨WµWν⟩CS and not only ZCS.
Therefore, the LSZ matrix model with general assignment of the external matrices, divided by
the Chern–Simons partition function, is proportional to the two-unknot invariant weighted by
the probability of large deviations in the random matrix description of such topological invariant.
The proportionality constant yields an elementary dependence on the size N and on the free
parameters of the generalized LSZ theory.

We emphasize that the LSZ partition function does not compute the (typically small) fluc-
tuations of the largest eigenvalue around the edge of the eigenvalue distribution. Equivalently,
in the Coulomb gas picture, the LSZ partition function does not describe the fluctuations of the
rightmost charge around the equilibrium. What it gives is the probability of an atypically large
fluctuation, with the greatest eigenvalue moving deep into the bulk of the eigenvalue distribu-
tion. This is a q-analogue of the large fluctuations in the GUE discussed in [155, 139] (see also
[156, 157]). Besides, we underline that, differently from [139] where a large deviation from the
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equilibrium configuration is of order ∼
√
N , in the q-analogue the support of the eigenvalue density

grows as Ngs, thus large deviations from the equilibrium are of order ∼ N .

Now, if we consider equation (3.3.5) without Schur insertions, µ = ∅ = ν, then, changing
variables uj = eyj−(m2+2N−1)/g2 [84], it is well-known that we have a standard-random matrix
ensemble with a log-normal weight, named Stieltjes–Wigert (SW) ensemble. That is:

ZLSZ(∅, ∅) = BN
∫
[s,∞)N

∏
1≤j<k≤N

(uj − uk)2
N∏
j=1

e
− 1

2gs
(lnuj)

2

duj , (3.3.16)

for gs = 1/g2 and s = e
m2+2N−1

g2 , and with

BN := (4π)−N
2
exp

[
N

2g2
(
m2 − 1

)
(m2 + 2N − 1)

]
.

Note that a SW ensemble is not centered around 0, as the weight is supported on u ≥ 0. There-
fore, up to a proportionality factor, the LSZ partition function ZLSZ(∅, ∅) normalized by the SW
partition function gives the probability of atypically large fluctuations of the eigenvalues away
from the left edge at u = 0, with the smallest eigenvalue deep into the bulk, umin ≥ s, in a
Stieltjes–Wigert ensemble:

ZLSZ(∅, ∅)
ZSW

= BN ProbSW (umin ≥ s) .

To evaluate this quantity numerically at finite N , it is convenient to rewrite the integrals in the
numerator and denominator of ProbSW (umin ≥ s) as determinants [39], obtaining:

ProbSW (umin ≥ s) =
det1≤j,k≤N

[∫∞
s uj+k−2e

− 1
2gs

(lnu)2
du
]

det1≤j,k≤N

[∫∞
0 uj+k−2e

− 1
2gs

(lnu)2
du
]

= 2−N
det1≤j,k≤N

[
e

gs
2
(j+k−1)2erfc

(√
gs
2 (m

2 + 2N − j − k)
)]

det1≤j,k≤N

[
e

gs
2
(j+k−1)2

] .

In the latter expression, erfc(z) = 1−erf(z) is the complementary error function. The denominator
is known, and is readily extracted from (3.3.12). We obtain:

ProbSW (umin ≥ s) =
q

N
3
(2N2−1)

2N (1− q)
N
2
(N−1)∏N−1

j=1 (1− qj)N−j

× det
1≤j,k≤N

[
e

gs
2
(j+k−1)2erfc

(√
gs
2
(m2 + 2N − j − k)

)]
,

and we recall that q = e−gs and the argument of erfc is related to s through ln s = gs(m
2+2N−1).

We plot the logarithm of this probability at finite N in Figure 3.1. It is also clear from the
definition of s that the role of any fixed m2 becomes less relevant as N is increased, unless m2

itself is increased linearly with N . This aspect is shown in Figure 3.2.
We stress once more that the present setting is very different from the study of (typical) small

fluctuation of the largest or smallest eigenvalue around the edge, which are suppressed by inverse
powers of N . See [139, 156] for thorough discussion on this point, and [158] for further insights
in the theory of large deviations. In the more general case, ZLSZ(µ, ν) is proportional to the
probability of a large fluctuation of the eigenvalues away from the left edge in a SW ensemble
deformed by the insertion of two Schur polynomials sµ(u1, . . . , uN ) and sν(u1, . . . , uN ).
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The curves correspond to N from 2 to 7.

3.3.5 Large N limit

In the LSZ model, the parameter N regularizes the path integral of the noncommutative field
theory, as discussed in Section 3.2. Therefore, it is natural to consider the large N limit of
ZLSZ(∅, ∅), and more generally of ZLSZ(µ, ν). In turn, the probabilistic interpretation of the
Chern–Simons theory observables also calls for a large N analysis, from the perspective of large
deviations theory [158].

The knowledge of the large N solution of the matrix model ZLSZ(µ, ν) on either the complex
matrix model side or on the side of the probability in Chern–Simons observables, would directly
provide the solution on the other side. However, there are difficulties in solving the large N limit
from both perspectives. As mentioned in Subsection 3.3.1, and already observed in the original
work [49], a difficulty in the study of the LSZ partition function, generalized to arbitrary external
matrices E, Ẽ, comes from the presence of Ẽ, which prevents a reformulation of the model in
terms of a single Hermitian matrix M †M . Therefore, it becomes hard to solve the large N limit
of the matrix model explicitly, using for example the loop equations (that are zero-dimensional
Schwinger–Dyson equations) [159] when Ẽ ̸= 0. For Ẽ = 0, the large N solution has been found
in [49], but this choice does not yield meaningful observables in Chern–Simons theory.

Taking the converse route, we could try to analyze the large N asymptotics of (3.3.16), adapt-
ing the argument of [139] to the present case. This would amount to solve a constrained extrem-
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ization problem defined as follows. Write

t ≡ gsN = N/g2, z ≡ log s = gs(m
2 + 2N − 1)

and take the large N ’t Hooft limit of (3.3.16) keeping t and z fixed. Let ρSW(u) be the constrained
SW eigenvalue density at large N , supported on the interval [z, L(z)]. We have stressed the
dependence of the upper bound L(z) on z, and let the more standard dependence on the ’t Hooft
coupling t implicit. Then ρSW(u) solves the saddle point equation

P

∫ L(z)

z
du′

ρSW(u′)

u− u′
=

1

2t

lnu

u
, (3.3.17)

with the symbol P
∫

meaning the Cauchy principal value integral. The upper boundary of the
support L(z) is fixed as a function of z and t by the normalization condition∫ L(z)

z
du ρSW(u) = 1.

This problem cannot be solved by the method of [139], because of the non-polynomial form of the
right-hand side of (3.3.17). More precisely, the extremization problem described by the saddle
point equation (3.3.17) does not satisfy the hypothesis of Tricomi’s theorem. A complete solution
at large N would entail an extension of the method applied in [139, 155] to q-ensembles.

There are, nevertheless, two simplifying limits in which the matrix model becomes tractable
at large N :

• The g2 →∞ limit. The interaction term in the LSZ action dominates, and the fields become
non-dynamical. This corresponds to gs → 0, that is, q → 1 from below. In this limit, we
recover the Gaussian ensemble from the SW ensemble (up to an overall factor, readable from
(3.3.12)), and the results of [139] directly apply to the present setting.

• The g2 → 0 limit. The quartic interaction should become tractable in standard perturbation
theory in the LSZ field theory. From the Chern–Simons perspective, this corresponds to
gs →∞, equivalently q → 0 from above, and simplifications take place.

In the first case, the eigenvalue density is [139]

lim
gs→0+

ρSW(u) =
1

2π

√
L(z)− u
u− z

[L(z)− z + 2u] ,

with L(z) = 2
3

√
z2 + 6 + 1

3z, and now z ≡ γ/
√
N . From [139, Eq. (58)] and a change of variables

x 7→
√
2gsx we have

lnProbCS(xmax ≤ −γ) = lnProbCS(xmin ≥ γ)

≈ N2

2
ln
gs
2
− N2

54

[
36z2 − z4 + z(z2 + 15)

√
z2 + 6 + 27

[
ln 18− 2 ln

(√
z2 + 6− z

)]]
in the N →∞ and gs → 0 limit. This formula together with (3.3.13) describes the large N limit
of the LSZ model in the strong interaction regime g2 →∞.

The converse limit gs → ∞, that is, g2 → 0, can be analyzed as well. Changing variables
x 7→

√
2gsx in the Chern–Simons ensemble and using

2 sinh

(√
gs
2
(xj − xk)

)
≈ exp

(√
gs
2
|xj − xk|

)
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when gs →∞, we get

ZLSZ(∅, ∅) =
(−1)Ne

γ2N
2

(4π)N
2

(gs
2

)N2

2

∫
(−∞,−γ]N

N∏
j=1

dxj exp

− N∑
j=1

x2j +

√
gs
2

∑
j ̸=k
|xj − xk|

 .
The latter expression describes the partition function of a constrained one-dimensional Coulomb
gas [160, 161], corresponding to placing a hard wall at x = −γ in a model due to Baxter [162].
Here we derive the large N asymptotics at leading order for this constrained model.

Assuming x grows as x = ξNα in the large N limit, for some α > 0 and fixed ξ, the first term
in the exponential grows as N1+2α, while the second term grows as N2+α. A non-trivial saddle
point exists for α = 1. Therefore, the large N limit in this large gs regime is governed by the
eigenvalue density ρ0(ξ) that solves the saddle point equation√

gs
2

∫ L(z)

z
dξ′ ρ0(ξ

′)sign
(
ξ − ξ′

)
= ξ,

with, this time, z = γ/N , for the scaling of γ with N to be consistent with the growth of the
eigenvalues. Splitting the integral in two pieces, with ξ′ < ξ and ξ′ > ξ respectively, and taking
the derivative of the saddle point equation in the interior of the domain, z < ξ < L(z), we find

ρ0(ξ) =
1√
2gs

.

The normalization condition then imposes∫ L(z)

z
dξ ρ0(ξ) = 1 =⇒ L(z)− z =

√
2gs.

With this eigenvalue density we obtain

ln
[
(−1)NZLSZ(∅, ∅)

]
≈ −N3

[
z2 + z

√
2gs +

gs
3

]
at leading order in N and in the large gs regime.

The complete solution will then interpolate between this two limiting situations. The N2-
behaviour will correspond to small ’t Hooft coupling, t→ 0, while letting t grow linearly with N
will give back the N3-behaviour.

3.4 Solving the supermatrix model

The goal of the present section is to extend the analysis of the LSZ matrix model developed in
Section 3.3 to the supermatrix model

ZsLSZ

(
E, Ẽ

)
=

∫
DMDM † exp

(
−(N1 +N2) STr

{
MEM † +M †ẼM + V̂

(
M †M

)})
introduced in (3.1.2). The integral is over complex supermatrices of size (N1 +N2)× (N1 +N2),
and the external supermatrices E, Ẽ have N1 + N2 real eigenvalues each, which we write as

4π
N1+N2

(ηℓ, ξr) and 4π
N1+N2

(
η̃ℓ, ξ̃r

)
for E and Ẽ respectively. We use indices ℓ = 1, . . . , N1 and

r = 1, . . . , N2. The potential V̂ has a quadratic and a quartic interaction, as in (3.3.1).
In the next subsection we present a few generalities about supermatrices, then we will extend

the derivation of Section 3.3 to the sLSZ supermatrix model, this time establishing a connection
with ABJ(M) theory.
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3.4.1 Supermatrix models

We now introduce supermatrices and supermatrix models [163, 164]. We consider the general case
of (N1 +N2)× (N1 +N2) supermatrices, which can be defined in the block form

M =

(
A ψ
χ B

)
,

where A and B are respectively N1×N1 and N2×N2 complex matrices with bosonic entries, and
ψ and χ are respectively N2 ×N1 and N1 ×N2 matrices with fermionic entries. The supermatrix
M is acted on by the unitary supergroup U(N1|N2)left×U(N1|N2)right. The supertrace operation
is

STrM = TrA− TrB,

and the integration measure DMDM † is the product of Haar measures

DMDM † = DADA†DBDB†DψDχ.

We will need the supersymmetric version of the Harish-Chandra–Itzykson–Zuber formula
(3.3.3), which reads [165, 166]∫

U(N1|N2)
[dU ] exp {−(N1 +N2) STr (EUY U)}

= CN1N2

∏N1
ℓ=1

∏N2
r=1(yℓ − zr)

∆N1 [y]∆N2 [z]

∏N1
ℓ=1

∏N2
r=1(ηℓ − ξr)

∆N1 [η]∆N2 [ξ]
det

1≤ℓ,ℓ′≤N1

(
e−4πηℓyℓ′

)
det

1≤r,r′≤N2

(
e4πξrzr′

)
,

(3.4.1)
where E and Y are supermatrices with eigenvalues 4π

N (ηℓ, ξr) and (yℓ, zr) respectively, for ℓ =
1, . . . , N1 and r = 1, . . . , N2, and the coefficient is

CN1N2 =
(4π)N1N2

(4π)
N1(N1−1)

2 (−4π)
N2(N2−1)

2

G(N1 + 1)G(N2 + 1),

where G(·) is as usual the Barnes G-function. The factors ∆N are Vandermonde determinants,
introduced in (3.3.2). We note the appearance of the terms

∆N1 [y]∆N2 [z]∏N1
ℓ=1

∏N2
r=1(yℓ − zr)

,

and likewise for (η, ξ), which is the superdeterminant (called Berezinian) version of the Vander-
monde. When N2 = 0, formula (3.4.1) reduces to the well known HCIZ formula (3.3.3).

3.4.2 General solution

We now focus on the supermatrix model ZsLSZ defined in (3.1.2), and solve it as we have done in
Section 3.3 for the LSZ model.

We first rewrite the partition function as8

ZsLSZ

(
E, Ẽ

)
=

∫
[0,∞)N1

∫
[0,∞)N2

∆N1 [y]
2∆N2 [z]

2∏N1
ℓ=1

∏N2
r=1(yℓ − zr)2

N1∏
ℓ=1

e−m̂
2yℓ− ĝ2

2
y2ℓ dyℓ

N2∏
r=1

em̂
2zr+

ĝ2

2
z2rdzr

×
∫
U(N1|N2)

[dU2] exp
(
−NEU †

2Y U2

) ∫
U(N1|N2)

[dU1] exp
(
−NẼU †

1Y U1

)
,

8The Jacobian is the squared Vandermonde Berezinian, see [163, Sec. 4] and references therein.
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and then apply the supersymmetric HCIZ formula (3.4.1) twice. As in Section 3.3, we simplify
the Jacobian with the denominator coming from (3.4.1), and obtain

ZsLSZ

(
E, Ẽ

)
= C2

N1N2

∏N1
ℓ=1

∏N2
r=1(ηℓ − ξr)(η̃ℓ − ξ̃r)

∆N1 [η]∆N1 [ξ]∆N2 [η̃]∆N2 [ξ̃]

×
∫
[0,∞)N1

N1∏
ℓ=1

e−m̂
2yℓ− ĝ2

2
y2ℓ dyℓ det

1≤ℓ,ℓ′≤N1

(
e−4πηℓyℓ′

)
det

1≤ℓ,ℓ′≤N1

(
e−4πη̃ℓyℓ′

)
×
∫
[0,∞)N2

N2∏
r=1

em̂
2zr+

ĝ2

2
z2rdzr det

1≤r,r′≤N2

(
e4πξrzr′

)
det

1≤r,r′≤N2

(
e4πξ̃rzr′

)
.

We now assume the eigenvalues of the external supermatrices E, Ẽ are 4π
N1+N2

times integers, and
we rewrite them in the form

ηℓ = µ1;ℓ +N1 − ℓ, ξr = µ2;r +N2 − r
η̃ℓ = ν1;ℓ +N1 − ℓ, ξ̃r = ν2;r +N2 − r,

(3.4.2)

which is the obvious extension of (3.3.7). In our conventions, the partitions with index 1 have
rows labelled by ℓ = 1, . . . , N1 and partitions with index 2 have rows labelled by r = 1, . . . , N2.
We again recognize the Schur polynomials,

ZsLSZ

(
E, Ẽ

)
= C′

N1N2

∏N1
ℓ=1

∏N2
r=1(ηℓ − ξr)(η̃ℓ − ξ̃r)

∆N1 [η]∆N1 [ξ]∆N2 [η̃]∆N2 [ξ̃]

×
∫
[0,∞)N1

∆N1 [e
y]2 sµ1(e

−y1 , . . . , e−yN1 )sν1(e
−y1 , . . . , e−yN1 )

N1∏
ℓ=1

e−m
2yℓ− g2

2
y2ℓ dyℓ

×
∫
[0,∞)N2

∆N2 [e
z]2 sµ2(e

z1 , . . . , ezN2 )sν2(e
z1 , . . . , ezN2 )

N2∏
r=1

em
2zr+

g2

2
z2rdzr

where we defined the parameters m and g as in (3.3.6) to reabsorb the factor 4π, and

C′
N1N2

= (4π)−(N1+N2)C2
N1N2

=
G(N1 + 1)2G(N2 + 1)2

(4π)(N1−N2)2
.

We see that the present setting closely resembles what we obtained in Section 3.3, now with two
sets of integration variables and two pairs of Schur polynomials. In fact, the integrals over the
two sets of variables are factorized, and we may give the result as a product of two copies of the
result in Section 3.3.

However, we follow a different path and assemble the two pairs of Schur polynomials into
two supersymmetric Schur polynomials labelled by representations of the supergroup U(N1|N2),
see [47, 167] for definitions and properties. Irreducible U(N1|N2) representations are classified
in typical and atypical, and here we need the typical ones. The two typical representations that
appear in our computations correspond to the Young diagrams

µ = (κ+ µ1) ⊔ λ,
ν = (κ̃+ ν1) ⊔ λ̃,

where κ and κ̃ are rectangular N1 × N2 diagrams. This means that the Young diagram µ is
composed by a rectangle κ, a Young diagram µ1 on the right of it and another diagram λ below it,

74



Complex (super)-matrix models with external sources and q-ensembles

and analogously for the Young diagram ν (see Subsection 2.4.2). For these typical representations,
the supersymmetric Schur polynomials decompose as [47, 167]

Sµ(e
y1 , . . . , eyN1 |ez1 , . . . , ezN2 ) = sµ1(e

y1 , . . . , eyN1 )sλ′(e
z1 , . . . , ezN2 )

N1∏
ℓ=1

N2∏
r=1

(eyℓ + ezr) ,

Sν(e
y1 , . . . , eyN1 |ez1 , . . . , ezN2 ) = sν1(e

y1 , . . . , eyN1 )sλ̃′(e
z1 , . . . , ezN2 )

N1∏
ℓ=1

N2∏
r=1

(eyℓ + ezr) ,

where Sµ, Sν are the supersymmetric Schur polynomials and λ′, λ̃′ are the conjugate partitions to
λ, λ̃. Therefore, identifying the generic λ, λ̃ to be µ′2 and ν ′2 in our case, and following the same
manipulations as in Section 3.3, we rewrite ZsLSZ as

ZsLSZ (µ, ν) = AN1,N2 (µ, ν)×
∫
(−∞,−γ1]N1

∫
(γ1,∞]N2

N1∏
a=1

e−
g2

2
x2adxa

N2∏
ȧ=1

e
g2

2
w2

ȧdwȧ

×

∏
1≤a<b≤N1

(
2 sinh

(
xa−xb

2

))2 ∏
1≤ȧ<ḃ≤N2

(
2 sinh

(
wȧ−wḃ

2

))2
∏N1
a=1

∏N2

ḃ=1

(
2 cosh

(
xa−wḃ

2

))2
× Sµ(ex1 , . . . , exN1 |ew1 , . . . , ewN2 )Sν(e

x1 , . . . , exN1 |ew1 , . . . , ewN2 ),

(3.4.3)

with γα = m2 −Nα + 1, α = 1, 2, and the overall coefficient being

AN1,N2 (µ, ν) = (−1)N1C′
N1N2

∏N1
ℓ=1

∏N2
r=1(ηℓ − ξr)(η̃ℓ − ξ̃r)

∆N1 [η]∆N1 [ξ]∆N2 [η̃]∆N2 [ξ̃]

× exp

(
γ21N1 − γ22N2

2
+ γ1 (|µ1|+ |ν1|) + γ2 (|µ2|+ |ν2|)

)
= (−1)N1

∏N1
ℓ=1

∏N2
r=1(ηℓ − ξr)2(η̃ℓ − ξ̃r)2

(4π)(N1−N2)2 dimµ dim ν

× exp

(
γ21N1 − γ22N2

2
+ γ1 (|µ1|+ |ν1|) + γ2 (|µ2|+ |ν2|)

)
.

For the second equality, we have written the contribution from the eigenvalues of the external
supermatrices E, Ẽ in terms of the partitions µ, ν, and noted again that the Barnes G-functions
coming from the dimensions of the representations cancel with those arisen from the supersym-
metric HCIZ formula, precisely as in the ordinary matrix model of Section 3.3.

To arrive at (3.4.3) we have first shifted both sets of variables and then reflected the first set.
If we go back to equation (3.4.2) and define µ2;r, ν2;r from ξr, ξ̃r with opposite sign, we get to an
expression analogous to (3.4.3) but with both (x1, . . . , xN1) and (w1, . . . , wN2) integrated over the
same domain. In each case, we have to first change variables and then insert the supersymmetric
Schur factorization identity.

Comparing with [107], we rewrite the expression (3.4.3) in the form

ZsLSZ (µ, ν) = AN1,N2 (µ, ν) ZABJ

〈
WµWν 11(−∞,−γ1]N1 (x)11[γ2,∞)N2 (w)

〉
ABJ

, (3.4.4)

where ⟨· · · ⟩ABJ is the average in the ABJ matrix model (3.1.4), and 11(−∞,−γ1]N1 (x) (respectively
11[γ2,∞)N2 (w)) is the N1-dimensional (N2-dimensional) indicator function. Besides, Wµ is the trace

of the holonomy of a superconnection along an equatorial circle inside S3, in the representation µ
of the supergroup U(N1|N2), which describes a Wilson loop in ABJ(M) theory [73, 82]. Previous
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works on averages of supersymmetric Schur polynomials over the ABJ(M) ensemble include [168–
170].

The probabilistic interpretation of the result (3.4.4) in terms of large deviations away from the
equilibrium in the ABJ(M) matrix model with supersymmetric Schur insertions, follows directly
from the discussion in Subsection 3.3.4. In particular

ZsLSZ (µ, ν)

ZABJ
= AN1,N2 (µ, ν) ⟨WµWν⟩ABJ ProbABJ;WµWν (xmax ≤ −γ1, wmin ≥ γ2),

hence the supermatrix model (3.1.2) measures the probability of atypically large deviations from
the equilibrium in the random matrix description of two supersymmetric Wilson loops carrying
two U(N1|N2) typical representations. The specialization to two void partitions implies

ZsLSZ (∅, ∅)
ZABJ

= AN1,N2 (∅, ∅) ProbABJ(xmax ≤ −γ1, wmin ≥ γ2).

Remark. Throughout this section we defined and analyzed a supermatrix version of the LSZ
model. It would be interesting to derive the supermatrix model (3.1.2) from an extension of the
LSZ scalar theory to a noncommutative superspace.

3.A Schur polynomials

Here we include explicit formulas involving Schur polynomials [90].

Spectral shift and rectangular Schur

A simple identity of Schur polynomials quickly shows what occurs if, in the case of a equispaced,
harmonic oscillator spectra, we have a global overall shift in the spectrum (that is, a different zero
point energy). If we have a rectangular partition of length N , (l, l, ..., l) which we denote by lN

then, assuming that λ is a partition of length equal to or lower than N , it holds

sµ+lN (e
x1 , ..., exN ) =

(
N∏
a=1

elxa

)
sµ(e

x1 , ..., exN ),

Therefore, an overall spectral shift by an integer l in one external matrix, corresponds to a renor-
malization of the mass parameter m̂2 7→ m̂2 − l.

Another useful identity is [90]

sµ(ce
x1 , . . . , cexN ) = c|µ|sµ(e

x1 , . . . , exN ). (3.A.1)

Dimensions

The value of sµ (1, . . . , 1) gives the dimension of the irreducible representation of U(N) with
highest weight µ. Weyl’s denominator formula states that

sµ(1, ..., 1︸ ︷︷ ︸
N

) =
∏

1≤a<b≤N

(
µa − a− µb + b

a− b

)
=

1

G(N + 1)

∏
1≤a<b≤N

(µa − µb + b− a) ,

where G(·) is the Barnes G-function.

76



Part II

Large N phase transitions in matrix
models and gauge theories
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Chapter 4

Prologue to Part II

This chapter serves as an introduction to Part II, which is devoted to the study of the large
N limit of a wealth of matrix models, with focus on the implications from the point of view of
phase transitions and critical phenomena [33, 34]. We begin by discussing the large N limit in
some generality. Then, we give an extremely brief review of the theory of phase transitions. We
conclude this overview recalling the analogy between matrix ensembles and log gases in Section
4.4.

4.1 On large N limits

Let us begin with a lightning introduction to the large N limit, with focus on gauge theories with
simple compact gauge group for concreteness.

A standard approach in QFT is to compute correlation functions in a perturbative expansion
in the coupling constants of the model. Higher orders in perturbation theory correspond to a
higher number of loops in the Feynman diagrammatic expansion. Therefore, by construction, any
computation in perturbation theory gives as output a Maclaurin expansion around a free field
theory. Assume now that one is interested in a gauge theory, and denote by N the rank of the
gauge group. Instead of expanding in the coupling constants, consider the Maclaurin expansion
of the physical observables in the parameter 1/N . Each order in 1/N includes contributions from
Feynman diagrams with any number of loops, thus remaining valid away from the weak coupling
regime. An additional advantage of large N is that the expansion parameter is not renormalized.

Depending on the specific model under consideration, there may exist different ways to take a
large N limit. However, two of them stand out, which always exist in theories with matrix degrees
of freedom. Throughout the dissertation we adopt a QFT-oriented nomenclature to distinguish
these two limiting procedures:

• the strict large N limit, in which the number N of degrees of freedom is sent to infinity
keeping all other parameters fixed;

• the ’t Hooft large N limit [17–19], in which the number N of degrees of freedom is sent to
infinity and, at the same time, the couplings are tuned in such a way that all contributions
are kept of the same order in N .

In the context of unitary matrix models, the strict limit is also sometimes referred to as Szegő limit,
because the result is given by the celebrated Szegő theorem [171]. Besides, in the mathematics
literature the ’t Hooft limit is oftentimes simply referred to as large N limit. As a further remark,
note that here we include in the ’t Hooft limit various limiting procedures that may have different
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physical meaning. For example, the Veneziano limit is nothing but a special case of ’t Hooft limit
from our standpoint.

The ’t Hooft limit is in fact more general, with the strict limit recovered as a first order
approximation. In absence of phase transitions, we can nevertheless extract the results in the ’t
Hooft limit from those in the strict limit by analytic continuation. This aspect is more extensively
elaborated upon in [11].

Other limits, such as the M-theory limit [172], are recovered at strong or weak coupling from
the ’t Hooft limit, although more precise asymptotics can be obtained by directly working in the
appropriate regime [172, 173].9 We refer to the lecture notes [175] for a thorough discussion on
the large N limits in various models, to [27] for an overview of the techniques to solve matrix
models at large N , to [176] for the specialization of these techniques to q-ensembles, that play a
central role in the dissertation, and finally to [177, 178] for the recovery of the M-theory limit as
a ’t Hooft limit at strong coupling.

A further limit of crucial importance and with far-reaching physical applications is the double-
scaling limit. Originally pioneered to study two-dimensional gravity, it has been introduced for
Hermitian [179–181] and unitary matrix models [182], and later refined and applied to myriad
situations related to random matrix theory. A notable achievement is the solution of the long-
standing problem of the longest increasing subsequence of a random permutation [183] (see [184]
for an overview of this subject).

Succinctly, the double-scaling consists in taking the ’t Hooft limit while concurrently tuning a
control parameter towards one of its critical values. It is customary to take the control parameter
to be a physically meaningful parameter, such as the ’t Hooft gauge coupling, although it can
in principle be chosen to describe an arbitrary curve in parameter space. As a side remark, we
note that in the physics literature it is sometimes misleadingly termed double-scaling limit a ’t
Hooft limit with multiple ’t Hooft parameters. As clarified above, and repeatedly mentioned in
the following, one should think of the latter procedure as the proper way of taking the ’t Hooft
limit, whereas the double-scaling is a more subtle limit, not guaranteed to exist in general, which
explores a distinct physical regime and hence yields different physical consequences [179–181].

It is worthwhile to emphasize that, with the exception of Chapter 7, our large N will always
refer to a large number of colours in the physical parlance. That is, we deal with integrals over
rank-N matrix degrees of freedom, dictated by the gauge group, and work in the limit of large
matrix size [18, 19]. The phrasing “large N limit” is, however, equally used to indicate the vector
large N limit, following the early literature on the O(N) model [33, 185]. In such case, one has
fields that transform in the vector representation of O(N) or in the fundamental representation
of U(N), the groups being global symmetries of the theory and not gauge groups. Again we refer
to [175] for a comparison of the various large N limits.

The large N limit considered in Chapter 7 is a vector limit, as opposed to the rest of the
manuscript. We keep the gauge group of small rank but work in the limit of a large flavour
symmetry, taking a ’t Hooft-type scaling.10

9It is fair to say that one not seldom has to take additional perturbative expansions in a ’t Hooft coupling, to
solve the large N limit in closed form. Therefore, the comparison between the ’t Hooft and M-theory limits is
usually an uneasy task, because of the thin overlap of the regions of validity for the assumptions made on the two
sides. A successful comparison of the ’t Hooft and M-theory limit in the large N Chern–Simons-matter quivers of
Chapter 2 has been worked out in [174].

10We stress the conceptual similarity with recent works [186–189] discussing the vector large N limit of the O(N)
model (or of its U(N) analogue) in a ’t Hooft-type limit with the central charge scaled linearly with N . In the case
of interest to us, extended supersymmetry allows us to obtain exact results in the whole parameter space, as well
as to compute 1/N corrections.
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4.2 SU(N) versus U(N)

Standard lore claims that SU(N) and U(N) are indistinguishable at leading order in the 1/N
expansion. One of the main results of this thesis is to defy this belief.

The statement is supported by a solid argument, that we now formulate in three ways. Let us
work at the level of Lie algebras, u(N) ∼= su(N)⊕ u(1), in order to neglect the global structure of
the gauge group.

(i) The difference between u(N) and su(N) is a diagonal u(1) ⊂ u(N), whose contribution is
negligible compared to the rest of the gauge group.

(ii) In a diagrammatic 1/N expansion, the only difference between u(N) and su(N) comes from
the propagator of a gauge-singlet meson. The meson propagator can be attached to matter
legs in the diagrammatic expansion, but not to gauge boson legs, thus it will only appear in
diagrams suppressed by a factor 1/N .

(iii) The difference between u(N) and su(N) is the tracelessness condition on the latter. This can
be enforced at the level of Lagrangian density by introducing a Lagrange multiplier (shown
here for simplicity in the case of a scalar field ϕ in the adjoint representation of u(N))

ξTr(ϕ), (4.2.1)

which only grows linearly inN , thus suppressed by a factor 1/N compared to the contribution
from the adjoint representation of su(N).

Point (ii) is the particle theorist’s rephrasing of (i), while point (iii) presents a pragmatic approach
useful for computations, especially in matrix models.

We now look deeper into the statements above. To take the large N limit of u(N) corresponds,
at leading order, to work in the direct limit Lie algebra u(∞) defined as the inductive limit of

u(1) ⊂ · · · ⊂ u(N) ⊂ u(N + 1) ⊂ · · ·

In this regime, the fields attain a saddle point value that minimizes the effective action, which is
a configuration in u(∞) also known as master field.

In general, though, the saddle point equation (or master field equation) for u(∞) needs not
admit a traceless solution. Therefore, to simply neglect the difference between u(N) and su(N)
may, and sometimes will, as shown in Chapters 5-6, result in a non-traceless solution for a su(N)
problem.

The puzzle is rooted in the definition of what is meant by su(∞). If we define it to be the
same as u(∞), then the statement that U(N) and SU(N) agree at leading order is tautologically
correct, but we have to accept that physical observables in a SU(N) gauge theory are dominated
by non-traceless field configurations.

A reasonable alternative is to define su(∞) to be the traceless subspace of u(∞). This is the
definition we take on in this work.

In order to keep track of the traceless condition on su(N) at large N , we redefine the Lagrange
multiplier in (4.2.1) as ξ = Nξ̃, with ξ̃ fixed. While this may seem ad hoc, let us emphasize that ξ
is a background field whose normalization is completely arbitrary. Moreover, the crucial argument
in favour of the ’t Hooft scaling of the Lagrange multiplier ξ comes from the seminal work [18].
Let us focus again on our scalar example for simplicity, and study the u(N)-valued field ϕ. It
was shown in [18] that the proper normalization of the Lagrangian density in the ’t Hooft large
N limit is NTr(V (ϕ)), where V (·) is an arbitrary polynomial with coefficients independent of N .
From that point of view, there is no reason not to add a linear term ξ̃ϕ to V (ϕ). The saddle point
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configuration will then depend on ξ̃, and it must be fixed to a value that extremizes the effective
action.

To sum up, we propose that the Lagrange multiplier enforcing the tracelessness condition on
su(N)-valued fields should be scaled in a ’t Hooft way, to guarantee that the large N saddle point
configuration in a su(N) gauge theory is traceless. Not only the procedure is self-consistent, but
it is natural from a mathematical point of view when dealing with random matrix ensembles.

4.3 On phase transitions

The goal of this section is to give a very short account of the theory of phase transitions in QFT.
For an extensive discussion we refer to the monograph [34].

Phase transitions are a hallmark of theories with infinitely many degrees of freedom. Whenever
a computation in a QFT reduces to a matrix model, i.e. to zero spacetime dimensions, phase
transitions can only appear at large N .

A phase transition is the property that, depending on the value of a control parameter λ, a
system shows different responses if the large N limit is taken in different ways. Order parameters
discern among the phases. The presence of a phase transition corresponds to a new saddle point
configuration for the fields appearing as the control parameter λ crosses a critical value λcr.

1) The typical situation that leads to a first order phase transition is an effective action Seff
that has several local minima. One of them, the absolute minimum, will yield the leading
contribution at large N . Varying λ, the value of Seff at one of the local minima can decrease,
so that the corresponding point in field space becomes the new absolute minimum, as sketched
in the left panel of Figure 4.1. The system experiences a sharp transition in this case, with
the leading contribution to physical observables jumping discontinuously in field space. Order
parameters are then discontinuous at this transition.

2) Second order phase transitions are associated with spontaneous symmetry breaking. The
prototypical setup is a model in which Seff has only one minimum for λ < λcr. However, when
λ > λcr, new absolute minima emanate from the previous saddle point configuration. This is
represented in the right panel of Figure 4.1. In this case, the order parameters are continuous
at λ = λcr, because the two saddle point configurations in the two phases are not at finite
distance. However, their derivatives will not be continuous.

Figure 4.1. Cartoon representation of a first (left) and a second (right) order phase transition. The three
curves correspond to λ < λcr (dashed), λ = λcr (dotted), and λ > λcr (solid).

3) Third order phase transitions are ubiquitous in matrix models, and they can be triggered by
various and diverse mechanisms.
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• The effective action Seff does not change its shape as λ crosses λcr. Nevertheless, the
minimization problem is constrained by additional conditions, which cannot be fulfilled
by the absolute minimum of Seff at λ > λcr. The system is then forced into a new
phase, dominated by the configuration that minimizes Seff in the region allowed by the
constraints. Examples of phase transitions induced by this mechanism include:

▷ the Gross–Witten–Wadia transition [190–192], in which the constraint originates from
the compactness of the integration domain, that upper bounds the distance between
two degrees of freedom;

▷ the Douglas–Kazakov transition [193], in which the constraint originates from the
discreteness of the integration domain, that bounds below the distance between two
degrees of freedom;

▷ the soft-edge to hard-edge transition common in Coulomb gases with a hard wall
[160].

Transitions of these types are prominent in Chapters 8-9.

Clearly, a model may be subject to more than one constraint, which generically leads to a
number of phase transitions and to a richer phase diagram. It could also happen, though,
that one of the constraints is always satisfied, an explicit example will be briefly discussed
in Chapter 8.

• Fields that are heavy for λ < λcr, and thus are integrated out and contribute a one-loop
determinant to Seff, become light at λ > λcr. The saddle point configuration is reorganized
accordingly. These transitions feature in Chapters 5-6.

4.4 Log gases

Random matrix theory is, concisely, the study of correlation functions

⟨f⟩N =
1

N !ZN

∫
CN

f(u1, . . . , uN )e
−N2Seff(u)

N∏
a=1

dua,

ZN =
1

N !

∫
CN

dNue−N
2Seff(u),

where the characteristics of the underlying physical system are encoded in the integration cycle C
and in the effective action Seff.

It is instructive to think of such matrix ensembles as one-dimensional Coulomb systems of N
particles, whose positions are represented by the eigenvalues ua, a = 1, . . . , N [40]. In this analogy,
the vast majority of matrix models discussed throughout correspond to log gases of particles that
interact only through their mutual Coulomb forces, and are immersed in a background confining
potential V (u). Explicitly,

Seff(u) =
β

N2

N∑
a=1

V (ua)−
1

N2

∑
1≤a̸=b≤N

Φ(|ua − ub|),

with β the inverse temperature. Φ encodes the one-dimensional Coulomb interaction [40], and
thus is essentially determined by the topology of C. We are mainly interested in three cases:

(i) C = R and Φ(|ua − ub|) = log|ua − ub|, describing a Coulomb gas on the real line. In fact,
in Part III we will meet a variation of this setup, in which C = Z, so the eigenvalues, hence
the particles in the log gas analogy, are constrained to live on a lattice and cannot get closer
than the lattice spacing.
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(ii) C = S1 and Φ(|ua − ub|) = log|ua − ub|. In this case, it is convenient to change the measure
to dua

2πiua
. The change of variables ua = eiθa yields Φ(|ua − ub|) = log 2|sin θa−θb

2 |.

(iii) The particles live on a two-dimensional cylinder, but are forced to stay on a line. In this
case C = R, but the cylindrical Coulomb interaction reads Φ(|ua − ub|) = log 2|sinh ua−ub

2 |
[40]. This is the log gas model that corresponds to Chern–Simons theory on S3 [133, 84].

Let us now review the large N limit from the log gas point of view. Taking the number
of particles to be large at finite temperature, 0 < β < ∞ fixed, the Boltzmann factor e−βV (u)

suppresses the excited configurations, and the thermodynamic equilibrium is dominated by the
repulsive Coulomb interaction. The particles are spread to infinity with a large separation among
each other, if C is unbounded, or are distributed with equal spacing if C is bounded. For the
special case C = S1, the average density of particles is 1

2π .
A more interesting limit corresponds to drive the system to zero temperature at the same rate

as N → ∞, that is, we keep t = N
β fixed. This is precisely the ’t Hooft limit introduced in [18]

and discussed in Section 4.1. In this procedure, the equilibrium configuration is determined by
the competition between the confining potential V (u), which tends to gather the particles at its
bottom, and the Coulomb repulsion, which tends to spread the particles far away from each other.
The resulting equilibrium is described by particles at separated points that fill the wells around
the minima of the potential. Increasing the couplings in the potential shrinks the width of the
region onto which the particles are spread.

It is clear that the topology of C may introduce additional constraints on the equilibrium
configuration. Consider for instance the setup of point (ii), so C = S1, at very small t. The particles
are gathered in a neighbourhood of the absolute minimum of the potential. As we increase the
control parameter t, the width of the interval on which the particles are placed increases, due
to the dominance of the repulsive force. Eventually, at t = tcr, the particles cover the whole
S1. They cannot be spread further apart for t > tcr, thus the resulting density of particles is a
deformation of the uniform density that takes into account the attraction toward the minimum
of the potential. The transition between the two types of equilibrium is the Gross–Witten–Wadia
transition [190, 192], or a generalization thereof.

An alternative example is provided by the setup of point (i), with C = Z. Taking t→ 0 to push
the particles towards the minimum of V (u), the equilibrium configuration breaks down and the
particles must reorganize themselves when the average distance becomes smaller than the lattice
spacing. This mechanism is the log gas view of the Douglas–Kazakov transition [193, 194] and its
generalizations.

To summarize, the large N ’t Hooft limit in matrix models corresponds to the thermodynamic
limit of a one-dimensional Coulomb gas, which is simultaneously tuned to zero temperature. The
topology of the space on which the gas lives may induce phase transitions.
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Chapter 5

Phases of three-dimensional
supersymmetric
Chern–Simons-matter theories

5.1 Introduction to the chapter

The study of supersymmetric gauge theories in compact manifolds has experienced great progress
on the last decade, due to the development of the localization method [56], which leads to a much
simplified description of the original functional integral describing the observables of the gauge
theories. The resulting object to analyze is a finite-dimensional integral of random matrix type.

An important stream of research, that emerged by analyzing such matrix model description,
brought upon by localization, is the discovery and characterization of large N quantum phase
transitions of supersymmetric gauge theories on spheres, typically in the large radius limit. Aspects
of this research line have been especially investigated in four-dimensional N = 2 theories, where it
was found to be quite a generic feature of theories with massive matter [195–201]. Exceptions to
this pattern are the superconformal theories, such as four-dimensional N = 2 SU(N) theory with
Nf = 2N hypermultiplets in the fundamental representation. This peculiarity is indeed expected
on physical grounds, as we will explain below.

It was observed in these works that the quantum phase transitions originate from resonances
emerging when the ’t Hooft coupling is such that the saddle points of the action hit a singularity
of the Coulomb branch, where massless modes appear. In other words, there are critical values for
the coupling such that, when crossed, field configurations with extra massless multiplets contribute
to the saddle-point, leading to non-analytic behaviour of supersymmetric observables, such as the
partition function or the vacuum expectation value (vev) of Wilson loops.

In this chapter we shall study three-dimensionalN > 2 theories on S3 [58]. In three dimensions,
U(N) Chern–Simons-matter theories have been studied at large N and large volume in [202, 62,
203–207]. Results in five dimensions have been obtained in [208, 4].

We will follow and extend [202], studying the phase structure of U(N) Chern–Simons-matter
with massive fundamental hypermultiplets, but for arbitrary masses of the hypermultiplets and
with a Fayet–Iliopoulos (FI) parameter turned on. Then, we analyze vevs of Wilson loops in
the fundamental or antisymmetric representation at large N , adopting the now standard and
widespread technique described in [209] for the latter. This approach is based on studying the
matrix model average of the generating function of the Wilson loops in antisymmetric repre-
sentations. In mathematical terms, these are the generating functions of elementary symmetric
polynomials. The study of Wilson loops in large representations is comparatively less developed
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than the case of the Wilson loop in the fundamental representation, although in four dimensions,
there are a number of works in the higher-rank case in the last years [210, 211]. The case of a
three dimensional Chern–Simons theory is understudied in comparison and we tackle it here. We
then have an additional scaling parameter to play with, namely κ = K/N , where K denotes the
rank of the Wilson loop representation. As explained in [210, 211], the existence of this parameter
makes these Wilson loops good probes of the critical behaviour of the theory.

We push our analysis beyondN = 3 Chern–Simons matter theories and discuss three-dimensional
N = 4 SQCD. We study this theory in a twofold approach: either directly at large radius, taking
a suitable limit for the Chern–Simons coupling, or by first solving the saddle point equation at
large N and finite radius. The two derivations are shown to agree in the large radius limit. To
our knowledge, the eigenvalue density for 3d N = 4 SQCD has not appeared in the literature,
although its qualitative form may have been guessed from comparison with related earlier works
[202, 212].

With these results at hand, we will comment on similarities and differences among the solved
theories in three, four and five dimensions. One major outcome of our analysis is to test and
explicitly confirm expectations based on physical intuition in the large volume limit. In particular,
we find a dramatic change in the phase diagram of a theory when the Chern–Simons term is set
to zero.

The rest of the chapter is organized as follows. In the next section we introduce the partition
function of 3d N = 3 U(N) Chern–Simons-matter theory on S3 and take its large N and large
radius limits. In Section 5.3 we derive the phase diagram of U(N) Chern–Simons-matter theories
in the ’t Hooft limit with analytically continued Chern–Simons coupling. We begin by rederiving
the results of [202], as a warm-up example to present our machinery. Then, we extend the results to
the generic situation. The main physical lessons inferred from our analysis are detailed in Section
5.3.5. The analysis of fundamental and antisymmetric Wilson loop vevs is given in Section 5.4.
Finally, we discuss three–dimensional SQCD with Nf = 2N flavours in Section 5.5.

5.2 Gauge theories with large rank on the three-sphere

As already reviewed in Section 2.2, the partition function of any N ≥ 2 gauge theory on S3
localizes to an ordinary integral [58]. The integration variable is the real scalar field in the N = 2
vector multiplet, that we denote by ϕ throughout this Chapter.11 In this chapter we only consider
U(N) gauge theories with Nf hypermultiplets in the fundamental representation. The resulting
partition function takes the schematic form

ZS3 =
1

N !

∫ ∞

−∞
dϕ1 · · ·

∫ ∞

−∞
dϕN Zclass(ϕ)Z

vec
1-loop(ϕ)Z

hyp
1-loop(ϕ). (5.2.1)

Here

Zclass(ϕ) =
N∏
a=1

e−V (ϕa),

V (ϕ) = iπk(rϕ)2 + i2πr2ξϕ,

where r is the radius of S3, the first piece is the Chern–Simons term and the second piece is the
FI term, with FI parameter ξ of mass dimension one. Besides, assuming N ≥ 3 supersymmetry,

11The real scalar in the N = 2 vector multiplet is more often denoted by σ, with ϕ referring to a SU(2) triplet
of fields. However, to uniform our conventions with the five-dimensional setting discussed in Chapter 6, we adopt
the symbol ϕ for the real scalar.
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the one-loop fluctuation determinants are given by [58]

Zvec
1-loop(ϕ) =

∏
1≤a<b≤N

(2 sinhπr(ϕa − ϕb))2

Zhyp
1-loop(ϕ) =

F∏
α=1

N∏
a=1

(2 coshπr(ϕa +mα))
−nα .

Here we are assuming without loss of generality that there are F distinct real mass scales
{mα}α=1,...,F , and that nα hypermultiplets have the same mass mα. Clearly, the total number of
hypermultiplets is

Nf =
F∑
α=1

nα.

Let us comment on our sign convention for the masses. Consistently with Chapters 2 and 6,
we are assuming that the hypermultiplets transform in the fundamental representation of both
the gauge group and the flavour symmetry, hence we get a relative plus sign in the contribution
ϕa + mα. Sometimes, in the literature one finds the expression ϕa − mα, which corresponds
to assume the matter field in the fundamental representation of the U(N) gauge group but in
the anti-fundamental representation of the flavour symmetry group. The latter convention is
consistent with producing the flavour symmetry from ungauging a U(N) gauge group. Of course,
mα ∈ R, so there is no difference in the two conventions. Moreover, this issue would not appear in
Sp(N) and SO(N) gauge theories, for which the fundamental, respectively vector, representation
is (pseudo-)real.

For vanishing Chern–Simons level, k = 0, the theory is SQCD with N = 4 supersymmetry.
We focus now on the case k ̸= 0 and only come back to SQCD below.

A first convenient step is to reabsorb the FI parameter into a change of variables ϕ′a = ϕa+
ξ
k ,

which yields:

ZS3 =
e−iπN

k
(rξ)2

N !

∫
RN

∏
1≤a<b≤N (2 sinhπr(ϕ′a − ϕ′b))

2∏F
α=1

∏N
a=1 (2 coshπr(ϕ

′
a +m′

α))
nα

N∏
a=1

eiπk(rϕ
′
a)

2
dϕ′a (5.2.2)

where we have defined

m′
α = mα −

ξ

k
.

Therefore, the net effect of turning on an FI parameter is to shift all the masses, up to the overall
exponential factor which is to be interpreted as a background Chern–Simons term for the Abelian
twisted vector multiplet to which the real scalar ξ belongs. This simple effect is not surprising
but is very different from what one gets in a 3d N = 4 U(N) theory without Chern–Simons
terms. Essentially, in the Chern–Simons theory under consideration, if we start with a U(N)
gauge theory with SU(Nf ) flavour symmetry, turning on a FI parameters is equivalent to turn
on the central U(1) ⊂ U(Nf ). Therefore, we will henceforth simply consider a U(Nf ) flavour
symmetry and neglect the FI term, with the understanding that the latter one has been turned
on and reabsorbed as shown above (with a few caveats to be discussed shortly).

At this point, simply rewrite (5.2.2) as (we drop henceforth all the ′)

ZS3 =
e−iπN

k
(rξ)2

N !

∫
RN

dNϕ e−N
2Seff(ϕ),
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with

Seff(ϕ) =
1

N

N∑
a=1

[
−iπ k

N
(rϕa)

2 +
F∑
α=1

nα
N

log 2 coshπr(ϕa +mα)

]

− 1

N2

∑
1≤a̸=b≤N

log 2 sinhπr |ϕa − ϕb| .

In the large N limit the integrand is suppressed as ∼ e−N
2(··· ), so that the leading order contri-

bution comes from the saddle points of the effective action Seff. It is convenient and customary,
though, to first consider the analytic continuation in the Chern–Simons coupling k. For later
convenience, we introduce a massive ’t Hooft parameter λ through the replacement

iN

kr
= λ,

and we will keep λ fixed in our large N limit. Our choice differs from the standard conventions
for the Chern–Simons ’t Hooft coupling, which is typically taken to be adimensional. Here the
appearance of a new massive parameter is simply due to counting powers of r, and will play a
crucial role in the ensuing analysis. Notice also that the FI parameter only enters through the ratio
ξ
k . This means that, upon analytically continuing k, we are also led to analytically continue the
FI parameter. Besides, as we take k →∞ in the ’t Hooft limit, we must also scale ξ linearly with
N , otherwise its contribution would be sub-leading in the large N limit. This is foreseen already
before reabsorbing ξ with the change of variables, and is consistent with the general analysis of
Chapter 4, which suggests that, in the ’t Hooft limit, all terms in the effective action should be
scaled so to contribute at the same order in N .

Additionally, we take a Veneziano scaling, with

nα
N
≡ ζα fixed ∀α = 1, . . . , F.

The Veneziano parameters ζα are unconstrained in the present case, although in absence of a
Chern–Simons term they must satisfy

∑F
α=1 ζα ≥ 2, which follows directly from the convergence

of the initial integral (5.2.2).
The last ingredient we need is the eigenvalue density

ρ(ϕ⋆) =
1

N

N∑
a=1

δ(ϕ⋆ − ϕa),

which, by definition, is normalized to 1, and is compactly supported in the large N limit. Here
we have introduced the variable ϕ⋆, which runs continuously on suppρ, to distinguish it from the
N -component scalar field ϕ.

At this point we take the large N limit of the matrix model (5.2.2). The eigenvalue density
allows us to gather the N equations ∂Seff

∂ϕa
= 0 into a single singular integral equation for ρ, called

the saddle point equation (SPE):

P

∫
dψρ(ψ) cothπr(ϕ⋆ − ψ) = ϕ⋆

λ
+

F∑
α=1

ζα
2

tanhπr(ϕ⋆ +mα), (5.2.3)

to be satisfied at every ϕ⋆ ∈ suppρ. From now on, we will simply replace the notation ϕ⋆ with ϕ
to avoid clutter.

Gaining inspiration from earlier works, we do not try to directly solve (5.2.3). Instead, we
approximate the flat space dynamics by taking the large radius limit, referred to as decompacti-
fication limit. Notice that, in our version of the ’t Hooft limit, we keep λ finite as r →∞, which
corresponds to take the usual, adimensional ’t Hooft coupling N

k →∞ at the same rate [202].
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For large argument, the hyperbolic functions in (5.2.3) tend to ±1 and are replaced by sign
functions, significantly simplifying the SPE. We thus arrive at:

∫
dψρ(ψ)sgn(ϕ− ψ) = ϕ

λ
+

F∑
α=1

ζα
2
sgn(ϕ+mα). (5.2.4)

This equation is the central object of study for the rest of the chapter. The appearance of sign
functions on the right-hand side of (5.2.4) is responsible for the appearance of phase transitions.
Indeed, assume a given mα lies outside suppρ. Then, the corresponding sign function is effectively
independent of ϕ. However, if we move mα, we expect a phase transition when it enters in suppρ,
because it introduces a new dependence on ϕ and the eigenvalues rearrange themselves in a new
saddle point configuration.

5.3 Phase diagram of Chern–Simons-matter theories

5.3.1 Two mass scales: Symmetric case

Let us begin our detailed analysis considering a model with two opposite mass scales, that is
F = 2, m1 = −m2 ≡ m. In addition, consider a Z2-symmetric setup in which the two Veneziano
parameters are taken equal, ζ1 = ζ2 ≡ ζ. This theory was first considered in [202, 62] and we
revisit it here.

The SPE reduces to∫
dψρ(ψ)sgn(ϕ− ψ) = ϕ

λ
+
ζ

2
[sgn(ϕ+m) + sgn(ϕ−m)] . (5.3.1)

Thanks to the discrete reflection symmetry, we can restrict to m > 0 without loss of generality.
We begin considering the region of very large mass, m → +∞. In this limit, we expect that
the hypermultiplets decouple and we are left with a pure Chern–Simons theory. The eigenvalue
density is thus supported on a single interval [A,B]. Decreasing m from infinity but keeping
m > B and −m < A, the sign functions cancel each other. Differentiating (5.3.1) we find

ρ(ϕ) =
1

2λ
, −A = B = λ,

with the values of A and B fixed by normalization and by symmetry. Alternatively, without relying
on the Z2 symmetry, that will not be available in general, we can plug the solution for ρ back into
(5.3.1). Since the solution has been obtained differentiating (5.3.1) once, this procedure endows
us with a further consistency condition. Complementing this condition with the normalization
condition, we find a system of two linear equations for the variables A and B [3, 4]. This feature,
in particular, suggests that all solutions in this regime will be one-cut, i.e. suppρ = [A,B] consists
of a single interval.

The solution was derived under the assumption m > B, thus holds for

m > mcr,1 = λ.

If, instead, we assume A < −m < m < B, (5.3.1) is solved analogously, but this time the sign
functions will contribute. Differentiating (5.3.1) once we get

ρ(ϕ) =
1

2λ
+
ζ

2
[δ(ϕ+m) + δ(ϕ−m)] .
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Plugging this expression back into (5.3.1) imposes A = −B, as predicted by symmetry arguments,
while the normalization condition reads∫ B

A
dϕρ(ϕ) =

B −A
2λ

+
ζ

2
+
ζ

2
= 1,

that is −A = B = λ(1− ζ). Therefore, this solution holds in the region

0 ≤ m < mcr,2 = λ(1− ζ).

This cannot be the end of the story, because a solution in the region λ(1 − ζ) < m < λ is still
lacking.

The remaining possibility, overlooked above, is −m = A. To address this phase, we have to
slightly change our strategy, for two reasons. Firstly, we can only take derivatives of at (5.3.1)
inside the support but not at its boundary. Secondly, A and B are fixed, this time, so that we
cannot adjust them to normalize the eigenvalue density. We are led to the ansatz

ρ(ϕ) =
1

2λ
+ cA [δ(ϕ+m) + δ(ϕ−m)] ,

where we have used the standard symmetry argument to predict equal coefficients for the two
δ-functions. The normalization condition in this case is∫ B

A
dϕρ(ϕ) =

m

λ
+ 2cA = 1,

leading to cA = 1
2

(
1− m

λ

)
.

To sum up, we have obtained three phases, with critical curves m = λ and m = λ(1− ζ), and
eigenvalue density

ρ(ϕ) =
1

2λ
+ cA [δ(ϕ+m) + δ(ϕ−m)] , cA =


0 m > λ
1
2

(
1− m

λ

)
λ(1− ζ) < m < λ

ζ
2 0 ≤ m < λ(1− ζ).

(5.3.2)

Moving m < 0, the theory simply passes through identical phases. We notice that the third phase
only exists if ζ < 1. We have thus recovered the phase diagram of [202], which we represent in
Figure 5.1.

5.3.2 Free energy and phase transitions in the symmetric case

The eigenvalue density derived in the previous subsection can be used to evaluate the free energy
and vacuum expectation values (vev) of operators in the theory. The sphere free energy is defined
as

FS3 = − 1

πrN2
logZS3 − λ

(
rξ

N

)2

,

where the shift by the last term is included to get rid of the overall factor in (5.2.2), irrelevant for
the ensuing analysis.

Before computing FS3 , we focus on the vev of the two-point function 1
NTrϕ2. It is obtained

from the expression

⟨ϕ2⟩ = ∂FS3

∂(λ−1)
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Figure 5.1. Phase structure for two equal sets of hypermultiplets. Left: (λ, ζ)-plane at m = 1. The
dotted red line is {ζ = 1}. Right: (λ,m)-plane at ζ = 1

2 . As ζ ↑ 1, the lower critical line is rotated towards
the {m = 0} axis and eventually disappears.

for any N , and we evaluate it at large N . Exploiting (5.3.2) we get

∂FS3

∂(λ−1)
=

∫ B

A
dϕρ(ϕ)ϕ2 =


λ2

3 m > λ

m2 − 2m3

3λ λ(1− ζ) < m < λ

(1− ζ)3 λ23 + ζm2 0 ≤ m < λ(1− ζ).
(5.3.3)

This order parameter is continuous and differentiable both in λ−1 and m at the two critical
hypersurfaces in parameter space. The second derivative is discontinuous with a finite jump, thus
yielding a third order phase transition [202]. We also notice that the discontinuity in the second
and higher derivative at the second critical locus m = λ(1− ζ) vanishes at ζ ↑ 1, as expected.

Let us now consider the free energy. At large N and in the large r approximation it is given
by

FS3 =

∫ B

A
dϕρ(ϕ)

{
ϕ2

λ
+ ζ [|ϕ+m|+ |ϕ−m|]−

∫ B

A
dψρ(ψ)|ϕ− ψ|

}
.

Plugging the eigenvalue density (5.3.2) into this expression gives:

FS3 =


2ζm− λ

3 m > λ
m
3

(
6ζ − m(m−3λ)

λ2
− 3
)

λ(1− ζ) < m < λ

−λ
3 (1− ζ)

3 + ζm
2

λ + ζ2m 0 ≤ m < λ(1− ζ).
(5.3.4)

This expression is continuous and differentiable up to the second derivatives, both with respect to
λ and m, again showing that the phase transition is third order. Its first derivative in λ−1 agrees
with (5.3.3), as expected.

We now comment on (5.3.4) in detail, emphasizing lessons that will turn out to hold in the
generic case. First of all, let us notice that, in the phase m > λ, the hypermultiplets are heavier
than the saddle point configuration and decouple, whence the simple m-dependence in the free
energy. The interesting quantity in that phase is thus FS3 − 2ζm, in which the contribution from
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background fields is discarded. We observe that, taking m→ 0 first, the free energy trivializes in
the second phase and reduces to −λ

3 (1 − ζ)
3. Sending ζ → 0 this agrees with the renormalized

expression at m > λ. This is a non-trivial consistency check. Indeed, for large m, we expect the
hypermultiplets to decouple and to get a split contribution from the matter fields and from a pure
Chern–Simons theory. In turn, going first to the conformal point m→ 0 and then sending ζ → 0,
we are removing the matter fields from the system, thus we should recover a pure Chern–Simons
theory. The expression for FS3 is consistent with this expectation, and (after taking into account
the 1/r factor in our normalization) also agrees with the sphere free energy of pure Chern–Simons
theory at leading order in the strong coupling limit [176].

In addition, once the correct renormalization of FS3 in the first phase is taken into account,
(5.3.4) satisfies the three-dimensional F-theorem [173, 213]

F (IR)
S3 < F (UV)

S3 . (5.3.5)

It follows directly from the positivity of (5.3.3) that FS3 is monotonically decreasing in the massive
parameter λ, thus fulfilling (5.3.5) not only at the fixed points but at all energy scales.

5.3.3 Two mass scales: Generic case

Let us now go back to the SPE (5.2.4) and solve it without assuming a Z2 parity symmetry. We
take F = 2 as before, but now we let the masses m1,m2 as well as ζ1 and ζ2 arbitrary. We assume
for simplicity m1 > m2, the converse case being recovered by simply swapping ζ1 ↔ ζ2 in the
expressions below. As already argued, this more generic setup includes the deformation of the
previous case in which the Z2 symmetry is explicitly broken by the FI term.

We begin in a region with m1 very large and negative and m2 large and positive. The sign
functions in the SPE are constant in ϕ and cancel each other. We thus again find a solution

ρI(ϕ) =
1

2λ
, suppρ = [−λ, λ],

valid for m1 < −λ and m2 > λ. We call this region Phase I.

At this point we may increase m1 until it reaches −λ, or decrease m2 until it reaches λ. Let us
assume the former. Gaining insight from the results in Subsection 5.3.1, we expect a new phase
with B = −m1. However, differently from the previous case, A is not hit by m2 and is thus not
affected by the phase transition (A is independent of m1 in this phase). Differentiating the SPE
once we arrive at

ρII1(ϕ) =
1

2λ
+ c1δ(ϕ+m1), suppρ = [−λ,−m1].

Imposing the normalization condition fixes c1, through

λ−m1

2λ
+ c1 = 1 =⇒ c1 =

1

2

(
1 +

m1

λ

)
.

If, instead, we decrease m2 keeping m1 large, negative and fixed, by an analogous argument we
obtain

ρII2(ϕ) =
1

2λ
+

1

2

(
1− m2

λ

)
δ(ϕ+m1), suppρ = [−m2, λ].

We call the two phases so obtained Phase II1 and II2, making reference to which mass triggers
the transition.

From either Phase IIα, two scenarios disclose. Either we move the same mass further, until
it enters in the bulk of suppρ, or we move the other mass. Let us begin from the latter scenario.
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Starting from either Phases IIα we arrive at a new phase, that we denote Phase III, in which the
eigenvalue density is

ρIII(ϕ) =
1

2λ
+

2∑
α=1

cαδ(ϕ+mα), suppρ = [−m2,−m1],

where the coefficients are

c1 =
1

2

(
1 +

m1

λ

)
, c2 =

1

2

(
1− m2

λ

)
.

Alternatively, from Phase IIα we may enter Phase IVα, ∀α = 1, 2, in which

ρIVα(ϕ) =
1

2λ
+
ζα
2
δ(ϕ+mα),

where the support is determined by normalization to be

[A,B] =

{
[−λ, λ(1− ζ1)] Phase IV1 ,

[−λ(1− ζ2), λ] Phase IV2 .

At this point, two more phases disclose. Namely, Phase Vα can be reached from Phase IVα
moving mα′ for α′ ̸= α, as well as from Phase III moving mα, ∀α = 1, 2. Phase Vα is characterized
by the mass −mα being in the interior of suppρ, that is A < −mα < B, and the other mass stuck
at one boundary. Proceeding as above, we get

ρVα(ϕ) =
1

2λ
+ c1δ(ϕ+m1) + c2δ(ϕ+m2), (c1, c2) =


(
ζ1
2 ,

1
2

(
1− m2

λ

))
Phase V1 ,(

1
2

(
1 + m1

λ

)
, ζ22

)
Phase V2 .

There is one further phase that can be accessed, that we denote Phase VI, in which both
masses are in the interior of suppρ. We find

ρVI(ϕ) =
1

2λ
+

2∑
α=1

ζα
2
δ(ϕ+mα), suppρ = [−λ(1− ζ2), λ(1− ζ1)].

The phase diagram becomes intricate very fast: every mass scale mα introduces four critical
hyperplanes, at mα ∈ {±λ,±λ(1− ζα)}, and the collection of all such critical hyperplanes parti-
tions the parameter space into distinct phases. A summary of the phase diagram in the sample
case ζ1 = 2ζ2 and m2 = −2m1 is reported in Figure 5.2.

5.3.4 Free energy and phase transitions in the generic case

As for the symmetric phase, to probe the critical behaviour of the theory with two mass scales we

compute the order parameter ⟨ϕ2⟩ = ∂FS3
∂(λ−1)

. We have:

⟨ϕ2⟩ =
∫ B

A
dϕ

[
1

2λ
+

2∑
α=1

cαδ(ϕ+mα)

]
ϕ2 =

B3 −A3

2λ
+

2∑
α=1

cαm
2
α,

with A,B, c1, c2 computed in the appropriate phase. Explicitly:

⟨ϕ2⟩ =



λ2

3 Phase I
λ3+3λm2

1+2m3
1

6λ Phase II1
3λm2

1+3λm2
2+2m3

1−2m3
2

6λ Phase III
1
6

[(
(1− ζ1) 3 + 1

)
λ2 + 3ζ1m

2
1

]
Phase IV1

−(ζ1−1)3λ3+3ζ1λm2
1+3m2

2(λ−m2)+m3
2

6λ Phase V1

1
6

[(
(1− ζ1)3 + (1− ζ2) 3

)
λ2 + 3ζ1m

2
1 + 3ζ2m

2
2

]
Phase VI
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Figure 5.2. Phase structure for two sets of hypermultiplets. Left: (λ, ζ)-plane at m1 = −1,m2 = 2, ζ1 =
ζ = 2ζ2. The system can access Phase I (white), Phase II1 (light gray), Phase III (green), Phase IV1

(yellow), Phases V1 and V2 (red and blue), Phase VI (dark gray). Right: (λ,m)-plane at ζ1 = 1
2 , ζ2 =

1
4 ,m2 = 2m,m1 = −m. For this choice of (ζ1, ζ2), the yellow and green phases on the left panel collapse
onto the critical line m = λ/2, highlighted in red in the right panel.

and analogous expression exchanging the labels 1↔ 2 when {II2, IV2,V2} replace {II1, IV1,V1}.
The continuity of the vev follows directly from the continuity of ρ(ϕ). Applying ∂

∂mα
or ∂

∂(λ−1)
to

the expressions in each phase, it is easy to check that ⟨ϕ2⟩ is differentiable, and we get a third
order phase transition.

5.3.5 Analysis of the phase diagram

The phase diagram obtained for F = 2 generalizes to a higher number of mass scales. A phase
transition is triggered each time a mass mα hits a boundary of [A,B] from outside, generating a
δ-peak on top of the boundary. Then, a new transition takes place when the peak is moved in the
interior of [A,B]. All transitions are third order, because of the locality property of the solution:
the values of A,B do not depend on the masses, except for the “intermediate” phase in which
A = −mα or B = −mα, independent on the rest of mass scales.

On a technical level, the differentiability of the order parameter stems from the independence
of A or B on the masses not involved in the transition, and thus the order of the transition is
determined by the locality property of the solution to be third.

We have seen that there is no substantial difference in the symmetric case compared to the more
general setting. In particular, this implies that there is no qualitative difference between SU(N)
and U(N) Chern–Simons-matter theories, when it comes to critical behaviour. Introducing a
Lagrange multiplier to impose the tracelessness condition for SU(N) will affect the explicit form
of A and B, but the details are washed out as one moves close to the critical loci. For the
technical reason outline above, this claim would not be expected to hold if higher powers of the
masses entered in the SPE.

The phase diagrams derived in this section have a neat physical interpretation. In the large
radius limit, we have kept a massive parameter λ, which comes from the Chern–Simons coupling
but introduces a characteristic mass scale into the problem. Then, each hypermultiplet of mass
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−mα > λ is heavy, compared to the characteristic mass scale of the problem, and is integrated
out. These hypermultiplets trigger a phase transition when become lighter than the characteristic
mass scale λ, and are integrated back in. Their one-loop effect ceases to contribute to the SPE in
that case.

5.4 Wilson loops

In Section 5.3 we have probed the phase structure of various U(N) Chern–Simons-matter theories
by computing the free energy and the vev of 1

NTrϕ2. In the present section we extend our analysis
by studying a different class of order operators, the Wilson loops. We will consider half-BPS
Wilson loops in the fundamental and rank-K antisymmetric representation and compute their
vev at large N . In order to preserve half of the supersymmetry, the loops are placed along an
equatorial S1 ⊂ S3.

5.4.1 Wilson loops in the fundamental representation

Fundamental Wilson loop with two symmetric mass scales

To start our analysis of loop operators, we compute the vev of a Wilson loopWF in the fundamental
representation of U(N). We first do so in the theory with two opposite masses and equal Veneziano
parameters, studied in Subsection 5.3.1. Plugging an operator in the fundamental representation
gives a sub-leading contribution to the large N limit, thus the eigenvalue density is not affected
by the insertion of the Wilson loop. The vev is thus simply given by

⟨WF⟩ =
∫ B

A
dϕρ(ϕ)e2πrϕ.

Using the eigenvalue density (5.3.2) we get

⟨WF⟩ =


1

2πλr sinh(2πrλ) m > λ
1

2πλr sinh(2πrm) +
(
1− m

λ

)
cosh(2πrm) λ(1− ζ) < m < λ

1
2πλr sinh(2πrλ(1− ζ)) + ζ cosh(2πrm) 0 ≤ m < λ(1− ζ).

(5.4.1)

This is a continuous and differentiable order parameter, with a finite jump in its second derivative.
The phase transition in therefore third order, a result which is consistent with and confirms the
previous analysis. We note that it would be more appropriate to first replace the hyperbolic
functions by exponential ones, because the eigenvalue density has been derived in the large r
limit. The final answer is nevertheless robust under exchanging differentiation and large radius
limit.12 The Wilson loop vev (5.4.1) follows a perimeter law, log ⟨WF⟩ ∝ r. It is also interesting to
rewrite (5.4.1) recalling that λr = it, with t ≡ N/k the standard, adimensional ’t Hooft coupling,
fixed at large N . We obtain

⟨WF⟩ =
sin(2πt)

2πt
if mr > t

in the large mass phase. Form→ 0, instead, one finds ⟨WF⟩ = 1 if ζ ≥ 1 and ⟨WF⟩ = sin(2πt(1−ζ))
2πt +

ζ if ζ < 1. In all cases, the dependence on r is dropped, in agreement with physical expectations,
when the defect theories are conformal.

12This corrects a subtlety in [202].
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5.4.2 Fundamental Wilson loop with two generic mass scales

Let us now compute the vev ⟨WF⟩ in the case of two families of hypermultiplets with arbitrary
masses. Reasoning as above, we get the generic expression:

⟨WF⟩ =
1

2πrλ

(
e2πrB − e2πrA

)
+

2∑
α=1

cαe
−2πrmα ,

with endpoints A,B and coefficients cα depending on the phase. Explicitly:

⟨WF⟩ =



sinh(2πλr)
2πλr Phase I

2πr(λ+m1)e−2πm1r+e−2πm1r−e−2πλr

4πλr Phase II1
2πr(λ+m2)e−2πm1r+2πr(λ−m2)e−2πm2r+e−2πm1r−e−2πm2r

4πλr Phase III

1
4

[
2ζ1e

−2πm1r +
e−2πλr(e−2π(ζ1−2)λr−1)

πλr

]
Phase IV1

1
4

[
e−2π(ζ1−1)λr−e−2πm2r

πλr + 2ζ1e
−2πrm1 + 2

(
1− m2

λ

)
e−2πm2r

]
Phase V1

1
4

[
2ζ1e

−2πrm1 + 2ζ2e
−2πm2r +

e2π(ζ2−1)λr(e−2π(ζ1+ζ2−2)λr−1)
πλr

]
Phase VI

and analogous expression when {II2, IV2,V2} replace {II1, IV1,V1}.
A direct computation shows that the order parameter ⟨WF⟩ is continuous and differentiable

(both in λ and mα), proving that the phase transition is third order. We again find perfect
agreement with the analysis of the free energy.

5.4.3 Wilson loops in the antisymmetric presentation

We now study the vev of half-BPS Wilson loop in the rank-K antisymmetric representation AK .
Following [209], we introduce the generating function

ΦA(w) =

〈
N∏
a=1

(
1 + we2πrϕa

)〉
, (5.4.2)

and we see that the Wilson loop vev is extracted as

⟨WAK
⟩ =

∮
γ

dw

2πiw1+K
ΦA(w).

The integration cycle γ is a small loop around the origin in C. We are interested in the large N
limit with the ratio

κ =
K

N
fixed.

At large N , the generating function (5.4.2) is simply written as

ΦA(w) = exp

{
N

∫ B

A
dϕρ(ϕ) log

(
1 + we2πrϕ

)}
.

Using a change of variables
logw = −2πr [A+ z(B −A)] ,

with z the holomorphic variable on a multiply-sheeted cover of the cylinder, ⟨WAK
⟩ is recast in

the form

⟨WAK
⟩ = ie2πrAK+log(r(B−A))

∮
Γ
dz exp

{
N

[∫ B

A
dϕρ(ϕ) log

(
1 + e2πr(ϕ−A−z(B−A))

)
+ 2πzκr(B −A)

]}
.

(5.4.3)
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The original integration cycle γ has been mapped, under the exponential change of variables, onto
a circle Γ wrapping the cylinder at fixed ℜz, see Figure 5.3. Shrinking γ around w = 0 pushes Γ
towards ℜz → +∞. The integrand in (5.4.3) has branch cuts at

0 ≤ ℜ(z) ≤ 1 and ℑ(z) = (2n+ 1)π

r(B −A)
, n ∈ Z. (5.4.4)

Figure 5.3. The exponential map sends C to a cover of the cylinder, and the circle γ around w = 0 (left)
to a circle Γ wrapping the cylinder once (right).

At this point we exploit the fact that we are working at large N , and evaluate the integral in
z by a standard steepest descent argument. The saddle point of (5.4.3) is determined by

−
∫ B

A
dϕρ(ϕ)

1

1 + e2πr(ϕ−A−z(B−A)) + κ = 0. (5.4.5)

We moreover work in the large r approximation. In this regime, direct inspection of (5.4.5) shows
that the solution must be looked for in 0 ≤ ℜz ≤ 1. Indeed, since ϕ ∈ [A,B],

lim
r→∞

1

1 + e2πr(ϕ−A−z(B−A)) =

{
0 if ℜz < 0

1 if ℜz > 1.

Plugging the generic solution for ρ(ϕ) with F = 2 in (5.4.5), the integral splits into three contri-
butions:

1

4πrλ
I(z) +

2∑
α=1

cαJ (z,mα) = κ,

where

I(z) =
∫ B

A
dϕ

1

1 + e2πr(ϕ−A−z(B−A)) = 2πr(B −A) + log

(
1 + e−2πrz(B−A)

1 + e−2πr(z−1)(B−A)

)
,

J (z,mα) =

∫ B

A
dϕ

δ(ϕ+mα)

1 + e2πr(ϕ−A−z(B−A)) =
1

1 + e−2πr(mα+A+z(B−A)) .

An immediate consequence of the analysis so far is that the saddle point lies at ℑz = 0 and
0 < ℜz < 1. In this region, as r →∞

log

(
1 + e−2πrz(B−A)

1 + e−2πr(z−1)(B−A)

)
≈ − log e2πr(B−A)(1−z) =⇒ I(z) ≈ 2πrz(B −A).

and
J (z,mα) ≈ θ(z − z⋆α),

where we have introduced the shorthand notation z⋆α ≡ −mα+A
B−A and θ(·) is the step-function

defined as

θ(z − z⋆) =


0 z < z⋆

1
2 z = z⋆

1 z > z⋆.
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Thus, in the large r limit, the saddle point equation (5.4.5) simplifies into

B −A
2λ

z +

2∑
α=1

cαθ(z − z⋆α) = κ. (5.4.6)

Antisymmetric Wilson loop with two symmetric mass scales: Saddle points

We are now ready to solve (5.4.6) and compute the Wilson loop vev. We start with the theory
with Z2-symmetric assignment of masses.

First, we point out a Z2 reflection symmetry inherited by the Wilson loop at large N , which
remains invariant under the combined transformation z 7→ 1− z, κ 7→ 1− κ.

In Phase I, B = −A = λ and cα = 0, leading to a saddle point

z = κ.

Notice that 0 ≤ κ ≤ 1 by definition, hence the solution is consistent with the saddle point being
placed in the interval 0 ≤ z ≤ 1. This solution is also manifestly consistent with the reflection
symmetry.

In Phase II, one θ-function contributes identically 1 and the other vanishes identically, because
0 < z < 1. The solution to (5.4.6) is thus given by

z =
1

2
+
λ

m

(
κ− 1

2

)
.

The solution exists in this case only if

1

2

(
1− m

λ

)
≤ κ ≤ 1

2

(
1 +

m

λ

)
.

If we send λ → ∞, a solution exists only if κ = 1
2 , in which case z = 1

2 . Remarkably, the unique
solution that survives at λ→∞ is the fixed point of the reflection symmetry.

In Phase III, the situation is more involved. Depending on whether

(i) z <
1

2

(
1− m

λ(1− ζ)

)
, (ii)

1

2

(
1− m

λ(1− ζ)

)
< z <

1

2

(
1 +

m

λ(1− ζ)

)
, (iii) z >

1

2

(
1 +

m

λ(1− ζ)

)
,

we have that (i) none, (ii) one or (iii) both θ-functions contribute. The three corresponding
saddle points are:

z =


κ

1−ζ Region IIIi
2κ−ζ
2(1−ζ) Region IIIii
κ−ζ
(1−ζ) Region IIIiii

The self-consistency condition for the existence of the solution in each region is:

Region IIIi : κ ≤
1

2

(
1− ζ − m

λ

)
Region IIIii :

1

2

(
1− m

λ

)
≤ κ ≤ 1

2

(
1 +

m

λ

)
Region IIIiii : κ ≥

1

2

(
1 + ζ +

m

λ

)
.

We observe that there are regions of width ζ
2 , in the domain of the Wilson loop parameter κ ∈ [0, 1],

for which no consistent solution exists.
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Antisymmetric Wilson loop with two symmetric mass scales: Evaluation

Having found the saddle points of the integral representation (5.4.3), we are now in the position
to evaluate the Wilson loop vev. We find:

1

2πrN
log⟨WAK

⟩ = κ [A+ z(B −A)] +
∫ B

A

dϕ

2πr
ρ(ϕ) log

(
1 + e2πr(ϕ−A−z(B−A))

)
,

at leading order, with z to be replaced by its saddle point value in each phase. Inserting the
generic form of ρ(ϕ) and simplifying the expression for large r (the asymptotic behaviour of the
polylogarithm is used at an intermediate step), we arrive at

1

2πrN
log⟨WAK

⟩ = κ [A+ z(B −A)] + (B −A)2

4λ
(1− z)2 +

2∑
α=1

cαΘ(mα; z), (5.4.7)

where, for shortness, we have introduced the function

Θ(m; z) =

{
0 if z > −m+A

B−A
− [m+A+ z(B −A)] if z < −m+A

B−A

whose derivative is closely related to the θ-function above.
In Phase I we plug z = κ in (5.4.7) and get

1

2πrN
log⟨WAK

⟩ = λ [3κ(κ− 1) + 1] ,

which is invariant under the Z2 action κ 7→ 1− κ.
In Phase II instead we find

1

2πrN
log⟨WAK

⟩ = 1

4

[
3(1− 2κ)2λ− m2

λ
+ 2m

]
,

again invariant under the Z2 action κ 7→ 1 − κ. Moreover, it is continuous and differentiable at
the critical point m = λ.

Finally, in Phase III we find

1

2πrN
log⟨WAK

⟩ =


λ
(
−(ζ + 3)κ+ 3κ2 + 1

)
IIIi

1
4 [λ((ζ − 2)ζ + 12(κ− 1)κ+ 4) + 2ζm] IIIii

λ(ζ(κ− 1) + 3κ(κ− 1) + 1) IIIiii.

Approaching the critical locus m = λ(1− ζ), regions IIIi and IIIiii are ruled out, whilst the region
of validity of Phase IIIii agrees with that of Phase II. The Wilson loop vev is continuous and
differentiable.

Antisymmetric Wilson loop with two generic mass scales

The saddle point analysis above is easily generalized to the case of F = 2 families of hypermulti-
plets of generic masses, although the resulting expressions are more cumbersome.

Phase I is identical to the symmetric case. In Phase II1 none of the θ-functions contribute,
but the value of B changes and (5.4.6) becomes(

−m1 + λ

2λ

)
z = κ =⇒ z|II1 =

2κλ

λ−m1
.
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In Phase II2 instead, a θ-function contributes and, from (5.4.6), we get(
m2 + λ

2λ

)
z +

1

2

(
1− m2

λ

)
= κ =⇒ z|II2 =

(2κ− 1)λ+m2

λ+m2
.

In Phase III, again only θ(z − z⋆2) contributes and the solution to (5.4.6) is given by

z|III =
(2κ− 1)λ+m2

m2 −m1
.

In Phase IV1 we have to split in two sub-cases:

z|IV1 =


κ

1− ζ1
2

κ < 1
2

(
1− m1

λ

)
κ− ζ1

2

1− ζ1
2

κ > 1
2

(
1− m1

λ

)
+ ζ1

2

with an interval of width ζ1
2 of values of κ for which no consistent solution is found. A similar

computation works in Phase IV2.

In Phase V1 there are again two sub-cases associated to the values of θ(z−z⋆1), while θ(z−z⋆2) =
1 in that phase. We obtain:

z|V1 =

{
(2κ−1)λ+m2

m2+λ(1−ζ1) κ < 1
2

(
1− m1

λ

)
(2κ−1−ζ1)λ+m2

m2+λ(1−ζ1) κ > 1
2

(
1− m1

λ

)
+ ζ1

2

with the two sub-cases characterized by the same conditions on κ as in Phase IV1. In Phase V2,
instead, the two sub-cases corresponds to the two possible values of θ(z − z⋆2), while the other
step-function vanishes identically in 0 < z < 1. Then,

z|V2 =

{
2κλ

λ(1−ζ2)−m1
κ < 1

2

(
1− ζ2 − m2

λ

)
(2κ−ζ2)λ

λ(1−ζ2)−m1
κ > 1

2

(
1− m2

λ

)
.

Finally, Phase VI is conceptually analogous to Phase III of the symmetric case, except that
now we have to distinguish with step-function is non-vanishing. This produces four sub-cases:

z|VI =


2κ

2−ζ1−ζ2 κ < 1
2

(
1− ζ2 − mα

λ

)
∀α = 1, 2

2κ−ζ2
2−ζ1−ζ2

1
2

(
1− m2

λ

)
< κ < 1

2

(
1− m1

λ

)
2κ−ζ1

2−ζ1−ζ1
1
2

(
1− ζ2 + ζ1 − m1

λ

)
< κ < 1

2

(
1− ζ2 + ζ1 − m2

λ

)
2κ−ζ1−ζ2
2−ζ1−ζ2 κ > 1

2

(
1 + ζ1 − mα

λ

)
∀α = 1, 2.

To compute the vev of the Wilson loop in the antisymmetric AK representation, it simply
remains to plug the correct values of A,B and of the saddle point z into (5.4.7) in each phase.
The resulting expressions are lengthy and require a case by case study within each phase, thus
we omit them. It is nevertheless straightforward to evaluate log⟨WAK

⟩ at large N with the aid of
a computer algebra system. What we find is that the Wilson loop vev is everywhere continuous
and differentiable. Therefore, the analysis of this additional order operator confirms the existence
of a third order phase transition.
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5.5 Three-dimensional SQCD

We now leave behind the analysis of U(N) Chern–Simons-matter theories and consider N = 4
SQCD, that is, a supersymmetric U(N) gauge theory with Nf hypermultiplets in the fundamental
representation. The large N limit of this otherwise extensively studied theory appears to be
overlooked in the literature. In particular, the large N eigenvalue density seems not to have been
written down explicitly before. In the massless case, a large N solution for the free energy was
found in [214] by first solving exactly for the partition function, using a Selberg integral, and then
taking N →∞.

We present here the large N limit of three-dimensional SQCD, for arbitrary r. We will show
that, in a large r approximation, the results agree with the k → 0 limit of the results derived
previously in the Chern–Simons setting. Our presentation and result are valid for any Nf ≥ 2N .
However, we have been able to obtain closed form expressions only in the balanced case Nf = 2N ,
or as long as Nf − 2N remains fixed when N → ∞. The solution holds also in the more general
case, but then the endpoints of the eigenvalue density are only determined implicitly.

The starting point in the integral representation (5.2.1) for the partition function, now setting
the Chern–Simons level and FI parameter to zero. We have:

ZSQCD
S3 =

1

N !

∫ ∞

−∞
dϕ1 · · ·

∫ ∞

−∞
dϕN

∏
1≤a<b≤N (2 sinhπr(ϕa − ϕb))2∏N

a=1

∏F
α=1 (2 coshπr(ϕa +mα))

nα
, (5.5.1)

where, as above, we have assumed F families of hypermultiplets of masses {mα}α=1,...,F .

It is convenient to use an exponential change of variables [84] xa = e2πrϕa . By analogy, to
lighten the notation we also set µα = e2πrmα . Then, from

∏
1≤a<b≤N

(2 sinhπr(ϕa − ϕb))2 =
N∏
a=1

x−(N−1)
a

∏
1≤a<b≤N

(xa − xb)2,

F∏
α=1

(2 coshπr(ϕa +mα))
nα = x

−
Nf
2

a

F∏
α=1

(1 + xaµα)
nα ,

where we have used the constraint
∑F

α=1 nαmα = 0 from the SU(Nf ) flavour symmetry and also

Nf =
∑F

α=1 nα, (5.5.1) is rewritten as

ZSQCD
S3 =

1

(2πr)NN !

∫
(0,∞)N

∏
1≤a<b≤N

(xa − xb)2
N∏
a=1

x
Nf
2

−N
a∏F

α=1 (1 + xaµα)
nα

dxa.

From here, we already foresee how the balanced theory Nf = 2N will result in more tractable
expressions. We henceforth restrict to this case, briefly commenting on the arbitrary Nf ≥ 2N
case below.

The details of the calculations are very similar to the ones appearing in full detail in the next
chapters. For this reason, we only sketch the derivation here.

The argument in Section 5.2 implies that the problem of computing ZSQCD
S3 at large N is

reduced to solving the SPE

P

∫
dy

ρ̂(y)

x− y
=

F∑
α=1

ζα
2

1

x+ µ−1
α
, (5.5.2)

where ζα = nα
N , ∀α = 1, . . . , F are the Veneziano parameters, as before. In (5.5.2) we are denoting

the eigenvalue density by ρ̂ to indicate that it is for the exponential variable x, as opposed to ρ(ϕ).
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Our goal is to solve (5.5.2) and obtain ρ̂(x). We follow standard methods [27, 176] (see also
[202]).

