
UNIVERSIDADE DE LISBOA
FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

Discovery of Web Attacks by Inspecting HTTPS Network Traffic
with Machine Learning and Similarity Search

Nuno Pedro Godinho Cavaco Durão

Mestrado em Segurança Informática

Dissertação orientada por:
Prof.ª Doutora Ibéria Vitória de Sousa Medeiros

Prof. Doutor Vinicius Vielmo Cogo

2022

i

Agradecimentos

Sou muito grato à minha famı́lia pela força que me deram. Aos meus pais por estarem sempre

comigo. À minha esposa Sónia, pelo apoio diário que me permitiu prosseguir a minha carreira

académica. Aos meus filhos, Inês e Tomás, que me ajudaram a ultrapassar todos os momentos

difı́ceis.

Agradeço aos meus orientadores, Ibéria Medeiros e Vinicius Cogo, pela determinação com

que me ajudaram e pela liberdade que me deram, no desenvolvimento deste trabalho.

Este trabalho foi parcialmente suportado por fundos nacionais através da Fundação para a

Ciência e a Tecnologia (FCT) com referência ao projeto SEAL (PTDC/CCIINF/29058/2017) e à

Unidade de Investigação LASIGE (UIDB/00408/2020 e UIDP/00408/2020).

ii

iii

Dedicado à Inês e ao Tomás.

iv

Resumo

A Internet disponibiliza de forma transversal o acesso a uma infinidade de serviços que per-

mitem uma sociedade digital e progressiva. A disponibilização de aplicações web permite desde

a interconexão entre pessoas, à possibilidade de realizar compras ou operações bancárias. Ainda

recentemente, com a pandemia do Covid-19, a mudança significativa de recursos para ambiente

cloud, permitiu a rápida adaptação ao teletrabalho. Sendo a disponibilidade de aplicações web

uma necessidade emergente, a pressão para a sua produção é cada vez maior e provoca alguns

constrangimentos. A democratização do desenvolvimento aplicacional veio criar uma série de

programadores com pouca base técnica, que usam ferramentas low-cost e em que a segurança é

vista como um custo e não como um dos pilares de uma aplicação web.

Com a utilização crescente de aplicações web, a informação transacionada pelas mesmas é

cada vez maior em quantidade e em valor intrı́nseco. Por outro lado, o acesso a ferramentas mali-

ciosas por parte de atores criminosos, tem feito aumentar os ataques sobre este tipo de aplicações.

Tal como do lado dos programadores, também do lado dos atacantes a facilidade de acesso a fer-

ramentas prontas a usar, sem qualquer conhecimento técnico, é cada vez maior, o que potencia

o aparecimento de atores maliciosos. A informação que pode ser acedida é de grande valor, a

variedade de aplicações disponı́veis online de forma ininterrupta é cada vez maior e sem limites

geográficos, a impunidade dos atacantes ainda é usual e os ataques sucedem-se.

Por parte da comunidade de segurança informática, existe o esforço de desenvolver e criar

sistemas, protocolos e polı́ticas para tentar proteger a informação e as aplicações em questão.

Uma das soluções utilizadas é o protocolo de comunicação Hypertext Transfer Protocol Secure

(HTTPS), protocolo que se tornou o standard para cifrar a comunicação entre cliente e servidor.

HTTPS garante Integridade e Confidencialidade ao cifrar o conteúdo dos pacotes transmitidos na

rede recorrendo ao protocolo Transport Layer Security (TLS). Outra solução largamente empre-

gada é a inspeção de tráfego web, por recurso a técnicas de Deep Package Inspection (DPI). A

utilização de DPI permite filtrar pacotes com recurso a técnicas de assinaturas ou por pesquisa de

palavras-chave.

A adoção de DPI acarreta no entanto dois problemas distintos. O seu uso pode originar uma

degradação do serviço, devido ao peso computacional da sua implementação e a sua utilização

é muito limitada quando se trata de comunicação baseada em HTTPS. Para ultrapassar a carga

computacional e a potencial degradação do serviço, a solução passa pela utilização de tráfego

agregado por fluxo, NetFlow, que permite a agregação de tráfego com propriedades comuns e

v

assim aumentar a capacidade de monitorizar o tráfego. Relativamente à comunicação baseada

em HTTPS, a utilização de DPI não é possı́vel, visto que os pacotes em HTTPS estão cifrados

e a utilização de DPI implica aceder ao conteúdo do pacote. Para ultrapassar essa limitação,

uma solução que se encontra disseminada é a utilização de servidores intermédios (proxies) para

decifrar os dados, inspecioná-los e voltar a cifrá-los para os enviar ao servidor. Esta solução

cria um ponto de ataque adicional e enfraquece substancialmente a segurança criptográfica da

comunicação entre cliente e servidor. A segurança da rede e em especial das aplicações web, no

caso da comunicação por HTTPS, não fica totalmente acautelada com a utilização de firewalls e

DPI, devido à dificuldade de aceder ao conteúdo dos pacotes.

Esta tese tem como objetivo apresentar uma solução para deteção de ataques web sobre tráfego

HTTPS, com recurso a técnicas de agregação de tráfego, aprendizagem automática e descoberta

de similaridades de conteúdo. Neste sentido, começámos por estudar os ataques a aplicações

web, em especial SQLi e XSS. Estudámos ainda a agregação de tráfego em NetFlows. De se-

guida desenvolvemos um sistema para detetar tráfego anómalo em NetFlow, com base em tráfego

HTTPS, através do uso de aprendizagem automática não supervisionada. Este sistema engloba

a captura do tráfego HTTPS e a criação do NetFlow a partir desse tráfego. O NetFlow agrega

o tráfego com propriedades em comum e que passa no ponto de observação durante um deter-

minado perı́odo de tempo. Garantindo que as propriedades do tráfego utilizadas para construir o

NetFlow são adequadas à criação de clusters de tráfego, é possı́vel com recurso a um algoritmo

de aprendizagem automática não supervisionada a segregação de tráfego anómalo. De forma a

certificar que o tráfego anómalo inclui ataques a aplicações Web, foi desenvolvido um motor de

pesquisa de similaridade, baseado em Locality Sensitive Hashing (LSH), que serve para pesquisar

o conteúdo dos pacotes de HTTPS. Para alcançar o acesso ao conteúdo dos pacotes sem a necessi-

dade de decifar o tráfego entre o cliente e o servidor, a solução recorre aos logs no servidor. Com

vista a assegurar a utilização prática dos logs é fundamental garantir que o servidor regista em log

todos os pedidos que recebe e criar um extrator de logs. A funcionalidade do extrator de logs,

implica a necessidade de transformar os logs existentes no servidor num formato utilizável e que

permita a análise do conteúdo dos pacotes. Este extrator de logs, engloba um filtro que permite

filtrar apenas os pedidos que chegam ao servidor e que incluem o conteúdo dos pedidos. Com

este extrator de logs conseguimos não só segmentar os logs do tráfego assinalado como anómalo,

mas também estruturar o conteúdo dos pacotes de forma a conseguirmos analisar e garantir que

o tráfego inclui ataques a aplicações web. Para validar se o tráfego e, em concreto, cada um dos

pacotes analisados, inclui ataques, criámos um motor de pesquisa de similaridades que permite

efetuar pesquisas com recurso a medidas de similaridade. A utilização de medidas de similari-

dade suporta a identificação de ataques sem a carga computacional associada a um DPI e permite

a identificação de ataques semelhantes mas não identificados previamente. O motor de pesquisa

de similaridades foi implementado, através do uso de algoritmos de LSH. De forma a manter o

sistema atualizado e com capacidade de evolução, foi ainda desenhado um sistema de melhoria

continua, que permite reforçar o motor de pesquisa de similaridades com novos ataques, de forma

vi

a robustecer a sua eficiência ao longo da sua utilização.

Na avaliação realizada à solução foi possı́vel a segregação de tráfego anómalo, com base num

NetFlow de tráfego HTTPS. Esta segregação foi efetuada com recurso a um algoritmo de apren-

dizagem automática não supervisionada. A validação de que o tráfego anómalo inclui ataques a

aplicações web, foi efetuado com o motor de pesquisa de similaridades. Foi possı́vel constatar

que o grau de objetividade do motor de pesquisa de similaridades, permitiu identificar com grande

segurança a existência de ataques. Testando o sistema de melhoria continua, foi possı́vel obser-

var uma melhoria no motor de pesquisa de similaridades. Embora a melhoria identificada fosse

pequena, o sistema é continuo e as melhorias são acumuladas ao longo do tempo, pelo que se

apresenta como uma mais valia para o sistema total.

Algumas das contribuições deste estudo são: o estudo de ataques em HTTPS a aplicações web;

o desenho e implementação de uma estrutura para detetar tráfego anómalo em HTTPS, recorrendo

a tráfego agregado em NetFlows e aprendizagem automática não supervisionada; o desenvolvi-

mento de uma ferramenta para processar e compilar logs de Apache; o estudo de pesquisas de

similaridade; a elaboração de um processo de deteção de payloads com ataques, utilizando pes-

quisa de similaridades; a evolução da solução num processo de melhoria continua; a avaliação da

solução proposta.

Palavras-chave: Detecção de ataques web, Tráfego HTTPS, NetFlows, Apendizagem

automática, Local Sensitive Hashing

vii

viii

Abstract

Web applications are the building blocks of many services, from social networks to banks. Net-

work security threats have remained a permanent concern since the advent of data communication.

Not withstanding, security breaches are still a serious problem since web applications incorporate

both company information and private client data. Traditional Intrusion Detection Systems (IDS)

inspect the payload of the packets looking for known intrusion signatures or deviations from nor-

mal behavior. However, this Deep Packet Inspection (DPI) approach cannot inspect encrypted

network traffic of Hypertext Transfer Protocol Secure (HTTPS), a protocol that has been widely

adopted nowadays to protect data communication. We are interested in web application attacks,

and to accurately detect them, we must access the payload. Network flows are able to aggregate

flows of traffic with common properties, so they can be employed for inspecting large amounts of

traffic.

The main objective of this thesis is to develop a system to discover anomalous HTTPS traf-

fic and confirm that the payloads included in it contains web applications attacks. We propose

a new reliable method and system to identify traffic that may include web application attacks by

analysing HTTPS network flows (netflows) and discovering payload content similarities. We re-

sort to unsupervised machine learning algorithms to cluster netflows and identify anomalous traffic

and to Locality Sensitive Hashing (LSH) algorithms to create a Similarity Search Engine (SSE)

capable of correctly identifying the presence of known web applications attacks over this traffic.

We involve the system in a continuous improvement process to keep a reliable detection as new

web applications attacks are discovered.

We evaluated the system, which showed that it could detect anomalous traffic, the SSE was

able to confirm the presence of web attacks into that anomalous traffic, and the continuous im-

provement process was able to increase the accuracy of the SSE.

Keywords: Detection of Web attacks, HTTPS Network traffic, Netflows, Machine Learning,

Local Sensitive Hashing

ix

x

Contents

List of Figures xiv

List of Tables xvi

List of Acronyms xx

1 Introduction 1
1.1 Motivation . 2

1.2 Objectives . 2

1.3 Contributions . 3

1.4 Thesis Organisation . 3

2 Background and Related Work 5
2.1 Network Traffic . 5

2.1.1 HTTP and HTTPS . 6

2.1.2 NetFlow . 9

2.2 Web Attacks . 14

2.2.1 SQLi . 14

2.2.2 XSS . 15

2.3 Machine Learning . 16

2.4 Similarity Search . 19

2.4.1 Locality-Sensitive Hashing . 20

2.5 Related Work . 23

3 Proposed Approach 25
3.1 Challenges . 25

3.1.1 Capture Suspicious HTTPS Network Traffic Related to Web Application

Attacks . 25

3.1.2 Web Application Attacks Constraints 27

3.1.3 How to Find Web Application Attacks from a Scanner? 27

3.2 Solution Overview . 28

3.3 Main Modules . 29

xi

3.3.1 Detecting Anomalous Traffic . 29

3.3.2 Analyse Payload . 32

3.3.3 Continuous Improvement . 38

4 Implementation 41
4.1 Development Scenario . 41

4.2 Network Traffic . 42

4.2.1 Exporter . 43

4.2.2 Collector . 43

4.2.3 WebApp . 44

4.3 Log Extractor . 46

4.3.1 Filter . 46

4.3.2 Parser . 47

4.4 Similarity Search Engine . 49

4.4.1 Token Builder . 49

4.4.2 Token Database . 50

4.4.3 Token Query . 52

4.4.4 Token Classifier . 53

4.4.5 LSH DB Updater . 54

4.5 String Analyser . 55

4.5.1 Sanitiser . 55

4.5.2 Classifier . 55

4.6 Final Considerations . 56

5 Evaluation 57
5.1 Experimental Environment . 57

5.1.1 Attack Detection . 58

5.2 Evaluation Conclusion . 63

6 Conclusion 64
6.1 Conclusion . 64

6.2 Future Work . 64

Bibliography 65

xii

xiii

List of Figures

2.1 TCP Three-way handshake . 7

2.2 HTTP message [1] . 8

2.3 TLS handshake . 9

2.4 Netshare statistics for HTTPS traffic done by desktops, laptops and mobile from

January 2018 to August 2019 . 10

2.5 Flow monitoring setup [2] . 11

2.6 Fields of the record format in NetFlow version 9 [3] 11

2.7 The four stages of IPFIX . 13

2.8 Classification of Machine Learning Algorithms [4] 17

2.9 Supervised learning algorithm . 18

2.10 Unsupervised learning algorithm . 18

2.11 Jaccard similarity of sets S and T . 20

3.1 Intermediary HTTPS Proxy . 26

3.2 Architecture of the proposed solution to detect web attacks over HTTPS network

traffic. 30

3.3 Example of elbow method for K=3 . 32

3.4 Sanitisation . 39

4.1 Controlled network build for testing . 42

4.2 DB creation . 51

4.3 Mean dump and load time, and file size of the LSH object with 128 Permutations 52

4.4 Mean dump and load time, and file size of the LSH object with 256 Permutations 53

4.5 Average query time (in Microseconds) . 54

4.6 Average time to update DB . 55

5.1 Elbow calculation . 59

5.2 Clusters features analyse . 60

5.3 Clusters features analyse detail . 61

xiv

xv

List of Tables

2.1 SQLi attack types [5] . 15

2.2 Boolean matrix representing a collection of sets 22

2.3 Permutation of the Matrix in Table 2.2 . 22

3.1 Example of WebFlow . 29

3.2 Jaccard similarity of test case . 36

4.1 Basic specification of the virtual machines . 41

4.2 Specification of the host machine . 42

4.3 Fields used for the WebFlow . 44

4.4 Format String in Apache ErrorLogFormat Directive 45

5.1 WebFlow before filter . 59

5.2 WebFlow after filter . 59

5.3 Clusters sizes . 60

5.4 Token query evaluation . 62

5.5 Token query evaluation after continuous improvement and ∆ growth of accuracy 62

xvi

xvii

Acronyms

API Application Programming Interface

CIA Confidentiality, Integrity and Authentication

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DDoS Distributed Denial-of-Service

DOM Document Object Model

DoS Denial-of-Service

DPI Deep Packet Inspection

DVWA Damn Vulnerable Web App

ENISA European Union Agency for Cybersecurity

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IANA Internet Assigned Numbers Authority

IDS Intrusion Detection System

IE Information Elements

IETF Internet Engineering Task Force

IP Internet Protocol

IPFIX Internet Protocol Flow Information Export

ISO International Organization for Standardization

LSH Locality-Sensitive Hashing

NVD National Vulnerability Database

xviii

OSI Open Systems Interconnection

OSVDB Open Source Vulnerability Database

OWASP Open Web Application Security Project

PCAP Packet Capture

RFC Request for Comments

SaaS Software as a Service

SHA Secure Hash Algorithm

SIP Session Initiation Protocol

SOC Security Operations Center

SQL Structured Query Language

SQLi Structured Query Language injection

SSE Similarity Search Engine

SSH Secure Shell Protocol

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TLS Transport Layer Security

URL Uniform Resource Locator

UTC Coordinated Universal Time

WINE Worldwide Intelligence Network Environment

XSS Cross Site Scripting

ZAP Zed Attack Proxy

xix

xx

Chapter 1

Introduction

In a world where Covid has increased the shift to the remote paradigm, the amount of online

web applications is rising and rising. On the user side, there is a quest for more and more tools

to be available online. The need to keep delivering web applications is huge [6]. Due to its

versatility in offering services to society, a web application is one of the most widely utilised

technologies today, either in society, government, or industry. Web applications contribute to the

improvement of our everyday lives since they can supply nearly any type of service, from helping

people to communicate, disseminating information and relieving the strain of recurring activities,

like shopping, paying bills and working.

The pressure for offering more web applications, forces the adoption of low code development

and software as a service (SaaS) solutions. Either one of them could present week points as the

companies must entrust the security of those solutions. There is also a tendency of low security

standards as security is often considered a cost and not a major pillar of the solution. We have seen

that for people without programming expertise, web application creation is becoming more acces-

sible. The popularity of low code solutions, which anybody can use to deploy a web application

is growing. Entrepreneurship in the field of SaaS with solutions based on low code, from people

without a technological background is rising.

As a result, many users personal data that circulates on the Internet becomes a prime catch for

attackers. In order to address this threat, experts devised a slew of security procedures, protocols

and policies to protect the data in question. One of the major solution adopted was HTTPS,

which has become the protocol used by most browsers. In terms of web applications, the use

of Deep Package Inspection (DPI) is a major technological tool in Intrusion Detection Systems

(IDS) for core services such as protocol analysis, antivirus protection, online filtering and intrusion

detection. DPI, however, relies on the capacity to examine the packet content, which is not possible

when dealing with HTTPS. The demand for network security are not being answer by simple

firewalls, and the IDS now in use is lacking support to deal with the use of HTTPS.

1

1.1 Motivation

The MyFreeCams website, an adult streaming website, got breached in late 2020 [7]. In December

an hacker stole data from the website, through an Structured Query Language injection (SQLi)

attack. The data stolen includes the records of 2 million premium members of the website. The

stolen data was later on sale, on an online hacker forum, for $ 1.500 worth of Bitcoin per 10.000

records. The post was deleted, as well as the hacker account, but it was possible to find that the

hacker got 40 transactions on his bitcoin wallet, totalizing $ 22.400 in Bitcoin.

SQLi is nowadays a major Web Application Security Risk [8]. From the attacker point of view,

it is not only accessible to conduct this kind of attacks, but it is also a profitable business. The

ability to detect these attacks are of interest importance. The common technique used to detect

SQLi, resorts to DPI. DPI is a great way to detect attacks, over inspection of network traffic but is a

cumbersome technique, and creates a bottleneck in the system. More and more the use of Network

flows, the aggregation of packets into flows, presents a way to monitor and analysis the traffic.

The network flow tools and knowledge are sturdy. With the use of network flows and resourcing

to Machine Learning techniques, we can analyse a large amount of traffic. We can detect several

web attacks, but there are a few types of web attacks that the used tools are not capable of detecting

them. That is the case of SQLi and Cross-site scripting (XSS). On top of these difficulties, the use

of HTTPS traffic increases the difficulty to detect such attacks because the payload is encrypted

and therefore, it can not be inspected. HTTPS prevents a DPI approach to be successful, as the

payload is encrypted, and therefore cannot be analysed. One of the available solution to deal with

this is the use of an intermediary proxy to decrypt the traffic between the client and the server.

This proxy allows the inspection of the packets content, but creates a security issue [9] that we do

not want.

To address this problem, we must find a resilient system, capable of dealing with the amount

of data to process. The solution is to use a network flow. Using a network flow we are able to

process the huge amount of data, and rapidly identify anomalous traffic with attacks. To identify

anomalous traffic, in a network flow, one of the tools to use is Machine Learning, which will

provide a way to identify the clusters with malicious traffic, and pinpointing the traffic to further

analyse. After the identification of the anomalous traffic, we will confirm, that the traffic contains

web applications attacks, without decrypting the traffic between the client and the server, but take

advantage of the web server logs. Finally we propose a way to evolve the system, by growing the

database of known attacks.