From the insight gained in the previous sections, we expect a one-cut solution for ρ̂(x), with
support [ℓ−, ℓ+] ⊆ (0,∞). Consider the planar resolvent ω(z), defined as

ω(z) =

∫ ℓ+

ℓ−

dy
ρ̂(y)

z − y
, z ∈ C \[ℓ−, ℓ+]. (5.5.3)

Let us introduce the notation

V ′(x) =
F∑
α=1

ζα
2

1

x+ µ−1
α

for the right-hand side of (5.5.2). Combining the SPE (5.5.2) with the definition (5.5.3), we arrive
at [27, 176]

ω(z) =
√

(z − ℓ−)(z − ℓ+)
∮

dw

2πi

V ′(w)

(z − w)
√
(w − ℓ−)(w − ℓ+)

(5.5.4a)

= V ′(z) +
√
(z − ℓ−)(z − ℓ+)

∮
S1∞

dw

2πi

V ′(w)

(z − w)
√
(w − ℓ−)(w − ℓ+)

, (5.5.4b)

where the integration contour in the first line encircles the cut [ℓ−, ℓ+] but leaves outside the
point z ∈ C \[ℓ−, ℓ+], while to pass to (5.5.4b) we have deformed the integration contour to
infinity, picking the pole at w = z in the process. We also use that the integrand in (5.5.4a) has
no pole at w =∞.

We are left with the task of evaluating the contour integral (5.5.4b) by residues. Only the
poles of V ′(w) contribute, and we obtain:

ω(z) = V ′(z) +
√
(z − ℓ−)(z − ℓ+)

F∑
α=1

ζα
2

1

(z + µ−1
α )
√
(µ−1
α + ℓ−)(µ

−1
α + ℓ+)

. (5.5.5)

For this computation to work, we need to give a small imaginary part to the flavour fugacities µα,
to ensure µα ∈ C \[ℓ−, ℓ+]. We then safely send µα to real values at the end of the computation,
in a zero-dimensional version of the Feynman regularization prescription.

The endpoints ℓ± are fixed by comparing the result (5.5.5) with the definition (5.5.3) and
imposing the first two orders in the large z asymptotic to agree. Under the assumption ζtot = 2,
it can be analytically checked that ℓ− → 0 and ℓ+ →∞ is a solution.13

Taking the limits ℓ− ↓ 0, ℓ+ ↑ ∞ in (5.5.5), we deduce from (5.5.3) the eigenvalue density ρ̂(x),
through the relation

−2πiρ̂(x) = lim
ε↓0

[ω(x+ iε)− ω(x− iε)] , 0 < x <∞.

After some rewriting and mapping back to the scalar field variable ϕ, the final answer is

ρ(ϕ) = r

F∑
α=1

ζα
2

1

coshπr(ϕ+mα)
, ϕ ∈ R . (5.5.6)

The eigenvalue density ρ(ϕ) is properly normalized,∫ +∞

−∞
dϕρ(ϕ) =

F∑
α=1

ζα
2

= 1,

13It is convenient to assume that the masses are given in opposite pairs, so that the partition function (5.5.1) has
a Z2 parity symmetry that implies ℓ− = ℓ−1

+ .
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the second equality holding by the balancing hypothesis.

As a consistency check, we compare the large r limit of the solution (5.5.6) with the k → 0
limit of the solutions in Section 5.3. To remove the Chern–Simons term, we set ζtot = 2 and then
send λ → ∞. The system is thus always in the intermediate phase, e.g. Phase II in the case of
two symmetric mass scales.

At large r, (5.5.6) is exponentially suppressed away from the points ϕ = −mα. There, however,
it grows linearly in r. At leading order we find

lim
r→∞

ρ(ϕ) =
F∑
α=1

ζα
2
δ (ϕ+mα) ,

finding perfect agreement with the λ→∞ limit of the expressions in Section 5.3.

Free energy

Three-dimensional N = 4 SQCD presents a single phase, both at finite and infinite r, consistent
with the expectations. There are no massive couplings, because the gauge coupling goes to infinity
at the IR superconformal point. In the large r limit we observe resonances precisely at the value
of ϕ at which a hypermultiplet mode becomes massless. However, at finite r, these singularities
are smoothened into a one-cut eigenvalue density, peaked around these special points.

We can compute the free energy using (5.5.6). Starting with the massless case mα = 0 ∀α, we
get

FBalanced SQCD
S3 = 2

∫ ∞

−∞
dϕρ(ϕ) log 2 cosh(πrϕ) = 2 log 4,

finding agreement with [214]. In fact, in the massless case but arbitrary Nf ≥ 2N , the leading

large N formula FSQCD
S3 = F (ζ) was proven in [214, Eq. (3.10)], where (in our normalization)

F (ζ) =
ζ2

2
log(2ζ) +

(ζ − 2)2

2
log

(
ζ − 2

2

)
− (ζ − 1)2 log(ζ − 1).

The positivity and monotonicity of F (ζ) for 2 ≤ ζ <∞ provide a further check of the F-theorem.

For the balanced theory with arbitrary masses, it is simpler to first evaluate the derivative of
FSQCD
S3 with respect to a mass. It yields:

∂FSQCD
S3

∂mβ
= ζβ

∫ ∞

−∞
πr tanhπr (ϕ+mβ) ρ(ϕ)dϕ

= −πrζβ
∑
α

ζα
2

eπrmα − eπrmβ

eπrmα + eπrmβ
,

where, in the second line, we have used cot−1(eπrm) + tan−1(eπrm) = π
2 followed by elementary

manipulations. Integrating and imposing the condition
∑

βmβ = 0 we arrive at

FSQCD
S3 =

∑
α,β

ζαζβ log (e
πrmα + eπrmβ )

up to an integration constant, which can be set to zero by comparing with the large mass limit.
In the massless limit, instead, we recover the value 4 log 2, while, for example in the case of two
opposite mass scales, F = 2, m1 = −m2 ≡ m, we get FSQCD

S3 = 2 log 2 cosh(πrm) + 2 log 2.
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Comments on SQCD with an arbitrary number of flavours

If we allow an arbitrary number Nf ≥ 2N of hypermultiplets in the fundamental representation,
the SPE (5.5.2) is simply modified into

P

∫
dy

ρ̂(y)

x− y
= −ζtot − 2

4x
+

F∑
α=1

ζα
2

1

x+ µ−1
α
,

with ζtot =
∑F

α=1 ζα the sum of all the Veneziano parameters. Note that, as should be clear by
power counting, it is not necessary to have Nf = 2N for the SPE to simplify, but it suffices that
Nf

N − 2 is of order 1/N , hence sub-leading.
The computations go through in exactly the same way, except that V ′(z) acquires the extra

term − ζtot−2
4z . Comparing (5.5.3) with the solution for ω(z), one derives a pair of equations to be

solved for ℓ±. We have numerically solved the equations for ℓ± at fixed masses and at specific
values of ζα (we used F = 2, ζ1 = ζ2 and m1 = −m2 = 1), which shows how ℓ− → 0 and ℓ+ →∞
as ζtot ↓ 2, providing further support for the solution found above in the balanced case.
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Chapter 6

Phases of five-dimensional
supersymmetric
Chern–Simons-matter theories

6.1 Introduction to the chapter

Supersymmetric quantum field theories in five and six dimensions are valuable windows onto the
dynamics of interacting systems: they are constrained enough to be treated analytically, yet they
are rich enough to uncover new phenomena. Five-dimensional N = 1 field theories admit UV
completion at superconformal fixed points [215], which are necessarily isolated [216] and strongly
coupled [217]. 5d N = 1 gauge theories, which are the main characters of the present work,
sit in the IR of such superconformal field theories (SCFTs) and are connected to them by a
renormalization group (RG) flow. The Coulomb branches of these theories have a geometric
meaning inherited from M-theory compactified on a singular Calabi–Yau threefold X [218]. The
extended Kähler cone of X, that we denote C (X), is the union of chambers that parametrize
different crepant resolutions of X, as sketched in Figure 6.1. In the gauge theory description,
the extended Kähler cone C (X) is identified with the extended Coulomb branch and the walls
separating two chambers correspond to codimension-one loci on the Coulomb branch at which a
state becomes massless [218–220].

Figure 6.1. Schematic illustration of the extended Kähler cone C (X) of a singular Calabi–Yau threefold
X. Across the blue wall separating distinct chambers, a state becomes massless.

Five-dimensional N = 1 Yang–Mills theories with classical gauge group descend from 6d

104



Phases of 5d supersymmetric Chern–Simons-matter theories

N = (1, 0) SCFTs compactified on a circle, with subsequent RG flows triggered by massive
deformations. The combination of geometric and field theoretic perspectives, integrated with new
combinatorial tools [221, 222], yields a firm grasp of the gauge theories consistently realized within
this framework [219–229].

The importance of weakly coupled, Lagrangian gauge theories resides in the fact that super-
symmetry protected quantities carry information on the strongly interacting UV fixed point.

The supersymmetric localization program [38] aims at reducing the path integral description
of supersymmetric observables, as the sphere partition function or the vacuum expectation value
of Wilson loops, to finite-dimensional integrals. In recent years, a wealth of exact results has
been obtained from localization on a broad variety of compact manifolds. Localization on the
five-sphere has been carried out in [230–235], see also the review article [236].

The goal of the present work is to analyze the phase structure of the sphere partition function
and of half-BPS Wilson loops at large rank of the gauge group. There exists a vast literature
discussing the large N behaviour of 5d N = 1 theories on the sphere [237–246], mostly pivoting
around the match with the holographic dual. A thorough analysis of the large N phases of certain
theories on the five-sphere appears in the work of Minahan and Nedelin [247, 248].

A fruitful approach to study the phase diagram consists in putting the theory on a very
large sphere. This procedure, named decompactification limit, has been successfully applied to
supersymmetric theories in 4d [195–197, 201, 200, 211, 249, 250] and 3d [202, 62, 203–205, 3].
The first realization of a decompactification limit in 5d is in [208]. Curvature effects are negligible
from this vantage point, thus providing a reliable approximation of flat space dynamics without
spoiling the computability guaranteed by localization.

In this work, we undertake a systematic study of the phases of five-dimensional N = 1 gauge
theories in the decompactification limit. We discuss both the sphere partition function and the
vacuum expectation value of Wilson loops, for various choices of gauge group and matter content.
It is worthwhile to emphasize that phase transitions are a signature of systems with infinitely
many degrees of freedom, whilst localization on S5 reduces the observables to matrix integrals
over zero-modes. For this reason, the large N limit is instrumental for the ensuing analysis and
crucial for the appearance of critical loci in parameter space: it will be this limit, rather than the
large sphere limit, to give rise to a non-analytic behaviour.

The present chapter is organized as follows. In the rest of this introductory section, we list
concisely our main results and mention potential avenues for future research.

The next section is the core of the subsequent analysis. In Subsection 6.2.3, the most general
solution to the sphere free energy is obtained, for theories with fundamental hypermultiplets. After
that, we discuss half-BPSWilson loops in the fundamental and in the antisymmetric representation
and find the most general solution for these observables in Subsection 6.2.4. Subsection 6.2.5
extends the results to theories with hypermultiplets in representations of higher dimension.

The sections that follow are devoted to a detailed analysis of various gauge theories with gauge
group U(N) in Section 6.3, SU(N) in Section 6.4 and the other classical groups in Section 6.5.
The text is complemented with two appendices.

6.1.1 Summary of results and outlook

In the study of gauge theories with simple gauge group we find a rich phase diagram, with the
models undergoing a phase transition each time a mass parameter is decreased below or above a
characteristic scale.

• For gauge group U(N) and hypermultiplets in the fundamental representation, the phase
transitions are generically second order. There are, however, exceptions of two types:
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6.2. Gauge theories with large rank on the five-sphere

(i) In the theory with symmetric assignment of masses the phase transitions are third
order;

(ii) In absence of a Yang–Mills term all the phase transitions are third order.

• For gauge groups SU(N), USp(2N), SO(2N) or SO(2N + 1) with fundamental hypermul-
tiplets the phase transitions are always third order.

• Expectation values of Wilson loops in the fundamental representation follow a perimeter
law. Moreover,

▷ In U(N) theories, their derivative is discontinuous;

▷ They have second order discontinuities when the gauge group is SU(N), USp(2N),
SO(2N) or SO(2N + 1), and for unitary group in case (i) above.

• Wilson loops in the antisymmetric representation follow a perimeter law and have discon-
tinuities in the first derivative in U(N) theories, and in the second derivative in all other
theories.

• For any gauge group and an adjoint hypermultiplet, the theory has a second order phase
transition.

We conclude that all gauge theories with a known UV SCFT completion belong to the same
universality class. On the contrary, the critical behaviour of U(N) gauge theories depends on the
deformation pattern. This raises the question of what kind of UV completion they admit, if at all.
It might be that only balanced theories possess a UV fixed point. Another possible explanation
is that every U(N) gauge theory descends from a SCFT, but the Abelian factor introduces some
subtlety in the order of limits, namely strong coupling and large N limit do not commute. Point
(ii) above would fit in this scenario, but other puzzles would remain. In either case, a deeper
understanding of these models by diverse methods is highly desirable.

Finally, a systematic understanding of the relation between phase transitions and one-form
symmetries, elaborating on the observations in Subsection 6.4.5, is left for future work.

6.2 Gauge theories with large rank on the five-sphere

6.2.1 Coulomb branch localization and large N limit

The moduli spaces of supersymmetric vacua of five-dimensional N = 1 gauge theories consist of
various branches. Among them, the Coulomb branch is parametrized by the zero-mode of the
real scalar ϕ in the N = 1 vector multiplet, conjugated in a Cartan subalgebra. For the sake of
clarity, the ensuing exposition is based on gauge group U(N), but the aspects we review hold for
any compact semi-simple Lie group G.

The Coulomb branch is a wedge inside Rrank(G) fixed by the choice of Weyl chamber:

Cgauge = R
rank(G)

/Weyl(G). (6.2.1)

It is convenient to consider the extended Coulomb branch of the theory,

C (X) = Cgauge × Cflavour. (6.2.2)

In the left-hand side we have adopted the notation C (X) from M-theory on the singular Calabi–
Yau threefold X, and on the right-hand side we have split the extended Coulomb branch into
the gauge part, defined in (6.2.1) and parametrized by the dynamical scalar ϕ, and a flavour
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part, parametrized by the real scalar fields {mα} in a background vector multiplet for the flavour
symmetry group. More generally, one may think of C (X) as a Cgauge-fibration over the parameter
space Cflavour [223].

Hypermultiplet modes are massive at generic points of the Coulomb branch and become mass-
less at codimension-one loci inside the extended Coulomb branch.

In this work, we analyze the phases of the 5d N = 1 gauge theories looking at the matrix
model obtained from localization on S5 [230, 231, 233] (for a review, see [236]). The partition
function of the theory in its Coulomb branch localized on S5 is

ZS5 =
1

N !

∫ +∞

−∞
dϕ1 · · ·

∫ +∞

−∞
dϕN Zclass(ϕ)Z

vec
1-loop(ϕ)Z

hyp
1-loop(ϕ)Zinst(ϕ) (6.2.3)

where Zclass is the classical contribution by the BPS field configuration, Z1-loop are the one-loop
determinants and Zinst contains the non-perturbative contributions from instantons on P2 ⊂ S5
[230, 231, 233]. The integration domain has been extended from Cgauge

∼= RN /SN to the whole
RN using the Weyl invariance of the integral, at the cost of a factor 1

N ! .
The classical piece is

Zclass(ϕ) =
N∏
a=1

e−V (ϕa), (6.2.4a)

V (ϕ) =
πr3k

3
ϕ3 +

8π3r3

g2YM

ϕ2. (6.2.4b)

k is the Chern–Simons level and gYM is the Yang–Mills coupling, and we will henceforth use the
notation

h =
8π2

g2YM

(6.2.5)

for the inverse gauge coupling, with mass dimension one. The 5d N = 1 gauge theories we study,
with the exception of those with gauge group U(N), are massive deformations of a UV SCFT,
with h determining the scale of such deformation. If the UV completion is a 6d N = (1, 0) theory
compactified on a circle of radius β, then h ∝ β−1.

The one-loop determinants for gauge group U(N) or SU(N) are [231]:

Zvec
1-loop(ϕ) =

∏
1≤a<b≤N

[
sinhπr (ϕa − ϕb) e

1
2
f(ir(ϕa−ϕb))

]2
, (6.2.6a)

Zhyp
1-loop(ϕ) =

F∏
α=1

N∏
a=1

[
coshπr (ϕa +mα) e

−f( 1
2
−ir(ϕa+mα))−f( 1

2
+ir(ϕa+mα))

]nα
4
. (6.2.6b)

Here we have assumed that the matter content consists of Nf fundamental hypermultiplets with
degenerate masses, so that nα of them have equal mass mα, and

Nf =

F∑
α=1

nα.

This choice of masses is non-generic, and the singular loci of the Coulomb branch degenerate into
walls having nα layers, as in Figure 6.2.

The function f(x) appearing in the one-loop determinants (6.2.6) has been defined in [230, 231]
and comes from the zeta function regularization of the infinite product

∞∏
n=1

(
1− x2

n2

)n2

.
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Figure 6.2. When the masses are degenerate, nα walls inside the Coulomb branch collide.

For our purposes, it suffices to say that it is manifestly even, f(−x) = f(x), and its derivative
satisfies

df(x)

dx
= πx2 cot (πx) . (6.2.7)

We do not discuss the non-perturbative contributions, since Zinst → 1 exponentially fast in
the setup of this work.14

When the gauge group is SU(N), the scalar ϕ must satisfy the constraint

N∑
a=1

ϕa = 0,

that can be enforced adding a linear term in the potential (6.2.4b) and imposing the independence
of the partition function from the Lagrange multiplier. Writing this linear shift as

V (ϕ) 7→ V (ϕ) + 4πr2ξϕ

with V (ϕ) as in (6.2.4b), we recognize in the Lagrange multiplier ξ a Fayet–Iliopoulos parameter.
A geometric reduction from a U(N) to a SU(N) factor in the gauge group has been described in
[228], and we revisit their argument in the matrix model language in Appendix 6.A.2.

Before proceeding we notice that, for the integral representation of the partition function to
be convergent, one has to impose

N − |k| − 1

2

F∑
α=1

nα ≥ 0, (6.2.8)

which is a necessary (and believed sufficient) condition for the theory to descend from a non-trivial
SCFT in the UV [251].

6.2.2 Large N and decompactification limit

We will take the large N limit of the matrix model (6.2.3) and then compute its decompactification
limit r →∞. Writing the partition function in the form

ZS5 =
1

N !

∫
RN

dNϕ e−Seff(ϕ),

14Equivalently, in the ’t Hooft limit taken below, instantons become infinitely massive and decouple.
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we see that the leading contributions in the large N and large r limit come from the stationary
points of Seff, while away from these points the integrand is damped as e−r

3N2(··· ). Therefore, the
problem is reduced to finding the solutions ϕ∗ to the saddle point equations (SPEs)

∂Seff(ϕ)

∂ϕa

∣∣∣∣
ϕ=ϕ∗

= 0, a = 1, . . . , N.

Let us now look into the simplifications brought in by the large radius limit. Using the parity
of f , property (6.2.7) and retaining only the leading contribution at large r, we see that the
hypermultiplet and vector multiplet one-loop determinants contribute to the SPE respectively

−πr
3

2

Nf∑
α=1

(ϕ∗a +mα)
2 sgn (ϕ∗a +mα) ,

πr3
∑
b ̸=a

(ϕ∗a − ϕ∗b)
2 sgn (ϕ∗a − ϕ∗b) .

Putting these terms together with the derivative of the classical piece we arrive at the system of
N SPEs

k (ϕ∗a)
2 + 2hϕ∗a + ξ̌ − 1

2

F∑
α=1

nα (ϕ
∗
a +mα)

2 sgn (ϕ∗a +mα) = −
∑
b ̸=a

(ϕ∗a − ϕ∗b)
2 sgn (ϕ∗a − ϕ∗b) (6.2.9)

for a = 1, . . . , N . In the latter expression we have introduced the scaled quantity ξ̌ = 4ξ
r , to keep

track of the Lagrange multiplier at large radius.15

Integrating the SPE (6.2.9) and summing over a, we arrive at twice the prepotential of [220].
The factor of two is predicted from the equivariant localization on the round sphere: the partition
function only receives contributions from small neighbourhoods of the two fixed points of an
isometry rotating a P2 inside S5.

6.2.3 Solution

Our goal is to solve the SPE (6.2.9) in a large N ’t Hooft limit, with

N

h
= λ fixed,

N

k
= t fixed. (6.2.10)

We moreover consider a Veneziano limit, in which the number Nf of fundamental hypermultiplets
grows linearly with N , hence we introduce the Veneziano parameters

nα
N

= ζα fixed, ∀ α = 1, . . . , F. (6.2.11)

We also keep ξ̃ = ξ̌
N fixed. The convergence condition (6.2.8) in this limit becomes

1

|t|
+

1

2

F∑
α=1

ζα ≤ 1. (6.2.12)

The large N limit of a 5d N = 1 U(N) Yang–Mills theory in the decompactification regime
has been addressed in [208], but only for a very special choice of masses and no Chern–Simons

15The linear coupling between ξ and ϕ actually comes from a mixed Chern–Simons term, so it should scale with
r3, as the pure Chern–Simons term. The introduction of a new variable ξ̌ is an artefact of the normalization, not
an additional scaling that we impose.
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term. We now derive the phase structure of the most general consistent gauge theory with simple
gauge group in the decompactification limit.

Let us introduce the eigenvalue density ρ(ϕ), which is normalized:∫
dϕρ(ϕ) = 1 (6.2.13)

and has compact support. The effective action Seff(ϕ) is not an even function, therefore we do not
expect the support of the eigenvalue density to be symmetric. Moreover, ρ(ϕ) is not required to be
a function and, in general, it is sufficient that ρ(ϕ)dϕ is a measure on the union of intervals along
a selected integration cycle. Throughout this chapter (as in the previous one), the integration
cycle is the real axis and the measure is supported on a compact interval,

suppρ = [A,B] ⊂ R .

In the scaling limit (6.2.10)-(6.2.11) the system of N saddle point equations is recast into a
single integral equation

−
∫ B

A
dψρ(ψ) (ϕ⋆ − ψ)2 sgn (ϕ⋆ − ψ) = 1

t
(ϕ⋆)2 +

2

λ
ϕ⋆ + ξ̃ −

F∑
α=1

ζα
2

(ϕ⋆ +mα)
2 sgn (ϕ⋆ +mα)

(6.2.14)
to be satisfied by every ϕ⋆ ∈ [A,B]. Here we have denoted ϕ⋆ the variable running over the
continuous spectrum of eigenvalues of ϕ∗, being ϕ∗ the solution to the SPE (6.2.9). We have done
so in the hope of avoiding confusion between the original N -dimensional integration variable ϕ =
(ϕ1, . . . , ϕN ), the fixed N -dimensional saddle point ϕ∗ = (ϕ∗1, . . . , ϕ

∗
N ), and the one-dimensional

real variable ϕ⋆ ∈ [A,B]. Henceforth, we will simply use ϕ instead of ϕ⋆ to reduce clutter.

The mechanism triggering the phase transitions is read off from (6.2.14): the right-hand side
changes when a mass parameter crosses A or B, leading to a new eigenvalue density.

Taking three derivatives, we find that the generic solution to the SPE (6.2.14) is

ρ(ϕ) = cAδ (ϕ−A) + cBδ (ϕ−B) +

F∑
α=1

cαδ (ϕ+mα) , (6.2.15)

with coefficients

cα =

{
ζα
2 −mα ∈ [A,B]

0 otherwise
α = 1, . . . , F.

Throughout this work, we define the δ-functions centered at the endpoints of suppρ taking the
limit from inside the support [208],

δ (ϕ−A) = lim
ε→0+

δ (ϕ− (A+ ε)) ; δ (ϕ−B) = lim
ε→0+

δ (ϕ− (B − ε)) .

The solution (6.2.15) is given in terms of two coefficients cA, cB and two endpoints A, B to
be determined. Plugging (6.2.15) back into the cubic equation (6.2.14) yields a system of three
equations:

−cA + cB −
F∑
α=1

cαs̃α =
1

t
−

F∑
α=1

ζα
2
s̃α (6.2.16a)

cAA− cBB −
F∑
α=1

cαs̃αmα =
1

λ
−

F∑
α=1

ζα
2
s̃αmα (6.2.16b)

−cAA2 + cBB
2 −

F∑
α=1

cαs̃αm
2
α = ξ̃ −

F∑
α=1

ζα
2
s̃αm

2
α (6.2.16c)
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in which we have introduced the shorthand notation

s̃α =
1

2
[sgn (A+mα) + sgn (B +mα)] =


−1 −mα > B

0 A ≤ −mα ≤ B
+1 −mα < A.

The normalization condition (6.2.13) applied to (6.2.15) imposes

cA + cB +
F∑
α=1

cα = 1. (6.2.17)

Therefore the two coefficients cA and cB and the two endpoints A and B of suppρ are determined
as functions of the gauge theoretical parameters t, λ, {ζα,mα}, from the system (6.2.16) completed
by the normalization (6.2.17).

Solving (6.2.16a) together with (6.2.17) yields

cA =
1

2

[
1− 1

t
−

F∑
α=1

(
cα − s̃α

(
ζα
2
− cα

))]

cB =
1

2

[
1 +

1

t
−

F∑
α=1

(
cα + s̃α

(
ζα
2
− cα

))]
.

To find the endpoints A and B we plug these values in (6.2.16b)-(6.2.16c). The system is quadratic
in the variables A and B, thus we find a pair of solutions: at each point in the parameter space,
we should retain the one consistent with A < B, which must hold by construction. We stress that
(6.2.15) has been derived taking derivatives with respect to ϕ, thus working under the assumption
that the interior of suppρ is not empty. Whenever a consistent pair of endpoints A, B cannot
be found, we should drop this assumption and take into account solutions supported at a single
point, ρ(ϕ) = δ(ϕ).

Phase transitions in the theory are signalled by a non-analytic behaviour of the free energy

FS5 = − 1

πr3N2
log |ZS5 | . (6.2.18)

In the decompactification and large N ’t Hooft limit it becomes

FS5 =
1

6

∫
dϕρ(ϕ)

∫
dψρ(ψ) |ϕ− ψ|3 +

∫
dϕρ(ϕ)

[
1

3t
ϕ3 +

1

λ
ϕ2 −

F∑
α=1

ζα
6
|ϕ+mα|3

]
.

The linear term proportional to ξ̃ does not contribute by construction. Using the solution (6.2.15)
for ρ(ϕ), FS5 is found to be

FS5 =
1

3

[
cAcB|B −A|3 +

F∑
α=1

cα

(
cA|A+mα|3 + cB|B +mα|3 +

F∑
α′=1

cα′

2
|mα −mα′ |3

)]
(6.2.19)

+
1

3t

[
cAA

3 + cBB
3 −

F∑
α=1

cαm
3
α

]
+

1

λ

[
cAA

2 + cBB
2 +

F∑
α=1

cαm
2
α

]

−
F∑
α=1

ζα
6

[
cA|A+mα|3 + cB|B +mα|3 +

F∑
α′=1

cα′ |mα −mα′ |3
]
.
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Recall that the coefficients cα vanish unless A < −mα < B, in which case cα = ζα
2 . This

implies that whenever A < −mα < B the one-loop contribution of the hypermultiplets of mass
mα is almost entirely cancelled between the first and the last line in (6.2.19). This is consistent
with the mass mα being below the characteristic energy scale of the problem: the hypermultiplet
cannot be integrated out, whence no one-loop effect is generated. The cancellation of the one-
loop effects between the first and third line of (6.2.19) when A < −mα < B leaves behind a
contribution

−
F∑

α′=1

ζαζα′

12
|mα −mα′ |3. (6.2.20)

It reproduces the one-loop contribution of the massive W-bosons in the background vector mul-
tiplet for the flavour symmetry broken by the solution in the phase considered.

The continuity of A and B at each critical surface and the jump by ζα
2 of cA when −mα crosses

A, or of cB when −mα crosses B, guarantee the continuity of the free energy at each transition
point. Furthermore, the continuity of ρ(ϕ) can be used to prove that the transition must be at
least second order. This is confirmed by the explicit computations in each case.

In sections 6.3 and 6.4 we consider gauge theories with gauge group U(N) and SU(N) respec-
tively, and with the other classical groups in Section 6.5, and present their large N phase structure
explicitly.

F-theorem

The sphere partition function measures the degrees of freedom of a field theory in odd dimensions
[213]. In 5d and with normalization (6.2.18), the F-theorem states [213]

F (IR)
S5 > F (UV)

S5 . (6.2.21)

Compelling evidence for this claim has been presented, for instance, in [252, 253]. Inequality
(6.2.21) holds when both sides are evaluated at fixed points but, under favourable circumstances,
the free energy can be shown to be monotonic all along the RG flow connecting the UV and the
IR fixed points. Expression (6.2.19) can be used to provide new support for the F-theorem.

For fixed values of the masses, λ → 0 drives the theory to the IR. From (6.2.19) and using
the dependence of A and B on λ through (6.2.16), it follows that (6.2.21) is satisfied between any
two points on the RG flow. A direct proof of (6.2.21) is less obvious from (6.2.19) at fixed λ and
increasing masses, but it can nevertheless be confirmed using the explicit results in Section 6.4.

Remarks on the decompactification limit

We follow the standard nomenclature denoting the large sphere limit as decompactification limit,
but it ought to be remarked that the localization procedure requires a (equivariantly) compact
topology, and the limit r → ∞ should be really meant as the zero curvature limit 1

r → 0. As
already emphasized in the Section 6.1, this allows to neglect curvature effects in a controlled way,
but only after putting the localization machinery at work on a compact manifold.

A further remark concerns the sign of the Yang–Mills ’t Hooft coupling λ. We will consider
λ−1 ∈ R. The interpretation of this may be puzzling from a field theoretic viewpoint, because then
instanton corrections would contribute exponentially (instead of being exponentially suppressed)
for λ−1 < 0. Moreover, as reviewed in Appendix 6.A.1, the parameter h in (6.2.5) has the meaning
of a volume, thus it should not become negative. Nevertheless, the perturbative partition function
can be analytically continued letting h ∈ R in (6.2.3) but keeping the non-perturbative quantities,
such as instanton masses, as functions of |h|. For a thorough discussion on negative Yang–
Mills coupling, see [208, 248]. Besides, the SPE (6.2.14) may be likewise analytically continued to
negative values of the Veneziano parameters ζα.
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One last comment is about flavour symmetry. For U(N), the mass parameters belong to a
background SU(Nf ) vector multiplet. In order not to violate the flavour symmetry, we will assume

Nf = 1 +
∑F

α=1 nα and give the extra hypermultiplet a mass

mNf
= −

F∑
α=1

nαmα.

Its contribution is suppressed in the Veneziano limit (6.2.11) and drops out of the SPE.

Remarks on phase transitions and matrix models

As already mentioned, integrals over matrix degrees of freedom do not admit a notion of phase
diagram, unless the numberN of eigenvalues is sent to infinity. From a field theoretical perspective,
a phase structure may originate from the infinite volume limit as well. Phase transitions among
distinct chambers of C (X) in flat space belong to this latter class, while the phase transitions we
are concerned with are instead of the first type.

The presence of a phase transition in the decompactification limit does not automatically imply
that the transition exists at large N but finite radius. In fact, this implication fails in 3d [202].
Nevertheless, we will now argue that the situation is different in 5d and the transitions discovered
with the aid of the decompactification limit persist at finite radius.

A generic effect of finite 1
r2

corrections is to smoothen the δ-singularities into peaked curves
of finite height and width. In 3d Chern–Simons theories with fundamental hypermultiplets, the
solution at large N but finite r is given by a deformation of the pure Chern–Simons eigenvalue
density, on top of which a peak forms each time a mass parameter is decreased [202, 3]. The shape
of the eigenvalue density is changed without breaking its support [202], therefore there is no phase
transition at finite radius.

On the contrary, in 5d we do not have a distribution on top of which the peaks are formed,
and we expect that each new peak will produce a new cut in the support of ρ(ϕ). Let us elaborate
further on this statement. Starting with a pure gauge theory and assuming a very small size of
the support, the sinh(ϕa − ϕb) ≈ (ϕa − ϕb) in (6.2.6a) will dominate against the ef term, leading
to the equilibrium equation of a cubic matrix model. The generic solution is supported on two
intervals and the two pieces degenerate into δ(ϕ−A) and δ(ϕ−B) as 1

r → 0. A phase transition
when the two intervals merge was observed in [247]. In turn, we can work with finite but large
enough r to guarantee that the model remains in the two-cut phase. Most importantly, in the
one-cut phase suppρ is moved away from the real axis [247], thus such solution is discarded by
the procedure adopted in the present work.

Decreasing the masses of the hypermultiplets from infinity, new peaks will form on top of the
finite radius solution. However, as these new peaks are moved away from one endpoint, they
will break the support and produce additional intervals, until they reach the other endpoint and
the two intervals merge. In conclusion, the phase transitions uncovered throughout this work are
expected to be genuine large N phase transitions, associated with splitting of suppρ, and not a
consequence of the large r approximation.

Phase transitions as the ones observed are ubiquitous in gauge theories with an underlying
cohomological structure, that allows to reduce the observables to a matrix model. Prototypical in
this respect is the Gross–Witten–Wadia third order phase transition [190–192] in 2d. We ought
to emphasize that the integrals from localization of 5d N = 1 gauge theories are not of standard
random matrix type, meaning that there seem to be no change of variables to recast the vector
multiplet one-loop determinant in the form of a Vandermonde determinant. As a consequence,
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the mechanism underlying the phase transitions is inherently technically different from the Gross–
Witten–Wadia transition. Nonetheless, a recurrent theme is that phase transitions are triggered
by states becoming massless. In the present setup the light states come from the matter sector.
Conversely, in pure 2d Yang–Mills theory there are no propagating perturbative particles, thus
the transition is induced by instantons [254].

6.2.4 Wilson loops

The eigenvalue density (6.2.15) can be exploited to compute the vacuum expectation value (vev)
of Wilson loops on S5 that preserve half of the supercharges (that is, are half-BPS) in the large r
and large N limit. The contribution to the effective action from a Wilson loop in a representation
of fixed size is sub-leading and does not alter the eigenvalue density in the large N limit. We
conclude that the vev of a Wilson loop in the fundamental representation F is

⟨WF ⟩ =
∫ B

A
dϕρ(ϕ)e2πrϕ = cAe

2πrA + cBe
2πrB +

F∑
α=1

cαe
2πrmα .

The continuity of this expression follows from the continuity of A and B at the critical values,
together with the jump by ζα

2 of cA or cB when −mα crosses A or B respectively. The Wilson
loop vev follows a perimeter law, log ⟨WF ⟩ ≈ (2πB)r, as expected and in agreement with [240].

For classical gauge group, it is proven in Subsection 6.4.4 that the Wilson loop is differentiable,
as a consequence of the scalar ϕ being traceless.

Wilson loops in large antisymmetric representations

Expectation values of Wilson loops in a given representation whose size grows with N deserve
further consideration. Let AK be the rank-K antisymmetric representation of the gauge group.
This implies 0 ≤ K ≤ N for U(N) and 0 ≤ K ≤ N − 1 for SU(N). We consider a Wilson loop in
the representation AK along a great circle inside S5.

The formalism to study the vev of such loop operators in the large N limit, with K growing
with N , was developed in [209] for 4d N = 4 Yang–Mills, and applied to 4d N = 2 in [210] and to
3d Chern–Simons theories in [3]. The derivation of [209] does not depend on the specific theory, as
long as the Wilson loop vev is localized to a finite-dimensional integral, and directly extends to the
present five-dimensional setting, with a few improvements to accommodate a non-even eigenvalue
density. The central idea is to introduce the generating function

ΦA(w) =

〈
N∏
a=1

(
1 + we2πrϕa

)〉
. (6.2.22)

We are interested in the large N with the ratio

κ =
K

N
fixed, 0 ≤ κ ≤ 1. (6.2.23)

The details are essentially identical to Section 5.4.3, but using the eigenvalue densities of the
five-dimensional models.

Plugging the general solution (6.2.15) for the eigenvalue density in the argument of Section
5.4.3, we get

⟨WAK
⟩ = erAKr(B −A)

∮
Γ

dz

2πi
ezNκr(B−A)

[
1 + e−zr(B−A)

]NcA
(6.2.24)

×
[
1 + e(1−z)r(B−A)

]NcB F∏
α=1

[
1 + e−r(mα+A+z(B−A))

]Ncα
.
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Regardless of the details of each specific phase of any theory, the upshot is that log ⟨WAK
⟩ grows

linearly in N and r, meaning that it follows a perimeter law, and is of the general form

log ⟨WAK
⟩ ≈ c1rK + c2rN

at leading order in both N and r, with c1 and c2 simple functions of A, B and the masses {mα}.

6.2.5 Hypermultiplets in other representations

So far the spotlight has been on theories with fundamental hypermultiplets. We now turn our
attention to other types of matter content and analyze the large N limit of SU(N) theories with
hypermultiplets in the adjoint, symmetric or rank-two antisymmetric representation.

Adjoint hypermultiplet

We consider Yang–Mills theory with a massive adjoint hypermultiplet [239]. This model has
enhanced N = 2 supersymmetry at m = 0. The SPE in the large N decompactification limit is

2

λ
ϕ =−

∫ B

A
dψρ(ψ) (ϕ− ψ)2 sgn (ϕ− ψ)

+

∫ B

A
dψρ(ψ)

[
1

2
(ϕ− ψ +m)2 sgn (ϕ− ψ +m) +

1

2
(ϕ− ψ −m)2 sgn (ϕ− ψ −m)

]
.

The Lagrange multiplier ξ̃ has been omitted because the solution turns out to be automatically
balanced, with cA = cB and A = −B.

Without loss of generality we assume m > 0, and also take λ > 0 for concreteness, being the
case λ < 0 completely analogous. It is not hard to check that the eigenvalue density is given by

ρ(ϕ) =

{
1
2δ
(
ϕ+ 1

λ

)
+ 1

2δ
(
ϕ− 1

λ

)
m > 2

λ
1
2δ
(
ϕ−m+ 1

λ

)
+ 1

2δ
(
ϕ+m− 1

λ

)
1
λ ≤ m ≤

2
λ .

At m = λ−1 nothing special happens, but −B and B cross and we should rename the endpoints
of the interval. The free energy in this limit is

FS5 =

{
5
3

1
λ3
− m

λ2
− m3

6 m > 2
λ

−1
3

(
m− 1

λ

)3 − m3

6 0 ≤ m ≤ 2
λ ,

(6.2.25)

which implies that
∂2FS5
∂m2 is discontinuous. The model shows a second order phase transition. We

ought to stress that the large N limit we take differs form that in [247], and hence the transition
we find is different in nature. Besides, taking m→ 0 first in (6.2.25), we are left with a third order
phase transition at 1

λ → 0, which corresponds to pass through a 6d N = (2, 0) superconformal
point. This transition reflects a flop transition in the dual Calabi–Yau geometry (see Appendix
6.A.1).

The free energy in (6.2.25) is a monotonically increasing function of 1
λ , thus satisfying the

F-theorem (6.2.21), discussed in Subsection 6.2.3, all along the RG flow from the SCFT to the
deep IR.

The vev of a Wilson loop in the fundamental representation in this model is

⟨WF⟩ =

{
cosh

(
2πr
λ

)
m > 2

λ

cosh
(
2πr

(
m− 1

λ

))
0 ≤ m ≤ 2

λ

with discontinuous derivative, in agreement with the result for FS5 .
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Antisymmetric or symmetric hypermultiplets

5d SU(N) gauge theories with nA ∈ {0, 1, 2} hypermultiplets in the rank-two antisymmetric
representation or nS ∈ {0, 1} hypermultiplets in the symmetric representation descend from SCFTs
[226]. The free energies of the theories with nS = 1 or nA = 1 differ by terms that are sub-leading
at large N and therefore have identical phase diagram. The case nA = 2 does not admit a large
Chern–Simons level nor a large number of additional fundamental hypermultiplets. The phase
structure of SU(N) theories with (anti-)symmetric matter is derived in Subsection 6.4.5.

6.3 Phases of U(N) theories

In this section, the large N limit (6.2.10)-(6.2.11) of U(N) gauge theories with Nf fundamental
flavours is studied. For unitary group, we set ξ̃ = 0.

Before delving into the detailed analysis, it is instructive to analyze the solution. When
−mα ∈ [A,B] for a subset F ⊂ {1, 2, . . . , F} of the F mass scales, we see from (6.2.15) that
the eigenvalue density is a sum of δ-functions supported at −mα, for α ∈ F , as well as at the
endpoints of suppρ. The situation is schematically represented in Figure 6.3. The eigenvalues are
clustered at |F |+ 2 points, breaking the U(N) group

U(N)→ U (cAN)× U (cBN)×
∏
α∈F

U
(nα

2

)
with each factor rotating the eigenvalues placed at the support of the corresponding δ-function.

ϕ

ρ(ϕ)

Figure 6.3. Eigenvalue density at large N , in a phase in which three out of the F mass parameters fall
inside suppρ. The solid lines are the eigenvalues at the endpoints, the dashed lines are the eigenvalues at
−mα. The range of the vertical axis is

[
0, 12

]
for a better visualization.

Moving a mass, the corresponding δ-function will eventually cross the boundary of suppρ and
drop out. When −mα hits A or B, the corresponding coefficient cA or cB jumps by ζα

2 in order
to preserve the total number N of eigenvalues.

6.3.1 Pure gauge theory

We start our analysis with the pure Yang–Mills-Chern–Simons theory without matter, thus setting
nα = 0. This theory lives in the IR of all the other theories with charged hypermultiplets, and
is reached giving large masses to the matter fields and integrating them out. The presence of a
Chern–Simons level k is therefore necessary, because it is generated dynamically along the RG
flow as the effect of integrating out hypermultiplets.

The SPE in pure Yang–Mills-Chern–Simons theory is

−
∫ B

A
dψρ(ψ) (ϕ− ψ)2 sgn (ϕ− ψ) = 1

t
ϕ2 +

2

λ
ϕ (6.3.1)

116



Phases of 5d supersymmetric Chern–Simons-matter theories

and is solved by the ansatz ρ(ϕ) = cAδ (ϕ−A) + cBδ (ϕ−B). Following the steps described in
Subsection 6.2.3, we find

cA =
1

2
− 1

2t
, A = − t

λ

(
1±

√
t+ 1

t− 1

)
,

cB =
1

2
+

1

2t
, B = − t

λ

(
1±

√
t− 1

t+ 1

)
,

with the same choice of sign of the square root in A and B. Notice that we have derived the
equations assuming A < B, and we must retain the solution which respects this hypothesis,
depending on sgn(λ). We plot them in Figure 6.4.

Removing the Yang–Mills term sending |λ| → ∞, the eigenvalues are attracted to the origin
and, for a pure Chern–Simons theory without any mass deformation, the saddle point configuration
reduces to the trivial one.

Figure 6.4. Plot of A (black) and B (gray) in the pure gauge theory. Left: t = 1.3. Right: t = −1.3.

6.3.2 One mass scale

We now consider a single mass scale, F = 1. In other words, the theory has Nf hypermultiplets
all of equal mass m, and thus a single Veneziano parameter ζ as defined in (6.2.11).

At very large values of the mass, the hypermultiplets can be integrated out to obtain an
effective theory with Chern–Simons level k− Nf

2 sgn(m). Therefore, as m is increased from −∞ up
to +∞, the effective description interpolates between two different pure Chern–Simons theories.
At large gauge coupling, λ → ±∞, there is no mass scale other than m, thus we expect a phase
transition at m = 0. Nevertheless, a finite λ−1 sets a scale under which the hypermultiplet cannot
be integrated out. We now show how this picture is realized.

The SPE reads

−
∫ B

A
dψρ(ψ) (ϕ− ψ)2 sgn (ϕ− ψ) = 1

t
ϕ2 +

2

λ
ϕ− ζ

2
(ϕ+m)2 sgn (ϕ+m) . (6.3.2)

For clarity, we focus first on the limit |λ| → ∞, in which the Yang–Mills contribution drops out
of the computations, and come back to the more general setting below.

Infinite Yang–Mills ’t Hooft coupling

We start increasing m from −∞, which gives sgn (ϕ+m) < 0. This inequality characterizes the
first phase of the theory, which extends as long as B < −m. The explicit expressions of the
solutions are reported in Appendix 6.B.1, equation (6.B.1).

117



6.3. Phases of U(N) theories

The solution we have found holds as long as B < −m. Increasingm from large negative values,
−m will descend and eventually hit suppρ at B. From the explicit form of B in (6.B.1) we find
that the inequality B < −m breaks down at m = 0.

We may assume the existence of an intermediate phase in which m ∈ suppρ, but then the
solution to (6.3.2) would only be consistent with A = 0 = B. Therefore we pass to a new phase,
for which A > −m and hence sgn(ϕ+m) > 0. The solution is found exactly as before, and is also
recovered from the ones at m < 0 flipping the sign of the Veneziano parameter, ζ 7→ −ζ.

We notice an important aspect: ρ(ϕ) is supported on the real line only for t < −
(
1− ζ

2

)−1

when m < 0, and only for t >
(
1− ζ

2

)−1
when m > 0. We also find real solutions in the

region 0 < t <
(
1− ζ

2

)−1
when m < 0, and with opposite sign when m > 0, which however fall

out of the window (6.2.12). These solutions should not be discarded in principle, because the
matrix model could still be defined at large N if suppρ lies entirely on the positive real axis when

0 < t <
(
1− ζ

2

)−1
, or on the negative real axis for negative t. However, evaluating A and B in

that range, we find that the solutions do not satisfy the convergence condition, and therefore are
inconsistent with the matrix model we have started with.

We use ρ(ϕ) to evaluate the free energy FS5 (6.2.18). In the large N and large r limit and at
infinite |λ|, FS5 is given by

FS5 (t, |λ| → ∞, ζ,m) =
cAcB
3
|B −A|3 + 1

3t

(
cAA

3 + cBB
3
)
− ζ

6

(
cA|A+m|3 + cB|B +m|3

)
,

with (cA, cB, A,B) functions of the gauge theoretical parameters as given in (6.B.1). The phase
transition is third order, as proven by direct calculations, but it can also be predicted looking at
the formula for FS5 . It is a cubic function of |m|3, because A and B are linear functions of m:
the expressions up to the second derivative will automatically vanish at m = 0, determining the
order of the phase transition.

To summarize, at infinite Yang–Mills ’t Hooft coupling there are two phases separated by the
critical surface mcr = 0. The result is schematically presented in Figure 6.5.

Figure 6.5. Phases diagram of the theory with Nf hypermultiplets all of mass m at λ → ±∞, in the(
m, 1t

)
-plane. In the shaded region the matrix model is ill-defined. Crossing the blue wall mcr = 0, the

theory undergoes a third order phase transition, indicated by the solid, black arrows in the picture. The
dashed, red arrows indicate a phase transition between the two non-trivial regions.
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Finite Yang–Mills ’t Hooft coupling

We now come back to the more general setting with |λ| < ∞, hence turning on an additional
massive deformation. We start again increasing m from −∞. The first phase is as in the large λ
limit studied above, but now for λ−1 ̸= 0 the inequality B < −m breaks down at a critical mass
mcr,1 < 0. On the other hand, we could equivalently start decreasing m from +∞, and see that
the theory is in a phase equivalent to the second phase above. However, also in this case, the
inequality A > −m only holds for m > mcr,2 > 0.

We see that the theory develops an intermediate phase

mcr,1 < m < mcr,2, (6.3.3)

in which the mass of the hypermultiplets is comparable to scale of the problem, determined by
λ−1. The matter fields cannot be integrated out and enter the IR dynamics. The deformation by
λ−1 has moved the two critical parameters away from mcr = 0.

The explicit form of the eigenvalue density ρ(ϕ) is given in (6.B.2) in Appendix 6.B.1. As for
large λ, we find that the first and third phases are non-trivial only for negative t and for positive
t, respectively. Imposing the condition

B(I)(t, λ, ζ,m) = −m,

withB computed under the assumptionB < −m, we find the first critical surfacem = mcr,1(t, λ, ζ).
A direct computation using (6.B.2) gives:

mcr,1 =
t

λ

(
1 +

√
(ζ − 2)t+ 2

λ2((ζ − 2)t− 2)

)
(6.3.4)

as plotted in the left panel of Figure 6.6. This solution vanishes for λ→ ±∞, in agreement with
the discussion at infinite Yang–Mills ’t Hooft coupling.

The second transition point is likewise determined decreasing m from large positive values
until the inequality A > −m breaks down, see the right panel of Figure 6.6. Explicitly, this
second critical surface is

mcr,2(t, λ, ζ) =
t

λ

(
1−

√
(ζ − 2)t− 2

λ2((ζ − 2)t+ 2)

)
. (6.3.5)
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Figure 6.6. Critical surfaces plotted as functions of λ. Left: mcr,1(t, λ, ζ) at ζ = 1
2 and t = −5. Right:

mcr,2(t, λ, ζ) at ζ = 1
2 and t = 5. The blue horizontal line is the asymptote m = 0.

We now pass to the intermediate phase (6.3.3). The solution is well behaved and non-trivial
in the whole allowed (ζ, t)-region (6.2.12), and A and B do not depend explicitly on m, as we
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already know from the general solution (6.2.15). This region is characterized by −m ∈ [A,B], and
therefore we can as well extract the critical values mcr,1 and mcr,2 from

−mcr,1(t, λ, ζ) = B(II)(t, λ, ζ), −mcr,1(t, λ, ζ) = A(II)(t, λ, ζ),

where (II) means the quantity evaluated in the intermediate phase. The solutions (6.3.4)-(6.3.5)
are correctly reproduced.

We compute the free energy FS5 at finite λ. In the first and last phase, it has the form

FS5 (t, λ, ζ,m) =
cAcB
3
|B −A|3 + 1

3t

(
cAA

3 + cBB
3
)
+

1

λ

(
cAA

2 + cBB
2
)

(6.3.6)

− ζ

6

(
cA|A+m|3 + cB|B +m|3

)
while in the middle phase we obtain

FS5 (t, λ, ζ,m) =
cAcB
3
|B−A|3+ 1

3t

(
cAA

3 + cBB
3 − ζ

2
m3

)
+
1

λ

(
cAA

2 + cBB
2 +

ζ

2
m2

)
. (6.3.7)

In these expressions, (cA, cB, A,B) are explicitly known functions of the gauge theoretical param-
eters (t, λ, ζ,m), given in (6.B.2).

Taking the derivative of FS5 with respect to m, we find at one critical point

∂FS5

∂m

∣∣∣∣
m↑mcr,1

=
2tζ

λ2 (2 + t(2− ζ))
=
∂FS5

∂m

∣∣∣∣
m↓mcr,1

and a closely related expression at the other critical point. The second derivative however is
discontinuous, thus we find a pair of second order phase transitions. We summarize the result in
Figure 6.7.

Figure 6.7. Phase diagram of the theory with a single mass scale, plotted in the
(
m, 1t

)
-plane.

Large Chern–Simons ’t Hooft coupling

We now consider the limit of large Chern–Simons ’t Hooft coupling, t → ±∞, that realizes the
large N limit at fixed Chern–Simons level k.

We start noting that, if λ > 0 and ζ ≤ 2 (possibly analytically continued to negative values),
the effective action Seff(ϕ) is non-negative definite, and the largeN limit describes trivial dynamics.
On the contrary, for λ < 0, Seff(ϕ) admits a non-trivial saddle point configuration.
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The solution is given in (6.B.3). The critical values are

mcr,1 (|t| → ∞, λ, ζ) =
[
λ

(
1− ζ

2

)]−1

,

mcr,2 (|t| → ∞, λ, ζ) = −
[
λ

(
1− ζ

2

)]−1

.

Recall that λ < 0, so mcr,1 < 0 and mcr,2 = −mcr,1 > 0.

In the intermediate phase we find an even ρ(ϕ) with symmetric support A = −B:

ρ(ϕ) =
2− ζ
4

[δ (ϕ+B) + δ (ϕ−B)] +
ζ

2
δ(ϕ+m), B = −

[
λ

(
1− ζ

2

)]−1

.

The phase transitions are still second order.

In the intermediate phase, the saddle point configuration clusters the eigenvalues in three
peaks, around A,B and −m. Approaching a critical value, the peak at −m moves towards A or
B, and eventually the two sets of eigenvalues coalesce. The phase transition is thus a signal of
the partial restoration of symmetry

U

(
N

2
−
Nf

4

)2

× U
(
Nf

2

)
−→ U

(
N

2
−
Nf

4

)
× U

(
N

2
+
Nf

4

)
in going from the second to the first or third phase. Note that this is a symmetry enhancement
because

Nf

2 ≤ N .

6.3.3 Two opposite mass scales

We proceed in our analysis breaking the degeneracy in the masses of the hypermultiplets, setting
F = 2 distinct mass scales. We start with a symmetric setting, in which n1 out of the Nf <
2N fundamental hypermultiplets have mass m and the others have mass −m. We work in the
Veneziano limit (6.2.11) and assume ζ1 = ζ2 ≡ ζ in this symmetric setting. The case with vanishing
Chern–Simons level has been addressed in [208], finding two phases separated by a third order
transition.

The SPE is

−
∫ B

A
dψρ(ψ) (ϕ− ψ)2 sgn (ϕ− ψ) = 1

t
ϕ2 +

2

λ
ϕ (6.3.8)

− ζ

2

[
(ϕ+m)2 sgn (ϕ+m) + (ϕ−m)2 sgn (ϕ−m)

]
.

Infinite Yang–Mills ’t Hooft coupling

We first consider the limit |λ| → ∞. The solution to the SPE (6.3.8) is given in (6.B.4)-(6.B.5). We
again find two phases, with a phase transition at m = 0, as anticipated from general arguments.
As discussed in Section 6.2.3, we find a pair of solutions for A and B in each phase. One solution,
reported in (6.B.4), is consistent with t > (1− ζ)−1 and the other, reported in (6.B.5), is consistent
with t < − (1− ζ)−1. Crossing from one phase to the other, the solutions are mapped consistently.

The free energy and its first and second derivatives are continuous at m = 0 in this limit, but
the third derivative is not. The situation is summarized in Figure 6.8.
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Figure 6.8. Phase diagram of the theory with two opposite mass scales at |λ| → ∞: two effective Chern–
Simons theories are separated by a third order phase transition at m = 0.

Finite Yang–Mills ’t Hooft coupling

Reintroducing the mass deformation leading to a Yang–Mills term brings in a new mass scale, and
consequently an intermediate phase when m is small compared to λ−1. The phases corresponding
to large positive or negative mass are found as for infinite Yang–Mills coupling. The solution is
given in (6.B.6).

The asymmetry of suppρ, that is A ̸= −B, implies that we find different solutions for the
critical value mcr,1, and the physically realized is the first one for which any of the two inequalities
A > m and B < −m breaks down. We find that one scenario is realized for tλ > 0 and the other
for tλ < 0:

mcr,1 (t, λ, ζ) =


2t

λ(
√
t2−1+(2ζ−1)t−1)

tλ > 0

t(
√
t2−1+(2ζ−1)t+1)

λ+λt(2(ζ+(ζ−1)ζt)−1) tλ < 0.

Beyond this first critical point, the system is in a new phase, in which the singularity at ϕ = m
or at ϕ = −m enters in the interval [A,B], while the other singularity falls out of the interval,
see (6.B.6) for the explicit solution. The effective theory in this new phase is equivalent to the
F = 1 theory with renormalized Chern–Simons coupling. We find consistent solutions for λ < 0.
This second phase holds until the second singularity at ±m (depending on the sign of t) reaches
[A,B]. For negative t, this means that a new phase transition takes place at B = −m, with B
computed in the second phase. This equation yields two solutions, but only one is consistent with
mcr,1. The analogous reasoning applies to the other situation with positive t. We find a second
phase transition at

mcr,2 (t, λ, ζ) =


(ζ−1)t2+

√
t2((ζ−1)2t2−1)+t

λ+(ζ−1)λt tλ > 0

−
√
t2((ζ−1)2t2−1)

(ζ−1)λt−λ − t
λ tλ < 0,

beyond which both m and −m belong to [A,B]. The solution is given in (6.B.6). In this third
phase ρ(ϕ) has the same form for both positive and negative t, and holds for λ−1 ∈ R. Increasing
m further, the system goes through the same phases in the converse direction, with the role of m
and −m swapped. Such behaviour is expected in this especially symmetric case, due to the Z2

invariance under exchange of the masses, m1 ↔ m2.

We summarize the phase structure in Figure 6.9.

The free energy FS5 is evaluated using the eigenvalue density ρ(ϕ) in each phase, as in (6.2.19).
Taking derivatives of the resulting expression we find a third order phase transition for both signs
of tλ. This generalizes the result of [208].
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Figure 6.9. Phase diagram of the theory with two opposite mass scales.

Large Chern–Simons ’t Hooft coupling

Consider two symmetric masses and |t| → ∞. As in the one-mass setting, a non-trivial saddle
point configuration requires λ < 0. We find a symmetric ρ(ϕ) supported on [−B,B], with

B =

{
− 1
λ −mζ m < mcr

− 1
λ(1−ζ) m > mcr.

The intermediate phases disappear in this limit, because

lim
t→±∞

mcr,2 (t, λ, ζ) = lim
t→±∞

mcr,1 (t, λ, ζ) =
1

λ (1− ζ)
.

The results of [208] are then recovered.

This model has a Z2 symmetry. In the intermediate phase, ρ(ϕ) presents four clusters of
eigenvalues, placed at ±B and ±m. Approaching the critical locus, the eigenvalues at m and the
ones at −B coalesce, and simultaneously the eigenvalues at −m and the ones at B coalesce, see
Figure 6.10. The phase transition is thus a signal of the symmetry enhancement

U

(
N

2
−
Nf

4

)2

× U
(
Nf

4

)2

−→ U

(
N

2

)2

. (6.3.9)

The Z2 symmetry is manifest on both sides of the arrow in (6.3.9).

ϕ

ρ(ϕ)
Two opposite mass scales, phase II

ϕ

ρ(ϕ)
Two opposite mass scales, phase I

Figure 6.10. Schematic representation of the clustering of eigenvalues at large N in the theory with two
opposite mass scales. Left: Eigenvalue density in the intermediate phase, with −m,m ∈ [−B,B] (dashed
lines). Right: Eigenvalue density when −m,m /∈ [−B,B]. The range of the vertical axis is [0, 1].
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6.3.4 Two mass scales

Consider now a generic assignment of masses m1 and m2, and two Veneziano parameters ζ1 and
ζ2. The SPE is

−
∫ B

A
dψρ(ψ) (ϕ− ψ)2 sgn (ϕ− ψ) = 1

t
ϕ2 +

2

λ
ϕ− ζ1

2
(ϕ+m1)

2 sgn (ϕ+m1) (6.3.10)

− ζ2
2
(ϕ+m2)

2 sgn (ϕ+m2) .

When |m1| and |m2| are both large, we find the usual solution ρ(ϕ) with two δ-function
singularities at the endpoints. The first phase transition takes place when one of the masses
hits suppρ. We focus first on infinite Yang–Mills ’t Hooft coupling limit and reintroduce the
corresponding deformation later.

Infinite Yang–Mills ’t Hooft coupling

The complete solution to the SPE (6.3.10) in the limit 1
λ → 0 is given in (6.B.7).

In order to effectively have a single free mass modulus, throughout the present subsection we
impose this constraint

ζ1m1 + ζ2m2 = 0. (6.3.11)

The first phase, as usual, arises when the masses fall out of suppρ, and the solution ρ(ϕ) is
a sum of δ-functions at the endpoints A and B of the support, reported in equation (6.B.7). At
this point, two possible scenarios disclose: moving the values of the masses with the constraint
(6.3.11), either the singularity at ϕ = −m2 hits suppρ from below, or the singularity at ϕ = −m1

hits suppρ from above. A simple computation imposing (6.3.11) shows that these two scenarios
are realized simultaneously: the mass parameter hit the endpoints at m2 = 0 = m1 for all values
of t consistent with (6.2.12). Crossing the critical point, the eigenvalue density in the new phase
is obtained via the formal substitution (ζ1, ζ2)↔ (−ζ1,−ζ2), see (6.B.7).

The free energy FS5 is, as usual, a cubic function of A, B and m1, m2, and all of them vanish
at the critical point. Taking derivatives, we find a third order phase transition. We conclude that
the picture is equivalent to the symmetric case studied in Subsection 6.3.3 and summarized in
Figure 6.8.

Infinite Yang–Mills ’t Hooft coupling revisited

Let us consider the situation in which the massive deformation leading to a Yang–Mills term is
removed, |λ| → ∞, but dropping the constraint (6.3.11). In this way, we have two real mass
parameters to play with.

The explicit solution for ρ(ϕ) is found by the standard calculation, and is reported in (6.B.8).
Having two real mass moduli, we can either increase m1 keeping m2 fixed, or decrease m2 keeping
m1 fixed, or any linear combination of the two. In the former case, the system undergoes a
phase transition when the singularity at −m1 hits B from above, whilst in the latter case a phase
transition takes place when the singularity at −m2 hits A from below.

We move m1 and study the new phase, characterized by −m1 ∈ [A,B]. The explicit solution
for ρ(ϕ) is reported in (6.B.9). The critical surface is determined imposing −m1 = B(II), with B
evaluated in the second phase. If we compute the critical point from the first phase, we get two
solutions, and the physical one is the lowest value, that is, the first value for which −m1 > B does
not hold as m1 is increased from −∞. The critical value obtained in this way matches the value
of B in the second phase, as required by consistency.
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From the second phase, we can either keep −m1 ∈ [A,B] and decrease m2 until −m2 reaches
A, or increase m1 further until −m1 < A. Let us first focus on the former choice. We notice that,
decreasing m2 the support [A,B] of ρ(ϕ) shrinks. Therefore, to keep −m1 ∈ [A,B] we should in
fact decrease m1 at the same time as we decrease m2. This procedure leads to a third order phase
transition at m2 = 0 = m1.

Increasingm1 further withm2 fixed at a large positive value, the singularity at −m1 eventually
reaches the lower boundary of suppρ. This triggers a new phase transition. The critical values for
both transitions encountered at fixed m2 and moving m1 are linear functions of m2, see (6.B.9).
The rest of the phase diagram is described analogously.

Evaluating the free energy in each phase, we find third order phase transitions.

Finite Yang–Mills ’t Hooft coupling

We come back to the general setting reintroducing a Yang–Mills term.

In the middle phase, when both −m1 and −m2 fall inside the support [A,B] of the eigenvalue
density, we find

cA =
2− ζ1 − ζ2

4
− 1

2t
, A = − t

λ

(
1±

√
cB
cA

)
,

cB =
2− ζ1 − ζ2

4
+

1

2t
, B = − t

λ

(
1±

√
cA
cB

)
.

In the latter expression the sign must be chosen in consistency with our starting assumption
A < B, and is the same in both formulas.

We henceforth focus on λ < 0 for concreteness. In this case, A < 0 and B > 0 and are explicitly
given in (6.B.10). Let us assume we increase m2 to positive values: the δ-function singularity at
ϕ = −m2 moves toward the endpoint A and eventually hits the boundary of suppρ at

m2cr,1 =
t

λ

(
1−

√
1− 4

(ζ1 + ζ2) t− 2t+ 2

)
. (6.3.12)

Increasing m2 beyond this point, the gauge theory enters in a new phase in which the solution,
that holds for positive t, is reported in (6.B.11). Notice that B soon becomes negative in this phase
as we increase m2, meaning that we should increase m1 at the same time so that −m1 ∈ [A,B].
Then, we can either increase m1 further or decrease it, driving the system toward a new phase.
The explicit results are reported in equations (6.B.13)-(6.B.14).

We can equivalently begin keeping −m2 ∈ [A,B] and moving m1. If we increase m1 > 0,
we recover the setting just analyzed, upon relabelling ζ1 ↔ ζ2. Decreasing m1 < 0, instead,
the singularity at ϕ = −m1 is moved toward B, and eventually the theory undergoes a phase
transition at

m1cr,1 = −
t

λ

(√
4

(ζ1 + ζ2) t− 2(t+ 1)
+ 1− 1

)
. (6.3.13)

The solution in the new phase, characterized by −m2 ∈ [A,B] and B < −m1, is given in (6.B.12),
and holds for negative t. The description of the other phases is obtained in a completely analogous
fashion.

We plot the phase structure of the F = 2 theory in the (m1,m2)-plane in Figure 6.11. A more
qualitative description of the phases is in Figure 6.12.
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Figure 6.11. Phase diagram in the half-plane {m1 ∈ R,m2 ≥ 0}. The plot is at (t, λ, ζ1, ζ2) =(
22,−10, 13 ,

6
5

)
. In the darker shaded region both singularities lie in the support of the eigenvalue den-

sity. In the lighter shaded regions one singularity lies inside and the other lies outside the support. In the
white region none of the singularities lies inside the support.

Figure 6.12. Phase diagram of the theory with two mass scales. Note that the solid blue walls, representing
the critical surfaces, are not straight lines in the (m1,m2)-plane, cf. Figure 6.11.

Limiting cases

The present framework with F = 2 encompasses the previously studied theories as special cases.
Setting ζ2 = 0 we expect to recover the F = 1 theory of Subsection 6.3.2, whilst setting ζ2 = ζ1
we should recover the symmetric framework of Subsection 6.3.3.

In the first mentioned limiting case we check that, sending ζ2 ↓ 0, all the expressions in
Appendix 6.B.1 for the F = 2 theory reduce to F = 1. An alternative approach is to take
|m2| → ∞ and integrate out the massive hypermultiplets. Then we obtain the F = 1 theory with
a renormalized Chern–Simons ’t Hooft coupling t|F=1 = t|F=2− n2

2 . This result may be visualized
comparing the upper strip of Figure 6.12 with the phase diagram of the F = 1 theory in Figure
6.7.

To recover the F = 2 symmetric case with two opposite masses, set m1 = −m2. Moving along
the diagonal in the (m1 ≤ 0,m2 ≥ 0)-quadrant of Figure 6.11 reproduces the phases on the right
half (m2 ≥ 0) of Figure 6.9.

6.3.5 Three or more mass scales

The generic solution for F real mass scales is (6.2.15), and the procedure is a direct extension
of what we have presented so far. The explicit determination of the phase diagram requires a
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detailed case by case study, with each mass mα moved independently. The upshot is that, for
generic λ and {mα}, a second order phase transition takes place whenever one of the singularities
drops in or out of [A,B].

We have followed a bottom-up approach in our presentation, starting with a pure gauge theory
in Subsection 6.3.1 and increasing F . We might have adopted a top-down approach as well,
following the RG flow. Indeed, starting with a given F , the other theories with lower F ′ < F are
phases of the original theory, reached giving large mass to (F − F ′) families of hypermultiplets.

Infinite Yang–Mills ’t Hooft coupling and constrained masses

While, as we have shown, the phase transitions are generically second order for U(N), there
is a selected sub-class of theories for which we find third order transitions. These are Chern–
Simons theories at infinite Yang–Mills coupling and with a single modulus controlling the theory,

mα = xαm, xα ∈ R, α = 1, . . . , F. (6.3.14)

Without loss of generality, we impose
F∑
α=1

x2α = 1,

as any scaling of all the xα together can be absorbed in a redefinition of m. The definition
(6.3.14) is a change to polar coordinates in RF for each sign of m, with |m| parametrizing the
radial direction. Note, however, that the theories we consider allow m ∈ R.

For very large m, which we take positive for concreteness, the singularities fall out of suppρ,
either above or below depending on the sign of xα. We get

cA = − 1

2t
+

1

2
+
∑
α

ζα
4
sgn(xα), cB =

1

2t
+

1

2
−
∑
α

ζα
4
sgn(xα),

while A and B are linear functions of m,

A = mA0, B = mB0, A0 and B0 independent of m.

This implies that, moving m, all the singularities reach the boundary of suppρ simultaneously at
m = 0. Recall that the free energy FS5 is a cubic function of A, B and {mα}. It follows that
the free energy is continuous and vanishing at the critical locus, up to its second derivative. We
establish that the phase transition is third order.

In the geometric picture sketched in Appendix 6.A.1, the rewriting (6.3.14) corresponds to take
all the Kähler parameters that are dual to non-compact divisors in a resolution of the Calabi–Yau
threefold X to be proportional to a single parameter m. Then, sending λ−1 → 0 first, corresponds
to keep the volume vol

(
P1
0

)
of a certain curve P1

0 finite while by the number of exceptional divisors
fibered over it grows to infinity (see Appendix 6.A.1 for notation and definitions). After that, we
decrease the Kähler parameter m controlling the volumes of the non-compact exceptional divisors,
until it vanishes. Then, the gauge theory undergoes a third order phase transition, which agrees
with the expected geometric flop transition.

From the explicit results in Subsection 6.3.4, the present picture with the associated third
order transition is expected to hold even dropping the constraint (6.3.14).

6.3.6 Wilson loops

We have argued in Subsection 6.2.4 that Wilson loops are always continuous but generically not
differentiable. It is worthwhile to focus on the special instances in which the partition function
undergoes a third order transition, and analyze the behaviour of the Wilson loops.
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Fundamental Wilson loop: Two opposite mass scales

We consider the theory without Chern–Simons term and with two opposite mass scales, with equal
Veneziano parameters, discussed in [208] and revisited in Subsection 6.3.3. The vev of a Wilson
loop in the fundamental representation is

⟨WF⟩ =

cosh
(
2πr

(
ζm− 1

λ

))
|m| > 1

λ(1−ζ)

(1− ζ) cosh
(

2πr
λ(1−ζ)

)
+ ζ cosh (2πrm) |m| < 1

λ(1−ζ) .

Taking the logarithm and differentiating, we find

∂

∂m
log⟨WF⟩

∣∣∣∣
m↓ 1

λ(1−ζ)

− ∂

∂m
log⟨WF⟩

∣∣∣∣
m↑ 1

λ(1−ζ)

= 0

∂2

∂m2
log⟨WF⟩

∣∣∣∣
m↓ 1

λ(1−ζ)

− ∂2

∂m2
log⟨WF⟩

∣∣∣∣
m↑ 1

λ(1−ζ)

= ζ(1− ζ)

meaning that the Wilson loop vev experiences a second order non-analyticity, one order less than
the free energy. Note that the second and higher derivatives vanish as ζ → 1, because in that
case there exists a single phase valid for all m. To conclude, we mention that, as we work in the
decompactification limit, the functions cosh(2πrx) should be replaced by e|2πx| in all the expression
above. Using this substitution before taking the derivatives does not alter the conclusion.

Fundamental Wilson loop: Infinite Yang–Mills coupling

The other situation in which the phase transition is third order is for theories without Yang–
Mills ’t Hooft coupling, |λ| → ∞. We consider the F = 1 theory of Section 6.3.2 as an explicit
example. The endpoints A = mA0 and B = mB0 are linear functions of m, and

∂

∂m
log⟨WF⟩

∣∣∣∣
m→0

= 2πr
cAA0 + cBB0

cA + cB
= 2πr (cAA0 + cBB0) .

This does not vanish unless cAA0 + cBB0 = 0, and therefore the Wilson loop vev has a first order
discontinuity. This may indicate an inconsistency in the strong coupling limit of non-balanced
U(N) theories, or at least an ambiguity in the order of strong coupling and large N limits.

Antisymmetric Wilson loop: Pure gauge theory

We now apply the framework presented in Section 6.2.4 to compute the expectation value of
half-BPS Wilson loops in antisymmetric representations of large rank.

We begin with the pure gauge theory analyzed in Section 6.3.1. The theory has no mass scales
other than the inverse Yang–Mills ’t Hooft coupling λ−1, and presents a single phase. Specializing
the argument of Section 6.2.4 to such theory without hypermultiplets, we have to evaluate

⟨WAK
⟩ = erAK

∮
dw̃

2πi
w̃K−1

[
1 +

1

w̃

]⌊NcA⌋
[
1 +

er(B−A)

w̃

]⌊NcB⌋

keeping the leading contribution at large radius. We observe that such contribution will differ
depending on cB > κ or cB < κ, where the scaling parameter κ = K

N has been introduced in
(6.2.23). We find

log ⟨WAK
⟩ =

{
rBK K ≤ N+k

2

r
[
AK + (B −A)

(
N+k
2

)]
K > N+k

2
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with k the Chern–Simons level. The inequalities are understood at large N . Besides, strictly
speaking this solution only holds as long as κ ≤ cA+cB, but recalling the normalization cA+cB = 1
and that 0 ≤ κ ≤ 1 by definition, this latter requirement is always satisfied. We stress that the
Wilson loop is a continuous but not differentiable function of κ.

This result holds for all gauge theories with massive matter, in the phases in which all the
masses fall outside of suppρ, up to a renormalization of the Chern–Simons coupling.

Antisymmetric Wilson loop: One mass scale

We discuss the antisymmetric Wilson loop in the U(N) theory with a single mass scale m. In the
first and last phase, with −m > B and −m < A respectively, the solution is analogous to the one
for the pure gauge theory, upon replacement N+k

2 7→ N+k
2 +

Nf

4 if −m > B, and N+k
2 7→ N+k

2 −
Nf

4
if −m < A.

In the intermediate phase, characterized by A < −m < B, we must take into account two
possibilities, namely A < −m < B − A and B − A < −m < B. The final results in the two
sub-cases are

log ⟨WAK
⟩(II)

∣∣∣
−m<B−A

=


rBK 0≤K<N+k

2
−

Nf
4

r
[
(A−m)

(
K−N+k

2
+

Nf
4

)
+B
(

N+k
2

−
Nf
4

)]
N+k

2
−

Nf
4

≤K<N+k
2

+
Nf
4

r
[
A
(
K−N+k

2
+

Nf
4

)
+B
(

N+k
2

−
Nf
4

)
−m

Nf
2

]
K≥N+k

2
+

Nf
4
,

log ⟨WAK
⟩(II)

∣∣∣
−m>B−A

=


r(A−m)K 0≤K<

Nf
2

r
[
(A−m)

Nf
2

+B
(
K−

Nf
2

)]
Nf
2

≤K<N+k
2

+
Nf
4

r
[
A
(
K−N+k

2
+

Nf
4

)
+B
(

N+k
2

−
Nf
4

)
−m

Nf
2

]
K≥N+k

2
+

Nf
4
,

where the superscript (II) means that we have computed the Wilson loop vev in the intermediate
phase. Condition (6.2.12) guarantees that the inequalities are always well posed.

The Wilson loop is continuous but not differentiable function of m at both critical loci. It is
also a continuous but not differentiable function of the scaling parameter κ in every phase.

The study of the expectation value of a Wilson loop in a large antisymmetric representation
AK for any number of mass scales can be addressed by the method presented here, specializing
the argument of Section 6.2.4 to a given F and analyzing the various sub-cases in each phase.

6.4 Phases of SU(N) theories

SU(N) gauge theories descend from (twisted) compactifications of 6d SCFTs on a circle of radius
β, with the Yang–Mills deformation h ∝ β−1.

The analysis is closely related to that of the U(N) theory, but we now reintroduce the Lagrange
multiplier ξ̃. At the end, we will set it to its physical value, determined by the requirement∫ B

A
ϕρ(ϕ)dϕ = 0. (6.4.1)

The details for finding the explicit solution ρ(ϕ) in each SU(N) theory are exactly as in the
corresponding U(N) theory analyzed in Section 6.3, except that the endpoints A, B will carry an
additional dependence on ξ̃. Notice that cA and cB are the same in the U(N) and SU(N) theory,
and for this reason we will not explicitly discuss them throughout this section.

The generic solution ρ(ϕ) is again given by (6.2.15), and the constraint (6.4.1) reads

cAA+ cBB −
F∑
α=1

cαmα = 0. (6.4.2)
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This is meant as an equation fixing ξ̃ through the dependence of A and B on it.

A remark is in order to clarify the role of the multiplier ξ̃. A power counting in the integral
representation (6.2.3) of the partition function suggests that the difference between SU(N) and
U(N) is sub-leading in a 1

N expansion. Indeed, only the ratio ξ̃ ∝ ξ
N enters the SPE (6.2.14),

showing that ungauging an Abelian factor U(1) ⊂ U(N) gives a next-to-leading order correction.
In this work we do not go beyond the leading order at large N , and adopt the approach of [247]
scaling the Lagrange multiplier in a ’t Hooft-like way, with ξ̃ fixed at large N , to keep track of the
tracelessness condition at large N . Stated more formally, we work in the direct limit Lie algebra
u(∞) and restrict to the traceless subspace.

From the geometric engineering viewpoint, the ’t Hooft limit (6.2.10) blows up the volume of
a curve P1

0 belonging to the base B of the elliptic fibration X̃ → B. Imposing the same scaling
for ξ̃ corresponds to scale the metric on the base B in such a way that the volume of a different
curve P1

∗ ⊂ B, transverse to P1
0, grows linearly with vol

(
P1
0

)
. Essentially, this procedure amounts

to keep track of the difference between ALF and ALE metrics on the Calabi–Yau threefold.

6.4.1 Pure gauge theory

The first theory we consider is the pure Yang–Mills-Chern–Simons gauge theory without matter.
We compute A and B when the multiplier ξ̃ is taken into account in the SPE, and then impose
(6.4.2) and solve for ξ̃. This gives

ξ̃ = − t

λ2(t2 − 1)
.

Plugging this value back in A and B we obtain

A = − t
λ
∓ t2

λ(t− 1)
, B = − t

λ
± t2

λ(t+ 1)
,

with signs chosen consistently depending on sgn(λ). There is no crucial difference between SU(N)
and U(N) pure gauge theories, except for the details in determining A and B. In the present case,
the tracelessness condition implies A < 0 and B > 0 ∀λ−1 ∈ R.

6.4.2 One mass scale

The first example which includes matter is the F = 1 theory. As in Subsection 6.3.2 we discuss
first the |λ| → ∞ case, and then reintroduce a finite Yang–Mills term.

Infinite Yang–Mills ’t Hooft coupling

We begin with the analysis of the SU(N) theory with all hypermultiplets of equal mass and no
Yang–Mills term. Solving for A, B and imposing (6.4.2) we find

ξ̃ =

{
− ζm2(t(ζ−2t)+2)

(ζ2−4)t2+4ζt+4
m < 0

− ζm2(t(ζ+2t)−2)
(ζ2−4)t2−4ζt+4

m > 0.

Plugging this back into A and B in both phases gives the explicit solution reported in Appendix
6.B.2, equation (6.B.15). These expressions are much simpler than the ones obtained in the U(N)
theory. We find a third order phase transition at m = 0 but, in contrast to the U(N) theory, the
solution is non-trivial for all values of 1

t in the window (6.2.12) on both sides of the critical wall.
The phase structure is represented in Figure 6.13.
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Figure 6.13. Phase diagram of the SU(N) theory with Nf hypermultiplets all of mass m at λ → ±∞.
Across the blue wall mcr = 0 the theory undergoes a third order phase transition.

Finite Yang–Mills ’t Hooft coupling

At finite Yang–Mills ’t Hooft coupling |λ| < ∞, we solve the SPE and impose the constraint
(6.4.2), which gives

ξ̃ =


ζλ2(−m2)(t(ζ−2t)+2)+2ζλmt(ζt+2)+2t(ζt+2)

λ2((ζ−2)t+2)((ζ+2)t+2)
m < mcr,1

t(−mζλ(ζλm−2(ζ−2)t)−4)
λ2((ζ−2)2t2−4)

mcr,1 < m < mcr,2

ζλ2(−m2)(t(ζ+2t)−2)+2ζλmt(ζt−2)−2t(ζt−2)

λ2((ζ−2)t−2)((ζ+2)t−2)
m > mcr,2.

The endpoints of the support, reported in (6.B.16), are uniquely determined and take an especially
simple form. The two critical surfaces are

mcr,1(t, λ, ζ) =

[
λ

(
1 +

1

t

)]−1

mcr,2(t, λ, ζ) =

[
−λ
(
1− 1

t

)]−1

which, remarkably, are independent of ζ. These solutions have been obtained under the assumption
A < B, which is self-consistent only for λ < 0, in agreement with the analysis of the U(N) theory.
A major difference with the U(N) theory is that the condition (6.4.2) has introduced an explicit
dependence on m in A and B in the intermediate phase. This dependence is necessary to balance
the average

∫ B
A ϕρ(ϕ)dϕ as the δ-function at −m is moved inside the interval [A,B].

The free energy is explicitly given by

FS5 |m<mcr,1 =
2ζλ3m3 + 2ζ2λ3m3t− t2(ζλm(λm(3ζ + 2λm) + 6) + 4)

3λ3((ζ − 2)t+ 2)((ζ + 2)t+ 2)
(6.4.3a)

FS5 |mcr,1<m<mcr,2 =
2ζλ3m3 − (ζ − 2)t3

(
3ζλ2m2 + 2

)
+ 2ζλmt2

(
(ζ − 1)λ2m2 + 3

)
− 6ζλ2m2t

3λ3 ((ζ − 2)2t3 − 4t)
(6.4.3b)
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in the first and second phase respectively, and by (6.4.3a) with ζ 7→ −ζ in the third phase. Taking
derivatives, we obtain

∂FS5

∂m

∣∣∣∣
m↑mcr,1

= − 2ζt3

λ2(t+ 1)2((ζ − 2)t+ 2)
=
∂FS5

∂m

∣∣∣∣
m↓mcr,1

∂2FS5

∂m2

∣∣∣∣
m↑mcr,1

= − 2ζ(t− 1)t

λ(t+ 1)((ζ − 2)t+ 2)
=
∂2FS5

∂m2

∣∣∣∣
m↓mcr,1

yielding a third order phase transition. We conclude that the phase diagram of the SU(N) theory
is similar to that of the corresponding U(N) theory, but with different critical loci and the order
of the transitions is increased from second to third.

Large Chern–Simons ’t Hooft coupling

For λ < 0 and |t| → ∞ the solution is given in (6.B.2). The system has three phases, separated
by third order transitions at the critical curves

mcr,1 = λ−1 = −mcr,2.

In contrast to Subsection 6.3.2, the support of the eigenvalue density does not collapse sending
|λ| → ∞.

6.4.3 Two opposite mass scales

We consider the SU(N) theory with F = 2 opposite mass scales (−m,m) and equal number of
hypermultiplets per mass, ζ1 = ζ2 ≡ ζ. This is the traceless counterpart of the analysis carried
out in Subsection 6.3.3. The SPE reads

−
∫ B

A
dψρ(ψ) (ϕ− ψ)2 sgn (ϕ− ψ) = 1

t
ϕ2 +

2

λ
ϕ+ ξ̃ (6.4.4)

− ζ

2

[
(ϕ+m)2 sgn (ϕ+m) + (ϕ−m)2 sgn (ϕ−m)

]
.

Infinite Yang–Mills ’t Hooft coupling

To begin with, we remove the Yang–Mills term sending |λ| → ∞, thus the unique mass scale
remaining in the problem in m. Solving (6.4.4) for A and B as functions of ξ̃ and imposing (6.4.2)
we get

ξ̃ = −4ζ2m2t

t2 − 1
(6.4.5)

in both phases. A and B are given in (6.B.18). We find a third order phase transition at m = 0,
consistent with the general arguments presented so far.

Finite Yang–Mills ’t Hooft coupling

Without loss of generality we restrict the analysis tom > 0, thanks to the Z2 symmetry exchanging
the two sets of hypermultiplets.

Reintroducing a finite Yang–Mills term, |λ| < ∞, we solve (6.4.4) in analogy with the U(N)
theory of Section 6.3.3. The solution in each phase is reported in equation (6.B.19). The Lagrange
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multiplier ξ̃ takes the values

ξ̃ =


− t( 1

λ
−ζm)

2

t2−1
m > mcr,1

ζλ2(−m2)+ζ(t−(ζ−1)λmt)2+t(2−2ζλm)

2λ2(t+1)((ζ−1)t+1)
mcr,2 < m < mcr,1 and tλ < 0

ζλ2m2−ζ(t−(ζ−1)λmt)2+t(2−2ζλm)
2λ2(t−1)((ζ−1)t−1)

mcr,2 < m < mcr,1 and tλ > 0

− t
λ2((ζ−1)2t2−1)

m < mcr,2.

The analysis is carried out as for the corresponding unitary theory. The critical loci are

mcr,1(t, λ, ζ) =

{
t

λ(ζt−t+1) tλ < 0
t

λ(ζt−t−1) tλ > 0,

mcr,2(t, λ, ζ) =

{
− t
λ−ζλt+λt tλ < 0
t

λ+(ζ−1)λt tλ > 0.

The phase diagram is qualitatively analogous to that of the corresponding U(N) theory, but
the expressions for A and B, as well as the critical loci, are much simpler, as shown in (6.B.19).
The free energy is directly evaluated in each phase, giving

FS5 |m>mcr,1
=

ζλ3m3−ζλmt2(λm((ζ2+1)λm−3ζ)+3)+t2

3λ3(t2−1)

FS5 |m<mcr,1
=

{
1

6(t+1)

(
3ζm2(ζt+t+1)

λ
− ζm3(ζt+t+1)2

t
− 3ζmt

λ2
+

(ζ−2)t2

λ3((ζ−1)t+1)

)
tλ<0

3ζλ2m2t((ζ−1)t−1)(ζt+t−1)−ζλ3m3((ζ−1)t−1)(ζt+t−1)2+3ζλmt2(−ζt+t+1)+(ζ−2)t3

6λ3(t−1)t((ζ−1)t−1)
tλ>0

FS5 |m<mcr,2
=

ζλ2m2(3−4ζλm)−(ζ−1)3t4((ζ−1)ζλ2m2(4ζλm−3)+1)+(ζ−1)t2(2(ζ−1)ζλ2m2(4ζλm−3)+5)
3λ3((ζ−1)2t2−1)2

.

Differentiating, a third order phase transition is found.

6.4.4 Wilson loops

From Subsection 6.2.4, the vev of a half-BPS Wilson loop in the fundamental representation is

⟨WF⟩ = cAe
2πrA + cBe

2πrB +
F∑
α=1

cαe
−2πrmα

and its continuity at the critical surfaces follows from the continuity of A and B and the associated
jump of cA or cB by ζ

2 .

When the gauge group is SU(N), we can exploit the additional constraint (6.4.2) to prove
that the derivative of ⟨WF⟩ is continuous, too. We show this for the phase with mα /∈ [A,B]
∀α = 1, . . . , F , being the extension to any other phase straightforward.

Differentiate equation (6.4.2) together with (6.2.16b) with respect to a given m on both sides
of the critical wall, and use the resulting expressions to get rid of the derivatives ∂A

∂m and ∂B
∂m in

the formula for the derivative of the Wilson loop vev. This gives

1

2πr

∂

∂m
⟨WF⟩

∣∣∣∣
m<mcr

=
ζ

4
s̃
(
e2πrB − e2πrA

)
1

2πr

∂

∂m
⟨WF⟩

∣∣∣∣
m>mcr

=
ζ

4

(
e2πrB + e2πrA

)
− ζ

2
e−2πrm
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where we have followed the notation of Subsection 6.2.3 and introduced the auxiliary variable s̃,
which is −1 if −m > B and +1 if −m < A in the first phase. Sending m→ mcr, either m = A or
m = B at the critical point, whence the continuity of ∂

∂m ⟨WF⟩ follows.
We conclude that, in the SU(N) theory, the vevs of Wilson loops in the fundamental repre-

sentation are always differentiable. This is consistent with the explicit calculations, yielding third
order phase transitions.

A similar reasoning can be applied to the expectation value of Wilson loops in large anti-
symmetric representations. The computations to determine ⟨WAK

⟩ follow closely those in Section
6.3.6. The additional constraints on the partial derivatives of A and B in the SU(N) theory allow
to show that the first derivative of the vev with respect to the mass is a continuous function.

6.4.5 Hypermultiplets in the symmetric representation

In this subsection we analyze the phase structure of SU(N) theories with hypermultiplets in the
symmetric representation.

Only symmetric hypermultiplet

Let us start with the simpler case of only a symmetric hypermultiplet of mass m, without Chern–
Simons term. The SPE of this model is:

2

λ
ϕ =−

∫ B

A
dψρ(ψ) (ϕ− ψ)2 sgn (ϕ− ψ) (6.4.6)

+
1

4

∫ B

A
dψρ(ψ)

[
(ϕ+ ψ +m)2 sgn (ϕ+ ψ +m) + (ϕ+ ψ −m)2 sgn (ϕ− ψ −m)

]
.

We can take m ≥ 0 without loss of generality. The symmetric ansatz

ρ(ϕ) =
1

2
δ(ϕ+B) +

1

2
δ(ϕ−B) (6.4.7)

solves (6.4.6) with

B =

{
m
2 −

1
λ m ≥ − 2

λ

− 2
λ m ≤ − 2

λ .

As we are taking m ≥ 0, the phase transition takes place at negative values of the Yang–Mills ’t
Hooft coupling. The Wilson loop in the fundamental representation acquires a vev

⟨WF⟩ =

{
cosh

(
2πr

(
m
2 −

1
λ

))
m ≥ − 2

λ

cosh
(
4πr
λ

)
m ≤ − 2

λ .

We find a second order phase transition. As for the model with a single adjoint hypermultiplet of
Subsection 6.2.5, at m = 0 we find a third order transition at the superconformal point 1

λ → 0,
mirroring a flop transition in the dual Calabi–Yau geometry (see Appendix 6.A.1).

We can easily obtain a solution for the theory analytically continued to any real nS < 2. In
that case the symmetric ansatz (6.4.7) solves the SPE with

B =

{
nS
2 m−

1
λ m ≥ − 2

λ(2−nS)

− 2
λ(2−nS)

m ≤ − 2
λ(2−nS)

.

The features of the phase diagram extend to this case.
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Symmetric and fundamental hypermultiplets

We now consider SU(N) theory with a massless symmetric hypermultiplet and two families of
fundamental hypermultiplets with opposite masses ±m, with equal Veneziano parameters ζ1 =
ζ2 ≡ ζ. That is, we introduce a massless symmetric or rank-two antisymmetric hypermultiplet in
the model of Subsection 6.4.3. In absence of a Chern–Simons term, the Veneziano parameter is
constrained by ζ ≤ 1

2 . The SPE is

∫ B

A
dψρ(ψ)

[
− (ϕ− ψ)2 sgn (ϕ− ψ) + 1

2
(ϕ+ ψ)2 sgn (ϕ+ ψ)

]
=

2

λ
ϕ+ ξ̃ − ζ

2

[
(ϕ+m)2 sgn (ϕ+m) + (ϕ−m)2 sgn (ϕ−m)

]
. (6.4.8)

It is solved by a simple extension of the method in Subsection 6.2.3, with ξ̃ = 0. Let us begin with
the case λ < 0. Then, starting with the phase in which m /∈ suppρ, we find that the symmetric
ansatz (6.4.7) solves (6.4.8) with

B = 2ζm− 2

λ
, m > B.

This phase holds for m > mcr, with

mcr (λ < 0, ζ) = − 2

λ(1− 2ζ)
,

which is positive. Beyond the critical point we find the solution

ρ(ϕ) =
1− 2ζ

2
[δ(ϕ+B) + δ(ϕ−B)] + ζ [δ(ϕ+m) + δ(ϕ−m)] , B = − 2

λ(1− 2ζ)
.

For λ > 0 the solution in the first phase is identical, but B becomes negative at m = 1
ζλ , thus

we should rename B and −B. The phase transition then takes place at

mcr (λ > 0, ζ) =
2

λ(1 + 2ζ)
> 0,

which also equals B(II) computed in the second phase. Note that, consistently with the derivation
for λ > 0,

1

ζλ
>

2

λ(1 + 2ζ)
.

Computing the free energy, we find a third order phase transition.

The Wilson loop in the fundamental representation acquires a vev

⟨WF⟩ =

{
cosh

(
2πr

(
2ζm− 2

λ

))
m ≥ mcr (λ < 0, ζ)

(1− 2ζ) cosh
(

4πr
λ(1−2ζ)

)
+ 2ζ cosh(2πrm) m ≤ mcr (λ < 0, ζ) ,

whose derivative is a continuous but not differentiable function of m. This confirms that the phase
transition is third order. The case of positive λ is analogous.
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Spontaneous one-form symmetry breaking

5d N = 1 gauge theories with simple gauge group have a one-form symmetry associated to the
centre of the group [255, 256]. It is ZN for SU(N) and Z2 for USp(2N). This symmetry is com-
patible with matter in the adjoint or rank-two antisymmetric representation, whilst fundamental
hypermultiplets break it explicitly [257].

It is argued in [257] that, for theories with adjoint or antisymmetric matter, the one-form
symmetry is spontaneously broken. This expectation is confirmed by our results, in the regime
considered, as signalled by ⟨WF⟩ following a perimeter law. Moreover we observe that transitions
between two phases with spontaneously broken one-form symmetry are always second order (cf.
subsections 6.2.5 and 6.4.5). Instead, whenever the one-form symmetry is explicitly broken from
the onset, the phase transitions are third order.

We note a subtlety concerning the pure SU(N) gauge theory at Chern–Simons level k of
Subsection 6.4.1. The one-form symmetry should be restored at k = 0, however, directly taking
the limit t → ∞ in ⟨WF⟩ is problematic. Instead, we write the result for large but finite N and
tune k → 0 first. The Wilson loop vev is then damped as

⟨WF⟩ ≈ e−
4πr|h|

k

[
N − k
2N

e
2πr
λ (1+ k

N ) +
N + k

2N
e

2πr
λ

k
N

]
for one sign of h, and a similar expression for the other sign. The term in bracket is finite in the
k → 0 limit with fixed N , thus we find agreement with [255, 256].

6.5 Phases of USp(2N), SO(2N) and SO(2N + 1) theories

In this section we study the large N phase structure of gauge theories with the other classical
gauge groups: USp(2N), SO(2N) and SO(2N + 1).16 In the large N setup of Section 6.2, the
difference between SO(2N) or SO(2N + 1) and USp(2N) is sub-leading, thus it suffices to study
the compact symplectic gauge group USp(2N). The eigenvalues of the usp(2N)-valued adjoint
scalar ϕ are

(ϕ1, . . . , ϕN ,−ϕ1, . . . ,−ϕN ),

and we can take ϕa ≥ 0 for all a = 1, . . . , N without loss of generality. These groups do not admit
a Chern–Simons term but have a Z2-valued theta parameter [220], which we set to zero.

Repeating the argument of Section 6.2 for USp(2N) we arrive at the SPE:

−
∫ B

A
dψρ(ψ)

[
(ϕ− ψ)2 sgn (ϕ− ψ) + (ϕ+ ψ)2 sgn (ϕ+ ψ)

]
=

4

λ
ϕ−

F∑
α=1

ζα
2

[
(ϕ+mα)

2 sgn (ϕ+mα) + (ϕ−mα)
2 sgn (ϕ−mα)

]
. (6.5.1)

The eigenvalue density is assumed to be supported on a single interval [A,B] on the positive real
axis. The contributions to the vector multiplet one-loop determinant from each pair of opposite
eigenvalues are sub-leading at large N and do not appear in the SPE.

Convergence of the localized partition function in the large N limit requires

F∑
α=1

ζα ≤ 2, (6.5.2)

16For orthogonal groups the hypermultiplets are taken in the vector representation.
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which matches the condition for the gauge theory to sit in the IR of a SCFT [251]. Taking three
derivatives of (6.5.1) we find the solution

ρ(ϕ) = cAδ (ϕ−A) + cBδ (ϕ−B) +

F∑
α=1

[
c−α δ (ϕ+mα) + c+α δ (ϕ−mα)

]
, (6.5.3)

where the coefficients c±α are

c±α =

{
ζα
4 ±mα ∈ [A,B]

0 otherwise

for all α = 1, . . . , F . Note that, as we are taking 0 < A < B, at most one between c−α and c+α is
non-zero. The normalization condition (6.2.13) imposes

cA + cB +
F∑
α=1

(
c−α + c+α

)
= 1. (6.5.4)

To lighten the notation, let us define c̃α = c−α + c+α and

s̃−α =


−1 −mα > B

0 A ≤ −mα ≤ B
+1 −mα < A,

s̃+α =


−1 mα > B

0 A ≤ mα ≤ B
+1 mα < A.

Plugging (6.5.3) back into the SPE (6.5.1) we find the three additional conditions

2cA +
F∑
α=1

c̃α
(
s̃−α + s̃+α

)
=

F∑
α=1

ζα
2

(
s̃−α + s̃+α

)
(6.5.5a)

2cBB +
F∑
α=1

c̃α
(
s̃−α − s̃+α

)
mα = − 2

λ
+

F∑
α=1

ζα
2

(
s̃−α − s̃+α

)
mα (6.5.5b)

2cAA
2 +

F∑
α=1

c̃α
(
s̃−α + s̃+α

)
m2
α =

F∑
α=1

ζα
2

(
s̃−α + s̃+α

)
m2
α. (6.5.5c)

These three equations together with (6.5.4) determine cA, cB and the endpoints A and B. In-
spection of the possible values of s̃−α + s̃+α shows that the assumption of a δ-function supported
at ϕ = A is redundant, because either cA = 0 or the point A is merged with the singularities at
ϕ = mα (or at ϕ = −mα, depending on the sign of the mass). We therefore obtain the solution

ρ(ϕ) = cBδ (ϕ−B) +

F∑
α=1

cαδ (ϕ− |mα|) , (6.5.6)

with coefficients

cB = 1−
F∑
α=1

cα, cα =

{
ζα
2 −B < mα < B

0 otherwise

and endpoint

B =

(
1−

F∑
α=1

cα

)−1 [
− 1

λ
+

F∑
α=1

(
ζα
2
− cα

)
mα

]
.

137



6.5. Phases of USp(2N), SO(2N) and SO(2N + 1) theories

In particular, B is independent of mα when −B < mα < B. The full eigenvalue density
ρUSp(2N)(ϕ), that accounts for all the 2N eigenvalues, is symmetric under ϕ 7→ −ϕ, and reads

ρUSp(2N)(ϕ) =
ρ(ϕ) + ρ(−ϕ)

2
.

The free energy computed using the solution (6.5.6) is

FS5 =
4

3
c2BB

3 +
cB
3

F∑
α=1

cα
(
|B −mα|3 + |B +mα|3

)
+

1

6

F∑
α=1

cα

F∑
α′=1

cα′
(
|mα −mα′ |3 + |mα +mα′ |3

)
+

2

λ

(
cBB

2 +

F∑
α=1

cαm
2
α

)

−
F∑
α=1

ζα
6

[
cB
(
|B −mα|3 + |B +mα|3

)
+

F∑
α′=1

cα′
(
|mα −mα′ |3 + |mα +mα′ |3

)]
.

Let us study the phase structure. We focus for clarity on the first phase transition, assuming that
all masses are larger than B and a mass, which we take to be m1, is decreased until it eventually
crosses B. On one side of the wall we use cα = 0 for all α = 1, . . . , F and find

F (I)
S5 =

4

3

(
B(I)

)3
+

2

λ

(
B(I)

)2
−

F∑
α=1

ζα
6

(
|B(I) −mα|3 + |B(I) +mα|3

)
,

while on the other side we use c1 =
ζ1
2 and cα = 0 for α = 2, . . . , F and get

F (II)
S5 =

4

3

(
1− ζ1

2

)2 (
B(II)

)3
+

2

λ

((
1− ζ1

2

)(
B(II)

)2
+
ζ1
2
m2

1

)
− ζ21

24

(
|B(II) −m1|3 + |B(II) +m1|3

)
−

F∑
α=2

ζα
6

(
|B(II) −mα|3 + |B(II) +mα|3

)
,

where the superscripts (I) and (II) indicate the quantity evaluated in the corresponding phase.
At the critical point, B = m1 by definition, which guarantees the continuity of FS5 . Taking
derivatives and using

∂B(I)

∂m1
=
ζ1
2
,

∂B(II)

∂m1
= 0,

we find that the first and second derivatives of the free energy are continuous, and the phase
transition is third order.

We notice that the calculations of the free energy are akin to those in [208]. On a computational
level, this stems from the symmetric form of the eigenvalues together with the lack of a Chern–
Simons term. This is an incarnation of the fact that the SU(N) and USp(2N) gauge theories are
UV-completed into the same SCFT, up to a shift in Nf that is invisible in the Veneziano limit.

The argument extends to theories with hypermultiplets in the adjoint or rank-two antisym-
metric representation. The phase diagram is easily recovered from subsections 6.2.5 and 6.4.5.17

17USp(2N) theories have been investigated from different angles in [248, 258–262].
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Phases of 5d supersymmetric Chern–Simons-matter theories

6.A Calabi–Yau varieties and localization

As anticipated in Section 6.1, the Coulomb branches of the 5d N = 1 gauge theories we are
interested in can be built from resolutions of a singular Calabi–Yau threefold X. If X is realized
as an elliptic fibration, the theory has special unitary gauge group [220, 263, 223, 224], while if X
is realized as a C∗-fibration the gauge group is unitary [228].

Appendix 6.A.1 embeds the results of the main text in the geometric framework and explains
how to extract matrix models from Calabi–Yau geometries. Then, these facts are applied in
Appendix 6.A.2 to match the reduction from U(N) to SU(N) gauge theories between geometry
and partition function.

6.A.1 Geometric description

A 5d N = 1 gauge theory TX on its Coulomb branch can be read off from the geometry of a
crepant resolution X̃ → X of a singular local Calabi–Yau threefold X.18 Likewise, a 3d N = 2
theory is obtained from crepant resolutions of singular local Calabi–Yau fourfolds. We focus on a
threefold X.

Most of the theories we consider correspond to X̃ containing compact divisors formed by N
intersecting P1s fibered over a single holomorphic genus zero curve, that we denote P1

0. Besides,

there are Nf divisors that are P1 fibrations over a non-compact curve inside X̃. In the models of
Subsection 6.2.5 the fibrations are instead over a genus one curve, while for quiver theories the
compact divisors are fibered over a collection of intersecting P1

0,j , j = 1, . . . , L.

Kähler moduli {ϕa} of holomorphic curves that are Poincaré dual to compact divisors {Sa}
give rise to dynamical fields, while Kähler moduli {mα} of curves Poincaré dual to non-compact
divisors {Dα} give rise to background fields. The identification of the extended Coulomb branch
with the extended Kähler cone C (X) of X stems from these relations.

The gauge theory is characterized by a Yang–Mills coupling 1
g2YM

= vol
(
P1
0

)
, thus the ’t Hooft

limit (6.2.10) increases the volume of P1
0 linearly with the number of compact divisors fibered over

it. Besides, the Veneziano limit (6.2.11) corresponds to take the number of both compact and
non-compact exceptional divisors in X̃ large.

We have reviewed how to read off a gauge theory TX from a resolution X̃ → X. In turn,
supersymmetric localization provides an explicit dictionary between the field content of a super-
symmetric field theory and a matrix model representation of certain observables in such theory
on a compact manifold. Therefore, a two-step procedure yields a map

C (X) ∋ X̃ ←→ C (X) ∋ (ϕ,m) 7→ ZTX

S5 (ϕ,m),

whose image is the measure in the matrix model on S5. The sphere partition function is the
average over Cgauge of this quantity:

ZTX

S5 (m) =

∫
Cgauge

dϕ ZTX

S5 (ϕ,m).

In the above setup, these last steps define a dictionary whose entries include

existence of Sa =⇒ integrate over ϕa

existence of Dα =⇒ hypermultiplet of mass mα

intersections =⇒ Zclass(ϕ)Z
vec
1-loop(ϕ)Z

hyp
1-loop(ϕ).

18A resolution is crepant if it preserves the canonical bundle.
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6.B. Eigenvalue densities

Varying a Kähler parameter mα, we have found a phase transition each time the corresponding
volume crosses a threshold determined by 1

N vol
(
P1
0

)
. Importantly, these transitions take place

at strictly infinite rank of the gauge group, and differ in nature from the flop transitions among
two birationally equivalent resolved geometries X̃. An exception to this statement is discussed in
Subsection 6.3.5.

6.A.2 Stückelberg mechanism from localization

In this Appendix we comment on the matrix model interpretation of the Stückelberg mechanism
presented in [228] to pass from unitary to special unitary quiver gauge theories. The argument
has been shown to hold for three-dimensional gauge theories [264].

The partition function on either S3 or S5 when Fayet–Iliopoulos parameters {ξj} are turned
on is written schematically as

ZTX

Sd (m) =
1∏
j Nj !

∫
Rrank(G)

dϕ e
i4πr2

∑L
j=1 ξj

(∑Nj
a=1 ϕa,j

)
ZTX

Sd (ϕ,m),

for gauge group G = U(N1) × · · · × U(NL). The parameters ξj are dual to the fibre of X.
Therefore, according to the dictionary in Appendix 6.A.1, compactifying the C∗-fibre we have to
integrate over the scalars ξj , producing a δ-constraint at each gauge node. In 3d, this corresponds
to gauging the U(1)j global symmetry at each node, in agreement with [264].

The situation is very similar in 5d, although we first have to address a subtlety with the
integration contour. In Section 6.2 we have inserted ξ as a Lagrange multiplier, while now we
want to treat it as the lowest component of a full-fledged dynamical Abelian vector multiplet.
Hence, localization dictates to rotate its integration contour ξ 7→ iξ [230], eventually producing
the correct factor.

6.B Eigenvalue densities

The eigenvalue densities we have found in the main text have the generic form

ρ(ϕ) = cAδ (ϕ−A) + cBδ (ϕ−B) +

F∑
α=1

cαδ (ϕ+mα) , suppρ = [A,B].

In this appendix we collect the explicit expressions of the parameters cA, cB, and the endpoints
A, B of the support. As explained in Subsection 6.2.3, cα = ζα

2 if −mα ∈ [A,B] and cα = 0
otherwise. We do not report these coefficients below.

Recall that A and B are found solving quadratic equations. In all the subsequent expressions
the correct choice of sign in front of each square root has already been made. For instance,√
λ2(· · · ) = +|λ|

√
(· · · ) is understood.

6.B.1 Eigenvalue densities: U(N) theories

In this appendix we collect the coefficients cA, cB and the endpoints A, B determining the eigen-
value density ρ(ϕ) in the various U(N) gauge theories studied in Section 6.3.

F = 1, |λ| → ∞

cA =

{
(2−ζ)t−2

4t m < 0
(2+ζ)t−2

4t m > 0,
cB =

{
(2+ζ)t+2

4t m < 0
(2−ζ)t+2

4t m > 0,
(6.B.1a)
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Phases of 5d supersymmetric Chern–Simons-matter theories

A =


m
ζt+2

(√
2
√

ζt((ζ+2)t+2)
(ζ−2)t+2 − ζt

)
m < 0

ζmt−
√
2m
√

ζ(−t)((ζ2−4)t2−4ζt+4)
(ζ+2)t−2

2−ζt m > 0,

(6.B.1b)

B =


√
2m
√
ζt((ζ−2)t+2)((ζ+2)t+2)−ζmt((ζ+2)t+2)

(ζt+2)((ζ+2)t+2) m < 0

−
m
(
ζt((ζ−2)t−2)+

√
2
√
ζ(−t)((ζ−2)t−2)((ζ+2)t−2)

)
((ζ−2)t−2)(ζt−2) m > 0.

(6.B.1c)

F = 1, |λ| <∞

cA =


(2−ζ)t−2

4t m < mcr,1
(2−ζ)t−2

4t mcr,1 < m < mcr,2
(2+ζ)t−2

4t m > mcr,2,

cB =


(2+ζ)t+2

4t m < mcr,1
(2−ζ)t+2

4t mcr,1 < m < mcr,2
(2−ζ)t+2

4t m > mcr,2,

(6.B.2a)

A =


√
2
√

λ2(−t)((ζ−2)t+2)((ζ+2)t+2)(2t(ζλm+1)−ζλ2m2)−λt((ζ−2)t+2)(ζλm+2)

λ2((ζ−2)t+2)(ζt+2)
m<mcr,1√

λ2t2((ζ−2)2t2−4)
λ((ζ−2)t+2)

− t
λ

mcr,1<m<mcr,2
√
2
√

λ2t((ζ−2)t−2)((ζ+2)t−2)(2t(ζλm−1)−ζλ2m2)+λt((ζ+2)t−2)(2−ζλm)

λ2(ζt−2)((ζ+2)t−2)
m>mcr,2,

(6.B.2b)

B =


−

√
2
√

λ2(−t)((ζ−2)t+2)((ζ+2)t+2)(2t(ζλm+1)−ζλ2m2)+λt((ζ+2)t+2)(ζλm+2)

λ2(ζt+2)((ζ+2)t+2)
m<mcr,1√

λ2t2((ζ−2)2t2−4)
λ((ζ−2)t−2)

− t
λ

mcr,1<m<mcr,2

−
√
2
√

λ2t((ζ2−4)t2−4ζt+4)(2t(ζλm−1)−ζλ2m2)+λt((ζ−2)t−2)(ζλm−2)

λ2((ζ−2)t−2)(ζt−2)
m>mcr,2.

(6.B.2c)

F = 1, |t| → ∞

cA =


2−ζ
4 m < mcr,1

2−ζ
4 mcr,1 < m < mcr,2

2+ζ
4 m > mcr,2,

cB =


2+ζ
4 m < mcr,1

2−ζ
4 mcr,1 < m < mcr,2

2−ζ
4 m > mcr,2,

(6.B.3a)

A =


2

(
(2−ζ)λ+

√
(4−ζ2)λ2(ζλm+1)

)
(ζ−2)ζλ2

−m m<mcr,1

2
(2−ζ)λ

mcr,1<m<mcr,2

−
2

(
(ζ+2)λ+

√
(4−ζ2)λ2(1−ζλm)

)
(−ζ−2)ζλ2

−m m>mcr,2,

(6.B.3b)

B =


−

2

(
(ζ+2)λ+

√
(4−ζ2)λ2(ζλm+1)

)
ζ(ζ+2)λ2

−m m<mcr,1

− 2
(2−ζ)λ

mcr,1<m<mcr,2

2

(
(2−ζ)λ+

√
(4−ζ2)λ2(1−ζλm)

)
(2−ζ)ζλ2

−m m>mcr,2.

(6.B.3c)

F = 2, |λ| → ∞. Symmetric case

If t > 1
1−ζ :

cA =
t− 1

2t
, cB =

t+ 1

2t
, (6.B.4a)

A =

ζmt
(

t+1√
t2−1
− 1
)

m < 0

−ζmt
(

t+1√
t2−1
− 1
)

m > 0,
B =

ζmt
(

t−1√
t2−1
− 1
)

m < 0

−ζmt
(

t−1√
t2−1
− 1
)

m > 0.
(6.B.4b)
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6.B. Eigenvalue densities

If t < − 1
1−ζ :

cA =
t− 1

2t
, cB =

t+ 1

2t
, (6.B.5a)

A =

−
ζmt(

√
t2−1+t−1)
t−1 m < 0

ζmt(
√
t2−1+t−1)
t−1 m > 0,

B =

−
ζmt(

√
t2−1+t+1)
t+1 m < 0

ζmt(
√
t2−1+t+1)
t+1 m > 0.

(6.B.5b)

F = 2, |λ| <∞. Symmetric case

cA =


t−1
2t m>mcr,1

t(1−ζ)−1
2t mcr,2<m<mcr,1 and t>0

t−1
2t mcr,2<m<mcr,1 and t<0

t(1−ζ)−1
2t m<mcr,2,

cB =


t+1
2t m>mcr,1

t+1
2t mcr,2<m<mcr,1 and t>0

t(1−ζ)+1
2t mcr,2<m<mcr,1 and t<0

t(1−ζ)+1
2t m<mcr,2,

(6.B.6a)

A =



√
t2(t2−1)( 1

λ
−ζm)

2

1−t
+ζmt− t

λ
m>mcr,1

√
2λ

√
t(t+1)((ζ−1)t+1)(ζλ2m2+2t(ζλm−1))

λ2
+(ζ−1)t2(ζλm−2)+t(ζλm−2)

λ((ζ−1)t+1)(ζt+2)
mcr,2<m<mcr,1and t>0

−
√
2
√

(t−1)t((ζ−1)t−1)(2t(ζλm−1)−ζλ2m2)+(t−1)t(ζλm−2)

λ(t−1)(ζt−2)
mcr,2<m<mcr,1and t<0√

t2((ζ−1)2t2−1)
λ2

(ζ−1)t+1
− t

λ
m<mcr,2,

(6.B.6b)

B =



−

√
t2(t2−1)( 1

λ
−ζm)

2

t+1
+ζmt− t

λ
m>mcr,1

√
2
√

t(t+1)((ζ−1)t+1)(ζλ2m2+2t(ζλm−1))+t(t+1)(ζλm−2)

λ(t+1)(ζt+2)
mcr,2<m<mcr,1and t>0

√
2
√

(t−1)t((ζ−1)t−1)(2t(ζλm−1)−ζλ2m2)−t((ζ−1)t−1)(ζλm−2)

λ((ζ−1)t−1)(ζt−2)
mcr,2<m<mcr,1and t<0

−

√
t2((ζ−1)2t2−1)

(ζ−1)t−1
+t

λ
m<mcr,2.

(6.B.6c)

F = 2, |λ| → ∞. Generic case

We impose m2 = m and m1 = − ζ2
ζ1
m.

cA =

{
t(2−ζ1+ζ2)−2

4t m < 0
t(2+ζ1−ζ2)−2

4t m > 0,
cB =

{
t(2+ζ1−ζ2)+2

4t m < 0
t(2−ζ1+ζ2)+2

4t m > 0,
(6.B.7a)

A =


m

(
2ζ1ζ2t((ζ1−ζ2−2)t+2)+

√
ζ1ζ2(−t)((ζ1−ζ2−2)t+2)((ζ1−ζ2+2)t+2)(ζ21 t+2ζ1(ζ2t+1)+ζ2(ζ2t−2))

)
ζ1((ζ1−ζ2−2)t+2)((ζ1−ζ2)t+2)

m<0

−
m

(
2ζ1ζ2t((−ζ1+ζ2−2)t+2)+

√
ζ1ζ2(−t)((−ζ1+ζ2−2)t+2)((−ζ1+ζ2+2)t+2)(ζ21 t+2ζ1(ζ2t−1)+ζ2(ζ2t+2))

)
ζ1(ζ1(−t)+ζ2t+2)((−ζ1+ζ2−2)t+2)

m>0,

(6.B.7b)

B =


2ζ1ζ2mt((ζ1−ζ2+2)t+2)−m

√
ζ1ζ2(−t)((ζ1−ζ2−2)t+2)((ζ1−ζ2+2)t+2)(ζ21 t+2ζ1(ζ2t+1)+ζ2(ζ2t−2))

ζ1((ζ1−ζ2)t+2)((ζ1−ζ2+2)t+2)
m<0

m

−2ζ2t−

√
ζ1ζ2(−t)((−ζ1+ζ2−2)t+2)((−ζ1+ζ2+2)t+2)(ζ21 t+2ζ1(ζ2t−1)+ζ2(ζ2t+2))

ζ1(ζ1t−ζ2t−2(t+1))


ζ1(−t)+ζ2t+2

m>0.

(6.B.7c)
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F = 2, |λ| → ∞. Generic case revisited

When −m1 > B,−m2 < A,

cA =
2− ζ1 + ζ2

4
− 1

2t
, cB =

2 + ζ1 − ζ2
4

+
1

2t
, (6.B.8a)

A =

√
−t((ζ1−ζ2−2)t+2)((ζ1−ζ2+2)t+2)(−2ζ1m

2
1+2ζ2m

2
2+ζ1ζ2(m1−m2)

2t)−t(ζ1m1−ζ2m2)((ζ1−ζ2−2)t+2)

((ζ1−ζ2−2)t+2)((ζ1−ζ2)t+2)
, (6.B.8b)

B = −
t(ζ1m1−ζ2m2)((ζ1−ζ2+2)t+2)+

√
−t((ζ1−ζ2−2)t+2)((ζ1−ζ2+2)t+2)(−2ζ1m

2
1+2ζ2m

2
2+ζ1ζ2(m1−m2)

2t)
((ζ1−ζ2)t+2)((ζ1−ζ2+2)t+2)

. (6.B.8c)

When −m2 < A < −m1 < B,

cA =
2− ζ1 + ζ2

4
− 1

2t
, cB =

2− ζ1 − ζ2
4

+
1

2t
, (6.B.9a)

A = ζ2m2t((−ζ1+ζ2+2)t−2)−
√
2m2

√
ζ2t((ζ1−ζ2−2)t+2)((ζ1+ζ2−2)t−2)

((ζ1−ζ2−2)t+2)(ζ2t−2)
, (6.B.9b)

B =
m2

(
ζ2(−t)−

√
2
√

ζ2t((ζ1−ζ2−2)t+2)((ζ1+ζ2−2)t−2)

(ζ1+ζ2−2)t−2

)
ζ2t−2

. (6.B.9c)

F = 2, −∞ < λ < 0. Generic case

When A < −m1,−m2 < B,

cA =
2− ζ1 − ζ2

4
− 1

2t
, cB =

2− ζ1 − ζ2
4

+
1

2t
, (6.B.10a)

A =
t

λ

(√
1− 4

(ζ1 + ζ2) t− 2t+ 2
− 1

)
, B =

t

λ

(√
4

(ζ1 + ζ2) t− 2(t+ 1)
+ 1− 1

)
.

(6.B.10b)
When −m2 < A and A < −m1 < B,

cA =
2− ζ1 + ζ2

4
− 1

2t
, cB =

2− ζ1 − ζ2
4

+
1

2t
, (6.B.11a)

A =
ζ2(−λ)m2t+

√
2
√

−t(ζ1t−ζ2t−2t+2)((ζ1+ζ2)t−2(t+1))(ζ2λm2(2t−λm2)−2t)
ζ1t−ζ2t−2t+2

+2t

λ(ζ2t−2)
, (6.B.11b)

B = t((ζ1+ζ2−2)t−2)(2−ζ2λm2)+
√
2
√

−t((ζ1−ζ2−2)t+2)((ζ1+ζ2−2)t−2)(ζ2λm2(2t−λm2)−2t)

λ(ζ2t−2)((ζ1+ζ2−2)t−2)
. (6.B.11c)

When −m1 > B and A < −m2 < B,

cA =
2− ζ1 − ζ2

4
− 1

2t
, cB =

2 + ζ1 − ζ2
4

+
1

2t
, (6.B.12a)

A = 1
λ2(ζ1t+2)

[√
2
√

λ2t((ζ1−ζ2+2)t+2)((ζ1+ζ2−2)t+2)(ζ1λm1(λm1−2t)−2t)

(ζ1+ζ2−2)t+2
−λt(ζ1λm1+2)

]
, (6.B.12b)

B = − 1
λ2(ζ1t+2)

[√
2
√

λ2t((ζ1−ζ2+2)t+2)((ζ1+ζ2−2)t+2)(ζ1λm1(λm1−2t)−2t)

(ζ1−ζ2+2)t+2
+λt(ζ1λm1+2)

]
. (6.B.12c)

When −m1 > B and −m2 < A,

cA =
2− ζ1 − ζ2

4
− 1

2t
, cB =

2 + ζ1 + ζ2
4

+
1

2t
, (6.B.13a)
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A = [
√
λ2(−t)((ζ1−ζ2−2)t+2)((ζ1−ζ2+2)t+2)(−2ζ1λm1(λm1−2t)+ζ2λ(ζ1λ(m1−m2)2t+2m2(λm2−2t))+4t)

−λt((ζ1−ζ2−2)t+2)(ζ1λm1−ζ2λm2+2)] 1
λ2((ζ1−ζ2−2)t+2)(ζ1t−ζ2t+2)

,

(6.B.13b)

B = − [
√
λ2(−t)((ζ1−ζ2−2)t+2)((ζ1−ζ2+2)t+2)(−2ζ1λm1(λm1−2t)+ζ2λ(ζ1λ(m1−m2)2t+2m2(λm2−2t))+4t)

+λt((ζ1−ζ2+2)t+2)(ζ1λm1−ζ2λm2+2)] 1
λ2((ζ1−ζ2+2)t+2)(ζ1t−ζ2t+2)

.

(6.B.13c)
When −m1 < A and −m2 > B,

cA =
2− ζ1 − ζ2

4
− 1

2t
, cB =

2 + ζ1 + ζ2
4

+
1

2t
, (6.B.14a)

A = [
√
λ2t((ζ1+ζ2−2)t−2)((ζ1+ζ2+2)t−2)(−2ζ1λm1(λm1−2t)+ζ2λ(ζ1λ(m1−m2)2t−2m2(λm2−2t))−4t)

−λt((ζ1+ζ2+2)t−2)(ζ1λm1+ζ2λm2−2)] 1
λ2((ζ1+ζ2)t−2)((ζ1+ζ2+2)t−2)

,
(6.B.14b)

B = [
√
t((ζ1+ζ2−2)t−2)((ζ1+ζ2+2)t−2)(−2ζ1λm1(λm1−2t)+ζ2λ(ζ1λ(m1−m2)2t−2m2(λm2−2t))−4t)

−t((ζ1+ζ2−2)t−2)(ζ1λm1+ζ2λm2−2)] 1
λ((ζ1+ζ2−2)t−2)((ζ1+ζ2)t−2)

.
(6.B.14c)

6.B.2 Eigenvalue densities: SU(N) theories

In this appendix we collect the endpoints A, B determining the eigenvalue density ρ(ϕ) in the
various SU(N) gauge theories studied in Section 6.4. The coefficients cA and cB are equal to the
ones in the corresponding U(N) theory, and we do not report them as they already appear in
Appendix 6.B.1.

F = 1, |λ| → ∞

A =

{
− ζmt

(ζ−2)t+2 m < 0

− ζmt
(ζ+2)t−2 m > 0,

B =

{
− ζmt

(ζ+2)t+2 m < 0
ζmt

2−(ζ−2)t m > 0.
(6.B.15)

F = 1, |λ| <∞

A =


− t(ζλm+2)
λ((ζ−2)t+2) m < mcr,1

− t(ζλm+2)
λ((ζ−2)t+2) mcr,1 < m < mcr,2

t(2−ζλm)
λ((ζ+2)t−2) m > mcr,2,

B =


t(ζλm−2)
λ((ζ+2)t+2) m < mcr,1

t(ζλm−2)
λ((ζ−2)t+2) mcr,1 < m < mcr,2

t(2+ζλm)
λ((ζ−2)t−2) m > mcr,2.

(6.B.16)

F = 1, |t| → ∞

A =


mζλ+2
(2−ζ)λ m < λ−1

2+λmζ
λ(2−ζ) λ−1 < m < −λ−1

2−mζλ
(2+ζ)λ m > −λ−1,

B =


−mζλ+2

(2+ζ)λ m < λ−1

−2−λmζ
λ(2−ζ) λ−1 < m < −λ−1

mζλ−2
(2−ζ)λ m > −λ−1.

(6.B.17)

F = 2, |λ| → ∞. Symmetric case

A =

{
2ζmt
t−1 m < 0

−2ζmt
t−1 m > 0.

B =

{
−2ζmt

t+1 m < 0
2ζmt
t+1 m > 0.

(6.B.18)
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F = 2, |λ| <∞. Symmetric case

A =



t( 1
λ
−ζm)
t−1 m>mcr,1

− t
λ+(ζ−1)λt mcr,2<m<mcr,1 and tλ<0

t( 1
λ
−ζm)
t−1 mcr,2<m<mcr,1 and tλ>0

− t
λ+(ζ−1)λt m<mcr,2,

B =



t(ζλm−1)
λ(t+1) m>mcr,1

t(ζλm−1)
λ(t+1) mcr,2<m<mcr,1 and tλ<0

− t
λ(1+t(1−ζ)) mcr,2<m<mcr,1 and tλ>0

− t
λ−ζλt+λt m<mcr,2.

(6.B.19)

145



Chapter 7

On SQED and SQCD in three
dimensions: phase transitions and
integrability

7.1 Introduction to the chapter

The study of supersymmetric gauge theories in curved spacetime has been pushed forward consid-
erably in the last decade due to the extension of the localization method of path integrals [56, 58].
By using localization, a much simpler integral representation of the observables of the gauge the-
ories is achieved. In turn, these seemingly simple representations, in general of the matrix model
type, contain a wealth of information. First, they are very useful for asymptotic analysis and,
in the large N ’t Hooft limit, have predicted phase transitions in the theory [198, 62, 102, 3].
Secondly, in many cases, especially for three dimensional theories, they are amenable to exact
analytical solutions, even for finite N [62, 63]. Such exact evaluation, or the procedure leading
to it, oftentimes may point towards a connection between the gauge theory and, for example,
integrable systems [265].

All these aspects of the localization integral formulas will be exposed in what follows, as we
will not only study finite and large N properties, together with large N phase transitions, but also
give an integrable systems view of the gauge theory, by showing a connection with the hyperbolic
Calogero–Moser system.

In what follows, we will consider N = 4 theory on the 3d sphere S3, with gauge group U(n)
and an even number Nf = 2N of massive chiral multiplets in the fundamental, N of them with
mass m and N with mass −m, arranged into N hypermultiplets. We also insert a Fayet–Iliopoulos
(FI) term. Localization [58, 96, 266] gives the integral representation of the partition function:

ZU(n)
N =

∫
Rn

dnx
∏

1≤j<k≤n

(
2 sinh

xj − xk
2

)2 n∏
j=1

eiηxj

2N [cosh(xj) + cosh(m)]N
, (7.1.1)

where we set the radius of S3 to 1/2π and η is the FI parameter. We will eventually be interested
in the limit in which the number of flavours Nf = 2N is large, while the number of colours n is
kept finite. Therefore, we consider Nf = 2N ≥ 2n, so that the theory is “good” according to the
Gaiotto–Witten classification [267], and the integral (7.1.1) is convergent.

The Abelian case n = 1 was studied in detail in [102]. In what follows, we will extend the
results of [102], including 1/N corrections and the analysis of Wilson loops, as well as carrying
over the study to non-Abelian theories, n > 1. In the simplest non-Abelian case n = 2 we will
also compute 1/N corrections to the large N limit.
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As a remark on notation, we stress that N and n have swapped meaning compared to the
previous chapters.

7.2 SQED

7.2.1 Abelian theory at finite N

The partition function of the Abelian theory reads:

ZU(1)
N = 2−N

∫ +∞

−∞
dxeiηx [cosh(x) + z]−N , (7.2.1)

where z ≡ cosh(m). The expression is significantly simpler than any non-Abelian case, since the
one-loop determinant of the vector multiplet is trivial for n = 1. The partition function (7.2.1)
can be computed exactly in terms of a hypergeometric function [102], as

ZU(1)
N =

√
2π

2N (1 + z)N− 1
2

Γ(N + iη)Γ(N − iη)

Γ(N)Γ
(
N + 1

2

) 2F1

(
1

2
− iη,

1

2
+ iη,N +

1

2
,
1− z
2

)
. (7.2.2)

Using an Euler transformation for the hypergeometric [268, Ch. 2], we can rewrite (7.2.2) when
η ≥ 1,m ≥ 1 as:

ZU(1)
N =

eiηm

2N (sinh(m))N
Γ(N − iη)Γ(iη)

Γ(N)
2F1

(
1−N,N, 1− iη,−(e2m − 1)−1

)
+ (iη ↔ −iη).

This latter form is illustrative: since the first coefficient, a = 1 − N , is a non-positive integer,
the hypergeometric series terminates and gives a polynomial of degree N − 1 in the variable
y ≡ −(e2m − 1)−1. Moreover, in our case the second coefficient b = N = 1 − a, thus the
hypergeometric function is actually an associated Legendre function of imaginary order [269, Eq.
(15.9.21)]:

2F1 (1−N,N, 1− iη, y) = Γ(1− iη)

(
y

1− y

) iη
2

P iη
N−1(1− 2y).

The partition function reads:

ZU(1)
N =

πe−
πη
2 Γ(N − iη)

2N i sinh(πη) sinh(m)NΓ(N)
P iη
N−1(coth(m)) + (iη ↔ −iη),

where we used the property Γ(1− iη)Γ(iη) = π/ sin(iπη).
We can represent the function (7.2.2) in yet another form, in terms of a conical function

[270, 102]:

ZU(1)
N =

√
2π

2N (sinh(m))N− 1
2

Γ(N + iη)Γ(N − iη)

Γ(N)
P

1
2
−N

− 1
2
+iη

(z),

where P
1
2
−N

− 1
2
+iη

(z) is an associated Legendre function of negative order and complex degree. This

latter form is the most suitable to study the asymptotics for large mass. Indeed, when m → ∞,
z = cosh(m)→∞ as well and we can use the approximation of [271]:

P
1
2
−N

− 1
2
+iη

(z) ≈
√

2π

z

sin (η log(2z) + θ1 + θ2)

sinh(πη)|Γ(1 + iη)Γ(N + iη)|

=

√
2

πz

sin (η log(2z) + θ1 + θ2)∏N−1
k=0

√
k2 + η2

,
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where θ1 = arg Γ(1 + iη) and θ2 = arg Γ(N − iη), and in the second line we used elementary
identities for the Γ function. Altogether, and approximating the hyperbolic functions for m→∞,
we have:

ZU(1)
N ≈

e−mNπ
∏N−1
k=1

√
k2 + η2

2N−1Γ(N) sinh(πη)
sin (ηm+ θ1 + θ2) . (7.2.3)

This approximation is in agreement with the large mass approximation found in [102, Eq. (8)]
applying a different Euler transformation to (7.2.2), which led to:

ZU(1)
N ≈ 2πe−mN

Γ(N) sinh(πη)
ℑ

(
eimη

N−1∏
k=1

(k − iη)

)
. (7.2.4)

See Figure 7.1 for the match of expressions (7.2.3) and (7.2.4).
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Figure 7.1. Approximation of emNZU(1)
N at large m = 10 as a function of λ = η/N , using (7.2.3) (red)

and (7.2.4) (black, dashed), for N = 2 (left) and N = 5 (right).

The exact evaluation (7.2.2) of the partition function, or its equivalent representation as a
conical function, relies on the hypothesis cosh(m) ≥ 1, thus on reality of the mass. However,

the dependence of ZU(1)
N on m should be holomorphic [96, 97]. For arbitrary complex masses the

integral (7.2.1) can be evaluated by residue theorem [101], and we checked for many values of N
that the result coincide with the prolongation of (7.2.2) to complex masses.

7.2.2 Integrability

The partition function satisfies the second-order differential equation [102]

d2ZN
dm2

+ 2N coth(m)
dZN
dm

+ (η2 +N2)ZN = 0, (7.2.5)

which becomes the Schrödinger equation with a hyperbolic Pöschl–Teller potential, for the function
Z(m) = sinh(m)NZN [102]. This quantum mechanical model has a discrete energy spectrum
[272], and Z(m) represents the wave function of a state with positive energy proportional to η2.
Furthermore, the fact that the potential appears with integer coefficient N implies that the wave
function propagates without reflection.

The appearance of the quantum mechanical interpretation with a solvable Pöschl–Teller poten-
tial immediately suggests a possible role of the hyperbolic Calogero–Moser model, the celebrated
integrable system, which can be seen as the many-body generalization of the quantum mechanical
problem above. The Hamiltonian of the A

N̂−1
hyperbolic Calogero–Moser model is [273, 274]

H =
∑

1≤j<k≤N̂

[
−ℏ2∂xj∂xk +

g(g − ℏ)µ2

4 sinh2 (µ (xj − xk) /2)

]
, (7.2.6)
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and there exist N̂ − 1 additional independent partial differential operators Hl of order l. The
simplest is the momentum operator

H1 = −iℏ
N̂∑
j=1

∂xj (7.2.7)

whereas the others are made of correspondingly higher derivatives (and lower order terms as
well). Here, N̂ = n + 1. Consider the two-particle case, the family is then the Hamiltonian and
the momentum operator, (7.2.6) and (7.2.7).

Using recent work on the construction, by a recursive method, of the joint eigenfunctions of
this integrable system [274], we show now that the Abelian theory above can be identified with
this two-particle A1 hyperbolic Calogero–Moser, where the coupling constant g in (7.2.6) will
be identified with the half-number of flavours N . In particular, this two-particle interpretation
follows from considering the function

Ψ2(g;x, y) ≡ eiy2(x1+x2)
∫ ∞

−∞
ei(y1−y2)wK2(g;x,w)dw,

with x, y ∈ R2and where the kernel is (g > 0)

K2(g;x,w) =

[
4 sinh2 (x1 − x2)

]g/2
2∏
j=1

[2 cosh (w − xj)]g
,

and is central in the recursion, taking the N̂ − 1 eigenfunction to the N̂ eigenfunction. The
connection with the function Z(m) defined above follows immediately from the identifications
g = N , x1 = m/2 = −x2 and (y1 − y2)/2 = η. It is shown in [274] that

H1Ψ2(x, y) = (y1 + y2)Ψ2(x, y),

HΨ2(x, y) = (y21 + y22)Ψ2(x, y).

A different type of connection also exists relating the non-Abelian theory, with N̂ = N , with
the free case of the integrable system, given by g = ℏ in (7.2.6). Using the customary adimensional
coupling λ̂ ≡ g/ℏ = 1, (7.2.6) is then the free N -body Hamiltonian. Thus, there is no identification
here between g and number of flavours and is a very different relationship compared to the two-
particle one. The integral representation given for ΨN (λ̂;x, y) [274] is then evaluated exactly for
λ̂ = 1 and the explicit expression [274, Thm 3.1.] is the one for the partition function of the
T [SU(N)] linear quiver [275, 101, 276].

The relationship between the integral expressions in [274] and the well-known Heckman–
Opdam hypergeometric functions [277], which are also relevant in [278, 279], is explained in
[274]. By factorizing ΨN in two pieces, one describing the centre of mass, it is shown in [274] that
the remaining piece is the AN−1 Heckman–Opdam hypergeometric function. In terms of two sets
of N variables (mj , ζj)

N
j=1, this hypergeometric satisfies the condition

∑
jmj = 0 =

∑
j ζj , with

ζj ∈ R and complex mj such that |ℑ(mj−mk)| < π, cf. [274, Thm 7.1]. On the gauge theory side,
those are exactly the constraints on the T [SU(N)] theory [101], the first being the SU(N) flavour
symmetry and the latter arising from the redundancy of the N number of ζj variables, defined
from the original N − 1 FI parameters as ζj = ηj − ηj+1. We underline that the partition function
of the T [SU(N)] quiver is evaluated for real masses and FI parameters but, by holomorphy, holds
on the stripes |ℑ(mj −mk)| < π, hence the identification is exact.
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7.2.3 Abelian theory at large N

Sending N → ∞ with λ ≡ η/N fixed, the leading contribution to the partition function (7.2.1)
comes from the saddle points of the action

S1(x) = −iλx+ log [cosh(x) + z] , (7.2.8)

which are given by the set S = {x±s + i2πk, k ∈ Z}, with

x±s = log

(
−λz ± i∆

i + λ

)
, (7.2.9)

where ∆ ≡
√
1− λ2 sinh(m)2 and we recall that z ≡ cosh(m). The curve λ sinh(m) = 1 determines

a critical line in parameter space, along which the free energy F = − 1
N logZ has a discontinuity

in its second derivative. In the sub-critical phase λ sinh(m) < 1, the leading contribution comes
from x+s and k = 0, while in the super-critical phase λ sinh(m) > 1 both x±s contribute, being
complex conjugate and S1(x

−
s ) = S1(x

+
s )

∗.
Close to the saddle points x̄ ∈ S , we can change variables x = x̄+ t/

√
N and expand

S1(x) = S1(x̄) +
t2S′′

1 (x̄)

2N
+
t3S′′′

1 (x̄)

6N
3
2

+
t4S

(iv)
1 (x̄)

24N2
+ . . .

We now plug this expansion into (7.2.1) and keep the Gaussian part in t exponentiated, while
expanding the rest of the exponential function. Elementary integration provides:

ZU(1) = 2−N
√

2π

N

∑
x̄∈S

e−NS1(x̄)√
S′′
1 (x̄)

[
1 +

1

24N

(
5S′′′

1 (x̄)

(S′′
1 (x̄))

3
− 3S

(iv)
1 (x̄)

(S′′
1 (x̄))

2

)
+O(N−2)

]
.

The relevant expressions for the derivatives of the action S1 are reported in Appendix 7.A.1.
When λ sinh(m) < 1, only x+s contributes, and we get:

ZU(1)
sub. = 2−N

√
2π

N

e−NS1(x
+
s )√

S′′
1 (x

+
s )

[
1 +

1

24N

(
5S′′′

1 (x+s )

(S′′
1 (x

+
s ))3

− 3S
(iv)
1 (x+s )

(S′′
1 (x

+
s ))2

)]
+O(N−2),

while in the supercritical phase λ sinh(m) > 1 both x±s must be taken into account, leading to:

ZU(1)
super. = 2ℜ

(
ZU(1)
sub.

)
+O(N−2).

Dropping sub-leading corrections, one can evaluate F in both phases:

FU(1)
sub. = S1(x

+
s ), FU(1)

super. = ℜ
(
S1(x

+
s )
)
, (7.2.10)

with discontinuous second derivative:

∂2FU(1)
sub.

∂λ2
− ∂2FU(1)

super.

∂λ2
=

z

(1 + λ2)∆
.

Therefore, not only the susceptibility ∂2F
∂λ2

is discontinuous, but it is divergent as (λ− λc)−γc , and
we identify the critical exponent γc = 1

2 . The free energy yields analogous discontinuity with
respect to the mass:

∂2FU(1)
sub.

∂m2
− ∂2FU(1)

super.

∂m2
=

z∆

sinh(m)2
− λz

∆
,

hence the critical exponent for the mass is again δc =
1
2 .

In Figure 7.2 we present the convergence of the exact solution (7.2.2) and the largeN expression
(7.2.10) as N is increased.
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FU(1) (λ)
Abelian free energy, m=1

Figure 7.2. Exact solution of FU(1) as a function of λ = η/N at m = 1, for N = 4, 7, 20 (in green, blue,
red, respectively) and large N expression (black, dashed).

7.2.4 Wilson loops

Irreducible complex representations of U(1) are labelled by ν ∈ Z, thus Wilson loops can be
written as Wν = Trνe

x = eνx (recall that the radius of the three-sphere is 1/2π), and their
vacuum expectation value is:

⟨Wν⟩ =
1

2NZU(1)
N

∫ +∞

−∞
dx

e(iη+ν)x

[cosh(x) + z]N

=
Γ(N + ν + iη)Γ(N − ν − iη)

Γ(N + iη)Γ (N − iη)
· 2
F1

(
1
2 − ν − iη, 12 + ν + iη,N + 1

2 ,
1−z
2

)
2F1

(
1
2 − iη, 12 + iη,N + 1

2 ,
1−z
2

) , (7.2.11)

where we stress that the insertion of a Wilson loop is analogous to the complexification of the FI
coupling. The integral representation (7.2.11) is well-defined as η → 0 only for representations of
size |ν| < N : this is reflected in the poles of the Γ function at negative integers.

The quantum mechanical interpretation carries over for the Wilson loop without FI term,
η = 0. In this case, wν ≡

[
sinh(m)NZN ⟨Wν⟩

]
η=0

satisfies the Schrödinger equation with Pöschl–
Teller potential: [

d2

dm2
− N(N − 1)

sinh(m)2

]
wν = ν2wν .

The latter equation describes the wave function of a bound state with energy proportional to ν2,
for integer |ν| < N , which is indeed the case at hand [272].

For η ̸= 0, however, the resulting potential acquires an imaginary part, seemingly spoiling
unitarity of the evolution operator and producing a dissipation-like term in the probability con-
servation.

At large N with the size ν of the representation fixed, the Wilson loop can be approximated by
the value of the integrand in (7.2.11) at the saddle points. Nevertheless, we can also consider the
case of large representations, in which ν scales with N , so that κ ≡ ν/N is kept fixed as N →∞.
Let us turn off the FI term for simplicity, η = 0, the saddle points of the action are given by:

x̄ = log

(
κ cosh(m)±

√
1 + κ2 sinh(m)2

1− κ

)
+ i2πk,

with k ∈ Z, that are real for every −1 < κ < 1.19 Therefore, the Wilson loops without FI term
do not experience phase transition. The limit with both η and ν scaling with N is discussed in
Appendix 7.A.2.

19As |ν| < N , the range of validity is −1 < κ < 1. x+
s is singular as κ → 1−, while x−

s is singular as κ → −1+.
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7.2.5 J3 correlators

We can also consider other families of operators, besides Wilson loops. Higgs branch operators
in 3d N = 4 can be analyzed through localization techniques [280], and therefore represent a
suitable choice for the present setting. In particular, we focus our attention on the gauge invariant,
quadratic operator

J3 =
1

N

[
Q̃+,jQ

j
+ − Q̃−,jQ

j
−

]
,

where (Q±,j , Q̃±,j), j = 1, . . . , N , are the hypermultiplets of mass ±m, formed by chiral/antichiral
pairs. The expectation value of this operator is

⟨J3⟩ =
1

2NZN
dZN
dm

,

and correlation functions of J3 are generated by higher derivatives.

The differential equation (7.2.5) satisfied by ZN can be translated into a recursion relation for
correlators of J3:

⟨J3J3⟩ = − coth(m)⟨J3⟩ −
1

4N

(
1 +

η2

N2

)
.

Taking the first derivative of (7.2.5) gives d3ZN
dm3 as a function of the first and second derivative of

ZN , but the second order term can be eliminated using (7.2.5). Hence, we immediately obtain:

⟨J3J3J3⟩ = ⟨J3⟩
[
2N cosh(m)2 + 1

2N sinh(m)2
− 1

4

(
1 +

η2

N2

)]
+

1

4

(
1 +

η2

N2

)
.

One can take further derivatives and systematically plug (7.2.5) in the resulting expression.
This allows to recursively compute k-point correlation functions of J3: leveraging (7.2.5), the final
result will be an expression only in terms of ⟨J3⟩, hyperbolic functions of m and polynomials in(
1 + η2/N2

)
.

7.3 SQCD

7.3.1 Non-Abelian theory: SU(2)

The simplest non-Abelian theory corresponds to the gauge group SU(2). The partition function
is again a single integral, but now the one-loop determinant of the vector multiplet contributes.
Also, SU(2) gauge theories do not admit a FI term, thus η = 0. The partition function is:

ZSU(2)
N =

∫ +∞

−∞
dx

sinh(x)2

2N [cosh(x) + z]N
.

Writing sinh(x) in terms of exponentials, we can see the SU(2) partition function as a combination
of expectation values of Wilson loops in the Abelian theory:

ZSU(2)
N =

[
ZU(1)
N

2
(⟨W2⟩ − 2 + ⟨W−2⟩)

]
η=0

,

with the expectation value ⟨Wr⟩ given in (7.2.11).

Due to the absence of FI term, the unique saddle point is xs = 0, and the phase structure at
large N is trivial.
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7.3.2 Non-Abelian theory: U(2)

We now apply the same procedure to the U(2) theory, i.e. two colours. Specialization of (7.1.1)
for n = 2 gives:

ZU(2)
N =

∫
R2

dx1dx2
eiη(x1+x2)

(
2 sinh x1−x2

2

)2
22N [(cosh(x1) + z) (cosh(x2) + z)]N

, (7.3.1)

where, as above, z ≡ cosh(m). Through the equivalent representation of (7.3.1) as a determinant,
one could write an exact solution

ZU(2)
N = 2! det

1≤j,k≤2
[Zjk],

with Zjk entries of a 2 × 2 matrix formally given by (7.2.2) up to a shift in the FI coupling
iη 7→ iη+ j+k− 2, j, k ∈ {1, 2}. This equals the determinant of a matrix whose entry (j, k) is the
expectation value, in the Abelian matrix model, of a Wilson loop in the irreducible representation
labelled by j + k − 2:

ZU(2)
N = 2

(
ZU(1)
N

)2 (
⟨W2⟩ − ⟨W1⟩2

)
.

To study (7.3.1) in the limit in which the number of flavours N is large, we notice that the
interaction between eigenvalues is sub-leading in 1/N , thus the saddle points of the U(2) theory
are those of the action S1(x1) + S1(x2):

S 2 =
{
(x±s + 2πk1, x

±
s + 2πk2), k1,2 ∈ Z

}
.

We proceed as in the Abelian case: we change variables x1,2 = x̄1,2+t1,2/
√
N and expand both the

action and the hyperbolic interaction around the saddle point (x̄1, x̄2). Expanding up to O(N−1)
and integrating we obtain, for the sub-critical phase:

ZU(2)
sub. =

π

22
(N−1)N2

e−2NS1(x
+
s )

(S′′
1 (x

+
s ))2

[
1 +

1

2N

(
1

S′′
1 (x

+
s )

+
17 (S′′′

1 (x+s ))
2

6(S′′
1 (x

+
s ))3

− 3S
(iv)
1 (x+s )

2(S′′
1 (x

+
s ))2

)]
,

while the expression in the super-critical phase λ sinh(m) > 1 is a sum of four pieces, and is
reported in Appendix 7.A.3.

Dropping 1/N corrections, the free energy is simply FU(2) = 2FU(1), in particular the phase
transition is second order with the same critical exponent γc =

1
2 . In Figure 7.3 we show how the

exact solution approaches the large N expression as N is increased.

We study the most general non-Abelian case in Appendix 7.B, and only report here the main
result. The free energy at large N of the U(n) theory is n times the free energy of the Abelian
theory:

FU(n) = nFU(1).

7.A Actions, partition functions and Wilson loops

This appendix collects lengthy expressions and technical details that have been omitted from the
main.
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FU(2) (λ)
Non-Abelian free energy, m=1

Figure 7.3. Exact solution from determinants of FU(2) as a function of λ = η/N atm = 1, forN = 4, 7, 100
(in green, blue, red, respectively) and large N expression (black, dashed).

7.A.1 Derivatives of the action S1

Here we present the full expressions for the derivatives of the action in the Abelian theory, eval-
uated at the saddle point x̄ = x+s . In what follows, we denote z ≡ cosh(m), ξ ≡ λ sinh(m) and
∆ ≡

√
1− λ2 sinh(m)2.

S1(x
+
s ) = log

(
∆z + iλ sinh(m)2 + 1

(i + λ) (λz − i∆)

)
− iλ log

(
−λz + i∆

i + λ

)
,

S′′
1 (x

+
s ) = λ2

[
1 +

z∆− 1

ξ2

]
,

S′′′
1 (x+s ) =

λ (1− iλ)

4 sinh(m)2 (λ sinh(m)2 − iz∆− i)2
[
2ξ − 6ξz∆+ 2

(
4ξ2 − 3

)
ξ cosh(2m) + 8iξ2 sinh(m)3

+2ξ cosh(3m)∆ + 7i sinh(m)− 8iξ2 sinh(2m)∆ + 2i sinh(2m)∆− i sinh(3m)
]
,

S
(iv)
1 (x+s ) = −6λ4 +

23λ2

2 sinh2m
−

∆
(
48λ2 sinh(m)2 − 23

)
z + 2

(
7λ2 sinh(m)2 − 4

)
cosh(2m) + ∆cosh(3m)− 16

4 sinh4m
.

The values of the derivatives of S1 when evaluated at x−s are immediately obtained through the
relations:

S1(x
−
s ) = (S1(x

+
s ))

∗, S′′
1 (x

−
s ) = (S′′

1 (x
+
s ))

∗, S′′′
1 (x−s ) = −(S′′′

1 (x+s ))
∗, S

(iv)
1 (x−s ) = (S

(iv)
1 (x+s ))

∗

7.A.2 Multiple scaling limit of Wilson loops

The large N limit of (7.2.11) whit λ ≡ η/N and κ ≡ ν/N fixed, with 0 ≤ κ < 1, is obtained from
the contributions of the saddle points:

x̄ = log

(
−
(
λz + L sin θ

2

)
+ i
(
κz + L cos θ2

)
λ+ i(1− κ)

)
+ i2πk, k ∈ Z,

where we defined L and θ as:

L ≡ L(λ, κ) =
√
1 + (λ2 + κ2)2 sinh(m)4 − 2(λ2 − κ2) sinh(m)2,

sin θ =
2λκ sinh(m)2

L
, cos θ =

1− (λ2 − κ2) sinh(m)2

L
.

Those saddle points are in general complex, and there is no critical surface in parameter space
signalling a phase transition. The sub-critical phase of the case ν = 0 now corresponds to the
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system living in the surface in the (λ, κ,m) space determined by the equation:(
λz + L sin

θ

2

)2

+

(
κz + L cos

θ

2

)2

= λ2 + (1− κ)2,

while the rest of the 3d parameter space is qualitatively analogous to the super-critical phase of
the partition function.

This is the expected behaviour, as we now explain. Indeed, as noticed above, decorating the
theory with a Wilson loop has the net effect of complexifying the FI parameter. Therefore, on any
fixed-m slice no interface is expected to separate different phases, but instead a phase transition
would correspond to jump on a higher-codimensional locus in parameter space.

7.A.3 Partition function in the super-critical phase for n = 2

The non-Abelian theory with n = 2 has four relevant saddle points, obtained from the com-
binations (x̄1, x̄2) = (x±s , x

±
s ). In the sub-critical phase, only (x+s , x

+
s ) contributes, but in the

super-critical phase all four saddle points are to be taken into account, and the partition function
is therefore the sum of four pieces:

ZU(2)
super. = Z(x+s , x+s ) + Z(x+s , x−s ) + Z(x−s , x+s ) + Z(x−s , x−s ).

Taking advantage of the relations of Appendix 7.A.1, one immediately finds:

Z(x+s , x+s ) + Z(x−s , x−s ) = Z
U(2)
sub. + c.c.,

at order O(N−1). The sum of the other two contributions is:

Z(x+s , x−s ) + Z(x−s , x+s ) =
πe−2NℜS1(x

+
s )

22(N−1)N2

{
2ℜS′′

1 (x
+
s )

|S′′
1 (x

+
s )|3

+
1

N

(ℜS′′
1 (x

+
s ))

2

|S′′
1 (x

+
s )|5

−
ℜ
(
(S′′

1 (x
+
s ))

2
(
S
(iv)
1 (x+s )

)∗ (
5S′′

1 (x
+
s ) + (S′′

1 (x
+
s ))

∗))
4|S′′

1 (x
+
s )|7

+

+
5ℜ
(
(S′′

1 (x
+
s ))

3 (
(S′′′

1 (x+s ))
∗)2 (

7S′′
1 (x

+
s ) + (S′′

1 (x
+
s ))

∗))− 6|S′′
1 (x

+
s )|4|S′′′

1 (x+s )|2

12|S′′
1 (x

+
s )|9

 .

7.B Non-Abelian theory: the general case

The same procedure applied in Section 7.3.2 for the case of U(2) holds in principle for any U(n)
theory, i.e. arbitrary number of colours, as long as n is kept fixed in the large N limit. At finite
N , one has the determinantal representation:

ZU(n)
N = N ! det

1≤j,k≤N
[Zjk] = N !

(
ZU(1)

)n
det

1≤j,k≤N
⟨Wj+k−2⟩.

Here we compute the large N limit of the partition function (7.1.1) of the U(n) theory, and the
1/N corrections might be obtained in the same fashion as for the U(2) case. The key observation
is that, for every n, the interaction among eigenvalues is sub-leading as N → ∞, and therefore
the set of saddle points of the U(n) theory is given by n copies of the set S of the Abelian theory.
Another simplification arises from the observation that, at leading order in 1/N , the determinant
is linearized: ∏

1≤j<k≤n

(
2 sinh

xj − xk
2

)2

=
∏

1≤j<k≤n

(tj − tk)2

N
+O(N−2).
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Consequently, at large N the partition function ZU(n)
N converges to:

ZU(n)
sub. =

e−nNS1(x
+
s )

2nNN
n2

2

ZGUE(S
′′
1 (x

+
s )) =

(2π)
n
2 e−nNS1(x

+
s )

2nNN
n2

2 (S′′
1 (x

+
s ))

n2

2

G(n+ 2),

when λ sinh(m) < 1, where ZGUE(g) denotes the partition function of a Gaussian ensemble with
coefficient g in the exponent, and G(n + 2) =

∏n
k=0(k!) is the Barnes G-function. In the super-

critical phase, ZU(n)
super. is a sum over all possible combinations (x̄1, . . . , x̄n) = (x±s , . . . , x

±
s ). It is

formally given by:

ZU(n)
super. =

(2π)
n
2

2nNN
n2

2

∑
(x̄1,...,x̄n)∈S n

n∏
j=1

e−NS1(x̄j)

(S′′
1 (x̄j))

n− 1
2

Pn
(
S′′
1 (x̄1), . . . , S

′′
1 (x̄n)

)
,

with Pn(s1, . . . , sn) a symmetric polynomial of degree n(n − 1)/2 in n variables, subject to the
additional constraint:

Pn(s, . . . , s) = G(n+ 2)sn(n−1)/2.

For example, in the U(3) theory it is:

P3(s1, s2, s3) = 3
(
s21s2 + s21s3 + s1s

2
2 + s1s

2
3 + s22s3 + s2s

2
3 − 2s1s2s3

)
,

and for U(4) it is:

P4(s1, s2, s3, s4) = 9
{
5s2s3s4

[
s2(s3 − s4)2 + s22(s3 + s4) + s3s4(s3 + s4)

]
+ s31

[
5s22(s3 + s4) + 5s3s4(s3 + s4) + s2(5s

2
3 − 18s3s4 + 5s24)

]
+ s21

[
5s3(s3 − s4)2s4 + 5s32(s3 + s4)− 2s22(5s

2
3 − 2s3s4 + 5s24) + s2(s3 + s4)(5s

2
3 − s3s4 + 5s24)

]
+ s1

[
5s23s

2
4(s3 + s4) + s32(5s

2
3 − 18s3s4 + 5s24) + s22(s3 + s4)(5s

2
3 − s3s4 + 5s24)

−2s2s3s4(9s23 − 2s3s4 + 9s24)
]}
.

The expression may be further simplified, using the fact that every combination (x̄1, . . . , x̄n) with
a fixed number l of entries equal to x+s , and the remaining n − l equal to x−s , give the same
contribution, independently on the position the x±s appear. We obtain:

ZU(n)
super. =

(2π)
n
2

2nNN
n2

2

n∑
l=0

e−NlS1(x
+
s )−N(n−l)S1(x

−
s )

(S′′
1 (x

+
s ))(

n− 1
2)l(S′′

1 (x
−
s ))(

n− 1
2)(n−l)

(
n
l

)
Pn(s, . . . , s︸ ︷︷ ︸

l

, s∗, . . . , s∗︸ ︷︷ ︸
n−l

),

where for shortness we denoted s ≡ S′′
1 (x

+
s ) and used S′′

1 (x
−
s ) = S′′

1 (x
+
s )

∗ ≡ s∗ from Appendix
7.A.1.

To find the free energy, we reason as in [102] for the Abelian case. We write:

ZU(n)
super. ∝

n∑
l=0

exp
[
−NlS1(x+s )−N(n− l)S1(x−s ) + . . .

]
= exp

[
−nNℜ

(
S1(x

+
s )
)
+ log

(
1 +

n∑
l=0

cos
(
lNℑ

(
S1(x

+
s )
)))

+ . . .

]
,

where the dots contain sub-leading terms at large N , and arrive at a closed formula for the free
energy in the arbitrary U(n) case:

FU(n) = nFU(1).

This simple relation is indeed the expected one at leading order in N : on the Coulomb branch, the
difference between a U(1)n theory and a U(n) theory is encoded only in the one-loop determinant
of the gauge W-bosons, which is sub-leading at large N with fixed n.
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7.C General R-charges

The partition function of the U(1) N = 2 theory with N chiral multiplets of mass m and N chiral
multiplets of mass −m with arbitrary R-charge q, and coupled to a FI background, is [96, 266]:

ZU(1)
N,q =

∫ ∞

−∞
dx exp

{
iηx+N

[
ℓ

(
1− q + i(x+m)

2π

)
+ ℓ

(
1− q − i(x+m)

2π

)]
+N

[
ℓ

(
1− q + i(x−m)

2π

)
+ ℓ

(
1− q − i(x−m)

2π

)]}
,

where we recall that the theory is put on a three-sphere of radius 1/2π. Here, eℓ(z) is the double
sine function, defined as [96]:

ℓ(u) = −u log
(
1− ei2πu

)
+

iπ

2
u2 +

i

2π
Li2
(
ei2πu

)
− iπ

12
, u ∈ C .

This function has logarithmic singularities when q ∈ Z, or, more in general, when ℑ (m̃) + 2π(1−
q) ∈ 2π Z, where m̃ denotes a complexified mass parameter. Nevertheless, the partition function
does not develop singularities, and in fact is holomorphic in m̃, as the divergences cancel. This
can be seen, for instance, from the identity

ℓ

(
1− q − i(x−m)

2π

)
reg.
= −ℓ

(
1− q + i(x− m̃)

2π

)
, m̃ = m− i4π(1− q),

where the equality is exact for the infinite product representation of the one-loop determinants
and extends to the function ℓ through regularization by ζ-function.

The derivative of the double sine function satisfies the simple property:

dℓ

du
= −πu cot(πu).

Therefore, in the large N limit, we arrive at the saddle point equation:

(x+m)
2π sin (2π(1− q))− i(1− q) sinh(x+m)

cosh(x+m)− cos (2π(1− q))
+

(x−m)
2π sin (2π(1− q))− i(1− q) sinh(x−m)

cosh(x−m)− cos (2π(1− q))
= λ.

(7.C.1)
It is a simple exercise to see that, setting q = 1

2 , one recovers the saddle points of the N = 4
theory. When q is half-integer, q ∈ 1

2Z, the trigonometric functions take simple values and we can
solve the saddle point equation exactly, obtaining by simple modification of the results in [102].

• If q = 1, the action is pure imaginary, already at finite N , and admits no saddle point.

• If q ∈ 1
2 + Z, the saddle point equation reduces to:

sinh(x)

cosh(x) + z
=

iλ

2(1− q)
,

and the large N behaviour is identical to the case q = 1
2 upon scaling λ 7→ λ

2(1−q) .

• If q ∈ Z \ {1}, the saddle point equation simplifies into:

sinh(x)

cosh(x)− z
=

iλ

2(1− q)
,

and the phase structure at large N is identical to the case q = 1
2 , up to scaling λ 7→ λ

2(1−q)
and replacing z 7→ −z everywhere. The critical line is λ sinh(m) = 2|1− q|.
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We find out that, for q = 1, the action admits no saddle point. Here, we study what happens
close to that point, for real q = 1−ε. We assume ε small and approximate the expression at O(ε).
From (7.C.1) we get:

sinh(x)

cosh(x)− cosh(m)
+ i

x(cosh(x) cosh(m)− 1) +m sinh(x) sinh(m)

(cosh(x)− cosh(m))2
=

iλ

2ε
.

The equation is still transcendental, but we can find an approximate solution in the large mass
limit:

sinh(x) ≈ λem

2mε
=⇒ x ≈ log

[
λem

2mε

(
1 +

√
1 +

4m2ε2e−2m

λ2

)]
≈ m+ log

λ

mε
. (7.C.2)

In Figure 7.4 we compare this expression at large m with a numerical solution to the saddle point
equation.
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Figure 7.4. Comparison of the numerical solution of the saddle point equation (7.C.1) (red dots) and
expression (7.C.2) (black, dashed line), for q = 0.99 and m = 25.

7.C.1 Comments on squashed geometry

If the supersymmetric N = 2 theory is put on a squashed three-sphere, the partition function is
obtained replacing the double sine functions by [281]

ℓ

(
1− q + iσ

2π

)
ℓ

(
1− q − iσ

2π

)
7→ ℓb

(
1

2

(
b+

1

b

)
(1− q) + iσ

2π

)
ℓb

(
1

2

(
b+

1

b

)
(1− q)− iσ

2π

)
,

for σ = x±m, where b =
√
r1/r2 is the squashing parameter, and the average radius is

√
r1r2 =

1/2π. We now take advantage of the remarkable property of the double sine function:

exp

{
ℓb

(
b

2
+

iσ

2π

)
ℓb

(
b

2
− iσ

2π

)}
=

1

2 cosh
(
bσ
2

) ,
which holds for every real non-negative b, and for the round case b = 1 provides the partition
function (7.2.1). Therefore, for hypermultiplets with R-charge 0 < q < 1, we may tune the
geometry of the manifold so that (b+ b−1)(1− q) = b, that is we may squash the sphere as

b =

√
1− q
q

,
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and the partition function reads:

ZU(1)
N,squash =

∫ ∞

−∞
dx

eiηx

2N [cosh(bx) + cosh(bm)]N
.

Notice that this procedure would also affect the one-loop determinant of the vector multiplet,
but this is irrelevant in the Abelian theory, being such determinant trivial. Also, we see that the
symmetry q ↔ 1 − q at the matrix model level is translated into a symmetry b ↔ b−1 in the
geometry. We therefore obtain a simple relation between the partition function of the N = 2
theory with arbitrary R-charge 0 < q < 1 posed on a suitably squashed sphere and the N = 4
theory with R-charge q = 1

2 on the round S3:

ZU(1)
N,squashed(m, η, q) =

1

b
ZU(1)
N,round

(
bm,

η

b
, q =

1

2

)
, b =

√
1− q
q

.

As a byproduct, this equivalence holds for the U(2) theory in the large N approximation. In fact,
the squashing would modify:(

sinh
x1 − x2

2

)2

7→
(
sinh

b(x1 − x2)
2

)(
sinh

x1 − x2
2b

)
,

and, as we have seen, the determinant is linearized at first order in 1/N , producing cancellation
of the b-dependence.

159



Chapter 8

Exact equivalences and phase
transitions in unitary matrix models

8.1 Introduction to the chapter

Randommatrix theory [39] has developed enormously, especially in the last two decades, attracting
attention from researchers in a multitude of different fields [40, 41, 282, 283]. Indeed, one of its most
exciting aspects is the inherent interdisciplinary nature of random matrices. Among the myriad
of connections with other mathematical and physical areas, we have the important relationship
with the study of random partitions, which in turn is deeply linked with problems in statistical
mechanics.

In this chapter, we will see that random matrix ensembles which are related in different ways,
either via direct mapping or emerging as two random matrix descriptions of the same object in the
study of random partitions, have the same analytical evaluations for fixed values of the parameters
yet, in some cases, the consideration of the large N limit leads to a different phase structure.

Originally, we started by noting that the analysis of probabilities given by a finite ensemble
with weight of the Meixner type, for example as in [284], could equally be studied with a random
unitary matrix model, with a distribution of eigenvalues supported on the unit circle. Indeed,
we could check, as we shall see, that the corresponding unitary matrix model gives the same
results. Furthermore, the equivalence holds for the calculation of correlations near the edge
of the eigenvalue density, in a double-scaling limit. However, when studying the more general
ensemble with Meixner weight and a hard wall [285] and the corresponding generalized unitary
matrix model, while there is again an equivalence for fixed values of the parameter, a different
asymptotic behaviour appears, with phase transitions of second order instead of third order. This
discrepancy is a consequence of the complexification of the potential of the more general unitary
random matrix ensembles, studied in Section 8.3.4 below.

The technical reason behind the apparent paradox lies in the choice of integration contour, as
detailed at the end of Section 8.3.6. From this perspective, the results of this chapter could be
phrased as the study of phase transitions when the potential is complex but we insist on keeping
the eigenvalues on the unit circle. Contour deformations will be systematically analyzed in the
second part of the next chapter.

We further elaborate on this whole notion by studying another equivalence, with continuous
random matrix ensembles on the real line, via direct mapping.
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Exact equivalences and phase transitions in unitary matrix models

8.2 Random partitions and unitary matrix models

Let λ = (λ1, λ2, . . . ), λ1 ≥ λ2 ≥ . . . , be a partition, and sλ(t) the Schur polynomial associated to
it [90], evaluated at t = (t1, t2, . . . ). The Schur measure is the probability measure on the space
of partitions defined as [286]

Prob(t,t′) (λ) =
1

ZSchur(t, t′)
sλ(t)sλ(t

′), (8.2.1)

with normalization constant the inverse of the partition function

ZSchur(t, t
′) =

∑
λ

sλ(t)sλ(t
′) =

∏
j,k

(
1− tit′j

)−1
,

where last equality is the Cauchy identity. Here we are denoting Prob(t,t′) the probability taken
with respect to a given choice of parameters (t, t′). Define the set

S(λ) :=

{
λj − j +

1

2
, j = 1, 2, . . .

}
⊂ Z+

1

2
,

which encodes the shape of the partition λ. For a given subset X ⊂ Z+ 1
2 , the probability

Prob(t,t′) (X) =
1

ZSchur(t, t′)

∑
λ|S(λ)⊃X

sλ(t)sλ(t
′)

that, picking a random partition λ according to the Schur measure we get X ⊂ S(λ), has a
determinantal representation. Such representation is the determinant of a known correlation
kernel admitting an integral representation [286] (see also [287, Sec. 4]).

In the present work, we are interested in a special case of Schur measure, which is a particular
sub-case of what is known in the literature as z-measure [288, 289]. For any given n ∈ N the
z-measure is a probability measure on the partitions {λ} of n (thus with |λ| = n) depending
on two parameters z and z′. A probability measure over all partitions {λ} (with |λ| arbitrary)
is obtained passing to the grand canonical ensemble, summing over n. In defining the grand
canonical ensemble, every n ∈ N is weighted with a negative binomial distribution [288].

We choose the parameters in (8.2.1) to be

t = (t, · · · , t︸ ︷︷ ︸
N1 times

, 0, . . . ), t′ = (t, · · · , t︸ ︷︷ ︸
N2 times

, 0, . . . ), 0 < t < 1, (8.2.2)

so that the Schur measure (8.2.1) becomes a particular instance of z-measure with z = N1, z
′ =

N2 ∈ N, and the parameter of the binomial distribution being t2. This choice of z, z′ is the
degenerate case, i.e., non-negative measure, and positive definite when restricted to partitions of
length at most N1. The probabilities

Probt (X) =
(
1− t2

)N1N2
∑

λ|S(λ)⊃X

sλ(t)sλ(t
′),

where by Probt we understand the probability taken with specialization of parameters (8.2.2),
admit a determinantal representation in terms of the so-called hypergeometric kernel [288]. The
properties of the hypergeometric function were used in [288] to show that, when z = N1, z

′ =
N2 are integers, the hypergeometric kernel becomes proportional to the Meixner kernel. For a
collection of results about the z-measure, see the survey [290], and in particular [290, Prop. 6.1]
for the connection with the Meixner ensemble.
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8.2. Random partitions and unitary matrix models

In the present work we are interested in the quantities

ZH(t) =
∑
λ

sλ(t)sλ(t
′) =

∑
λ

(dimλ)2 t2|λ| =
(
1− t2

)−N1N2 (8.2.3)

and (the sum is over all λ with λ1 ≤ K)

ZE(t) =
∑

λ|λ1≤K

sλ(t)sλ(t
′) =

∑
λ|λ1≤K

(dimλ)2 t2|λ|, (8.2.4)

with choice of parameter understood to be as in (8.2.2), |λ| =
∑

j λj is the size of the partition
λ, corresponding to the total number of boxes in its diagram, and dimλ is the dimension of
the irreducible representation of the symmetric group S|λ| labelled by λ. The meaning of the
subscripts H and E will be clear in a moment. Notice that, due to the property sλ(t) = 0
if length(λ) > length(t), the sums are effectively truncated to partitions of length at most N1.
Furthermore, the ratio

ZE(t)
ZH(t)

= Probt (λ1 ≤ K)

is the probability that, picking a random partition λ with probability distribution as described
above, the length of its rows is at most K.

The z-measure induces a determinantal point process on Z+ 1
2 , thus the correlation functions

have determinantal form
Probt (X ⊂ S(λ)) = det (K)X ,

for X ⊂ Z+ 1
2 , where K is the operator whose kernel, the function K(x, y) on

(
Z+ 1

2

)
×
(
Z+ 1

2

)
,

is the hypergeometric kernel. Therefore we have a Fredholm determinant representation of ZE(t):

ZE(t) = (1− t2)−N1N2Probt (λ1 ≤ K)

= (1− t2)−N1N2Probt

({
x ∈ Z+

1

2
| x ≤ K − 1

2

}
∩S(λ) = ∅

)
= (1− t2)−N1N2 det (1−K)Z≥K+ 1

2
,

where 1 in the last line is the identity operator. Using the hook-length formula

dimλ =
∏
j<k

λj − λk − j + k

k − j

for the dimension in (8.2.4) and changing variables hj = λj − j +N , we arrive at the expression

ZE(t) =
t−N1(N1−1) (Γ(N2 −N1 + 1))N1

N1!G(N1 + 1)G(N2 + 1)
(8.2.5)

×
N1+K−1∑
h1=0

· · ·
N1+K−1∑
hN1

=0

∏
1≤j<k≤N1

(hj − hk)2
N1∏
j=1

(
N2 −N1 + hj

hj

)
t2hj ,

where we also used the symmetry in the hj variables to remove the restriction to the Weyl chamber
λ1 ≥ λ2 ≥ · · · ≥ λN1 . G(·) is the Barnes G-function [291], which, for integer values of the argument
is G(n) =

∏n−2
j=0 j!. The expression (8.2.5) is a Meixner ensemble with summation restricted to

0 ≤ hj ≤ N1 + K − 1 and coincides with the partition function of the dimer model studied in
[284, 285],20 and has also appeared in [293]. In the Coulomb gas picture, the restriction in the

20The dimer model is associated with the random tiling of an Aztec diamond with a square [284] or a rectangle
[285] cut off. See e.g. [292] for an overview on dimers, random tilings and random matrices.
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Exact equivalences and phase transitions in unitary matrix models

summation range corresponds to a hard wall for the charges (i.e. an infinite barrier) placed at
N1 +K − 1. We assumed N1 ≤ N2, but a completely analogous expression can be easily obtained
in the converse case.

Let us introduce the generating functions of, respectively, the complete homogeneous polyno-
mials {hk} and the elementary symmetric polynomials {ek}, specialized at t:

H(z; t) =
∞∑
k=0

hk(t)z
k =

∏
k

(1− tkz)−1 ,

E(z; t) =
∞∑
k=0

ek(t)z
k =

∏
k

(1 + tkz) .

The partition functions (8.2.3)-(8.2.4) admit a determinantal representation in terms of determi-
nants of K ×K Toeplitz matrices, with symbol, respectively

σH(z, t) = H(z; t)H(z−1; t′) = (1− tz)−N1
(
1− tz−1

)−N2 ,

σE(z, t) = E(z; t)E(z−1; t′) = (1 + tz)N1
(
1 + tz−1

)N2 .

See for example [294, 295] for the explicit derivation (see also [283] for an extensive account of
Toeplitz determinants and their properties). In turn, using Andréief’s identity [296, 297] we have
that these Toeplitz determinants admit a representation as unitary matrix integrals

ZH(t) =
1

K!

∫
[−π,π]K

dKφ

(2π)K

∏
1≤j<k≤K

|eiφj − eiφk |
K∏
j=1

(
1− teiφj

)−N1
(
1− te−iφj

)−N2
, (8.2.6)

ZE(t) =
1

K!

∫
[−π,π]K

dKφ

(2π)K

∏
1≤j<k≤K

|eiφj − eiφk |
K∏
j=1

(
1 + teiφj

)N1
(
1 + te−iφj

)N2
. (8.2.7)

We will refer to (8.2.6) and (8.2.7) as the H-model and the E-model, respectively. There-
fore we have two equivalent matrix model descriptions of the quantity ZE(t), or, equivalently,
of the probability Probt(λ1 ≤ K): either as a discrete matrix model on the bounded subset
{0, 1, . . . , N1 +K − 1} ⊂ Z, or as a continuous matrix model on the unit circle.

We stress that the equivalence between these two representations does not rely on a direct
map, but rather on a two-step procedure relating the two matrix model formulations of ZE(t) to
the same Toeplitz determinant. As a consequence, the quantity (N1−N2), which has the meaning
of a deformation parameter, plays different roles in the two pictures. This will be reflected in the
mismatch of the phase structure when N1, N2 →∞ with N1 −N2 ̸= 0.