1.2 Objectives

The goal of this dissertation is to discover web attacks in HTTPS network traffic, without de-

crypting the traffic. We propose to accomplish this by the use of Unsupervised Machine Learning

to detect anomalous traffic in network flows (NetFlows), and confirming that the network traffic

contains web attacks by the use of a Similarity Search Engine (SSE) based on Locality Sensitive

2

Hashing (LSH) algorithms. The research will be focused on HTTPS, but the solution is not limited

to HTTPS network traffic; it can be used with HTTP traffic. Even though we want to discover web

attacks in a broad sense, SQLi and XSS are two types of web attacks with special interest. One

other important constrain we want to comply with, is not decrypting the traffic between the client

and the server. The main objectives of this research is:

• Study web application attacks (exploits and attack vectors) and NetFlow structure.

• Study of Locality-sensitive hashing to detect similarities in payloads.

• Define an approach to identify anomalous traffic by analysing and processing NetFlows

with unsupervised machine learning algorithms and confirm the presence of web application

attacks on this traffic, without decrypting the traffic between the client and the server.

• Implement the approach in order to achieve a reliable detection system.

• Maintain a robust system that can evolve as new attacks are discovered.

1.3 Contributions

The main contributions of this dissertation are:

• A study on web application attacks in HTTPS.

• A study of Locality-Sensitive Hashing (LSH), its parameters and different algorithms, to

detect similarities in payloads.

• The design and implementation of a solution to detect web attacks in NetFlows, produced

from HTTPS traffic, through the use of unsupervised machine learning algorithms, and their

confirmation through a SSE, based on LSH algorithms, for searching their payload contents.

• A log parser tool to compile the logs produced in Apache and produce a uniform and com-

plete output with all the payloads received in the server.

• An evaluation of the solution showing that it is able to process network flows and identify

malicious ones, and then confirm such attacks trough LSH.

• A continuous improvement process that evolves and enhances the system for new web at-

tacks and LSH searches.

1.4 Thesis Organisation

In the next chapter, we present the base knowledge of web attacks discovery, and related work of

this dissertation. In Chapter 3, we present our approach for a solution to detect anomalous traffic

in HTTPS, using NetFlow and machine learning, a way to confirm that the anomalous traffic

3

contains web application attacks and a way to improve the system as we gain more examples of

attacks. We discuss the issues we had in addressing the problems we encountered, as well as the

solutions we suggest to solve them. In Chapter 4, we present the environment scenario, design and

implementation details. In Chapter 5 we present the evaluation of the solution. We conclude with

Chapter 6 with the final conclusions and future work.

4

Chapter 2

Background and Related Work

The purpose of this chapter is to establish the context and background related to the topics of

this thesis. With the rise of web application attacks, it is fundamental to develop strategies and

frameworks to detect them. We will cover the main options available and also the latest studies

related.

2.1 Network Traffic

The National Institute of Standards and Technology defines network traffic [10] as computer net-

work communications that are carried over wired or wireless networks between hosts. To study

network traffic, we must overview the Transmission Control Protocol/Internet Protocol (TCP/IP).

The OSI model [11], specifies the functions of a networking systems and how data is passed be-

tween computers. The International Telecommunication Union in its standard x.200 [12] defines

7 layers to the OSI Model:

7 – Application

6 – Presentation

5 – Session

4 – Transport

3 – Network

2 – Data link

1 – Physical

There is however the TCP/IP model [13] [14], developed prior to the OSI Model. This TCP/IP

model functionality is based on four layers, each with its own set of protocols. TCP/IP is a tiered

server architecture system in which each layer is specified by the function it is to execute. These

four TCP IP layers work together to transfer data from one layer to the next. The layers that

constitute the TCP/IP Model are:

5

• Application Layer. In the OSI model is equivalent to the combination of Session, Presenta-

tion and application layers. It contains higher-level protocols such as File Transfer Protocol

(FTP), Simple Mail Transfer Protocol (SMTP) and Hyper Text Transfer Protocol (HTTP).

The data output of this layer is called a message.

• Host-to-Host Layer. This layer is in charge of end-to-end connectivity and error-free data

transfer. It protects upper-layer applications from data complexity. Two protocols found in

this layer are Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). In

this layer the message from the previous layer is added a header to produce a segment with

TCP

• Internet Layer. In this layer the Internet Protocol (IP) implements a set of rules, for rout-

ing and addressing datagrams. A datagram contains a header, with source and destination

address, and data.

• Network Interface. This layer corresponds to the Data Link and Physical layers of the OSI

model and characterise how data is physically transported via the network, which includes

how bits are electrically or optically communicated by hardware devices that interface di-

rectly with a network media.

We now need to better define some standards of the application layer and the Host-to-Host layer

and that is done in the next sections.

2.1.1 HTTP and HTTPS

HTTP stands for Hypertext transfer protocol. It is accurately described in RFC 2616 [15] as a

standard protocol at the application-level intended for distributed and collaborative information

systems. The HTTP protocol is a client-server or request-response protocol. Requests are submit-

ted by a user-agent (usually a browser). A client A makes a request to a server B. The server B

interprets and processes the request and provides an answer that sends through a response to client

A. This protocol is generic and stateless and can be utilised for many more uses than its primary

use in hypertext, by extending the request methods, error codes and headers. For example, it can

be utilised for name servers or distributed object management systems. On the TCP/IP model,

the HTTP protocol is considered in the application layer, that works on the base of the transport

protocols, the most usual is the TCP, although in can be adapted to work on UDP, as it is the case

with HTTP/3 [16].

2.1.1.1 Client

The client or user-agent can represent any mechanism that represents the user and its intentions,

the common use case is a web browser. There realistically are other programs used by some

users as software developers, testers and also attackers that can be scarcely used instead of a web

browser. Whatever the case, it is invariably the client that establishing a TCP connection, and

sends an HTTP request.

6

2.1.1.2 Server

A Server is a computer that typically runs a software web server, whose function is to connect to

the Internet and efficiently manage the network communication. But on a more broad definition the

web server (the software) governs the requests and promptly sends the responses. It can typically

range between a simple HTTP server that just lets the user access files (static web server) to a

dynamic web server, which can perform many things, like process the request, running a program,

updating a database and returning the response as a web page.

TCP connections are established via an exchange typically known as the three-way handshake,

as seen in Figure 2.1. After TCP connection is established, the client sends an HTTP request.

The HTTP methods can be GET, HEAD, POST, PUT, DELETE, CONNECT, OPTIONS and

TRACE [17] . After the server delivers the response, the TCP connection is closed.

Figure 2.1: TCP Three-way handshake

HTTP messages can be requests when the communication goes from client to server and re-

sponses when it goes from server to client. HTTP messages are composed of:

• Start-line

Either a request line, describe the requests, or a response line in case of HTTP response with

its status, or whether successful or failure. It is always a single line and must end with a

carriage return followed by a line feed (<CR><LF>).

• HTTP header

The HTTP headers are colon separated key-value pairs in clear-text, and must end with a

carriage return followed by a line feed (<CR><LF>). Although the HTTP methods are

case-sensitive, the header fields are case-insensitive. There is no limitation on the number

7

of fields a header has or the size of each field, but most servers and clients impose some sort

of limits for security reasons. The Internet Assigned Numbers Authority (IANA) maintains

a permanent registry of header fields [18] that was last updated in 2020-09-01.

• Blank line

The empty line must consist of only (<CR><LF>) and no other white space, and indicates

the end of the HTTP header.

• Body

The Body is not mandatory. It is usually used in POST or PUT requests, and is used to carry

the entity-body associated with the request or response.

In Figure 2.2 we can see an HTTP message. It is a request message with a GET method.

Figure 2.2: HTTP message [1]

HTTPS is the protocol identifier for HTTP over TLS, which means that the HTTP is enclosed

in a cryptographic protocol, to provide security to the communication over the network, enforcing

Confidentiality, Integrity and Authentication (CIA). HTTPS is defined in RFC 2818 [19] and is

often described as establishing a secure channel over an insecure network. In fact, establishing a

secure channel over an insecure network is achieved by the Transport Layer Security (TLS) which

implement privacy and data integrity, among the two communicating applications [20].

The connection is made private and secure with the use of a symmetric-key algorithm, used to

encrypt the data. The algorithm keys are generated for each connection, based on a shared secret

negotiated during the TLS handshake, as seen in Figure 2.3. It is during this handshake that the

client indicates to the server the setup of the TLS connection.

Because HTTPS is HTTP on top of TLS, all of the underlying HTTP protocol can be en-

crypted. This includes all HTTP message contents, such as the request URL, query parameters,

headers, cookies and body. The most an attacker can discover efficiently is that a TLS connection

is undergoing, and the IP addresses and domain names of the active participants.

The use of HTTPS adequately protects against man-in-the-middle attacks, eavesdropping and

tampering. HTTPS URLs starts with “HTTPS://” using by default port 443, and HTTP URLs

starts with “HTTP://” and use port 80 by default. As the privacy concerns grow and network

security naturally becomes a more relevant principle, the extensive use of HTTPS is becoming a

modern standard.

8

Figure 2.3: TLS handshake

Using net marketshare [21] for market share statistics, we can conclude that from January

2018 to August 2019, 80,20% of the traffic from desktops, laptops and mobile was on HTTPS and

as observed in Figure 2.4 the tendency is to rise. Because the packet content is encrypted, HTTPS

traffic is not prone to accurately detect certain kinds of web attacks, using traditional methods,

such as Deep Packet Inspection (DPI).

For example Pramod et al. [22] used DPI to detect SQLi attacks but just on HTTP, because

on HTTPS the payload is encrypted. There are additionally some direct and noticeable protocol-

related performance costs related to HTTPS, such as the increasing latency. Naylor et al. [23]

identified some indirect consequences in in-network services like loss of caching and on some

services such as parental control or virus scanning. One major result from their published study

was that although HTTPS messages are bigger in size, the vital concern is with the TLS handshake

because in 50% of TLS communication they study, the hand-shake represents more than 42% of

the total data exchanged.

2.1.2 NetFlow

2.1.2.1 Basic Description

NetFlow represents an aggregated flow of traffic obtained through a system of tools that collect,

process and export a flow. The flow is aggregated from a group of packets that goes through an

observation point during a certain time interval. It is a passive approach to network monitoring,

works well in high-speed and high-volume networks. Although the time interval represents a major

part in defining the NetFlow, it is equally important to remember that the packets that constitute the

9

Figure 2.4: Netshare statistics for HTTPS traffic done by desktops, laptops and mobile from January 2018 to August
2019

flow share some common properties. These common properties are usually the header fields, as for

example destination IP, destination port and application header fields. Another part of the NetFlow

are some characteristics about the packets, for example the length, and characteristics derived from

the packet treatment. The use of flows started in 1991 with meter, a process developed to inspect

a stream of packets from a communication medium or enclosed by a pair of media [24]. The

produced meter aggregated packets belonging to Flows among communicating systems.

2.1.2.2 The Importance of WebFlow

DPI is a widely used technique that got mainstream with the use by all major firewall manufactur-

ing. DPI inspects all individual packets, including header and payload, allowing the analysis and

filtering of the packet. In case of a firewall, it can typically allow the packet to pass or discard the

packet. Because DPI checks all packets it causes a bottleneck on the network and with the gradual

growth of network traffic, it gets increasingly disadvantageous over time.

The practical use of DPI in intrusion detection systems (IDS) can equally create several prob-

lems. As the firewall must read the packet, it can also be attacked. For example a specially crafted

Session Initiation Protocol (SIP) traffic can trigger a denial-of-service on some Cisco devices [25].

The significant approach to mitigate these problems is the use of some kind of NetFlow. Using

NetFlow it is possible to obtain an overview of the packets, in a format that can be rapidly analysed.

For this work we intentionally choose to work with flows as the main input, instead of DPI, as DPI

presents the drawbacks mentioned before. Hofstede et al. [2] mention 5 key benefits of NetFlow:

• Suitable for high-speed networks

• Widely deployed and available. Integration with all major routers, switches and firewalls.

• Widely studied, and used in security analysis, capacity planning, accounting, profiling, for

data retention laws, among others.

10

• Major data reduction can be achieved. As good as 1/2000 of the original volume.

• Flow export is usually less privacy-sensitive than packet export.

A typical flow monitoring setup, as explained by Hofstede et al. [2] is represented in Figure 2.5

Figure 2.5: Flow monitoring setup [2]

The first step is the packet observation where the packets are processed. In this stage the

packets are read, timestamped and truncated. Depending on the capturing tool, there can exist

packet sampling and filtering. Packet sampling and filtering objective is to forward only certain

packets to the Flow Metering & Export in order to reduce consumption of bandwidth, memory and

computation cycles. The second step is Flow Metering & Export where the packets are combined

in flows. The packets that constitute the flow, possess some common properties, like time interval,

header fields, as for example destination IP or destination port, application header fields, the flow

compile length, and characteristics derived from the packet treatment. The combined packets

wait passively in a flow cache, until it is considered finished (usually time related), when the

flow is exported. The third step is Data Collection which includes aggregation, filtering and data

compression. The fourth and ultimate step is Data analysis for traffic profiling, classification,

attack detection, anomaly detection, intrusion detection or research among other uses.

The result is a flow record that accurately represents the information related to the traffic

represented in a given flow. The fields included in a flow record vary from the technique used in

step two, but usually include fields as IPs, ports, packet counts, timestamps and so on.

2.1.2.3 NetFlow V9

The major standard in NetFlow is dictated by CISCO. In the current NetFlow version (Version

9 [3]), the record format is build with a packet header and a minimal of one FlowSet or template,

as can be seen in Figure 2.6

Figure 2.6: Fields of the record format in NetFlow version 9 [3]

The fields of the record format are :

• Packet header

The packet header is composed of:

Version - The Version of NetFlow records exported in the current packet

Count - Number of FlowSet records (template + data) in the current packet

System Up time - Milliseconds since first boot

11

Unix Seconds - Seconds since 0000 Coordinated Universal Time (UTC) 1970

Sequence Number - Incremental sequence counter of all export packets sent by this export

device; this value is cumulative, and it can be used to identify whether any export packets

have been missed

Source ID - 32-bit value guarantees uniqueness for all flows exported from a particular de-

vice.

• Template FlowSet

The objective of the template FlowSet is to describe the fields of the data FlowSets, and

both can be intermingled within an export packet. Cisco considers that template FlowSet

implements a description of the fields that will be present in future data FlowSets [3]. The

Template FlowSet format is composed of:

FlowSet ID - used to distinguish template records from data records.

Length - total length of this FlowSet.

Template ID - each template is given a unique ID by the rooter.

Field Count - number of fields in this template record.

Field 1 Type - numeric value represents the type of the field.

Field 1 Length - The length in bytes of the field.

... Field n Type

Field n Length

In NetFlow version 9 there are 104 fields definitions and 23 fields reserved for future use.

The defined fields varied from IP related fields, packet associated fields, time related fields

and many more.

• DataFlow

The DataFlow format is composed of:

FlowSet ID = Template ID - The FlowSet ID maps to a (previously received) template ID

Length - Length of the DataFlow set.

Record N ... Field N - Previously defined in the template record referenced by the FlowSet

ID/template ID.

Padding - 32 bit boundary

2.1.2.4 IPFIX

IPFIX stands for Internet Protocol Flow Information Export, it is a protocol defined by IETF (In-

ternet Engineering Task Force) first documented on RFC 3917 as the preliminary way of exporting

IP flow information, obtained in routers, traffic measurement probes, and middleboxes [26].

The objective was to define a standard for collecting and analysing network data [26]. IPFIX

was created as a modernised NetFlow v9 protocol, with some extensions and requirements, such as

12

transport, string variable length encoding, security and template withdrawal message [27]. IPFIX

is more comprehensive than NetFlow, as it works with Cisco, but also with all the range of brands

and devices. Nowadays it is difficult for any organisation to intentionally keep a vendor specific

solution, so IPFIX is a more used protocol for NetFlow collection and analysis. Much like a typical

NetFlow setup, IPFIX is composed of four steps.

In Figure 2.7 we can see Packet Observation, Metering Process, Exporting Process and Col-

lecting Process. The Packet Observation step is where the packets are captured and pre-processed.

Figure 2.7: The four stages of IPFIX

At this stage, the packets go through capturing, time stamping, truncation, sampling and filtering.

The sampling and filtering are set up with rules that determine which packets are processed. The

Metering Process step comprehends the aggregation of packets in flows and the exporting of flows.

It is in this step that the flow record is defined, containing the measured properties of the flow, like

number of bytes of the packets in the flow and other properties like IPs, ports and so on. The fields

that can be exported in IPFIX flow records are called Information Elements (IEs). There are 491

IE [28] more than double of the equivalent field definition in NetFlow Version 9. All these fields

allow IPFIX to incorporate Internet Assigned Numbers Authority (IANA) -standard list of IEs for

multi-vendor interoperability as well as proprietary vendor/enterprise-specific IEs. There is addi-

tionally the use of flow caches, as in NetFlow V9. The exporting process can incorporate sampling

and filtering. The difference with the sampling and filtering done in the Metering Process step is

that in this step, the sampling and filtering are done on the flow record and before, it was done on

the packets. The Collecting process is where the flows are stored and can also be subject to further

processes, such as data compression, aggregation and summary generation.

The broad range of IPFIX makes it useful for many types of traffic related analysis. For ex-

ample Matoušek et al. [29] have used IPFIX for identification of operating systems from Internet

traffic. Hofstede et al. [30] presented an extension for the flow exporters that was able to accurately

detect flooding attacks in brief instances. They were capable of effectively surmounting the detec-

tion delays provoked by flow-based monitoring systems as DPI. Muñoz et al. [31] implemented

a system using machine learning models, to detect cryptocurrency miners, through the analysis

of NetFlow/IPFIX. Toorn et al. [32] have investigated the patterns of HTTP(S) dictionary attacks

at the flow-level, using NetFlow/IPFIX. All these works used IPFIX, because of its capability of

creating a personalised NetFlow according to the study at hand.

2.2 Web Attacks

As the Internet grows, every day there are more and more organisations present on the web. Those

organisations work, collect and process large amounts of data, composed of critical and sensitive

13

personal data, which constitute a point of concern, security wise. Just this last year, because of the

COVID-19 pandemic and the trend of working from home, the attack surface grew exponentially.

As stated by ISO 27001 [33] one of the security trinity parts are people. In terms of security

concerns, attackers are driven by capacity, opportunity and will. Capacity can be further explained

as knowledge and tools. Any attacker from any place in the world, has nowadays unlimited knowl-

edge and tools. It is possible to aggressively target any service present on the web. The necessary

tools are free and vast, making it possible for an attacker to intentionally target several entities at

the same time. There has been, until now, relative impunity for attackers. All this naturally leads

to a growth in attacks, on the web available devices or services.

Opportunity can be further explained as time and vulnerabilities. The vulnerabilities are

mostly publicised and public. Lin et al. [34] list the most used vulnerability databases as the

United States National Vulnerability Database (NVD), the Open Source Vulnerability Database

(OSVDB), Carnegie Mellon’s CERT and Symantec’s Worldwide Intelligence Network Environ-

ment(WINE).

The will of the attacker is what escalates the destructive potential of the threat. Whether it is

money, ideology or any other motivation, the results are the same. The relentless attacks are more

targeted, more advanced and more destructive than ever before.

The European Union Agency for Cybersecurity (ENISA), in its threat landscape report [35]

from January 2019 to April 2020, enlist Web-based attacks as the number two cyber threat. There

is much work done to detect web attacks, using NetFlow or IPFIX. Zhenqi et al. [36] discuss

the use of NetFlow to detect DoS, DDoS and Network worm virus traffic. Sperotto et al. [37]

discuss the state of the art solutions in the use of flow based IDS to detect DoS, Scans, Worms

and Botnets. Najafabadi et al. [38] discuss the use of NetFlow to detect SSH Brute force attacks.