8.3 Random matrix ensembles on the unit circle

In the present section, we consider the asymptotic behaviour of the unitary matrix models defined
in (8.2.6) and (8.2.7), when the rank K is large and N1, N2 scale with K. Before that, we comment
on the already known aspects of the exact solvability of some of the models above.

8.3.1 Exact evaluation

Following [298], the authors of [285] gave an explicit evaluation of the discrete matrix model (8.2.5)
at the limit value t = 1. The exact formula of [285, Prop. 3.1] was obtained thanks to the fact
that at the limit value t = 1 the Meixner ensemble with a hard wall becomes a Hahn ensemble.
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8.3. Random matrix ensembles on the unit circle

In [285] s r q α R Q

In [298] N N + t M −N = [γN ]−N q ω + 1 γ − 1

Here N1 N1 +K N2 −N1 t2 1 + γ−1 2v/(1− v)

Table 8.1: Dictionary between the notation in [285], in [298] and the present work.

On the unitary matrix model side, at t = 1 (or more generally |t| = 1) the symbol σE develops
a Fisher-Hartwig singularity, and it can be evaluated exactly thanks to a formula by Böttcher and
Silbermann [299] (see also [300] for another proof):

ZE(t) =
G(N1 + 1)G(N2 + 1)G(N1 +N2 +K + 1)

G(N1 +N2 + 1)G(N1 +K + 1)G(N2 +K + 1)
G(K + 1). (8.3.1)

This provides an exact check of the equivalence. We will provide a third independent derivation of
this result later in Section 8.4.1. For ease of the reader, we report in table 8.1 the correspondence
between the notation of [284, 285], that in [298] and ours.

Note that, if we choose the symmetric model N1 = N2 ≡ N and modify the symbol by inserting
a monomial factor zs, with s ∈ Z, the exact evaluation of the corresponding matrix model at t = 1
is again given by the formula of [299, 300], thanks to the simple identity

zsσE(z, t = 1) = zs (1 + z)β
(
1 + z−1

)β
= (1 + z)β+s

(
1 + z−1

)β−s
, (8.3.2)

when z = eiφ, −π ≤ φ ≤ π. The effect of the monomial insertion is to shift the Fourier coefficients
of the symbol σE(z; 1) by s: the kth Fourier coefficient of the symbol zsσE(z; 1) is the (k + s)th

coefficient of σE(z; 1). Therefore, we can evaluate exactly the partition function of the unitary
ensemble with weight (8.3.2), and it is again given by formula (8.3.1), with N1 = N+s,N2 = N−s.

It is worth mentioning that there are a wealth of analytical results on Toeplitz banded matrices,
whose determinant is given by the E-models above [301].

We just quote here that for (8.2.7) with N1 = N2 = 1 we have the determinant of a symmetric
tridiagonal Toeplitz matrix, known to be equal to a Chebyshev polynomial of the second type:

ZE(t)|N1=N2=1 = tKUK

(
1 + t2

2t

)
=

K∑
n=0

t2n.

8.3.2 Unitary matrix models

Comparing the definition (8.2.4) of the E-model with (8.2.3), one sees that its K →∞ limit, with
fixed N1, N2 coincides with the H-model:

lim
K→∞

ZE(t) = ZH(t).

In the scaling limit with N1, N2 growing together with K, it was found in [284, 285] that the
presence of hard walls in the discrete matrix model (8.2.5) triggers a third order phase transition.
For the case N1 = N2, we will prove the phase transition from the point of view of the unitary
matrix model. This is done in Section 8.3.3 and reproduces an early result of Baik [302]. For the
general case N1 ̸= N2, however, the potential of the unitary matrix model is complex-valued, and
the large K asymptotic becomes more involved. This topic is analyzed in Section 8.3.4.

As the asymptotic behaviour at large K does not depend on N1, N2 being integers, we consider
the matrix models arising from Toeplitz determinants with more general symbols

σH(z; t) = (1− tz)−β1
(
1− tz−1

)−β2 ,
σE(z; t) = (1 + tz)β1

(
1 + tz−1

)β2 ,
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Exact equivalences and phase transitions in unitary matrix models

and, without loss of generality, we assume 0 ≤ β1 ≤ β2. We also introduce the notation

β1 = β(1− v), β2 = β(1 + v), (8.3.3)

where β = (β1 + β2)/2 is the average power and 0 ≤ v ≤ 1 measures the asymmetry in z ↔ z−1.
We then take the K →∞ limit with21

γ :=
β

K
fixed. (8.3.4)

As customary, when studying the large rank behaviour of matrix models, we introduce the density
of eigenvalues

ρ(φ) =
1

K

K∑
j=1

δ(φ− φj), (8.3.5)

which at large K becomes a continuous function of φ, with compact support and normalized so
that ∫ π

−π
dφρ(φ) = 1.

In each of the cases considered below, we will find the eigenvalue density ρ and use it to evaluate
the free energy in this limit, defined as:

F := − 1

K2
logZ.

Our calculations are based on standard saddle point techniques, and we omit them from the
main text and refer to the Appendices 8.A and 8.B. We will show that all the models undergo
a phase transition when a gap opens in the support of the eigenvalue density, as schematized in
Figure 8.1.

Figure 8.1. Increasing the coupling γ, the support of the eigenvalue density ρ develops a gap, signalling
a phase transition.

8.3.3 Phase transition: symmetric case

We first focus on the symmetric case β1 = β2 ≡ β, while the analysis of the more general case
β1 ̸= β2 is undertaken later in Section 8.3.4.

21This is the inverse of the usual ’t Hooft coupling as defined in gauge theories, but here we adopt to the notation
of [183, 302]. Consistently, “weak” and “strong” coupling will refer to the values of γ.
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8.3. Random matrix ensembles on the unit circle

Hence, the matrix models we analyze are:

Zsym.
u,H =

1

K!

∫
[−π,π]K

dKφ

(2π)K

∏
1≤j<k≤K

∣∣eiφj − eiφk
∣∣2 K∏
j=1

[
(1− teiφj )(1− te−iφj )

]−β
, (8.3.6)

Zsym.
u,E =

1

K!

∫
[−π,π]K

dKφ

(2π)K

∏
1≤j<k≤K

∣∣eiφj − eiφk
∣∣2 K∏
j=1

[
(1 + teiφj )(1 + te−iφj )

]β
, (8.3.7)

and we recall that Zsym.
u,H admits an exact solution through the Cauchy identity, whilst Zsym.

u,E does

not. Nevertheless we have limK→∞Zsym.
u,E = Zsym.

u,H .
In [302], Baik proved that the first system, described by the partition function (8.3.6), and

which we will call for simplicity the H-model, undergoes a phase transition at large K. We prove
that the second system (8.3.7), which we call E-model, undergoes the same phase transition. We
prove it solving a singular integral equation in Appendix 8.A, but in fact the result may also be
directly obtained from [302], with minor changes.

The H-model

Consider the matrix integral in (8.3.6), and take the limit K → ∞ with β scaling as in (8.3.4).
The leading contribution to Zsym.

u,H comes from the solution to the system of saddle point equations
that, with the help of the eigenvalue density ρH as defined in (8.3.5), can be rewritten as a single
singular integral equation:

− iγt

[
eiφ

1− teiφ
− e−iφ

1− te−iφ

]
= P

∫
dϑρH(ϑ) cot

(
φ− ϑ
2

)
, (8.3.8)

where the symbol P
∫

means principal value of the integral, and ρH is the eigenvalue density
for the specific model considered presently. The details of the solution to (8.3.8) are spelled in
Appendices 8.A.1 and 8.A.2. Two phases exists, separated by the critical curve [302]

γ =
1 + t

2t
=: γc,H(t).

The eigenvalue density, plotted in Figure 8.2 for various t and γ, reads:

ρH(φ) =


1
2π

[
1 + 2γt

(
cosφ−t

(1−t)2+4t(sin φ
2 )

2

)]
, γ ≤ γc,H(t),

2(γ−1)t
π

(
cos φ

2

(1−t)2+4t(sin φ
2 )

2

)√(
sin ϕ0

2

)2
−
(
sin φ

2

)2
, γ > γc,H(t)

(8.3.9)

and allows to evaluate the free energy F sym.
u,H , obtaining:

F sym.
u,H =

{
−γ2 log(1− t2), γ ≤ γc,H(t),
−(2γ − 1) log(1− t)− 1

2 log t+ CH(γ), γ > γc,H(t),
(8.3.10)

where CH(γ) is t-independent. See Appendices 8.B.1 and 8.B.2 for the calculation of the free

energy. From the latter expression one sees that
dFsym.

u,H

dt and
d2Fsym.

u,H

dt2
are continuous functions for

all values of γ, while

lim
γ↑γc,H

d3F sym.
u,H

dt3
− lim
γ↓γc,H

d3F sym.
u,H

dt3
=

1

t3(1− t2)
,

and therefore the system undergoes a third order phase transition at the critical curve γc,H(t) =
1+t
2t .
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Exact equivalences and phase transitions in unitary matrix models

Figure 8.2. Eigenvalue density ρH(ϕ). The blue curve is at γ = 1
2γc,H(t) and the red curve is at

γ = 2γc,H(t), for t = 0.1 (left), 0.5 (center), 0.9 (right).

The E-model

We now turn to the second matrix model, defined in (8.3.7). The leading contribution in the large
K limit, with scaling (8.3.4), is obtained solving the saddle point equation

− iγt

[
eiφ

1 + teiφ
− e−iφ

1 + te−iφ

]
= P

∫
dϑρE(ϑ) cot

(
φ− ϑ
2

)
. (8.3.11)

We solve this singular integral equation in Appendices 8.A.3 and 8.A.4. From direct comparison
of the integral representation of Zsym.

u,H and Zsym.
u,E in (8.3.6) and (8.3.7), one would expect that,

the solution to the second model is related to the solution to the first model by

(γ, t) 7→ (−γ,−t).

Direct calculations prove that this is true and, in particular, the system undergoes a phase tran-
sition along the critical curve

γ =
1− t
2t

=: γc,E(t).

The eigenvalue density in the E-model, plotted in Figure 8.3 for different values of t and γ, is:

ρE(φ) =


1
2π

[
1 + 2γt

(
cosφ+t

(1+t)2−4t(sin φ
2 )

2

)]
, γ ≤ γc,E(t),

2(γ+1)t
π

(
cos φ

2

(1+t)2−4t(sin φ
2 )

2

)√(
sin ϕ0

2

)2
−
(
sin φ

2

)2
, γ > γc,E(t),

which allows to compute the free energy F sym.
u,E at large K (see Appendices 8.B.1 and 8.B.2), and

the final result is:

F sym.
u,E =

{
−γ2 log(1− t2), γ ≤ γc,E(t),
(2γ + 1) log(1 + t)− 1

2 log t+ CE(γ), γ > γc,E(t),
(8.3.12)

where CE(γ) is t-independent. Taking derivatives, one finds again that first and second derivatives
are continuous functions, while

lim
γ↑γc,E

d3F sym.
u,E

dt3
− lim
γ↓γc,E

d3F sym.
u,E

dt3
=

1

t3(1− t2)
,

thus the phase transition is of third order also in this case.
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8.3. Random matrix ensembles on the unit circle

Figure 8.3. Eigenvalue density ρE(ϕ). The blue curve is at γ = 1
2γc,E(t) and the red curve is at

γ = 2γc,E(t), for t = 0.1 (left), 0.5 (center), 0.9 (right).

Double-scaling limit

We have shown that the free energy, and consequently the phase structure and the critical curve,
of the matrix model with symmetric weight of E type at large K and large N agrees with the
equivalent descriptions as a Meixner ensemble with a hard wall studied in [284]. In fact, we find
an even stronger agreement between the two pictures, as also the correlations among eigenvalues
near the edge of the distributions in a double-scaling limit match. For the unitary ensemble,
the double-scaling limit is described in [302], along the lines of [183]. On the other hand, in the
discrete ensemble, if the critical region is approached from the small coupling phase, the hard wall
is not active and the results of [298] directly apply. The double-scaling is the same in both cases,
and leads to the Tracy–Widom law [303]. A third consistency check comes from the asymptotics
of the hypergeometric kernel: standard computations using a steepest descend method (see for
example [287, Sec. 4] for an introduction) show that the result in the double-scaling limit matches
the Tracy–Widom behaviour.

8.3.4 Phase transition: general case

While in the previous Section 8.3.3 we focused on the analysis of two matrix models that are
symmetric under z ↔ z−1, we now allow the more general situation β1 ̸= β2, in which the
symmetry is lost.

The matrix models we consider here are

Zgen.
u,H (t) =

1

K!

∫
[−π,π]K

dKφ

(2π)K

∏
1≤j<k≤K

|eiφj − eiφk |
K∏
j=1

(
1− teiφj

)−β1 (
1− te−iφj

)−β2
, (8.3.13)

Zgen.
u,E (t) =

1

K!

∫
[−π,π]K

dKφ

(2π)K

∏
1≤j<k≤K

|eiφj − eiφk |
K∏
j=1

(
1 + teiφj

)β1 (
1 + te−iφj

)β2
. (8.3.14)

The weight functions are complex valued, thus we expect the eigenvalue densities at large K to be
complex-valued functions. We rewrite (β1, β2) in terms of the parameters (β, v) defined in (8.3.3),
and consider the limit K →∞ with scaling of β as introduced in (8.3.4).

The H-model

We first focus on the behaviour of the partition function (8.3.13) in the limit described above, and
show how the discussion of the symmetric case in Section 8.3.3 is modified. Details of the calcu-
lations can be retrieved in Appendices 8.A.7 and 8.A.8 for weak and strong coupling respectively.

The leading contributions at large K may be encoded in the eigenvalue density ρH which solves
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the integral equation

− iγt

[
(1− v)eiφ

1− teiφ
− (1 + v)e−iφ

1− te−iφ

]
= P

∫
dϑρH(ϑ) cot

(
φ− ϑ
2

)
. (8.3.15)

The asymmetry parameter v complexifies the left hand side of the latter equation, and the resulting
eigenvalue density is complex (see Appendices 8.A.7 and 8.A.8):

ρH(φ) =


1
2π

{
1 + 2γt

(
cosφ−t−iv sin(φ)

(1−t)2+4t(sin φ
2 )

2

)}
, γ ≤ γc,H ,

2t(γ−1)
π(1−t)

[
(1−t) cos(φ

2 )−iv(1+t) sin(φ
2 )

(1−t)2+4t(sin(φ
2 ))

2

]√(
sin
(
ϕ0
2

))2
−
(
sin
(φ
2

))2
, γ > γc,H ,

with critical value γc,H = 1+t
2t , the same as in the symmetric case. The corresponding free energy

Fgen.
u,H = −K−2 logZgen.

u,H , computed in Appendix 8.B.3, can be written as:

Fgen.
u,H = F sym.

u,H + v2∆FH , ∆FH =

{
−γ2 log(1− t2), γ ≤ γc,H(t),
log(1 + t)− 1

2 log t, γ > γc,H(t).
(8.3.16)

The introduction of the asymmetry reduces the order of the phase transition from third to
second, with:

lim
γ↑γc,H

d2Fgen.
u,H

dt2
− lim
γ↓γc,H

d2Fgen.
u,H

dt2
= − v2

t2(1− t)
,

The E-model

Consider now the second matrix model, the E-model (8.3.14), and take its scaled limit as in
(8.3.3)-(8.3.4). The saddle point equation reads

− iγt

(
(1− v) eiφ

1 + teiφ
− (1 + v)e−iφ

1 + te−iφ

)
= P

∫
dϑρE(ϑ) cot

φ− ϑ
2

. (8.3.17)

The eigenvalue density is complexified by the presence of the asymmetry parameter v (see Ap-
pendices 8.A.9 and 8.A.10):

ρE(φ) =


1
2π

[
1 + 2γt

(
cos(φ)+t−iv sin(φ)
1+t2+2t cos(φ)

)]
, γ ≤ γc,E ,

2t(γ+1)
π(1+t)

[
(1+t) cos(φ

2 )−iv(1−t) sin(φ
2 )

(1+t)2−4t(sin(φ
2 ))

2

]√(
sin
(
ϕ0
2

))2
−
(
sin
(φ
2

))2
, γ > γc,E ,

with the same critical value as for the symmetric case: γc,E = 1−t
2t . The free energy is (see

Appendix 8.B.3):

Fgen.
u,E = F sym.

u,E + v2∆FE , ∆FE =

{
−γ2 log(1− t2), γ ≤ γc,E(t),
log(1− t)− 1

2 log t, γ > γc,E(t).
(8.3.18)

The first derivative of the free energy is continuous, but the second derivative is not:

lim
γ↑γc,E

d2F sym.
u,E

dt2
− lim
γ↓γc,E

d2F sym.
u,E

dt2
= − v2

t2(1 + t)
,

thus the phase transition is second order. We plot the first derivative of free energy as a function
of γ, at different values of t, in Figure 8.4.
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Figure 8.4. Planar limit of dFE

dt as a function of γ, for t = 0.2 (up left), t = 0.5 (up right), t = 0.75

(down). In each plot, there appear dFE

dt for different values of the asymmetry parameter: v = 0.1 (blue),
v = 0.5 (red), and v = 0.75 (green). The dashed back line is the symmetric case v = 0. The point at which
the curve is continuous but with discontinuous derivative becomes more and more visible as v is increased.

8.3.5 The Gross–Witten–Wadia limit

Consider the two matrix models of Section 8.3.3, defined in equations (8.3.6) and (8.3.7). The
potential of those models can be written as:

V sym.
E/H (z) = ±β

[
log (1± tz) + log

(
1± tz−1

)]
,

with + sign for the E and − for the H. We send t → 0 and β → ∞, keeping their product
βGWW := tβ fixed. This gives:

V sym.
E/H (z)→ βGWW

(
z + z−1

)
,

which is the potential of the Gross–Witten–Wadia (GWW) matrix model [190, 192]. Note that
the limit is the same for both the E- and the H-model. In the more general, non-symmetric case,
with potential

V gen.
E/H(z) = ±

[
β1 log (1± tz) + β2 log

(
1± tz−1

)]
,

we pass from (β1, β2) to (β, v) as prescribed in (8.3.3), and define βGWW := tβ. The same limit
as above gives:

V gen.
E/H(z)→ βGWW

[(
z + z−1

)
− v

(
z − z−1

)]
,

which is the potential of the Gross–Witten–Wadia model with a topological θ-term [304, 305].
Since, by construction, we are in the regime |v| < 1, the GWW phase transition is still present,
as discussed in [305].
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Within the setting laid down in Section 8.2, the limit above with β = N ∈ N of the nor-
malization of the z-measure leads to the normalization of the Poissonized Plancherel measure
on partitions [306, 290]. This is consistent with what we mentioned above, as the Poissonized
Plancherel measure is mapped to the GWW unitary matrix model [307]. On the other side, the
Poissonized Plancherel measure is the t→ 1 limit of the Meixner ensemble [308] as well.

8.3.6 Phase transition: from third to second order

For 0 < |v| < 1, the potential of the unitary matrix models (8.3.13)-(8.3.14) becomes complex-
valued. We have studied the large K limit and showed that the model undergoes a second
order phase transition, which becomes third order turning off the asymmetry parameter, v → 0.
Nevertheless, the phase transition in the GWW model remains third order if the potential is
modified into

cosφ− iv sinφ.

An alternative approach to face the matrix models with complexified potential is to analytically
continue them in the sense of [309]. We relax the condition |z|2 = 1 and deform the integration
cycle S1 ⇝ Cv in the complex plane so that the potential remains real along Cv (see Figure 8.5).
Of course, for the deformation to be smooth, Cv should be a smooth Jordan curve, whose shape
depends on v and which is the unit circle S1 when v = 0.

Figure 8.5. We deform the integration contour from the unit circle to a Jordan curve along which the
potential is real.

As a warm up, we apply the analytic continuation to the Gross–Witten–Wadia model [190, 192]:
we seek a contour Cv such that [(

z + z−1
)
− v

(
z − z−1

)]
∈ R

for all z ∈ Cv. We find that Cv is simply a circle of radius
√
(1 + v)/(1− v). Moreover, the

potential is

V (z) = 2
√

1− v2 cosφ, z ∈ Cv, φ = Arg z.

Hence, not only it is real-valued, but we also recover the original, symmetric GWW model sitting
on a rescaled circle, see Figure 8.6. Furthermore, Cv is sent to infinity or shrinks to a point as
v → 1 or v → −1 respectively, and we cannot prolong beyond these values. This provides a new
perspective on the result of [304, 305], where a drastic difference in the behaviour was observed
crossing from 0 < |v| < 1 to |v| > 1.
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Figure 8.6. The deformed contour for the complexified Gross–Witten–Wadia model is a new circle, with
bigger (0 < v < 1) or smaller (−1 < v < 0) radius.

For a generic Laurent polynomial potential

(1− v)
n∑
k=1

ckz
k + (1 + v)

n∑
k=1

ckz
−k, ck ∈ R, k = 1, . . . , n,

the smooth integration cycle Cv is determined as the locus in C that solves the algebraic equation

ℑ (znV (z)) = 0, ∀z ∈ Cv.

Stated more formally, provided the potential is a Laurent polynomial, we determine a suitable
contour Cv as a rational algebraic curve of genus zero. If the curve has disconnected components,
we simply retain as integration cycle the component homotopic to S1. Under the assumption
that the coefficients {ck}k=1,...,n are generic, this guarantees that the locus Cv will be a small

deformation of S1 if V (z) is deformed by a small v ̸= 0. See, for example, [310] for a textbook
reference on affine algebraic curves.

However, the potentials of the matrix models with weights of E andH type are not polynomials
but logarithms. The form of the potential is precisely the reason for the discontinuous behaviour
as a function of |N1 −N2|, because then imposing

ℑV gen.
E/H(z) = 0, z ∈ Cv, (8.3.19)

does not define an algebraic curve embedded in C. For every real v ̸= 0 we find that the unique
contour solving (8.3.19) is a half real line together with an open segment (the details depend on
whether we consider the E- or the H-model), which is not a smooth deformation of S1.

It is perhaps instructive to look at the problem from the converse perspective. In general, the
existence of a Jordan curve Cv ⊂ C, depending on a collection of parameters v, along which the
potential is real-valued is not guaranteed. For non-polynomial potential V (z), it requires to place
the model at certain special points of the parameter space. For the weights of E and H type, this
dictates v = 0, equivalently N1 = N2.

Phase transition and universality

To sum up our conclusions in one sentence, the unitary matrix models with symmetric E and
H weight undergo a third order GWW phase transition, but their more general, non-symmetric
extensions have complex potentials and therefore fall out of the GWW universality class. This
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ought to be contrasted with what happens in the equivalent description as a discrete ensemble
with a hard wall. In that case, increasing the parameter γ from zero, the system undergoes a third
order phase transitions at the value γ = γc,E when the hard wall becomes active. This holds both
in the symmetric and the more general setting: they belong to the same universality class. See
[160, 311] for detailed discussion on the universality of the third order phase transition in presence
of a hard wall. We also stress that the discrete topology further constrains the eigenvalue density,
but the condition is satisfied for all values of the parameters [284, 285]. Thus, the discrete nature
of the ensemble plays no role in determining the phase structure of this model.

It is worth mentioning that the symmetric H-model has also been studied in the context of
supersymmetric gauge theories, both with unitary [312] and orthogonal and symplectic symmetry
[313]. The third order phase transition was observed also in the latter case [314]. The modification
N1 ̸= N2 in [312, Eq. (2.18)] would correspond to a different number of chiral and anti-chiral
matter fields: it would be interesting to interpret the change of order of the phase transition from
second to third in terms of an anomaly of four-dimensional SQCD.22

Final remarks on the phase transition

To wrap up, let us highlight the effects that led to a change in the order of the transition.

First of all, from (8.3.2) we infer that, at any 0 < t < 1, the generalized models include a term
which is a refinement of the insertion (detU)±βv. We therefore expect the phase discrepancy to be
akin to the discussion in Section 4.2, even though the refinement prevents a direct identification.

The origin of the additional term in the free energy, that produces a discontinuity in the second
derivative, can be traced back to two facts.

• We are taking a ’t Hooft scaling for |N1 −N2|, thus enhancing the asymmetry z ↔ z−1 to
contribute at leading order at large K.

• We are imposing that the eigenvalues live on the unit circle. This might not be a natural
choice when the potential of a matrix model is complex. To stick to this choice we had to
accept a complexified density of eigenvalues, which nevertheless yielded a real-valued free
energy.

We could have not followed the second point and, instead, looked for a contour in C along which
the density of eigenvalues is real-valued. This would completely change the phase diagrams and
the critical curves.

8.4 Cauchy ensembles and Romanovski orthogonal polynomials

We analyse the matrix models Zsym.
u,H and Zsym.

u,E defined in (8.3.6) and (8.3.7), respectively, and
consider a change of topology, in which we remove a single point from the unit circle, to obtain
S1\{∞} ∼= R. We expect the asymptotic behavior of these models at large K to correspond to the
“gapped” phase of the unitary matrix model (see Figure 8.1), which appears at strong coupling.
We pass from angular variables to the real line using the stereographic projection [40, Sec. 2.5]:

eiφ =
1 + ix

1− ix
, −π < φ < π, x ∈ R,

as sketched in Figure 8.7.

22As in Chapter 6, it could be that a change in the order of the transition signals the ill behaviour of the gauge
theory. We do not have a conclusive answer. Notice that, as in Chapter 6, we are again enhancing the additional
term in the potential by scaling it linearly with N in the ’t Hooft limit.
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Figure 8.7. The 1d stereographic projection.

The Vandermonde determinant is mapped to:∏
1≤j<k≤K

∣∣eiφj − eiφk
∣∣2 dφ1 . . . dφK = 2K

2
∏

1≤j<k≤K
(xj − xk)2

K∏
j=1

1

(1 + x2j )
K
dx1 . . . dxK ,

and, with the corresponding transformation of the symbols, the resulting matrix models are:

Zsym.
H,stereo. =

2K
2

K!(2π)K

∫
RK

dKx
∏

1≤j<k≤K
(xj − xk)2

K∏
j=1

(1 + x2j )
β−K[

(1− t)2 + x2j (1 + t)2
]β , (8.4.1)

Zsym.
E,stereo. =

2K
2

K!(2π)K

∫
RK

dKx
∏

1≤j<k≤K
(xj − xk)2

K∏
j=1

[
(1 + t)2 + x2j (1− t)2

]β
(1 + x2j )

β+K
. (8.4.2)

Likewise, we can also use the stereographic projection in the more general, non-symmetric,
matrix models (8.3.13) and (8.3.14). We obtain:

Zgen.
H,stereo. =

2K
2

K!(2π)K

∫
RK

dKx
∏

1≤j<k≤K
(xj − xk)2

K∏
j=1

(1 + x2j )
β−K

×

[(
1

(1− t)2 + x2j (1 + t)2

)(
(1− t)− 2itxj + x2j (1 + t)

(1− t) + 2itxj + x2j (1 + t)

)v]β
, (8.4.3)

Zgen.
E,stereo. =

2K
2

K!(2π)K

∫
RK

dKx
∏

1≤j<k≤K
(xj − xk)2

K∏
j=1

1

(1 + x2j )
β+K

×

[(
(1 + t)2 + x2j (1− t)2

)((1 + t)− 2itxj + x2j (1− t)
(1 + t) + 2itxj + x2j (1− t)

)v]β
. (8.4.4)

where we used the redefinition of parameters β1 = β(1− v) and β2 = β(1 + v).

8.4.1 Exact evaluation

In the limit case t = 1, the partition function of the symmetric E-model, after stereographic
projection, takes the simple form:

Zsym.
E,stereo.(t = 1) =

2K
2+2Kβ

K!(2π)K

∫
RK

dKx
∏

1≤j<k≤K
(xj − xk)2

K∏
j=1

(
1 + x2j

)−K−β
. (8.4.5)

This random matrix ensemble has been studied as a Cauchy ensemble [315], Lorentz ensemble
[316], and in this form it is a particular case of the classical ensemble with weight [40, 317]

σ(x) = (1− ix)−α1(1 + ix)−α2 , α1 + α2 > 1, x ∈ R .
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This weight function satisfies the Pearson equation and hence the associated random matrix
ensemble is classical [317, 318, 40], although in many references the listing of classical ensembles
appears restricted to Hermite, Laguerre and Jacobi. See e.g. [318] for the expanded list of
possible classical weights. The associated polynomials go under many names, including pseudo-
Jacobi [319–323] due to their (non-trivial) relationship with Jacobi polynomials, and also appear

in [324]. A proper name seems Romanovski polynomials
{
R

(α1,α2)
n

}
given [325, 319], see [326]

for a review. We evaluate now the matrix integral (8.4.5) using Romanovski polynomials. They
satisfy (the dependence on (α1, α2) is understood):

1

2π

∫
R
dxRmRn(1− ix)−α1(1 + ix)−α2 = hnδmn

where we have chosen a normalization such that the polynomials Rn are monic, and their norm
squared is [327]

hn = 2−α1−α2+1

[
(−1)n+1 Γ(−n+ α1 + α2)

n!(2n− α1 − α2 + 1)Γ(−n+ α1)Γ(−n+ α2)

] [
n!2nΓ(−2n+ α1 + α2)

Γ(−n+ α1 + α2)

]2
where the second square bracket is the change of normalization to obtain monic Romanovski
polynomials from the normalization of [327]. Therefore, using

Zsym.
E,stereo.(t = 1) =

(
2K

2+2Kβ

K!

)
K!

K−1∏
n=0

hn,

with hn specialized to the case of interest α1 = α2 = K + β, we obtain

Zsym.
E,stereo.(t = 1) = G(K + 1)

G(β + 1)2G(K + 2β + 1)

G(K + β + 1)2G(2β + 1)
,

where the Barnes G-function [291] is identified using

K−1∏
n=0

Γ(K + β − n) = G(K + β + 1)

G(β + 1)
.

The result is indeed the same as (8.3.1). Therefore, the ZE(t = 1) is computed in three different
ways: as a discrete ensemble on a finite set, as a unitary ensemble, and as the Cauchy ensemble
on the real line. The tools used in each of the three approaches are, respectively: the Hahn
polynomials [285], the Toeplitz determinant with symbol with a pure Fisher–Hartwig singularity
[299], and the Romanovski polynomials, as represented in Figure 8.8.

Asymmetric Toeplitz matrix

A much studied symbol in spectral analysis of Toeplitz matrices [328, 329] is

σ (z) = zs(1 + tz)β(1 + tz−1)β, (8.4.6)

for integer s ∈ Z. As discussed in Section 8.3.1, this has the effect of shifting the Fourier coefficients
of the symbol by s, thus it shifts the diagonals of the Toeplitz matrix upward (if s > 0) or downward
(s < 0) by s and the Toeplitz banded matrix associated to our model becomes asymmetric, making
it more similar to the generalized model in terms of this asymmetry of the associated Toeplitz
matrix. The stereographic projection of this extra term is:

eisφ =

(
1 + ix

1− ix

)s
= exp

(
s log

1 + ix

1− ix

)
= e2s arctanx.
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Unit circle

E-model

Fisher–Hartwig
determinant

Finite set

Meixner

Hahn
polynomials

Real line

Cauchy

Romanovski
polynomials

Cauchy id. Stereo. proj.

Figure 8.8. Relationships between matrix ensembles: the supports (above), the weight functions (middle)
and the corresponding tools providing an exact solution at t = 1 (below).

For t = 1, the resulting weight function is

σ(x) = (1− ix)−K−β−s(1 + ix)−K−β+s. (8.4.7)

This is the stereographic projection of the weight introduced in (8.3.2), and it is still of the
Romanovski form (see [317]) with the identification

α1 = K + β + s, α2 = K + β − s.

We can therefore give explicit evaluation of the determinant of the Toeplitz banded matrix with
symbol (8.4.7) using again Romanovski polynomials:

detTK (σ (x)) =

(
K!

2K2−2βK

)
G(K + 1)

G(β + s+ 1)G(β − s+ 1)

G(K + β + s+ 1)G(K + β − s+ 1)

G(K + 2β + 1)

G(2β + 1)
.

(8.4.8)

Note that, if we consider the random matrix ensemble with weight (8.4.7) and keep the normaliza-
tion such that it coincides with the stereographic projection of the unitary ensemble with weight
(8.3.2), discussed in Section 8.3.1, the factor in bracket in (8.4.8) cancels exactly.

8.4.2 Large K limit

We now focus on Zsym.
E,stereo., cf. (8.4.2), and study its large K limit, with γ = β/K fixed. The

saddle point equation is:

P

∫
dy

ρ(y)

x− y
= (1 + γ)

x

1 + x2
− γ (1− t)2x

(1 + t)2 + x2(1− t)2
. (8.4.9)

The parity symmetry of the matrix model guarantees that we can look for a symmetric solution
with suppρ = [−A,A], A > 0. We expect that A will be back-projected to eiϕ0 of Section 8.3.3
undoing the stereographic projection.

We report the details of the computations in Appendix 8.C.1. We arrive at the eigenvalue
density:

ρ(x) =

√
A2 − x2
π

[
(1 + γ)√

A2 + 1(x2 + 1)
− γt0√

A2 + t20(x
2 + t20)

]
,

with the boundary A fixed by normalization:

A2 =
(2γ + 1)(1 + t)2

(2γ + 1− t)(2γ − 1 + t)
.
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This solution is well defined as long as

γ >
1− t
2t

,

and sending A → ∞, which would be back-projected to ϕ0 → π, corresponds to the limit γ ↓
γc,E = 1−t

2t . This matches the analysis on the circle.
We can do the same with the more general matrix model Zgen.

E,stereo. in (8.4.4). In this case,
as happened on the circle, turning on the asymmetry parameter v complexifies the eigenvalue
density, which becomes:

ρstereo.(x) =

√
A2 − x2
π

[
(1 + γ) + ivγx√
A2 + 1(x2 + 1)

− γt0 + ivγx√
A2 + t20(x

2 + t20)

]
,

with same value of A as above. The derivation of the result is given in Appendix 8.C.2. For
completeness, we also report the details of the large K analysis of the matrix model with weight
(8.4.6), corresponding to the determinant of an asymmetric Toeplitz matrix, in Appendix 8.C.3.

8.A Solution to saddle point equations on the unit circle

Here we present the calculations to solve the saddle point equations obtained in the scaled large
size limit of the unitary matrix models discussed in Section 8.3.

8.A.1 Solution for Zsym.
u,H at weak coupling

We start with the solution of the saddle point equation (8.3.8), which we rewrite here for com-
pleteness:

− iγt

[
eiφ

1− teiφ
− e−iφ

1− te−iφ

]
= P

∫
dϑρH(ϑ) cot

(
φ− ϑ
2

)
. (8.A.1)

The solution was originally obtained by Baik in [302], and the present derivation via saddle point
equations was discussed in [11].

We make the ansatz suppρ = [−π, π]. On the right hand side of (8.A.1) we use the expansion
(for ϑ ̸= φ):

cot

(
φ− ϑ
2

)
= 2

∞∑
n=1

[sin(nφ) cos(nϑ)− cos(nφ) sin(nϑ)] ,

thus the integration extracts the Fourier coefficients of the eigenvalue density:

P

∫
dϑρ(ϑ) cot

(
φ− ϑ
2

)
= 2π

∞∑
n=1

[an sin(nφ)− bn cos(nφ)] ,

where

an =
1

π

∫ π

−π
dϑρH(ϑ) cos(nϑ), bn =

1

π

∫ π

−π
dϑρH(ϑ) sin(nϑ).

For the left hand side we use:

−iγt
[

eiφ

1− teiφ
− e−iφ

1− te−iφ

]
= −(iγ) 2it sin(φ)

1 + t2 − 2t cos(φ)
= 2γt sin(φ)

∞∑
n=0

Un(cos(φ))t
n,

where in the second equality we recognized the generating function of Chebyshev polynomials
of second kind, Un(x). Exploiting the basic property Un(cosφ) = sin(n+1)φ

sinφ , equation (8.A.1) is
rewritten as:

2γ

∞∑
n=1

sin(nφ)tn = 2π

∞∑
n=1

[an sin(nφ)− bn cos(nφ)] ,
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and we immediately get:

an =
γ

π
tn, bn = 0, (8.A.2)

for all n = 1, 2, . . . . The only yet undetermined coefficient a0 is fixed by normalization to a0 =
1/(2π). Putting all together:

ρH(φ) =
1

2π

[
1 + 2γ

∞∑
n=1

cos(nφ)tn

]
,

which can be further simplified recognizing the generating function of Chebyshev polynomials of
first kind Tn(x), using the property Tn(cos(φ)) = cos(nφ). We finally arrive at:

ρH(φ) =
1

2π

[
1 + 2γt

(
cosφ− t

1 + t2 − 2t cosφ

)]
. (8.A.3)

The minima of this function are located at φ = ±π, and imposing the condition ρ(φ) ≥ 0 for all
−π ≤ φ ≤ π, we see that the present solution holds in the regime

0 ≤ γ ≤ 1 + t

2t
=: γc,H .

Above the critical value γc,H , solution (8.A.3) ceases to be valid and we must drop the assumption
suppρ = [−π, π] and look for a different solution.

8.A.2 Solution for Zsym.
u,H at strong coupling

In this appendix we present the calculations to solve the saddle point equation (8.3.8) at strong
coupling. The procedure follows [330, App. B] (see also [11, Sec. 4]). We look for a one-cut
solution with suppρ = [−ϕ0, ϕ0], 0 < ϕ0 < π.

We introduce the following complex function, named resolvent:

ω(z) =

∫
L

du

iu

z + u

z − u
ψH(u), z ∈ C \L.

Here, L ⊂ S1 is the arc of the unit circle from e−iϕ0 to eiϕ0 , oriented anti-clockwise, and the complex
function ψH(u) is the continuation of ρH(φ) to the complex plane, with ψH(e

iφ) = ρH(φ). The
eigenvalue density is recovered from the resolvent through the relation

ω+(e
iφ)− ω−(e

iφ) = 4πψH(e
iφ),

with the subscript + (resp. −) meaning the limit taken from outside (resp. inside) the unit circle.
Following standard methods, we introduce two auxiliary complex functions:

h(z) =
√

(eiϕ0 − z)(e−iϕ0 − z), z ∈ C, (8.A.4)

and a function Φ(z), to be determined, such that

ω(z) = h(z)Φ(z), z ∈ C . (8.A.5)

The saddle point equation (8.3.8) becomes a discontinuity equation for Φ(z). We will use this
discontinuity equation, together with the fact that, by definition, Φ(z) decays as ∼ 1/z as |z| → ∞,
to obtain an integral expression for Φ(z) (see [330, 11]). Explicitly:

Φ(z) =

∮
C

du

2π

W (u)

(u− z)h(u)
,
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Figure 8.9. Integration contour in the complex plane. The red line is the cut L, the black curve represents a
choice of the contour C. The blue arc on the unit circle, complementary to L, is the gap, where the resolvent
ω(z) is continuous.

where we denoted for shortness W (u) the left hand side of (8.A.1), and the contour C encloses
the branch cut L, the arc along the unit circle, cf. Figure 8.9.

At this stage, we notice that the left hand side of (8.A.1) has poles but no branch cuts, so we
can manipulate the integration contour C in a convenient way. We arrive at:

Φ(z) = I1(z) + I2(z) + I3(z),

where the three contributions are:

I1(z) = −
γt

h(z)

(
z

1− tz
− z−1

1− tz−1

)
,

I2(z) =
∑
zp

Resu=zp
−γt

h(u)(u− z)

(
u

1− tu
− u−1

1− tu−1

)
,

I3(z) = lim
R→∞

∮
CR

du

2πi

γt

h(u)(u− z)

(
u

1− tu
− u−1

1− tu−1

)
,

The sum in I2 runs over the poles {zp} of the derivative of the potential (that is, the poles on
the left hand side of (8.A.1)), in this case zp = t±1, and CR is a large circle of radius R. We have
I3(z) = 0 and I1(z)h(z) yields no discontinuity, so it is irrelevant for the evaluation of ψ(z). The
unique relevant contribution comes from:

I2(z) = −γt

Resu=t

(
u

1−tu −
u−1

1−tu−1

)
h(u)(u− z)

+ Resu=1/t

(
u

1−tu −
u−1

1−tu−1

)
h(u)(u− z)


= γ

[
t

h(t)(t− z)
+

t−1

h(t−1)(t−1 − z)

]
=
−γt
h(t)

(
1

1− tz
+

z−1

1− tz−1

)
,

(8.A.6)

where for the last equality we used h(t−1) = −t−1h(t). In general, on the real axis h(x) > 0 if
x > 1 and h(x) < 0 if x < 1. Therefore, since 0 < t < 1, we bare in mind that −h(t) > 0.

Plugging the expression for Φ(z) into ω(z) and taking its discontinuity along the arc L, we
arrive at:

ψH(e
iφ) = −2γt(1− t)

πh(t)

(
cos φ2

(1− t)2 + 4t
(
sin φ

2

)2
)√(

sin
ϕ0
2

)2

−
(
sin

φ

2

)2
. (8.A.7)
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The boundary ϕ0 of the support is fixed by normalization:

1 =

∫ ϕ0

−ϕ0
dρH(φ) = γ

(
1− t
h(t)

+ 1

)
,

which provides

h(t) = −γ(1− t)
(γ − 1)

and hence, writing h(t) explicitly, we obtain:(
sin

ϕ0
2

)2

=
(1− t)2(2γ − 1)

4t(γ − 1)2
.

Also, plugging the expression for h(t) in (8.A.7), we arrive at the final expression

ρH(φ) =
2(γ − 1)t

π

(
cos φ2

(1− t)2 + 4t
(
sin φ

2

)2
)√(

sin
ϕ0
2

)2

−
(
sin

φ

2

)2
.

8.A.3 Solution for Zsym.
u,E at weak coupling

In this appendix we solve the saddle point equation (8.3.11), which we rewrite here for complete-
ness:

− iγt

[
eiφ

1 + teiφ
− e−iφ

1 + te−iφ

]
= P

∫
dϑρE(ϑ) cot

(
φ− ϑ
2

)
. (8.A.8)

The analysis will follow closely Appendix 8.A.1 for small coupling and Appendix 8.A.2 for strong
coupling, and we omit most of the details.

We again start with the ansatz suppρ = [−π, π], and manipulate the right hand side of (8.A.8)
exactly as we did in Appendix 8.A.1, and for the left hand side we use:

−iγt
[

eiφ

1 + teiφ
− e−iφ

1 + te−iφ

]
= −2γt sinφ

∞∑
n=0

Un(cosφ)(−t)n = 2γ

∞∑
n=1

sin(nφ)(−t)n.

Then, (8.A.8) becomes

2γ
∞∑
n=1

sin(nφ)(−t)n = −2π
∞∑
n=1

[an sin(nφ)− bn cos(nφ)] ,

with an, bn the Fourier coefficients of ρE(φ), and we immediately obtain:

ρE(φ) =
1

2π

[
1− 2γ

∞∑
n=1

cos(nφ)(−t)n
]
,

where, as usual, a0 = 1/(2π) is fixed by normalization. We recognize the generating function of
Chebyshev polynomials of the first kind, using the standard identity Tn(cos(φ)) = cos(nφ), and
arrive at the final expression for the eigenvalue density

ρE(φ) =
1

2π

[
1 + 2γt

(
cosφ+ t

1 + t2 + 2t cosφ

)]
.

The minima are placed at φ = ±π, and the non-negativity condition ρE ≥ 0 holds as long as:

γ ≤ 1− t
2t

=: γc,E .

We see that, as expected by näıve comparison of the integral representation of the matrix models
(8.3.6) and (8.3.7), the eigenvalue densities ρH and ρE , as well as the respective critical points,
are related through (γ, t)↔ (−γ,−t).
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8.A.4 Solution for Zsym.
u,E at strong coupling

The procedure at strong coupling is as in Appendix 8.A.2, and we avoid the technical details here.
We assume a one-cut solution supported on [−ϕ0, ϕ0], 0 < ϕ0 < π, and introduce the resolvent

ω(z) =

∫
L

du

iu

z + u

z − u
ψE(u), z ∈ C \L,

with integration contour L meant to be the arc along the unit circle connecting e−iϕ0 to eiϕ0 , and
the function ψE(u) being the continuation of ρE in C, with ψ(eiφ) = ρE(φ). We introduce, as
in Appendix 8.A.2, the complex functions h(z) and Φ(z), and the saddle point equation (8.A.8)
becomes a discontinuity equation for Φ(z). The only relevant contribution (for the computation
of ρE) to Φ(z) is:

I2(z) = −γt

Resu=−t

(
u

1+tu −
u−1

1+tu−1

)
h(u)(u− z)

+ Resu=−1/t

(
u

1+tu −
u−1

1+tu−1

)
h(u)(u− z)


= −γ

[
t

h(−t)(t+ z)
+

t−1

h(−t−1)(t−1 + z)

]
=
−γt
h(−t)

(
1

1 + tz
+

z−1

1 + tz−1

)
,

where for the last equality we used h(−t−1) = t−1h(−t), with both understood to be negative.
We get:

ρE(φ) = −
2γt(1 + t)

πh(−t)

(
cos φ2

(1 + t)2 − 4t
(
sin φ

2

)2
)√(

sin
ϕ0
2

)2

−
(
sin

φ

2

)2
, (8.A.9)

and sin(ϕ0/2) is fixed by the normalization:

1 =

∫ ϕ0

−ϕ0
ρE(φ)dφ = −γ

(
1 + t

h(−t)
+ 1

)
.

Thus,

h(−t) = −γ(1 + t)

γ + 1
=⇒

(
sin

ϕ0
2

)2

=
(1 + t)2(2γ + 1)

4t(γ + 1)2
.

Combining this latter expression with (8.A.9), we finally arrive at:

ρE(φ) =
2

π
(γ + 1)t

[
cos
(φ
2

)
(1 + t)2 − 4t

(
sin
(φ
2

))2
]√(

sin
ϕ0
2

)2

−
(
sin

φ

2

)2
,

supported in [−ϕ0, ϕ0].

8.A.5 Solution for Zmod.
u,H and Zmod.

u,E at weak coupling

In this appendix we solve in the weak coupling regime the saddle point equations, which we write
below, for the matrix models with symmetric weight multiplied by a monomial,

σE or H(z)→ zsσE or H(z).

The procedure is essentially as in Appendices 8.A.1 and 8.A.3.
The first saddle point equation, for the large K scaling limit of Zmod.

u,H , is:

− iγt

[
eiφ

1− teiφ
− e−iφ

1− te−iφ

]
− iα1e

iφ + iα2e
−iφ = P

∫
dϑρmod.

H (ϑ) cot

(
φ− ϑ
2

)
. (8.A.10)
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We begin with the ansatz suppρmod.
H = [−π, π], and follow the same steps as in Appendix 8.A.1.

We see that the unique difference with the case without the extra insertion in the potential, is in
the ±1 Fourier coefficients of the eigenvalue density, and we get:

ρmod.
H (φ) =

1

2π

[
1 + 2γt

(
cosφ− t

1 + t2 − 2t cosφ

)
+ α+ cos(φ)− iα− sin(φ)

]
,

where we defined
α± = α2 ± α1.

We notice that the modification of the potential leads to a complex-valued eigenvalue density,
with imaginary part proportional to the parameter α− which measures the asymmetry between
z ↔ z−1. This solution holds for

γ ≤ 1 + t

2t
(1− α+) ,

in particular, when considering monomial insertions generated by the potential studied here, we
will eventually set α± = 0, and the critical value is unchanged in that case.

The second saddle point equation of interest, that of Zmod.
u,E , is:

− iγt

[
eiφ

1 + teiφ
− e−iφ

1 + te−iφ

]
− iα1e

iφ + iα2e
−iφ = P

∫
dϑρmod.

E (ϑ) cot

(
φ− ϑ
2

)
. (8.A.11)

Assuming suppρmod.
E = [−π, π], we see that the unique difference with the case discussed in

Appendix 8.A.3 are the ±1 Fourier coefficients of the eigenvalue density ρmod.
E . The standard

procedure gives:

ρmod.
E (φ) =

1

2π

[
1 + 2γt

(
cosφ+ t

1 + t2 + 2t cosφ

)
+ α+ cos(φ)− iα− sin(φ)

]
,

which extends up to

γ ≤ 1− t
2t

(1− α+) .

8.A.6 Solution for Zmod.
u,H and Zmod.

u,E at strong coupling

In this appendix we solve equations (8.A.10) and (8.A.11) in the strong coupling phase. We
therefore drop the assumption that the eigenvalue densities are supported o the whole circle, but
still assume a symmetric support.

We first consider (8.A.10), and follow the same steps as in Appendix 8.A.2. The different
with the case analyzed there is that now, the resolvent receives two additional contributions: one
from the residue at u = 0, given by the term α2u

−1, and one from the contribution of α1u to the
integration along the large circle:

I3(z) = lim
R→∞

∮
CR

du

2πi

α1u+ · · ·
h(u)(u− z)

= α1,

where the dots include terms which are irrelevant when |u| → ∞. Altogether, we have that
ρmod.
H (φ) equals the one with α1 = 0 = α2, plus those two extra contributions:

− ih(eiφ)

π
(α1 + α2),

and we finally arrive at:

ρmod.
H (φ) =

1

π

[
−2γt(1− t)

h(t)

(
cos φ2

(1− t)2 + 4t
(
sin φ

2

)2
)

+ α+ cos
φ

2
− iα− sin

φ

2

]√(
sin

ϕ0
2

)2

−
(
sin

φ

2

)2
.
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The normalization condition implies:

1 =

∫ ϕ0

−ϕ0
dρmod.

H (φ) = γ

(
1− t
h(t)

+ 1

)
+ α+

(
sin

ϕ0
2

)2

,

thus now the solution for
(
sin ϕ0

2

)2
depends on α+.

The strong coupling solution ρmod.
H is derived analogously.

8.A.7 Solution for Zgen.
u,H at weak coupling

This appendix is dedicated to the solution, in the weak coupling regime, to the saddle point
equation (8.3.15), which we rewrite here for convenience:

− iγt

[
(1− v)eiφ

1− teiφ
− (1 + v)e−iφ

1− te−iφ

]
= P

∫
dϑρH(ϑ) cot

(
φ− ϑ
2

)
. (8.A.12)

The procedure is similar to the one adopted in Appendix 8.A.1, but now the parameter v makes
the left hand side complex-valued. Therefore, we expand the eigenvalue density in the exponential
form:

ρH(ϑ) =
∑
n∈Z

ρH,ne
inϑ,

while we also use:23

cot

(
φ− ϑ
2

)
= −i

∞∑
n=1

[
ein(φ−ϑ) − e−in(φ−ϑ)

]
.

The right hand side of (8.A.12) then becomes:

P

∫
dϑρH(ϑ) cot

(
φ− ϑ
2

)
= −2πi

∞∑
n=1

[
ρH,ne

inφ − ρH,−ne−inφ
]
.

For the left hand side we can expand the geometric series and obtain:

−iγt
[
(1− v)eiφ

1− teiφ
− (1 + v)e−iφ

1− te−iφ

]
= −iγ

∞∑
n=1

tn
[
(1− v)einφ − (1 + v)e−inφ

]
.

Putting all together, and taking into account the normalization condition that fixes ρ0, we arrive
at:

ρH(φ) =
1

2π

{
1 + 2γ

∞∑
n=1

tn [cos(nφ)− iv sin(nφ)]

}
.

We see that the parameter v, which controls the asymmetry, introduces an imaginary part in the
eigenvalue density. Since −1 < v < 1, the relevant minima are those of the real part, thus the
critical value is the same as in the symmetric case:

γc,H =
1 + t

2t
,

and above this value the solution ceases to be valid.

23The expression holds for φ ̸= ϑ, which is guaranteed by the principal value of the integral.
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8.A.8 Solution for Zgen.
u,H at strong coupling

When γ > γc,H we have to look for a different solution to the saddle point equation (8.A.12). At
strong coupling, the procedure is exactly the same as in Appendix 8.A.2, since we were already
working in the complex plane, so the complexification of the left hand side of (8.A.12) for v ̸= 0
does not alter the strategy. We assume a gapped one-cut solution supported on [−ϕ0, ϕ0] and
introduce the resolvent

ω(z) =

∫
L

du

iu

z + u

z − u
ψ(u), z ∈ C \L, L ⊂ S1.

Everything goes trough exactly as in Appendix 8.A.2, except for the factors of (1± v) appearing
on the left hand side of (8.A.12). One easily finds:

ψ(eiφ) = −γ t

πh(t)

[
(1− v)eiφ/2

1− teiφ
+

(1 + v)e−iφ/2

1− te−iφ

]√(
sin

(
ϕ0
2

))2

−
(
sin
(φ
2

))2
.

The normalization fixes sin (ϕ0/2)
2, through:

1 =

∫ ϕ0

−ϕ0
dφρH(φ) = γ

(
1− t
h(t)

+ 1

)
.

Notice that, due to the parity of the integral, the result is independent of v, in particular it is
equal to the symmetric case (v = 0). The final expression for the eigenvalue density:

ρH(φ) =
2t(γ − 1)

π(1− t)

[
(1− t) cos

(φ
2

)
− iv(1 + t) sin

(φ
2

)
(1− t)2 + 4t

(
sin
(φ
2

))2
]√(

sin

(
ϕ0
2

))2

−
(
sin
(φ
2

))2
,

with sin(ϕ0/2) the same as in [302] and Appendix 8.A.2, that is(
sin

ϕ0
2

)2

=
(1− t)2(2γ − 1)

4t(γ − 1)2
.

8.A.9 Solution for Zgen.
u,E at weak coupling

Here we solve the large K limit of the second matrix model, cf. (8.3.14), in the general case. The
saddle point equation (8.3.17) is:

− iγt

(
(1− v)eiφ

1 + teiφ
− (1 + v)e−iφ

1 + te−iφ

)
= P

∫
dϑρE(ϑ) cot

φ− ϑ
2

. (8.A.13)

The procedure is as in Appendix 8.A.7. The right hand side reads:

−2πi
∞∑
n=1

[
ρE,ne

inφ − ρE,−ne−inφ
]
,

while, expanding the geometric series, the left hand side becomes:

iγ

∞∑
n=1

(−t)n
[
(1− v)einφ − (1 + v)e−inφ

]
.

This gives:

ρE(φ) =
1

2π

[
1 + 2γt

(
cos(φ) + t− iv sin(φ)

1 + t2 + 2t cos(φ)

)]
.

Again, the validity of this solution extends up to:

γc,E =
1− t
2t

,

as in the symmetric case.
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8.A.10 Solution for Zgen.
u,E at strong coupling

When γ > γc,E , we drop the assumption suppρE = [−π, π] and look for a one-cut solution with a
gap. The procedure is clear from the previous Appendices, and the result is:

ρE(φ) = −
γt

πh(−t)

[
(1− v)eiφ/2

1 + teiφ
+

(1 + v)e−iφ/2

1 + te−iφ

]√(
sin

(
ϕ0
2

))2

−
(
sin
(φ
2

))2
,

which, after imposing normalization and rewriting in terms of trigonometric functions, gives:

ρE(φ) =
2t(γ + 1)

π(1 + t)

[
(1 + t) cos

(φ
2

)
− iv(1− t) sin

(φ
2

)
(1 + t)2 − 4t

(
sin
(φ
2

))2
]√(

sin

(
ϕ0
2

))2

−
(
sin
(φ
2

))2
,

supported on

suppρE = [−ϕ0, ϕ0],
(
sin

(
ϕ0
2

))2

=
(1 + t)2(2γ + 1)

4t(γ + 1)
.

8.B Free energies

This appendix contains the calculations to obtain the free energy of the unitary matrix models
considered in the main text.

8.B.1 Free energy for Zsym.
u,H and Zsym.

u,E at weak coupling

The simplest way to obtain the free energy is to evaluate its derivative with respect to the pa-
rameter t and then integrate. In the weak coupling phase, 0 ≤ γ ≤ γc, we can use the boundary
condition Zu(γ = 0) = 1, which follows immediately from the normalization of the Haar measure
on U(N). At strong coupling we use the continuity of logZu(γ) at γ = γc.

For what concerns F sym.
u,H , at weak coupling we have:

dF sym.
u,H

dt
(γ ≤ γc,H) = γ

∫
dφρH(φ)

[
eiφ

1− teiφ
+

e−iφ

1− te−iφ

]
=

2γ2t

1− t2
.

Integrating with boundary condition ZHu (γ = 0) = 1 gives

F sym.
u,H (γ ≤ γc,H) = −γ2 log(1− t2). (8.B.1)

For F sym.
u,E at weak coupling we have:

dF sym.
u,E

dt
(γ ≤ γc,E) = γ

∫
dφρE(φ)

[
eiφ

1 + teiφ
+

e−iφ

1 + te−iφ

]
=

2γ2t

1− t2
,

which, after integration, gives

F sym.
u,E (γ ≤ γc,E) = −γ2 log(1− t2). (8.B.2)

In particular, we see that the free energies of the two models are equal in the weak coupling phase.
This is expected, since, in the weak coupling phase, the free energy equals the result provided by
Szegő theorem, i.e. the limit without scaling (see e.g. [11] for a proof of this statement), and it is
well known that the limits of the models (8.3.6) and (8.3.7) without scaling are equal.
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8.B.2 Free energy for Zsym.
u,H and Zsym.

u,E at strong coupling

We now pass to the strong coupling phase, and use the form of the eigenvalue densities ρH and
ρE at γ > γc.

Starting with F sym.
u,H , we have:

dF sym.
u,H

dt
(γ > γc,H) = γ

∫
dφρH(φ)

[
eiφ

1− teiφ
+

e−iφ

1− te−iφ

]

=
4γ(γ − 1)t

π

∫ ϕ0

−ϕ0
dφ

cos φ2

√(
sin ϕ0

2

)2
−
(
sin φ

2

)2
(1− t)2 + 4t

(
sin φ

2

)2
[

cosφ− t
(1− t)2 + 4t

(
sin φ

2

)2
]

=
γ(γ − 1)

πt

∫ 1

−1
dy

√
1− y2

(
2t(γ−1)2

(1−t)(2γ−1) − y
2
)

[
(γ−1)2

(2γ−1) + y2
]2

= −1 + t− 4γt

2t(1− t)
,

where we used the change of variables y = sin(φ/2)
sin(ϕ0/2)

and used the explicit form of sin(ϕ0/2)
2.

Immediate integration gives:

F sym.
u,H (γ > γc,H) = −(2γ − 1) log(1− t)− 1

2
log(t) + CH(γ),

with CH(γ) a t-independent integration constant fixed by continuity at γ = γc,H .
For F sym.

u,E the calculations are almost the same, except for the change of sign in front of all
factors of t and γ. We get:

dF sym.
u,E

dt
(γ > γc,E) = γ

∫
dφρE(φ)

[
eiφ

1 + teiφ
+

e−iφ

1 + te−iφ

]

=
γ(γ + 1)

πt

∫ 1

−1
dy

√
1− y2

(
2t(γ+1)2

(1+t)(2γ+1) − y
2
)

[
(γ+1)2

(2γ+1) − y2
]2

= −1− t− 4γt

2t(1 + t)
.

Notice that the final line here could not be inferred from the final line of F sym.
u,H with reversed

signs. After integration we obtain the result:

F sym.
u,E (γ > γc,E) = (2γ + 1) log(1 + t)− 1

2
log(t) + CE(γ), (8.B.3)

where CE(γ) is t-independent and fixed by continuity at the critical value γc,E .

8.B.3 Free energy for Zgen.
u,H and Zgen.

u,E

The free energies for the matrix models (8.3.13) and (8.3.14) are computed at weak coupling in
exactly the same manner as in Appendix 8.B.1. It is easy to check that, thanks to the parity
of the integral, the free energies receive contribution from the terms proportional to v but they
remain real. Direct computations give:

dFgen.
u,H

dt
(γ < γc,H) =

2γ2t

1− t2
(1− v2) =

dFgen.
u,E

dt
(γ < γc,E).
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At strong coupling we get:

dFgen.
u,H

dt
(γ > γc,H) = γ

∫ ϕ0

−ϕ0
dφρH(φ)

[
(1− v)eiφ

1− teiφ
+

(1 + v)e−iφ

1− te−iφ

]
=

4γ(γ − 1)t

π(1− t)

∫ ϕ0

−ϕ0
dφ

(
(1− t) cos φ2 − iv(1 + t) sin φ

2

)[
(1− t)2 + 4t

(
sin φ

2

)2]2
×

√(
sin

ϕ0
2

)2

−
(
sin

φ

2

)2
(cosφ− t− iv sinφ)

=
dF sym.

u,H

dt
(γ > γc,H)− v2

16γ(γ − 1)t(1 + t)

π(1− t)

∫ x0

−x0
dx

x2
√
x20 − x2

[(1− t)2 + 4tx2]2

=
dF sym.

u,H

dt
(γ > γc,H)−

v2(1 + t)

2t(1− t)
,

where in the second line we changed variables x = sin(φ/2), with boundary at x0 = sin(ϕ0/2),
and in the last line we used the explicit form of x20 to simplify the resulting expression. Notice
that the term proportional to v2 does not depend explicitly on γ.

Following the same steps, the free energy Fgen.
u,E is computed at strong coupling as:

dFgen.
u,E

dt
(γ > γc,E) = γ

∫ ϕ0

−ϕ0
dφρH(φ)

[
(1− v)eiφ

1− teiφ
+

(1 + v)e−iφ

1− te−iφ

]
=

dF sym.
u,E

dt
(γ > γc,E)− v2

16γ(γ + 1)t(1− t)
π(1 + t)

∫ x0

−x0
dx

x2
√
x20 − x2

[(1 + t)2 − 4tx2]2

=
dF sym.

u,E

dt
(γ > γc,E)−

v2(1− t)
2t(1 + t)

.

8.C Solution to the saddle point equations on the real line

Here we consider the solution to the saddle point equation obtained from the large N limit of
the matrix model after stereographic projection on the real line, as described in Section 8.4.2.
We focus on Zsym.

E,stereo. and Z
gen.
E,stereo., and the solutions for the H-models can be obtained in an

analogous way.

8.C.1 Solution for Zsym.
E,stereo.

We consider first the matrix model Zsym.
E,stereo. defined in (8.4.2). In the limit in which the number

of variables, K, is large, the leading contribution comes from the eigenvalue density ρstereo. that
solves the saddle point equation (8.4.9), which we report here for convenience:

P

∫
dy
ρstereo.(y)

x− y
=W (x), x ∈ R, (8.C.1)

with

W (x) = − γx

x2 + t20
+

(γ + 1)x

x2 + 1
, t0 :=

1 + t

1− t
.

We proceed following standard methods for the analysis of Hermitian matrix models at large K,
as reviewed for example in [27]. We introduce the resolvent

ω(z) =

∫
L
dy
ρstereo.(y)

z − y
, z ∈ C \L,
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where now, assuming a solution with symmetric support [−A,A], the path L is the segment
[−A,A] on the real line. The eigenvalue density is recovered as the jump of the resolvent along L:

ω+(z)− ω−(z) = −2πiρstereo.(x), x ∈ [−A,A],

with ± meaning the limit taken approaching the real line from the upper (resp. lower) half plane.
A solution for the resolvent is the following: write

ω(z) = h(z)Φ(z), h(z) =
√
(−A− z)(A− z),

and the saddle point equation (8.C.1) becomes a discontinuity equation for Φ(z), with solution:

Φ(z) =

∮
C

du

2πi

W (u)

(z − u)h(u)
,

where the contour C is a closed curve surrounding the cut L, as in Figure 8.10.

Figure 8.10. Integration contour in the complex plane. The red line is the cut L, the black curve
represents a choice of contour C.

W (u) is a meromorphic function, with simple poles at:

u = zp, zp ∈ {±i, ±it0} .

We can thus deform the contour, to avoid the branch cut of the square root, and pick the poles
of the integrand. This leaves a residual integral along an infinitely large circle. This latter
contribution vanishes, sinceW (u) ∼ 1/u at large |u|. The pole at u = z generates the regular part
of ω(z), thus yields no contribution to the eigenvalue density. Therefore, the relevant contributions
to the ρ arise from the poles of W (u) in the complex plane. For the calculations, one has to be
careful with the signs in front of the square roots, according to the definition of h(z). With our
conventions,

h(i) = −i
√
A2 + 1 = −h(−i),

h(it0) = −i
√
A2 + t20 = −h(−it0).

After simple computations, one arrives to:∑
zp

Resu=zp
W (u)

(z − u)
√
u2 −A2

=
γt0

(z2 + t20)
√
A2 + t20

− (γ + 1)

(z2 + 1)
√
A2 + 1

.

The eigenvalue density is obtained this function multiplied by the jump of h(z):

ρstereo.(x) =

√
A2 − x2
π

[
(1 + γ)√

A2 + 1(x2 + 1)
− γt0√

A2 + t20(x
2 + t20)

]
.
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The value of the boundary A can be fixed by normalization, or equivalently looking at the large z
behaviour of the resolvent ω(z). From the definition, one has ω(z) ∼ 1/z, as z → ∞, while from
the explicit evaluation, we have:

ω(z) =W (z) +
√
z2 −A2

(
γt0

(z2 + t20)
√
A2 + t20

− (γ + 1)

(z2 + 1)
√
A2 + 1

)

=
1

z

(
1 +

γt0√
A2 + t20

− γ + 1√
A2 + 1

)
+O(z−2).

This provides the solution (recall that t0 = (1 + t)/(1− t))

A2 =
(2γ + 1)(1 + t)2

(2γ + 1− t)(2γ − 1 + t)
.

This is a positive quantity, and thus ρstereo. is supported on the real line, as long as

γ >
1− t
2t

.

This is consistent with our general analysis: due to the change of topology, the stereographic
projection should only provide the gapped phase of the unitary matrix model. We also notice
that, undoing the stereographic projection, we obtain:

eiϕ0 =
1 + iA

1− iA
=⇒

(
sin

ϕ0
2

)2

=
(2γ + 1)(1 + t)2

4t(γ + 1)2
,

thus the boundary we obtain on the real line is in fact the stereographic projection of the boundary
of the model on the unit circle, as expected.

8.C.2 Solution for Zgen.
E,stereo.

In this Appendix, we study the large K limit of the matrix model Zgen.
E,stereo. defined in (8.4.4). The

saddle point equation is:

P

∫
dy
ρstereo.(y)

x− y
=W (x), x ∈ R, (8.C.2)

with W (x) in the present, more general case given by:

W (x) = − γx

x2 + t20
+

(γ + 1)x

x2 + 1
+ 4ivγ

t

1− t
x2 − t0

(x2 + 1)(x2 + t20)
.

From this expression, it is clear that the asymmetry in the integrand introduces an imaginary
part in the eigenvalue density, but does not introduce new poles of W (u) in the complex plane.

We proceed as in the previous Appendix, and find:

ω(z) =W (z) + h(z)
∑
zp

Resu=zp
W (u)

(z − u)
√
u2 −A2

,

where now the residues at u = ±i,±it0 yield an extra term, proportional to the parameter v.
After some simple calculations, we see that this extra contribution is:

2ivγ

(
z

(z2 + t20)
√
A2 + t20

− z

(z2 + 1)
√
A2 + 1

)
.

The final expression for the eigenvalue density is:

ρstereo.(x) =

√
A2 − x2
π

[
(1 + γ) + ivγx√
A2 + 1(x2 + 1)

− γt0 + ivγx√
A2 + t20(x

2 + t20)

]
,

Imposing normalization, from the parity of the integral we obtain the same value of A as above.
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8.C.3 Solution for Zsym.
E,stereo. with modified symbol

We now solve the saddle point equation (8.C.1) with, on the right hand side, the modified function

W (x) = − γx

x2 + t20
+

(γ + 1)x− 2b

x2 + 1
.

The procedure follows closely that of Appendix 8.C.1, but now we do not assume symmetry of
the support for ρstereo., and let

suppρstereo. = [−A,B].

We therefore modify the definition of the auxiliary function

h(z) =
√
(−A− z)(B − z).

For later convenience, we also introduce the functions

h̃(x) =
√
|x2 +AB + ix(B −A)| =

(
x4 +A2B2 + x2(A2 +B2)

) 1
4 ,

θ̃(x) =
1

2
arg
(
x2 +AB + ix(B −A)

)
=

1

2
arctan

x(B −A)
x2 +AB

,
(8.C.3)

for x ∈ R. Note also that h̃(−x) = h̃(x) and θ̃(−x) = −θ̃(x). Following Appendix 8.C.1, we
introduce the resolvent ω(z) and arrive at:

ω(z) =W (z) + h(z)
∑
zp

Resu=zp
W (u)

(z − u)h(u)
,

with poles at zp = ±i,±it0. Using

h(i) = −ih̃(1)eiθ̃(1), h(−i) = ih̃(1)e−iθ̃(1),

and similarly for ±it0, we arrive at:

∑
zp

Resu=zp
W (u)

(z − u)h(u)
=
γ
[
t0 cos θ̃(t0)− z sin θ̃(t0)

]
h̃(t0)(z2 + t20)

−

[
(γ + 1) cos θ̃(1) + 2b sin θ̃(1)

]
+ z

[
2b cos θ̃(1)− (γ + 1) sin θ̃(1)

]
h̃(1)(z2 + 1)

,

and the eigenvalue density is:

ρstereo.(x) =

√
(x−A)(B − x)

π

γ
[
t0 cos θ̃(t0)− z sin θ̃(t0)

]
h̃(t0)(z2 + t20)

−

[
(γ + 1) cos θ̃(1) + 2b sin θ̃(1)

]
+ z

[
2b cos θ̃(1)− (γ + 1) sin θ̃(1)

]
h̃(1)(z2 + 1)


for x ∈ [−A,B]. The boundaries of the support are fixed by imposing the condition ω(z) ∼ 1/z
at large z. Using

cos 2θ̃(x) =
x2 +AB

h̃(x)2
,
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order z0 in the expansion of ω(z) gives the constraint

γ

2h̃(t0)

[
t20 +AB

h̃(t0)2
− 1

]
− 1

2h̃(1)

[(
1 +AB

h̃(1)2

)
(2b− γ − 1) + 2b+ γ + 1

]
= 0,

while from order z1, and using the previous expression to simplify the equation, we get the
constraint

γt0

2h̃(t0)

[
t20 +AB

h̃(t0)2
+ 1

]
− 1

2h̃(1)

[(
1 +AB

h̃(1)2

)
(2b+ γ + 1)− 2b+ γ + 1

]
= 0.
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Chapter 9

Phases of unitary matrix models and
their meromorphic deformations

9.1 Introduction to the chapter

The study of the critical properties of models of random matrices has become a widely popular
and interdisciplinary subject in this century, in great part due to the vast scope of fields where
such models appear naturally and play a prominent role [40, 41, 283].

A paradigmatic example of this phenomenon could very well be the so-called Gross–Witten–
Wadia (GWW) model [190–192]. Originally proposed in the study of gauge theory, it is ubiquitous
and pivotal in many other areas, such as combinatorics, representation theory and spectral theory
[40, 41, 283].

With this fact in mind, in this chapter we will study unitary matrix models, starting with a gen-
eralized form of the Gross–Witten–Wadia model. A possible interpretation is as a one-plaquette
model of two-dimensional lattice QCD with fermionic or bosonic quarks, which equivalently cor-
responds to a massive deformation of a model introduced by Minahan [331, 332].

We will show that, while quite simple, this model retains several features of a sensible quantum
field theory in the continuum. In turn, its simplicity allows us to exploit standard techniques from
random matrix theory to characterize the theory at large N and suggests more general and deeper
problems to consider. Some of them, we will already tackle here, by discussing at length the case
of meromorphic deformations of unitary matrix model, as we explain below.

Before that, a rich phase diagram will be obtained and analyzed in detail. Phase transitions
such as the ones we obtain in our analysis are relevant to the study of deconfinement transitions in
QCD models in four dimensions [333, 334] and in black holes physics [335–337]. More recently, this
type of phase transitions has been argued to describe the critical behaviour of models exhibiting
partial deconfinement [338–342].

We introduce the model in what follows, in Section 9.2, which includes a discussion on inter-
pretations of the model, notation, relationship with other systems and an introductory discussion
of its mathematical properties, including exact evaluations without scaling limits.

Then, the main results of the chapter are presented and organized as follows: there are three
main contributions, as far as new results are concerned. In Section 9.3, we fully characterize
the rich phase structure of the unitary matrix model. In Section 9.4, we study Wilson loops in
the same setting of Section 9.3 and discuss at length the physical interpretation of the phase
transitions, including the role of instanton contributions.

Finally, in Section 9.5 we study, in a general framework and going beyond the specific model
studied in the previous sections, the case where the integration contour is deformed in C∗ away
from the unit circle. In spite of the vast body of results on random matrix ensembles, holomorphic
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matrix models [343] are arguably understudied.
The aim of Section 9.5 is to adapt the results on holomorphic matrix models to unitary matrix

models. We do so for a very general set of unitary matrix models and, only as an illustrative
example, we discuss the particular case of the holomorphic GWW matrix model. Non-traditional
tools in this area, such as Hasse diagrams, are introduced to fully understand the meromorphic
models.

9.2 The model

In this section we present the model and study some of its exact features at finite N .

9.2.1 The model and its interpretations

Consider a one-plaquette model of two-dimensional lattice gauge theory [344, 22] with gauge group
U(N) and K pairs of real fields, that can be either bosonic or fermionic. Each pair is called a
flavour. We encode the choice of matter fields in the binary variable

ϵ =

{
+1 fermions,

−1 bosons.

We must impose (anti-)periodic boundary conditions, so the discrete space-time is effectively
reduced to a point with a loop attached to it, along which the gauge connection travels. Let
mf > 0 be the mass of the f th flavour, and introduce the notation

µ
(ϵ)
f = 1 +

√
ϵmf .

The partition function of this theory has the matrix model representation [331]

Zϵ,KU(N)(λ) =

∫
U(N)

dU

K∏
f=1

[
det
(
µ
(ϵ)
f − U

)
det
(
µ
(ϵ)
f − U

)†]ϵ
e

N
λ (TrU+TrU†)

where λ ≡ Ng2YM is the ’t Hooft coupling for the bare gauge coupling gYM, U ∈ U(N) is the
plaquette gauge variable and dU is the normalized Haar measure on U(N). Particularizing to the
degenerate case with all equal masses, µf = µ ∀f = 1, . . . ,K, the partition function becomes:

Zϵ,KU(N) (λ) =

∫
U(N)

dU
[
det (µ− U) det (µ− U)†

]ϵK
e

N
λ (TrU+TrU†)

=

∮
TN

∏
1≤j<k≤N

|zj − zk|2
N∏
j=1

[
(µ− zj)

(
µ̄− z−1

j

)]ϵK
e

N
λ (zj+z

−1
j ) dzj

2πizj
. (9.2.1)

The second line is written in terms of the eigenvalues zj ∈ T of U ∈ U(N).
The matrix model (9.2.1) is a massive deformation of the model studied in [345, 346]. Besides,

(9.2.1) is a generalization of the celebrated Gross–Witten–Wadia (GWW) model [190, 192] by
determinant insertions, and reduces to it for K = 0 or µ → ∞. For λ−1 = 0 the model (9.2.1)
is a particular case of a correlator of characteristic polynomials in a Circular Unitary ensemble
(CUE) [347], a fundamental object in random matrix theory with many applications [348, 349].
Likewise, for this value of λ−1 = 0, it generalizes a matrix model that describes non-intersecting
random walks [302], and has also appeared in gauge theory, for instance in [350] and later on in
somewhat disguised forms.
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Integrable systems interpretation

It is worth mentioning a possible interpretation of (9.2.1), from the point of view of integrable
systems [351]. The study of the so-called Schur flow [352, 353], analogous to Toda flows but on
the unit circle, precisely entails the generalization of a given weight function of the matrix model
by multiplication by the GWW weight function.

This induces a flow that has many implications. For example, the recurrence coefficients of
the polynomials, orthogonal with regards to the weight function of the matrix model, satisfy the
non-linear Ablowitz–Ladik equation, with the parameter 1

g2YM
= N

λ interpreted as time.

Because of this and since our analysis is in a planar limit and centered around the matrix model,
the results obtained are not obviously transferable into this integrable systems and spectral theory
language [354].

Gauge theory interpretation

We consider (9.2.1) as a toy model for lattice two-dimensional QCD, although we will comment
on some of the many other interpretations of the model. For example, (9.2.1) can be regarded
as an effective description of two-dimensional QCD on a small spatial circle [350]. In fact, com-
pactifying the spatial direction generates a mass gap for all but the zero-modes. Taking the small
circumference limit, we are left with an effective theory with integration only over the gauge and
matter zero-modes.

It was observed in [345] that the massless theory with fermions, that is ϵ = +1 and µ = 1,
shows a Fisher–Hartwig (FH) singularity. The theory with bosons, on the contrary, yields a
singular matrix model in the massless case. Here we recognize the singularities encountered in
[345] as the remnants of the IR singularities due to massless fields, and resolve them via mass
deformation.

On the parameter µ

Notice that there is a slight difference in the definition of µ between the fermionic and the bosonic
theory in (9.2.1). In the first case µ > 1 is real, while in the second case µ ∈ C with |µ| > 1. It
is easy to see that the phase of µ ∈ C can be reabsorbed in a rotation of the integration contour
T, and we henceforth restrict our attention to a real µ > 1 in both cases, with the understanding
that for bosons µ really means |µ|.

Besides, treating µ as a real variable with this caveat in mind, the integrand in (9.2.1) is
analytic in µ > 1, and therefore the results for any other µ ∈ C with |µ| > 1 are obtained from
analytic continuation of our results. In particular, we could not attain negative values of µ moving
along the real line, because we would cross the FH singularity. Nevertheless, it is possible to take
a path from µ > 1 to any µ′ < −1 that runs in the complex plane outside the unit disk.

Remark. The independence of the partition function on arg µ is the U(1) freedom to choose the
origin of T, and is the incarnation of the residual diagonal U(1) ⊂ U(N) gauge symmetry. Our
choice argµ ∈ 2πZ fixes this residual gauge freedom.

Notation

We introduce the notation

Y =
1

λ
, τ = ϵ

K

N

for, respectively, the inverse of the ’t Hooft coupling and a real Veneziano parameter, whose sign
carries information on the type of fields we consider.
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The parameter space of the theory is

M =
{
(µ, τ, Y ) ∈ (1,∞)× R2

}
.

Remark. For the role of the mass as a regulator (for the FH singularities on the mathematical
side, for the IR singularities on the field theory side), we do not expect the continuation from M
to the sheet {µ = 1} × R2, studied in [345, 346], to be analytic.

9.2.2 Exact finite N evaluations

We now present various analytical results for the matrix model (9.2.1).

It is possible to evaluate the partition function of any unitary matrix model at finite N via
the Heine–Szegő identity, that for (9.2.1) gives

Zϵ,KU(N) (λ, µ) = N ! det
1≤j,k≤N

[Zjk] , (9.2.2)

with

Zjk =

K∑
p=0

K!

p!(K − p)!
(−µ)p(1 + µ2)K−p dp

dxp
Ik−j(2x)

∣∣∣∣
x=N

λ

where Ik(x) is the modified Bessel function. We have simplified the expression assuming ϵ = +1,
although a similar determinant expression exists for ϵ = −1 as well. Formula (9.2.2) allows to
efficiently compute Zϵ,KU(N) exactly for fixed N and K, cf. [7, App. A1].

The partition function for generic masses, encoded in the parameters (µ1, . . . , µK), can also be
related to the expectation value of Wilson loops in arbitrary representations in the pure GWW
model, thanks to the Cauchy identity (see Chapter 2). For the fermionic theory we write

Z+1,K
U(N) =

 K∏
f=1

µ2f

∮
TN

∏
1≤j<k≤N

|zj − zk|2
N∏
j=1

 K∏
f=1

(
1− zj

µf

)(
1− z̄j

µf

) eN
λ
(zj+z̄j)

dzj
2πizj

=

 K∏
f=1

µ2f

∑
R1

∑
R2

sR′
1
(−µ−1

1 , . . . ,−µ−1
K )sR′

2
(−µ−1

1 , . . . ,−µ−1
K )

×
∮
TN

∏
1≤j<k≤N

|zj − zk|2 sR1(z1, . . . , zN )sR1(z̄1, . . . , z̄N )
N∏
j=1

e
N
λ
(zj+z̄j)

dzj
2πizj

where the sum runs over Young diagrams R of length at most N and the first row at most K,
R′ is the conjugate diagram, and sR is the corresponding Schur polynomial, that is, the character
of the irreducible representation associated to the diagram R. In the last line we identify the
correlator of two Wilson loops in the pure GWW model,

Z+1,K
U(N)

Z(GWW)
U(N)

=

 K∏
f=1

µ2f

∑
R1

∑
R2

sR′
1
(−µ−1

1 , . . . ,−µ−1
K )sR′

2
(−µ−1

1 , . . . ,−µ−1
K ) ⟨WR1WR2⟩(GWW),

(9.2.3)
with W meaning that the Wilson loop involves conjugated variables. We can in principle further
expand the product of the two Schur polynomials with the Littlewood–Richardson rule, but this
would entail inverting the variables z̄1, . . . , z̄N in the second Schur polynomial, as in [1].
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Expression (9.2.3) is suggestive but not very useful as it is, because the vacuum expectation
value (vev) of a Wilson loop in a generic representation is not known in closed form. Nevertheless,
we can go deeper in the character expansion thanks to the formula [355]

exp

(
N

λ
TrU

)
=
∑
R

(
N

λ

)|R|
dimR

 N∏
j=1

(N − j)!
(N − j +Rj)!

 sR(z1, . . . , zN ).

Using this equation and its conjugate and applying twice the Littlewood–Richardson rule we get

Z+1,K
U(N) =

 K∏
f=1

µ2f

 ∑
R1,R2,R3,R4

sR′
1
(−µ−1

1 , . . . ,−µ−1
K )sR′

2
(−µ−1

1 , . . . ,−µ−1
K )

×
(
N

λ

)|R3|+|R4|
dimR3 dimR4

 N∏
j=1

((N − j)!)2

(N − j +R3,j)!(N − j +R4,j)!

 c13;24

where c13;24 ≡
∑

R c
R
R1R3

cRR2R4
, with cRRjRk

the Littlewood–Richardson coefficients, and we have

used the orthogonality of the Schur polynomials. The bosonic model Z−1,K
U(N) admits a closely

related expression, with the partitions R1 and R2 instead of their conjugate in the first line and
dropping the restriction on the first rows.

Finally, there is an additional, simpler although more formal closed form expression for Zϵ,KU(N)

[351]

Zϵ,KU(N) =
∑
R

(
sR

(
NY − ϵK

µ
,−ϵK

µ2
,−ϵK

µ3
, . . .

))2

where now the Schur functions must be interpreted as characters of U(∞), and the sum runs over
Young diagrams R with at most N rows.

9.3 Phase structure

This section is dedicated to the large N analysis of the matrix model (9.2.1) and the determination
of its phase diagram.

Write the partition function (9.2.1) as

ZU(N) =

∮
TN

e−N
2Seff(z1,...,zN )

N∏
j=1

dzj
2πizj

(9.3.1)

where the effective action Seff is the sum of a potential and the Coulomb interaction between
eigenvalues:

Seff (z1, . . . , zN ) =
1

N

N∑
j=1

Veff(zj) +
1

N2

N∑
j=1

∑
k ̸=j

Vint (zj , zk)

Veff

(
eiθ
)
= − 2

λ
cos θ − τ log

(
1 + µ2 − 2µ cos θ

)
Vint

(
eiθ, eiφ

)
= − log 2 sin

(
θ − φ
2

)
.

writing z ∈ T as z = eiθ, −π < θ ≤ π.
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The potential Veff
(
eiθ
)
admits isolated minima at each point in M. Besides, there exists a

surface {λ = λ∗(µ, λ)} ⊂M at which it passes from a single-well to a double-well profile. Explicitly,
these two regimes are separated by

λ∗(µ, τ) =
(µ− 1)2

τµ
,

and the potential develops stationary points at θ = ±θ∗ with

tan θ∗ = ±
√
µ2 (2− λ2τ2) + 2λµ3τ + 2λµτ − µ4 − 1

−λµτ + µ2 + 1
.

We stress that λ∗ is not a critical value of the model (9.2.1).
The potential is plotted in Figure 9.1 (τ > 0) and in Figure 9.2 (τ < 0). Clearly, the two

figures have the same shape but upside down. Nonetheless, it is important to distinguish the role
of minima to understand the phase structure.

Figure 9.1. Veff(e
iθ) at µ = 3 and τ = 2. Left: λ = 1

2 . Right: λ = 4
3 .

Figure 9.2. Veff(e
iθ) at µ = 3 and τ = −2. Left: λ = − 1

2 . Right: λ = − 4
3 .

Now that we have set the ground, we are ready to discuss the large N limit of the model
(9.2.1).

9.3.1 Large N

We now take the large N ’t Hooft and Veneziano limit of the partition function (9.3.1). This
means that we consider the planar limit with both λ and τ fixed. The leading contributions to
the integral at large N come from the saddle points of the effective action:

∂Seff
∂θj

= 0 j = 1, . . . , N. (9.3.2)
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Introducing the eigenvalue density

ρ(θ) =
2π

N

N∑
j=1

δ
(
eiθ − eiθj

)
,

with normalization chosen so that ∫ π

−π

dθ

2π
ρ(θ) = 1, (9.3.3)

we can collect the system (9.3.2) of N coupled equations in a single singular integral equation at
large N . The saddle point equation then reads

P

∫ π

−π

dφ

2π
ρ(φ) cot

(
θ − φ
2

)
= 2Y sin θ − 2µτ sin θ

1 + µ2 − 2µ cos θ
. (9.3.4)

The solution to (9.3.4) must satisfy the non-negativity constraint

ρ(θ) ≥ 0, −π < θ ≤ π, (9.3.5)

that follows from the compactness of the integration domain.

Ungapped solution: Phase 0

We begin assuming ρ(θ) is supported on the whole circle, −π < θ ≤ π. We exploit µ > 1 to obtain
the solution [356]

ρ0(θ) = 1 + 2Y cos θ − 2τ
µ cos θ − 1

1 + µ2 − 2µ cos θ
. (9.3.6)

The derivation is standard [190, 6], thus we omit it. We call Phase 0 the region of M for which
the solution (9.3.6) is valid.

Critical loci

In those regions of M for which the solution (9.3.6) violates the constraint (9.3.5), we should drop
the assumption suppρ = (−π, π] and look for a new solution, whose support has one or more gaps
on the unit circle. The arcs on which ρ is supported are called cuts.

We find a phase transition with a gap opening at θ = ±π at the critical surface

Ycr,a =
1

2
+

τ

µ+ 1
. (9.3.7)

Another phase transition, with a gap opening at θ = 0, takes place at the critical surface

Ycr,b = −1

2
+

τ

µ− 1
. (9.3.8)

Besides, there exists a multi-critical point at the value τ = τcr,+(µ) at which ρ0(±π) = 0 = ρ0(0),
determined as the unique point at which Ycr,a and Ycr,b meet:

τcr,+(µ) =
µ2 − 1

2
. (9.3.9)

Examples of the limiting cases of ρ0(θ) are shown in Figure 9.3.
Besides the two critical surfaces just described, looking at ρ0(θ) for negative Y and τ we

also find values at which it attains zero value at two distinct, symmetric points in the interior of
(−π, π), as in Figure 9.4. We expect a new phase transition into a two-cut solution.
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Figure 9.3. ρ0(θ) at the transition point. Left: µ = 3, τ = − 1
2 and λ = λcr,a. Centre: µ = 3, τ = 1 and

λ = λcr,b. Right: µ = 3, τ = 4 and λ = 2
3 .

Figure 9.4. ρ0(θ) at the transition point. µ = 2, τ = −1 and λ = − 25
24 . The support of ρ will break in

two disjoint cuts beyond this critical value.

One-cut solution: Phase Ia

We now solve Equation (9.3.4) dropping the assumption that ρ(θ) is supported on the whole T,
and replace it by the assumption that the support is an arc Γ ⊂ T. The derivation is standard
and we relegate it to Appendix 9.A.

Introduce the trace of the resolvent in the large N limit,

ω(z) =

∫
Γ

dw

2πiw
ϱ(w)

z + w

z − w
, z ∈ C \ Γ. (9.3.10)

We adopt the standard notation

ω±(e
iθ) ≡ lim

ε→0+
ω(z = (1± ε)eiθ).

Then
ω+(e

iθ)− ω−(e
iθ) = 2ϱ(eiθ), eiθ ∈ Γ.

We find (see Appendix 9.A for the details)

ωIa(z) = −iW (z)+
√
(eiθ0 − z) (e−iθ0 − z)

[
Y

(
1 +

1

z

)
− τ√

1 + µ2 − 2µ cos θ0

(
µ

z − µ
− 1

z − µ−1

)]
.

The first term is regular and, taking the discontinuity at z = eiθ ∈ Γ, we arrive at

ρIa(θ) = 2 cos
θ

2
·
√

2 cos θ − 2 cos θ0 ·

[
Y − τµ(µ− 1)√

1 + µ2 − 2µ cos θ0 (1 + µ2 − 2µ cos θ)

]
(9.3.11)
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The angle θ0 is fixed by normalization:

Y (1− y0) + τ

(
µ− 1√

1 + µ2 − 2µy0
− 1

)
= 1. (9.3.12)

where y0 := cos θ0. Equation (9.3.12) admits a unique real solution, thus the problem is completely
determined.

One-cut solution: Phase Ib

The solution above has been derived assuming that Γ is an arc along T joining e−iθ0 to eiθ0 running
counter-clockwise, thus the gap has opened around θ = π. For the gap opening at θ = 0, the
procedure is identical, but now Γ is an arc from θ̃0 > 0 to 2π − θ̃0. The procedure of Appendix
9.A leads us to

ρIb(θ) = 2

∣∣∣∣sin θ2
∣∣∣∣√2 cos θ̃0 − 2 cos θ

−Y +
τµ(µ+ 1)√

1 + µ2 − 2µ cos θ̃0 (µ2 + 1− 2µ cos θ)


which is non-negative definite. There is, however, a more direct route to get the correct answer.
Looking back at the matrix model (9.2.1) we can chose a different parametrization 0 ≤ θ < 2π,
and the solution with the gap opening at θ = 0 is recovered from the solution (9.3.11) in Phase
Ia upon replacement Y 7→ −Y , µ 7→ −µ and eventually θ + π 7→ θ.

In conclusion, we have two different phases with a one-cut solution, as expected: one for
Y > Ycr,a(τ, µ), that we have called Phase Ia, and one for Y < Ycr,b(τ, µ), that we have called
Phase Ib.

Two-cut solution: Phase II

We have seen that at τ = τcr,+ = (µ2 − 1)/2 the critical surfaces Y = Ycr,a and Y = Ycr,b meet.
Thus, we expect a new phase characterized by a two-cut solution in the region{

(µ, τ, Y ) : µ > 1, τ >
µ2 − 1

2
, Ycr,a < Y < Ycr,b

}
⊂M.

with gaps around θ = 0 and θ = ±π, and eigenvalue density supported on

suppρII = Γ ∼= Γu ⊔ Γd :=
{
eiφ ∈ T : θ̃0 ≤ θ ≤ θ0

}
⊔
{
eiφ ∈ T : −θ0 ≤ θ ≤ −θ̃0

}
.

That is, Γ is the union of two disjoint arcs, Γu and Γd, as in Figure 9.5.
To determine ρII(θ) it is simpler to adopt a different strategy, detailed in Section 9.3.4 below.

Two-cut solution: Phase III

The fact that the potential Veff(e
iθ) develops a double well for negative Y and τ in a given range

hints at the existence of a two-cut solution in that region of M, with the eigenvalues sitting around
the two minima. This observation is corroborated looking at the shape of ρIa(θ) and ρIb(θ) in
the negative quadrant, where they become negative in Ycr,b < Y < Ycr,a for τ below a certain
threshold.

We find a transition from Phase 0 to a two-cut phase in

Ycr,c+ < Y < Ycr,a and Ycr,b < Y < Ycr,c−
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Figure 9.5. The two-cut support Γ in Phase II.

where the critical surfaces Y = Ycr,c± are given by

Ycr,c±(τ, µ) =
µ

(µ2 + 1)2

[
µ2(τ − 1)− 3τ − 1± 2

√
−τ [2τ(µ2 − 1) + (µ4 − 1)]

]
.

The two curves Ycr,± form an ellipse in each (τ, Y )-leaf of M at fixed µ, with the physical critical
curve being the first branch of the ellipse encountered when decreasing Y from 0.

In this phase, that we call Phase III, the eigenvalues distribute along a contour Γ which consists
of two cuts, with gaps opening around ±θ∗, see Figure 9.6.

Figure 9.6. The two-cut support Γ in Phase III.

The eigenvalue density is

ρIII(θ) = 2
√
[cos (θ∗ − δθ)− cos θ] [cos (θ∗ + δθ)− cos θ]

×

[
−Y +

τµ(µ+ 1)(µ− 1)√
(µ2 + 1− 2µ cos (θ∗ − δθ)) (µ2 + 1− 2µ cos (θ∗ + δθ)) [µ2 + 1− 2µ cos θ]

]
.

(9.3.13)

Note that the argument of the outer square root is non-negative definite. The value of θ∗ is
known explicitly, as obtained from Phase 0, and the dependence of δθ on the parameters is fixed
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9.3. Phase structure

by normalization. Equivalently, we can fix cos (θ∗ + δθ) and cos (θ∗ − δθ) comparing the large z
behaviour of ω(z) computed in this phase with its definition.

For multi-cut solutions, the dependence on the number of eigenvalues filling each cut should be
taken into account when computing physical observables [357]. We analyze the role of the filling
fractions in Appendix 9.B: the upshot is that our conclusions are unaltered, both in phase II and
III, although for different reasons.

9.3.2 Phase diagram

Putting all the information together, the following phase diagram emerges.

0) When both Y and τ are small, Phase 0 holds, with the eigenvalues spread on the whole
circle.

Ia) When Y > Ycr,a the system is in a new phase, Phase Ia, with a one-cut solution gapped
around θ = ±π.

Ib) Likewise when Y < Ycr,b the system is in Phase Ib, with a one-cut solution gapped around
θ = 0.

II) At τ > µ2−1
2 the two critical surfaces cross each other. In the region Ycr,a < Y < Ycr,b the

system is in Phase II, a two-cut solution with density of eigenvalues gapped both around
θ = 0 and θ = π.

III) The system develops a new two-cut phase, Phase III, in the region Ycr,b < Y < Ycr,a and
also bounded by an arc of ellipse determined by Ycr,c±. The density of eigenvalues is gapped
around θ = ±θ∗, with θ∗ → π as Y → Ycr,a and θ∗ → 0 as Y → Ycr,b.

See Figure 9.7 for a slice of M at fixed µ.

0

Ia

Ib

II

III

-4 -2 2 4 6 8
τ

-4

-2

2

4
Y

μ=3 slice of parameter space

Figure 9.7. Phase diagram of the model in the (τ, Y ) plane, at µ = 3. The blue straight lines are Y = Ycr,a

and Y = Ycr,b, the black curve is Y = Ycr,c±, the red dot is the multi-critical point at τ = µ2−1
2 . The gray

shaded region in the ungapped phase, Phase 0. The other light shaded regions are the two-cut phases,
Phase II and III.
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Taking the massless limit µ → 1+, the critical surface Ycr,b is rotated onto the vertical axis.
Using the analytic dependence on µ, we can also reach µ → −1− by first going to the negative
real axis walking through C outside of the unit disk and then taking the limit |µ| → 1+. In that
case, it is Ycr,a that is rotated onto the vertical axis.

9.3.3 Free energy and massless theory

Before delving in the analysis of Wilson loop vevs in the next section, we comment on the free
energy of the model, defined as

F =
1

N2
logZ.

The free energy in Phase 0 is easily obtained, and corresponds to the analytic continuation of
Szegő’s strong limit theorem in the bulk of the ’t Hooft parameter space [11]. It takes the value

F0 = Y 2 − 2Y
τ

µ
− τ2 log

(
1− 1

µ2

)
. (9.3.14)

It is clearly separated into three contributions: pure gauge (Y 2), matter only (∝ τ2) and the
interaction. At strong coupling λ → ∞ (Y → 0) we are left with a matter contribution which
counts gauge singlets: indeed, the integral over the gauge group projects onto gauge invariant
states.

Massless theory

As we have stressed, a core assumption of our analysis is |µ| > 1, and the massless limit |µ| → 1+

can only be taken at the end. Due to the non-analyticity for µ ∈ T, the resulting model will
differ from a model with massless matter [345, 346]. A consequence of this non-analyticity is the
spontaneous chiral symmetry breaking, that we will discuss in Section 9.4.4. On the other hand,
it is well known that the large N limit and the massless limit do not commute.

In the näıve |µ| → 1 limit, the free energy in (9.3.14) has a logarithmic divergence in the
matter contribution. Setting instead |µ| = 1 from the beginning, and arg µ = θ̃, 0 < θ̃ ≤ 2π,
the partition function acquires a FH singularity and the large N limit cannot be understood by
standard methods. We use known results on Toeplitz determinants to derive the free energy in
Phase 0 in the massless theory [358]:

F0

(
µ = eiθ̃

)
= Y 2 − 2Y τ cos θ̃ − 2τ2 log

∣∣∣∣∣2 sin θ̃2
∣∣∣∣∣+ τ2 logN.

That is, the contribution from matter fields has an additional factor of logN and dominates
at large N . Remarkably, this matches the logarithmic divergence of the näıve massless limit of
(9.3.14). The result is in fact much more general [358] and directly extends to the case of various
Veneziano parameters τ1, . . . , τn associated to different µ1, . . . , µn that approach the unit circle
from outside at different angles θ̃1, . . . , θ̃n.

9.3.4 Stereographic projection

To better understand Phase II and the transition from a one-cut to a two-cut phase, we map the
model onto the real line and study the resulting Hermitian matrix model at large N . It can be
interpreted as a massive deformation of the model in [359].

We conformally map the unit circle on the real line through the stereographic projection, see
Figure 9.8. The drawback of the stereographic map is that it introduces a puncture on the circle
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9.3. Phase structure

at θ = ±π: this has no effect at finite N , but the Hermitian matrix model will fail to reproduce
Phase 0 of the unitary matrix model because of this change in topology [6]. Phase 0 and its
associated transitions are well understood from the unitary matrix model side, and we use the
conformally mapped model as yet another way to gain further insight into the one-cut to two-cut
transition.

Figure 9.8. The stereographic projection. The red cross is the puncture on the circle, the ticker line is
the cut Γ.

Our choice of coordinates is consistent with Phase Ia on the circle, but Phase Ib is easily
retrieved rotating T by eiπ, so that the puncture is placed at θ = 0. The Hermitian matrix model
is

Zp.
U(N) = (µ− 1)2K

∫
RN

∏
1≤j<k≤N

(xj − xk)2
N∏
j=1

(1 + η2x2j )
K

(1 + x2j )
K+N

e
2NY

(
1−x2j

1+x2
j

)
dxj
2π

(9.3.15)

with the superscript p. as notation to remind that it comes from the projection of the model
(9.2.1). We have adopted the shorthand notation

η :=
µ+ 1

µ− 1
, 1 < η <∞.

Remark. Thanks to the mapping of the Vandermonde determinant form the unit circle to the real
line that shifts τ 7→ τ + 1 in the denominator of the integrand in (9.3.15), the stability issues
pointed out in [359] do not arise here. We can thus safely allow τ < 0 without spoiling the
convergence of the matrix model.

Phase I

The saddle point equation for the Hermitian matrix model (9.3.15) is

P

∫
dy

2π

ρp.(y)

x− y
= x

[
4Y

(x2 + 1)2
+

τ + 1

1 + x2
− η2τ

1 + η2x2

]
.

The solution is found by standard large N techniques [27]. Using a one-cut ansatz for the density
ρp.(x) supported on [−A,A] ⊂ R we find

ρp.I (x) = 2
√
A2 − x2

[
τ + 1√

1 +A2(1 + x2)
− τη2√

1 + η2A2(1 + η2x2)
− 2Y

A2
(
x2 − 1

)
− 2

(1 +A2)
3
2 (1 + x2)2

]
.

(9.3.16)
The value of A is fixed by normalization:∫ A

−A

dx

2π
ρp.I (x) = 1 =⇒ τ + 1√

1 +A2
− τ√

1 + η2A2
+ 2Y

A2

(1 +A2)
3
2

= 0.
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As a cross-check, turning off the mass deformation, µ → 1, sends η → ∞ and we recover the
eigenvalue density found in [359]. Besides, sending A2 →∞ and expanding at leading order in 1

A
the normalization becomes the consistency condition

Y =
1

2
+

τ

µ+ 1
,

correctly reproducing the critical surface Ycr,a in the limit in which A is back-projected to eiπ. We
stress that, requiring that ρp.(x)dx descends from a measure on T, the non-negativity constraint
ρ(x) ≥ 0 must be imposed.

Looking at ρp.I (0), we find that the critical point is fixed by the condition

2Y

(
2 +A2

1 +A2

)
+ τ + 1− τη2

√
1 +A2

1 + η2A2
= 0.

Phase II

From the result above as well as from the analysis of the unitary matrix model, we find a phase
transition to a two-cut solution, with a gap opening at x = 0. The new phase is the conformal
image of Phase II of the unitary matrix model.

We look for a new eigenvalue density, supported on [−A,−B] ∪ [B,A]. The result is

ρp.II(x) = 2
√

(A2 − x2)(x2 −B2) |x|

[
−2Y x

2(A2 +B2 + 2) + 3(A2 +B2) + 2A2B2 + 4

[(1 +A2)(1 +B2)]
3
2 (1 + x2)2

− τ + 1√
(1 +A2)(1 +B2)(1 + x2)

+
τη4√

(1 + η2A2)(1 + η2B2)(1 + η2x2)

]
. (9.3.17)

The parameters A and B are fixed by normalization,

−Y (A2 −B2)2

[(1 +A2)(1 +B2)]
3
2

−(τ+1)

(
A2 +B2 + 2√

(1 +A2)(1 +B2)
− 1

)
+τ

(
η2A2 + η2B2 + 2√

(1 + η2A2)(1 + η2B2)
− 1

)
= 1,

and by an additional self-consistency condition on ω(z),

2Y
A2 +B2 + 2

(1 +A2)(1 +B2)
+ τ + 1− τη2

√
(1 +A2)(1 +B2)

(1 + η2A2)(1 + η2B2)
= 0,

which reproduces the criticality condition for B → 0.

This is not the end of the story for Phase II. Indeed, fluctuations in the number of eigenvalues
in each cut may contribute at leading order in the evaluation of observables [357]. However, for
the symmetric two-cut solution we find out that this is not the case, as proved in Appendix 9.B.

9.4 Wilson loops and instantons

We continue the investigation of the features of the phase transitions and establish their order by
evaluating the vacuum expectation value (vev) of the Wilson loop in the fundamental represen-
tation. Moreover, we further discuss the different physics of the various transitions by looking at
the different contributions by instantons.
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9.4.1 Wilson loops

Wilson loops are order operators in gauge theories that, for simple connected gauge group, describe
the holonomy of the gauge connection around a closed path. For our one-plaquette model, we
consider the Wilson loop in the fundamental representation wrapping the plaquette, and compute
its vev. It is given by

⟨W⟩ =
〈

1

2N
TrU +

1

2N
TrU †

〉
=

〈
1

N

N∑
j=1

cos θj

〉

with the average taken in the unitary ensemble (9.2.1). We use the eigenvalue density at large N
found in each phase to evaluate the Wilson loop.

Wilson loops: Generalities

From the matrix model (9.2.1) we immediately get the relation

⟨W⟩ = 1

2N

1

Z
∂

∂(NY )
Z =

1

2

∂F
∂Y

.

Therefore, all the information about the order of the transition can be extracted from the Wilson
loop vev. This is precisely what we expect from an order parameter, and follows from the Wilson
loop belonging to the class of order operators of QCD2.

Being ρ(θ) continuous on the whole M, the Wilson loop vevs are continuous as well, implying
that every phase transition we find must be at least second order.

Wilson loops: Evaluation

We focus now on the Wilson loop vev at large N . In the ungapped phase we find

⟨W⟩0 =
∫ π

−π

dθ

2π
ρ0(θ) e

iθ = Y − τ

µ
. (9.4.1)

This reproduces the GWW result as τ → 0, but also as µ → ∞, as expected when the matter
becomes non-dynamical. For a Wilson loop winding k > 1 times around the plaquette, either in
clockwise or anti-clockwise direction, we get

⟨Wk⟩0 = −
τ

µk
.

In Phase Ia the Wilson loop vev is

⟨W⟩Ia =
∫ π

−π

dθ

2π
ρIa(θ) e

iθ =
2

π

∫ 1

y0

dy y

√
y − y0
1− y

[
Y − τµ(µ− 1)√

1 + µ2 − 2µy0(1 + µ2 − 2µy)

]

= Y
(1− y0)(3 + y0)

4
− τ

2µ

[
µ2 + 1 +

1 + µ(µ− 1)y0 − µ3√
1 + µ2 − 2µy0

]
(9.4.2)

where we have used the change of variables y = cos θ, with y0 = cos θ0. The value of y0 as a
function of the gauge theory parameters is known from (9.3.12).

The Wilson loop vev in Phase Ib is obtained likewise,

⟨W⟩Ib = Y
(1 + ỹ0)(3− ỹ0)

4
− τ

2µ

[
µ2 + 1 +

µ(µ+ 1)ỹ0 − µ3 − 1√
1 + µ2 − 2µỹ0

]
, (9.4.3)

206



Phases of unitary matrix models and their meromorphic deformations

where ỹ0 = cos θ̃0.
To study the derivative of ⟨W⟩Ia and establish the order of the phase transition, it suffices to

notice that
d

dY
⟨W⟩Ia = 1 +

[
Y

4
(−2y0 − 2) +

τ

2
· (µ− 1)µ(y0 + 1)

(1 + µ2 − 2µy0)
3/2

]
∂y0
∂Y

.

This implies

lim
y0→−1

d

dY
⟨W⟩Ia = 1

which matches the derivative of ⟨W⟩0. The computations are identical for the transition between

Phase 0 and Phase Ib. Taking a further derivative, d2

dY 2 ⟨W⟩ vanishes identically in Phase 0, but
does not vanish at the critical loci when computed in Phases Ia and Ib.

We conclude that the Wilson loop vev is an order parameter of class C1 at the critical surfaces
Y = Ycr,a(τ, µ) and Y = Ycr,b(τ, µ), thus the system shows a pair of third order phase transitions.
In particular, both the GWW transition [190, 192] and the transition in [302] are special points
on the critical locus of the present model.

Crossing from a one-cut to a two-cut phase, the first derivative of the Wilson loop is not
protected. Indeed, in Phase II the derivative of the Wilson loop vev has the schematic form

d

dY
⟨W⟩II =

∫ ỹ0

y0

y
∂

∂Y
f(y, y0, ỹ0)dy +

∂y0
∂Y

∫ ỹ0

y0

y
∂

∂y0
f(y, y0, ỹ0)dy +

∂ỹ0
∂Y

∫ ỹ0

y0

y
∂

∂ỹ0
f(y, y0, ỹ0)dy,

(9.4.4)
with the first term coming from the derivative of the explicit dependence on Y , and the other two
from the dependence on Y through y0 and ỹ0. The integrand evaluated at the endpoint vanishes,
hence those contributions do not appear.

In (9.4.4), f(y, y0, ỹ0) is known explicitly from Section 9.3.1,

f(y, y0, ỹ0) =
2

π

√
(y − y0)(ỹ0 − y)
(1 + y)(1− y)

[
−Y +

τµ(µ+ 1)(µ− 1)√
(1 + µ2 − 2µy0)(1 + µ2 − 2µỹ0)(1 + µ2 − 2µy)

]
,

but the difficulty comes from the only implicit knowledge of the dependence of y, ỹ0 on Y .
Passing from Phase II to Phase Ia, the first term in (9.4.4) matches continuously with the

corresponding expression in Phase Ia, as ỹ0 → 1. The integral in the second summand in (9.4.4)
also agrees with the corresponding contribution in Phase Ia at ỹ0 → 1. Both facts follow from

lim
ỹ0→1

y0|II = y0|Ia.

Moreover, the symmetries of the integrand allow to combine the third term in (9.4.4) with the
second term, in a simpler expression. Moreover, the symmetric form of the equations fixing y0, ỹ0
can be used to show that

∂ỹ0
∂Y

=
∂y0
∂Y

∣∣∣∣
ỹ0↔y0

.

By this we mean that the expressions on the two sides agree upon exchanging all ỹ0 with y0.
Due to the complicated dependence on the parameters, the derivatives of the boundaries y0, ỹ0

are not continuous at the transition point. The differentiability of ⟨W⟩ above followed by the
vanishing of the term multiplying such derivatives. This does not happen for the transition from
a two-cut to a one-cut phase. Therefore, the sum of the second and third terms in (9.4.4) gives
an obstruction to the differentiability of ⟨W⟩, so we expect a second order transition. In a sense,
the obstruction arises from taking a limit that breaks explicitly the y0 ↔ ỹ0 symmetry of Phase
II.
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9.4. Wilson loops and instantons

The proof is very similar for the transition from Phase II to Phase Ib or from Phase III to
either Phase Ia or Ib.

The argument fails at the critical surface Ycr,c and at the multi-critical point at which Ycr,a =
Ycr,b. Indeed, when passing directly from Phase 0 to a two-cut phase, the simplifications that arise
from closing both gaps simultaneously imply that the Wilson loop vev is C1. This is consistent
with the observation of the previous paragraph, as these transitions preserve the Z2-symmetry of
the two-cut phase.

9.4.2 Phase structure and remarks

Summing up the results extracted from the analysis of Wilson loop vev, we find that

• the transition from Phase 0 to any other phase is third order, but

• the transition from a one-cut to a two-cut phase is likely to be second order.

We emphasize that we have not ultimately established the order of the transitions of second type,
but we have gathered evidence that it should be second order.

In the rest of this subsection we comment on various aspects of the phase structure we un-
covered, insisting on the role of the second order phase transitions. The outcome of the analysis
substantiates the belief that the order should be second in the transitions among gapped phases.

Remark. As obtained in the previous subsection, the second order discontinuities are finite jumps,
not divergences. The correlation lengths remain finite at each transition. These finite discontinu-
ities vanish in the limit |µ| → 1.

Metastability

While the third order transitions we find are a continuation of the GWW transition in M, it is
worth to further comment on the second order transitions we obtain. The phase transition to a
two-cut solution happens slightly beyond the values of τ where the potential develops a double-
well structure. The proposal in [360] states that a second order transition can be associated with
tunneling from a metastable vacuum to a stable one. Our analysis confirms that picture in the
one-plaquette model we consider. In Subsection 9.4.5 we study instanton effects, expanding this
discussion leading to a further refined distinction between second and third order phase transitions
in this model, from the instanton point of view.

Critical behaviour

It is worthwhile to notice that the phase diagram in Figure 9.7 resembles that in [361], where a
unitary matrix model with potential Y1 cos(θ) + Y2 cos(2θ) was analyzed.

The critical behaviour close to a transition to a two-cut phase in our model differs from
that found in similar models in the literature, for matrix models with potentials of the form∑K

n=1 Yn cos(nθ). This is so because the potential in (9.2.1) includes both a polynomial and
a logarithmic part, requiring different scaling approaching the critical regime from the two-cut
phase. This distinction, however, fades away approaching the multicritical point.

Double-scaling limit

The statements above can be refined exploiting the double-scaling limit.
In particular, we can zoom in the critical regime, tuning Y towards a transition to the ungapped

phase. In the double-scaling limit, the dynamics is governed by Painlevé II equation. The proof
follows from [183, 302] with minimal variations. An alternative proof can be given using orthogonal
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polynomials [182]. We have checked explicitly that, in the double-scaling limit, the problem
reduces to the analogous one for the pure GWW model.

For the transition from a one-cut to a two-cut phase, however, there is no double scaling that
gives Painlevé II.

9.4.3 Continuum limit and β-function

The β-function of the theory, as a function of the ’t Hooft coupling λ, can be computed using the
chain rule through [190]

β(λ) = 2λ2
⟨W⟩ log⟨W⟩

∂
∂Y ⟨W⟩

. (9.4.5)

This quantity can be used to test whether our model reproduces the expected features of QCD2

in the continuum limit. The fixed points of the RG flow, that capture the continuum physics, are
given by β(λ) = 0, which, from (9.4.5), can only happen at ⟨W⟩ = 0 or at ⟨W⟩ = 1.

Direct computations in Phases 0, Ia, Ib, show that only the solution to ⟨W⟩ = 0 is consistent,
while the solution to ⟨W⟩ = 1 always falls out of the phase in which it has been computed, and thus
should be discarded. It is a nice consistency check that the solution to be discarded is precisely
the one that would violate Elitzur’s theorem [362], and the one to be retained is in agreement
with the confining nature of QCD2 [190].

The continuum limit of a lattice theory consists in sending the lattice spacing to zero while
approaching a critical curve [363]. In particular, this requires |µ| → 1.

Taking the continuum limit from Phase 0, approaching either Ycr,a or Ycr,b, we find that the
unique consistent solution is Y = 0 (i.e. λ = ∞). This is physically meaningful for a toy model
of QCD2: the theory flows to a strongly interacting theory in the deep infrared.

Taking the continuum limit from Phase Ia close to the transition to Phase II, we find a trivial
solution with λ = 0 = τ , describing a theory of free gauge bosons without matter. The continuum
limit approaching the critical surface between Phase Ib and Phase II, instead, yields a non-trivial
fixed point at

λ =
1

Y
≈ 121.4.

Remark. The existence of a continuum theory is not established by our analysis, because cor-
relation lengths remain finite. While this has no effect in our model, which consists of a single
plaquette, it may (and most likely shall) wash away the fixed point in the continuum limit of a
more realistic lattice model.

9.4.4 Chiral symmetry breaking

Let us focus now on the model with fermionic matter. The fermion two-point function is by
definition

⟨ψ̄fψf ⟩ = −
1

NZ
∂

∂µf
Z = − ∂

∂µf

1

N
logZ.

Due to our degenerate choice of masses, we can only compute the average over flavours of such
quantity: 〈

1

K

K∑
f=1

ψ̄fψf

〉
=

1

τ

∂F
∂µ

.

In Phase 0 we find
1

τ

∂F0

∂µ
=

2

µ2

(
Y +

τµ

µ2 − 1

)
.
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This quantity diverges as µ → 1, therefore we expect the chiral symmetry to be spontaneously
broken in the continuum, consistently with the analysis of the β-function in Phase 0.

In Phases Ia and Ib, we can move along Y = 0 and study the behaviour of ⟨ 1K
∑

f ψ̄fψf ⟩ on
that subspace of M. The result is read off directly from [6]:

1

τ

∂FIa

∂µ

∣∣∣∣
Y=0

= − µ+ 1 + 4τ

2τµ(µ− 1)

in Phase Ia, which is non-vanishing and continuous at the transition point.

In Phase Ib we get
1

τ

∂FIb

∂µ

∣∣∣∣
Y=0

= − 1− µ+ 4τ

2τµ(µ+ 1)
,

again non-vanishing and continuous at the transition point, and goes to 1 in the µ → 1+ limit.
This latter result, in turn, hints at a transition to a free theory: the free energy of a theory of
K free flavours of mass m goes as Ffree ∝ Km, whence ⟨ 1K

∑
f ψ̄fψf ⟩|free = 1. Note that this

computation has been done at infinite gauge ’t Hooft coupling, which has the physical meaning
of governing the theory in the deep infrared.

To sum up, we have observed that the phase transition from Phase Ib to Phase 0 is accompanied
with spontaneous chiral symmetry breaking.

9.4.5 Instantons in unitary matrix models

We discuss non-perturbative effects in the unitary matrix model, coming from unstable saddle
point configurations [364].

An instanton configuration is characterized by a collection of integers {N0, N1, . . . } with∑
kNk = N . For example, the d-instanton configuration is associated with the symmetry breaking

pattern

U(N)→ U(N0)× U(N1)× · · · × U(Nd),

with the eigenvalues zj ∈ T of U ∈ U(N) grouped in d different sets, sitting at d different extrema
of the potential. For the one-instanton configuration,

ZU(N)(ν) =
N∑
ℓ=0

e−νℓZℓ

with Zℓ the partition function of a U(N − ℓ) × U(ℓ) model, and we have turned on a chemical
potential ν > 0 for the instanton number.

The ℓ-sector leads to non-perturbative corrections to the free energy of the matrix model, of
the form

e−NℓSinst(λ⃗)fℓ(λ⃗)

where λ⃗ generically denotes the couplings of the theory, and the functions {fℓ}ℓ admit themselves
a 1
N expansion.

Instanton effects and third order transitions

Let us consider our model (9.2.1) at large N and focus on the one-cut phase, in which the in-
terpretation of instanton effects is more transparent. We discuss them in Phase Ia, being the
corresponding analysis in Phase Ib completely analogous. Most of the details are just an exten-
sion of the thorough analysis in [364].

210



Phases of unitary matrix models and their meromorphic deformations

The contribution of an instanton excitation, obtained moving one eigenvalue from the minimum
of Veff to the maximum at θ = ±π is found to be

πSinst = 2Y

[√
1− x20 − x

2
0 cosh

−1

(
1

x0

)]
+ τ

[
tanh−1

(
(µ− 1)

√
1− x20

(µ− 1)2 + 4µx20

)
+

µ− 1√
(µ− 1)2 + 4µx20

log

(
x0

1 +
√

1− x20

)]
where cosh−1 and tanh−1 are the inverse of the hyperbolic functions, and x0 = sin θ0

2 . One of
the results in [364] (already conjectured in [365]) is that the GWW transition is triggered by
instantons. We see that the result carries over to the present model, as

lim
x0→1

Sinst = 0

and the instanton excitations cease to be suppressed at the critical point when the gap closes.
Analogous conclusions are found if we go to Phase III, in which the effective potential has

developed a double well, and consider the instanton configuration with a few eigenvalues taken to
the local maximum at θ∗. Approximating close to the transition to Phase 0, we find

πSinst = (δθ)2 sin θ∗

[
−Y +

τµ(µ+ 1)

(µ− 1) (1 + µ2 − 2µ cos θ∗)

]
+O

(
(δθ)3

)
.

At the critical surface, δθ → 0 and we find again that the third order transition is triggered by
instantons.

Instanton effects and second order transitions

We now turn our attention to the analysis of instanton effects in the two-cut phase, starting from
Phase III. We consider a single eigenvalue placed on the maximum of the potential, as sketched
in Figure 9.9.

Figure 9.9. Instantons in Phase III. A single eigenvalue (blue dot) is moved on top of the maximum of
Veff , while all the others (gray sea) fill the minima.

We find that the instanton action is the sum of two pieces,

Sinst,L =

∫ y∗

yL

dy

π

√
(y − yL)(yR − y)

1− y2

[
−Y +

τµ(µ2 − 1)√
(1 + µ2 − 2µyL)(1 + µ2 − 2µyR)[1 + µ2 − 2µy]

]
,

Sinst,R =

∫ yR

y∗

dy

π

√
(y − yL)(yR − y)

1− y2

[
−Y +

τµ(µ2 − 1)√
(1 + µ2 − 2µyL)(1 + µ2 − 2µyR)[1 + µ2 − 2µy]

]
,
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where y∗ = cos θ∗ and yL,R = cos(θ∗ ± δθ). The two are associated with the eigenvalue escaping
from the left and right cut, respectively. There exists a third relevant quantity, namely the
tunneling from one cut to the other,

Stunnel =

∫ yR

yL

dy

π

√
(y − yL)(yR − y)

1− y2

[
−Y +

τµ(µ2 − 1)√
(1 + µ2 − 2µyL)(1 + µ2 − 2µyR)[1 + µ2 − 2µy]

]
.

All the three effects are non-perturbatively suppressed by a factor e−NSinst , with Sinst the cor-
responding action. The three contributions are still suppressed at the critical loci, although the
tunneling term will coalesce with one of the other two.

The situation is slightly different in Phase II, where the two wells have equal depth, see Figure
9.10. In this case, Stunnel is simply twice Sinst, and both go to zero as a gap closes. The phase

Figure 9.10. Instantons in Phase II. A single eigenvalue (blue dot) is moved on top of the local maximum
of Veff at θ = 0, while all the others (gray sea) fill the minima.

transition takes place when the tunneling between the two cuts ceases to be suppressed in one
direction (e.g. passing through θ = 0 in Figure 9.10) but remains non-perturbative in the other
direction (e.g. passing through θ = π in Figure 9.10).

The picture we infer is that the third order phase transitions are associated with releasing
non-perturbative instabilities, while the second order transitions correspond to release only those
instabilities in one direction. This is also in agreement with the proposal in [360, 342] relating
second order phase transitions in GWW-type models to partial deconfinement.

9.5 Meromorphic deformation of unitary matrix models

We now depart from the model (9.2.1) with the aim of setting the stage for the study of meromor-
phic deformations of unitary matrix models, in which the integration contour is deformed in C∗

and not bound to be the unit circle. This consists of an adaptation of the theory of holomorphic
matrix models [343] to unitary matrix models and, as we shall show, is instrumental in under-
standing their phase diagram from new angles. This section can be read independently of the rest
of the manuscript.

A unitary matrix model is characterized by a weight function e−
N
λ
V (z), with V (z) admitting

the expansion

V (z) =
∑
n≥1

(
tn
n
zn +

t−n
n
z−n

)
. (9.5.1)
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The function e−
N
λ
V (z) is singular at z ∈ {0,∞} ⊂ P1 and possibly has other zeros and poles

in C∗ ∼= P1 \ {0,∞}. The Vandermonde determinant appearing in a unitary matrix model is
conveniently rewritten in meromorphic form

∏
1≤j<k≤N

(zj − zk)
(

1

zj
− 1

zk

)
=

 N∏
j=1

1

zN−1
j

 ∏
1≤j<k≤N

(zj − zk)2.

To deform a unitary matrix model, the integration cycle TN is replaced by any half-dimensional
cycle CN in (C∗)N .

Definition. Let N ∈ N, λ ∈ C∗ and V (z) as in (9.5.1). A meromorphic matrix model Z is the
integral

Z =

∮
CN

∏
1≤j<k≤N

(zj − zk)2
N∏
j=1

e−
N
λ
V (zj)

dzj

2πizNj
, (9.5.2)

with integration contour

CN =
∑
ℓ

NℓCℓ,
∑
ℓ

Nℓ = N, [Cℓ] = [T] ∈ H1(C∗). (9.5.3)

Condition (9.5.3) means that each Cℓ is homotopic to the unit circle in the holed plane C∗.
Dropping it, we may stretch Cℓ along any direction along which, asymptotically, ℜ 1

λV (z) > 0.
Eventually the one-cycle Cℓ pinches at z = ∞ ∈ P1. To get an honest deformation of a unitary
matrix model we do not allow this situation, otherwise we would fall back in the holomorphic
deformation of a Hermitian matrix model.

The couplings {tn} in (9.5.1) are usually subject to reality conditions, such as

t−n = t̄n, ∀n ≥ 1,

and possibly other relations. We write the constraints collectively as Φ⃗ ({tn}) = 0. Besides, a
rescaling of all {tn} together can be reabsorbed in a redefinition of λ, hence the couplings {tn}
are homogeneous coordinates on a projective space.

The matrix model (9.5.2) sets a natural stage to complexify the couplings. We denote by
T the physical space of couplings, namely the collection of independent {tn} after imposing the
constraints and modulo scaling. More formally,

T = ({tn ∈ C, ∀n ̸= 0} /C∗) ∩
{
Φ⃗ ({tn}) = 0

}
, (9.5.4)

with the C∗-action being multiplication of all couplings by a non-vanishing constant. Whenever
the constraints Φ⃗ can be rewritten in homogeneous form, T is a projective variety.

9.5.1 Large N limit

We are interested in the large N limit of (9.5.2). Define the effective potential

W (z) :=
1

λ
V (z) + log z.

At large N , the eigenvalues will be gathered around the saddle points of W (z) in C∗,

W ′(zsp,ℓ) = 0, ℓ = 1, 2, . . . , g + 1.

Here we are assuming there is a finite number g+ 1 of saddle points zsp. The integration contour
CN in (9.5.3) can be chosen in such a way that each Cℓ passes through zsp,ℓ. The integers Nℓ in
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(9.5.3) then count the number of eigenvalues around the ℓth saddle point zsp,ℓ. At large N , the
density of eigenvalues will vanish on Cℓ away from a compact interval Γℓ ⊂ Cℓ, called a cut, with
zsp,ℓ ∈ Γℓ. Therefore

suppρ =

g+1⋃
ℓ=1

Γℓ =: Γ,

and ρ(z) is normalized.

Remark. The requirement that the integration cycle passes through all the g+1 saddle points does
not fix it uniquely. The shape of each Cℓ, and thus of the cuts Γℓ at large N , can be homotopically
deformed in an open neighbourhood of zsp,ℓ, meaning that the matrix model (9.5.2) depends on
(up to) g additional parameters.

In the large N limit, the eigenvalue density solves the saddle point equation∫
Γ

dw

2π

ρ(w)

z − w
=

1

2
W ′(z), (9.5.5)

where ′ means holomorphic derivative ∂
∂z . Here, dw is a holomorphic differential on Γ and, given

any parametrization w : s 7→ w(s) ∈ Γ, dw = ẇ(s)ds is understood, with ds the line element and
ẇ the derivative of the map w : s 7→ w(s).

Recall the definition of the trace of the resolvent ω(z) at large N :

ω(z) :=

∫
dw

ρ(w)

z − w
, z ∈ P1 .

Equation (9.5.5) implies that ω(z) solves [27]

ω(z)2 −W ′(z)ω(z) + f(z) = 0, (9.5.6)

where

f(z) =

∫
Γ

W ′(z)−W ′(w)

z − w
ρ(w)

dw

2π
.

Defining

y(z) = ω(z)− 1

2
W ′(z), (9.5.7)

(9.5.6) becomes

y2 −
(
1

2
W ′(z)

)2

+ f(z) = 0. (9.5.8)

This equation goes under the name of spectral curve. The steps from (9.5.5) to (9.5.8) are standard
and have been applied to holomorphic matrix models since their early days [366] to establish a
bridge between matrix models and geometric problems. The novel aspect of (9.5.8) compared
to the literature is hidden in the form of W ′ and f , which in the present case are not ordinary
polynomials but Laurent polynomials, or meromorphic functions.

We assume for now that V (z) is a Laurent polynomial on P1, with singularities at {0,∞}. The
extension to a meromorphic weight function on C∗ is worked out below. Write

V (z) =

d++1∑
n=−d−+1

tn
|n|
zn =⇒ W ′(z) =

1

λ

d+∑
n=−d−

sgn(n)tn+1z
n +

1

z
, (9.5.9)

where we assume d− ≥ 2 (otherwise we get back the known setting).
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We need to introduce some notation. Define

g = d+ + d− − 1, (9.5.10)

which agrees with the counting of saddle points above, and also t0 = −λ for later convenience.
Besides, denote ρk the moments of the eigenvalue density,

ρk =

∫
Γ
wkρ(w)dw, k ∈ Z.

After some rewriting we get

W ′(z) =
1

λzd−

g+1∑
n=0

zntn+1−d− sgn(n− d−), (9.5.11)

f(z) =
1

λzd−

d−−1∑
n=0

zn

(
n−1∑
k=−1

tk+2−d−ρk−n

)
+

g∑
n=d−

zn

(
g∑

k=n

tk+2−d−ρk−n

) , (9.5.12)

where sgn(0) = +1 by convention. The spectral curve takes the schematic form

y2 =
P (z)

4λ2z2d−
(9.5.13)

where P (z) is a polynomial in z of degree deg(P ) = 2g+2, with coefficients read off from (9.5.11)-
(9.5.12) and that depend on the parameters {tn}, on λ and on the moments {ρk}.

A major difference with respect to the standard unitary matrix models is that {ρk} are free
complex parameters of the theory: they can be tuned deforming Γ, as discussed in Subsection
9.5.1. Recalling that both z, λ ∈ C∗, it is possible to recast (9.5.13) in a more standard form
ŷ = P (z), describing an hyperelliptic complex curve of genus g [366].

Γ is the union of g + 1 branch cuts stretched between pairs of roots of P (z). The roots of
P (z) move inside C∗ as the parameters are varied.24 The coalescence of two roots produces a
singularity of the curve (9.5.13) and corresponds, on the matrix model side, to a phase transitions
from a (g + 1)-cut to a g-cut phase, with either

• two cuts joining, or

• one cut collapsing.

The hyperelliptic curve (9.5.13) is fibered over the moduli space M of the model (9.5.2),
defined as

M = C∗×T × Cg,

with C∗ parametrized by λ, T defined in (9.5.4), and the last factor parametrized by the moments
{ρk}. Note that one of the moments is fixed comparing (9.5.6) with the definition of ω(z) at
|z| → ∞.

Definition. A critical locus C is an irreducible component of the locus in M at which two roots
of P (z) coalesce.

24Without loss of generality, {0,∞} ⊂ P1 are not roots of P (z), because they would correspond to a “non-
minimal” choice of d± in (9.5.9). They can be avoided simply defining ŷ = 2yλzd−±m with m the multiplicity of
the root, and minus (resp. plus) sign if the root is z = 0 (resp. z = ∞).
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The critical loci C ⊂ M necessarily have positive complex codimension, and the hyperel-
liptic fibration is singular along them. Singularities in higher codimension, placed at the (self-
)intersection of critical loci, correspond to multicritical points of the matrix model.

The theory of Abelian differentials provides a suitable framework to analyze the genus g
hyperelliptic curve (9.5.13) [367]. At this stage, the analysis of the spectral curve works exactly
as in the holomorphic deformation of Hermitian matrix models, thus we omit the details and refer
to [367, 368].

Remark. We are now in the position to elaborate more on the remark in Subsection 9.5.1, from a
point of view advocated in [369]. Let

{
Aℓ, Bℓ

}
be a basis of one-cycles in the hyperelliptic curve.

The A-cycles are chosen to go around the cuts Γℓ. Therefore∮
Aℓ

y(z)dz =

∮
Aℓ

ω(z)dz =
Nℓ

N
=: ξℓ.

The first equality follows from the definition (9.5.7) noting that y(z) and ω(z) only differ by a
regular term. Introducing chemical potentials for the filling fractions ξℓ and extremizing the action
with respect to these quantities gives their saddle point value as a function on M . More precisely,
one gets a set of equations analytic in the ratios sℓ := ξℓ

λ [369]. At this point, it is possible to
invert the relations and express the moments {ρk} in terms of the complex variables sℓ, keeping
the latter as free parameters.

Note that only g out of the g + 1 of both quantities are free.

The study of the phases of the model (9.5.2) leads to a stratification of the parameter space
M . We postpone the analysis to Section 9.5.4, discussing explicit models first.

Genus 0

The unique way to obtain a genus 0 spectral curve is from the holomorphic deformation of the
CUE. In that case, the model has no couplings and, as opposed to g ≥ 1, the additional condition
derived from the definition of ω(z) is automatically fulfilled, leaving ρ−1 as unique, unconstrained
parameter. Then, (9.5.13) describes a P1 fibered over C. If we try to get a less trivial model by
considering the insertion of (detU)τN , the consistency condition, which in g ≥ 1 fixes one of the
{ρk}, imposes τ = 0.

9.5.2 Holomorphic GWW

We now put the machinery at work and revisit the phase structure of the holomorphic GWW
model. The phase diagram of this model has been obtained in [370] for λ ∈ R, while the behaviour
at complex coupling has been partially analyzed in [371], although without fully exploiting the
holomorphic deformation.

The GWW model has t−1 = t1 = 1, and tn̸=±1 = 0, whence d+ = 0, d− = 2, g = 1 and only
the moments ρ−2, ρ−1 appear in (9.5.12). Fixing ρ−2 as a function of λ and ρ−1, the spectral
curve of the holomorphic GWW model is [370]

ŷ2 = z4 + 2λz3 +
[
(ρ−1 + 1)λ2 − 2

]
z2 + 2λz + 1. (9.5.14)

It is an elliptic curve. Following the strategy outlined above, we think of (9.5.14) as an elliptic
fibration over C∗×C, with coordinates on the base λ and ρ−1, and identify the phase transitions
with singularities of the fibration.

The discriminant of (9.5.14) is

∆ =
λ2

4

(
λ2ρ−1 − 4

)2
(λ (ρ−1 + 1)− 4) (λ (ρ−1 + 1) + 4) , (9.5.15)
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from which the critical loci are

{∆ = 0} = C1 ∪ C1′ ∪ C2,

C1 :=

{
ρ−1 = −1 +

4

λ
, λ ∈ C∗

}
, C1′ :=

{
ρ−1 = −1−

4

λ
, λ ∈ C∗

}
,

C2 :=

{
ρ−1 =

4

λ2
, λ ∈ C∗

}
.

In Kodaira’s classification [372], C1 and C1′ are singularities of type I1 and C2 is of type I2. The
GWW critical points (λ, ρ−1) = (±2, 1) are singled out as the codimension-two singularities at
which C2 intersects one of the other two critical curves. Besides, we recognize the elliptic curve
(9.5.14) as the Seiberg–Witten curve of N = 2 supersymmetric four-dimensional SU(2) gauge
theory with two flavours [373].

The original GWW transition is thus, from the perspective of the holomorphic deformation,
one of the possible ways to approach the codimension-two singularity from a generic direction. The
singularity at the multicritical points (λ, ρ−1) = (±2, 1) is of Kodaira type III. The corresponding
symmetry is A1, which is precisely the symmetry of Painlevé II, that is known to control the
GWW phase transition [182, 183]. If, instead, we approach the multicritical point not from a
generic direction but moving along a critical locus, the singularity type is enhanced to I∗0.

It is possible to allow t−1 ̸= t1. This corresponds to introduce a θ-term in the GWW lattice
action, θ

2π = t1−t−1

2 . The procedure goes through with only minor modifications, the unique
difference being that the singularities C1,C1′ are placed at ρ−1 = − 1

t−1
± 4

λ
√
t−1

, so in particular

the Z2-symmetry is preserved.

9.5.3 Meromorphic deformations

The formulation can be extended to include weight functions with zeros and poles in C∗. For
concreteness, we consider the illustrative example of our original model (9.2.1) at λ−1 = 0. In this
case

W ′(z) = −τ
[

1

z − µ
+

1

z − µ−1

]
+

1 + τ

z
,

f(z) = τ

[
ρ̃−1(µ)

z − µ
+
ρ̃−1(µ

−1)

z − µ−1

]
− (1 + τ)

z
ρ−1.

In the second line, we have defined

ρ̃−1(µ) :=

∫
Γ

ρ(w)

w − µ
dw,

with, in particular, ρ̃−1(0) = ρ−1. Comparing the definition of y(z) with the spectral curve at
large |z|, we find a pair of consistency conditions, fixing ρ̃−1 as a function of the other parameters,

ρ̃−1(µ) = −
4ρ−1(τ + 1) + µτ(τ + 6) + µ

4 (µ2 − 1) τ
.

Note that the two conditions fix ρ̃−1(µ
±1) independently, and the solutions are consistently

mapped into each other under µ↔ µ−1. We get

y2 =
P (z)

4z2(z − µ)2(z − µ−1)2
, (9.5.16)
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with P (z) a polynomial of degree 4. The spectral curve thus describes again en elliptic fibration
over the moduli space C∗×

{
µ ∈ P1 : 1 < |µ| <∞

}
× C, parametrized by (τ, µ, ρ−1). The dis-

criminant takes the form ∆ = µ5(µ + 1)2(µ − 1)2(τ + 1)4∆̃, the last term being a cumbersome
polynomial of degree 6 in ρ−1, degree 8 in τ and degree 10 in µ. The critical points of the unde-
formed model become higher-codimensional singularities, at which two roots of P (z) collide. The
collection of all critical loci in this model is

C4 ∪ C2 ∪ C2′

6⋃
j=1

C1j ,

with the subscript indicating the order of vanishing of ∆ along the component C . Taking what
we have called the continuum limit in Section 9.4.3, that is, sending τ → τcr(µ) and then µ→ ±1,
with ρ−1 = − τ

µ set to its undeformed value, yields a non-minimal singularity ∆ ∝ (µ± 1)12.

9.5.4 Stratification of the moduli space

The critical loci and their intersections endow the parameter space M with additional structure.

The stratification of an algebraic variety V is a collection of open sets {VI}, with V0 a point
and V max = V , with a partial order given by the inclusion of the closures of {VI}. The parameter
space M of the model (9.5.2) is the union of

M reg, C reg
I , C reg

IJ , . . .

where the superscript means the regular part, and CIJ = CI ∩ CJ , and so on. The inclusion
relations C reg

IJ = CI ∩ CJ ⊂ CI are obvious.

The partial order can be represented with the aid of a Hasse diagram:

M reg

C reg
I C reg

J · · · C reg
K

C reg
IJ C reg

IK· · ·
...

...
...

In general, this does not define a full-fledged stratification of M because multiple final points may
exist. Nonetheless, whenever the potential (9.5.1) has a Z2-symmetry, the Hasse diagram inherits
it. This Z2-symmetry acts as an automorphism of the Hasse diagram, which is mapped into itself
under reflection along the vertical axis. By construction, the Hasse diagram resulting from folding
the initial diagram via this Z2-symmetry determines a stratification of M /Z2.

We draw the Hasse diagram of the holomorphic GWW model of Section 9.5.2:

M reg

C reg
1 C reg

2 C reg
1′

λ = 2 λ = −2 (9.5.17)
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The diagram of the meromorphic model of Section 9.5.3 is schematically

M reg

C reg
2 C reg

4 C reg
2′C reg

13
C reg
14

C reg
12

C reg
15

C reg
11

C reg
16

µ = 1 µ = −1

...
...

The vertical red, dashed line is there to emphasize the Z2 reflection symmetry. Folding the diagram
along that line yields the stratification of M /Z2.

Remark. The results of Section 9.5.2 with t−1 ̸= t1 show that, even for models in which a Z2

reflection symmetry is not manifest from the potential but emerges at large N , the Z2-folding
yields a stratified moduli space.

Symplectic singularities

Recall that H1(Σg,C), the first homology group of a hyperelliptic curve Σg of genus g, is a sym-
plectic space. The A- and B-cycles that we have implicitly used in the study of the spectral curve
(9.5.8) can be chosen to be Darboux coordinates in H1(Σg,C). Moving along M reg corresponds
to vary the symplectic structure without changing the topology of Σg. At the critical loci CI ,
however, either

• a B-cycle collapses, or

• an A-cycle collapses.

Both situations correspond to a singularity of the symplectic form. Therefore, the analysis of
the phase structure of the meromorphic matrix models can be rephrased in terms of symplectic
foliations of symplectic singularities, in the sense of Kaledin [374].

The appearance of symplectic singularities is not entirely unexpected. The consideration of
holomorphic matrix models in their largeN limit lead to the Seiberg–Witten curves [373] of certain
N = 2 gauge theories [366]. The so-called Coulomb branch of these theories is a symplectic
singularity and is stratified [375]. In fact, the use of Hasse diagrams in the present work was
inspired by [376, 377].

As a final remark, we emphasize that the structure uncovered in this section is not specific of
the meromorphic matrix models. The parameter spaces of unitary or Hermitian matrix models
inherit it, as they can be realized as slices inside the parameter space of our meromorphic models.

As an example, the phase diagram of the GWW model is

•

• •

M reg|GWW =
{
λ ∈ R \ {0} , λ2 ̸= 4

}

C1|GWW = {λ = 2} C1′ |GWW = {λ = −2}
(9.5.18)

It is found by fixing ρ−1 = 1, taking the slice λ ∈ R \ {0} and identifying the intersection of such
subspace with the strata in (9.5.17).25

25Accidentally, this is precisely the Hasse diagram of the reduction to three dimensions of the SU(2) theory with
two flavours, captured by the holomorphic GWW of Section 9.5.2, cf. [377, Eq.(4.2)]. It should be stressed, however,
that the strata in (9.5.18) are real, not hyperKähler.
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9.A Large N limit: Gapped solutions

In this appendix we sketch the computation of ω(z), defined in (9.3.10), which allows to extract
the eigenvalue density in the phases with one or more gaps. The procedure is standard and we
follow closely [330, 11], glossing over many details. We work in Phase Ia, since all other phases
are analyzed in similar fashion.

Introduce the function ϱ(z) of complex variable z ∈ C such that ϱ(eiθ) = ρ(θ) for eiθ ∈ Γ. The
saddle point equation (9.3.4) is rewritten as

P

∫
Γ

dw

2πw
ϱ(w)

z + w

z − w
=W ′(z) (9.A.1)

where

W ′(z) = −i
[
Y

(
z − 1

z

)
− τ

(
1 +

µ

z − µ
+

µ−1

z − µ−1

)]
.

Equation (9.A.1) is valid for z ∈ Γ, and is complemented by the normalization condition∫
Γ

dw

2πiw
ϱ(w) = 1. (9.A.2)

Recall that we have started with a Z2-symmetric system, invariant under z 7→ z−1 for z ∈ T. We
will thus find an eigenvalue density with symmetric support, and in particular ∂Γ =

{
e−iθ0 , eiθ0

}
in a one-cut phase. Then, depending on whether the gap opens at θ = π or θ = 0, Γ will be
the arc on the unit circle connecting −θ0 to θ0 or θ0 to −θ0, respectively, with orientation always
taken counter-clockwise.

Recall from the definition (9.3.10) that

ω+(e
iθ)− ω−(e

iθ) = 2ϱ(eiθ), eiθ ∈ Γ.

In turn, from the definition of Cauchy principal value and (9.A.1) we immediately get

ω+(e
iθ) + ω−(e

iθ) = −2iW ′(eiθ). (9.A.3)

The normalization (9.A.2) and the definition (9.3.10) imply that ω(z)→ 1 as |z| → ∞. We have
then reduced the problem of finding the eigenvalue density to the problem of determining the
discontinuity of ω(z) along Γ, from the knowledge of its regular part and the boundary condition
ω(z →∞) = 1. It is standard procedure to reduce the problem (9.A.3) to a discontinuity equation
for a new, auxiliary function Ω(z) related to ω(z) via

ω(z) =
√
(eiθ0 − z) (e−iθ0 − z)Ω(z). (9.A.4)

We take the square root with positive value, but any potential ambiguity in the intermediate steps
and definitions from now on, would drop out from the final answer.

Writing[√
(eiθ0 − z) (e−iθ0 − z)

]
±
=
[√

z ·
√

2 cos θ − 2 cos θ0

]
±
= ∓eiθ/2

√
2 cos θ − 2 cos θ0

for z = eiθ ∈ Γ, we obtain from (9.A.3) the discontinuity equation for Ω(z):

Ω+(e
iθ)− Ω−(e

iθ) = 2e−iθ/2 iW ′(eiθ)√
2 cos θ − 2 cos θ0

. (9.A.5)

220



Phases of unitary matrix models and their meromorphic deformations

For a multi-cut phase, with

Γ ∼= {θ0,− ≤ θ ≤ θ0,+} ∪ {θ1,− ≤ θ ≤ θ1,+} ∪ · · · ∪ {θk,− ≤ θ ≤ θk,+}

the procedure is the same, but with Ω(z) defined via

ω(z) =

√√√√ k∏
j=0

(
eiθj,+ − z

) (
eiθj,− − z

)
Ω(z).

Let us now introduce a closed contour CΓ which is a Jordan curve enclosing Γ but not z, and
oriented counter-clockwise. See Figure 9.11 for the contour CΓ in Phase Ia.

Figure 9.11. Contour CΓ encircling the cut Γ.

From the definitions (9.3.10) and (9.A.4) it follows that Ω(z) falls off (at least) as 1/z at
infinity. Then, for z lying in the exterior of CΓ, Cauchy’s theorem together with (9.A.5) implies

Ω(z) =

∮
CΓ

dw

2πi

iW ′(w)

(z − w)
√
(eiθ0 − w) (e−iθ0 − w)

On the other hand, becauseW ′(w) is meromorphic we can deform the contour CΓ into an infinitely
large circle, picking the poles of the integrand. We find

Ω(z) = − iW ′(z)√
(eiθ0 − z) (e−iθ0 − z)

−
∮
C∞

dw

2πi

iW ′(w)

(z − w)
√

(eiθ0 − w) (e−iθ0 − w)

+
∑

zp∈{0,µ,µ−1}

Res
w=zp

iW (w)

(z − w)
√

(eiθ0 − w) (e−iθ0 − w)
(9.A.6)

where the first term is the residue at w = z, the second term is the remaining contour integral
along a circle at infinity, which in our case simply contributes Y , and the last term includes the
residues at the poles zp of W ′(w).

In Phase Ia, explicit computation of each term leads to

ωIa(z) = −iW ′(z)+
√

(eiθ0 − z) (e−iθ0 − z)

[
Y

(
1 +

1

z

)
− τ√

1 + µ2 − 2µ cos θ0

(
µ

z − µ
− 1

z − µ−1

)]
.

The solution in the other phases is found likewise.
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9.B Filling fraction fluctuations

This appendix contains the analysis of the effect of taking into account fluctuations of the filling
fractions around the equilibrium configuration.

For a generic matrix model in a two-cut phase, the dependence of the filling fractions on
the parameters of the theory should be taken into account when computing physical observables
[357].26 Below we briefly review how this effect comes about, and study it for the model at hand.
We start with Phase III, and look at Phase II projected onto the real line, as in Section 9.3.4.

9.B.1 Phase III

For the two-cut solution in Phase III, let NL be the number of eigenvalues in the left arc around
θ = π, 0 ≤ NL ≤ N , and NR = N −NL the number of eigenvalues in the right arc around θ = 0.
Let also ξ = NL

N and 1− ξ = NR
N denote the corresponding filling fractions.

The values of yL = cos (θ∗ + δθ) and yR = cos (θ∗ − δθ) can be fixed, as functions of ξ and of
the other parameters, through the equations

2

π

∫ yL

−1
dy

√
(yR − y)(yL − y)

1− y2

[
−Y +

τµ(µ2 − 1)√
(1 + µ2 − 2µyL)(1 + µ2 − 2µyR)(1 + µ2 − 2µy)

]
= ξ,

2

π

∫ 1

yR

dy

√
(y − yR)(y − yL)

1− y2

[
−Y +

τµ(µ2 − 1)√
(1 + µ2 − 2µyL)(1 + µ2 − 2µyR)(1 + µ2 − 2µy)

]
= 1− ξ,

that come from the definition of ξ after changing variables y = cos θ. Then, the value of ξ is fixed
by the equilibrium condition

dSeff
dξ

∣∣∣∣
ξ=ξsp

= 0. (9.B.1)

For example, approximating close to the critical surface diving Phase III from Phase Ib, we find

∂ξsp
∂yR

∣∣∣∣
yR=1

=

√
2− 2yL
π

(
1

2
− τ

µ− 1
+

τµ(µ+ 1)

(µ− 1)3
√
1 + µ2 − 2µyL

)

where we have also substituted Y = Ycr,b. It has been shown in [357] that the quantum fluctuations
around the saddle point ξsp contribute to the free energy a term of the form − 1

N2 log ϑ(Nξsp),
where ϑ(z) is the Jacobi theta function. See Appendix 9.B.2 below for more details and a very
short review of the derivation. This is a sub-leading contribution to the free energy but, due to
the dependence on Nξsp, each derivative generates a factor of N . Therefore, the ξsp-dependent
part becomes of the same order as the leading order term when differentiating the Wilson loop
vev, and must be taken into account. The relevant part of the derivative is

∑
y∈{yL,yR}

[
d

dz
log ϑ(z)|z=Nξsp

]2( ∂y
∂Y

∂ξsp
∂y

)2

,

which yields a non-trivial contribution to the derivative of the Wilson loop vev in Phase III.
However, when approaching the critical loci, ξ → 0 if Y → Ycr,a or ξ → 1 if Y → Ycr,b, and the
derivative of the theta function evaluated at an integer vanishes.

This shows that the effect of the filling fractions does not play any role in determining the
order of the phase transition, despite being non-trivial in the bulk of Phase III.

26The original work [357] dealt with Hermitian matrix models, but the argument extends to the present setting.
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9.B.2 Phase II

We now discuss the same effect in Phase II. It is more convenient and akin to the work [357] to
do this in the alternative, Hermitian matrix model presentation of Section 9.3.4. The argument
can be succinctly summarized as follows.

Consider a two-cut solution with support suppρp.II = ΓL ∪ ΓR, and denote by ξ = NL
N and

1 − ξ = NR
N the corresponding filling fractions, as above. The saddle point value ξsp of ξ is fixed

by (9.B.1). Then, in the large N approximation, the partition function takes the form [357]

Z =
N∑

NL=0

e
−N2Fpert−N2

2
(ξ−ξsp)2 ∂2ξSeff |

ξ=ξsp
+O((ξ−ξsp)3)

where Fpert is the perturbative free energy to all orders in the 1
N2 expansion. This yields [357, 378]

− 1

N2
logZ = F +

1

N2
Fnlo − 1

N2
log ϑ(Nξsp) +

1

2N2
log
(
2π ∂2ξSeff

∣∣
ξ=ξsp

)
+O(N−4),

where F is the leading order or planar free energy, Fnlo the next-to-leading order correction,
and (after an implicit resummation) we have recognized the Jacobi theta function ϑ(Nξsp). The
modular parameter of the theta function is i2π/(∂2ξSeff(ξsp)), and the dependence on it is kept
implicit in the notation.

For the case at hand, however, the effective action is an even function, the two wells have
identical depth, and all the physical observables we consider preserve this property. We thus have
ξsp = 1

2 , independent of the parameters of the theory, and the effect we have just described will
remain sub-leading [378]. This would not be the case for other type of physical observables that
are not protected by the parity symmetry. See [357] for discussion and examples.
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Part III

Deformations of two-dimensional
Yang–Mills theories
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Chapter 10

Prologue to Part III

10.1 Yang–Mills theory in two dimensions

Low dimensional quantum field theories have been proved for decades to be a very valuable
source of exact results, providing numerous insights into quantum theory as well as showing many
direct relationships with statistical mechanical systems, strongly correlated systems and integrable
systems, just to name a few.

Yang–Mills theory, which accurately describes strong interactions in four dimensions, is exactly
solvable in two dimensions [379, 380]. The solvability stems from the lack of propagating gauge
degrees of freedom in two spacetime dimensions. Nonetheless, two-dimensional Yang–Mills theory
is an inexhaustible source of inspiration and has received an enormous amount of attention over
the years.

A chief reason for this widespread interest is that, despite its apparent simplicity, the theory is
not trivial and retains topological and geometric information on the spacetime manifold. Moreover,
a host of its deformations is still exactly solvable, thus providing a valuable laboratory to probe
ideas and dualities that would be otherwise hard if not impossible to test non-perturbatively. A
third motivation is the appearance of two-dimensional Yang–Mills as a protected subsector of
four-dimensional supersymmetric gauge theories [381–383].

We review quantum Yang–Mills theory on a closed oriented Riemann surface Σ of genus h and
area A [384], which is the main subject of Part III of the dissertation. We focus on gauge group
SU(N) for concreteness. This brief chapter is meant as a minimal introduction to the topic, and
several details of q-deformed Yang–Mills will be given in due course in the following chapters.

The Yang–Mills Lagrangian density is TrF ∧ ∗F , where F is the curvature of a connection in
a principal SU(N)-bundle (i.e. F is the curvature of the gauge field), and ∗ is the Hodge dual
operator. We endow Σ with a symplectic form ω compatible with the Riemannian metric. The
Yang–Mills action on Σ is then

SYM = − 1

2g2YM

∫
Σ
TrF ∗ F. (10.1.1)

A peculiarity of two dimensions in that, when exponentiated and inserted in a path integral, the
action (10.1.1) is equivalent to

SYM =

∫
Σ
Tr

(
−iϕF +

g2YM

2
ϕ2ω

)
.

A lattice regularization of the functional integral and the self-reproducing property of the theory
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on a plaquette led to the group theoretical expansion of the partition function [379, 380]

Z[Σ] =
∑
R

(dimR)2−2h exp

(
−Ag

2
YM

2
C2(R)

)
, (10.1.2)

where the sum runs over all isomorphism classes R of irreducible representations of the SU(N)
gauge group, dimR is the dimension of the representation R and C2(R) is the quadratic Casimir
invariant of R. For U(N) gauge theory, the expression is identical except that the sum runs over
irreducible U(N) representations, that are obtained from those of SU(N) via U(N) = SU(N)×
U(1)/ZN . Stated differently, using the short exact sequence of groups

1 −→ SU(N) −→ U(N) −→ U(1) −→ 1

the irreducible U(N) representations are obtained from those of SU(N) summing over the U(1)
sector.

As expected from power counting of mass dimensions, the gauge coupling g2YM only appears
multiplying the parameter A = Area(Σ), thus, in prevision of a ’t Hooft large N limit, we redefine
A′ = ANg2YM (and drop the prime henceforth).

The large N limit of (10.1.2) was studied in [193], showing the presence of a phase transition,
known as Douglas–Kazakov (DK) phase transition. As was the case with the Gross–Witten–Wadia
phase transition [190–192], it is of third order. Then, in [385], using the method of orthogonal
polynomials, it was shown how the transition is triggered by instantons.
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Chapter 11

Five-dimensional cohomological
localization and squashed
q-deformations of two-dimensional
Yang–Mills theory

11.1 Introduction to the chapter

Supersymmetric gauge theories in five and six dimensions have undergone a surge of extensive
and diverse investigations in recent years. They have played critical roles in the understanding of
the strong coupling dynamics of quantum field theory, of M-theory where they can be engineered,
and of various problems in geometry. Their compactifications generate many interesting theories
in lower dimensions, which can be used to elucidate novel features of lower-dimensional quantum
field theories from a geometric perspective.

Five-dimensional gauge theories with N = 1 supersymmetry can be engineered from compacti-
fications of M-theory on Calabi-Yau threefolds [220, 386, 387], which are related to the embedding
of topological string theory into M-theory [388]. In six dimensions the worldvolume theory of coin-
cident M5-branes is a six-dimensional N = (2, 0) superconformal field theory. Twisted compactifi-
cation of this worldvolume theory on an n-punctured Riemann surface Σh,n of genus h generically
engineers an N = 2 superconformal field theory of class S in four dimensions [389, 390], which
upon further twisted compactification on a circle S1 in the Schur limit is conjecturally equivalent
to two-dimensional q-deformed Yang–Mills theory on Σh,n in the zero area limit [391]. Because
of the lack of a Lagrangian description of this six-dimensional theory, its twisted partition func-
tion is most easily computed by dimensionally reducing on a circle of radius β and computing
the twisted partition function of five-dimensional N = 2 supersymmetric Yang–Mills theory with
gauge coupling g2YM = 2π β [392, 393]; the duality with two-dimensional q-deformed Yang–Mills
theory in this five-dimensional setting was checked by [394] using explicit supersymmetric local-
ization techniques. From the four-dimensional perspective, the class S theory is then equivalent
to a three-dimensional theory on a certain squashed deformationMb of the three-dimensional part
of the compactification in six dimensions. We mostly focus on the round three-sphere S3 and its
squashed deformations S3b .

These dualities have by now been extensively discussed. The purpose of the present chapter
is to survey and investigate these correspondences from a new and more detailed perspective; we
give extensive pointers to and comparisons with relevant previous works on the subject as we
go along. The main technique which we exploit is cohomological localization, as pioneered by
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Källén for three-dimensional theories in [137], and subsequently extended to five dimensions by
Källén, Qiu and Zabzine in [230, 231]. This enables a unified treatment of supersymmetric gauge
theories in three and five dimensions using solely topological techniques based on the Atiyah–
Singer index theorem, which extends and simplifies previous treatments based on supersymmetric
localization; this method is ultimately one of the main messages of the present work. Compared
to previous work on the subject, we study full topologically twisted theories, instead of partially
twisted theories, with which we further extend general results in the literature on cohomological
localization. Our simplified treatment also unavoidably comes with some limitations, and we shall
extensively discuss which backgrounds do not fit into our localization framework.

In three dimensions we provide different simplified derivations of some known scattered results,
treated in a unified framework. For example, the index theory calculations of localization on S3b in
[395] uses a procedure which is different from that of [137], and their Lie derivative appearing in the
square of the supercharge is not along the Reeb vector field. We will explain this point thoroughly
in this chapter. When the supersymmetry transformations of [395, App. B] are put into the
cohomological form of [137], index theorem calculations can be applied to obtain the same results
in a more economical way. Generally, our procedure of topological twisting rigorously justifies the
localization calculations we employ at the field theory level; in particular, it justifies the usage of
the index formula and related techniques from [230, 231].

In five dimensions the core of our work starts, where the reader versed in localization techniques
may begin. We adapt the formalism of [230, 231] to reobtain some known results in a different
way using a twisted gauge theory approach and also extend some general results (see in particular
our localization formulas (11.4.4) and (11.4.6)). In particular, we rederive the results of [396, 244]
through the Atiyah–Singer index theorem, first in the case of S3 × Σh,0 (which for h = 0 is a
relatively straightforward adaptation from the literature), and then extending it to S3b × Σh,0.
We also describe the pushdown of these theories to the horizontal four-dimensional part of the
geometry, which was justified in [244] only for h = 0, and is different from [231]. We study the
resulting theory in detail and describe its precise relation to q-deformed Yang–Mills theory on
Σh,0; we improve on various results in the literature (with some overlap with [244]), for example
determining the two-dimensional theory at non-zero area, and pay more attention to the underlying
matrix model, which has not been previously considered. For non-trivial squashing parameters
b ̸= 1, the resulting two-dimensional gauge theory is new and we refer to it as a squashed q-
deformation of Yang–Mills theory on Σh,0. When b2 ∈ Q, we show that this theory is closely
related to the q-deformations of Yang–Mills theory considered in [397] in a completely different
setting, which in turn is related to three-dimensional Chern–Simons theory on general lens spaces
L(p, s).

The outline of the remainder of the current chapter is as follows. We have endeavoured
throughout to give a relatively self-contained presentation, while glossing over some well-known
technical aspects for which we refer to the pertinent literature; thus some of the earlier sections in
the chapter are somewhat expository in nature. We begin in Section 11.2 by giving a more detailed
introduction and background to the setting discussed briefly above, summarising the geometric
settings and classifications, techniques and notation used.

Section 11.3 is dedicated to the three-dimensional case, wherein we review the ideas behind
Källén’s cohomological localization technique, and explain how they are modified on squashed
manifolds. We discuss the construction of the cohomological gauge theory, the computation of the
one-loop determinants for the vector multiplet on the two possible classes of Seifert three-manifolds
admitting N = 2 supersymmetry, and the computation of the hypermultiplet one-loop determi-
nants. We describe several explicit applications of our localization formulas. Section 11.4 presents
the five-dimensional analog of our considerations from Section 11.3. We describe the cohomologi-
cal field theory and derive the one-loop determinants of the vector multiplet in the two classes of
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Seifert five-manifolds admitting N = 1 supersymmetry. We describe explicit applications of our
localization formulas, and also explain in detail the relationship with a four-dimensional theory.
Section 11.5 explains the relation between our five-dimensional cohomological field theories and
two-dimensional Yang–Mills theory. We derive the standard q-deformation of Yang–Mills theory
on Σh,0 through a localization calculation on S3×Σh,0, and subsequently extend these considera-
tions to the squashed deformations S3b ×Σh,0 where we obtain a new two-parameter deformation.
We investigate the matrix model in detail and derive a new correspondence with Chern–Simons
gauge theory on lens spaces L(p, s). We conclude by briefly addressing how to obtain more gen-
eral deformations of two-dimensional Yang–Mills theory through localization calculations in higher
dimensions.

Three appendices at the end of the chapter provide various technical details complementing
some of the analysis in the main text. Appendix 11.A summarises our conventions and notation
for spinors, which are adapted to treat the three-dimensional and five-dimensional cases, as well
as the vector multiplets and matter hypermultiplets, in a unified way. Appendix 11.B provides
mathematical details of the different types of squashings of spheres that preserve N = 2 supersym-
metry in three dimensions. Appendix 11.C provides some mathematical details on Sasaki-Einstein
manifolds, which preserve N = 1 supersymmetry in five dimensions, and we briefly review the for-
malism of [398] to better explain why our results appear to be so different from those of [398, 399].

11.2 Preliminaries on superconformal field theories and localiza-
tion

In this preliminary section we collect the relevant background material that will be used through-
out the current chapter. We begin with a discussion of superconformal field theories in six di-
mensions, which gives one of the primary motivations behind the present investigations. We
discuss how certain compactifications of these theories on a Riemann surface suggest a dual-
ity between four-dimensional superconformal theories and the standard q-deformation of two-
dimensional Yang–Mills theory. The purpose of this chapter is to investigate in detail how this
duality is modified in the case where the three-dimensional part of the compactification is a
squashed geometry, and we describe how cohomological localization techniques for superconfor-
mal field theories on Seifert manifolds will be applied to investigate the correspondence.

11.2.1 Squashed geometry and six-dimensional superconformal field theories

Consider the six-dimensional superconformal N = (2, 0) theory with gauge group G of ADE type
on a twisted compactification of the form

M6 = S1 × S3 × Σh ,

where S3 is the standard round three-sphere and Σh is a compact oriented Riemann surface of
genus h without boundaries. This setup dictates a remarkable duality: The correlators of a certain
two-dimensional topological quantum field theory on Σh compute the partition function of a four-
dimensional N = 2 field theory of class S on S1 × S3, which is the superconformal index [400]

CI(u, q, t) = Tr (−1)F
( t

u q

)r
uJ+ qJ− tR,

where J± are the rotation generators in the two orthogonal planes constructed from the Cartan
generators of the Lorentz SU(2)L × SU(2)R isometry group of S3, the operator r is the U(1)r
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generator, and R is the SU(2)R generator of R-symmetries. The superconformal index of four-
dimensional N = 2 superconformal field theories was originally introduced in [334, 401], and it is
a highly non-trivial function of the three superconformal fugacities (u, q, t).

However, this duality is difficult to test because our current understanding of the six-dimensional
N = (2, 0) theory is rather incomplete. Instead, we dimensionally reduce over S1, which yields
five-dimensional supersymmetric Yang–Mills theory. The Yang–Mills coupling in five dimensions
has dimensions of length, g2YM = 2π β, where β is the radius of S1. The dimensional reduction over
S1 of the supersymmetric partition function on S1 × S3 is achieved by assigning scaled chemical
potentials to the fugacities according to

q = e2πiβ ϵ1 , t = e2πiβ ϵ2 and u = e2πiβ ,

and taking the limit β → 0. Then the four-dimensional index becomes a three-dimensional
ellipsoidal partition function [402–404], i.e. the partition function on the squashed sphere S3b with
squashing parameter

b =

√
ϵ1
ϵ2
.

This deformation of the three-sphere of radius r =
√
ϵ1 ϵ2 can be parametrized by the ellipsoid in

C2 defined by
b2 |z1|2 + b−2 |z2|2 = r2 ,

which has isometry group U(1)× U(1).
Hence we consider supersymmetric Yang–Mills theory on the five-manifold

M5 = S3b × Σh .

This theory sits in the infrared of a renormalization group flow triggered by a relevant deformation
of a five-dimensional superconformal field theory in the ultraviolet [215]. The coupling to the
ellipsoid S3b [281] described above, preserves four supercharges, and the theory can alternatively
be taken to be a half-BPS descendant of the N = (1, 0) superconformal field theory on S1×S3b×Σh.
On the other hand, to preserve eight supercharges we may use the squashed sphere S3b of [405]
(see Appendix 11.B for details), for which the five-dimensional theory descends from twisted
compactification of the N = (2, 0) superconformal field theory on S1 × S3 × Σh with round
S3. The geometric meaning of the squashing parameter b is different in the two cases: b > 0
for the ellipsoid, while b ∈ C with |b| = 1 for the squashed sphere. From the point of view
of the matrix ensemble we will find in Section 11.5.4, the natural choice would be b > 0. In
Section 11.5 we consider both cases. We will find that, regardless of what choice we make for S3b ,
the partition function is the same and is a holomorphic function of b in the punctured complex
plane C \ {0} ∼= P1 \ {0,∞}, so we may start with either the squashed sphere or the ellipsoid and
then analytically continue the result.

11.2.2 Reductions to two and three dimensions

By a localization calculation over the squashed sphere S3b , we will identify the partition function of
the two-dimensional gauge theory dual on Σh of the N = 2 theory of class S. We are exclusively
interested in the slice of the superconformal fugacity space defined by the Schur limit u = 0, q = t
of the superconformal index which is the Schur index

CI(q) = Tr (−1)F qJ−+R,

where the trace is now restricted to states with U(1)r charge r = J+. In this case the index was
computed in [391, 406] from a topological quantum field theory on the Riemann surface Σh, which
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can be identified with the zero area limit vol(Σh) = 0 of the usual q-deformed two-dimensional
Yang–Mills theory; the duality with this two-dimensional gauge theory is confirmed in [394] by
an explicit localization computation on S3 × Σh (i.e. for b = 1). The q-deformed Yang–Mills
theory is not topological when vol(Σh) ̸= 0, but it still has a natural class S theory interpretation
as the supersymmetric partition function of the (2, 0) theory on S1 × S3 × Σh where the area
of the ultraviolet curve Σh is kept finite [407]. We shall study this proposal explicitly via a
localization calculation on the five-manifold S3b × Σh. The two-dimensional theory we find is a
further deformation by the squashing parameter b, that we call ‘squashed’ q-deformed Yang–Mills
theory. For later use, let us now briefly review the standard q-deformation of two-dimensional
Yang–Mills theory.

Let g be the Lie algebra of a connected Lie group G. Let △ be the root system of g and △+

the system of positive roots; similarly let Λ ∼= Zrank(G) be the weight lattice of g with dominant
weights Λ+. We fix an invariant bilinear form (−,−) on g, usually the Killing form. Let

δ =
1

2

∑
α∈△+

α

be the Weyl vector of g. The vector 2 δ is always a weight of g; if G is semi-simple, then δ is also
a weight and we can identify it with an integer vector δ ∈ Zrank(G).

The partition function for the q-deformation of Yang–Mills theory with gauge group G on
a closed oriented Riemann surface Σh of genus h ≥ 0 can be written as a generalization of the
Migdal heat kernel expansion given by [408]

Zh,p(q) =
∑
λ∈Λ+

dimq(Rλ)
2−2h q

p
2
(λ+2 δ,λ) , (11.2.1)

where p ∈ Z is a discrete parameter and the sum runs over all isomorphism classes of irreducible
unitary representations Rλ of G which are parametrized by dominant weights λ ∈ Λ+. The
deformation parameter

q = e−gstr

is identified with the coupling constant gstr in topological string theory. The quantum dimension
of the representation Rλ labelled by λ ∈ Λ+ is

dimq(Rλ) =
∏
α∈△+

[
(λ+ δ, α)

]
q[

(δ, α)
]
q

, (11.2.2)

where

[x]q =
qx/2 − q−x/2

q − q−1
(11.2.3)

for x ∈ R is a q-number. This theory is closely related to Chern–Simons theory on a principal
U(1)-bundle of degree p over Σh [136].

For many computations it is useful to have an explicit expression for the partition function
(11.2.1) in terms of highest weight variables. For this, we define shifted weights k⃗ ∈ Zrank(G) by

k⃗ = λ+ δ , (11.2.4)

and use the Weyl reflection symmetry of the summand of the partition function (11.2.1) to remove
the restriction to the fundamental chamber of the summation over k⃗. Up to overall normalization,
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the partition function (11.2.1) can thus be written as

Zh,p(q) =
∑

k⃗∈(Zrank(G))reg

∆(gstr k⃗ )
2−2h e−

p gstr
2

(k⃗,⃗k ) , (11.2.5)

where the Weyl determinant is given by

∆(x⃗ ) =
∏
α∈△+

2 sinh
(α, x⃗ )

2

for x⃗ = (x1, . . . , xrank(G)) ∈ Crank(G). The sum in (11.2.5) is restricted to those shifted weights

where ∆(gstr k⃗ ) is non-zero, i.e. (α, k⃗ ) ̸= 0 for α ∈ △+.
When the gauge group is the unitary group G = U(N), this two-dimensional gauge theory is

conjecturally a non-perturbative completion of topological string theory on the local Calabi-Yau
threefold which is the total space of the rank 2 holomorphic vector bundle

OΣh
(p+ 2h− 2)⊕OΣh

(−p) −→ Σh,

with N D4-branes wrapping the exceptional divisor OΣh
(−p) and D2-branes wrapping the base

Σh [408]. In turn, for h = 0 the two-dimensional theory defines an analytical continuation of
Chern–Simons gauge theory on the lens space L(p, 1) to the case where q is not a root of unity [409].
In Section 11.5 we shall find that five-dimensional cohomological localization over S3b × Σh gives
a squashed deformation of this theory at p = 1, which for genus h = 0 and rational values p/s
of the squashing parameter b2 is an analytical continuation of Chern–Simons theory on the more
general lens spaces L(p, s) ∼= S3b .

The correspondence with three-dimensional field theories has also been studied from other
perspectives. In [410], the dimensional reduction of six-dimensional theories on S1 × S3b × Σh is
considered by reducing to five dimensions as above, compactifying on Σh, and then obtaining a
three-dimensional theory on the squashed sphere; this enables a comparison of the two possible
compactification paths: first along S1 and then on Σh to obtain a theory on S3b , or first along Σh to
obtain a four-dimensional theory of class S and then relating it by standard reasoning to the three-
dimensional partition function. In [411–413] the five-dimensional theory on M3 × S2 is obtained
from dimensional reduction of the six-dimensional superconformal field theory on S1×M3×S2 for
more general three-manifoldsM3. The resulting theory onM3 is related to complex Chern–Simons
theory. In these cases the theory is partially twisted along M3, and supersymmetric localization
on S2 is used to reduce to a twisted three-dimensional theory; this differs from the perspective
of [394, 396], where the partial twist is along Σh and localization over S3 reduces the theory to two
dimensions. In contrast, here we will consider the fully twisted theory on S3b×Σh. Finally, in [414],
with squashed sphere of [405], the six-dimensional theory on S3b ×M3 is reduced along the Hopf
fibre of S3b , then twisted alongM3 and localized to reduce along S2; the resulting three-dimensional
theory is the same as in [411, 412].

11.2.3 Basics of cohomological localization

In this chapter we use techniques based on localization theorems in equivariant cohomology, ap-
plied to supersymmetric quantum field theory, see e.g. [37, 38] for introductions to the subject;
we will now briefly sketch the main ideas that will be used extensively in the remainder of this
chapter. Supersymmetric localization is a technique which allows the reduction of a supersym-
metry preserving Euclidean path integral to an integral over the smaller set of fixed points of a
supercharge Q. To compute the partition function, one adds a Q-exact term QV to the action S of
the theory and computes the deformed partition function Z(t) defined by functional integration of
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the Boltzmann weight e−S−tQV for t ∈ R. Z(0) is the original partition function we wish to com-
pute. Supersymmetry of the path integral then implies that Z(t) is formally independent of the
parameter t, so that letting t→∞ and choosing the localizing term V to be positive semi-definite,
the functional integration reduces to a localization calculation around the fixed points QV = 0
of the supercharge Q. In general the set of fixed points is a superspace, with odd coordinates
associated with supersymmetric fermionic modes that have vanishing action in the localizing term
in the bosonic background.

As in the rest of the dissertation, we consider Euclidean manifolds preserving rigid supersym-
metry; we restrict them to non-trivial circle bundles M2n+1 → K2n, whose total spaces have odd
dimension 2n+ 1, in order to avoid dealing with fermionic fixed points. We shall derive the fixed
point loci based on cohomological forms of the (BRST) supersymmetry transformations which are
compatible with the U(1)-action on the circle bundle [137, 415]; this procedure is called topological
twisting and the resulting theory is called a cohomological field theory (in the sense of equivariant
cohomology). We shall also only consider localization on the Coulomb branch of the supersym-
metric gauge theory, where the path integral is reduced to a finite-dimensional integral over a
classical moduli space parameterized by scalars in vector multiplets, and holonomies and fluxes
of gauge fields around non-contractible cycles in M2n+1 (possibly together with other continuous
moduli).