Toorn et al. [32] discuss the use of NetFlow/IPFIX to detect brute force attacks in both HTTP and

HTTPS.

To the best of our knowledge there is no work on detecting SQLi and XSS attacks using

NetFlow or IPFIX for HTTPS traffic. The studies for this kind of attacks are usually done using

DPI. For example Pramod et al. [22] propose a system using DPI to detect SQLi. For the purpose

of this study, we will focus on SQLi and XSS, two of the most used web application attacks.

2.2.1 SQLi

SQLi attacks, were first documented in 1998 [39]. It was considered in the OWASP Top 10 Web

Application Security Risks in 2010, 2013 and 2017, as the first security risk experienced by Web

applications [8] and the third in 2021. SQL Injection represent a type of injection attack on a web

application, where the attacker crafts SQL code into a user input field. Web site features, mostly

accessible in the user interface, are affected by SQL injection attack. These features include input

fields such as those presented in forms, text fields, password fields, check boxes, radio buttons and

sliders, support requests, search functions, feedback fields, shopping carts and even the functions

that creates the dynamic web page content. These user input fields are passed into the SQL query,

14

granting the attacker unauthorised and unlimited access to the database. If the attacker gains access

to the database, it undermines the confidentiality, integrity and authority of the data. The results

can be devastating. SQL Injection comprehend several types of attacks, as detailed in Table 2.1.

Table 2.1: SQLi attack types [5]

Types of Attack Working Method
Tautologies SQL injection queries are injected into one or more conditional state-

ments so that they are always evaluated to be true.
Logically Incorrect
Queries

Using error messages rejected by the database to find useful data fa-
cilitating injection of the backend database.

Union Query Injected query is joined with a safe query using the keyword UNION
in order to get information related to other tables from the application.

Stored Procedure Many databases have built-in stored procedures. The attacker exe-
cutes these built-in functions using malicious SQL Injection codes.

Piggy-Backed Queries Additional malicious queries are inserted into. an original into query.
Inference An attacker derives logical conclusions from the answer to a true/false

question concerning the database.
Blind Injection Information is collected by inferring from the replies of the page after

questioning the server true/false questions.
Timing Attacks An attacker collects information by observing the response time (be-

haviour) of the database.
Alternate Encodings It aims to avoid being identified by secure defensive coding and auto-

mated prevention mechanisms. Hence, it helps the attackers to evade
detection. It is usually combined with other attack techniques.

The major types of mitigation are user input sanitisation, use of parameterised queries, use

of stored procedures [40] and parameter tampering [41]. As for detecting there must exist some

kind of packet inspection. For example, Pramod et al. [22] propose a signature based approach to

detect SQL injection, by using a pattern matching algorithm to detect an attack. One of the major

concerns nowadays is that the use of HTTPS is not compatible with DPI. HTTPS prevents the use

of many tools available to detect SQLi as they depend on reading the packet content.

2.2.2 XSS

Cross Site Scripting (XSS) attack is a specific kind of attack which allows a malicious user to inject

a malicious script in a benign or trusted website. The attacker is then able to deliver a malicious

script to an unsuspecting user, gaining access to cookies, session tokens, sensitive information or

tampering with the information provided. XSS was considered the third security risk experienced

by Web applications in OWASP Top 10 of 2010, 2013 and 2021, and the seventh in 2017. It is

furthermore the second most prevalent issue in the OWASP Top 10 list, and is found within around

two-thirds of all applications. There are three types of XSS:

• Dom Based XSS

Domed Based XSS, is also known as type-0 XSS. It is a client-side attack. With the imper-

ative need for a more dynamic experience, the use of applications that use the client side to

perform most of the presentation actions, and just pulling data on demand from the server,

lead to the exploding popularity of Document Object Model (DOM) based vulnerabilities.

15

The attacker code is parsed in the client side and is written to the DOM by the web appli-

cation. This specific type of attack is presented on pages using Javascript, AJAX, VBScript

and other client-side languages.

• Stored XSS

Stored XSS is also known as type-1 XSS or persisted XSS. It is undoubtedly considered a

high or critical risk. In this peculiar type of attack, the malicious code is efficiently stored

on the server-side and then is viewed or parsed at a later time by an unsuspecting user or

even by a site administrator.

• Reflected XSS

Reflected XSS is also known as type-2 XSS or non persistent XSS. It is considered the

most basic web vulnerability attack. On a reflected XSS, the application or API, seamlessly

incorporates unsanitised or unescaped user input as part of the output. The malicious code

is included in the response and is promptly executed. It is a server-side vulnerability, as

the malicious code is parsed at the server-side and not on the client-side. The most typical

form of attack is through email or managing a neutral site, producing an unsuspecting URL,

pointing to a trusted site or an attacker controlled page, containing the XSS vector, that is

executed inside the users browser.

Dayal et al. [42] produced a comprehensive inspection of XSS attack and discussed a few tools

utilised for detecting XSS and some rules for preventing XSS. Liu et al. [43] produced a survey of

Exploitation and Detection Methods of XSS Vulnerabilities, and discussed alternative methods for

detecting this kind of vulnerabilities. In terms of detection, all of the studies analysed used some

kind of DPI [44] [45] [46]. As with SQLi, one of the major concerns nowadays is that the use of

HTTPS is not compatible with DPI. That prevents the use of many tools to convenient detect XSS

as they depend on reading the packet content.

2.3 Machine Learning

Machine learning is a set of algorithms that provides the ability to automatically learn and im-

prove from experience or previous events, without being explicitly programmed. Although an

algorithm, in this context, represents just a sequence of statistical processing steps, they are ca-

pable of recognising patterns and features in huge datasets in such a way that supports decision

taking and more accurate predictions. The distinctive methods of machine learning are Super-

vised machine learning, Unsupervised machine learning, Semi-supervised machine learning and

Reinforcement machine learning. Rincy et al. [4], compiled the classification of machine learning

algorithms, as shown in Figure 2.8

Buczak et al. [47] conducted a survey of machine learning methods for cyber security intru-

sion detection. They tried developing a map of the type of method best indicated for each type

of attack. What they discovered was that the richness and complexity of the methods made it

16

Figure 2.8: Classification of Machine Learning Algorithms [4]

impossible to construct such a framework of correspondences. Nevertheless, for the type of study,

this work focuses, with copious amount of data, structured flows, but with unstructured content,

and many types of web attacks implementations, the most promised system of machine learning,

is unsupervised machine learning

2.3.0.1 Supervised Machine Learning

Supervised machine learning, is a machine learning technique that starts by building a dataset and

knowing how that data is correctly classified. This labelled dataset is the training data, used to train

the model. This training entails an external entity that indicates when the model is producing the

desired result or not. The objective is to identify patterns in data, in a way that helps the analysis

of the data. A typical supervised learning algorithm is represented in Figure 2.9.

In supervised machine learning, starting with an input variable P and an output variable Q, the

target of the algorithm is to study the mapping function to the output variable Q = f(P). There

are different algorithms to achieve this, such as:

• Decision trees: Is a predictive algorithm where the input data or observations are represented

on the branches, and the conclusions are represented on the leaves.

• Rule based Classifiers: Is a descriptive model, based on rules. The classic if / then / else,

where there is antecedent and consequent.

17

Figure 2.9: Supervised learning algorithm

• Naive-Bayesian classifier: Based on Baye’s Theorem, it is a group of algorithms that work

with the motto that each pair of features to be classified are independent of one another.

• k- Nearest Neighbour classifiers: In this algorithm, all cases are classified, and new cases

are classified based on some similarity measure.

• Neural Network: Inspired by Brain neurons, a neural network algorithm works in several

layers of analysing and learning data, in an incremental way.

• Support Vector Machines: Using a hyperplane with the dimensional space of the problem

features, to separate two data classes and classify the data points

2.3.0.2 Unsupervised Machine Learning

Unsupervised machine learning technique is based on a large dataset, and through the use of

algorithms recognises a structure and extracts features, sorts and classifies data, all without any

external validation. This technique is extremely effective for discovering unseen structures in the

data and for tasks like anomaly detection. A typical unsupervised learning algorithm works as

described in Figure 2.10.

Figure 2.10: Unsupervised learning algorithm

In unsupervised machine learning there is also an input variable P , but there is no output

variable. There are different algorithms to achieve this, such as:

18

• Clustering: More than an algorithm, clustering is a set of techniques that detects patterns

in high-dimensional unlabelled data. There are multiple ways of clustering. In hierarchical

clustering, data points are grouped by the distance among them. In centroid models like

K-means, individual clusters are represented by their mean vector. In distribution models

like Expectation Maximisation algorithm, the groups go along to a statistical distribution. In

Density models the data points are grouped in dense and connected regions, as for example

the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm. In

graph models each cluster is defined as a set of connected nodes where each node includes

an edge to at least one other node in the set.

• Gaussian Mixture Model: This is a probabilistic model, working on the basis that all data

points originate from a mixture of a finite number of Gaussian distributions.

• Hidden Markov Model: This model addresses the problem as a Markov process, divided in

two components, one being an observable component and the other an unobservable.

• Principal Component Analysis: This approach uses a dimensionality-reduction method to

reduce the dimensions of the data, creating a smaller set that contains most of the relevant

information of the original data.

2.4 Similarity Search

Similarity search is the most generic name for a variety of processes that all work on the same idea

of exploring (usually extremely huge) areas of items with the sole accessible comparator being the

similarity between any two objects. This is becoming more relevant in an age of massive informa-

tion repositories with items that have no natural order, such as large collections of photographs,

music, and other complex digital objects. Finding nearest neighbours is a relatively common as-

signment. Similarity search consider uses, such as detecting duplicate or similar documents, as

well as audio/video search. Although employing brute force to search for all possible combi-

nations, it will get the precise nearest neighbour; but this method is not scalable. This problem

has been the subject of considerable research into approximate algorithms. Although these algo-

rithms cannot ensure that we will get a precise answer, they will almost always produce a good

estimate. These algorithms are more scalable and quicker. To work with payloads constituted by

keys and values, a token-based algorithm is the best option. The most common algorithms are

the Jaccard Distance, the Cosine Distance and the Euclidean Distance. Both the Cosine Distance

and the Euclidean Distance measure the distance between sets, based on each representation in

space. Euclidean distance represent the actual difference of individual numerical characteristics

and the Cosine Distance is used to discern between directions. The Jaccard Distance is the level

of discrimination between two sets, measured by the ratio of distinct elements to all elements in

those sets.

19

2.4.1 Locality-Sensitive Hashing

Locality-Sensitive Hashing (LSH) is a set of functions allowing hashing data points into buckets,

so that data points close to each other are likely to be in the same bucket, while data points further

apart are likely to be in distinct buckets. It identifies observations with varying degrees of resem-

blance much easier. Examining data for similar objects is a fundamental data-mining challenge.

When looking for pairs of comparable objects, the simplest strategy is to look at every pair of

items. Even with abundant hardware capabilities, looking at all pairings of items when working

with a huge dataset is computationally expensive. In LSH, we can use several hash functions that

are not the usual kind of hash functions. Rather, they are deliberately built to have the property

that if two objects are similar, they are far more likely to be placed in the same buckets of a hash

function than if they are not similar. The candidate pairs, which are pairs of items that end up in

the same bucket for at least one of the hash algorithms, may next be examined. To begin, we must

transform the documents we wish to analyse into sets, allowing us to examine textual similarity of

documents as sets with a substantial overlap. The Jaccard similarity of sets, which is the ratio of

the sizes of their intersection and union, is used to quantify their resemblance.

2.4.1.1 Jaccard Similarity

Finding textually comparable documents is one of the issues that Jaccard similarity solves. This

type of resemblance is referred to as character-level similarity, as opposed to similar meaning. The

Jaccard Similarity of two sets S and T is given by |S ∩ T |/|S ∪ T |. In Figure 2.11 we can see an

example that there are three elements at the intersection of the sets and a total of eight elements,

which make a Jaccard Similarity of 3/8 or 37%.

Figure 2.11: Jaccard similarity of sets S and T

2.4.1.2 Shingling

A k-shingling is a set of distinct shingles (consequently n-grams) in natural language processing,

each of which is made up of continuous subsequences of tokens inside a document and may be

used to determine document similarity. The symbol k stands for the number of tokens in each

shingle that has been chosen or solved for. By using shingles, documents that have the same short

pieces in them will have many common elements in their sets. This also occur if those elements

20

appear in different orders or in different keys or values of a dictionary. We may associate each

value with the set of k-shingles that appear one or more times inside that value by defining a k-

shingle as any substring of a k length present in the value. Leskovec et al. [48] presents as an

example a document D as the string abcdabd, that with a K=2, present a set of 2-shingles as

{ab,bc,cd,da,bd}. We must note that within D, the substring ab appears twice, but as a

shingle appears only once. That is the intentionally behaviour as we want a set of shingles, that is

a collection without repetitions.

2.4.1.3 Hashing

Rather than utilising substrings as shingles, we use a hash function to map strings of length k

to a number of buckets and consider the bucket number as the shingle. The set of integers that

constitute a document is thus the set of bucket numbers of one or more k-shingles that appear in

the document. The hashing is done to create a signature that represents the set in a smaller version.

The hashing also makes the signature size uniform, as it is always the same size. This can be done

if the hashing function can guarantee that the Jaccard similarity of the signature is the same as

the Jaccard similarity of the sets. After hashing the probability of two hashing being the same is

directly connected to the similarity of the original sets. Considering two Payloads, P1 and P2

and denoting H as the function that hashes a set, then:

• similarity(P1,P2) is high =⇒ Probability(H(P1) == H(P2)) is high

• similarity(P1,P2) is low =⇒ Probability(H(P1) == H(P2)) is low

We call this probabilistic data structure for computing Jaccard similarity between sets of MinHash.

Permutations
Even after creating and hashing a set of shingles, the storage space required is still significant. A

set must be reduced to a smaller representation, i.e. a hash, known as signature. We recall that for

a signature to maintain its utility, one must be able to compare the signatures of two sets and esti-

mate the Jaccard similarity of the underlying sets only based on these signatures. The signatures

are unlikely to match the precise similarity of the sets represented, but the offered approximation

is precise enough. The signatures we want to make for sets are the result of multiple calculations,

each of which is a MinHash of the whole group of sets. If a collection of sets is represented as

a boolean matrix, with the columns corresponding to the sets and the rows corresponding to the

elements, the matrix values represents when an element is present in a set.

For example, Table 2.2 represents a collection of sets. When element a is present in each of

the Sets S it has a value of 1. In the example element a is present in Set S1 and as so the value in

position (a,S1) is 1.

To produce a MinHash of a set, is to perform a random permutation of the rows. Expected

similarity of two signatures is equal to the Jaccard similarity of the columns. The signature is the

result of numerous permutations and as so, the longer the signatures, i.e. the more permutations

21

Table 2.2: Boolean matrix representing a collection of sets

Elements S1 S2 S3 S4
a 0 0 1 0
b 0 1 1 0
c 0 0 0 1
d 1 0 0 0
e 1 1 0 0

done, the lower the error. The Jaccard similarity is given by the rows with 1. In Table 2.3, we can

see a permutation of the matrix in Table 2.2.

Table 2.3: Permutation of the Matrix in Table 2.2

Elements S1 S2 S3 S4
a 1 1 0 0
b 0 0 0 1
c 1 0 0 0
d 0 1 1 1
e 0 0 1 0

This theoretical approach to MinHash is not feasible in large sets, however it is possible to

simulate the effect of a random permutation by a random hash function that maps row numbers to

as many buckets as there are rows.

Threshold
The core concept behind LSH is to discover an algorithm that indicates if two signatures constitute

a candidate pair or not, based on whether their similarity is larger than a threshold t. Dividing the

signature matrix into b bands of r rows each is an effective approach to pick the hashings. There is

a hash function for each band that takes r integer vectors (the fraction of one set within that band)

and hashes them to a vast number of buckets. We may use the same hash algorithm for all bands,

but each band has its own bucket array, thus columns with the same vector but on different bands

will not hash to the same bucket. When using MinHash signatures for the items, dividing the

signature matrix into b bands of r rows each is an effective technique to pick the hashings. If we

employ b bands with r rows and a pair of documents has a Jaccard similarity of s. The threshold,

or the value of similarity s at which the chance of becoming a candidate equals the chance of not

becoming one, is a function of b and r. Pairs with similarity above the threshold are extremely

likely to become candidates for a big b and r, whereas pairs with similarity below the threshold

are unlikely to become candidates.

22

2.5 Related Work

In order to perform anomalous traffic detection, we have two kinds of approaches presented in the

literature. The more traditional one employs Deep Packet Inspection (DPI) and the second uses

NetFlows.

DPI
The core pillars of current online security protocols, security functions, user service, and network

management are all integrated in DPI. DPI is a widely used technique that usually relies on pattern

matching algorithms for classification, but which are computational complex. DPI analyses the

contents of data packets using specified criteria that the system administrator has preprogrammed.

It then determines how to respond to the risks it has discovered. DPI can not only detect threats,

but it can also determine where they came from based on the contents of the packet and its header,

i.e., it identify the application or service that initiated the attack. DPI may also be configured to

use filters to detect and reroute network traffic that originates from a certain online service or IP

address. DPI examines the contents of packets travelling through a certain location and makes

real-time judgements based on network administrator-defined criteria. DPI may inspect the con-

tents of communications and determine which service they originate from. The analyser in this

method thoroughly examines the contents of each package. There are many commercial products

based on DPI, and there is many literature about it. Rescio et.al. [49] presents a Benchmark and

Comparison of the major commercial products and lists several studies. Cheng et.al. [50] goes

even further by developing effective algorithms for analysing the most used information protocols

and to create a software system for collecting statistical data.

For safe transactions, HTTPS is becoming increasingly popular. The majority of popular

websites have made HTTPS the default option. With the rise of encrypted communication, new

issues in network security monitoring and analysis have arisen. One of solution often presented is

the use of a proxy server. Jarmoc [51] discusses how a proxy server works and the risks associated

with it. Interception proxies inject themselves into the traffic flow and terminate the clients request

in order to inspect plain-text contents of conversations via SSL. The intercepting proxy sends a

second request to the server on behalf of the client. As a result of this behaviour, one end-to-end

session becomes two discrete but connected point-to-point sessions. While transferring between

the two encrypted sessions, the purpose is to provide access to the plain-text session data.

This form of interception has a price tag attached to it. Intercepting SSL-encrypted connections

loses some privacy and integrity in exchange for content examination, but the cost is the threat of

endpoint validation and authenticity. SSL interception proxy implementers and designers should

think about these hazards and how their solutions work in uncommon situations. Jarmoc [51]

presents several risks introduced by this approach, which are:

• Legal exposure: As a result of reviewing communications intended to be encrypted and

secret, a business may practice an illegal activity by using an SSL interception proxy. Legal

23

hazards should be properly considered by implementing organisations.

• Increased threat surface: Interception proxies are used to examine the plain-text contents of

otherwise encrypted transmission. As a result, making a single location where all encrypted

sessions can be read in plain text is a high-value target for an attacker

• Decreased cipher strength: When an intercepting proxy is used, two point-to-point en-

crypted connections are created. Since these sessions negotiate their cipher suites separately,

either the client-side or server-side sessions may utilise a weaker encryption than a session

between the client endpoint and the server endpoint.

• Transitive trust: Basically transitive trust occurs when the client trusts the proxy and the

proxy trusts the server, then the client trusts the server. This defect might present itself

in a variety of ways, passing along some problems as Self-signed, Expired or Revoked

certificates.

Sherry et.al. [52] propose a solution to DPI over TLS by the use of BlindBox. BlindBox

is a middlebox implementation, with some privacy models, preventing the middlebox from ac-

cessing traffic that does not identifies as an attack by the rule generator. However, this approach

is supported on the adoption of a new end-to-end encryption protocol to replace HTTPS altogether.