The localization calculation amounts to computing a ratio of one-loop fluctuation determinants
which is schematically given by [56]

h(ϕ) =
det iLϕ|cokerD
det iLϕ|kerD

,

where D denotes differential operators entering the localizing terms V , and Lϕ = −iQ2 generates
the geometric U(1)-action and gauge transformations parametrized by ϕ on the fields of the theory;
the adjoint scalar ϕ is Q-closed and does not have a fermionic partner. Then the equivariant
cohomology in the localization of the supersymmetric gauge theory consists of gauge-invariant
states on the base space K2n of the circle bundle, together with an infinite tower of Kaluza-Klein
modes on the S1 fibre. The effective contribution to this ratio from the zero modes which remain
after cancellation between fermionic and bosonic states is computed using the Atiyah–Singer index
theorem for transversally elliptic operators and the Atiyah–Bott localization formula in equivariant
cohomology for the U(1)-action on M2n+1. The schematic form of the localized partition function
is then given by

Z(M2n+1) =

∫
g
dσ

∫
MBPS

G (M2n+1)
dm e−Scl(m;σ) Zvec(M2n+1)Zhyp(M2n+1) ,

where g is the Lie algebra of the gauge groupG, and M BPS
G (M2n+1) is the BPS locus inside a moduli

space ofG-connections onM2n+1 parametrized by modulim. The action Scl is the classical bosonic
action, while Zvec and Zhyp are respectively the one-loop fluctuation determinants associated with
the vector multiplet and the matter hypermultiplets of the supersymmetric gauge theory.

11.2.4 Localization of N = 1 gauge theories on Seifert manifolds

Our focus is mainly on Seifert manifolds which admit a free U(1) action, so that they admit a
U(1) isometry. We shall comment where appropriate on the extension to more general principal
U(1)-bundles over orbifolds, where the U(1) action has fixed points.

Geometric setup

Let M2n+1
π−−→ K2n be a circle bundle of degree p over a compact Kähler manifold (K2n, ω) of

real dimension 2n with [ω] ∈ H2(K2n,Z). The almost contact structure κ ̸= 0 on M2n+1 can be
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chosen to be a connection one-form on this bundle which is locally written as

κ = dθ + p π∗(a) , (11.2.6)

where θ ∈ [0, 2π r) is a local coordinate of the S1 fibre and a is a local symplectic potential for
ω = da. Then

dκ = p π∗(ω) . (11.2.7)

In contrast to [230, 231], we will not assume κ to be a K-contact structure onM2n+1. Instead, our
interest will mainly focus on product manifolds M2n+1 =M2n−1×Σh, where M2n−1 is a compact
contact manifold, but in general not K-contact, and Σh is a compact Riemann surface of genus
h. Then ω = ωK2n−2 + ωΣh

is the sum of the symplectic forms on the base K2n−2 of the Seifert

fibration of M2n−1 and Σh, and κ ∧ (dκ)∧(n−1) ̸= 0 is proportional to the volume form on M2n−1

induced by a metric compatible with the contact structure. The canonical volume form on the
total space M2n+1 is

dΩM2n+1 =
(−1)n

2n−1 (n− 1)!
κ ∧ (dκ)∧(n−1) ∧ ωΣh

. (11.2.8)

The Reeb vector field ξ is defined by the duality contraction

ξ⌞κ = 1

and the invariance condition

Lξκ = ξ ⌞ dκ = 0 ,

where Lξ = d ξ ⌞+ ξ ⌞d is the Lie derivative along ξ. It is the generator of the U(1)-action on
M2n+1, and in the coordinates (11.2.6) it assumes the form

ξ =
∂

∂θ
.

A natural choice of U(1)-invariant metric on M2n+1 is given by

ds2M2n+1
= π∗

(
ds2K2n

)
+ κ⊗ κ ,

where ds2K2n
is the Kähler metric on K2n. Any k-form α on M2n+1 can be decomposed using the

projector κ ∧ ξ ⌞ into horizontal and vertical components as

α = αH + αV := (1− κ ∧ ξ ⌞ )α+ κ ∧ ξ ⌞α ,

where ξ ⌞α is the k−1-form component of α along the fibre direction.
The computation of the perturbative partition function of (twisted) N = 1 supersymmetric

Yang–Mills theory on M2n+1 is described in [230, 231], using equivariant localization techniques
with respect to the U(1) action on M2n+1 and the maximal torus of the gauge group G. The
relevant computations typically involve the determinant of the kinetic operator

Lϕ = Lξ + Gϕ

acting on the tangent space to the space of fields, where Gϕ denotes the action by an element ϕ
valued in the Cartan subalgebra of the Lie algebra g of G; for fields in the vector multiplet of
the supersymmetric gauge theory, Gϕ = adϕ is the adjoint action. Here we assume momentarily
that the localization locus consists of constant field configurations ϕ; the case of non-constant ϕ is
discussed below. The operator Lϕ acts with the same eigenvalue on both even and odd degrees in
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the spaces Ω
(0,•)
H (M2n+1, g) of horizontal anti-holomorphic g-valued forms. The cancellation be-

tween bosonic and fermionic fluctuation determinants in the localized path integral is determined
by the index of the Dolbeault complex of K2n twisted by the line bundles L ⊗m for m ∈ Z, where
L → K2n is the complex line bundle associated to the circle bundle M2n+1

π−−→ K2n with first
Chern class c1(L ) = p [ω]. Denoting the corresponding twisted Dolbeault operators as ∂̄(m), the
Atiyah–Singer index theorem gives the index as

index ∂̄(m) =

∫
K2n

ch
(
L ⊗m) ∧ Td

(
T 1,0K2n

)
,

where T 1,0K2n is the holomorphic tangent bundle of K2n, while ch and Td respectively denote
the Chern character and the Todd class.

Geometry from rigid supersymmetry

We want to define a supersymmetric field theory on the backgrounds M2n+1 described above.
We focus on N = 1 theories in five dimensions; a thorough discussion on localization in five-
dimensional superconformal field theories can be found in [237]. We follow the approach of [416]:
we add a supergravity multiplet in flat spacetime, and then take the rigid limit of the supergravity
theory. This is done in two steps: in the first step we set to zero all fermion fields, and in the
second step we set to zero the supersymmetry variations of the fermion fields. The equation
obtained by imposing the vanishing of the gravitino variation is called the (generalized) Killing
spinor equation. The vector multiplet and hypermultiplets of the gauge theory are then coupled to
the background values of the supergravity multiplet, and the theory is effectively put on a curved
spacetime. For the description of supersymmetric backgrounds in three dimensions we mainly
follow [417, 418], and in five dimensions we follow [419, 420].

Let ε be a solution to the Killing spinor equation for M2n+1. We use it to define the vector
field v on M2n+1 as

vµ = ε† Γµε , (11.2.9)

where Γµ are the gamma-matrices in either three or five dimensions. The fact that ε satisfies the
Killing spinor equation guarantees that v is a nowhere vanishing Killing vector field. In particular,
its orbits foliate M2n+1.

As explained in [417, Sec. 5] and in [418, Sec. 4], in three dimensions there are two possibilities:

(I) The orbits of v are closed. In this case M3 is a Seifert manifold and v coincides with the
Reeb vector field ξ of the U(1) fibration of M3. Particular examples belonging to this class
are the round sphere S3 and the lens spaces L(p, s).

(II) If the orbits of v do not close, supersymmetry requires M3 to have isometry group U(1) ×
U(1). In this case M3 is a Seifert manifold but v does not necessarily point along the
U(1)-fibre. A particular example belonging to this class is the ellipsoid S3b of [281].

We will henceforth refer to the manifolds belonging to the setting (I) as regular, and to those of
setting (II) as irregular.27 Irregular geometries may or may not admit a free U(1) action of the
Reeb vector field; see the recent review [421] for a thorough description of the geometric approach
to N = 2 supersymmetry on three-dimensional Seifert manifolds.

In the five-dimensional case, we will focus on product manifoldsM3×Σh, where Σh is a closed
Riemann surface of genus h. Killing spinor solutions in these geometries are built from solutions
on M3, and thus an analogous discussion applies; see the discussion at the end of [420] for further
details about the difference in the approach we follow here and that of [231, 422].

27We will use the nomenclature “regular geometry” or “regular fibration”, meaning that the integral curves of
the Killing vector field have regular flow, and similarly for the “irregular fibration”. We refrain from distinguish
between irregular and quasi-regular cases.
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Examples: Regular vs irregular fibrations

We write down some explicit examples of regular and irregular five-dimensional manifolds. The
round sphere S5 and the product S3×S2 are regular Sasaki-Einstein manifolds. The Sasaki-Einstein
manifolds Y p,s studied in [398, 399] are irregular (or quasi-regular). The product manifoldsM3×Σh
where M3 is either S3, L(p, 1) or the three-dimensional torus T3 are regular, while if M3 = S3b is
the ellipsoid of [281] it is irregular. Among the irregular manifolds, S3b × Σh (as well as replacing
S3b with other squashed Seifert three-manifolds) admits a free U(1) action, while Y p,s do not admit
any free U(1) action and are described as U(1) fibrations over a warped product S2 ⋊ S2. See
Appendix 11.B for a classification and discussion of the different types of squashed three-spheres,
and Appendix 11.C for a discussion about cohomological localization on Y p,s.

One-loop determinants

For regular fibrations, it was shown in [230, 231] that the one-loop contribution of the N = 1
vector multiplet to the perturbative partition function on M2n+1 is

Zvec(M2n+1) =
∏
α∈△

(
i (α, ϕ)

)d ∏
m̸=0

(m
r

+ i (α, ϕ)
)index ∂̄(m)

, (11.2.10)

where as previously △ is the root system of the Lie algebra g and ( · , · ) is an invariant non-
degenerate bilinear form on g; the power d of the first zero mode factor is given by

d = index ∂̄ − dimH0(M2n+1,R) ,

the difference between the index of the ordinary (untwisted) Dolbeault complex of K2n and the
dimension of the space of harmonic functions onM2n+1. The one-loop contribution from an N = 1
hypermultiplet in a representation R of the gauge group G is given by

Zhyp(M2n+1) =
∏
ρ∈ΛR

∏
m∈Z

(m
r

+ i (ρ, ϕ) +
∆

r

)−index ∂̄(m)

, (11.2.11)

where ΛR is the lattice of weights of R and ∆ is a constant determined by the conformal scalar
field coupling to the curvature in the gauge theory action. In [231] these formulas are applied to
N = 1 gauge theory on the five-sphere M5 = S5, viewed as a circle bundle over the projective
plane K4 = P2, with ∆ = 3

2 .
The extension of these formulas to the case of non-constant scalar fields ϕ on K2n can be

deduced from the prescription explained in [423, App. B], at least in the case when the kinetic
operator Lϕ is elliptic. In these instances one can apply the index formula “locally” by moving the
logarithms of the arguments of the products into the integral and integrating against the index
density. For example, for the vector multiplet contribution this prescription gives

Zvec(M2n+1) = exp

( ∫
K2n

∑
m∈Z

ch
(
L ⊗m) ∧ Td

(
T 1,0K2n

) ∑
α∈△

log
(m
r

+ i(α, ϕ)
)

− dimH0(M2n+1,R)
∫
K2n

ω∧n

n!

∑
α∈△

log
(
i(α, ϕ)

))
.

For the cohomological localization we shall employ, the further localization to constant ϕ in two
dimensions will be immediate (in contrast to the approach of [394]).

The expressions (11.2.10) and (11.2.11) are proven in [230, 231] in the case of five-dimensional
K-contact manifolds, with Killing vector field v pointing along the Seifert fibre. In following
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sections we will review the main steps in the proof, both in three and five dimensions, and derive
the corresponding expressions for the cases in which the Killing vector field v does not point
in the direction of the U(1) fibre. For this, we will have to introduce vector multiplets and
hypermultiplets, and then topologically twist the field content. For the three-dimensional case we
will follow the conventions of [137], while in five dimensions we follow [231, 424].

11.3 N = 2 cohomological gauge theories in three dimensions

In this section we study N = 2 supersymmetric gauge theories on three-dimensional manifolds.
We will first present the theory and its topological twist. Then we will reproduce the formula
for the one-loop determinants in the case of a Seifert fibration M3 → K2 corresponding to closed
orbits of the Killing vector field v. We shall subsequently extend the formulas to the ellipsoid
and ellipsoidal lens spaces, corresponding to non-compact orbits of the Killing vector field, by
extending the application of the index theorem used in [395], for the ellipsoid, to any squashed
Seifert manifold. For the geometric setting we will follow [417, 418], while for the topological
twist and derivation of the one-loop determinants, as well as for the normalization of the fields
and supersymmetry variations, we will continue to follow [137]. Our conventions are summarized
in Appendix 11.A.

11.3.1 Supersymmetric Yang–Mills theory and its cohomological formulation

As usual, we start by placing the gauge theory on flat Euclidean space R3 and then couple it to
background supergravity, following [416, 417]. Let ε and ε̃ be two Killing spinors with opposite
R-charge, and define the Killing vector field

vµ = ε̃ † γµε .

Vector multiplet

The N = 2 vector multiplet in three dimensions consists of a gauge connection A, a real scalar
σ, a complex spinor λ (the gaugino), and an auxiliary real scalar D. The 3d N = 2 superalgebra
admits a U(1)R R-symmetry. However, by analogy with the five-dimensional setting, we assume it
is enhanced to SU(2)R. For a generic N = 2 theory with U(1)R R-symmetry, one simply neglects
the SU(2)R indices I, J . With this caveat in mind, the spinor λ = (λI) and the real scalar
D = (DI

J) carry SU(2)R indices. The supersymmetry transformations are standard [58, 137].
We denote by Q the equivariant differential (supersymmetry generator) which is the sum of the

two independent supercharges 1
2

(
Q̃ε̃ +Q†

ε

)
, and write

QAµ = i
2

(
ε̃ †
I γµλ

I − λ†I γµε
I
)
,

Qσ = −1
2

(
ε̃ †
I λ

I + λ†I ε
I
)
,

QλI = −1
2 γ

µνεI Fµν −DI
J ε

J + i γµεI (Dµσ) ,

Qλ†I =
1
2 ε̃

†
I γ

µν Fµν − ε̃ †
J D

J
I − i γµε̃ †

I (Dµσ) ,

QDI
J = i

2

(
ε̃ †
I γ

µ(Dµλ
J)− (Dµλ

†
I) γ

µεJ
)
− i

2

(
ε̃ †
I

[
σ, λJ

]
−
[
σ, λ†I

]
εJ
)
+ ( I ↔ J ) ,

where F is the curvature of the gauge connection A, and Dµ is the covariant derivative which
involves the gauge connection A and also the spin connection when acting on the dynamical
spinor fields λ and λ†. When the theory is placed on a curved background M3, one has to add
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curvature terms proportional to 1
r to the supersymmetry variationsQλ, Qλ† andQD. These terms

will also involve the spinor covariant derivative acting on the Killing spinors from the supergravity
background. This procedure is standard and we do not review it here.

Following [137, App. A], we use the Killing vector field v for the topological twist. We set
ε̃ = ε, and rewrite the spinor fields λ and λ† in the vector multiplet in terms of an odd g-valued
one-form Ψ and an odd g-valued zero-form χ defined as

Ψµ = 1
2

(
ε† γµλ− λ† γµε

)
and χ = ε† λ− λ† ε ,

which depend on the solution ε of the Killing spinor equation, and hence on the choice of contact
structure, but not explicitly on the metric. The field content of the vector multiplet is now written
in a cohomological form as

A ∈ Ω1(M3, g) , σ ∈ Ω0(M3, g) , Ψ ∈ Ω1(M3, g) and χ ∈ Ω0(M3, g) ,

with (A,χ) treated as coordinates and (σ,Ψ) as conjugate momenta on field space. We do not
include details about the gauge fixing here, and again refer to [137] for the technical details.
It suffices to say that the bosonic ghost coordinates are a pair of harmonic zero-forms and the
fermionic ghost coordinates are a pair of zero-forms. We use the localizing term

QV with V =

∫
M3

(
(Qλ)† λ+ λ† (Qλ†)†

)
dΩM3

in the path integral which brings the quantum field theory to the fixed point locus

F = 0 and σ = −D = constant .

The kinetic operator

Once the fields are in cohomological form, the supersymmetry transformation squares to

Q2 = i Lϕ with Lϕ = Lv + Gϕ . (11.3.1)

Here Lϕ is the sum of a Lie derivative along v and a gauge transformation Gϕ with parameter

ϕ = iσ − v ⌞A .

At the end, we shall rotate σ 7→ iσ0 and integrate over real σ0 ∈ g. The localization locus consists
of flat connections, and therefore

ϕ = −
(
σ0 + vµA(0)

µ

)
∈ g ,

where A(0) is the point of the moduli space of flat G-connections on M3 around which we are
expanding. IfM3 is simply connected, the only point of the moduli space is the trivial connection.
Otherwise, expanding around A(0) = 0 gives the perturbative part of the partition function. In
general, the full answer is given by integrating the partition function over the moduli space of flat
G-connections M 0

G(M3) supported on M3, which is given by

M 0
G(M3) = Hom

(
π1(M3), G

)/
G , (11.3.2)

where the quotient is taken by the conjugation action of G on the holonomy of a connection over
representatives of elements in π1(M3). When M3 is a circle bundle of degree p over a compact
oriented Riemann surface Cg of genus g, there is an explicit presentation of the fundamental group
π1(M3) with generators ai, bi, ζ, i = 1, . . . , g and the relation

g∏
i=1

[ai, bi] = ζp ,

with all other pairwise combinations of generators commuting. An explicit parametrization of the
moduli space (11.3.2) in the case G = U(N) can be found in [425, Sec. 6.2].
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Hypermultiplets

The field content of an N = 2 hypermultiplet in three dimensions consists of the complex scalars
q = (qI) with SU(2)R indices and a complex spinor ψ. These fields are obtained by combining
chiral and anti-chiral complex scalars and Weyl spinors. One also needs an auxiliary complex
scalar. The supersymmetry transformations are

QqI = −i ε̃ †
I ψ ,

Qψ = 1
2 γ

µεI (DµqI) +
i
2 σ qI ε

I ,

plus curvature corrections to be added when the theory is put on M3. The transformations of
the conjugate fields q†, ψ† are the obvious ones, with exchange ε↔ ε̃. The topological twist of a
hypermultiplet was first performed in [415, App. B].

The Killing spinors are used to introduce a new spinor field

q′ = qI ε
I ,

so that the physical fields are all reformulated in terms of spinors. These fields are singlets under
the action of SU(2)R; this is instrumental to have the kinetic operator in the desired form. One
finds

Q2 = i Lϕ with Lϕ = Lspinv + Gϕ ,

as in the vector multiplet. We used the notation Lspinv to stress that the Lie derivative is twisted
by the spin covariant derivative when acting on spinors on curved manifolds.

To mimic the procedure of [137], a further step is needed: we rearrange the fields again in a
cohomological form, combining spinors into differential forms. For this, we need to define a spinc

structure on M3, and use it to decompose the spinors ψ± and q′ into elements of

Ω0
H(M3, g)⊕ Ω

(0,1)
H (M3, g)

where we decomposed ψ according to the chirality operator as

ψ = ψ+ + ψ− with γ5ψ± = ±ψ± and γ5 = vµ γµ .

11.3.2 One-loop determinant of the vector multiplet in a regular background

Gaussian integration of the vector multiplet around the fixed point ϕ gives the ratio of fluctuation
determinants

h(ϕ) =

√
det i Lϕ|f
det i Lϕ|b

=

√
(det i Lϕ|Ω0(M3,g))

3

det i Lϕ|Ω1(M3,g) (det i Lϕ|H0(M3,g))
2
,

where the subscripts on the left-hand side refer to the operator acting on fermionic or bosonic
fields. Here H0(M3, g) is the space of g-valued harmonic zero-forms, and Lϕ is given in (11.3.1).
The numerator of h(ϕ) includes the contributions from the fermionic field χ and the two fermionic
ghost fields, while the denominator includes the contributions from the bosonic field A and the
two bosonic ghost fields.

We use the Seifert structure of M3 to decompose one-forms into horizontal and vertical parts
as

Ω1(M3, g) = Ω1
V (M3, g)⊕ Ω1

H(M3, g) ∼= Ω0(M3, g)⊕ Ω1
H(M3, g) .

We may also identify

Ω2
H(M3, g) ∼= Ω0(M3, g)
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in three dimensions. The circle bundle structure

U(1) ↪→M3 → K2

allows us to further decompose the spaces of zero-forms and horizontal one-forms as

Ω0(M3, g) = Ω0(K2, g)⊕
⊕
m ̸=0

Ω0
(
K2,L

⊗m ⊗ g
)
,

Ω1
H(M3, g) = Ω1(K2, g)⊕

⊕
m ̸=0

Ω1
(
K2,L

⊗m ⊗ g
)
, (11.3.3)

where we recall that L is the line bundle associated to the U(1) fibration of M3. Using the
short-hand notation

D•
m(ϕ) = det i Lϕ|Ω•(K2,L ⊗m⊗g) ,

we obtain

h(ϕ) =
1∣∣ det i Lϕ|H0(M3,g)

∣∣
√
D0

0(ϕ)D2
0(ϕ)

D1
0(ϕ)

∏
m̸=0

√
D0
m(ϕ)D2

m(ϕ)

D1
m(ϕ)

.

The crucial observation at this point is that when the Killing vector field v points along the
fibre direction, the decomposition (11.3.3) corresponds to a decomposition in eigenmodes of the
Lie derivative operator Lv. The degeneracy of the action of the gauge transformations Gϕ is
resolved in the standard way [58, 137], by decomposing the Lie algebra g into its root system as

g =
⊕
α∈△

gα .

We finally obtain

Zvec(M3) =
∏
α∈△

(
i (α, ϕ)

) 1
2
χ(K2)−dimH0(M3,R)

∏
m̸=0

(m
r

+ i (α, ϕ)
)index ∂̄(m)

(11.3.4)

where we used the fact that the number of remaining modes, after cancellation, is given by the
index of the twisted Dolbeault complex

Ω0(K2,L
⊗m)

∂̄(m)

−−−−→ Ω1(K2,L
⊗m)

∂̄(m)

−−−−→ Ω2(K2,L
⊗m) ,

after identification of the complexified de Rham differential with the anti-holomorphic Dolbeault
differential. This result agrees with [426]. The first multiplicative term in (11.3.4) is trivial for
Seifert homology spheres. The proof of this cohomological localization formula used the properties
that M3 is a Seifert manifold and that v is parallel to the Reeb vector field ξ, and hence that M3

is a K-contact manifold.

11.3.3 One-loop determinant of the vector multiplet in an irregular back-
ground

We now consider the case in which the orbits of the Killing vector field v are not closed. The
background geometry is required to have U(1) × U(1) isometry group in order to preserve su-
persymmetry [417, 418]. In this instance M3 is still a Seifert manifold but now v does not point
along the fibre. In the spirit of Section 11.3.2, we calculate the ratio of fluctuation determinants
through the index theorem. A similar calculation was performed in [395], but there the super-
symmetry transformation squares to the sum of a Lie derivative along v, a gauge transformation
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and a third transformation which is a sum of R-symmetry and flavour symmetry transformations
(determining a new R-symmetry); this is not of the form described in [137, 230], and so our index
theory calculations cannot be applied directly in this framework.

We can express v as a linear combination

v = a1 ξ + a2 ξ̃

of the Reeb vector field ξ and a vector field ξ̃ which generates a residual U(1) isometry. They are
mutually orthogonal and are linear combinations of the generators of the torus isometry. Most of
the calculation follows that of the round case from Section 11.3.2, particularly the decomposition
(11.3.3) of Ω•(M3, g) according to the Seifert fibration. However, we now have to face the problem
that the eigenmodes of Lξ are no longer eigenmodes of Lv.

In [395] it was shown how one can exploit the fact that if the U(1) action generated by the Reeb
vector field ξ is free, then the problem can be reduced to the quotient spaceM3/U(1) ∼= K2. Let us
elaborate a bit more on this point. The crucial observation is that the restriction of the operator
iLϕ is no longer elliptic, but it is transversally elliptic with respect to the isometry generated by ξ̃ .
Following [427], given a first order transversally elliptic differential operator and a subgroup which
acts freely, the index can be computed on the quotient space and the Atiyah–Bott localization
formula localizes the contributions to the fixed points of the action of the subgroup generated
by ξ̃ ; this works even when K2 possesses orbifold points. We then decompose into eigenmodes
corresponding to ξ̃ , and the remaining modes after cancellation come from the fixed points of the
U(1) action generated by ξ̃ . Therefore for irregular Seifert manifolds we obtain

Zvec(M3) =
∏
α∈△

(
i (α, ϕ)

) 1
2
χ(K2)−dimH0(M3,R)

∏
f

∏
m̸=0

(m
ϵf

+ i (α, ϕ)
) 1

2
index ∂̄(m)

(11.3.5)

where the second product runs over the fixed points of the U(1) action generated by ξ̃ on K2,
and ϵf is the radius of the circle fibre over the fixed point labelled by f .28 This formula gives the
correct answer for ellipsoids [281, 418], and generalizes the result of [395] to any Seifert manifold
which is not K-contact. Notice that an ellipsoid Seifert manifold is necessarily fibered topologically
over a sphere S2 with at most two punctures [421, Sec. 3.5].

11.3.4 One-loop determinant of a hypermultiplet

For the Gaussian integration of a hypermultiplet around a fixed point ϕ, we do not give all the
details here since the computation is essentially the same as for the vector multiplet. One finds√

det i Lϕ|f
det i Lϕ|b

=

√√√√ det i Lϕ|Ω(0,1)
H (M3,g)

(det i Lϕ|Ω0
H(M3,g))

2
, (11.3.6)

where we used the topological twist described in Section 11.3.1. Recall that this formula only holds
if we are allowed to recombine the SU(2)R singlet spinors q′ into anti-holomorphic differential
forms. This fails for the ellipsoid S3b of [281], for instance, because a spinc structure is not
guaranteed to exist when the dual one-form to the Killing vector v is not a gauge connection
for the U(1) fibration.

For round Seifert manifolds, the eigenvalues of Lspinv are

− im

r
− i ∆

r
,

28The square roots of each fixed point contribution come from the square root of the original ratio of fluctuation
determinants. In the regular case, the contributions are equal.
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where m ∈ Z and ∆ is the R-charge the hypermultiplet. The number of remaining modes after
cancellations in (11.3.6) is given by the index of the twisted Dolbeault differential, and we obtain

Zhyp(M3) =
∏
ρ∈ΛR

∏
m∈Z

(m+∆

r
+ i (ρ, ϕ)

)−index ∂̄(m)

where a shift m→ m+∆ should be included when considering twisted boundary conditions along
the fibre, but the contribution of this shift cancels in the computations. This result agrees with
[426].

11.3.5 Applications of the cohomological localization formulas

We shall now provide some simple examples illustrating how the localization formulas obtained
in this section work to give the correct known results in three dimensions.

Localization on S3

As a first check, let us examine how to reproduce the three-dimensional localization calculations
of [58, Sec. 3] in this framework. We consider the three-sphere M3 = S3 of radius r, viewed as
a circle bundle of degree one over the projective line K2 = P1 via the Hopf fibration, with Euler
characteristic χ(P1) = 2 and H0(S3,R) = R. The total Chern class of the holomorphic tangent
bundle of P1 is

c(T 1,0P1) = (1 + ω)∧2 = 1 + 2ω = 1 + c1(T
1,0P1) ,

and so the corresponding Todd class is given by

Td(T 1,0P1) = 1 + 1
2 c1(T

1,0P1) = 1 + ω ,

while the Chern characters of the line bundles L ⊗m → P1 are given by

ch(L ⊗m) = 1 + c1(L
⊗m) = 1 +mc1(L ) = 1 +mω .

The index of the corresponding twisted Dolbeault complex is thus given by

index ∂̄(m) =

∫
P1

(1 +mω) ∧ (1 + ω) =

∫
P1

(m+ 1)ω = m+ 1 .

The one-loop vector multiplet contribution is then computed to be

Zvec(S3) =
∏
α∈△

∏
m ̸=0

( m
r

+ i(α, ϕ)
)m+1

=
∏
α∈△

∞∏
m=1

(
m
r − i(α, σ0)

)m+1(
− m

r − i(α, σ0)
)m−1

=
∏
α∈△+

∞∏
m=1

(
m2

r2
+ (α, σ0)

2
)m+1(

m2

r2
+ (α, σ0)2

)m−1

=
∏
α∈△+

∞∏
m=1

m4

r4

(
1 +

r2 (α, σ0)
2

m2

)2
=
∏
α∈△+

( 2 sinhπ r (α, σ0)

π r (α, σ0)

)2
,
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where as previously △+ is the system of positive roots of the Lie algebra g, and we used the fact
that the roots come in positive-negative pairs. In the second line we used the fact that the only
flat connection on S3 is trivial and substituted ϕ = −σ0, and in the last line we evaluated the
infinite product using zeta-function regularization:

∞∏
m=1

(
1 +

x2

m2

)
=

sinh(π x)

π x
and

∞∏
m=1

m2

r2
= 2π r .

The same calculation for a one-loop hypermultiplet determinant gives

Zhyp(S3) =
∏
ρ∈ΛR

∏
m∈Z

(m+∆

r
+ i(ρ, ϕ)

)−1−m

=
∏
ρ∈ΛR

∞∏
m=0

(−m−1+∆
r − i(ρ, σ0)

)m
∞∏
m=1

(
m−1+∆

r + i(ρ, σ0)
)m

=
∏
ρ∈ΛR

∞∏
m=1

( m+1−∆
r + i(ρ, σ0)

m−1+∆
r − i(ρ, σ0)

)m
=
∏
ρ∈ΛR

s1
(
i(1−∆)− r (ρ, σ0)

)
,

where in the last line we inserted the definition of the double-sine function which is the meromor-
phic function defined by the zeta-function regularized infinite products [428]

sb(x) =
∞∏

m,n=0

mb+ n b−1 + 1
2 (b+ b−1)− ix

mb+ n b−1 + 1
2 (b+ b−1) + ix

(11.3.7)

evaluated at b = 1. These results all agree with the computations of [58, Sec. 3.2] (see also [395,
Sec .3.2]).

Localization on ellipsoid S3b and L(p, 1)b

We now consider the ellipsoid S3b of [281], with squashing parameter b > 0 and metric

ds2S3b
= r2

(
f(ϑ)2 dϑ⊗ dϑ+ b2 cos2 ϑ dφ1 ⊗ dφ1 + b−2 sin2 ϑ dφ2 ⊗ dφ2

)
induced from the standard metric on C2 restricted to the locus

b2 |z1|2 + b−2 |z2|2 = r2 ,

where f(ϑ) =
√
b2 cos2 ϑ+ b−2 sin2 ϑ and (ϑ, φ1, φ2) are Hopf coordinates on the usual round

sphere S3 = S3b=1 of radius r. This defines an irregular fibration with isometry group U(1)×U(1):
The Killing vector field v takes the form

v =
b+ b−1

2 r
ξ +

b− b−1

2 r
ξ̃ ,

where ξ = ∂
∂θ is the Reeb vector field of the Seifert fibration S3b → P1, with θ = 1

2 (φ1 + φ2), and

ξ̃ = ∂

∂θ̃
is the generator of the residual U(1) isometry, with θ̃ = 1

2 (φ1 − φ2). The fixed points of ξ̃
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correspond to the north and south poles of the base S2 ∼= P1, with respective coordinates ϑ = 0,
at which the fibre has radius ϵ1 = r b, and ϑ = π

2 , at which the fibre has radius ϵ2 = r b−1. The
index of the twisted Dolbeault complex is a topological invariant, and hence is the same as for
round S3.

Altogether, the localization formula gives

Zvec(S3b) =
∏
α∈△

∏
m ̸=0

((mb−1

r
− i(α, σ0)

) 1
2
(mb

r
− i(α, σ0)

) 1
2

)m+1

=
∏
α∈△

∞∏
m=1

(
mb−1

r − i(α, σ0)
)m+1

2
(
mb
r − i(α, σ0)

)m+1
2(

mb−1

r + i(α, σ0)
)m−1

2
(
mb
r + i(α, σ0)

)m−1
2

=
∏
α∈△+

∞∏
m=1

(m2 b−2

r2
+ (α, σ0)

2
)(m2 b2

r2
+ (α, σ0)

2
)

=
∏
α∈△+

sinh
(
π b r (α, σ0)

)
sinh

(
π b−1 r (α, σ0)

)
π2 r2 (α, σ0)2

, (11.3.8)

which agrees with [281, Eq. (5.33)] and [395, Eq. (4.24)]. This result is independent of the
particular form of the smooth squashing function f(ϑ) and depends only on its values at the fixed
points ϑ = 0, π2 ; it can therefore be extended to a larger class of backgrounds with the same
topology [429].

This result straightforwardly extends to the ellipsoid lens spaces L(p, 1)b, with the induced
metric on the quotient S3b/Zp and associated line bundle L → P1 of degree p, so that now
c1(L ) = pω; see the review [59] for a description of localization on L(p, 1)b. The modifications

are the same as for the round case, and amount to a shift σ0 7→ σ0 + vµA
(0)
µ , where A(0) is an

isolated point of the moduli space of flat G-connections on L(p, 1). Such flat connections are
classified by conjugacy classes of embeddings of the fundamental group π1(L(p, 1)b) = Zp in the
gauge group G, and are in one-to-one correspondence with arrays m⃗ ∈ (Zp)rank(G) modulo Weyl
symmetry. For the vector multiplet, the localization formula then gives

Zvec

(
L(p, 1)b

)
=
∏
α∈△+

sinh
(
π b r
p (α, σ0 + im⃗)

)
sinh

(
π b−1 r
p (α, σ0 + im⃗)

)
π2 r2

p2
(α, σ0 + im⃗)2

.

With similar modifications, one can extend these calculations to any ellipsoid Seifert manifold.
There is no spinc structure on S3b that can be used to apply our index theory formalism to

the hypermultiplet contributions. Nevertheless, the one-loop fluctuation determinant can still be
calculated in this case. For example, one could split the twisted Lie derivative as

Lspinv =
2 b

r
Lspin∂

∂φ1

+
2 b−1

r
Lspin∂

∂φ2

and decompose the fields into eigenmodes of the Lie derivatives in the two orthogonal toroidal
directions ∂

∂φ1
and ∂

∂φ2
, whose corresponding eigenvalues are then of the form m+∆

ϵ1
+ n+∆

ϵ2
where

m,n ∈ Z. Then the one-loop contribution of a hypermultiplet in a representation R of the gauge
group G is given by [395, Sec. 4]

Zhyp(S3b) =
∏
ρ∈ΛR

∞∏
m,n=0

mb+ n b−1 +
(
b+ b−1

) (
1− ∆

2

)
+ ir (ρ, σ0)

mb+ n b−1 +
(
b+ b−1

)
∆
2 − ir (ρ, σ0)

=
∏
ρ∈ΛR

sb
(
i
2 (b+ b−1) (1−∆)− r (ρ, σ0)

)
. (11.3.9)
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Note that here the squashing parameter b serves as a zeta-function regulator in the infinite product
formula for the double-sine function (11.3.7) in the hypermultiplet contribution. For the N = 1
adjoint hypermultiplet with ∆ = 1, the product over ΛR = △ can be split into contributions from
positive-negative pairs of roots and the one-loop contribution is trivial: Zhyp(S3b) = 1.

11.4 N = 1 cohomological gauge theories in five dimensions

In this section we derive one-loop fluctuation determinants in various five-dimensional geometries
using the Atiyah–Singer index theorem. We first present the supersymmetric gauge theory and
its topologically twisted version, and then derive expressions for the one-loop determinants in
the regular and irregular cases separately. We subsequently apply the general formalism to some
explicit examples, mainly focusing on five-manifolds of the form M5 = M3 × Σh, with M3 one
of the three-dimensional geometries studied in Section 11.3 and Σh a closed Riemann surface of
genus h. In this section we adopt the conventions and normalization of [231]. This differs from
the rest of the literature on the topic, and in particular the expressions here will only involve
anti-holomorphic Dolbeault differentials.29

Topologically twisted gauge theories on the five-sphere were studied in [230, 231], which ig-
nited the stream of activity in this area. The next examples considered were the Sasaki-Einstein
manifolds Y p,s in [398, 399, 430]. Sasaki-Einstein manifolds are backgrounds which admit N = 2
supersymmetry; see Appendix 11.C for a brief review. In [419], further five-dimensional geometries
preserving N = 1 and N = 2 supersymmetry were obtained, following the idea of [416, 417] and
adapting it to five dimensions. In particular, one can put an N = 2 supersymmetric gauge theory
on S3×Σh and T3×Σh, where T3 is a three-dimensional torus. On the other hand, the manifolds
L(p, 1)×Σh only admit N = 1 supersymmetry. Further geometries admitting Killing spinor solu-
tions, and hence admitting supersymmetric field theories, were obtained in [420] starting from a
holographic setting and taking the rigid limit of supergravity. Sasaki-Einstein manifolds, products
M3×Σh withM3 a Seifert three-manifold, and more general U(1) fibrations over products Cg×Σh
with Cg and Σh Riemann surfaces, possibly with orbifold points, are all examples of manifolds
studied in [420].

11.4.1 Supersymmetric Yang–Mills theory and its cohomological formulation

Consider five-dimensional N = 1 supersymmetric Yang–Mills theory. We define the theory on flat
Euclidean spacetime R5 and then, by coupling it to background supergravity fields, the theory
is put on curved manifolds M5. For manifolds admitting two Killing spinors, the N = 2 vector
multiplet is described in the N = 1 superspace formalism by an N = 1 vector multiplet and an
N = 1 adjoint hypermultiplet. The required modifications to the supersymmetry transformations
are described in detail in [422]. Let ε be the five-dimensional Killing spinor on M5 (see Appendix
11.A for our notation), and define the vector field v through30

vµ = ε† Γµε .
29The normalization in [231] uses the opposite sign for the contact structure, compared to other literature.

After the topological twist, some fields will come with additional minus signs, and in particular a two-form in
five dimensions, which is usually taken to be self-dual, becomes anti-self-dual here; with our convention, self-dual
2-forms descend to anti-instantons in four dimensions, and vice versa. In practice, the cohomological complex in
five dimensions that we will work with only involves the anti-holomorphic Dolbeault differential, while in previous
works (see [424] for a review) the contributions from both holomorphic and anti-holomorphic forms are included.
The final results will of course be the same in either convention, but the intermediate steps will slightly differ. The
only motivation for our choice is to achieve a unified treatment in three and five dimensions. Furthermore, the
topological twist of the hypermultiplets involves only anti-holomorphic forms, so this choice also puts the vector
multiplet and the hypermultiplets on the same footing.

30This differs by a sign from other definitions in the literature, see Footnote 29.
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It is a nowhere vanishing Killing vector on M5.

Vector multiplet

The five-dimensional N = 1 vector multiplet consists of a gauge connection A, a scalar σ, a
symplectic Majorana spinor λ and an auxiliary real scalar D, where λ = (λI) is a SU(2)R doublet
and D = (DI

J) is a SU(2)R triplet. The supersymmetry transformations in flat space are

QεAµ = i ε†I Γµλ
I ,

Qεσ = ε†I λ
I ,

QελI = −1
2 Γ

µνεI Fµν −DI
J ε

J + iΓµεI (Dµσ) ,

QεDI
J = i ε†I Γ

µ(Dµλ
J)− i

[
σ, ε†I λ

J
]
+ ( I ↔ J ) ,

where F is the curvature of the gauge connection A and Dµ is the covariant derivative, which
includes the gauge connection A and also the spin connection when acting on dynamical spinors
λ. Curvature corrections proportional to 1

r must be added to these flat space transformations
when the field theory is put on M5.

At this point we perform the topological twist. We introduce the one-form Ψ and the horizontal
anti-self-dual two-form χ according to31

Ψµ = ε†I Γµλ
I and χµν = ε†I Γµνλ

I − ηµ ε†I Γνλ
I + ην ε

†
I Γµλ

I ,

where η is the one-form dual to the Killing vector v. We regard M5 as a U(1) fibration over a
compact Kähler manifold K4, and when v coincides with the Reeb vector field ξ of the Seifert fi-
bration, then η coincides with the K-contact structure κ ofM5. For squashed geometries, however,
η ̸= κ.

Contact structure and localization locus

The localizing term we add to the action is the standard one:

QεV with V =

∫
M5

(Qελ)† λ dΩM5 ,

which in the path integral brings the quantum field theory to the fixed point locus

v ⌞ ∗F = F , Dσ = 0 and D = −σ ⊗
(
1
0

0
−1

)
, (11.4.1)

where ∗ is the Hodge duality operator constructed from the metric of M5.
It is important at this point to stress a major distinction in our setting from that of [230] and

subsequent work. When we work with a product of a three-dimensional contact manifold and a
Riemann surface, M5 = M3 × Σh, there is a crucial difference: the contact structure κ lives on
M3, and κ ∧ dκ is a volume form on M3, as is clear from (11.2.6), but it need not be a contact
structure onM3×Σh. This is important for a choice of compatible metric. For the supersymmetry
transformations to be those of a cohomological field theory, one requires the Lie derivative Lv to
commute with the Hodge duality operator. Equivalently, we need v to generate an isometry. The
Hodge duality operator on Ω•(M3 × Σh) takes the form ∗M3×Σh

= (−1)• ∗M3 ∧∗Σh
. This is an

important simplification in studying the localization locus on product manifolds.

31We are using the same Greek letter χ for a two-form here and for a zero-form in Section 11.3. There should not
be any confusion.
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The kinetic operator

The supersymmetry transformation squares to Q2
ε = i Lϕ, with

Lϕ = Lv + Gϕ (11.4.2)

the sum of the Lie derivative along v and a gauge transformation with parameter ϕ = iσ − v ⌞A.
Since at the end the integration contour for σ must be rotated to the imaginary axis, σ 7→ iσ0,
we are eventually led to

ϕ = −
(
σ0 + vµA(0)

µ

)
∈ g ,

with A(0) a connection whose curvature is a solution to the first fixed point equation in (11.4.1).
Setting A(0) = 0 retains the perturbative partition function, while contributions from non-trivial
solutions are related to instantons on the horizontal submanifold.

Hypermultiplets

The field content of a five-dimensional N = 1 hypermultiplet consists of a complex scalar q = (qI),
which forms an SU(2)R doublet, and a complex spinor ψ. These fields are obtained by combining
chiral and anti-chiral complex scalars and Dirac spinors. The supersymmetry transformations are

QεqI = −2 i ε†I ψ ,

Qεψ = ΓµεI (DµqI)− σ qI εI .

When coupled to background supergravity fields, additional terms proportional to 1
r are to be

included.

The topological twist in [231] is then achieved in two steps. First, contract all the SU(2)R
indices, and therefore define the SU(2)R singlet spinor q′ from the scalar qI as

q′ = qI ε
I .

The square of the supersymmetry transformation, which equals the kinetic operator in the action,
is

Q2
ε = i Lϕ with Lϕ = Lspinv + Gϕ ,

where we indicated explicitly that the Lie derivative is twisted by the spin connection on M5.

The second step consists in defining a spinc structure on M5. For this, in [231] (see also [424,
Sec. 3]) the following assumption is made. Let η be the dual one-form to the Killing vector field
v. Then, according to [420], the most general metric on the Seifert fibration M5 → K4 admitting
supersymmetry is of the form

ds2M5
= η ⊗ η + ds2K4

,

with transverse Hermitian metric on the Kähler surface K4. If η is proportional to the contact
structure defined by the Seifert fibration, then one can define a canonical spinc structure on M5.
This condition is equivalent to requiring the orbits of v to be all closed. Manifolds supporting
N = 2 supersymmetry belong to this class [419], and the index theorem can be applied in that
case.

The spinc structure identifies, through the action of a representation of the Clifford algebra,
spinors with elements of

Ω
(0,•)
H (M5, g) ,

so the hypermultiplet is put in cohomological form. See [231, 424] for further details.
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After the standard localizing term is added to the action, one has to compute the localization
locus. If one considers the trivial solution A(0) = 0 in the vector multiplet, then the localization
locus consists in setting all hypermultiplet fields to zero. It was proven in [398] that this holds
for any solution A(0) in the localization locus of the vector multiplet, as long as ds2M5

is a Sasaki-
Einstein metric.

Supersymmetric Yang–Mills action at the localization locus

Evaluating the full gauge theory action at the fixed point locus on M5 =M3 × Σh gives

Scl(F, σ0) =
1

2 g2YM

∫
M5

((
F ∧, ∗F

)
+

1

r
(σ0, F ) ∧ κ ∧ dκ+

1

r2
(σ0, σ0)κ ∧ dκ ∧ ωΣh

)
, (11.4.3)

where gYM is the Yang–Mills coupling constant. Here κ is the contact structure on the Seifert
three-manifold M3, ωΣh

is the symplectic structure on the Riemann surface Σh and 1
2 κ∧ κ∧ ωΣh

is the volume form (11.2.8) on M3 × Σh.

11.4.2 One-loop determinant of the vector multiplet in a regular background

After the topological twist performed in Section 11.4.1, all fields of the vector multiplet are in a
cohomological form

A ∈ Ω1(M5, g) , σ ∈ Ω0(M5, g) , Ψ ∈ Ω1(M5, g) and χ ∈ Ω2
H,−(M5, g) ,

where by Ω2
H,±(M5, g) we denote the spaces of self-dual and anti-self-dual horizontal two-forms

with values in the Lie algebra g. Here we assume that M5 is a regular background, so that
contraction by v separates the horizontal and vertical parts of forms. The gauge connection A is
our even coordinate and χ is the odd coordinate on the space of fields. We also have to introduce
ghosts, and we refer to [230, 231] for the procedure. For our purposes, it suffices to say that these
give two even harmonic scalars and two odd scalars.

Gaussian integration of the vector multiplet around the fixed point gives the ratio of fluctuation
determinants

h(ϕ) =

√
det i Lϕ|f
det i Lϕ|b

=

√√√√det i Lϕ|Ω2
H,−(M5,g) (det i Lϕ|Ω0(M5,g))

2

det i Lϕ|Ω1(M5,g) (det i Lϕ|H0(M5,g))
2
,

where |f (respectively |b) refers to the operator acting on fermionic (respectively bosonic) fields.
Here H0(M5, g) is the space of g-valued harmonic zero-forms on M5, and the differential operator
Lϕ is given in (11.4.2). The numerator of h(ϕ) involves the contributions from the fermionic coordi-
nate χ and the two fermionic ghost coordinates, while the denominator involves the contributions
from the bosonic coordinate A and the two bosonic ghost coordinates.

We split

Ω2
H(M5, g) = Ω2

H,+(M5, g)⊕ Ω2
H,−(M5, g) ,

Ω2
H,+(M5, g) = Ω

(2,0)
H (M5, g)⊕ Ω

(0,2)
H (M5, g)⊕ Ω

(1,1)
sympl(M5, g) ,

where Ω
(1,1)
sympl(M5, g) are the g-valued horizontal two-forms proportional to the symplectic structure

on the base Kähler manifold K4. Then

Ω
(1,1)
H (M5, g) = Ω

(1,1)
sympl(M5, g)⊕ Ω2

H,−(M5, g) ∼= Ω0(M5, g)⊕ Ω2
H,−(M5, g) .
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Here we consider the regular case, in which v is parallel to the Reeb vector field ξ. With our
choices, v = −ξ = − ∂

∂θ , where θ ∈ [0, 2π r) is the coordinate along the circle fibre. We can
decompose horizontal forms according to the fibration structure of M5 → K4 as

Ω
(•,•)
H (M5, g) = Ω(•,•)(K4, g)⊕

⊕
m ̸=0

Ω(•,•)(K4,L
⊗m ⊗ g) .

The crucial step now is to recognise that, according to this splitting, the Lie derivative along
the Killing vector field v acts on a form αm ∈ Ω(•,•)(K4,L ⊗m ⊗ g) as

Lvαm = −Lξαm = − im

r
αm .

The fact that the orbits of v coincide with the orbits of the Reeb vector field ξ is essential here. The
action of i Lϕ on each Kaluza-Klein mode labelled bym ∈ Z also includes the gauge transformation
Gϕ, whose eigenmodes are found decomposing the Lie algebra g into its root system

g =
⊕
α∈△

gα .

We are therefore ready to evaluate

h(ϕ) =
1∣∣ det i Lϕ|H0(M5,g)

∣∣
√√√√det i Lϕ|Ω2

H,−(M5,g) det i Lϕ|Ω0(M5,g)

det i Lϕ|Ω1
H(M5,g)

=
1∣∣ det i Lϕ|H0(M5,g)

∣∣
√√√√ D(1,1)

0 (ϕ)

D(1,0)
0 (ϕ)D(0,1)

0 (ϕ)

∏
m ̸=0

√√√√ D(1,1)
m (ϕ)

D(1,0)
m (ϕ)D(0,1)

m (ϕ)
,

where in the second line we denoted

D(•,•)
m (ϕ) = det i Lϕ|Ω(•,•)(K4,L ⊗m⊗g) .

Standard manipulations at this point [231] (see also [230, App. C]) finally lead to the cohomological
localization formula

Zvec(M5) =
∏
α∈△

(
i (α, ϕ)

) 1
12

(c2(K4)+c1(K4)2)−dimH0(M5,R)
∏
m ̸=0

(m
r

+ i (α, ϕ)
)index ∂̄(m)

(11.4.4)

For a U(1) bundle M5 → Cg × Σh over the product of two Riemann surfaces of genera g and h,
the power of the first multiplicative factor is (1− g) (1− h)− 1.

11.4.3 One-loop determinant of the vector multiplet in an irregular back-
ground

We now consider the alternative case of an irregular fibration, whereby v does not point along
the U(1) fibre of M5. Let η be the dual one-form to the Killing vector field v. It is an almost
contact structure on M5; if it is a contact structure, then we are in the situation of Section 11.4.2
above. For the present discussion, we assume that Mg,h

5 → Cg × Σh is a U(1) fibration over a
direct product of two Riemann surfaces, both compact and closed. Rotations along the circle
fibre are assumed to act freely on Mg,h

5 .32 This means that, although the gauge theory could be

32The Sasaki-Einstein manifolds Y p,s do not belong to this class, see Appendix 11.C and Section 11.2.4.
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put on Mg,h
5 preserving N = 1 supersymmetry when Mg,h

5 /U(1) admits orbifold points [420], the
procedure we describe below does not apply to that case. Since we are in the irregular setting,
we need an additional U(1) isometry on Cg ×Σh. In practice, this restricts our considerations to
C0 = S2 or C1 = T2.

Most of the procedure is exactly the same as in Section 11.4.2, particularly the decomposition of
differential forms in terms of the Reeb vector field ξ. Nonetheless, we have to face two problems.
First, as for the irregular three-dimensional case, we have to bear in mind that forms αm ∈
Ω(•,•)(Cg ×Σh,L

⊗m⊗ g) are no longer eigenmodes of Lv. The other important issue is that now
the conditions following from the definition of the two-form χ,

v ⌞χ = 0 and v ⌞ ∗χ = −χ ,

cannot be interpreted as saying that χ is a horizontal anti-self-dual two-form. If we express v as
a linear combination

v = a1 ξ + a2 ξ̃ ,

where ξ is the Reeb vector field and ξ̃ is a vector field orthogonal to ξ generating a U(1) action,
we find that the vertical part of χ may not vanish, but it lies in the subspace orthogonal to
ξ̃ . However, more is true: we can decompose χ in terms of a two-form χT and a one-form χP .
Explicitly

χ =
(
κ− a1

a2
κ̃
)
∧ χP + χT ,

where κ is the contact structure and κ̃ is the one-form dual to ξ̃ , and with further anti-self-duality
relations imposed on χP and χT . In the end, we are left with the same number of degrees of freedom
as for a horizontal anti-self-dual two-form. From the more geometric perspective of transverse
holomorphic foliations, the most natural point of view is to consider now the index of a new
Dolbeault-like operator ∂̃ (m), whose cohomological complex is a deformation of the cohomological
complex of the regular case according to the deformation of the transverse holomorphic foliation
of Mg,h

5 as described in [429, Sec. 5] (see also [429, Sec. 7] and [421, Sec. 5] for a discussion about
the particular case of ellipsoids).

At this point, we can again follow the approach of [395] and extend it to five dimensions. The
action of the Reeb vector field is free, and we can reduce the computations to the quotient space
Cg × Σh. In this way we arrive at the cohomological localization formula

Zvec

(
Mg,h

5

)
=
∏
α∈△

(
i (α, ϕ)

)g h−g−h ∏
f

∏
m ̸=0

(m
ϵf

+ i (α, ϕ)
) 1

2
index ∂̄(m)

with an extra product over the fixed points of the additional U(1) action on Cg ×Σh. The length
parameter ϵf is the radius of the circle fibre over the fixed point labelled by f .

One-loop determinant of the vector multiplet on M3 × Σh

We will now specialise the present discussion to product manifolds Mg,h
5 = M3 × Σh, where the

classification reduces to the discussion of [417] about the orbits of the three-dimensional Killing
vector field on M3. We shall explicitly compute the Atiyah–Singer index in this case. The Kähler
surface K4 = Cg × Σh is endowed with the product Kähler structure ω = ωCg + ωΣh

and the
U(1)-bundle projection π is the product of the Seifert fibration M3 → Cg and the identity map
on Σh. The integer cohomology of K4 has generators [ωCg ] ∈ H2(Cg,Z) and [ωΣh

] ∈ H2(Σh,Z) in
this case, and the first Chern class of the line bundle L → K4 associated to the circle fibration
is given by c1(L ) = deg(L )ωCg . One has c(T 1,0Σh) = 1 + χ(Σh)ωΣh

= 1 + c1(T
1,0Σh) with
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χ(Σh) = 2 − 2h the Euler characteristic of the Riemann surface Σh, and similarly for Cg. The
total Chern class is thus

c(T 1,0K4) = c(T 1,0Cg) ∧ c(T 1,0Σh)

=
(
1 + χ(Cg)ωCg

)
∧
(
1 + χ(Σh)ωΣh

)
= 1 + 2

(
(1− g)ωCg + (1− h)ωΣh

)
+ 4 (1− g) (1− h)ωCg ∧ ωΣh

= 1 + c1(T
1,0K4) + c2(T

1,0K4) ,

and the corresponding Todd class is

Td(T 1,0K4) = 1 + 1
2 c1(T

1,0K4) +
1
12

(
c1(T

1,0K4) ∧ c1(T 1,0K4) + c2(T
1,0K4)

)
= 1 + (1− g)ωCg + (1− h)ωΣh

+ (1− g) (1− h)ωCg ∧ ωΣh
.

Using c1(L ⊗m) = mdeg(L )ωCg , the corresponding Chern character is found to be

ch(L ⊗m) = 1 + c1(L
⊗m) + 1

2 c1(L
⊗m) ∧ c1(L ⊗m) = 1 +mdeg(L )ωCg .

The index of the Dolbeault complex in this case is thus given by

index ∂̄(m) =

∫
K4

(
1 +m deg(L )ωCg

)
∧
(
1 + (1− g)ωCg + (1− h)ωΣh

+ (1− g) (1− h)ωCg ∧ ωΣh

)
=

∫
K4

(
(1− g) (1− h) +m (1− h) deg(L )

)
ωCg ∧ ωΣh

= (1− h)
∫
Cg

(
m deg(L ) + 1− g

)
ωCg

= (1− h)
[
mdeg(L ) + 1− g

]
. (11.4.5)

The term in square brackets is the index of the twisted Dolbeault complex associated to the circle
bundle M3 → Cg, and we finally get the localization formula

Zvec(M3 × Σh) = Zvec(M3)
1−h

∏
α∈△+

(α, iσ)−2h (11.4.6)

Again, the multiplicative factor in the general localization formula, which includes also contribu-
tions from the ghosts, is essential for cancelling the denominator. This formula can be extended
to the case in which Cg has orbifold points, as reviewed in [421, Sec. 3.5].

Notice that the localization formula for the one-loop determinants onM3×Σh lifts the pertur-
bative three-dimensional partition function to the perturbative five-dimensional partition function.
However, while the full (non-perturbative) partition function on M3 receives contributions from
flat connections on M3, the full partition function on M3 × Σh includes connections A(0) that
descend to instantons on Cg × Σh. The moduli spaces over which we integrate are different. In
fact, the pullback to M5 of flat connections on M3 are not generally solutions to the fixed point
equation (11.4.1). This is a major difference from the partially twisted theory, in which the BPS
configurations decompose into flat connections on M3 and unconstrained connections on Σh.
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11.4.4 One-loop determinant of a hypermultiplet

For the contribution of a hypermultiplet, we will only consider a regular background here, due
to the issues encountered with the vector multiplet discussed in Section 11.4.3. Furthermore,
we consider only the one-loop determinant in the perturbative partition function, that is we set
A(0) = 0, hence ϕ = −σ0. We want to calculate the ratio of fluctuation determinants√

det i L−σ0 |f
det i L−σ0 |b

=

√√√√ det i L−σ0 |Ω(0,1)
H (M5,g)

det i L−σ0 |Ω0
H(M5,g) det i L−σ0 |Ω(0,2)

H (M5,g)

.

Applying the same strategy as with the vector multiplet, that is, decomposing the horizontal forms
according to the tensor powers of the line bundle L associated to the U(1) fibration, one arrives
at the cohomological localization formula

Zpert
hyp (M5) =

∏
ρ∈ΛR

∏
m∈Z

(m+∆

r
− i (ρ, σ0)

)−index ∂̄(m)

(11.4.7)

We briefly comment on the cohomological formulation of the hypermultiplet in a squashed or
ellipsoid background. The topological twist depends, in general, on the geometric data. However,
as discussed in [422] and also in [424, Sec. 3.3], we can turn on the squashing and continuously
deform the contact structure, so that the Reeb vector field associated to the new contact structure
stays parallel to the Killing vector field v. Then, the cohomological localization applies to the
vector multiplet, although using a notion of ‘horizontal’ which differs from that on the round
manifold we started with. For the topological twist of the hypermultiplet, however, a choice of
spinc structure is needed, and hence additional assumptions on the geometry of the base of the
U(1) fibration are required, usually that it is Kähler-Einstein. The pragmatic solution of [422] was
to take the cohomological form of the hypermultiplet as a definition in a squashed Sasaki-Einstein
geometry. This is not, however, a continuous deformation of the hypermultiplet in the round
geometry, and we do not follow this strategy here.

11.4.5 Perturbative partition functions

We now come to the first applications of our cohomological localization formulas in five dimensions.
Pan proved in [419] that the product manifolds M3×Σh admit N = 2 supersymmetry if M3 = S3
or M3 = T3, the sphere or the torus. We will work out the full perturbative N = 2 partition
functions on S3 × Σh. We shall then write down the perturbative N = 1 partition functions on
more general product five-manifolds M3 × Σh.

N = 2 perturbative partition functions on S3 × Σh

Regard the three-sphere S3 as the Hopf fibration of degree one over C0 = S2. We use the local-
ization formula (11.4.6) with A(0) = 0 together with (11.4.7) which gives

Zpert
vec (S3 × Σh) = Zvec(S3)1−h and Zpert

hyp (S
3 × Σh) = Zhyp(S3)1−h .

The full perturbative partition function is given by taking the product of the one-loop vector
multiplet determinant with products of the one-loop hypermultiplet determinants over all N = 2
hypermultiplets a of conformal dimensions ∆a in representations Ra of the gauge group G. We
then multiply by the Boltzmann weight of the classical action (11.4.3) evaluated at the trivial
solution A(0) = 0, and integrate over the remaining scalar moduli σ0 ∈ g using the localization
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formulas of Section 11.3.5. We can conjugate σ0 into a Cartan subalgebra t ⊂ g and use the Weyl
integral formula to perform the resulting integral with the measure

dµ(σ0) = dσ0
∏
α∈△+

(α, σ0)
2 , (11.4.8)

where dσ0 is the Lebesgue measure on t = Rrank(G). The applicability of the Weyl integral formula
is restricted to elements σ0 ∈ t for which the determinant in (11.4.8) is non-vanishing; these are
called regular elements, and they form an open dense subset treg ⊂ t. After cancelling the Jacobian
in the integration measure with the denominator of the vector multiplet one-loop determinant, we
obtain the perturbative partition function in the background of [419]:

Zpert
N=2(S

3 × Σh) =

∫
treg

dσ̃ e
− 4π2 vol(Σh)

rg2
YM

(σ̃,σ̃) ∏
α∈△+

sinh
(
π (α, σ̃)

)2−2h

×
∏
a

∏
ρa∈ΛRa

s1
(
i (1−∆a)− (ρa, σ̃)

)1−h
, (11.4.9)

where we defined the variable σ̃ = r σ0 in the Cartan subalgebra treg ⊂ g. The N = 1 partition
function on S3 × Σh without matter and including instanton contributions will be analysed in
Section 11.5.1.

N = 1 perturbative partition functions on M3 × Σh

We shall now consider the N = 1 perturbative partition functions on more general U(1) fibrations
over Cg × Σh, where Cg is a Riemann surface of genus g, focusing on the case M5 = M3 × Σh
where only M3 → Cg is fibered over Cg. Proceeding as above using the index formula (11.4.5), we
arrive at

Zpert
N=1(M3 × Σh) =

∫
treg

dσ̃ e
−π vol(Cg) vol(Σh)

r3 g2
YM

(σ̃,σ̃) ∏
α∈∆+

sinh
(
π (α, σ̃)

)2 (1−h) (1−g)
×
∏
a

∏
ρa∈ΛRa

s1
(
i (1−∆a)− (ρa, σ̃)

)(1−h) deg(L )
.

The products L(p, 1)×Σh are particular examples [419] with C0 = S2, for which deg(L ) = p. The
formalism should also apply when M3 is a more general Seifert homology sphere which admits a
contact structure, and in particular for the lens spaces M3 = L(p, s). It would also be interesting
to extend the formalism to the case in which Σh has punctures.

11.4.6 Contact instantons and their pushdown to four dimensions

We shall now work out solutions to the fixed point equation (11.4.1) on M5 =M3×Σh, and then
study their pushdown to four dimensions.

Regular fibrations

We first focus on regular Seifert manifolds. We want to solve the equation

v ⌞ ∗F = F (11.4.10)
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on M3 × Σh, where v = −ξ is the Killing vector field with ξ the Reeb vector field of the Seifert
fibration M3 → Cg. On K-contact five-manifolds, the solutions to this equation are refered to as
contact instantons [230], and their moduli spaces are studied in [431]. We can rewrite (11.4.10) as

∗F = κ ∧ F

or equivalently
v ⌞F = 0 and FH,− = 0 , (11.4.11)

where FH,± denote the self-dual and anti-self-dual horizontal parts of the curvature two-form F .
Let us decompose the gauge connection as

A = Aθ κ+AH ,

where κ is (minus) the contact structure on M3 dual to v, so that

F =
(
Aθ dκ+ dAθ ∧ κ+ dAH

)
− i
(
AH ∧AH + [Aθ, AH ] ∧ κ

)
.

We partly follow the treatment of [231, Sec. 3.2]. The first equation v ⌞F = 0 reads

DHAθ = dAθ + i[AH , Aθ] = 0 , (11.4.12)

so Aθ is covariantly constant along Cg × Σh. At this point, it is useful to prove that both the
g-valued function Aθ and one-form AH are invariant under translations along the fibre, generated
by v. For this, we choose the gauge33

LvA = 0 . (11.4.13)

Then

LvAθ = v ⌞ dAθ = −iv ⌞ [AH , Aθ] = 0 and LvAH = v ⌞ dAH + d(v ⌞AH) = 0 ,

where v ⌞ dAH = 0 follows from the gauge fixing condition (11.4.13).
From (11.4.12) it follows that the curvature F has only a horizontal part given by

F = FH = Aθ dκ+ dAH − iAH ∧AH .

At this point we use the second equation FH,− = 0. The surviving self-dual part belongs to the
vector space

FH,+ ∈ Ω
(1,1)
sympl(Cg × Σh, g)⊕ Ω(2,0)(Cg × Σh, g)⊕ Ω(0,2)(Cg × Σh, g) .

This implies that dAH is proportional to the Kähler two-form ωCg +ωΣh
on the base, and recalling

the relation (11.2.7) between dκ and the Kähler form on Cg×Σh, altogether we arrive at a curvature
which is of the form

F = fH
(
ωCg + ωΣh

)
+ F (2,0) + F (0,2) ,

where

F (2,0) = −i
[
(AH)y, (AH)z

]
dy ∧ dz and F (0,2) = −i

[
(AH)ȳ, (AH)z̄

]
dȳ ∧ dz̄ ,

and we have chosen local complex coordinates (y, ȳ) ∈ Cg and (z, z̄) ∈ Σh. The function fH ∈
Ω0(Cg × Σh, g) is a purely four-dimensional quantity.

To summarise, we arrive at a solution A = Aθ κ+AH onM3×Σh, where AH is a connection on
Cg ×Σh, and Aθ is a g-valued function which is constant along the fibre and covariantly constant

33We avoid formal considerations involved in the gauge fixing procedure. The details are exactly as in [230, 231].
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on Cg ×Σh with respect to AH . The curvature F of A lives on Cg ×Σh and is self-dual (from the
five-dimensional point of view). The Yang–Mills action evaluated at these connections gives

SYM(F ) =
1

2 g2YM

∫
M5

(
F ∧, ∗F

)
=

1

2 g2YM

∫
M5

κ ∧
(
FH,+ ∧, FH,+

)
= − π r

g2YM

∫
Cg×Σh

(
FH,+ ∧, FH,+

)
=

8π3 r (m⃗, n⃗)

g2YM

,

where we integrated over the circular fibre, of radius r, and used the fact that FH,+ is independent
of the fibre direction. The integer vectors m⃗, n⃗ ∈ Zrank(G) are the gauge fluxes through Cg and
Σh, respectively, which can be identified with weights of the Lie algebra g. Then, from Künneth’s
theorem, (m⃗, n⃗) ∈ Z is proportional to the second Chern character ch2(P ) ∈ H4(Cg × Σh,Q) =
H2(Cg,Q)⊗H2(Σh,Q) of the principal G-bundle P → Cg × Σh on which AH is a connection.

Five-dimensional gauge theories also have a topological global U(1)inst symmetry [215], with
conserved current

Jinst = ∗
(
F ∧, F

)
.

The U(1)inst charge of the current Jinst is the instanton number computed from F . The derivation
given above makes it clear that this topological symmetry is related to the U(1) invariance under
rotation of the Seifert fibre.

Pushdown

Let us now describe the pushdown of these solutions. The localization of the supersymmetric gauge
theory onto connections constant along the fibre, whose curvature descends to four dimensions,
is reminiscent of the framework of [432], where the topologically twisted theory on S2 × S2 was
studied. In particular, the vertical component Aθ of the gauge field A is covariantly constant on
the four-dimensional base manifold Cg × Σh, thus Aθ is a scalar field on Cg × Σh constrained
in exactly the same way as the scalar σ. Following [433], we can redefine our vector multiplet
and hypermultiplets in terms of four-dimensional supersymmetry multiplets. The real scalar σ is
combined with the vertical component Aθ to give a complex scalar ϕ = iσ−v ⌞A, together with a
purely four-dimensional gauge connection AH . This reduction brings the N = 1 five-dimensional
vector multiplet down to the N = 2 four-dimensional vector multiplet. Similar manipulations can
be done for the hypermultiplets. The five-dimensional Majorana spinor ε breaks down into one
left and one right chiral four-dimensional Killing spinor.

In [432], it is explained how to topologically twist the N = 2 gauge theory on any four-
dimensional manifold admitting a U(1) isometry. We can then simply borrow their results: The
fixed point equations in four dimensions are

[F, ϕ] = [F, ϕ†] = [ϕ, ϕ†] = 0 , w ⌞DHϕ
† = 0 and w ⌞F − i dϕ = 0 ,

where w is the vector field used for the twist. The vanishing Lie brackets imply that we can
conjugate all fields AH , σ and v ⌞A into the same Cartan subalgebra of g simultaneously. This
means that covariantly constant scalars σ can be taken to be constant. As pointed out in [432,
Sec. 4.3], to obtain the full partition function one should include not only the sum over gauge
fluxes m⃗ and n⃗ through the two surfaces Cg and Σh (which we have equivalently obtained from
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direct computations in five dimensions), but also the Nekrasov partition functions which sum over
point-like instantons corresponding to the fixed points of the action of the maximal torus of the
symmetry group given by the direct product of the gauge group with the isometry group.

To explicitly compute the instanton contributions, we could take C0 = Σ0 = S2, where our
result coincides with that of [244, Sec. 2]; they proceed in the other direction, starting from the
theory on S2 × S2 with Ω-background and then lifting it to S3b × S2.

While contributions from four-dimensional point-like instantons on Cg ×Σh are hard to com-
pute in more general geometries, we may hope to recover the full answer from a resurgent analysis,
as explained in [434] for S4.

Irregular fibrations

The irregular case is more subtle. In this case, we may attempt to proceed as in the regular case,
but now with the Killing vector v no longer pointing along the fibre direction. In other words,
the equation

v ⌞ ∗F = F (11.4.14)

cannot be interpreted in terms of horizontal and anti-self-dual components. Instead, we can
decompose the gauge field as

A = Aη η +AT ,

where η is the one-form dual to v, Aη is the component of the gauge connection along the direction
of the isometry generated by v, and AT is the transverse gauge connection. That is, we replace
the notion of horizontal with that of transverse, which is natural in the present context [420].
Then the condition v ⌞F = 0, necessary to fulfill (11.4.14), can be solved in an analogous way as
for the regular case, leading to

DTAη = dAη + i[AT , Aη] = 0 and LvAη = 0 = LvAT .

From the analysis of the regular case above, it is clear that we can again pushdown the theory
to four dimensions. However, this time we do not reduce to the base Cg×Σh of the Seifert fibration,
but instead to the submanifold transverse to η (equivalently, the submanifold orthogonal to v).
This is what one expects by the construction of [420].

11.5 q-deformed Yang–Mills theories from cohomological local-
ization

This final section is devoted to the study of five-dimensional supersymmetric Yang–Mills theory on
S3b×Σh, where S3b is either the squashed sphere of [405] or the ellipsoid of [281] (see Appendix 11.B
for details); recall from Section 11.2.1 that these are the five-dimensional theories that naturally
descend from six-dimensional superconformal field theories on squashed geometries. We show
how q-deformations of Yang–Mills theory on a Riemann surface Σh arise from our localization
procedure. Our formula for the partition function of the standard q-deformed Yang–Mills theory
in Section 11.5.1 improves the result of [394, 396], wherein the Gaussian term was not retained; as
we discuss, this Boltzmann factor is important for applications to holography. Both treatments
of [394] and [396] focus on the zero area limit where vol(Σh) → 0, which hides the fact that the
resulting q-deformed Yang–Mills theory has p = 1. We elucidate the geometric significance of this
new q-deformation through an analysis of the resulting matrix model on the sphere Σ0 = S2, by
adapting the procedure of [409] to the present case.
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11.5.1 Localization on S3 × Σh

Consider the N = 1 partition function without matter on S3 × Σh, beyond the perturbative
calculation of Section 11.4.5. More precisely, we include the full set of solutions obtained in
Section 11.4.6, but discard the four-dimensional point-like instantons.34 The resulting partition
function is given by

ZN=1(S3 × Σh) =
∑
A(0)

∫
treg

dσ0 e
−Scl(F,σ0)

∏
α∈△+

sinh
(
π r (α, ϕ)

)2−2h
,

with Scl the action evaluated at the localization locus:

Scl(F, σ0) = SYM(F ) +
1

2 g2YM

∫
S3×Σh

( 1

r2
(σ0, σ0)κ ∧ dκ ∧ ωΣh

+
1

r
(σ0, F ) ∧ κ ∧ dκ

)
.

The first summand in the action, SYM(F ), is the five-dimensional Yang–Mills action evaluated in
Section 11.4.6:

SYM(F ) =
1

2 g2YM

∫
S3×Σh

κ ∧
(
FH,+ ∧, FH,+

)
= − π r

g2YM

∫
S2×Σh

(
F |S2×Σh

∧, F |S2×Σh

)
=

8π3 r

g2YM

(m⃗, n⃗) ,

(11.5.1)

where in the second equality we used the defining equations, and in the last equality (m⃗, n⃗) ∈ Z
is proportional to the second Chern character ch2 associated to the pertinent principal G-bundle
over S2 × Σh.

The sum in the partition function runs over the G-connections A(0) whose curvature F satisfies
the fixed point equation

v ⌞ ∗F = F .

These solutions were studied in Section 11.4.6. It is straightforward to check that connections
whose curvature lives on Σh, that is F = F |Σh

, do not satisfy this equation. In other words,
connections that are flat when projected onto S3, and which thus belong to the localization
locus of a purely three-dimensional theory, do not belong to the localization locus of the fully
twisted five-dimensional theory. The flat connection on S3 does belong to the localization locus
of the five-dimensional theory which is partially twisted along Σh (with arbitrary A|Σh

), but not
to the localization locus of the fully twisted theory; the partition function of the field theory
topologically twisted along Σh is important from the perspective of the six-dimensional theory
and its reduction to four-dimensional theories of class S [394, 396, 244]. The same argument can
be made for connections which are flat along Σh, which then only belong to the localization locus of
the five-dimensional theory which is partially twisted along S3 (with arbitrary A|S3) [411, 412, 414].

We can write

ZN=1(S3 × Σh) =
∑

m⃗,n⃗∈Zrank(G)

∫
treg

dϕ e−Scl(m⃗,n⃗;ϕ)
∏
α∈△+

sinh
(
π r (α, ϕ)

)2−2h
. (11.5.2)

34This sector of the partition function was named “perturbative” in [244]. However, throughout the present
chapter the term perturbative has been used to refer to the expansion around the trivial connection, while the
subsector of the full partition function we are considering now includes a much wider class of solutions. A proper
definition hinted at in [244, Sec. 2.4] might be “partition function neglecting codimension four field configurations”.
These are non-perturbative with respect to an expansion in the geometric area parameter vol(Σh).
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We shifted the integration variable to ϕ = −σ0−v ⌞A(0). This is the natural variable to use when
descending to a four-dimensional description, as the sum in (11.5.2) is taken over the gauge fluxes
m⃗ and n⃗ through S2 and Σh, respectively; the first and second Chern characters associated to the
principal G-bundle over S2 × Σh are obtained by using the pairing ( · , · ). The action evaluated
at the fixed points consists of three terms:

Scl(m⃗, n⃗;ϕ) = SYM(m⃗, n⃗) +
1

2 g2YM

∫
S3×Σh

( 1

r2
(ϕ, ϕ)κ ∧ dκ ∧ ωΣh

− 1

r
(ϕ, F |S2×Σh

) ∧ κ ∧ dκ
)
,

where the first summand is written in (11.5.1). Passing to the scaled variable ϕ̃ = r ϕ, we get

Scl(m⃗, n⃗; ϕ̃) = SYM(m⃗, n⃗) (11.5.3)

+
1

g2YM

(8π2 vol(Σh)
r

(ϕ̃, ϕ̃) +
2πi

r2

∫
S3×Σh

i

4π
(ϕ̃, F |S2×Σh

) ∧ κ ∧ dκ
)
.

Zero flux sector

We will now restrict ourselves to those connections for which SYM(m⃗, n⃗) = 0. Contributions with
non-vanishing second Chern character are exponentially suppressed. We turn off the gauge fluxes
through S2, m⃗ = 0⃗, and follow standard techniques from two-dimensional Yang–Mills theory, see
in particular [423]. Using

1

2

∫
S3×Σh

i

2π
(ϕ̃, F |S2×Σh

) ∧ κ ∧ dκ = 4π2 r3 (ϕ̃, n⃗) ,

and summing over n⃗ ∈ Zrank(G), the third summand in the action (11.5.3) produces the delta-
function constraint

4π2 r

g2YM

ϕ̃ = k⃗

for some integer vector k⃗ ∈ Zrank(G) which can be identified with a regular weight of g. Plugging
this into the remaining Gaussian part of the action gives

g2YM

4π r

vol(Σh)

π r2
(k⃗, k⃗ ) .

In the one-loop determinant, we obtain

sinh
(
π r (α, ϕ)

)
= sinh

(
π (α, ϕ̃)

)
= sinh

(
g2YM

4π r
(α, k⃗ )

)
= −

[
(α, k⃗ )

]
q

where

q = e−gstr with gstr :=
g2YM

2π r
. (11.5.4)

The final form of the partition function is then

Zm⃗=0⃗
N=1(S3 × Σh) =

∑
k⃗∈(Zrank(G))reg

∏
α∈△+

[
(α, k⃗ )

]2−2h

q
q

1
2
(k⃗,⃗k )

vol(Σh)

π r2 . (11.5.5)

From (11.5.4) we identify the six-dimensional radius β =
g2YM
2π , and it is instructive to rewrite

q
1
2
(k⃗,⃗k )

vol(Σh)

π r2 = exp
(
− (k⃗, k⃗ )

2π β vol(Σh)

volκ(S3)

)
, (11.5.6)
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where volκ(S3) is the volume of S3 taken with respect to the contact structure κ, in our normal-
ization.

The expression (11.5.5) is the partition function of the standard q-deformed two-dimensional
Yang–Mills theory on Σh (cf. Section 11.2.2), at p = 1 and with Gaussian weight corrected
by the ratio of volumes between the fibre Riemann surface Σh and the total space sphere S3.
This ratio of volumes matches exactly with [407]. For unitary gauge group G = U(N), this is
reminiscent of the large N free energy of gauge theories with a holographic dual. In particular,
for Σh = Σ0 = S2, the N3 behaviour of the free energy at large N in the present theory follows
immediately from the large N limit of q-deformed Yang–Mills theory, which in turn is given by
the free energy of Chern–Simons theory on S3 as we are in the case p = 1. This indeed gives
the right answer for a gauge theory on a Sasaki-Einstein five-manifold which has a holographic
dual [231]. See [241] for a discussion and a similar example where the N3 behaviour of the free
energy in five dimensions is extracted from Chern–Simons gauge theory in three dimensions. See
also [235] for the localization of five-dimensional maximally supersymmetric Yang–Mills theory to
a three-dimensional subsector, and the relation with Chern–Simons theory.

We notice that the string coupling gstr depends only on the ratio
g2YM
r . This is consistent with

dimensional reduction from the (2, 0) theory on S1 × S3 × Σh discussed in Section 11.2.1. In the
six-dimensional setting, g2YM plays the role of the circumference of the circle S1 on which we have
reduced. On the other hand, the small area limit vol(Σh) → 0 gives the superconformal index
of the four-dimensional gauge theory on S1 × S3, consistently with the conjecture of [406]. From
(11.5.6) it is evident that the small vol(Σh) limit is the same as the large volκ(S3) limit which
decompactifies the three-sphere S3 to R3.

Reinstating gauge fluxes

We have so far restricted ourselves to the sector where SYM(m⃗, n⃗) = 0. In general we have to
consider additional solutions which are given by connections whose curvature lives on S2 × Σh
with non-trivial second Chern character ch2 ̸= 0, and

SYM(m⃗, n⃗) =
8π3 r

g2YM

(m⃗, n⃗) = 2π i
(
− i

4π2 r

g2YM

(m⃗, n⃗)
)
,

where as above n⃗ is the gauge flux through Σh and m⃗ is the gauge flux through S2. The full
partition function includes this term in the action, along with a sum over m⃗ ∈ Zrank(G). The
bracketed term has exactly the same coefficient as a BF-type term in the action. This means that
the procedure we used for the m⃗ = 0⃗ sector should be modified by a shift ϕ̃ 7→ ϕ̃ − i m⃗ after the
sum over all n⃗ ∈ Zrank(G). We finally arrive at

ZN=1(S3 × Σh) =
∑

m⃗∈Zrank(G)

∑
k⃗∈(Zrank(G))reg

∏
α∈△+

([
(α, k⃗ − i m⃗)

]
q

[
(α, k⃗ + i m⃗)

]
q

)1−h
× q

1
2
(k⃗−i m⃗,⃗k−im⃗)

vol(Σh)

π r2 .

The q-deformed measure has in fact precisely the right form to support non-trivial fluxes m⃗.

11.5.2 Localization on squashed S3
b × Σh

There exist two types of squashings of S3 that can be lifted to five dimensions with N = 2
supersymmetry. The first type is the familiar case of [281]. From the point of view of cohomological
localization, the squashing simply corresponds to a rescaling of the fibre radius, and the results
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for the one-loop determinants on S3b × Σh are exactly the same as for the round sphere S3, but
with fibre radius ϵ ̸= r, where r is the radius of the base S2. See Appendix 11.B for further details.

The other squashed sphere, which is a regular fibration, is that of [405]. We did not give a
formal derivation of the one-loop determinants in the cohomological gauge theory for this back-
ground. However, we know that the Killing vector field v has closed orbits and is parallel to
the Reeb vector field ξ. We can therefore lift the results from S3b to S3b × Σh, and the one-loop
determinants are given by

Zvec(S3b × Σh) =

( ∏
α∈△+

sinh
(
π ϵ1 (α, σ0)

)
sinh

(
π ϵ2 (α, σ0)

)
π2 ϵ1 ϵ2 (α, σ0)2

)1−h

Zhyp(S3b × Σh) =

( ∏
ρ∈ΛR

sb
(
i
2 (b+ b−1) (1−∆)− r (ρ, σ0

))1−h
,

which agrees with [244, Sec. 2]. We adopted the notation

ϵ1 = r b and ϵ2 = r b−1 with b =
1− iu√
1 + u2

from Appendix 11.B.
The computation of the full N = 1 partition function without matter on S3b × Σh proceeds

exactly as in Section 11.5.1, with only a modification in the one-loop determinant. This results
in a bi-orthogonalization of the q-deformed measure, and the partition function in the sector of
vanishing second Chern character ch2 = 0 is given by

Zm⃗=0⃗
N=1(S3b × Σh) =

∑
k⃗∈(Zrank(G))reg

∏
α∈△+

([
b (α, k⃗ )

]
q

[
b−1 (α, k⃗ )

]
q

)1−h
q

1
2
(k⃗,⃗k )

vol(Σh)

π r2 .

The extension to the full partition function including non-trivial gauge fluxes m⃗ through the
base S2 is exactly as described in Section 11.5.1, as we are presently working in the regular case.
After inclusion of gauge fluxes m⃗ ̸= 0⃗, our result appears to be only in partial agreement with
[244, 410], where the field theory is first defined on S3b×R2, then dimensionally reduced, and finally
put on the Riemann surface Σh with a twist. That procedure allows for additional background
fluxes for the flavour symmetry, which do not appear in our framework nor in [394].

11.5.3 Localization on ellipsoid S3
b × Σh

We now consider the geometry S3b×Σh for the ellipsoid S3b of [281]. Most of the steps are the same
as in the round S3 case of Section 11.5.1. The action at the localization locus is again given by

Scl(F, σ0) = SYM(F ) +
1

2 g2YM

∫
S3×Σh

( 1

r2
(σ0, σ0)κ ∧ dκ ∧ ωΣh

+
1

r
(σ0, F ) ∧ κ ∧ dκ

)
,

with

SYM(F ) =
1

2 g2YM

∫
S3×Σh

(
F ∧, ∗F

)
.

The zero flux sector of the partition function is

Zm⃗=0⃗
N=1(S3b × Σh) =

∑
n⃗∈Zrank(G)

∫
treg

dσ0 e
−Scl (⃗0,n⃗;σ0) (11.5.7)

×
∏
α∈△+

(
sinh

(
π r b (α, σ0)

)
sinh

(
π r b−1 (α, σ0)

))1−h
.
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Changing variable σ̃ = r σ0 and repeating the same steps used in Section 11.5.2, we arrive at

Zm⃗=0⃗
N=1(S3b × Σh) =

∑
k⃗∈(Zrank(G))reg

e−
gstr
2

(k⃗,⃗k )
vol(Σh)

π r2

×
∏
α∈△+

(
sinh

(
b
gstr (α, k⃗ )

2

)
sinh

(
b−1 gstr (α, k⃗ )

2

))1−h
,

where as before we defined the string coupling gstr =
g2YM
2π r = β

r . The final expression can be
rewritten in terms of q = e−gstr as

Zm⃗=0⃗
N=1(S3b × Σh) =

∑
k⃗∈(Zrank(G))reg

q
1
2
(k⃗,⃗k )

vol(Σh)

π r2

∏
α∈△+

([
b (α, k⃗ )

]
q

[
b−1 (α, k⃗ )

]
q

)1−h
.

From (11.5.7) we see that the perturbative partition function on S3b × S2, retaining only the
contribution from the trivial flat connection A(0) = 0, coincides with the perturbative partition
function of Chern–Simons gauge theory on the lens space L(p, 1), continued to arbitrary values
p = b2 ∈ R:

Zpert
N=1(S

3
b × S2) =

∫
treg

dσ e
− 1

2 gstr
(σ,σ)

vol(Σh)

π r2
∏
α∈△+

sinh
(
b
(α, σ)

2

)
sinh

(
b−1 (α, σ)

2

)
,

where we rescaled σ = gstr σ0. This becomes more evident if we use instead an asymmetric length
scaling to define the variable σ̃ = ϵ1 σ0 = r b σ0. For general genus h we then arrive at the discrete
matrix model

Zm⃗=0⃗
N=1(S3b × Σh) =

1

brank(G)

∑
k⃗∈(Zrank(G))reg

q
1
2
(k⃗,⃗k )

vol(Σh)

π r2

∏
α∈△+

([
(α, k⃗ )

]
q

[
b−2 (α, k⃗ )

]
q

)1−h
.

Further details and analysis of this matrix model for genus h = 0 and gauge group G = U(N),
along the lines of [409], are provided in Section 11.5.4 below.

Reinstating the additional contributions of contact instantons, with non-vanishing fluxes through
the base S2 of the U(1) fibration of S3b , is a much more subtle issue. This is because the U(1)-
action now involves the Killing vector field v which differs from the Reeb vector field ξ on S3b , so
that contractions with v do not separate the horizontal and vertical parts of the differential forms
involved.

11.5.4 The matrix model

We focus now on the partition function Zm⃗=0⃗
N=1(S3b × S2) for gauge group G = U(N). The partition

function is formally the same for either the squashed sphere or the ellipsoid S3b . Only the geometric
meaning of the squashing parameter b is different in the two cases, in particular b is a complex
number of unit modulus |b| = 1 for the squashed sphere and b > 0 is real for the ellipsoid. However,
as the partition function can be analytically continued in both cases, there is no difference in
practice.