NetFlows
The use of NetFlows presented in some literature evolve around HTTP traffic. The few times

where authors work with HTTPS traffic, they keep the work to attacks different from the ones

based on payload text, as SQLi and XSS. Hou et.al. [53] presents a solution for identifying DDoS

traffic with NetFlow feature selection and machine learning. Najafabadi et.al. [54] put forward a

scheme to use machine learning approach for the detection of SSH brute force attacks using Net-

Flow. Bakhshandeh et.al. [55] propose an efficient user identification approach based on NetFlow

analysis. We already stated about some of these works in Section 2.2 and the lack of literature

using HTTPS based NetFlow to detect attacks. One of the few exceptions is the work done by

Toorn [32] where they investigate the patterns of HTTPS dictionary attacks in NetFlow. Their

approach lacks the analysis of web attacks like SQLi and XSS.

24

Chapter 3

Proposed Approach

This chapter presents the challenges faced to solve the problem of detecting web attacks over

HTTPS network traffic, as well as the solution we propose for this. Section 3.1 states the chal-

lenges in managing HTTPS network traffic, Section 3.2 presents an overview of the proposed

solution and Section 3.3 details its main modules.

3.1 Challenges

3.1.1 Capture Suspicious HTTPS Network Traffic Related to Web Application At-
tacks

HTTPS stands for HTTP over TLS, which encapsulates the HTTP protocol with cryptographic

primitives, to provide security to the communication over the network, enforcing confidential-

ity, integrity and authentication. As a practical consequence, this security enhancement prevents

one from having access to the plain-text payload during network traffic analysis. Decrypting the

HTTPS packets enable one to access the payloads in plaintext. This can be achieved by the use

of a proxy server that captures all the traffic, decrypt and access it, and finally re-encrypt it. In

practice, as seen in Figure 3.1, the proxy does not decrypt the direct connection between the client

and the server, but establishes two different connections, acting as a client to the server and as a

server to the client, and so sharing an encryption key with each other.

Having access to the payloads means that it is possible to employ Deep Packet Inspection

(DPI) techniques to inspect their content. The problem with this approach is that it tends to create

a bottleneck in the network and decreases the overall security. The bottleneck is caused by the

fact that decrypting data and evaluating it in real time is a processor-intensive task that many

hardware-based security devices cannot handle. Moreover, the fact that there is an additional

component where the payload resides decrypted, between the client and the final server, increases

the attack surface, decreasing the encryption strength and threatening the overall data security of

HTTPS traffic.

This thesis proposes a solution to deal with HTTPS traffic that resorts to NetFlows. NetFlow

is a network protocol for monitoring network flows and collecting IP traffic statistics. It provides

snapshots of the network traffic flow and hints about its volume and communication channels.

25

Figure 3.1: Intermediary HTTPS Proxy

Using a NetFlow monitoring system enables more efficient and effective monitoring and analysis

of these flow records about network traffic. More specifically, throughout this thesis we use the

term WebFlows to clarify when it deals with web network traffic.

There are two premises to identify anomalous traffic through WebFlows:

1. Any classification system requires a large enough dataset. In this case, there must exist a

large amount of collected traffic, to enable the comparison of WebFlows and a segregation

between the normal and the anomalous traffic.

2. The collected fields in the WebFlow must be useful for the overall solution.

As pointed out in Section 2.5, some works already try to detect anomalous traffic using

WebFlows (e.g., [53], [54], [55], [32]). However, these studies are based on HTTP traffic and

none of them investigated web application attacks (e.g., SQLi and XSS) over HTTPS, as we in-

tend to conduct in this thesis. The few existing studies for HTTPS (e.g., [32]) try to detect only

deviations to the normal behaviour network traffic, such as DoS and brute force attacks.

WebFlow by itself will not result in a binary truth. It will produce a condensed version of the

traffic with many important information, but we have to find out a way to interpret the data and

extract useful information. One of the most usual use cases in web attacks is the use of fuzzers

and scanners by attackers for detecting and exploiting vulnerabilities. These automated tools can

perform vulnerability searches in web applications, and their noticeable consequence is the large

volume of network traffic they produce. This is the first premise for a useful WebFlow.

We propose the use of unsupervised machine learning to process WebFlows which will allow

us to analyse a WebFlow without previous knowledge of its content. We intend to collect the right

26

fields, as we previously stated for the second premise of a useful WebFlow, so we can use a clus-

tering algorithm over WebFlows to aggregate them into clusters by similarities existing between

them, and identify the traffic of a scanner.

3.1.2 Web Application Attacks Constraints

In terms of web attack detection some attacks are detectable through the observations of a WebFlow.

That is the case of brute force attacks, for example HTTP(S) dictionary attacks.

On the other spectrum, there are attacks where we need to analyse the content of the payload,

to detect the attack. SQLi and XSS are examples of these types of attacks. However, we cannot

directly identify these in a WebFlow because we do not have access to the payload.

At the first instance, we will conduct anomalous traffic identification with the use of a cluster-

ing algorithm over WebFlows, but we need to develop some more resources to completely guar-

antee that we identified traffic from a scanner. We want to have access to the payload but without

any additional decrypting mechanism of the traffic. Since HTTPS is an application protocol, and

the web application is at the end-point of the communication, the payload included on WebFlows

will be decrypted by the web application, i.e., the web server that stores the web application, and

it will be logged by the web server. Therefore, we propose a solution that captures these logs and

analyses them to discover web application attacks provided from suspicious WebFlows. However,

analysing these logs is not straightforward and we identified some problems:

1. POST requests are not logged by the web server, in which they are the most interesting

request we want to analyse as we have guarantee they contain data send by users / scanners.

2. Logs register all communication steps which hardens the task of discovering attacks in a

fast and efficient way.

3. The log format is not be the best to conduct such inspections.

To cope with these problems, the solution from this thesis will also include a module to register and

capture POST requests, and a filter and a parser to, respectively, obtain only those logs containing

user data from GET and POST requests and transform them into a format that will be easier to

process.

3.1.3 How to Find Web Application Attacks from a Scanner?

Observing the network traffic generated by the scanner, one may observe some characteristics,

such as the use of certain words and the use of variations of strings. For example, in Listing 3.1

four variations of the same payload are presented. If one uses a DPI method with a pattern match-

ing solution, not only will the database need to have all variations, but the search will also be

computationally intensive, since it has to search entries on a huge database in a timely manner.

The solution from this thesis applies a Similarity Search approach, namely the use of LSH, an

efficient algorithm for searches over large datasets. This algorithm family focuses on constructing

27

bug=31&form_bug=submit
bug=50&form_bug=submit
bug=129&form_bug=submit
bug=28&form_bug=submit

Listing 3.1: Example of payloads from a scanner

condensed representations of a given input data that may be compared afterwards. In reality,

applying LSH algorithms on similar payloads produces nearly identical hashes, in contrast to

cryptographic hashes (e.g., SHA256), where hashing two similar strings yields two significantly

different hashes.

3.2 Solution Overview

This section presents an overview of the solution we propose to detect web attacks over HTTPS

network traffic without decrypting the payload on the communication. For the solution to detect

an attack that resides in the payload, it has to access and analyse its content.

Analysing the payload path, one can observe all points where it passes, i.e., from its construc-

tion in the client browser, passing through the network and the web server, until it arrives at the

web application. From this analysis it is observed that in the first section of the path one can collect

the network traffic between the client and the web server, with this part it is viable to construct the

WebFlow, although the payload is not accessible. On the last part of the path, the payload enters

in the web Server, is decrypted and logged by the web server, and thus allowing access to it.

The overall idea is:

1. Detecting anomalous traffic with high chances of including web attacks like SQLi or XSS.

Any traffic that strays from the normal traffic conducted by humans, including scanners

and fuzzers, will have some different characteristics. With the use of WebFlow analysis we

could identify these traffic.

2. Analyse the payload content of the traffic previously detected.

It is not feasible to read and analyse all the payloads content, but, after identifying abnormal

traffic, we can determine a subset of the network traffic where to look, and with the use of

various tools detecting the presence of scanners and fuzzers that performed SQLi or XSS

attacks.

3. Continuous improvement process

Independent of the tool used to analyse the payload content, it must be kept up to date, in

order to adjust them to the repeated evolution of attack tools.

The Architecture of the proposed solution passes for correctly identifying anomalous traffic,

grabbing that traffic from the server log and identifying attacks. Figure 3.2 shows the architecture

28

of the solution, which comprises six entities; WebFlow, WebApp, Log Extractor, Similarity Search

Engine, String Analyser and SOC.

For identifying anomalous traffic, like those from scanners, we resort to WebFlows. For grab-

bing the logs from the server associated with the monitoring WebApp the Log Extractor filters and

parses the logs; next for identifying attacks we use a two step approach: first we use similarity

search algorithms in the Similarity Search Engine, and second if we still cannot detect an attack

in a safety threshold of correctness, we use several string analysers in the String Analyser. At the

end, the SOC will receive an alarm if an attack is identified.

3.3 Main Modules

3.3.1 Detecting Anomalous Traffic

To detect anomalous traffic, like those originated from a scanner or a fuzzer, we resort to the use

of WebFlow, as there are numerous options to use. In order to create a WebFlow, we capture the

network traffic in the form of PCAP and convert it into a WebFlow.

Our objective at this point is to segregate anomalous traffic. We must accommodate for the

high volume of traffic and correctly segregate it without the need of any previous work like the use

of training data. Our approach uses unsupervised machine learning, i.e. clustering algorithms, to

find natural groups in the WebFlow. This technique is extremely effective for discovering unseen

groups in the data. Tasks like anomaly detection can be resolved with this kind of algorithms, as

data points that are in the same group have similar features and data points in different groups

have different features. We propose the use of clustering to detect patterns in high-dimensional

unlabelled data. The result of this stage is the creation of several clusters of WebFlows.

As the traffic from a scanner considerably differs from the normal traffic, the clusters formed

by the algorithm will group traffic with similar features, like source and volume, two of the major

characteristics that identifies a scanner. This will allow the correct identification of the scanner.