Our goal is then to study the discrete random matrix ensemble with partition function

ZN (b) =
1

bN N !

∑
ℓ⃗∈ZN

e−
gstr
2

∑N
j=1 ℓ

2
j

∏
1≤j<k≤N

4 sinh
(gstr

2
(ℓj−ℓk)

)
sinh

( gstr
2 b2

(ℓj−ℓk)
)
, (11.5.8)

which can be identified with the discrete version of the bi-orthogonal Stieltjes-Wigert ensemble
studied in [83]. If p := b2 ∈ Z, the continuous version of the bi-orthogonal Stieltjes-Wigert
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ensemble provides the partition function of Chern–Simons theory on the lens space L(p, 1). In
the limit b → 1 we recover the partition function of q-deformed Yang–Mills theory constructed
from the monopole bundle over S2 with p = 1, whose continuous counterpart is Chern-Simon
theory on S3 (with analytically continued level). In the present setting, b2 may be any positive
real number, not necessarily integer, and indeed the analysis of the bi-orthogonal Stieltjes-Wigert
ensemble in [83] does not rely on p being integer. We shall now clarify the geometric significance
of the dependence on the squashing parameter b of this q-deformed Yang–Mills theory.

Semi-classical expansion

Following [409], we will begin by performing a modular inversion of the series (11.5.8) to obtain
the dual description of the q-deformed Yang–Mills matrix model in terms of instanton degrees of
freedom. For this, we consider the function

Fb(x1, . . . , xN ) = e−
gstr
4

∑N
j=1 x

2
j

∏
1≤j<k≤N

2 sinh
( gstr
2 b2

(xj − xk)
)

of continuous variables (x1, . . . , xN ) ∈ RN . Its Fourier transform is given by

F̂b(y1, . . . , yN ) :=

∫
RN

dx e
∑N

j=1 (2πixj yj−
gstr
4
x2j )

∏
1≤j<k≤N

(
e

(xj−xk) gstr

2 b2 − e−
(xj−xk) gstr

2 b2

)
= e

− 4π2

gstr

∑N
j=1

(
yj+

i(N−1) gstr
4π b2

)2
+

N (N−1)2 gstr
2 b4

×
∫
RN

du e−
gstr
4

∑N
j=1 u

2
j

∏
1≤j<k≤N

(
e

gstr uj

b2
+

4π i yj

b2 − e
gstr uk

b2
+

4π i yk
b2

)
,

where we completed squares and changed integration variables to uj = xj− 4πi
gstr

yj+
N−1
b2

. We now
change integration variables again, in the usual way for matrix models with hyperbolic interactions,
by defining

zj = e
gstr uj

b2
+

2 gstr
b4

to get

F̂b(y1, . . . , yN ) =
( b2
gstr

)N
e−

gstr
2 b4

N (N2+1) e
− 4π2

gstr

∑N
j=1

(
yj+

i(N−1) gstr
4π b2

)2
×
∫
(0,∞)N

dz e
− b4

4 gstr

∑N
j=1 (log zj)

2 ∏
1≤j<k≤N

(
zj e

4π i yj

b2 − zk e
4π i yk

b2

)
.

The integral expression we have arrived at is exactly the same as in [409, Eq. (3.14)] under the
identification of the string coupling constant g̃str there as g̃str =

gstr
b2

, which as we have seen is the
coupling that reproduces the standard q-deformed Yang–Mills theory. We can therefore evaluate
the integral using Stieltjes-Wigert polynomials to get

F̂b(y1, . . . , yN ) =
( 4π

gstr

)N
2
e

gstr
6 b4

N (N−1) (N−2) e
− 4π2

gstr

∑N
j=1

(
yj+

i(N−1) gstr
4π b2

)2
×

∏
1≤j<k≤N

(
e

4π i yj

b2 − e
4π i yk

b2

)
.

At this point, we apply the convolution theorem for Fourier transformations to get

Zb(y1, . . . , yN ) :=

∫
RN

dx e2π i
∑N

j=1 xj yj Fb(x1, . . . , xN )F1(x1, . . . , xN )

=

∫
RN

dt F̂b

(y1 − t1
2

, . . . ,
yN − tN

2

)
F̂1

(y1 + t1
2

, . . . ,
yN + tN

2

)
.
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After some calculation, we arrive finally at

Zb(y1, . . . , yN ) = e
− 2π2

gstr

∑N
j=1 y

2
j Wb(y1, . . . , yN ) ,

with weight given by

Wb(y1, . . . , yN ) =
( 4π

gstr

)N
e

gstr
12

N (N2−1) (1+b−4) (11.5.9)

×
∫
RN

dt e
− 2π2

gstr

∑N
j=1 t

2
j

∏
1≤j<k≤N

2
(
cosπ

(
yjk (1 + b−2) + tjk (1− b−2)

)
− cosπ

(
yjk (1− b−2) + tjk (1 + b−2)

))
,

where we adopted the shorthand notation yjk := yj − yk and tjk := tj − tk. This correctly
reproduces the weight of [409, Eq. (3.20)] in the limit b = 1.

The final step in developing the semi-classical expansion of the partition function (11.5.8) is
Poisson resummation, and we finally arrive at

ZN (b) =
1

bN N !

∑
ℓ⃗∈ZN

Zb(ℓ⃗ ) =
1

bN N !

∑
ℓ⃗∈ZN

e
− 2π2

gstr
(ℓ⃗,ℓ⃗ ) Wb(ℓ⃗ ) . (11.5.10)

This expression admits the standard interpretation as a sum over instanton solutions of the two-
dimensional gauge theory: Since the q-deformation arises here through one-loop determinants in
the initial five-dimensional field theory, at the classical level this theory is just ordinary Yang–
Mills theory on the sphere S2. The exponential prefactors in the series (11.5.10) are then the
classical contributions to the gauge theory path integral from the Yang–Mills action evaluated on
instantons of topological charge ℓj ∈ Z corresponding to a Dirac monopole of the j-th factor of
the maximal torus U(1)N ⊂ U(N), while the integrals (11.5.9) are the fluctuation determinants
around each instanton.

Rational limit and Chern–Simons theory on L(p, s)

Up to now the derivation of (11.5.10) worked for every positive real value of the squashing pa-
rameter b. Let us now specialise the squashing parameter to the rational values

b2 =
p

s
∈ Q ,

where p and s are coprime positive integers with 1 ≤ s ≤ p. From the five-dimensional perspective
that we started with, the ellipsoid Seifert manifold S3b then has the topology of a lens space L(p, s),
viewed as a circle bundle over S2 with two marked points [421]; the exceptional fibres over the
marked points respectively makes them Zp and Zs orbifold points. The first Chern class of the
line V-bundle L (p, s) over the P1 orbifold associated to L(p, s) is

c1
(
L (p, s)

)
=
s

p
ωP1 ,

which cancels the local curvatures at the marked points of P1 to ensure that the total degree of the
Seifert fibration is zero. This is also homeomorphic to the ‘fake’ lens space which is the quotient
S3/Zp by the free Zp-action (

z1, z2
)
7−→

(
e2πis/p z1, e

2π i/p z2
)
, (11.5.11)
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where S3 is regarded as the unit sphere in C2. From the two-dimensional perspective, we will
now show that the instanton expansion (11.5.10) retains topological information reflecting its
five-dimensional origin, by rewriting it in terms of flat connection contributions to U(N) Chern–
Simons gauge theory on the lens spaces L(p, s).

Since

π1
(
L(p, s)

)
= Zp ,

gauge inequivalent flat U(N) connections are labelled by N -tuples m⃗ ∈ (Zp)N , which are torsion
magnetic charges coming from the pullback of a Yang–Mills instanton on the sphere S2 to a flat
connection on L(p, s) [397]. Let us then rewrite the series variables ℓ⃗ ∈ ZN in (11.5.10) as

ℓ⃗ = m⃗+ p l⃗ ,

with l⃗ ∈ ZN . We can rewrite the interactions among eigenvalues from (11.5.9) as

4 sin
π s

p

(
mjk − tjk + p (lj − lk)

)
sinπ

(
mjk + tjk + p (lj − lk)

)
,

and thus it depends only on the values of ℓ⃗ ∈ ZN modulo p, that is, on m⃗ ∈ (Zp)N .35 They
are also invariant under the Weyl symmetry group SN of the gauge group U(N), so that we can
reduce the sum over all N -tuples m⃗ ∈ (Zp)N to the ordered ones with

mN ≥ mN−1 ≥ · · · ≥ m1 .

Thus the partition function (11.5.10) depends only on how many times the integers k ∈ {0, 1, . . . , p−
1} appear in the string (m1, . . . ,mN ). We denote these multiplicities as N = (N0, N1, . . . , Np−1),
which by construction are p-component partitions of the rank N :

Nk ≥ 0 and

p−1∑
k=0

Nk = N .

Under this reordering the Weyl symmetry breaks according to

SN −→ SN0 × SN1 × · · · × SNp−1 .

The partition function (11.5.10) is then rewritten as

ZN (p, s) =
(s
p

)N/2 ∑
N⊢N

1
p−1∏
k=0

Nk!

Wp,s

(
0N0 , 1N1 , . . . , (p− 1)Np−1

)

×
∑
l⃗∈ZN

p−1∏
k=0

exp
(
− 2π2

gstr

Nk∑
j=N0+N1···+Nk−1+1

(k + p lj)
2
)
,

where here kNk := (k, . . . , k) is the Nk-vector whose entries are all equal to k. As in [409, Sec.
3.3], we identify in the second line a product of elliptic theta-functions

ϑ3(τ |z) =
∑
l∈Z

eπiτ l
2+2πil z

35Strictly speaking, this is only true if the integers p and s have the same even/odd parity, which we tacitly
assume.
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which enables us to write

ZN (p, s) =
∑
N⊢N

e
− 2π2

gstr

∑p−1
k=0 Nk k

2

Wp,s

(
0N0 , 1N1 , . . . , (p− 1)Np−1

) p−1∏
k=0

ϑ3
(2πip2
gstr

∣∣2πip k
gstr

)Nk

Nk!
.

(11.5.12)

We can write the fluctuation weight Wp,s

(
0N0 , 1N1 , . . . , (p− 1)Np−1

)
explicitly in its integral form

(11.5.9) and reorganize the integration variables tj into subsets tJj with J ∈ {0, 1, . . . , p− 1} and
j ∈ {1, . . . , NJ}. We then shift integration variables as uJj := tJj − j to get

Wp,s

(
0N0 , 1N1 , . . . , (p− 1)Np−1

)
=
( 4π

gstr

)N
e

gstr
12

N (N2−1)
(
1+ s2

p2

)
(11.5.13)

×
p−1∏
J=0

∫
RNJ

duJ e
− 2π2

gstr

∑NJ
j=1 (u

J
j +j)

2 ∏
1≤j<k≤NJ

4 sin
π s

p

(
uJj − uJk

)
sinπ

(
uJj − uJk

)
×

∏
0≤J<K≤p−1

NJ∏
j=1

NK∏
k=1

4 sin
π s

p

(
uJj − uKk + J −K

)
sinπ

(
uJj − uKk + J −K

)
.

The products here which are independent of (p, s) combine to give a standard Weyl determinant,
while the (p, s)-dependent products carry the information about the surgery data of the Seifert
homology sphere X(s/p).

In fact, if we drop the product of theta-functions from the sum (11.5.12) and rescale the
string coupling as before to g̃str = s gstr/p, we can recognise the analytically continued partition
function of U(N) Chern–Simons gauge theory at level k ∈ Z on the lens space L(p, s): the
exponential prefactor is recognized as the classical contribution to the path integral from the
Chern–Simons action evaluated on the flat U(N) connection labelled by N [133, 397], with the
analytic continuation

g̃str =
s gstr
p

=
2πi

k +N
.

Moreover, after a straightforward change of integration variables (and subsequent analytic contin-
uation), the integral expression (11.5.13) is easily seen to agree with the multi-eigenvalue integral
formula from [435, Thm 7] for the contribution to the one-loop fluctuation determinant from the
flat connection N. Thus the full partition function (11.5.12) can be written as

ZN (p, s) =
∑
N⊢N

ZCS
p,s(N)

p−1∏
k=0

ϑ3
(2πip2
gstr

∣∣2πip k
gstr

)Nk

Nk!
,

where

ZCS
p,s(N) := exp

(
2π2 s

g̃str p

p−1∑
k=0

Nk k
2

)
Wp,s

(
0N0 , 1N1 , . . . , (p− 1)Np−1

)
is the contribution to the Chern–Simons partition function from the point of the moduli space of
flat connections on the lens space L(p, s) labelled by

m⃗ =
(
0N0 , 1N1 , . . . , (p− 1)Np−1

)
.

The connection between Chern–Simons theory on lens spaces L(p, s) with s > 1 and q-deformed
Yang–Mills theory was also obtained in [397], but in a much different and more complicated
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fashion. There the two-dimensional gauge theory is defined on the collection of exceptional divisors
of the four-dimensional Hirzebruch–Jung space X4(p, s), which is the minimal resolution of the
Ap,s singularity defined by the same orbifold action (11.5.11) on C2. The corresponding partition
function depends explicitly on the intersection moduli ei of the exceptional divisors, which in
the three-dimensional case translate into framing integers that enter the surgery construction of
the Seifert space L(p, s); after stripping away the Chern–Simons fluctuation determinants, the
resulting partition function computes the contribution of fractional instantons to the partition
function of topologically twisted N = 4 Yang–Mills theory on X4(p, s) [397]. This is not the
case here. Like the topological Chern–Simons theory, our two-dimensional gauge theory partition
function (11.5.12) is independent of the framing integers ei and depends only on the pair of
integers (p, s) which uniquely determine L(p, s) up to homeomorphism. In particular, stripping
away the Chern–Simons fluctuation determinants Wp,s

(
0N0 , 1N1 , . . . , (p − 1)Np−1

)
would leave a

(p, s)-independent partition function proportional to ϑ3
(
2πi
gstr

∣∣0)N [397], which is the contribution
of fractional instantons to the partition function of N = 4 gauge theory on X4(1, 1) ∼= OP1(−1).
This suggests that our squashing of the two-dimensional q-deformed gauge theory on S2 is, like
the standard theory at p = 1, also related to the Calabi-Yau geometry of the resolved conifold
OP1(−1) ⊕ OP1(−1); the topological string interpretation of this theory is certainly worthy of
further investigation.

Large N limit

For any finite value of the rank N , the partition function ZN (b) is a continuous function of the
squashing parameter b > 0. In this sense our squashed q-deformations of two-dimensional Yang–
Mills theory are continuations of the lens space theories analysed above: Since the set of rational
b2 is dense in the space of all squashing parameters b > 0, any partition function can be expressed
as a limit of the two-dimensional gauge theories whose geometric meanings were explained above.
It would be interesting to understand more precisely what the underlying geometry means for
generic real values b > 0.

However, we do expect the partition function (11.5.8) to experience a phase transition in the
large N regime, triggered by the discreteness of the matrix model, at least for large enough values
of the squashing parameter b. The standard q-deformed Yang–Mills theory on S2 undergoes a
phase transition for p > 2 [409], and we can extrapolate this to our more general setting. The
eigenvalue distribution ρ(λ) of a discrete random matrix ensemble is subject to the constraint

ρ(λ) ≤ 1 ,

which in the present case is always fulfilled at large N when b ≤
√
2. It would be interesting to

see how the phase transition appears at b >
√
2 in terms of the bi-orthogonal Stieltjes-Wigert

polynomials of [83, Sec. 4.1]. It was argued in [83], and later proved in [436], that around the
trivial flat connection the discrete and continuous versions of the Stieltjes-Wigert ensemble are
essentially the same, thus the zero-instanton sector of our squashing of q-deformed Yang–Mills
theory can be obtained exactly via bi-orthogonal polynomials. For the case b = 1 this gives the full
partition function of q-deformed Yang–Mills theory, since the only flat connection on L(1, 1) ∼= S3
is trivial.

Introduce the ’t Hooft coupling
t := gstrN

and take the ’t Hooft limit N → ∞, gstr → 0 with t fixed. In this limit, the partition function
(11.5.8) is proportional to the Chern–Simons matrix model on L(p, 1) around the trivial connec-
tion, continued to p = b2 ∈ R. Equivalently, from the instanton expansion (11.5.10) we infer that,
as long as the fluctuations Wb(ℓ⃗ ) give sub-leading contributions, all instanton contributions are
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suppressed except for the trivial one. Taking the large N limit of [83, Eq. (2.26)], in the large N
regime we obtain

Z(∞)
N (b) = 2N (N+1)

( 2π

gstr

)N
2
exp

(
− N2 t

12 b4
(
3 b8 + 6 b4 − 13

)
− N2 b8

t2
F

(0)
CS

( t
b4

))
,

where

F
(0)
CS (t) =

t3

12
− π2t

6
− Li3

(
e−t
)
+ ζ(3)

is the planar free energy of Chern–Simons theory on S3 with (analytically continued) ’t Hooft
coupling t. For b ≤

√
2 this solution is exact, and indeed the free energy of the supersymmetric

gauge theory on S3b × S2 exhibits the N3 behaviour in the strong coupling region for t → ∞, as
in the case of the five-sphere S5 [231]. However, for higher values of b, this solution ceases to be
valid for large t and we expect the strong coupling region to have a different solution.

11.A Spinor conventions

For field theories in three dimensions we follow the normalization and conventions of [137]. We
work in the N = 2 formalism, and for theories with N = 4 supersymmetry only SU(2)R ⊂
SU(2)C × SU(2)H is manifest. In five dimensions, we follow [231]. We work in the N = 1
formalism, with SU(2)R R-symmetry, using the letters I, J, . . . for the indices. In theories ad-
mitting N = 2 supersymmetry, only SU(2)R ⊂ SU(2)R × U(1)r ⊂ SO(5)R is manifest, where
SU(2)R×U(1)r is the maximal R-symmetry group preserved by the product manifolds considered
in the main text and SO(5)R the R-symmetry in five-dimensional flat space. In both three and
five dimensions, SU(2)R indices are raised and lowered with the Levi-Civita symbol ϵIJ or ϵIJ ,
with the convention ϵ12 = −1 = −ϵ12.

We do not write Lorentz spin indices explicitly in the spinors, and understand that they are
contracted using the charge conjugation matrix C, a real antisymmetric matrix satisfying

C Γµ = (Γµ)⊤C .

With this choice, spinor components are taken to be Grassmann-even, and anticommutation is a
consequence of C⊤ = −C. This is also in agreement with the conventions in [419, 420], where
Killing spinors from rigid supergravity are taken to be Grassmann-even symplectic Majorana
spinors. Our notation for Killing spinors is then as follows: εI satisfies(

ϵIJ Cε
J
)∗

= εI ,

with C the charge conjugation matrix. This implies

ε†I =
(
ϵIJ ε

J
)⊤

.

We impose the following reality conditions on the fields in the five-dimensional theories. The
scalars (q†)I in a hypermultiplet are related to qI by complex conjugation and transposition. As
we are working in Euclidean space, there is no reality condition on the spinor fields, and we have
to choose a half-dimensional integration cycle in the configuration space of fields. The gauginos
λI are symplectic Majorana spinors, (

ϵIJ Cλ
J
)∗

= λI ,

and we take as a definition of the fields λ†I the equation

λ†I =
(
ϵIJ λ

J
)⊤

.
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The reasoning for the spinor ψ in a hypermultiplet is analogous. See also [424, Sec. 2.1] for
discussion about the treatment of the reality condition for spinors. The sole difference between
our conventions and those of [231, 424] is a factor

√
−1 in the definition of the scalar σ in the

vector multiplet, as in those references the rotated field (which we denote σ0) is taken from the
very beginning.

In three dimensions, the gauginos λI are not subject to additional constraints, and we impose
λ†I to be related to λI as in Minkowski signature, following [58, 137], and similarly for ψ† and ψ.

11.B Squashed three-spheres

Three types of squashed sphere S3b that preserve at leastN = 2 supersymmetry (four supercharges)
exist in the literature: the squashed sphere called the “familiar case” in [281], the squashed sphere
of [405], and the ellipsoid of [281] which was originally called the “less familiar case” of squashed
sphere. We have ordered them according to their increasing deviation from the standard round
sphere S3. In the following we briefly describe and discuss them within the cohomological field
theory formalism, see also [396, Sec. 7] for related discussion.

The simplest case of squashed sphere is the “familiar case” of [281], for which the one-loop
determinants are the same as in the round case up to rescaling of variables. This squashed sphere
is obtained by simply changing the radius of the Hopf fibre with respect to the radius of the
base S2, so the background has isometry group SU(2) × U(1). The Killing spinor is covariantly
constant, as on the round S3. The Killing vector field v has compact orbits and coincides with
the generator of rotations along the Hopf fibre, hence it is parallel to the Reeb vector field ξ. The
computation of the one-loop determinants on this geometry is very simple in our setting: it is
clear from construction (see (11.3.4)–(11.3.5)) that only the radius of the circle fibre enters the
one-loop determinant, and the result of [281] follows immediately from Källén’s formula. More
generally, the one-loop determinants on the squashed lens spaces S3b/Zp, with p ∈ Z>0 and S3b the
“familiar” squashed sphere of [281], are given by the same formula as for the round lens space,
with the proper scaling of the size of the fibre.

Another squashing that preserves N = 2 supersymmetry is the non-trivial squashed sphere of
[405]. This is obtained by twisted dimensional reduction from S3×R with round S3. One employs
a Scherk–Schwarz compactification to put the theory on S3 × S1 by identifying

exp
(
2π β

∂

∂t
+ π β R

)
X ∼ X

for any field X, where β is the radius of S1, t is the coordinate along R and R is the generator of
an R-symmetry transformation. This R-symmetry action twists the compactification by including
a finite rotation on S3 in the periodic identification of fields along S1, and hence also twists the
dimensional reduction when sending β → 0. With this procedure, one is able to preserve an
SU(2) × U(1) isometry group and to obtain a metric on S3 as for the “familiar case” of [281],
hence it does not modify the metric on the base S2 of the Hopf fibration. However, the Killing
spinor now becomes a non-constant field. In [417, Sec. 5.2] it was shown that the supergravity
background of [405] admits N = 4 supersymmetry. The Killing vector field v has closed orbits,
and therefore Källén’s localization directly applies. In this squashed sphere, the Killing spinor
depends on a parameter u related to the radius of the circle fibre through

r2

ϵ2
= 1 + u2 ,

where r is the radius of the round base S2 and ϵ is the radius of the U(1) fibre. This relation arises
from the twisted dimensional reduction. Since the Killing vector field is non-constant, although
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it points along the squashed Hopf fibre one has to consider the complex dependence on 1± iu: at
the two fixed points the fibre has radius, respectively, given by

ϵ1 = r b and ϵ2 = r b−1 with b =

√
1− iu

1 + iu
.

This justifies the applicability of the localization formula (11.3.5), and explains why the one-loop
determinants with this non-trivial squashing are formally the same as for the ellipsoid of [281].

Finally we consider the ellipsoid of [281], which is the squashed sphere considered mostly in
the main text. It has only U(1)× U(1) isometry group as the squashing also deforms the metric
on the base S2 of the fibration. It is defined as the locus in C2 satisfying

b2 |z1|2 + b−2 |z2|2 = r2 , (11.B.1)

with b =
√
ϵ1/ϵ2 and r =

√
ϵ1 ϵ2. The supergravity background only preserves four supercharges.

As explained in [417, Sec. 5.1] and highlighted in the main text, the orbits of the Killing vector
field v are not closed, and v does not point along the fibre direction. It splits into two vector
fields, generating two U(1) isometries with closed orbits. The localized partition function on this
geometry is discussed in Section 11.3.5.

Notice the different geometric meaning of the squashing parameter b in the squashed sphere [405]
and in the ellipsoid [281]. For the ellipsoid b > 0 is real, while for the squashed sphere b ∈ C with
|b| = 1. In both cases the partition functions can be analytically continued to arbitrary complex
values b ∈ C \ {0}, and the expressions are given by (11.3.8) and (11.3.9). Thus, in practice, we
can compute the one-loop determinants on the regular background S3b of [405] and then continue
the result to b > 0, or vice versa. The limit b → 0+ in the squashed sphere and ellipsoid also
has different geometric meaning. For the squashed sphere, b → 0+ means u → −i, and corre-
sponds to blowing up the twisted Hopf fibre. In the ellipsoid, b→ 0+ reduces the geometric locus
(11.B.1) to |z2| = 0, hence the S3b geometry degenerates to C. In both cases the geometry becomes
non-compact, and we do not expect the cohomological localization to work in this limit.

11.C Sasaki-Einstein five-manifolds

There exists a family of Sasaki-Einstein metrics on five-manifoldsM5 which topologically are U(1)-
fibrations over the product S2 × S2 [437]. The simplest case is the familiar conifold T 1,1, which
is homeomorphic to S3 × S2 and so its associated line bundle L1,1 has Chern class c1(L1,1) = ω1

given by the generator [ω1] ∈ H2(S2,Z) of the first base factor. More generally, there is an infinite
family of irregular backgrounds labeled by a pair of integers (p, s), and denoted Y p,s [438]. The
first Chern class associated to the circle bundle Y p,s → S2 × S2 is

c1(Lp,s) = pω1 + s ω2

where [ω1] and [ω2] generate the second cohomology H2(S2,Z) of the respective factors of the
base. When p and s are coprime, Y p,s is again topologically S3 × S2.

Field theories with N = 1 supersymmetry on these manifolds have been studied in [398, 399]
via application of the index theorem. Except for the simplest case S3 × S2, the Killing vector
field v does not have closed orbits. Moreover, the Reeb vector field ξ does not act freely on the
base space of the fibration, which is a warped product S2 ⋊ S2. These manifolds have a toric
action, and in fact admit a free U(1) action, which however is generated by a different vector field
from the Reeb vector field. Therefore our formalism does not apply. In [398], the way around
this problem was to use the same idea that we did, but in the opposite direction. The manifolds
Y p,s can be obtained as a quotient S3 × S3/U(1), with U(1) acting freely on the six-dimensional
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manifold S3 × S3. One can compute the one-loop determinants using the index of the twisted
Dolbeault complex in six dimensions, and then use the fact that there is a free U(1) action to
push it down to Y p,s. In the case of the conifold T 1,1, the vacuum moduli spaces of instantons
have been described in this way by [439].

In fact, the most natural way to look at these geometries is as follows. Consider C4 as the
direct product C2 × C2, with a sphere S3 ⊂ C2 embedded in each factor in the standard way.
There is a U(1)4 action on C4, where each U(1)i acts on the corresponding factor of C in C4,
with associated equivariant parameter ϵ−1

i , i = 1, . . . , 4. There is a further U(1)T action on C4

with charges which are functions of two integer parameters p and s; explicitly, U(1)T acts with
charges (p + s, p − s,−p,−s). Then the action of U(1)T is free on S3 × S3 ⊂ C4, and taking the
quotient S3×S3/U(1)T gives Y p,s with a residual toric action by U(1)3, but none of the remaining
U(1) actions is free. The one-loop determinants then appear as products over four integers mi,
i = 1, . . . , 4, each one corresponding to an eigenvalue mi

ϵi
where ϵ−1

i is the equivariant parameter

for rotation in the i-th plane C in C4. These four integers are constrained by one linear relation,
corresponding to the quotient by the freely acting U(1)T , which reads

(p+ s)m1 + (p− s)m2 − pm3 − sm4 = 0 .
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Chapter 12

TT -deformation of q-Yang–Mills
theory

12.1 Introduction to the chapter

Two-dimensional quantum field theories provide a playground for the study of exactly solvable
models, and for testing the relationships and dualities with other areas such as integrable systems,
statistical mechanics and string theory. Recent broad interest has been attracted to the solvable
irrelevant deformation by the TT operator [45, 46], which is present in any local relativistic two-
dimensional quantum field theory (see [440] for a review). The novelty of this deformation is
marked by two key properties. First, it does not alter the integrability of a system. Second, when
the field theory is compactified on a circle, the evolution of the energy levels with the parameter τ ,
encoding the strength of the deformation, is described by a first order inhomogeneous differential
equation of Burgers type. The deformation induced by the operator TT , henceforth called the
TT -deformation, was interpreted in [441] as a random fluctuation of the background geometry.
A further step in this direction was made in [442, 443], where a path integral formulation of the
TT -deformed theory was put forward: it was proven in [442, 443] that the deformation of a given
quantum field theory by the TT operator is equivalent to coupling the undeformed theory to flat
space Jackiw–Teitelboim (JT) gravity. These ideas are similar in spirit to the interpretation of
the TT -deformation as a field-dependent spacetime coordinate transformation [444].

After the original formalism for TT -deformed field theories considered by [45, 46], a wide
range of other aspects of the TT -deformation have been investigated. The original flat space
deformation was extended to two-dimensional quantum field theories on AdS2 in [445]. Their
role in AdS3/CFT2 holography was investigated in [446–454]. The TT -deformation of Wess–
Zumino–Witten (WZW) models was studied from the string theory perspective in the target space
theory [455] and also in the gauged worldsheet sigma-model [456]. Supersymmetric extensions were
considered by [457–462]. Generalized TT -deformations were discussed in [463–465], while the
extensions to higher-dimensional field theories is considered by [466] using holography, and more
recently in [467] from direct analysis of the renormalization group flow equation. Other facets
of the perturbation by the TT operator considered recently include the study of the modular
properties of the partition functions of deformed theories [468, 469], the extension of the TT -
deformation to non-relativistic systems [470], and correlation functions in conformal field theories
on curved manifolds [471, 472]. A bridge between the Polyakov loop and the TT -deformation of
a bosonic field theory has been established in [473].

In this chapter we are concerned with the TT -deformations of two-dimensional gauge theo-
ries. A simple proposal for the TT -deformation of Yang–Mills theory on a Riemann surface was
advocated by [474]: due to the simple form of the evolution of the two-dimensional Yang–Mills
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Hamiltonian with the deformation parameter τ , the TT -deformed version of the theory simply
amounts to replacing the quadratic Casimir that appears in the usual heat kernel expansion of
the partition function according to

C2 7−→
C2

1− τ g2YM
2 C2

, (12.1.1)

where gYM is the Yang–Mills coupling constant. Following this proposal, the phase structure
of the U(N) theory on the sphere was studied at large N in [9], using standard field theory
techniques. The prescription (12.1.1) was derived by [475] by directly coupling the heat kernel
expansion, which depends on the area of the Riemann surface, to JT gravity and performing the
gravitational path integral.

The aim of the present chapter is to study the analogous features of the q-deformation of
two-dimensional Yang–Mills theory. To justify the effect of the TT -deformation given by (12.1.1),
we follow a different route than [475]. We consider the first order formalism for two-dimensional
Yang–Mills theory, which rewrites it as a deformation of BF theory, and hence as an example of
an ‘almost’ topological gauge theory, in the sense which we make precise in Section 12.2. In this
latter general class of theories we can study the effect of the TT -deformation precisely through its
coupling to JT gravity, and we reproduce the prescription of [474] as a corollary of a more general
result, using standard Abelianization techniques to evaluate the path integral. At the same time,
thanks to the almost topological nature of these two-dimensional theories, we can employ cutting
and gluing techniques of topological quantum field theory to rigorously justify the extension of
the TT -deformation, which is only well-defined on flat space, to curved Riemann surfaces such as
the sphere, which was not addressed by [474, 475]. In a certain sense, the two deformations are
compatible: the q-deformation results from a modification of the path integral measure, leaving
the quadratic Casimir unchanged, while the TT -deformation modifies only the Hamiltonian, i.e.
the Casimir, but nothing else.

With our techniques, we are able to explore how various facets of two-dimensional Yang–Mills
theory are affected by the TT -deformation. For example, we obtain closed expressions for Wilson
loop observables as well as the partition functions on Riemann surfaces with marked points.
However, a number of noteworthy features are lost under the deformation. For example, the
TT -deformation of q-deformed Yang–Mills theory is no longer related to Chern–Simons theory
(or a deformation thereof) on a circle bundle over the Riemann surface. Moreover, the large N
factorization property, which splits the U(N) gauge theory into chiral and anti-chiral sectors, no
longer holds after deformation. This splitting is a crucial ingredient in the derivation of the large
N string theory dual of two-dimensional Yang–Mills theory, thus casting doubt on the existence of
such a string theory description of the TT -deformed theory. This can be physically understood by
mapping the TT -deformed gauge theory onto a system of N non-relativistic fermions on a circle,
which are now subjected to non-local interactions leading to long-range correlations between the
fermions.

A central point of the current chapter is the analysis of the large N limit of the TT -deformation
of q-deformed U(N) Yang–Mills theory on the sphere. We show that the main features of the unde-
formed theory are preserved, namely there is a third order phase transition induced by instantons.
Furthermore, the TT -deformation lowers the critical line as the strength τ of the deformation is
increased. On the other hand, it extends the class of line bundles for which the phase transition
occurs. We also show that these results continue to hold in the refinement of the theory, known
as (q, t)-deformed Yang–Mills theory, whereby the region of the small coupling phase is further
reduced by the refinement.

The rest of the chapter is organized as follows. In Section 12.2 we present our formalism for
generic almost topological gauge theories. In Section 12.3 we then focus on Yang–Mills theory in
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two dimensions together with its q-deformation and subsequent refinement which depend, among
other continuous moduli, on a discrete parameter p ∈ Z; we present their TT -deformation and
study how their well-known properties are changed by the deformation. Sections 12.4-12.5 are
dedicated to the study of the phase structure at large N , where we find that the expected phase
transition extends to p < 2 as a consequence of the TT -deformation. Two appendices at the end
of the chapter contain some technical details that supplement the analyses of the main text.

Conventions. To avoid excessive repetition of the word ‘deformation’, we will only explicitly
state it when using the terminology ‘TT -deformation’. The q-deformed Yang–Mills theory and
its refinement, (q, t)-deformed Yang–Mills theory, will be henceforth simply called ‘q-Yang–Mills
theory’ and ‘(q, t)-Yang–Mills theory’, respectively.

12.2 TT -deformation of almost topological gauge theories

Consider the partition function of a gauge theory T with compact connected gauge group G on
a Riemann surface Σ which is described by the insertion of a non-local operator O(Φ) in the path
integral of a two-dimensional topological quantum field theory:

ZT [Σ] =

∫
DΦ e−STQFT(Φ)O(Φ) =:

〈
O(Φ)

〉
TQFT

.

Here Φ collectively denotes the fields of the theory and DΦ is a gauge-invariant measure on the
space of fields, while the action STQFT(Φ) defines a topological field theory. Notable examples of
such theories are two-dimensional Yang–Mills theory and its relatives, which arise from a BF-type
topological gauge theory through a deformation that is precisely of this type, as we will review in
Section 12.3. These theories will be the focus of subsequent sections. Nevertheless, one may also
consider deformations of the topologically twisted sigma-models of [476, 477] or of other classes of
two-dimensional topological field theories [478] by some non-local operator, and our considerations
in this section also pertain to these more general gauge theories.

The spacetime, on which our field theory is defined, is a Riemann surface Σ, possibly with s
marked points decorated with representations R1, . . . , Rs of the gauge group G, in which case the
partition function is denoted by

ZT [Σ;R1, . . . , Rs] .

The surface Σ is allowed to have boundaries, and the partition function will be understood as a
function of suitable boundary conditions, which in particular include the holonomies of the gauge
connection along the one-dimensional boundaries. Field theories without gauge symmetries can
be considered as well in this framework as a special case with trivial gauge group.

Theories of this class are amenable to the TT -deformation, albeit defined on a curved spacetime
Σ, thanks to their “almost” topological nature. According to [442, 443] (see also [479]), TT -
deformation is equivalent to coupling the field theory to two-dimensional topological gravity.
If the theory we start with is topological, the gravitational sector of the path integral can be
integrated out with no effect. However, if non-local operators have been inserted, they couple to
the gravitational sector and the TT -deformation is represented symbolically as

ZT [Σ]
TT -deformation−−−−−−−−−−−→ ZTTT [Σ]

with

ZTTT [Σ] =

〈
1

ZJT

∫
De O(Φ; e) exp

(
1
2τ

∫
Σ (e− f) ∧ (e− f)

)〉
TQFT

.
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This is the path integral of JT gravity, normalized by the pure gravity partition function ZJT.
The integration is over the coframe field e of the target space, with f the coframe field of the
worldsheet Σ, and the path integral measure is induced by the metric

δs2 =

∫
Σ
δe ∧ δe .

The notation O(Φ; e) means that the non-local operator has the same form as before, but now
lives in the manifold with coframe field e. For derivative-free operators O(Φ) this simply means
that, in every integral, we have to replace the original volume form ω on Σ, written in terms of the
coframe field of Σ as f ∧ f , by the target space volume form e∧ e. This presentation is equivalent
to the change of variables described in [444], but for the purposes of the present work we find it
convenient to use the explicit path integral presentation.

The proof of equivalence with the TT -deformation presented in [443] relies on showing that the
gravitational path integral is one-loop exact, and reproduces the TT -deformed partition function.
This ties in nicely with the arguments of [442] that the gravitational dressing provided by the
TT -deformation is a semi-classical effect. We shall see this explicitly for the class of non-local
operators that we ultimately consider below.

Remark. We always consider the surface Σ to be equipped with a Riemannian metric, and therefore
use the Euclidean gravity path integral, following the conventions of [479] (which agree with
those of [474, 444]). The deformation parameter τ in this thesis then differs by a sign from the
conventions of [443, 480] which work in Lorentzian signature.

Remark. It was noted in [475] (see also [480, App. A] for relevant discussion) that there is a subtlety
in the normalization of the path integral measure De: as will be manifest below, assuming the
naive normalization of the measure and performing the gravity path integral, one does not recover
the undeformed theory in the limit τ → 0. Imposing the latter condition instead leads to a
choice of normalization for the path integral measure De which depends on O(Φ). In particular,
the order of the path integrals do not commute, and the topological gravity degrees of freedom
should always be introduced inside the correlator ⟨ · ⟩TQFT. Below we will provide a more extensive
comparison between the present analysis and that of [475], and this technical aspect will play an
important role.

With the application to two-dimensional Yang–Mills theory along with its generalizations
and deformations in mind, we now specialize our analysis to the case in which the functional
dependence of O(Φ) is through operators of the form

O(Φ) = exp

(
− λ

2N

∫
Σ
V (ϕ, ψ) ω

)
,

where ω is the normalized volume form on Σ and the potential V (ϕ, ψ) is a scalar functional of
scalar fields ϕ and possibly spinor fields ψ. The coupling is λ

N , where λ is a ’t Hooft parameter and
N is the rank of the gauge group G. When coupled to topological gravity, this operator becomes

O(Φ; e) = exp

(
− λ

2N

∫
Σ
V (ϕ, ψ) e ∧ e

)
,

and the TT -deformed partition function reads

ZTTT [Σ] =

∫
DΦ

1

ZJT

∫
De exp

(
−STQFT(Φ)− λ

∫
Σ

(
1
2N V (ϕ, ψ) e ∧ e− 1

2τ (e− f) ∧ (e− f)
))
.

We have chosen a non-standard definition of the parameter τ , including an overall factor λ, which
will be convenient in the forthcoming discussion. After simple manipulation and integrating over
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e′ = e− f , one obtains

ZTTT [Σ] =

∫
DΦ exp

(
−STQFT(Φ)− λ

2

∫
Σ N−1 V (ϕ, ψ) f ∧ f

+λ
2

∫
Σ

τ N−1

1−τ N−1 V (ϕ,ψ)

(
N−1 V (ϕ, ψ) f

)
∧
(
N−1 V (ϕ, ψ) f

))
=

∫
DΦ exp

(
−STQFT(Φ)− λ

2N

∫
Σ

V (ϕ,ψ)
1− τ

N
V (ϕ,ψ) ω

)
, (12.2.1)

which correctly reproduces the prescription of [474] for the TT -deformation given by

λ

2N
V (ϕ, ψ) 7−→

λ
2N V (ϕ, ψ)

1− τ
N V (ϕ, ψ)

. (12.2.2)

In (12.2.1) we use a V (ϕ, ψ)-dependent normalization of the gravity path integral that cancels a
factor from the Gaussian integration. Had we not done so, we would not recover the undeformed
partition function in the limit τ → 0. This is the incarnation of the subtleties in the normalization
of the path integral measure discussed in [475, 480].

TT -deformation in curved spacetime

The TT -deformation is only well-defined in flat space. However, in the present setting, we argue
that, since the underlying theory is topological, for suitable insertions O(Φ) we can define the
TT -deformation on flat space, and then put the theory on a curved manifold Σ. We now explain
this point more rigorously.

Thanks to the cutting and gluing property of topological quantum field theories [481, 482],
one can decompose Σ into disks, cylinders and pairs of pants, obtaining the same theory on
each piece (see Figure 12.1). Such components have boundaries, and one should impose suitable
boundary conditions on the fields. The disk, the cylinder and the pair of pants are homeomorphic
respectively to the complex plane C, the punctured plane C× and the doubly-punctured plane
C××. Therefore, we reduce the topological quantum field theory on flat components, which are
many copies of the complex plane C, with either zero, one or two holes. At this point, we insert
O(Φ) on each component, and turn on gravity. Since each component is flat, the TT -deformation
prescription is well-defined on each component.

Figure 12.1. The disk (left), the cylinder (center) and the pair of pants (right), homeomorphic to the
complex plane with respectively zero, one or two holes.

After performing the JT gravity path integral, we can glue back together the pieces and re-
assemble Σ (see Figure 12.2). Topological gravity couples to bulk geometry and does not change
the boundary data, at least for operator insertionsO(Φ) of the form in (12.2.1) (we will briefly com-
ment on the most general case shortly). Hence the gluing goes exactly as without TT -deformation,
and we obtain a TT -deformed theory on Σ.

At this point it is worthwhile mentioning the proposal [480] that TT -deformation in curved
spacetime corresponds to massive gravity. In the present setting, we could equivalently take the
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∼=

Figure 12.2. Obtaining a torus from elementary pieces. On the left, the gluing is an integration over
boundary conditions (in blue).

(Euclidean version of the) proposal of [480] as the definition of TT -deformation on curved two-
dimensional manifolds. A step towards a rigorous definition of generic TT -deformed theories on
curved manifolds has also been taken in [483].

12.3 Two-dimensional Yang–Mills and q-Yang–Mills theories

In this chapter, as in the other ones in Part III, we study two-dimensional Yang–Mills theory, its q-
deformation and its subsequent refinement to two-dimensional (q, t)-deformed Yang–Mills theory.
These are examples of almost topological gauge theories of the type discussed in Section 12.2, where
the underlying topological field theory is two-dimensional BF theory (sometimes also referred to
as two-dimensional topological Yang–Mills theory) whose fields are a scalar field ϕ on Σ in the
adjoint representation of the gauge algebra g and the curvature FA of a gauge connection A on (a
trivial principal G-bundle over) Σ. Ordinary Yang–Mills theory on Σ corresponds to a deformation
of this BF theory by a non-local operator O(ϕ) which adds a potential V (ϕ) = Tr ϕ2 to the BF
action. This theory can be β-deformed by modifying the discrete matrix model which arises for
β = 2 to a general β-ensemble. One can further deform the underlying BF theory by making
the field ϕ compact, that is, taking it to be valued in the adjoint representation of the gauge
group G. Adding the potential V (ϕ) deforms this theory to q-Yang–Mills theory which can be
subsequently refined to (q, t)-Yang–Mills theory, that is a categorification of the β-ensemble. The
initial theories, with non-compact ϕ, can then be regarded as classical limits q → 1 of the theories
with compact scalar ϕ.

We depict these relationships between the various incarnations of Yang–Mills theory on Σ
through the diagram

BF2

compact BF2 q-YM2

YM2

(q, t)-YM2

β-YM2
add potential ϕ2

add potential ϕ2

compact ϕ compact ϕ q → 1

β-deformation

refinement

q → 1categorify

In this section we use the formalism developed in Section 12.2 to study the TT -deformation of
the Yang–Mills theories appearing in this diagram.
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12.3.1 TT -deformation of two-dimensional Yang–Mills theory

In [474] the TT -deformation of two-dimensional Yang–Mills theory on Σ was obtained, through
explicit solution of the flow equation

∂L(τ)
∂τ

= det
µ,ν=1,2

[
Tµν(τ)

]
,

to all orders in τ ∈ [0,∞). This equation is to be solved with the initial condition on the deformed
Lagrangian L(τ) that requires L(0) = LYM to be the Yang–Mills Lagrangian, and Tµν(τ) is the
Hilbert energy-momentum tensor of the two-dimensional field theory. The same deformation has
recently been obtained in [475] through the coupling with JT gravity. We rederive the result by
exploiting the equivalent first order formulation as a deformation of BF theory. The argument
is as follows: Yang–Mills theory is a pure gauge theory, but it is equivalent to a BF theory with
additional Gaussian term for the scalar ϕ ∈ Ω0(Σ, g) given by (see [423])

SYM =
N

2λ

∫
Σ
Tr FA ∗ FA =

∫
Σ
Tr
(
iϕFA +

λ

2N
ϕ2 ω

)
,

where the equality is understood to hold on-shell. Here FA ∈ Ω2(Σ, g) is the curvature of a gauge
connection A on Σ, Tr is an invariant quadratic form on the Lie algebra g, ω is the symplectic
structure on Σ and ∗ is the Hodge operator constructed from the Riemannian metric compatible
with ω. The Yang–Mills coupling is

g2YM = λN−1 .

The first term is the action of two-dimensional BF theory which is topological, thus the TT -
deformation of the first order formulation only changes the potential V (ϕ) = Tr ϕ2 as in (12.2.2).
From this point, the derivation of the heat kernel expansion using Abelianization of the path
integrals goes exactly as in [423]: one conjugates the scalar field ϕ into a Cartan subalgebra
of g using gauge invariance and the Weyl integral formula, and then integrates over the root
components Aα of the gauge connections with respect to the root space decomposition of the
Lie algebra g. Then two-dimensional Yang–Mills theory can be TT -deformed by replacing the
quadratic Casimir of representations R of G according to36

C2(R) 7−→ CTT2 (R, τ) :=
C2(R)

1− τ
N3 C2(R)

. (12.3.1)

This derivation immediately extends to the generalized Yang–Mills theory of [484], where
higher order Casimir operators are included by adding higher degree terms to the potential V (ϕ).
These can include multi-trace terms, since the derivation does not rely on the explicit form of
V (ϕ). The TT -deformation of the generalized two-dimensional Yang–Mills theory is then directly
obtained from (12.2.2). The final answer for the partition function of generalized Yang–Mills
theory is then

ZTTgen-YM[Σ] =
∑
R

dim(R)χ(Σ) exp
(
− λ

2N

Cgen(R)

1− τ
N3 Cgen(R)

)
, (12.3.2)

where Cgen(R) includes the quadratic and higher Casimir operators. The sum runs over isomor-
phism classes of irreducible representations R of G [384] with dimension dim(R), the coupling λ
is identified with the area A of the surface Σ, and χ(Σ) is the Euler characteristic of Σ.

36We are slightly changing the normalization of the topological gravity action, 1
τ
7→ N2

τ
, to make the right-hand

side well-defined at all τ for every N . That this is the correct normalization in general follows from the flow equations
in [474].
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Comparison with the literature

Since the partition function of TT -deformed two-dimensional Yang–Mills theory has been derived
in different ways in the literature [474, 475, 485], it is appropriate to now pause and discuss our
result.

Formula (12.3.2), or more precisely its original version with Cgen(R) = C2(R), was first pro-
posed in [474], although it was not rigorously justified for curved surfaces Σ. The proposal of [474]
was also the starting point of previous work [9] studying the phase structure of the TT -deformed
theory. Here we have provided the derivation, following an argument similar to that of [475] but
with a few important differences.

In [475] topological gravity is introduced after integrating out the gauge fields. In particular, as
carefully explained there, the JT gravity path integral is representation-dependent and is inserted
inside the sum over irreducible representations. Schematically∑

R

ZR(ω)
TT -deformation of [475]−−−−−−−−−−−−−−−−→

∑
R

∫
DRe ZR(e ∧ e) ,

where ZR(ω) is the summand in (12.3.2), and we have stressed its dependence on the volume form
ω of Σ. The normalization of the measure DRe is taken to be R-dependent.

Therefore, the procedure of [475] does not deform the original path integral, but deforms
each summand in the expression obtained after Abelianization [423]. The technique we adopted,
instead, describes a deformation of the full path integral, and proves that the Abelianization takes
place also in the TT -deformed theory. The two results coincide, as expected. Indeed the gauge
fields do not enter in the definition of the operator O(ϕ), which couples to gravity. For this reason,
the integration over the coframe field is expected to commute with the integration over the gauge
fields.

12.3.2 TT -deformed q-Yang–Mills theory

We can extend the argument above to q-deformed Yang–Mills theory: this deformation modifies
the domain of integration, making the scalar field ϕ compact, i.e. taking ϕ ∈ Ω0(Σ, G) to be
valued in the Lie group G instead of its Lie algebra g, without altering the action [408, 136].
In this case Abelianization proceeds by conjugating ϕ into the maximal torus of G. The TT -
deformation thus changes the potential for the (now compact) scalar, exactly as in the case of
ordinary two-dimensional Yang–Mills theory. The final answer for the TT -deformed partition
function of q-Yang–Mills theory on a surface Σ of genus gΣ with s boundaries is

ZTTq-YM[Σ; g1, . . . , gs] =
∑
R

dimq(R)
χ(Σ) q

p
2
CTT

2 (R,τ) χR(g1) · · ·χR(gs) , (12.3.3)

with the identification of the q-parameter q = e−λ. Here p ∈ Z is a discrete parameter, the
TT -deformed Casimir is defined in (12.3.1), and

χ(Σ) = 2− 2gΣ − s

is the Euler characteristic of Σ. The boundary conditions g1, . . . , gs ∈ G are the holonomies of
the gauge connection around the boundaries, with characters χR in the representation R, and
dimq(R) is the quantum dimension of R. For closed surfaces Σ, the formula (12.3.3) is simply

ZTTq-YM[Σ] =
∑
R

dimq(R)
2−2gΣ q

p
2
CTT

2 (R,τ) .
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Again, the argument straightforwardly extends to generalized q-deformed Yang–Mills theory, with
additional higher degree terms added to the potential V (ϕ).

The partition function of the ordinary TT -deformed Yang–Mills theory from Section 12.3.1
above is recovered by taking the limit

p→∞ and λ→ 0 with λ p = A fixed , (12.3.4)

where A is the area of Σ.

q-Yang–Mills theory on the disk and on the cylinder

As we have shown, the procedure of TT -deformation works for every Riemann surface Σ, possibly
with boundary. Special roles are played by the disk and cylinder partition functions. On the disk
we have

ZTTq-YM

[
; g
]
=
∑
R

dimq(R) q
p
2
CTT

2 (R,τ) χR(g) .

Gluing two disks whose boundaries have opposite orientations and using the orthogonality of the
characters we get the TT -deformed partition function on the sphere S2:∫

G
dg ZTTq-YM

[
; g
]
ZTTq-YM

[
; g−1

]
= ZTTq-YM

[ ]
= ZTTq-YM

[
S2
]
,

where dg is the invariant Haar measure on G.

The cylinder partition function is

ZTTq-YM

[
; gin, gout

]
=
∑
R

q
p
2
CTT

2 (R,τ) χR(g
−1
in )χR(gout) ,

where we have already taken into account the orientation in the definition of the boundary con-
dition gin. In the topological limit λ = 0, it serves as a propagator: attaching it to any surface Σ
replaces the holonomy gin by gout. At non-zero area though, attaching a cylinder has a notable
effect which effectively increases the coupling. With our choice of normalization for τ , the effect
of gluing a cylinder to Σ is precisely the same as in the theory without TT -deformation.

Supersymmetry

An additional consistency check for our formulas comes from the minimal supersymmetric ex-
tension of Yang–Mills theory. Two-dimensional Yang–Mills theory and its q-deformation are
equivalent to their supersymmetric counterparts. The BRST multiplet is (A, ϕ, ψ), with ψ a
Grassmann-odd one-form on Σ with values in the Lie algebra g, and the action is schematically
modified as

SYM 7−→ SYM +

∫
Σ
Tr(ψ ∧ ψ) .

The equivalence is straightforwardly checked by integrating out ψ. On the other hand, the new
term is topological and hence is insensitive to the TT -deformation. We can thus first TT -deform
and integrate out ψ afterwards, obtaining again the result (12.3.3). So regardless of the route
followed, the TT -deformation of two-dimensional Yang–Mills theory and its generalizations always
provides the same answer with or without supersymmetry.
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Refinement

Let us now consider the refinement of q-deformed Yang–Mills theory [486], also known as (q, t)-
deformed Yang–Mills theory. The refinement leaves the action unchanged but modifies the path
integral measure [486]. Therefore we can TT -deform the theory and the Abelianization technique
continues to work, hence the TT -deformation modifies the partition function of (q, t)-Yang–Mills
theory only in the Gaussian potential, according to (12.2.2). We will give more details later on in
Section 12.5.5.

θ-angle

In q-Yang–Mills theory, the θ-angle term is introduced in the path integral as a linear term in
the potential V (ϕ), and it descends from a chemical potential for D2-branes in the construction
of [487, 408]. Therefore it will also couple to the gravitational path integral after TT -deformation,
and will enter in the denominator of the deformed potential through

− λ

2N
C2(R) + i θ C1(R) 7−→

− λ
2N C2(R) + i θ C1(R)

1− τ
N3

[
C2(R)− 2 i θ N

λ C1(R)
] ,

where C1 is the first Casimir of G, which is non-zero only for non-simply connected gauge groups.

12.3.3 Wilson loops, marked points and q a root of unity

One may also include Wilson loop operators in an irreducible representation R of G along a closed
curve C on Σ:

WR(C) = TrR P exp

∮
C
A .

We assume for simplicity that C does not wind around any handle of Σ.
The expectation value of a collection of sWilson loops in TT -deformed two-dimensional Yang–

Mills theory, both the ordinary and q-deformed versions, is computed as follows. Cut Σ along the
s cycles C1, . . . , Cs, obtaining s+ 1 components: s of them have disk topology and the last is the
remainder of Euler characteristic χ(Σ)−s. The next step is to compute the TT -deformed partition
function on each component, which is a wavefunction of the holonomies along the boundaries
C1, . . . , Cs. Then glue the components pairwise back together by integrating over G. The example
of S2 with three loops is depicted in Figure 12.3.

Figure 12.3. A sphere with three Wilson loops is cut into three disks plus a remaining pair of pants.

In this way we find the normalized expectation value〈
WR1(C1) · · ·WRs(Cs)

〉
=

1

ZTTq-YM[Σ]

∑
R

dimq(R)
χ(Σ)−s q

p−AW
2

CTT
2 (R,τ)

×
s∏
i=1

∑
R̃i

dimq(R̃i) q
ai
2
CTT

2 (R̃i,τ)N R̃i
RiR ,
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where ai is the area enclosed by the loop Ci, Ri is the representation label of the ith loop, and R̃i
is a summation variable denoting an irreducible representation associated to the quantization on
the ith component. Geometrically, R is associated to the remainder, Ri to the ith cut and R̃i to
the ith disk. We have also denoted

AW =
s∑
i=1

ai ,

and we assume AW < p to ensure convergence of the first series. The quantities NR1
R2R3 are

fusion coefficients obtained from the integration over the holonomies; for unitary gauge group they
are the Littlewood-Richardson coefficients. This formula differs from the original theory simply
in the replacement of the Casimir as in (12.3.1).

In the limit in which the loops shrink to a point, ai → 0, we obtain (after dropping the

normalization ZTTq-YM[Σ]
−1) the partition function of TT -deformed q-Yang–Mills theory on a surface

Σ with s marked points decorated with irreducible representations R1, . . . , Rs:

ZTTq-YM[Σ;R1, . . . , Rs] =
∑
R

dimq(R)
χ(Σ) q

p
2
CTT

2 (R,τ)
s∏
i=1

∑
R̃i

dimq(R̃i)

dimq(R)
N R̃i

RiR .

Analogous formulas hold for the TT -deformation of ordinary Yang–Mills theory.

Lost connection with Chern–Simons theory

For τ = 0 and 0 < |q| < 1 (with possibly q ∈ C), when |q| → 1 at roots of unity, the sum over
representations terminates for gauge group G = U(N) [89]. After TT -deformation, the quadratic
Casimir part is modified and the cancellations that truncate the series no longer take place.

The usual connection between q-Yang–Mills theory and Chern–Simons theory thus no longer
holds. For the same reason, even when q is a root of unity, one cannot understand Wilson loops
in the TT -deformed version in terms of observables in Chern–Simons theory, or some deformation
thereof, living in the total space of a degree p circle bundle over Σ.

Furthermore, when looking for the modular matrices S and T of PSL(2,Z) in expressions such
as (12.3.3), we recall that matrix elements like

S
RR̃

and T
RR̃

are defined for integrable representations R and R̃, while in our case the sum runs over all the
irreducible representations. In this sense the TT -deformation spoils the modular properties of the
theory at q a root of unity, as could have been foreseen from the explicit form of (12.3.1).37

12.3.4 Breakdown of factorization

We have seen that the usual connection with Chern–Simons theory is lost as soon as the TT -
deformation is turned on. In the following we discuss another well-known central feature of
two-dimensional Yang–Mills theory that does not hold after TT -deformation: the factorization of
the partition function Zq-YM into chiral and anti-chiral sectors [487, 408, 409, 489]. This strongly
suggests that the usual large N string theory picture of two-dimensional Yang–Mills theory breaks
down after TT -deformation.

37Gauging the TT -deformed WZW model of [456] does not yield a connection with Chern–Simons theory, or some
deformation thereof. The relation with Chern–Simons theory is indeed a special property of the conformal fixed
point [488].
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Let H be the Hilbert space of states of the theory, and endow it with the basis {|R⟩} in one-
to-one correspondence with isomorphism classes of irreducible unitary representations of G [384].
Adopting a common shorthand, we call it the representation basis. The normalization is

⟨R|R̃ ⟩ = dim(R)χ(Σ) δ
RR̃

.

The factorization property relies on being able to make a replacement

q
p
2
C2(R) −→ q

p
2
C2(R+) q

p
2
C2(R−) ,

where R+ and R− are known as “chiral” and “anti-chiral” representations, which correspond to
states

|R±⟩ ∈H± ,

in the factorized Hilbert space H+ ⊗H−. It is clear from (12.3.1)–(12.3.3) that the factorization
breaks down at τ ̸= 0.

Quantization of the TT -deformed theory

Consider the unitary gauge group G = U(N) and the surface Σ as a fibration over S1, with
the circle interpreted as the Euclidean time direction. By definition, the partition function of
q-Yang–Mills theory on Σ is given by

Zq-YM(λ) = TrH e−
λ p
2N

Ĥq-YM =
∑
R

⟨R|e−
λ p
2N

Ĥq-YM |R⟩ ,

where Ĥq-YM is the Hamiltonian, and we have taken the trace over the Hilbert space H in the
representation basis, which diagonalizes Ĥq-YM with eigenvalues C2(R). A generic deformation
controlled by a parameter τ which triggers an RG flow would produce

Zdef
q-YM(λ, τ) = TrH (τ) e

− λ p
2N

Ĥ(τ) =
∑
R(τ)

⟨R(τ)|e−
λ p
2N

Ĥ(τ)|R(τ)⟩ ,

deforming both the Hamiltonian to Ĥ(τ) and the Hilbert space to H (τ). The basis {|R(τ)⟩} would
reduce to the representation basis when sending τ → 0. Note that, in this general framework,
since the Hilbert space changes, one may need to include additional states. However, when the
deformation is by the composite operator T T , the explicit form of the deformed eigenvalues of
Ĥ(τ) is known, and in particular no new eigenvalues arise. For q-Yang–Mills theory we obtain
explicitly

ZTTq-YM(λ, τ) =
∑
R(0)

⟨R(0)|e−
λ p
2N

Ĥ(τ)|R(0)⟩ ,

with the deformed Hamiltonian

Ĥ(τ) =
Ĥq-YM

1− τ
N3 Ĥq-YM

diagonalized by the representation basis {|R⟩} = {|R(0)⟩} for all τ ≥ 0. Only the eigenvalues
CTT2 (R, τ) are different. Therefore, although in general from the knowledge of the eigenvalues one
cannot exclude that additional degenerate states arise in the TT -deformed theory, we see that
this is not the case for two-dimensional Yang–Mills theory and its relatives. Indeed, having found
explicitly the TT -deformed partition function, the presence of additional states at τ > 0 should
have a null net contribution, but this is not possible from the explicit, strictly positive form of the
eigenvalues.

In conclusion, the partition function of TT -deformed q-Yang–Mills theory, and hence also
ordinary Yang–Mills theory through the limit (12.3.4), is the trace of the exponential of the
TT -deformed Hamiltonian found in [474] taken in an undeformed Hilbert space of states.
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Free fermion formulation

Let us now focus on ordinary (without q-deformation) two-dimensional Yang–Mills theory for
definiteness. While the factorization structure of q-Yang–Mills theory is richer, in the sense
that already at finite N one sees a factorization into chiral and anti-chiral building blocks, the
breakdown of these properties happens at a fundamental level, which is more clearly seen by
looking directly at TT -deformed ordinary Yang–Mills theory.

It is well-known that the Hilbert space H factorizes at large N as [490]

H
N→∞−−−−−→H+ ⊗H− , (12.3.5)

with the representation basis factorizing accordingly as

|R⟩ N→∞−−−−−→ |R+⟩ ⊗ |R−⟩ ,

with |R±⟩ ∈ H±. The Hilbert spaces H+ and H− are known as the “chiral” and “anti-chiral”
sectors, respectively. From the factorization (12.3.5) one has [490]

lim
N→∞

ZYM(A) =

(∑
R+

⟨R+|e−
A
2N

ĤYM |R+⟩
)(∑

R−

⟨R−|e−
A
2N

ĤYM |R−⟩
)

=
(
TrH+ e

− A
2N

ĤYM

)(
TrH− e

− A
2N

ĤYM

)
where we dropped overall constants. In the TT -deformed theory, the large N factorization of the
Hilbert space (12.3.5) continues to hold according to the discussion above, but the trace can no
longer be factorized into a product of traces.

We will now further elucidate this point through the equivalence with a system of N non-
relativistic fermions [491, 492] (non-perturbative corrections were studied in [493]). In the mapping
of two-dimensional U(N) Yang–Mills theory to a system of N free fermions on S1 [491, 492], the
ground state corresponds to the state where the fermions occupy the N lowest energy levels, as
in the left panel of Figure 12.4. In the representation basis, the ground state is described by the
trivial representation, while higher-dimensional representations are mapped to excited states, in
which fermions have jumped to higher energy levels.

At finite N , excitations above the positive Fermi surface, or below the negative Fermi surface,
may arise from any fermion, as depicted in the central and right panels of Figure 12.4. In the
large N limit the two Fermi surfaces decouple, and excitations above the positive Fermi level
(respectively below the negative Fermi level) correspond to fermions close to that surface, thus
with positive (respectively negative) energy, jumping to higher (respectively lower) unoccupied
levels.

Jumps of order N sites are exponentially suppressed with N , and can only be seen from a
non-perturbative analysis [493]. Therefore the factorization is interpreted as a disentanglement of
the Fermi surfaces.

In the TT -deformed theory the two Fermi surfaces remain entangled even in the large N
limit. The crucial difference between the picture of [491] and its TT -deformed version lays in the
interpretation of the Casimir in terms of free fermions. While at τ = 0 it is a confining quadratic
potential, this interpretation is lost at τ > 0. Indeed, by expanding the TT -deformed potential
(12.2.2) in a geometric series, we do not obtain a confining potential for fermions, but instead
infinitely many non-local interaction terms which introduce long-distance correlations.

A consequence of these additional interactions is that, even at N → ∞, the energy required
for a fermion to jump to another level does not only depend on the energy separation between the
initial and final state, but it is also a function of the levels occupied by all of the other fermions.
From a conformal field theory perspective, this casts doubt on the existence of a string theory
dual to TT -deformed two-dimensional Yang–Mills theory, unless it is a highly exotic one.
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Figure 12.4. Non-relativistic fermions: ground state (left) and two excited states (center, right). The two
excited states are excitations over the positive Fermi surface. In the center, a fermion occupying a positive
energy level jumps above the positive Fermi surface: this will correspond to a chiral state at large N . On
the right, a fermion occupying a negative energy level jumps above the positive Fermi surface: this will be
exponentially suppressed at large N .

12.4 Phase transitions in TT -deformed Yang–Mills theory

In this section, we study the partition function of TT -deformed U(N) Yang–Mills theory on
Σ = S2:

ZTTS2 (A, τ) =
∑
R

(dimR)2 exp

(
− A

2N

(
C2 (R)

1− τ
N3C2 (R)

))
(12.4.1)

where, as customary, A is the product of the area and the ’t Hooft gauge coupling. The sum
runs over isomorphism classes of irreducible U(N) representations R, which are in one-to-one
correspondence with N -tuples R such that

+∞ > R1 ≥ R2 ≥ · · · ≥ RN > −∞ . (12.4.2)

It is useful to change variables

hi = −Ri + i− N + 1

2
∀i = 1, . . . , N . (12.4.3)

In these variables the partition function of TT -deformed U(N) Yang–Mills theory reads

ZTTS2 (A, τ) =
1

N !G(N + 1)χ

∑
h⃗∈ZN

∆(⃗h)χ exp

−
A
2N

[
N∑
j=1

h2j −
N (N2+1)

12

]

1− τ
N3

[
N∑
j=1

h2j −
N (N2+1)

12

]
 , (12.4.4)

where we used the symmetry of the sum to lift the restriction (12.4.2) to the principal Weyl
chamber, letting the sum run over unordered h⃗ = (h1, . . . , hN ) ∈ ZN . The shift proportional to
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− 1
12 in the Casimir would simply give an overall factor at τ = 0, but it becomes relevant at τ > 0.

Here G is the Barnes G-function, which for integer argument can be written as

G(N + 1) =

N−1∏
j=1

j! (12.4.5)

and ∆(⃗h) is the Vandermonde determinant

∆(⃗h) =
∏

1≤i<j≤N
(hi − hj) . (12.4.6)

Following the standard procedure for the large N analysis [193], we introduce the variables

x :=
i

N
, r(x) :=

ri
N
, h(x) := −r(x) + x− 1

2
,

and, sending N → ∞, replace N−1
∑N

i=1 with
∫ 1
0 dx. Sending N → ∞ the leading contribution

to the partition function (12.4.4) comes from the saddle point configuration that minimizes the
effective action

Seff [h] = −
∫ 1

0
dx

∫ 1

0
dy log|h(y)− h(x)|+ A

2

∞∑
j=0

τ j
[∫ 1

0
dxh(x)2 − 1

12

]j+1

.

where we have expanded the TT -deformed Casimir in a geometric series, which is allowed as long
as the TT -deformed theory is well-defined.

At this point, we introduce the eigenvalue density ρ, as usual, according to:

ρ(h)dh = dx,

which is normalized: ∫
dhρ(h) = 1. (12.4.7)

Moreover, the discreteness of the eigenvalues imposes the additional constraint

ρ(h) ≤ 1. (12.4.8)

The action functional (12.4) becomes:

S [ρ] = −
∫
duρ(u)

∫
dvρ(v) log|u− v|+ A

2

∞∑
j=0

τ j
[∫

duρ(u)u2 − 1

12

]j+1

.

We are then led to look for a distribution ρ(h) that satisfies the singular integral equation

P

∫
du

ρ(u)

h− u
=
A

2
h

∞∑
j=0

(j + 1) τ j
[∫

duρ(u)u2 − 1

12

]j
= 0, (12.4.9)

where the symbol P
∫

means the principal value of the integral.
It is hard to face the saddle point equation (12.4.9) analytically, due to the appearance of ρ

on the right-hand side. Nevertheless, the TT -deformation only introduced powers of the second
moment of the eigenvalue distribution, and the dependence on h remains factorized. This allows
for a perturbative solution in τ , and we will solve equation (12.4.9) to all orders.
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12.4.1 Perturbative solution

At zeroth order in τ , the theory obviously reduces to pure Yang–Mills and equation (12.4.9)
describes the Douglas–Kazakov distribution [193]. Indeed, for j = 0 the equation reduces to the
saddle point equation of a Gaussian matrix model:

P

∫
du

ρ(u)

h− u
=
A

2
h, (12.4.10)

which is solved by the celebrated Wigner semicircle distribution

ρ(h) =
A

2π

√
4

A
− h2, suppρ =

[
− 2√

A
,

2√
A

]
. (12.4.11)

However, the solution must satisfy the constraint (12.4.8) ρ ≤ 1, meaning that the present one-cut

solution only holds up to A
(0)
cr = π2. For the moment, we focus on the perturbative analysis in

the small coupling phase A < Acr, and discuss the strong coupling phase A > Acr in the next
subsection.

The second moment of the Wigner semicircle distribution (12.4.11) is:

A

2π

∫ 2/
√
A

−2/
√
A
dh

(√
4

A
− h2

)
h2 =

1

A
. (12.4.12)

A check of the consistency condition for the geometric expansion at this order:

τ

(
1

A
− 1

12

)
< 1,

leads to

A > A
(0)
lb =

12τ

12 + τ
. (12.4.13)

In particular, this restriction is removed when τ → 0, as it should for the undeformed limit. We
remark, however, that this is an O(1) estimation of Alb, and not a true constraint, which must be
imposed on the full (all-orders) result.

We now proceed to the next order in perturbation theory, corresponding to j = 0, 1 in the
geometric expansion. The saddle point equation at order τ is:

P

∫
du

ρ(u)

h− u
=
Ab1
2
h, (12.4.14)

where we have denoted

b1 ≡ b1 (A, τ) = 1 + τ

(
1

A
− 1

12

)
.

As we are in the small coupling phase, A < A
(0)
cr = π2, we have that b1(A, τ) > 1. The saddle point

equation (12.4.14) is again satisfied by the Wigner semicircular distribution, now with parameter
Ab1, that is:

ρ(h) =
Ab1
2π

√
4

Ab1
− h2, suppρ =

[
− 2√

Ab1
,

2√
Ab1

]
. (12.4.15)

From this it stems that the second moment at first order in τ is 1/Ab1. The constraint (12.4.8)
implies Ab1 < π2 and, as b1 > 1, in particular we get

π2 − 2τ

1− τ
6

= A(1)
cr < A(0)

cr = π2.
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We now consider a generic order k in the perturbative expansion in the parameter τ . The
general procedure is clear from order 1, and can be iterated, giving order by order a Wigner
semicircle distribution with different coefficients. The second moment, approximated at previous
order, is 1/Abk−1, and the saddle point equation reduces to

P

∫
du

ρ(u)

h− u
=
Abk
2
h, (12.4.16)

with generic multiplicative factor

bk ≡ bk(A, τ) =
k∑
j=0

(j + 1) tj
(

1

Abk−1
− 1

12

)j
. (12.4.17)

Notice that we have a recursive way to calculate the bk’s, only depending on the previous one,
although in a nontrivial way.

The solution is given by

ρ(h) =
Abk
2π

√
4

Abk
− h2, suppρ =

[
− 2√

Abk
,

2√
Abk

]
, (12.4.18)

as long as the condition Abk < π2 holds. In particular, as bk = 1+O (τ), we have that the critical

value of the area is lowered from the pure Yang–Mills case, i.e. A
(k)
cr < π2, at least for τ small

enough. Consistently, the constraint guarantees order by order that:

τ

(
1

Abk
− 1

12

)
≥ τ

(
1

π2
− 1

12

)
≥ 0.

We will now obtain the full solution to (12.4.9) by including all orders in τ . This formally
corresponds to evaluate recursive relation (12.4.17) for all k, and the eigenvalue distribution is
then given by the Wigner semicircle expression with parameter Ab∞. From expression (12.4.17)
one recursively infers that

bk ≤ bk−1 + (k + 1)τk
(

1

Abk−1
− 1

12

)k
=⇒ |bk − bk−1| → 0,

and therefore b∞(A, τ) is given by the solution of the equation:

b∞ = lim
k→∞

k∑
j=0

(j + 1) tj
(

1

Abk−1
− 1

12

)j
. (12.4.19)

Samples of the convergence of bk are given in Figure 12.5. Writing the right hand side of (12.4.19)
as the derivative of a geometric series,38 b∞ is determined by solving:

b∞ =

[
1− τ

(
1

Ab∞
− 1

12

)]−2

. (12.4.20)

This leads to a cubic equation in b∞, but only one of the three solutions satisfies

b∞(A, τ)
τ→0−−−→ 1,

38We can do that for A > Alb, as we assumed at the beginning.
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Figure 12.5. Convergence of the sequence {bk}k, for τ = 0.1 (left) and τ = 0.5 (right).

hence we uniquely identify our solution for b∞(A, τ). Explicitly:

b∞(A, τ) =
1 + 2τ

A

(
1 + τ

12

)
+
√
1 + 4τ

A

(
1 + τ

12

)
2
(
1 + τ

12

)2 . (12.4.21)

The small coupling region is defined by the condition Ab∞ < π2, whence the critical value for
the coupling is

Acr(τ) = π2
(
1− τ

(
1

π2
− 1

12

))2

, (12.4.22)

as long as τ < 12π2

12−π2 , and no positive solution for τ bigger than the mentioned value. At this
point, we ought to check the consistency of our initial assumption: we developed a perturbative
expansion in τ , and then solved it to all orders, assuming the existence of a region A > Alb for
which

τ

(
1

Ab∞
− 1

12

)
< 1,

corresponding to:

Ab∞(A, τ) >
12τ

12 + τ
. (12.4.23)

As we have the explicit expression for b∞(A, τ), we can see that the infimum of the left hand
side of (12.4.23), as a function of A is exactly the right hand side, that is, b∞ takes exactly the
expression for which the lower bound is pushed to Alb = 0. This means that our procedure holds
for any A > 0, τ ≥ 0, or, in other words, the assumption we made to start with the perturbative
procedure is always verified in the region of validity of the heat kernel expansion.

To summarize, we have proved that, after the TT -deformation, we still have a small coupling
phase 0 < A < Acr(τ) analogous to the undeformed case, with eigenvalue distribution given by
a Wigner semicircle. Nevertheless, the effect of the deformation is to modify the parameter of
the distribution, as well as moving the original critical value [193]. In particular, for small values
of τ , the value Acr(τ) of the critical area is a decreasing function, hence Acr ≤ π2, whilst when

τ ≥ 12π2

12−π2 we do not have any small coupling phase, due to the constraint A > 0, and only the
strong coupling phase exists. The eigenvalue density in the small coupling phase 0 < A < Acr(τ)
is:

ρ(h) =
Ab∞(A, τ)

2π

√
4

Ab∞(A, τ)
− h2, suppρ =

[
− 2√

Ab∞(A, τ)
,

2√
Ab∞(A, τ)

]
, (12.4.24)

where b∞(A, τ) is given in (12.4.21).
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12.4.2 Strong coupling phase

Throughout the solution showed above, we had to impose an upper bound to the coupling A in
order not to violate the constraint (12.4.8). When A > Acr(τ) the Wigner semicircle distribution
is not allowed anymore, so that we have to look for a two-cut solution of the saddle point equation
(12.4.9). We follow again a perturbative approach, reproducing the procedure of [193] order
by order. According to what we have seen in the small coupling phase, the TT -deformation
introduces a nontrivial dependence on the parameters A and τ , but preserves the form of the
Douglas–Kazakov solution. Therefore the two-cut solution, if any, must be of the form:

ρ(h) =

{
φ(h), h ∈ [−α,−β] ∪ [β, α] ,

1, h ∈ [−β, β] ,

where 0 ≤ β ≤ α depend, in general, on A and τ . Plugging this expression into (12.4.9) we get:

P

∫
du

φ(u)

h− u
= log

(
h− b
h+ b

)
+
A

2
h

∞∑
j=0

(j + 1) τ j
[∫

duρ(u)u2 − 1

12

]j
. (12.4.25)

The idea is again to proceed perturbatively in τ , evaluating the second moment on the right hand
side, using the approximation at previous order. Again, this will only account for a modification
A 7→ Adk, with

dk =
k∑
j=0

(j + 1) τ j
[∫ α

−α
duρ(u)u2 − 1

12

]j
, (12.4.26)

where the second moment of the distribution is evaluated at order k − 1.
We directly treat the problem at a generic order k, knowing that d0 = 1, and hence the initial

step of our procedure corresponds to the result of [193]. We define a complex function

Φ(z) =

∫
φ(u)

u− z
du, (12.4.27)

for z /∈ [−α, α]. On one hand, when z approaches a real number h ∈ [−α, α], we can write

Φ+ (h)− Φ− (h) = 2πiφ(h)11U (h), (12.4.28)

where Φ±(h) := limε→0Φ (h± iε) and 11U is the characteristic function of the set

U := [−α,−β] ∪ [β, α] ≡ [−α, α] \ (−β, β) .

Once we obtain a complex solution to the saddle point equation (12.4.25), we can recover the φ
by evaluating the left hand side of (12.4.28) as the discontinuity at the branch cut of the complex
solution for h ∈ [−α, α]. Such a complex solution is:

Φ(z) = − 1

2πi

√
(α2 − z2) (β2 − z2)

∮
γU

du

Adk
2 u+ log

(
u−β
u+β

)
(u− z)

√
(α2 − u2) (β2 − u2)

, (12.4.29)

for some path γU in the complex plane around the cut U . After an adequate deformation of the
contour integral, one gets:

Φ(z) = −Adk
2
z − log

(
z − β
z + β

)
−
√

(α2 − z2) (β2 − z2)
∫ β

−β

du

(u− z)
√

(α2 − u2) (β2 − u2)
.

(12.4.30)
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The first two terms are obtained from the residue theorem, and the last one accounts for the
branch cut of the logarithm along [−β, β]. When z approaches the real axis, the logarithm has a
discontinuity of 2πi if z → h ∈ [−β, β], and has no discontinuity out of that interval, while the
third term is discontinuous in all z ∈ [−α, α]. Thus we get:

Φ+ (h)−Φ− (h) = −2πi11[−β,β]−2isign(h)
√

(α2 − h2) (h2 − β2)
∫ β

−β

du

(u− h)
√

(α2 − u2) (β2 − u2)
.

(12.4.31)
The sign function appears because, for h ∈ [β, α], one approaches the branch cut of the square
root from the proper direction, i.e. Φ+−Φ− corresponds to “counter-clockwise minus clockwise”.
For h ∈ [−α,−β], instead, the branch cut is approached from the converse direction.

Therefore, comparing with (12.4.28), one arrives at:

ρ(h) = φ(h)11U + 11[−β,β]

=
1

π
sign(h)

√
(α2 − h2) (h2 − β2)

∫ β

−β

du

(h− u)
√

(α2 − u2) (β2 − u2)
.

(12.4.32)

It is easy to check that eigenvalue distribution in a positive function of h in all [−α, α] and is
identically 1 in the interval [−β, β].

Until this point we simply reproduced the procedure of [193], which applies also for our gen-
eralized case. Notice that the eigenvalue distribution ρ apparently does not yield an explicit
dependence on Adk; nevertheless, the parameters α, β will depend on it, and so will do ρ. The
boundaries α, β can be fixed by the asymptotic expansion of Φ(z), for instance by comparison
between (12.4.30) and the definition (12.4.27). From this latter we have:

Φ(z) = −1

z

(∫
U
duφ(u) +

1

z2

∫
U
duφ(u)u2 + . . .

)
= −1

z

[
(1− 2β) +

1

z2

(∫ α

−α
duρ(u)u2 − 2

3
β3
)
+ . . .

]
.

(12.4.33)

On the other hand, the explicit expression (12.4.30) implies:

Φ(z) = −Adk
2
z − log

(
1− 2β

z
+ . . .

)
+ z

(
1− α2 + β2

2z2
+ . . .

)∫ β

−β
du

[
1 + u2

z2
+ u4

z4
+ . . .

]
√
(α2 − u2) (β2 − u2)

= z

[
−Adk

2
z +

∫ β

−β

du√
(α2 − u2) (β2 − u2)

]
+

1

z

[
2β +

∫ β

−β
du

u2 − α2+β2

2√
(α2 − u2) (β2 − u2)

]
+O

(
1

z3

)
(12.4.34)

The comparison at O(z) imposes the constraint∫ β

−β

du√
(α2 − u2) (β2 − u2)

=
Adk
2

=⇒ α =
4

Adk
K

(
β

α

)
, (12.4.35)

where K (·) is the complete elliptic integral of first kind. Analogously, from comparison at O(z−1)
one gets the constraint:

2β − α2 + β2

2

∫ β

−β

du√
(α2 − u2) (β2 − u2)

+

∫ β

−β

u2du√
(α2 − u2) (β2 − u2)

= −1 + 2β

=⇒ K

(
β

α

)[
2E

(
β

α

)
−
(
1− β2

α2

)
K

(
β

α

)]
=
Adk
4
,

(12.4.36)

290



TT -deformation of q-Yang–Mills theory

where E (·) is the complete elliptic integral of second kind, and we plugged in (12.4.35) to simplify
the expression. The result is clearly the same as [193], up to a rescaling A 7→ Adk.

As we are interested in knowing the second moment of the distribution ρ, we may use O(z−3) of
the expansion above to obtain the dependence of the integral expression on the other parameters.
It leads to:∫ α

−α
duρ(u)u2 =

∫ β

−β
du
−u4 + α2+β2

2 u2 +
(α2−β2)

2

8√
(α2 − u2) (β2 − u2)

=

(
α2 − β2

)2
16

Adk + α
(
α2 + β2

) [
K

(
β

α

)
− E

(
β

α

)]
− 2

3
α3

[(
2 +

β2

α2

)
K

(
β

α

)
− 2

(
1 +

β2

α2

)
E

(
β

α

)]
.

(12.4.37)

We can use the properties of the elliptic integrals to extract information about the depen-
dence on Adk. In particular, from the first two conditions (12.4.35)-(12.4.36) we get that, for
Adk → π2, one recovers the same parameters as approaching the critical point from below, that
is, (α = 2/π, β = 0). More specifically, for Adk close to π2, we may approximate the elliptic
integrals, and obtain the first terms of the expansion of α and β around Adk = π2:

α =
1

π

[
2− Adk − π2

π2
+

5

4

(
Adk − π2

π2

)2

+ . . .

]
,

β =
1

π

2√2((Adk − π2)
π2

) 1
2

− 15

4
√
2

(
Adk − π2

π2

) 3
2

+ . . .

 . (12.4.38)

Moreover, concerning the second moment, approximated close to the critical point, we get:∫ α

−α
duρ(u)u2 =

1

π2

[
1− Adk − π2

π2
+ 3

(
Adk − π2

π2

)2

+ . . .

]
. (12.4.39)

At this point, we are able to determine the full nonperturbative expression for the eigenvalue
density ρ(h), close enough to the critical point. That is: on one hand, we have a formal recursive
expression for the coefficients dk of the perturbative expansion in τ at strong coupling, while
on the other hand, if we want to determine the order of the phase transition, we need to know
an explicit expression for the dependence of the eigenvalue density on the parameters A and τ .
Notice however, that local information close to the critical point is enough to characterize the
phase transition. For these reasons, we look for a full (nonperturbative) solution, approximating
close to the critical point. The solution we will find will be only valid up to order (Ad∞ − π2)2.

The formal limit k →∞ of this expression (12.4.26) leads to the equation:

d∞ =

[
1− τ

(∫ α

−α
duρ(u)u2 − 1

12

)]−2

, (12.4.40)

and the approximated solution close to the critical point is found plugging expression (12.4.39),
obtaining:

d∞ ≈
[
1− τ

[
1

π2

(
1− Ad∞ − π2

π2

)
− 1

12

]]−2

, (12.4.41)

which again admits only one solution compatible with limτ→0 d∞ (A, τ) = 1. As a side remark,
we highlight that the defining equation for d∞ starts to differ from the one for b∞ only at order
(Ad∞ − π2)2, implying that b∞ and d∞ will coincide up to the first derivative when evaluated at
the critical point Acr (same 1-jet at Acr).
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12.4.3 Third order phase transition

In this subsection, we study the free energy from the point of view of small and large area, that
is A < Acr (τ) and A > Acr (τ) respectively, with the aim to determine the order of the phase
transition. The free energy of the system is defined as:

FN (A, τ) = − 1

N2
logZN (A, τ) . (12.4.42)

In the large N limit the derivative with respect to the control parameter A is given by:

∂F
∂A

=
1

2

∞∑
j=0

τ j
[∫

duρ(u)u2 − 1

12

]j+1

. (12.4.43)

Before passing to the direct evaluation, we notice that:

∂F
∂A

= F ′
DK (Ac∞)

∞∑
j=0

τ j
[∫

duρ(u)u2 − 1

12

]j
, (12.4.44)

where by F ′
DK(A) we mean the first derivative of the free energy obtained by Douglas and Kazakov

[193], and c∞ is a shorthand:

c∞ =

{
b∞, A < Acr(τ);

d∞, A > Acr(τ).

Therefore
∂F
∂A

= F ′
DK(Ac∞)

[
1− τ

(∫
duρ(u)u2 − 1

12

)]−1

. (12.4.45)

Taking advantage of the defining equation (12.4.20) and (12.4.40) for b∞ and d∞ respectively, we
can rewrite:

∂F
∂A

= F ′
DK(Ac∞)

√
c∞. (12.4.46)

When A < Acr, the latter expression is calculated using the distribution at small coupling:

∂F
∂A

∣∣∣∣
A<Acr

=

√
b∞
2

(
1

Ab∞
− 1

12

)
=

√
b∞
2

[
1

π2

(
1− Ab∞ − π2

π2
+

(
Ab∞ − π2

π2

)2

+ . . .

)
− 1

12

]
.

(12.4.47)
Analogously, in the strong coupling phase A > Acr(τ) we ought to use the eigenvalue distribution
at strong coupling, which, approximating close to the critical point, provides the expression:

∂F
∂A

∣∣∣∣
A>Acr

=

√
d∞
2

[
1

π2

(
1− Ad∞ − π2

π2
+ 3

(
Ad∞ − π2

π2

)2

+ . . .

)
− 1

12

]
.

By construction of the two-cut solution, we know that:

Ab∞
A→A−

cr−−−−−−→ π2
A→A+

cr←−−−−−− Ad∞ (12.4.48)

which guarantees ∂F
∂A is continuous at the critical point, thus the transition is at least of second

order. We in fact have that:

∂F
∂A

∣∣∣∣
A>Acr

− ∂F
∂A

∣∣∣∣
A<Acr

=
1

2

(
1

π2
− 1

12

)(√
d∞ −

√
b∞

)
− 1

2π2

[√
d∞

(
Ad∞ − π2

π2

)
−
√
b∞

(
Ab∞ − π2

π2

)]
+

1

2π2

[
3
√
d∞

(
Ad∞ − π2

π2

)2

−
√
b∞

(
Ab∞ − π2

π2

)2
]
+ . . . .

(12.4.49)
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Taking a further derivative with respect to A we get:

∂2F
∂A2

∣∣∣∣
A>Acr

− ∂2F
∂A2

∣∣∣∣
A<Acr

=
1

4

(
1

π2
− 1

12

)[
d′∞√
d∞
− b′∞√

b∞

]
− 1

4π2

[
d′∞√
d∞

(
Ad∞ − π2

π2

)
− b′∞√

b∞

(
Ab∞ − π2

π2

)]
− 1

2π4

[√
d∞
(
d∞ +Ad′∞

)
−
√
b∞
(
b∞ +Ab′∞

)]
+

1

4π2

[
3
d′∞√
d∞

(
Ad∞ − π2

π2

)2

− b′∞√
b∞

(
Ab∞ − π2

π2

)2
]

+
1

π4

[√
d∞
(
d∞ +Ad′∞

)(Ad∞ − π2
π2

)
−
√
b∞
(
b∞ +Ab′∞

)(Ab∞ − π2
π2

)]
+ . . .

(12.4.50)
Is is straightforward to see that the second, fourth and fifth term vanish at the critical point. The
first and third term are more subtle, because the involve derivatives of the coefficients b∞, d∞.
However, we have that both coefficients are defined by formally the same expression, but using
the eigenvalue distribution at small or large coupling respectively. Regarding b∞, we can evaluate
its derivative using (12.4.20):

b′∞ = −2τ

π2
b
5/2
∞

1−Ab3/2∞
+ . . . ,

where the dots represent term that vanish at the critical point. The same can be done for d∞
using (12.4.40), to obtain:

d′∞ = −2τ

π2
d
5/2
∞

1−Ad3/2∞
+ . . . .

Hence we infer that the first derivatives b′∞ and d′∞ of the coefficients coincide at the critical point
(this fails to be true for higher derivatives). Consequently, the phase transition is again of third
order.

It is remarkable that the TT -deformation introduced a nontrivial dependence on the coupling
A, but in such a way that it does not affect the order of the phase transition.

12.4.4 Instanton analysis

Gross and Matytsin presented evidence for the phase transition to be triggered by instantons
[385]. The existence of a phase transition can be closely related to the discreteness of the matrix
model (10.1.2) [385, 494, 436]. In [495], Yang–Mills theory on the sphere is described in terms of N
nonrelativistic free fermions on S1, with instantons corresponding to different winding numbers for
fermions at a given position, and the phase transition occurs due to the condensation of fermions
in (discrete) momentum space, so again the discreteness turned out to be essential to permit a
phase transition. From this general argument, and taking into account expression (12.4.1), the
statement is expected to hold also in the TT -deformed version of two-dimensional Yang–Mills, as
the effect of the deformation, at the level of the matrix model, is to replace the discrete Gaussian
weight with a discrete weight whose potential has also additional multitrace contributions. Thus,
in this section we look at the role played by instantons in the phase transition.

Instantons in the undeformed theory

By instanton, we mean a solution of the classical Yang–Mills equation of motion which is gauge
inequivalent to the trivial one. Those solutions are in one to one correspondence with collections
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of N monopole charges:
ℓ := (ℓ1, . . . , ℓN ) ∈ ZN .

The action for a given classical configuration is:

Sinst (ℓ) =
N

2A

N∑
j=1

(2πℓj)
2 , (12.4.51)

and the partition function splits into the sum of contributions from instanton sectors:

Z(YM)
N =

∑
ℓ∈ZN

w (ℓ) e−Sinst(ℓ). (12.4.52)

This is the content of Witten’s result [496] extending the Duistermaat–Heckman theorem. From
the point of view of the Abelianization procedure [497], each ℓj is the first Chern class of a U(1)-
bundle, see [497, 423, 384] for more details. Later on, this viewpoint was the one adopted in [494]
to estimate the instanton contributions in the case of q-deformed Yang–Mills theory on S2.

A practical difficulty is to evaluate the weights w (ℓ), which was done in [495] (and in [409]
for the q-deformed case), through the method of Poisson resummation. In [385], the contribution
of the single-monopole sector ℓ = (1, 0, . . . , 0) was calculated, showing that this correction to the
saddle point approximation at large N is exponentially suppressed,

w (1, 0, . . . , 0) e−Sinst(1,0,...,0)

w (0, . . . , 0) e−Sinst(0,...,0)
∝ e−

2π2

A
Nγ
(

A
π2

)
,

where the function γ (·) is the one introduced by Gross and Matytsin [385] and is given by

γ(x) =
√
1− x− x

2
log

(
1 +
√
1− x

1−
√
1− x

)
. (12.4.53)

In particular, as γ (x) > 0 for 0 < x < 1 and γ (1) = 0, in the small coupling phase contributions
from instanton sectors are exponentially suppressed at large N , but they become more and more
relevant as the critical point is approached. In this sense, the weight w (ℓ) acts as a counterpart of
the Boltzmann factor e−S(ℓ), and at the critical point those two contributions are exactly balanced.

Instantons in the TT -deformed theory

The evaluation of the full instanton expansion for the deformed theory would correspond to find
an explicit expression of the form:

ZN (A, τ) =
∑
ℓ∈ZN

w (ℓ) e−Sinst(ℓ),

where now the weights and the action include the effects of the deformation by the TT -operator.
We have found strong evidence that this can be done in an analytic way, but the weights obtained
are not very enlightening and unsuitable for the purpose of this section. Instead, we will only
look at the first instanton correction, and how it affects the model. A discussion on the Poisson
resummation for the full explicit expression is relegated to Appendix 12.A.

As a first step, the partition function can be rewritten as a sum over Fourier transforms of
contributions from each representation:

ZN (A, τ) =
∑
ℓ∈ZN

Zℓ, (12.4.54)
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where each instanton sector contributes as:

Zℓ =

∫
RN

N∏
i=1

dhie
−i2π

∑N
i=1 ℓihi

∏
i<j

(
hi − hj
j − i

)2

e
− A

2N

∑∞
j=0

(
τ

N3

)j(∑N
i=1 h

2
i−

N(N2+2)
12

)j+1

. (12.4.55)

Consider the single-monopole sector corresponding to ℓ = (ℓ1, 0, . . . , 0) (we will eventually set
ℓ1 = ±1). It contributes to the partition function as:

Z(ℓ1,0,...,0) =

∫
RN

N∏
i=1

dhie
−N2Sℓ1

[h],

where

Sℓ1 [h] = −
2

N2

∑
i<j

log

(
hi − hj
j − i

)
+

A

2N3

∞∑
j=0

( τ

N3

)j ( N∑
i=1

h2i −
N
(
N2 + 2

)
12

)j+1

+
2πi

N2
ℓ1h1.

(12.4.56)
This means that the correction to the large N action, with respect to the vacuum sector, is
of O(N−1). This implies that, at large N , we can perform N − 1 integrals using the saddle
point approximation for the eigenvalue distribution, and eventually treat the integration over h1
separately [385, 494]. Notice that the saddle point for h1 will be, in general, complex, due to
the purely imaginary “Fourier interaction” with ℓ1. Nevertheless, as we are interested in the
suppressing factor, we will avoid the technicalities involved in determining the imaginary part of
the instanton contribution.

Taking the large N limit, we have:

Z(ℓ1,0,...,0) = C
N−1

∫ ∞

−∞
dh1e

−NSℓ1
[h1], (12.4.57)

where C is the integral over any variable h2, . . . , hN , calculated with the saddle point approxima-
tion, and the effective action for the scaled variable h = h1

N is:

Sℓ1 [h] = −2
∫
duρ(u) log (h− u)− 2 +

A

2

∞∑
j=0

τ j
(
h2 − 1

12

)j+1

+ 2πiℓ1h, (12.4.58)

and the density ρ is the one obtained in (12.4.24) for small coupling A < Acr. The saddle point
for the effective action is given by:

2P

∫
du

ρ(u)

h− u
+Ah

∞∑
j=0

(j + 1) τ j
(
h2 − 1

12

)j
+ 2πiℓ1 = 0

which, using the fact that ρ satisfies the saddle point for ℓ1 = 0, simplifies into:

2πi (ρ(h) + ℓ1) = 0.

This leads to the saddle point:

h2 =

(
2

Ab∞

)2 (
Ab∞ − π2ℓ1

)
,

which, since the analysis is being brought on in the small coupling phase Ab∞ < π2, gives a purely
imaginary saddle point:

h =
2πi

Ab∞
sign(ℓ1)

√
ℓ21 −

Ab∞
π2

. (12.4.59)
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The result is exactly the same obtained in the undeformed case [385], up to a rescaling A 7→ Ab∞.
In particular:

Z(1,0,...,0)

Z(0,...,0)
= C′e−N

2π2

Ab∞
γ
(

Ab∞
π2

)
, (12.4.60)

where C′ is an overall constant and γ (·) is the function (12.4.53). Hence, the same conclusions of
the undeformed case [385] hold: from the perspective of the small coupling expansion, the phase
transition is triggered by instantons.

A more thorough analysis of the single-monopole instanton correction in the TT -deformed
case, shows that the relevance of instantons increases with τ , for τ < 12π2

12−π2 , and there is no

suppression at all for τ ≥ 12π2

12−π2 . This explains why the phase transition occurs earlier in the

deformed case, that is Acr(τ) ≤ Acr(0): indeed, the function 1
Ab∞

γ
(
Ab∞
π2

)
decreases faster than

the function 1
Aγ
(
A
π2

)
, hence the first instanton sector becomes relevant at a lower value of A, in

comparison to the undeformed case. This is presented in Figures 12.6 and 12.7.

Figure 12.6. On the left: a comparison of the function γ
(

x
π2

)
for the deformed (blue) and undeformed

(orange) case. On the right: a zoom on the tail of the function 1
xγ
(

x
π2

)
for the deformed (blue) and

undeformed (orange) case. The plots are at τ = 0.1.

Figure 12.7. On the left: a comparison of the function γ
(

x
π2

)
for the deformed (blue) and undeformed

(orange) case. On the right: a zoom on the tail of the function 1
xγ
(

x
π2

)
for the deformed (blue) and

undeformed (orange) case. The plots are at τ = 0.5.

12.5 Phase transitions in TT -deformed q-Yang–Mills theory

Two-dimensional U(N) Yang–Mills theory on S2 undergoes a third order phase transition [193],
henceforth called the Douglas-Kazakov (DK) transition, which is induced by instanton insta-
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bilities [385]. The same third order phase transition is experienced by the q-deformed theory
[498, 494, 409] when p > 2. The critical value of the coupling λcr decreases monotonically with
increasing p and one eventually recovers the DK transition in the limit p → ∞ [498, 494, 409],
see Figure 12.8. This means that the q-deformation extends the region in parameter space corre-
sponding to a weak coupling phase.

p

Acr

Figure 12.8. The critical curve of q-Yang–Mills theory, in terms of the parameter A = λ/p as a function
of p. The horizontal asymptote (dashed) is the DK critical point Acr = π2. The vertical asymptote (red)
is the point p = 2. This plot is inspired by [498].

We have shown in Section 12.4 that TT -deformed (but not q-deformed) Yang–Mills theory
also undergoes a DK-type transition for 0 ≤ τ < τmax, with

1

τmax
=

1

π2
− 1

12
. (12.5.1)

The critical value of the area parameter decreases with increasing τ , and eventually no weak
coupling phase exists when τ approaches τmax [9]. Therefore the TT -deformation reduces the
region of parameter space corresponding to a weak coupling phase.

The goal of this section is to analyze the large N phase diagram when both the q-deformation
and the TT -deformation are turned on. In the following we summarize our large N results. In
Section 12.5.1 we present the large N formalism when both deformations are turned on and study
the weak coupling regime, while Section 12.5.2 is dedicated to a study of the critical surface.
Section 12.5.3 discusses the role of instanton contributions, while Section 12.5.4 is dedicated to
a study of the phase transition and the strong coupling regime. Finally, in Section 12.5.5 we
comment on the large N limit of the refined theory.

Large N results

Before diving into the detailed analysis of the large N phase structure, we summarize here our
main findings:

• TT -deformed q-Yang–Mills theory undergoes a third order phase transition when p > p0.
Remarkably, we find that p0 < 2.

• The slice of parameter space giving a weak coupling phase is extended, relative to the
pure TT -deformation, and is reduced only relative to the q-deformation. This interpolates
perfectly between the effects discovered respectively in [498, 494, 409] and [9], recovering the
single-deformation scenarios as limiting cases.

297



12.5. Phase transitions in TT -deformed q-Yang–Mills theory

• The phase transition is induced by instantons. The shrinking of the weak coupling region is
explained by the fact that in the TT -deformed theory the suppression factor of the instantons
is smaller, hence their effect becomes relevant at lower values of the coupling λ.

12.5.1 Large N limit of TT -deformed q-Yang–Mills theory

At this stage we are ready to apply the formalism of Section 12.4 to the harder problem of
q-Yang–Mills theory.

In terms of the shifted weights h⃗ ∈ ZN introduced in (12.4.3), the partition function of TT -
deformed U(N) q-Yang–Mills theory is

ZTTq-YM(λ, τ) =
1

N !

∑
h⃗∈ZN

(
∆q (⃗h)

∆q(∅)

)χ
exp

(
−

λ p
2N

( N∑
j=1

h2j −
N (N2+1)

12

)
1− τ

N3

( N∑
j=1

h2j −
N (N2+1)

12

)
)
, (12.5.2)

where ∆q (⃗h) is a q-deformation of the Vandermonde determinant

∆q (⃗h) =
∏

1≤i<j≤N
2 sinh

λ (hi − hj)
2N

,

and we used the shorthand notation ∆q(∅) := ∆q(hi = i). Here ∆q(∅) plays the role of a q-
deformation of the Barnes G-function defined in (12.4.5). We have also left χ arbitrary, 0 < χ,
although we recall that its physical value is χ = χ(S2) = 2.

We now take the large N limit of (12.5.2), which we stress is a ’t Hooft limit with ’t Hooft
coupling λ, while the Yang–Mills coupling is λ/N . In this limit, the contribution of ∆q(∅)−χ is
given by [498]

lim
N→∞

χ log∆q(∅) = −
χ

λ2
FCS
0 (λ) ,

where FCS
0 (λ) is the planar free energy of U(N) Chern–Simons theory on the three-sphere S3:

FCS
0 (λ) =

λ3

12
− π2

6
λ− Li3(e

−λ) + ζ(3) .

The analogue of the saddle point equation (12.4.9) in this q-deformed setting is

P

∫
du ρ(u) coth

λ (h− u)
2

=
2p

χ
h

∞∑
k=0

(k + 1) τk

(∫
supp(ρ)

du ρ(u)u2 − 1

12

)k
. (12.5.3)

The solution will be a function

ρ(h) := ρ
(
h;λ, 2pχ , τ

)
depending parametrically on the couplings, which is normalized and satisfies the constraint from
(12.4.8): ρ(h) ≤ 1. We notice also that χ only enters the large N limit in the combination 2p

χ ,
and hence is simply a rescaling of p.

We solve the saddle point equation (12.5.3) perturbatively, as in Section 12.4 above. Assuming
a one-cut solution, the zeroth order solution is [498, 494, 409]

ρ(0)(h) =
2p

π χ
tan−1

√√√√ eχλ/2p

cosh2 λχ4p h
− 1 ,
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with support

supp
(
ρ(0)
)
=
[
− α(0), α(0)

]
where α(0) =

2

λ
cosh−1 eχλ/4p .

We have put the superscript (0) everywhere to remind us that this is the zeroth order solution in
a perturbative expansion in τ . The second moment of this distribution is

µ
(0)
2 =

∫ α(0)

−α(0)

du ρ(0)(u)u2 =
χ2

12p2
+

1

3λ2

(
π2 + 6Li2

(
e−χλ/2p

))
+

8p

χλ3

(
Li3
(
e−χλ/2p

)
− ζ(3)

)
.

The next order approximation of (12.5.3) is

P

∫
du ρ(u) coth

λ (h− u)
2

=
2p

χ
bq,1 h ,

where

bq,1 := bq,1
(
λ, 2pχ , τ

)
= 1 + τ

(
µ
(0)
2 −

1

12

)
.

The solution at this order then will be again as in [498, 494, 409], but with a renormalized value
of p given by

p 7−→ 2p

χ
bq,1 .

Iterating this argument, at a generic order O(τk) the saddle point equation is the same but the
renormalization of p at this order is

2p

χ
bq,k .

The parameter bq,k is obtained using the approximation µ
(k−1)
2 , which is itself a function of bq,k−1.

We find

bq,k =
d

dx

(
1− xk+1

1− x
− 1

)∣∣∣∣
x=τ

(
µ
(k−1)
2 − 1

12

) ,
and the convergence at k →∞ is guaranteed by the convergence of the geometric series defining
the TT -deformation. Although the study of the limiting value bq,∞ is based on exactly the same
arguments as for b∞ in [9], it is difficult to find explicit formulas due to the q-deformation. We
provide more details on bq,∞ and an approximate study in the large p regime in Appendix 12.B.

Even without an explicit expression, we can extract information about bq,∞ from its defining
equation

bq,∞ =

(
1− τ

(
µ2 −

1

12

))−2

, (12.5.4)

with µ2 depending itself on bq,∞. From this equation we already see that bq,∞ ≥ 1, with equality
only at τ = 0.

We also have to check the consistency of the TT -deformation. Looking back at (12.3.1), we
have to find for what values of τ the inequality

τ

(
µ2 −

1

12

)
< 1

is satisfied, so that the deformed Casimir is a well-defined (positive) deformation of the quadratic
Casimir of U(N). From (12.5.4), the left-hand side of this inequality is 1−1/

√
bq,∞, with bq,∞ ≥ 1,

hence the TT -deformation is well-posed for all non-negative values of τ . Thus the theory is well-
defined at large N all along the RG flow triggered by the TT -deformation. This was not obvious
from (12.3.1) and we regard it as a strong consistency check.
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12.5.2 Critical curves

We now set χ equal to its physical value χ = χ(S2) = 2.
The solution we found in Section 12.5.1 above holds as long as ρ satisfies the requirement

(12.4.8). From the formulas above, and the property | tan−1(x)| ≤ π
2 , we have

ρ(h) <
p bq,∞

2

and the system undergoes a phase transition only for those values of p > p0, where p0 := p0(τ) is
implicitly defined by

p0 bq,∞(p0, τ) = 2 .

At τ = 0, this was used in [498, 494, 409] to show that for p ≤ χ(S2) = 2 there is only one phase,
while two phases separated by a critical line in the (λ, p)-plane appear for p > 2.

We have seen in Section 12.5.1 above that bq,∞ ≥ 1, which implies that for all τ > 0 a phase
transition takes place whenever p > p0 with p0 < 2. As soon as the TT -deformation is turned on,
the theory with p = 2 develops a strong coupling phase, with critical line descending from ∞ to
a finite value of λ.

For p > p0(τ), the theory presents two phases, separated by a codimension-one critical surface
in the octant (λ > 0, p > 0, τ ≥ 0), parametrized by λ = λcr(p, τ). This surface should be seen as
a one-parameter family of critical curves, parametrized by τ ≥ 0, describing the evolution of the
critical curve of Figure 12.8 along the RG flow induced by the TT -deformation, with τ playing
the role of the “time”. See Figure 12.9 for a schematic picture. (Note that Figure 12.9 represents
just a rough illustration of the actual critical surface.)

Figure 12.9. Schematic plot of the critical surface. The gray region represents the weak coupling phase.

This critical surface is defined implicitly by the equation

λcr = p bq,∞ log

(
1 + tan2

π

p bq,∞

)
. (12.5.5)

It is important to bear in mind that bq,∞ depends on λ, and it must be evaluated at the critical
value λcr in the right-hand side of (12.5.5).
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Without an explicit expression for bq,∞ we cannot provide a formula for λcr = λcr(p, τ) de-
scribing the critical surface. Nevertheless, the lessons learned from the study of Appendix 12.B
are that bq,∞ is a monotonically decreasing function of p, eventually approaching b∞ from above
as p → ∞. In conclusion, from Appendix 12.B we find that bq,∞ decreases with p, and from
(12.5.4) we see that bq,∞ increases with τ . This matches precisely with the known effects of the
two deformations taken separately. This, together with (12.5.5), implies

p−1Acr(τ) ≤ λcr(p, τ) ≤ λcr(p, 0) ,

which means that the volume in the octant (λ > 0, p > 0, τ ≥ 0) of the parameter space describing
a weak coupling phase is reduced, relative to only the TT -deformation, and is enhanced relative
to only the q-deformation.

p = 1 case

Since bq,∞ is an increasing function of τ , one may expect that, for τ sufficiently large, the phase
transition also takes place at p = 1. In other words, one may wonder whether eventually p0(τ) < 1
for sufficiently large τ . Unfortunately, our analysis of bq,∞ is not reliable in the limit p→ 1, and
we cannot draw any conclusions in this direction.

The parameter p has a geometric meaning as the degree of the holomorphic line bundle

O(−p) −→ Σ .

For every p > 1, the total space is a resolution of the Kleinian (or du Val) singularity C2/Zp,
singling out p = 1 as a special case. See also [499] for a discussion on the physical relevance of
p > 1.

On the other hand, there is nothing special about p = 1 compared to p = 2 in the original
construction of [487, 408].

The fate of the theory for p = 1 with TT -deformation has been clarified in [500], showing that
the phase transition is extended all the way down to p = 1 for appropriate values of τ .

12.5.3 Instanton analysis

A classic result of two-dimensional Yang–Mills theory on S2 is that the phase transition is triggered
by instantons [385]; by ‘instanton’ here we mean a solution to the classical Yang–Mills equation
of motion which is gauge-inequivalent to the trivial connection. In the weak coupling phase, the
Boltzmann weight of the saddle point configuration dominates the partition function at large
N . However, beyond a critical value of the coupling, non-perturbative contributions cease to be
suppressed and compete with the Boltzmann weight, inducing a phase transition.

The same mechanism is at work in the TT -deformed theory [9]. Here the deformation reduces
the suppression factor of the instantons, and therefore the phase transition takes place at lower
values of the coupling.

In q-Yang–Mills theory, again the unstable instantons are the cause of the phase transition [498,
409]. Here we show that the same arguments apply to the TT -deformed theory. We find that, as
in the situation without q-deformation, instantons are less suppressed in the TT -deformed theory.

We start by rewriting the sphere partition function as

ZTTq-YM(λ, τ) =
1

N !

∑
ℓ⃗∈ZN

Z
ℓ⃗
(λ, τ) , (12.5.6)

where Z
ℓ⃗
encodes the instanton contributions, and can be obtained from a modular transformation

of the partition function written in the representation basis. See Appendix 12.C for further details.
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The complete analysis for q-Yang–Mills theory was carried out in [498, 409], and we show how
it is adapted to the TT -deformed theory in Appendix 12.C. Although we cannot get a closed
expression, we show that it can be evaluated order by order in τ .

As pointed out already in [385], focusing on the first instanton sector gives clearer insights into
understanding how the non-perturbative effects kick in. We therefore consider the one-instanton
sector, for which

ℓ⃗ = (ℓ1, 0, . . . , 0) with ℓ1 = ± 1 .

Its contribution to the partition function ZTTq-YM is

Z(ℓ1,0,...,0)(λ, τ) =
1

∆q(∅)2

∫
RN

dh⃗ e−2π i ℓ1 h1
∏

1≤i<j≤N
4 sinh2

λ (hi − hj)
2N

× exp

(
− λ p

2N

N∑
i=1

h2i −
N (N2−1)

12

1− τ
( N∑
i=1

h2i −
N (N2−1)

12

)
)
.

In the large N limit, the contribution of ℓ1 to the eigenvalue density is of order O(N), hence
sub-leading against the O(N2) contributions from the rest of the action. Therefore in the large N
’t Hooft limit we can integrate over the eigenvalues h2, . . . , hN using the eigenvalue density ρ(h)
found in Section 12.5.1 above. Rescaling the integration variable h1 to h = h1/N , we obtain

Z(ℓ1,0,...,0)(λ, τ) =
ZN−1(λ, τ)

∆q(∅)2

∫
R
dh e−N Seff[h] ,

where ZN−1 comes from integrating out the remaining N − 1 eigenvalues, and is equal to the
partition function of the U(N − 1) theory in the zero-instanton sector.39 The effective action
functional is given by

Seff[h] = −2
∫
supp(ρ)

du ρ(u) log

∣∣∣∣sinh λ (h− u)2

∣∣∣∣+ λ p bq,∞
2

h2 − 2π i ℓ1 h ,

where we used the definition (12.5.4) of bq,∞ to simplify the expression. We obtain the saddle
point equation for the first eigenvalue given by

p bq,∞ h− 2π i ℓ1
λ

= P

∫
du ρ(u) coth

λ (h− u)
2

. (12.5.7)

This is a saddle point equation for h, with ρ(u) known. At this point we notice that, as expected,
(12.5.7) is the same equation found in [498, 494], except for the renormalization p 7→ p bq,∞. We
can therefore read off the solution from [498, 494] to get

h =


2 i ℓ1
λ tan−1

√
e−λ/p bq,∞

cos2 π
p bq,∞

− 1 , p bq,∞ > 2 ,

2π i ℓ1
λ , p bq,∞ ≤ 2 ,

(12.5.8)

where we used |ℓ1| = 1 to simplify

cosh

(
λ

2p bq,∞

2π i |ℓ1|
λ

)
= cos

π

p bq,∞
.

39The symmetry breaking U(N) → U(1)× U(N − 1) in the one-instanton sector is explained in Appendix 12.C.
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From (12.5.8) it follows that there is no phase transition for p below a critical value p0(τ),
defined such that

p bq,∞(λ, p, τ) ≤ 2 for λ > 0 when p ≤ p0(τ) ,

because then the instanton contributions are suppressed for all values of λ. On the other hand,
when p > p0(τ) and p bq,∞ > 2 we have (dropping an irrelevant overall constant)

Z(ℓ1,0,...,0)(λ, τ)

Z(0,0,...,0)(λ, τ)
= exp

(
− N
λp

γ(λ, p bq,∞)

)
where γ is the function defined in [498], which in turn is a one-parameter deformation of the
suppression function found in [385]. When

e−λ/p bq,∞

cos2 π
p bq,∞

− 1 > 0 ,

corresponding to λ < λcr, the function γ is a positive decreasing function of λ, for any fixed p.
However, it becomes purely imaginary when λ > λcr, implying that the one-instanton sector is no
longer suppressed and its contribution becomes relevant.

12.5.4 Strong coupling phase

For values of λ such that, for given p and τ , the eigenvalue density ρ(h) found in Section 12.5.1
above does not satisfy the constraint (12.4.8), we have to drop the assumption of a one-cut solution
and find another distribution ρ(h) satisfying the bound.

The strategy is the same as that followed in Section 12.5.1 above for the weak coupling phase:
expanding the saddle point equation (12.5.3) as a power series in τ , we can solve it iteratively.
We do not spell out the technical details here, as they are exactly as in [498, 494, 409], up to the
renormalization p 7→ 2p

χ dq,k. The coefficient

dq,k =

k∑
j=0

(j + 1) τ j
(
µ
(k−1)
2 − 1

12

)j
(12.5.9)

is formally the same as bq,k, but they differ in that bq,k is computed using the second moment µ2
of the distribution ρ(h) at weak coupling in (12.5.4), whereas for dq,k the moment µ2 corresponds
to ρ(h) at strong coupling in (12.5.9). We distinguish the weak and strong coupling solutions by
ρweak and ρstrong. The complete solution would require finding dq,∞.

Third order phase transition

Even without closed expressions available for bq,∞ and dq,∞, we can extract information from
the form of the eigenvalue density and from what is known at τ = 0. In fact, at τ = 0 the
phase transition is of third order [498, 494, 409], which means that logZq-YM is twice continuously
differentiable along the critical curve λ = λcr(p).

The crucial feature is that one can extract the derivative ∂
∂λ logZ

TT
q-YM from the second moment

µ2[ρ] in each phase, and a third order phase transition implies that µ2[ρweak] and µ2[ρstrong] agree
up to their first derivatives at τ = 0. We now exploit this fact to describe the behaviours of bq,∞
and dq,∞ close to the critical curve. Using the defining expressions (12.5.4) and (12.5.9) for bq,∞
and dq,∞, we can expand in λ around λ = λcr to get

bq,∞ = fweak0 (bq,∞|λ=λcr) + (λ− λcr)2 fweak2 (bq,∞|λ=λcr) +O
(
(λ− λcr)3

)
,

dq,∞ = f strong0 (dq,∞|λ=λcr) + (λ− λcr)2 f strong2 (dq,∞|λ=λcr) +O
(
(λ− λcr)3

)
.
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The agreement of µ2 at weak and strong coupling at τ = 0 can be used to show that fweak0 = f strong0

at the critical point for all τ ≥ 0, which in turn guarantees that bq,∞ and dq,∞ agree up to the
first derivative. Essentially, by direct inspection one finds that the defining equation for dq,∞ is
exactly the same as for bq,∞ at order O(λ− λcr).

On the other hand, one can check that, after inclusion of the renormalization of p at weak or
strong coupling, the first derivative ∂

∂λ logZ
TT
q-YM depends only on bq,∞ (respectively dq,∞) at weak

(respectively strong) coupling, and not on their derivatives. This is done again by expanding the
integral formula for µ2 close to λcr, and is a consequence of the very simple way in which the
parameters bq,∞ and dq,∞ enter.

As an immediate consequence, the second derivative ∂2

∂λ2
logZTTq-YM

∣∣
λ=λcr

depends only on the
1-jets of bq,∞ and dq,∞ at λcr, which we have argued to match. We therefore find that the phase
transition is of third order.

We refer to [9] for further discussion, since the details of the argument do not depend on the
explicit form of ρ(h) once we zoom in close to the critical curve.

12.5.5 Refinement

Consider the refinement of U(N) q-Yang–Mills theory [486] with refinement parameter t = qβ, for
β ∈ Z>0; the unrefined limit t = q then corresponds to β = 1. A refined definition of the shifted
weight variables h⃗ ∈ ZN introduced in (12.4.3) is given by

hi = −Ri + β

(
i− N + 1

2

)
for i = 1, . . . , N .

In this basis we find that the TT -deformed partition function on S2 is

ZTT(q, t)-YM(λ, τ) =
1

N !

∑
h⃗∈ZN

∆(q,t)(⃗h)∆(q,t)(−h⃗)
−∆(q,t)(∅)2

exp

(
−

λ p
2N

( N∑
i=1

h2i − β2
N (N2−1)

12

)
1− τ

N3

( N∑
i=1

h2i − β2
N (N2−1)

12

)
)
,

(12.5.10)
in which the TT -deformation only changes the refined (or β-deformed) quadratic Casimir, relative
to the case τ = 0. The Macdonald measure ∆(q,t)(⃗h) in (12.5.10) is given for t = qβ as

∆(q,t)(⃗h) =

β−1∏
m=0

∏
1≤i<j≤N

2 sinh
λ (hi − hj +m)

2N
,

and ∆(q,t)(∅) is obtained by setting hi − hj = β (i − j). This discrete matrix model has been
thoroughly studied in [436].

It was proven in [501] that the ’t Hooft limit of (q, t)-Yang–Mills theory coincides with that
of q-Yang–Mills theory with rescaled coupling λ′ = β λ. The proof of [501] is straightforwardly
adapted to the TT -deformed setting, and we find that q-Yang–Mills theory and its refinement
coincide in the ’t Hooft limit after rescaling

λ′ = β λ and τ ′ = β2 τ .

When β > 1 the refinement non-trivially modifies the deformation parameter τ , and the weak
coupling region in parameter space is drastically reduced relative to the unrefined case β = 1.
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TT -deformation of q-Yang–Mills theory

12.A Instantons in TT -deformed Yang–Mills theory and Poisson
resummation

This appendix is dedicated to a more accurate calculation of the instanton contributions in the
present model. We will follow the procedure of [495] to evaluate the weights w (ℓ) in the TT -
deformed version of the theory (12.4.1). The full instanton expansion is obtained starting from
the formula

ZN (A, τ) =
∑
ℓ∈ZN

Zℓ,

where Zℓ is the Fourier transform of the sector corresponding to a given representation, that is,

Zℓ =

∫ ∏
i

dhie
−2πi

∑
i ℓihi

∏
i<j

(
hi − hj
i− j

)2

e
− A

2N

∑∞
j=0

(
τ

N3

)j
[
∑

i(hi−i+
N
2 )(hi+i−

N
2 )]

j+1

. (12.A.1)

We can expand the contribution arising from the TT -deformation:

Zℓ = C
∫ ∏

i

dhie
−2πi

∑
i ℓihi

∏
i<j

(hi − hj)2 e−
A
2N

∑
i h

2
i

×


∞∑
n=0

1

n!

(
− A

2N

)n ∞∑
j=0

cj(n)
( τ

N3

)j [∑
i

h2i −
N(N2 − 1)

12

]j ,

(12.A.2)

where C is an irrelevant overall factor and {cj(n)}j are the coefficients of the series expansion of(
x

1−x

)n
. Neglecting the shift in the Casimir, and putting the focus on the last term, we obtain

its Fourier transform as:∫
dhie

−2πiℓihi− A
2N

h2i

[ τ
N3

h2i

]j
=
( τ

N3

)j
Γ

(
1

2
+ j

)
1F1

(
1

2
+ j,

1

2
,− N

2A
ℓ2i

)
,

where 1F1 is the confluent hypergeometric function.
The key observation to go further is that, inside the integral (12.A.2), three ingredients appear:

the Gaussian measure, the Vandermonde determinant and a totally symmetric polynomial in the
variables h2i . Therefore, performing the integration with a single Vandermonde determinant,
which is a totally antisymmetric polynomial, one obtains again the Vandermonde multiplying
some totally symmetric polynomial (or total symmetrisation of hypergeometric functions), up to
overall constant factors. The result is indeed:

f1 (ℓ) :=

∫ ∏
i

dhie
−2πi

∑
i ℓihi−

A
2N

∑
i h

2
i

∏
i<j

(hi − hj)


∞∑
n=0

1

n!

(
− A

2N

)n ∞∑
j=0

cj(n)
( τ

N3

)j [∑
i

h2i

]j
= C′

∏
i<j

(ℓi − ℓj) e−
N
2A

∑
i ℓ

2
i

∞∑
n=0

1

n!

(
− A

2N

)n ∞∑
j=0

cj(n)
( τ

N3

)j
S
(

1F1

(
1

2
+ νi + j,

1

2
+ ν̃i,−

N

2A
ℓ2i

))
,

where S(x) is a totally symmetric polynomial of order N in N variables, and νi, ν̃i ∈ N. Therefore,
the arguments presented in [495] hold also in this case. Taking care of the polynomials that appear
due to the TT -deformation, and one could retrieve the exact form of Zℓ, by taking the convolution
of two expressions as given above

Zℓ = (f1 ∗ f1) (ℓ) .

Although the discussion presented in this Appendix is qualitative, it illustrates how the exact
instanton contribution should in principle be obtainable following standard methods. In particular,
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12.B. Approximate solution for bq,∞

the shift in the quadratic Casimir can be reintroduced, and, using the binomial expansion, one
can apply the calculations sketched here, taking care of the coefficients, to retrieve the exact
contribution of each instanton sector.

12.B Approximate solution for bq,∞

In Section 12.5.1 we have studied the weak coupling phase in the large N limit of TT -deformed
q-Yang–Mills theory. Turning on the TT -deformation amounts to replacing p 7→ p bq,∞, where
bq,∞ depends on p, λ and τ , and is implicitly determined by (12.5.4). In this appendix we analyze
(12.5.4) in the small q-deformation regime, that is, p→∞ with λ p = A fixed. We set χ = 2; the
χ-dependence is eventually reinstated by replacing p with 2p

χ .
Expanding (12.5.4) at large p we get

bq,∞ =

(
1− τ

( 1

Abq,∞
+

1

6p2 b2q,∞
+

A

72p4 b3q,∞
+O

(
p−6
)
− 1

12

))−2

. (12.B.1)

At O(p−2) this equation admits only one solution satisfying

lim
τ→0

bq,∞ = 1 ,

as required in order to recover the correct behaviour when the TT -deformation is turned off.
This solution is a decreasing function of p, for fixed A and τ , and converges from above to the
corresponding quantity b∞ of TT -deformed Yang–Mills theory as p becomes large. The explicit
expression for this solution is rather lengthy and cumbersome, hence we do not write it explicitly.
Instead, we plot the solution as a function of p, for different values of A and τ , in Figures 12.10,
12.11 and 12.12.

From these plots we see the qualitative behaviour of bq,∞, and for all fixed choices of A and
τ it converges asymptotically to the value b∞. This guarantees that bq,∞ indeed arises as a q-
deformation of b∞, and b∞ is correctly recovered in the limit (12.3.4). In particular, when τ > 0
we have

1 < b∞ < bq,∞ ,

that is, bq,∞ is a decreasing function of p which converges to b∞ from above.
We now look at how these features are altered when the O(p−4) contribution is taken into

account. Going to the next non-trivial order introduces a dependence on b−3
q,∞ in the right-hand side

of (12.B.1). The values of bq,∞ are thus found by solving a degree seven polynomial equation, but
six solutions will be spurious. We do not dive into an analytic approach, and instead numerically
illustrate the behaviour of the solution as a function of p, for different values of τ . From what
we have learnt at O(p−2), it is sufficient to limit ourselves to A = 1 and a few values of τ . The
solutions are plotted in Figures 12.13 and 12.14 for τ = 0.1 and τ = 1, respectively. We see that
the solution is again a decreasing function of p, which changes rapidly for small p and is almost
constant at large p. We also check that the solution approaches 1 as τ → 0, in agreement with
our analytic study. The conclusions therefore remain unchanged after the inclusion of O(p−4)
corrections.

12.C Instantons in TT -deformed q-Yang–Mills theory

In the analyses of [498, 409], where the Poisson resummation of the heat kernel expansion of the
partition function is done explicitly for the q-deformed theory, it was found that the instantons
are responsible for the phase transition also in the q-deformed case. An analogous result was
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TT -deformation of q-Yang–Mills theory

Figure 12.10. Plot of bq,∞ as a function of p at τ = 0.1. The four plots correspond to A = 0.3, 1, π, 9.8.
The dashed horizontal line is the corresponding value of b∞ in TT -deformed Yang–Mills theory without
q-deformation.

Figure 12.11. Plot of bq,∞ as a function of p at τ = 1. The four plots correspond to A = 0.3, 1, π, 9.5.
The dashed horizontal line is the corresponding value of b∞ in TT -deformed Yang–Mills theory without
q-deformation.
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12.C. Instantons in TT -deformed q-Yang–Mills theory

Figure 12.12. Plot of bq,∞ as a function of p at τ = 12. The four plots correspond to A = 0.3, 1, π, 6.
The dashed horizontal line is the corresponding value of b∞ in TT -deformed Yang–Mills theory without
q-deformation.

Figure 12.13. Plot of bq,∞ as a function of p, at A = 1 and τ = 0.1. The blue surface is the function
x on the left-hand side of (12.B.1). The orange surface is the right-hand side of (12.B.1) as a function of
p and x. bq,∞ is determined by the intersection of these two surfaces. The black horizontal surface is the
asymptotic value b∞.
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Figure 12.14. Plot of bq,∞ as a function of p, at A = 1 and τ = 1.0. The blue surface is the function
x on the left-hand side of (12.B.1). The orange surface is the right-hand side of (12.B.1) as a function of
p and x. bq,∞ is determined by the intersection of these two surfaces. The black horizontal surface is the
asymptotic value b∞.

presented in [494], where only the first instanton sector was taken into account. From the results
of [9], we expect that this property is not affected by the TT -deformation.

Two-dimensional Yang–Mills instantons

Let us start with some generalities concerning instantons in two-dimensional Yang–Mills theory.
We start by rewriting the partition function of TT -deformed q-Yang–Mills theory on S2 as in
(12.5.6):

ZTTq-YM(λ, τ) =
1

N !

∑
ℓ⃗∈ZN

Z
ℓ⃗
(λ, τ) , (12.C.1)

where Z
ℓ⃗
encodes the contribution of an instanton labelled by ℓ⃗ = (ℓ1, ℓ2, . . . , ℓN ) ∈ ZN . Two-

dimensional U(N) Yang–Mills instantons are given by diagonal u(N)-valued gauge fields

A = diag (Aℓ1 , Aℓ2 , . . . , AℓN )

where Aℓi is a Dirac monopole potential of charge ℓi ∈ Z. Each entry is a gauge connection in the
monopole bundle over S2 of magnetic charge ℓi,

L⊗ℓi −→ S2 ,

where L is the canonical line bundle of P1 (we identify P1 ∼= S2). Each instanton configuration
determines a splitting of the U(N) gauge bundle on S2, which in turn describes a symmetry
breaking

U(N) −→
∏
l∈Z

U(Nl) ,

where Nl encodes the degeneracy of the magnetic charges: Nl counts how many times the integer
l ∈ Z appears in the string ℓ⃗ = (ℓ1, ℓ2, . . . , ℓN ) ∈ ZN (we omit factors in the product with Nl = 0).
A generic configuration breaks the gauge group U(N) to its maximal torus U(1)N , while the
one-instanton sector describes a soft breaking U(N)→ U(1)× U(N − 1). The trivial connection
A = 0 (the zero-instanton sector) is the only gauge field preserving the full U(N) symmetry.

The restriction to gauge-inequivalent configurations reduces the coweights ℓ⃗ ∈ ZN to the Weyl
chamber

ℓ1 ≥ ℓ2 ≥ · · · ≥ ℓN ,
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12.C. Instantons in TT -deformed q-Yang–Mills theory

but from the symmetry of the partition function we can drop this restriction at the cost of an
overall factor (N !)−1.

Complete instanton partition function

We will now focus on the instanton expansion (12.C.1) and give the first steps towards understand-
ing the complete instanton partition function, including all instanton contributions. However, due
to the sophistication of the TT -deformation, we cannot provide a complete answer and so we only
present a partial analysis here.

Each summand Z
ℓ⃗
in (12.C.1) can be computed as the Fourier transform of the contribution

ZR of an irreducible U(N) representation R:

Z
ℓ⃗
(λ, τ) =

1

∆q(∅)2

∫
RN

( N∏
i=1

dhi e
−2π i ℓi hi

) ∏
1≤i<j≤N

4 sinh2
λ (hi − hj)

2N

× exp

(
−

λ p
2N

( N∑
j=1

h2j −
N (N2+1)

12

)
1− τ

N3

( N∑
j=1

h2j −
N (N2+1)

12

)
)
.

We can expand the effect of the TT -deformation in a double power series, finding

Z
ℓ⃗
(λ, τ) = KN,λ,p

∫
RN

( N∏
i=1

dhi e
− λ p

2N
(h2i+

4π iN
λp

ℓi hi)
) ∏

1≤i<j≤N
4 sinh2

λ (hi − hj)
2N

×
∞∑
n=0

1

n!

(
− λ p
2N

)n ∞∑
k=0

ck(n)
( τ

N3

)k ( N∑
i=1

h2i −
N (N2 − 1)

12

)k
,

where {ck(n)} are the coefficients of the Taylor expansion of the function
(

x
1−x
)n

around x = 0,
and

KN,λ,p = e
λ p (N2−1)

24N ∆q(∅)−2

is an overall factor. A direct computation of Z
ℓ⃗
is difficult already for τ = 0. However, by

exploiting the Weyl denominator formula, we can compute a different function Z̃
ℓ⃗
, which we

define in the same way as Z
ℓ⃗
but with only a single power of the q-deformed Vandermonde

determinant ∆q (⃗h), instead of the square ∆q (⃗h)
2 which enters the expression for Z

ℓ⃗
. Explicitly,

Z̃
ℓ⃗
(λ, τ) = KN,λ,p

∫
RN

( N∏
i=1

dhi e
− λ p

2N
(h2i+

4π iN
λp

ℓi hi)
) ∏

1≤i<j≤N
2 sinh

λ (hi − hj)
2N

(12.C.2)

×
∞∑
n=0

1

n!

(
− λ p
2N

)n ∞∑
k=0

ck(n)
( τ

N3

)k ( N∑
i=1

h2i −
N (N2 − 1)

12

)k
.

At τ = 0, the Weyl denominator formula gives [498, 409]

Z̃
ℓ⃗
(λ, 0) = K ′

N,λ,p e
− 2π2 N

λp

∑N
i=1 ℓ

2
i

∑
1≤i<j≤N

σij sin

(
ℓi − ℓj
2p

)
,

where σij = +1 if the permutation of the first N integers which sends i and j to the first and
second positions respectively is even, and σij = −1 if the permutation is odd. Here K ′

N,λ,p is
another overall constant that we will not keep track of.

310



TT -deformation of q-Yang–Mills theory

Turning on the TT -deformation corresponds to introducing powers of the original quadratic
Casimir, which in the expansion in (12.C.2) corresponds to introducing the terms with k > 0.
The Fourier transform of each summand in (12.C.2) then gives

Z̃
ℓ⃗
(λ, τ) = K̃N,λ,p e

− 2π2 N
λp

∑N
i=1 ℓ

2
i

∞∑
n=0

1

n!

(
− λ p
2N

)n ∞∑
k=0

ck(n)
( τ

N3

)k
×

∑
1≤i<j≤N

σij

(
P s
2k(ℓ⃗ ) sin

(ℓi − ℓj
2p

)
− (ℓi − ℓk)P c

2k(ℓ⃗ ) cos
(ℓi − ℓj

2p

))
,

(12.C.3)

where P s
2k and P c

2k are totally symmetric polynomials of degree 2k in N variables, which can be
explicitly computed order by order in τ .

At this point, the expression for Z
ℓ⃗
could be obtained by the Fourier convolution of two

functions of the form (12.C.3). The explicit calculation is rather cumbersome and should be
performed order by order in τ ; we do not attempt it here. However, we stress that, for each
instanton sector ℓ⃗, every order in the perturbative expansion can in principle be evaluated with
the generalization of the strategy of [498, 409] that we have just sketched.
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Notation and conventions

For completeness, we collect here definitions and conventions used through the main text. We
closely follow the standard conventions in the random matrix literature.

Basic mathematical notation

R and C are the fields of real and complex numbers, respectively, N indicates the natural numbers
and Z the integers. To avoid possible confusions, we sometimes adopt notations such as Z≥0, Z>0

and so on. Besides, Sd is the d-dimensional sphere, Td ∼=
(
S1
)d

the d-dimensional torus, and Pd is
the d-complex dimensional projective space.

We alternatively use the symbols x → x−0 and x ↑ x0 to represent the limit of x to x0 taken
from below, and likewise for x→ x+0 and x ↓ x0 for the limit taken from above.

The notation 11S represents the indicator function on the domain S , defined as 11S (x) = 1 if
x ∈ S and 11S (x) = 0 otherwise. This should not be confused with the identity endomorphism,
denoted Id in Chapter 3.

Geometric conventions

We extensively use the existence of a canonical Kähler structure on every closed Riemann surface
and implicitly endow the Riemann surface with it, when needed. Expressions such as S2 ∼= P1 are
to be interpreted in this vein.

Random matrix theory conventions

In the context of matrix models, the partition function is defined to be the N -fold eigenvalue
integral over the whole support of the weight function. In this dissertation it is always denoted by
Z, possibly decorated with subscripts and/or superscripts indicating specifics of the theory under
consideration. Explicitly, for a weight function w(u) and integration cycle C we define

Z =
1

N !

∫
CN

∏
1≤a<b≤N

|ua − ub|2
N∏
a=1

w(ua) dua.

The free energy is F ∝ 1
N2 logZ, with N -independent proportionality factor. The symbol log

means the principal branch of the complex logarithm, even if we typically deal with real-valued
Z, so most of the times log could be replaced by ln for practical purposes.40 Whenever the sign
matters (i.e. when the integration domain is non-compact) F is taken with opposite sign with
respect to logZ. This choice is customary in most instances, but differs from some of the literature
on 5d gauge theories, as discussed and motivated in Chapter 6. The reason for the 1/N2 factor is

40The imaginary part of F is nevertheless of physical interest, because it encodes mixed background Chern–Simons
couplings.
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to obtain a finite result at large N . For this precise reason, in some chapters additional prefactors
have been included in the definition of F , depending on the specific limit considered.

Whenever a large N limit is involved, ρ denotes the density of eigenvalues, which is compactly
supported. All the limits are to be understood in a distributional sense: we will not claim ρ to
be a function, but rather we determine a probability measure ρ(u)du on some compact domain
determined by the problem. In this way, F is always a function, differentiable at least once if ρ(u)
depends continuously on the parameters. In most cases, stronger results for ρ can be obtained by
mild adaptations of existing rigorous results to the cases of interest to us, but this is not true in
general. Since ρ is not a physical observable, this subtlety does not alter the final results, hence
we do not seek sharper statements than convergence in distribution.

Amount of supersymmetry

The standard way to specify the amount of supersymmetry in a QFT in d dimensions is by indi-
cating the number N of Killing spinors, whose component are contracted with the supercharges.
While counting supercharges is unambiguous, the number of components of a spinor vary accord-
ing to the dimension, and also according to the possible realizations of supersymmetry algebras
in the given dimension. Here we write down the dictionary explicitly for completeness.

• In 6d, the N = (2, 0) theory has sixteen supercharges and is maximally supersymmetric.
The N = (1, 0) theories have eight supercharges and hence are less constrained.

• In 5d, N = 1 theories have eight supercharges. The only realization of 5d N = 2 theories
comes from the 6d N = (2, 0) compactified on a circle.

• In 4d, N = 1 means four supercharges, N = 2 is eight supercharges and N = 4 is the
maximally supersymmetric theory with sixteen supercharges.

• In 3d, N = 2 means four supercharges. Likewise, N = 4 means eight supercharges. ABJ(M)
theories have enhanced N = 6 at the superconformal point, thus twelve supercharges. The
maximally supersymmetric theory with sixteen supercharges has N = 8, and admits various
UV realizations, including the dimensional reduction of 4d N = 4 or from ABJM theory
with Chern–Simons level k = 1.
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[160] F. D. Cunden, P. Facchi, M. Ligabò and P. Vivo, Universality of the third-order phase
transition in the constrained Coulomb gas, J. Stat. Mech. 1705 (2017) 053303
[1702.05071].
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[370] G. Álvarez, L. Mart́ınez-Alonso and E. Medina, Complex saddles in the
Gross-Witten-Wadia matrix model, Phys. Rev. D 94 (2016) 105010 [1610.09948].

[371] C. Copetti, A. Grassi, Z. Komargodski and L. Tizzano, Delayed Deconfinement and the
Hawking-Page Transition, 2008.04950.

[372] K. Kodaira, On compact analytic surfaces II, Ann. Math. 77 (1963) 563.

[373] N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N=2
supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099].

[374] D. Kaledin, Symplectic singularities from the Poisson point of view, J. Reine Angew.
Math. 2006 (2006) 135 [math/0310186].

[375] P. C. Argyres and M. Martone, Towards a classification of rank r N = 2 SCFTs. Part II.
Special Kahler stratification of the Coulomb branch, JHEP 12 (2020) 022 [2007.00012].

[376] A. Bourget, S. Cabrera, J. F. Grimminger, A. Hanany, M. Sperling, A. Zajac and
Z. Zhong, The Higgs mechanism – Hasse diagrams for symplectic singularities, JHEP 01
(2020) 157 [1908.04245].

[377] J. F. Grimminger and A. Hanany, Hasse diagrams for 3d N = 4 quiver gauge theories –
Inversion and the full moduli space, JHEP 09 (2020) 159 [2004.01675].

[378] T. Claeys, T. Grava and K. D. T.-R. McLaughlin, Asymptotics for the partition function
in two-cut random matrix models, Commun. Math. Phys. 339 (2015) 513 [1410.7001].

[379] A. A. Migdal, Recursion Equations in Gauge Theories, Sov. Phys. JETP 42 (1975) 413.

[380] B. E. Rusakov, Loop averages and partition functions in U(N) gauge theory on
two-dimensional manifolds, Mod. Phys. Lett. A 5 (1990) 693.

[381] V. Pestun, Localization of the four-dimensional N=4 SYM to a two-sphere and 1/8 BPS
Wilson loops, JHEP 12 (2012) 067 [0906.0638].

[382] S. Giombi and V. Pestun, Correlators of local operators and 1/8 BPS Wilson loops on
S**2 from 2d YM and matrix models, JHEP 10 (2010) 033 [0906.1572].

[383] Y. Wang, Taming defects in N = 4 super-Yang-Mills, JHEP 08 (2020) 021 [2003.11016].

[384] S. Cordes, G. W. Moore and S. Ramgoolam, Lectures on 2-d Yang-Mills theory,
equivariant cohomology and topological field theories, Nucl. Phys. Proc. Suppl. 41 (1995)
184 [hep-th/9411210].

334

https://doi.org/10.1016/S0550-3213(02)00766-6
https://arxiv.org/abs/hep-th/0206255
https://arxiv.org/abs/hep-th/0506075
https://doi.org/10.1088/1742-5468/2013/06/p06006
https://arxiv.org/abs/1305.3028
https://doi.org/10.1088/1126-6708/2005/08/097
https://arxiv.org/abs/hep-th/0503173
https://doi.org/10.1103/PhysRevD.94.105010
https://arxiv.org/abs/1610.09948
https://arxiv.org/abs/2008.04950
https://doi.org/10.2307/1970131
https://doi.org/10.1016/0550-3213(94)90214-3
https://arxiv.org/abs/hep-th/9408099
https://doi.org/doi:10.1515/CRELLE.2006.089
https://doi.org/doi:10.1515/CRELLE.2006.089
https://arxiv.org/abs/math/0310186
https://doi.org/10.1007/JHEP12(2020)022
https://arxiv.org/abs/2007.00012
https://doi.org/10.1007/JHEP01(2020)157
https://doi.org/10.1007/JHEP01(2020)157
https://arxiv.org/abs/1908.04245
https://doi.org/10.1007/JHEP09(2020)159
https://arxiv.org/abs/2004.01675
https://doi.org/10.1007/s00220-015-2412-y
https://arxiv.org/abs/1410.7001
https://doi.org/10.1142/S0217732390000780
https://doi.org/10.1007/JHEP12(2012)067
https://arxiv.org/abs/0906.0638
https://arxiv.org/abs/0906.1572
https://doi.org/10.1007/JHEP08(2020)021
https://arxiv.org/abs/2003.11016
https://arxiv.org/abs/hep-th/9411210


Bibliography

[385] D. J. Gross and A. Matytsin, Instanton induced large N phase transitions in
two-dimensional and four-dimensional QCD, Nucl. Phys. B429 (1994) 50
[hep-th/9404004].

[386] M. R. Douglas, S. H. Katz and C. Vafa, Small instantons, Del Pezzo surfaces and type
I-prime theory, Nucl. Phys. B 497 (1997) 155 [hep-th/9609071].

[387] L. Bhardwaj, Dualities of 5d gauge theories from S-duality, JHEP 07 (2020) 012
[1909.05250].

[388] R. Gopakumar and C. Vafa, M theory and topological strings. 2., hep-th/9812127.

[389] D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [0904.2715].

[390] D. Gaiotto, G. W. Moore and A. Neitzke, Wall-crossing, Hitchin Systems, and the WKB
Approximation, Adv. Math. 234 (2013) 239 [0907.3987].

[391] A. Gadde, L. Rastelli, S. S. Razamat and W. Yan, The 4d Superconformal Index from
q-deformed 2d Yang-Mills, Phys. Rev. Lett. 106 (2011) 241602 [1104.3850].

[392] M. R. Douglas, On D=5 super Yang-Mills theory and (2,0) theory, JHEP 02 (2011) 011
[1012.2880].

[393] N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, M5-Branes, D4-Branes and
Quantum 5D super-Yang-Mills, JHEP 01 (2011) 083 [1012.2882].

[394] Y. Fukuda, T. Kawano and N. Matsumiya, 5D SYM and 2D q-Deformed YM, Nucl. Phys.
B 869 (2013) 493 [1210.2855].

[395] N. Drukker, T. Okuda and F. Passerini, Exact results for vortex loop operators in 3d
supersymmetric theories, JHEP 07 (2014) 137 [1211.3409].

[396] T. Kawano and N. Matsumiya, 5D SYM on 3D Deformed Spheres, Nucl. Phys. B 898
(2015) 456 [1505.06565].

[397] L. Griguolo, D. Seminara, R. J. Szabo and A. Tanzini, Black holes, instanton counting on
toric singularities and q-deformed two-dimensional Yang-Mills theory, Nucl. Phys. B 772
(2007) 1 [hep-th/0610155].

[398] J. Qiu and M. Zabzine, 5D Super Yang-Mills on Y p,q Sasaki-Einstein manifolds, Commun.
Math. Phys. 333 (2015) 861 [1307.3149].

[399] J. Qiu and M. Zabzine, Factorization of 5D super Yang-Mills theory on Y p,q spaces, Phys.
Rev. D 89 (2014) 065040 [1312.3475].

[400] D. Gaiotto, L. Rastelli and S. S. Razamat, Bootstrapping the superconformal index with
surface defects, JHEP 01 (2013) 022 [1207.3577].

[401] J. Kinney, J. M. Maldacena, S. Minwalla and S. Raju, An Index for 4 dimensional super
conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251].

[402] F. A. H. Dolan, V. P. Spiridonov and G. S. Vartanov, From 4d superconformal indices to
3d partition functions, Phys. Lett. B 704 (2011) 234 [1104.1787].

[403] A. Gadde and W. Yan, Reducing the 4d Index to the S3 Partition Function, JHEP 12
(2012) 003 [1104.2592].

335

https://arxiv.org/abs/hep-th/9404004
https://doi.org/10.1016/S0550-3213(97)00281-2
https://arxiv.org/abs/hep-th/9609071
https://doi.org/10.1007/JHEP07(2020)012
https://arxiv.org/abs/1909.05250
https://arxiv.org/abs/hep-th/9812127
https://doi.org/10.1007/JHEP08(2012)034
https://arxiv.org/abs/0904.2715
https://doi.org/10.1016/j.aim.2012.09.027
https://arxiv.org/abs/0907.3987
https://doi.org/10.1103/PhysRevLett.106.241602
https://arxiv.org/abs/1104.3850
https://doi.org/10.1007/JHEP02(2011)011
https://arxiv.org/abs/1012.2880
https://doi.org/10.1007/JHEP01(2011)083
https://arxiv.org/abs/1012.2882
https://doi.org/10.1016/j.nuclphysb.2012.12.017
https://doi.org/10.1016/j.nuclphysb.2012.12.017
https://arxiv.org/abs/1210.2855
https://doi.org/10.1007/JHEP07(2014)137
https://arxiv.org/abs/1211.3409
https://doi.org/10.1016/j.nuclphysb.2015.07.018
https://doi.org/10.1016/j.nuclphysb.2015.07.018
https://arxiv.org/abs/1505.06565
https://doi.org/10.1016/j.nuclphysb.2007.02.030
https://doi.org/10.1016/j.nuclphysb.2007.02.030
https://arxiv.org/abs/hep-th/0610155
https://doi.org/10.1007/s00220-014-2194-7
https://doi.org/10.1007/s00220-014-2194-7
https://arxiv.org/abs/1307.3149
https://doi.org/10.1103/PhysRevD.89.065040
https://doi.org/10.1103/PhysRevD.89.065040
https://arxiv.org/abs/1312.3475
https://doi.org/10.1007/JHEP01(2013)022
https://arxiv.org/abs/1207.3577
https://doi.org/10.1007/s00220-007-0258-7
https://arxiv.org/abs/hep-th/0510251
https://doi.org/10.1016/j.physletb.2011.09.007
https://arxiv.org/abs/1104.1787
https://doi.org/10.1007/JHEP12(2012)003
https://doi.org/10.1007/JHEP12(2012)003
https://arxiv.org/abs/1104.2592


Bibliography

[404] Y. Imamura, Relation between the 4d superconformal index and the S3 partition function,
JHEP 09 (2011) 133 [1104.4482].

[405] Y. Imamura and D. Yokoyama, N=2 supersymmetric theories on squashed three-sphere,
Phys. Rev. D 85 (2012) 025015 [1109.4734].

[406] A. Gadde, L. Rastelli, S. S. Razamat and W. Yan, Gauge Theories and Macdonald
Polynomials, Commun. Math. Phys. 319 (2013) 147 [1110.3740].

[407] Y. Tachikawa, 4d partition function on S1 × S3 and 2d Yang-Mills with nonzero area,
PTEP 2013 (2013) 013B01 [1207.3497].

[408] M. Aganagic, H. Ooguri, N. Saulina and C. Vafa, Black holes, q-deformed 2d Yang-Mills,
and non-perturbative topological strings, Nucl. Phys. B 715 (2005) 304 [hep-th/0411280].

[409] N. Caporaso, M. Cirafici, L. Griguolo, S. Pasquetti, D. Seminara and R. J. Szabo,
Topological strings and large N phase transitions. I. Nonchiral expansion of q-deformed
Yang-Mills theory, JHEP 01 (2006) 035 [hep-th/0509041].

[410] S. S. Razamat and B. Willett, Star-shaped quiver theories with flux, Phys. Rev. D 101
(2020) 065004 [1911.00956].

[411] J. Yagi, 3d TQFT from 6d SCFT, JHEP 08 (2013) 017 [1305.0291].

[412] S. Lee and M. Yamazaki, 3d Chern-Simons Theory from M5-branes, JHEP 12 (2013) 035
[1305.2429].

[413] D. Gang, N. Kim, M. Romo and M. Yamazaki, Aspects of Defects in 3d-3d
Correspondence, JHEP 10 (2016) 062 [1510.05011].

[414] C. Cordova and D. L. Jafferis, Complex Chern-Simons from M5-branes on the Squashed
Three-Sphere, JHEP 11 (2017) 119 [1305.2891].

[415] K. Ohta and Y. Yoshida, Non-Abelian Localization for Supersymmetric
Yang-Mills-Chern-Simons Theories on Seifert Manifold, Phys. Rev. D 86 (2012) 105018
[1205.0046].

[416] G. Festuccia and N. Seiberg, Rigid Supersymmetric Theories in Curved Superspace, JHEP
06 (2011) 114 [1105.0689].

[417] C. Closset, T. T. Dumitrescu, G. Festuccia and Z. Komargodski, Supersymmetric Field
Theories on Three-Manifolds, JHEP 05 (2013) 017 [1212.3388].

[418] L. F. Alday, D. Martelli, P. Richmond and J. Sparks, Localization on Three-Manifolds,
JHEP 10 (2013) 095 [1307.6848].

[419] Y. Pan, Rigid Supersymmetry on 5-dimensional Riemannian Manifolds and Contact
Geometry, JHEP 05 (2014) 041 [1308.1567].

[420] L. F. Alday, P. Benetti Genolini, M. Fluder, P. Richmond and J. Sparks, Supersymmetric
gauge theories on five-manifolds, JHEP 08 (2015) 007 [1503.09090].

[421] C. Closset and H. Kim, Three-dimensional N = 2 supersymmetric gauge theories and
partition functions on Seifert manifolds: A review, Int. J. Mod. Phys. A 34 (2019)
1930011 [1908.08875].

336

https://doi.org/10.1007/JHEP09(2011)133
https://arxiv.org/abs/1104.4482
https://doi.org/10.1103/PhysRevD.85.025015
https://arxiv.org/abs/1109.4734
https://doi.org/10.1007/s00220-012-1607-8
https://arxiv.org/abs/1110.3740
https://doi.org/10.1093/ptep/pts048
https://arxiv.org/abs/1207.3497
https://doi.org/10.1016/j.nuclphysb.2005.02.035
https://arxiv.org/abs/hep-th/0411280
https://arxiv.org/abs/hep-th/0509041
https://doi.org/10.1103/PhysRevD.101.065004
https://doi.org/10.1103/PhysRevD.101.065004
https://arxiv.org/abs/1911.00956
https://doi.org/10.1007/JHEP08(2013)017
https://arxiv.org/abs/1305.0291
https://doi.org/10.1007/JHEP12(2013)035
https://arxiv.org/abs/1305.2429
https://doi.org/10.1007/JHEP10(2016)062
https://arxiv.org/abs/1510.05011
https://doi.org/10.1007/JHEP11(2017)119
https://arxiv.org/abs/1305.2891
https://doi.org/10.1103/PhysRevD.86.105018
https://arxiv.org/abs/1205.0046
https://doi.org/10.1007/JHEP06(2011)114
https://doi.org/10.1007/JHEP06(2011)114
https://arxiv.org/abs/1105.0689
https://doi.org/10.1007/JHEP05(2013)017
https://arxiv.org/abs/1212.3388
https://doi.org/10.1007/JHEP10(2013)095
https://arxiv.org/abs/1307.6848
https://doi.org/10.1007/JHEP05(2014)041
https://arxiv.org/abs/1308.1567
https://doi.org/10.1007/JHEP08(2015)007
https://arxiv.org/abs/1503.09090
https://doi.org/10.1142/S0217751X19300114
https://doi.org/10.1142/S0217751X19300114
https://arxiv.org/abs/1908.08875


Bibliography

[422] J. Qiu and M. Zabzine, On twisted N=2 5D super Yang-Mills theory, Lett. Math. Phys.
106 (2016) 1 [1409.1058].

[423] M. Blau and G. Thompson, Lectures on 2-d gauge theories: Topological aspects and path
integral techniques, in Summer School in High-energy Physics and Cosmology (Includes
Workshop on Strings, Gravity, and Related Topics 29-30 Jul 1993), 10, 1993,
hep-th/9310144.

[424] J. Qiu and M. Zabzine, Review of localization for 5d supersymmetric gauge theories, J.
Phys. A 50 (2017) 443014 [1608.02966].

[425] N. Caporaso, M. Cirafici, L. Griguolo, S. Pasquetti, D. Seminara and R. J. Szabo,
Topological Strings, Two-Dimensional Yang-Mills Theory and Chern-Simons Theory on
Torus Bundles, Adv. Theor. Math. Phys. 12 (2008) 981 [hep-th/0609129].

[426] C. Closset, H. Kim and B. Willett, Supersymmetric partition functions and the
three-dimensional A-twist, JHEP 03 (2017) 074 [1701.03171].

[427] M. F. Atiyah, Elliptic Operators and Compact Groups, vol. 401. Springer-Verlag, Berline,
Germany, 1974, 10.1007/BFb0057821.

[428] J. R. Quine, S. H. Heydari and R. Y. Song, Zeta regularized products, Trans. Amer. Math.
Soc. 338 (1993) 213.

[429] C. Closset, T. T. Dumitrescu, G. Festuccia and Z. Komargodski, The Geometry of
Supersymmetric Partition Functions, JHEP 01 (2014) 124 [1309.5876].

[430] J. Schmude, Localisation on Sasaki-Einstein manifolds from holomorphic functions on the
cone, JHEP 01 (2015) 119 [1401.3266].

[431] D. Baraglia and P. Hekmati, Moduli Spaces of Contact Instantons, Adv. Math. 294 (2016)
562 [1401.5140].

[432] A. Bawane, G. Bonelli, M. Ronzani and A. Tanzini, N = 2 supersymmetric gauge theories
on S2 × S2 and Liouville Gravity, JHEP 07 (2015) 054 [1411.2762].

[433] N. Banerjee, B. de Wit and S. Katmadas, The Off-Shell 4D/5D Connection, JHEP 03
(2012) 061 [1112.5371].

[434] J. G. Russo, A Note on perturbation series in supersymmetric gauge theories, JHEP 06
(2012) 038 [1203.5061].

[435] A. Brini, L. Griguolo, D. Seminara and A. Tanzini, Chern-Simons theory on L(p,q) lens
spaces and Gopakumar-Vafa duality, J. Geom. Phys. 60 (2010) 417 [0809.1610].

[436] R. J. Szabo and M. Tierz, q-deformations of two-dimensional Yang-Mills theory:
Classification, categorification and refinement, Nucl. Phys. B876 (2013) 234 [1305.1580].

[437] T. Friedrich and I. Kath, Einstein manifolds of dimension five with small first eigenvalue
of the Dirac operator, J. Diff. Geom. 29 (1989) 263.

[438] J. P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Sasaki-Einstein metrics on
S2 × S3, Adv. Theor. Math. Phys. 8 (2004) 711 [hep-th/0403002].

[439] J. C. Geipel, O. Lechtenfeld, A. D. Popov and R. J. Szabo, Sasakian quiver gauge theories
and instantons on the conifold, Nucl. Phys. B 907 (2016) 445 [1601.05719].

337

https://doi.org/10.1007/s11005-015-0804-8
https://doi.org/10.1007/s11005-015-0804-8
https://arxiv.org/abs/1409.1058
https://arxiv.org/abs/hep-th/9310144
https://doi.org/10.1088/1751-8121/aa5ef0
https://doi.org/10.1088/1751-8121/aa5ef0
https://arxiv.org/abs/1608.02966
https://doi.org/10.4310/ATMP.2008.v12.n5.a2
https://arxiv.org/abs/hep-th/0609129
https://doi.org/10.1007/JHEP03(2017)074
https://arxiv.org/abs/1701.03171
https://doi.org/10.1007/BFb0057821
https://doi.org/10.1090/S0002-9947-1993-1100699-1
https://doi.org/10.1090/S0002-9947-1993-1100699-1
https://doi.org/10.1007/JHEP01(2014)124
https://arxiv.org/abs/1309.5876
https://doi.org/10.1007/JHEP01(2015)119
https://arxiv.org/abs/1401.3266
https://doi.org/10.1016/j.aim.2016.03.001
https://doi.org/10.1016/j.aim.2016.03.001
https://arxiv.org/abs/1401.5140
https://doi.org/10.1007/JHEP07(2015)054
https://arxiv.org/abs/1411.2762
https://doi.org/10.1007/JHEP03(2012)061
https://doi.org/10.1007/JHEP03(2012)061
https://arxiv.org/abs/1112.5371
https://doi.org/10.1007/JHEP06(2012)038
https://doi.org/10.1007/JHEP06(2012)038
https://arxiv.org/abs/1203.5061
https://doi.org/10.1016/j.geomphys.2009.11.006
https://arxiv.org/abs/0809.1610
https://arxiv.org/abs/1305.1580
https://doi.org/10.4310/jdg/1214442874
https://doi.org/10.4310/ATMP.2004.v8.n4.a3
https://arxiv.org/abs/hep-th/0403002
https://doi.org/10.1016/j.nuclphysb.2016.04.016
https://arxiv.org/abs/1601.05719


Bibliography

[440] Y. Jiang, A pedagogical review on solvable irrelevant deformations of 2D quantum field
theory, Commun. Theor. Phys. 73 (2021) 057201 [1904.13376].

[441] J. Cardy, The TT deformation of quantum field theory as random geometry, JHEP 10
(2018) 186 [1801.06895].

[442] S. Dubovsky, V. Gorbenko and M. Mirbabayi, Asymptotic fragility, near AdS2 holography
and TT , JHEP 09 (2017) 136 [1706.06604].

[443] S. Dubovsky, V. Gorbenko and G. Hernández-Chifflet, T T̄ Partition Function from
Topological Gravity, JHEP 09 (2018) 158 [1805.07386].

[444] R. Conti, S. Negro and R. Tateo, The TT perturbation and its geometric interpretation,
JHEP 02 (2019) 085 [1809.09593].

[445] T. D. Brennan, C. Ferko, E. Martinec and S. Sethi, Defining the TT deformation on AdS2,
2005.00431.

[446] L. McGough, M. Mezei and H. Verlinde, Moving the CFT into the bulk with TT , JHEP 04
(2018) 010 [1611.03470].

[447] A. Giveon, N. Itzhaki and D. Kutasov, A solvable irrelevant deformation of AdS3/CFT2,
JHEP 12 (2017) 155 [1707.05800].

[448] T. Hartman, J. Kruthoff, E. Shaghoulian and A. Tajdini, Holography at finite cutoff with a
T 2 deformation, JHEP 03 (2019) 004 [1807.11401].

[449] P. Kraus, J. Liu and D. Marolf, Cutoff AdS3 versus the TT deformation, JHEP 07 (2018)
027 [1801.02714].

[450] P. Caputa, S. Datta and V. Shyam, Sphere partition functions & cut-off AdS, JHEP 05
(2019) 112 [1902.10893].

[451] M. Guica and R. Monten, T T̄ and the mirage of a bulk cutoff, SciPost Phys. 10 (2021) 024
[1906.11251].

[452] A. Lewkowycz, J. Liu, E. Silverstein and G. Torroba, TT and EE, with implications for
(A)dS subregion encodings, JHEP 04 (2020) 152 [1909.13808].

[453] L. Apolo, S. Detournay and W. Song, TsT, TT and black strings, JHEP 06 (2020) 109
[1911.12359].

[454] Y. Li and Y. Zhou, Cutoff AdS3 versus TT CFT2 in the large central charge sector:
correlators of energy-momentum tensor, JHEP 12 (2020) 168 [2005.01693].

[455] M. Baggio and A. Sfondrini, Strings on NS–NS backgrounds as integrable deformations,
Phys. Rev. D 98 (2018) 021902 [1804.01998].

[456] G. Bonelli, N. Doroud and M. Zhu, TT -deformations in closed form, JHEP 06 (2018) 149
[1804.10967].

[457] M. Baggio, A. Sfondrini, G. Tartaglino-Mazzucchelli and H. Walsh, On TT deformations
and supersymmetry, JHEP 06 (2019) 063 [1811.00533].

[458] C.-K. Chang, C. Ferko and S. Sethi, Supersymmetry and TT deformations, JHEP 04
(2019) 131 [1811.01895].

338

https://doi.org/10.1088/1572-9494/abe4c9
https://arxiv.org/abs/1904.13376
https://arxiv.org/abs/1801.06895
https://arxiv.org/abs/1706.06604
https://arxiv.org/abs/1805.07386
https://doi.org/10.1007/JHEP02(2019)085
https://arxiv.org/abs/1809.09593
https://arxiv.org/abs/2005.00431
https://doi.org/10.1007/JHEP04(2018)010
https://doi.org/10.1007/JHEP04(2018)010
https://arxiv.org/abs/1611.03470
https://arxiv.org/abs/1707.05800
https://doi.org/10.1007/JHEP03(2019)004
https://arxiv.org/abs/1807.11401
https://doi.org/10.1007/JHEP07(2018)027
https://doi.org/10.1007/JHEP07(2018)027
https://arxiv.org/abs/1801.02714
https://doi.org/10.1007/JHEP05(2019)112
https://doi.org/10.1007/JHEP05(2019)112
https://arxiv.org/abs/1902.10893
https://doi.org/10.21468/SciPostPhys.10.2.024
https://arxiv.org/abs/1906.11251
https://doi.org/10.1007/JHEP04(2020)152
https://arxiv.org/abs/1909.13808
https://doi.org/10.1007/JHEP06(2020)109
https://arxiv.org/abs/1911.12359
https://doi.org/10.1007/JHEP12(2020)168
https://arxiv.org/abs/2005.01693
https://doi.org/10.1103/PhysRevD.98.021902
https://arxiv.org/abs/1804.01998
https://doi.org/10.1007/JHEP06(2018)149
https://arxiv.org/abs/1804.10967
https://doi.org/10.1007/JHEP06(2019)063
https://arxiv.org/abs/1811.00533
https://doi.org/10.1007/JHEP04(2019)131
https://doi.org/10.1007/JHEP04(2019)131
https://arxiv.org/abs/1811.01895


Bibliography

[459] H. Jiang, A. Sfondrini and G. Tartaglino-Mazzucchelli, TT deformations with N = (0, 2)
supersymmetry, Phys. Rev. D 100 (2019) 046017 [1904.04760].

[460] C.-K. Chang, C. Ferko, S. Sethi, A. Sfondrini and G. Tartaglino-Mazzucchelli, TT flows
and (2, 2) supersymmetry, Phys. Rev. D 101 (2020) 026008 [1906.00467].

[461] C. Ferko, H. Jiang, S. Sethi and G. Tartaglino-Mazzucchelli, Non-linear supersymmetry
and TT -like flows, JHEP 02 (2020) 016 [1910.01599].

[462] S. He, J.-R. Sun and Y. Sun, The correlation function of (1, 1) and (2, 2) supersymmetric
theories with TT deformation, JHEP 04 (2020) 100 [1912.11461].

[463] B. Le Floch and M. Mezei, Solving a family of TT -like theories, 1903.07606.

[464] R. Conti, S. Negro and R. Tateo, Conserved currents and TT s irrelevant deformations of
2D integrable field theories, JHEP 11 (2019) 120 [1904.09141].

[465] G. Hernández-Chifflet, S. Negro and A. Sfondrini, Flow equations for generalised TT
deformations, Phys. Rev. Lett. 124 (2020) 200601 [1911.12233].

[466] M. Taylor, TT deformations in general dimensions, 1805.10287.

[467] A. Belin, A. Lewkowycz and G. Sarosi, Gravitational path integral from the T 2

deformation, JHEP 09 (2020) 156 [2006.01835].

[468] S. Datta and Y. Jiang, T T̄ deformed partition functions, JHEP 08 (2018) 106
[1806.07426].

[469] O. Aharony, S. Datta, A. Giveon, Y. Jiang and D. Kutasov, Modular invariance and
uniqueness of T T̄ deformed CFT, (2018) [1808.02492].

[470] J. Cardy, TT deformations of non-Lorentz invariant field theories, (2018) [1809.07849].

[471] Y. Jiang, Expectation value of TT operator in curved spacetimes, JHEP 02 (2020) 094
[1903.07561].

[472] S. He and Y. Sun, Correlation functions of CFTs on a torus with a TT deformation, Phys.
Rev. D 102 (2020) 026023 [2004.07486].

[473] E. Beratto, M. Billò and M. Caselle, TT deformation of the compactified boson and its
interpretation in lattice gauge theory, Phys. Rev. D 102 (2020) 014504 [1912.08654].

[474] R. Conti, L. Iannella, S. Negro and R. Tateo, Generalised Born-Infeld models, Lax
operators and the TT perturbation, JHEP 11 (2018) 007 [1806.11515].

[475] A. Ireland and V. Shyam, TT deformed YM2 on general backgrounds from an integral
transformation, JHEP 07 (2020) 058 [1912.04686].

[476] E. Witten, Topological sigma models, Commun. Math. Phys. 118 (1988) 411.

[477] E. Witten, Mirror manifolds and topological field theory, AMS/IP Stud. Adv. Math. 9
(1998) 121 [hep-th/9112056].

[478] R. Malik, New topological field theories in two-dimensions, J. Phys. A 34 (2001) 4167
[hep-th/0012085].

339

https://doi.org/10.1103/PhysRevD.100.046017
https://arxiv.org/abs/1904.04760
https://doi.org/10.1103/PhysRevD.101.026008
https://arxiv.org/abs/1906.00467
https://doi.org/10.1007/JHEP02(2020)016
https://arxiv.org/abs/1910.01599
https://doi.org/10.1007/JHEP04(2020)100
https://arxiv.org/abs/1912.11461
https://arxiv.org/abs/1903.07606
https://doi.org/10.1007/JHEP11(2019)120
https://arxiv.org/abs/1904.09141
https://doi.org/10.1103/PhysRevLett.124.200601
https://arxiv.org/abs/1911.12233
https://arxiv.org/abs/1805.10287
https://doi.org/10.1007/JHEP09(2020)156
https://arxiv.org/abs/2006.01835
https://arxiv.org/abs/1806.07426
https://arxiv.org/abs/1808.02492
https://arxiv.org/abs/1809.07849
https://doi.org/10.1007/JHEP02(2020)094
https://arxiv.org/abs/1903.07561
https://doi.org/10.1103/PhysRevD.102.026023
https://doi.org/10.1103/PhysRevD.102.026023
https://arxiv.org/abs/2004.07486
https://doi.org/10.1103/PhysRevD.102.014504
https://arxiv.org/abs/1912.08654
https://arxiv.org/abs/1806.11515
https://doi.org/10.1007/JHEP07(2020)058
https://arxiv.org/abs/1912.04686
https://doi.org/10.1007/BF01466725
https://arxiv.org/abs/hep-th/9112056
https://doi.org/10.1088/0305-4470/34/19/314
https://arxiv.org/abs/hep-th/0012085


Bibliography

[479] E. A. Coleman, J. Aguilera-Damia, D. Z. Freedman and R. M. Soni, TT -deformed actions
and (1, 1) supersymmetry, JHEP 10 (2019) 080 [1906.05439].

[480] A. J. Tolley, TT deformations, massive gravity and non-critical strings, JHEP 06 (2020)
050 [1911.06142].

[481] M. F. Atiyah, Topological quantum field theories, Inst. Hautes Études Sci. Publ. Math. 68
(1989) 175.

[482] G. B. Segal, The definition of conformal field theory, in Differential geometrical methods in
theoretical physics, pp. 165–171. Springer, 1988.

[483] E. A. Mazenc, V. Shyam and R. M. Soni, A TT deformation for curved spacetimes from 3d
gravity, 1912.09179.

[484] O. Ganor, J. Sonnenschein and S. Yankielowicz, The String theory approach to generalized
2-D Yang-Mills theory, Nucl. Phys. B 434 (1995) 139 [hep-th/9407114].

[485] T. D. Brennan, C. Ferko and S. Sethi, A non-abelian analogue of DBI from TT , SciPost
Phys. 8 (2020) 052 [1912.12389].

[486] M. Aganagic and K. Schaeffer, Refined black hole ensembles and topological strings, JHEP
01 (2013) 060 [1210.1865].

[487] C. Vafa, Two-dimensional Yang-Mills, black holes and topological strings, hep-th/0406058.

[488] G. W. Moore and N. Seiberg, Taming the conformal zoo, Phys. Lett. B 220 (1989) 422.

[489] N. Caporaso, M. Cirafici, L. Griguolo, S. Pasquetti, D. Seminara and R. J. Szabo,
Topological strings and large N phase transitions. II. Chiral expansion of q-deformed
Yang-Mills theory, JHEP 01 (2006) 036 [hep-th/0511043].

[490] D. J. Gross and W. Taylor, Two-dimensional QCD is a string theory, Nucl. Phys. B 400
(1993) 181 [hep-th/9301068].

[491] M. R. Douglas, Conformal field theory techniques for large N group theory,
hep-th/9303159.

[492] M. R. Douglas, Conformal field theory techniques in large N Yang-Mills theory, in NATO
Advanced Research Workshop on New Developments in String Theory, Conformal Models
and Topological Field Theory Cargese, France, 1993, hep-th/9311130.

[493] R. Dijkgraaf, R. Gopakumar, H. Ooguri and C. Vafa, Baby universes in string theory,
Phys. Rev. D 73 (2006) 066002 [hep-th/0504221].

[494] D. Jafferis and J. Marsano, A DK phase transition in q-deformed Yang-Mills on S**2 and
topological strings, hep-th/0509004.

[495] J. A. Minahan and A. P. Polychronakos, Classical solutions for two-dimensional QCD on
the sphere, Nucl. Phys. B422 (1994) 172 [hep-th/9309119].

[496] E. Witten, Two-dimensional gauge theories revisited, J. Geom. Phys. 9 (1992) 303
[hep-th/9204083].

[497] M. Blau and G. Thompson, Derivation of the Verlinde formula from Chern-Simons theory
and the G/G model, Nucl. Phys. B 408 (1993) 345 [hep-th/9305010].

340

https://doi.org/10.1007/JHEP10(2019)080
https://arxiv.org/abs/1906.05439
https://doi.org/10.1007/JHEP06(2020)050
https://doi.org/10.1007/JHEP06(2020)050
https://arxiv.org/abs/1911.06142
https://doi.org/10.1007/BF02698547
https://doi.org/10.1007/BF02698547
https://arxiv.org/abs/1912.09179
https://doi.org/10.1016/0550-3213(94)00397-W
https://arxiv.org/abs/hep-th/9407114
https://doi.org/10.21468/SciPostPhys.8.4.052
https://doi.org/10.21468/SciPostPhys.8.4.052
https://arxiv.org/abs/1912.12389
https://doi.org/10.1007/JHEP01(2013)060
https://doi.org/10.1007/JHEP01(2013)060
https://arxiv.org/abs/1210.1865
https://arxiv.org/abs/hep-th/0406058
https://doi.org/10.1016/0370-2693(89)90897-6
https://doi.org/10.1088/1126-6708/2006/01/036
https://arxiv.org/abs/hep-th/0511043
https://doi.org/10.1016/0550-3213(93)90403-C
https://doi.org/10.1016/0550-3213(93)90403-C
https://arxiv.org/abs/hep-th/9301068
https://arxiv.org/abs/hep-th/9303159
https://arxiv.org/abs/hep-th/9311130
https://doi.org/10.1103/PhysRevD.73.066002
https://arxiv.org/abs/hep-th/0504221
https://arxiv.org/abs/hep-th/0509004
https://arxiv.org/abs/hep-th/9309119
https://doi.org/10.1016/0393-0440(92)90034-X
https://arxiv.org/abs/hep-th/9204083
https://doi.org/10.1016/0550-3213(93)90538-Z
https://arxiv.org/abs/hep-th/9305010


Bibliography

[498] X. Arsiwalla, R. Boels, M. Mariño and A. Sinkovics, Phase transitions in q-deformed 2-D
Yang-Mills theory and topological strings, Phys. Rev. D 73 (2006) 026005
[hep-th/0509002].

[499] R. J. Szabo, Instantons, topological strings and enumerative geometry, Adv. Math. Phys.
2010 (2010) 107857 [0912.1509].

[500] A. Gorsky, D. Pavshinkin and A. Tyutyakina, T T̄ -deformed 2D Yang-Mills at large N:
collective field theory and phase transitions, JHEP 03 (2021) 142 [2012.09467].
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