In this last step the collector also converts the IP format to decimal numbers and the TCP flags

to integer. An example of the final result of this process is displayed in Table 3.1

Table 3.1: Example of WebFlow

sTime sIP dIP sPort dPort protocol packets bytes flags duration eTime
2021/03/29T18:12:06.121 3232249961 3232249960 42610 443 6 7 919 27 0.008 2021/03/29T18:12:06.129
2021/03/29T18:12:06.122 3232249960 3232249961 443 42610 6 4 1766 27 0.007 2021/03/29T18:12:06.129
2021/03/29T18:12:06.380 3232249961 3232249960 42612 443 6 7 919 27 0.005 2021/03/29T18:12:06.385
2021/03/29T18:12:06.381 3232249960 3232249961 443 42612 6 4 1766 27 0.004 2021/03/29T18:12:06.385
2021/03/29T18:12:06.788 3232249961 3232249960 42614 443 6 7 919 27 0.004 2021/03/29T18:12:06.792
2021/03/29T18:12:06.788 3232249960 3232249961 443 42614 6 4 1766 27 0.004 2021/03/29T18:12:06.792
2021/03/29T18:12:08.983 3232249961 3232249960 42616 443 6 7 919 27 0.007 2021/03/29T18:12:08.990
2021/03/29T18:12:08.983 3232249960 3232249961 443 42616 6 4 1766 27 0.007 2021/03/29T18:12:08.990
2021/03/29T18:12:09.165 3232249961 3232249960 42618 443 6 7 919 27 0.005 2021/03/29T18:12:09.170
2021/03/29T18:12:09.165 3232249960 3232249961 443 42618 6 4 1766 27 0.005 2021/03/29T18:12:09.170
2021/03/29T18:12:09.621 3232249961 3232249960 42620 443 6 7 919 27 0.005 2021/03/29T18:12:09.626
2021/03/29T18:12:09.622 3232249960 3232249961 443 42620 6 4 1766 27 0.004 2021/03/29T18:12:09.626
2021/03/29T18:07:04.716 3232249961 4026531834 47768 1900 17 4 780 0 3.015 2021/03/29T18:07:07.731
2021/03/29T18:12:11.870 3232249961 3232249960 42622 443 6 7 919 27 0.006 2021/03/29T18:12:11.876
2021/03/29T18:12:11.870 3232249960 3232249961 443 42622 6 4 1766 27 0.006 2021/03/29T18:12:11.876
2021/03/29T18:12:12.079 3232249961 3232249960 42624 443 6 7 919 27 0.003 2021/03/29T18:12:12.082
2021/03/29T18:12:12.079 3232249960 3232249961 443 42624 6 4 1766 27 0.003 2021/03/29T18:12:12.082

29

W
eb

Lo
ge

r

w
eb

Se
rv

er

w
eb

A
p

p

w
eb

Fl
o

w

Lo
g

Ex
tr

ac
to

r

Fi
lt

er

To
ke

n
s

B
D

Si
m

ila
ri

ty

Se
ar

ch
 E

n
gi

n
e

To
ke

n

B
u

ild
er

To
ke

n

Q
u

er
y

St
ri

n
g

A
n

al
ys

er

LS
H

 D
B

U

p
d

at
er

To
ke

n

C
la

ss
if

ie
r

Sa
n

it
is

er

To
o

l n

…

C
o

lle
ct

o
r

A
n

al
ys

er

Ex
p

o
rt

er

Pa
rs

er

SO
C

C
lie

n
t

C
la

ss
if

ie
r

u
se

r
Se

cu
ri

ty

an
al

ys
t

A
la

rm

G
en

er
at

o
r

Fi
gu

re
3.

2:
A

rc
hi

te
ct

ur
e

of
th

e
pr

op
os

ed
so

lu
tio

n
to

de
te

ct
w

eb
at

ta
ck

s
ov

er
H

T
T

PS
ne

tw
or

k
tr

af
fic

.

30

3.3.1.1 Analyser

With a WebFlow available, a tool was needed to analyse it, and pinpoint the network traffic done

by the scanners. The major constraints of this tool was the need to keep it fully autonomous and

capable of analysing a WebFlow without any previous knowledge of its content. We resort to the

use of unsupervised machine learning. To understand which algorithm is the best to process the

WebFlows, we conducted a set of experiments, which we present next.

DBSCAN
First, we tried the analyser with the DBSCAN algorithm. This was not a good solution as the

clusters had different densities. Although DBSCAN identifies outliers and clearly finds arbitrarily

sized and shaped clusters, it has problems setting the distance thresholds because of cluster den-

sity varieties, and, therefore, it presented too many clusters with no clear distinction between them.

Mean Shift
As a second experiment we used the Mean Shift algorithm, but with the same result: too many

clusters with no clear distinction between them. In this case, the problem remain the uneven

density of the WebFlow dataset. This is a centroid based algorithm, that determines centroid can-

didates to be the mean of the points within a given region. In our case, it produces a large set of

centroids which does not allow us to identify anomalous traffic.

K-Means
At last we used K-Means. K-Means is a flat clustering algorithm, which means that the number

of clusters are already known. It tries to segregate the dataset into K clusters, in a way that each

element of the dataset belongs to the cluster with the nearest centroid. One of its advantages is

the speed, because of its linear complexity of O(n), as all it is doing is calculating the distances

between points and group centres.

Because this algorithm relies upon the distance between points, and we have features with

different measures, we need to standardise all the features into the same scale. In standardisation,

each feature is scaled by subtracting the mean and dividing by the standard deviation. This shifts

the distribution to a mean of zero and a standard deviation on one. We tried different scalers, but

got the best results with StandardScaler and MixMaxScaler.

In StandardScaler the mean is removed and the data is scaled to unit variance. This maintains

some influence of the outliers point in the calculation of the mean and of the standard deviation.

The StandardScaler value z is calculated by Formula 3.1.

z = (x− u)/s (3.1)

where x is the value being normalised, u is the mean of the training samples, and s is the

standard deviation of the training samples. The mean is calculated by Formula 3.2

u = sum(x)/count(x) (3.2)

31

and the standard deviation by Formula 3.3

s =
√

(sum((x− u)2)/count(x)) (3.3)

The K-means algorithm relies on a pre-knowledge of how many groups will be created. The

selection of K should be computed and not guessed. This is often classified as an objection in the

use of K-Means. The best way to circumvent this problem is by the use of the Elbow method. In

the Elbow method the number of clusters varies and for each value of K we measure the explained

variation. This will show at what value of K, the distance between the mean of a cluster and the

rest of the points of the cluster is the lowest. In order to measure these, we use inertia. Inertia

is the sum of squared distances of points to their closest cluster centre. The optimal K is found

where the elbow is created. In Figure 3.3, we can see an example where K = 3

Figure 3.3: Example of elbow method for K=3

3.3.2 Analyse Payload

To analyse the payload we need to access the original payload, and then find a way to analyse it.

We do not want to add any more points of weakness to the system in order to get access to the

payload. Therefore our goal is to work with what a normal system has, and eventually extending

some features but not implementing new ones. To accomplish this we resort to the web server

logs.

3.3.2.1 Web Application (WebApp)

To get access to the payload without any additional resource from the ones used in a normal setup,

we must capture it when the traffic arrives at the web server that contains the web application.

32

When the web server receives the traffic, it decrypts it in order to the web application process the

requests, and logs the interactions derived from the requests.

We must ensure that all the traffic is logged by the server since not all web servers do this

by default, where for that in some cases we must use or build some add-ons. For example, the

Apache server default logs incorporates all content from GET requests, but does not log the POST

requests. This is a problem because we want to analyse the content of all types of payloads and

the POST requests, like the GET requests, are the ones that contain user input data and so the most

interesting to access.

WebLogger
The web server creates two major log files. The first is a file containing all information about

requests coming into the web server. The second is an error log file containing information about

errors occurring in the web server while processing the requests and is also where any used add-on

will output its data. We must have access to all of the payloads but that is not straightforward. By

default the web server does not log the payload of a POST request. To surpass this, the log extrac-

tor resorts to an additional module that extends the logs to register a full POST request, including

its payload. This add-on will output its data to the error log file.

3.3.2.2 Log Extractor

Before we start identifying attacks we must get the subset of logs corresponding to the WebFlow

we identified as anomalous and prepare those logs for being analysed. The WebFlow will pinpoint

some subset of traffic. This traffic must be collected from the servers logs. To correctly match the

traffic with the logs we must have some identical features. After collecting the interested subset

we must prepare the logs to be analysed. The filter and the parser are the identities that are respon-

sible for this.

Filter
First, all the logs go through a log filter. In the Filter, we select the subset of logs that correspond to

the traffic identified in the WebFlow. In this case the matching keys are datetime, source and des-

tiny. We have to guarantee that both WebFlow and logs have these fields to make a correct match.

However, the datetime is not the same because the traffic of the WebFlow is captured a moment

before it arrives at the server, but it is close enough. The filter takes this deviation into account

and manages it through a threshold to assure it gets all the logs related to the previously identified

traffic. In practice the use of the datetime field is based on the minutes precision, which is precise

enough for this work. The filter also discards the logs that do not have a payload included. This

means logs from establishing the connection or from the SSL handshake are discarded, leaving

just the logs with a GET or a POST request to go through.

33

Parser
The logs data are produced in chunks. To correctly work with the payload, we needed to rebuild

the logs. For that we need to build a log parser as the only tools existing in the literature [56] [57]

for the best of our knowledge, to parse the logs are old and do not have any updates in several

years.

The log parser parses the chunked logs, identifies the GET and POST requests, joins all the

parts of each GET or POST request and rebuilds the payloads. The final result is a steady stream

of logs, with all the requests and its payloads. This allowed a lean down set of payloads, without

all the extra information that is not needed in the next steps.

3.3.2.3 Similarity Search Engine

At this point, we have a dataset consisting of payloads. It is a subset of all the traffic, but nonethe-

less it can be a huge dataset. The extensive amount of payloads and the fact that it is a semi

complex object, as it has keys and values of different kinds and sizes, means that it is not practical

to do a standard transversal search for attacks. The traditional use of pattern matching algorithms

used by a DPI is not feasible. Instead, we propose a new approach of similarity based package

inspection.

In this section, we opted by a solution that is capable of indexing high-dimensional data for

answering similarity-search queries searching a large dataset. From the realm of similarity search

algorithms, the Locality-Sensitive Hashing (LSH) is the one we propose to use. With this algo-

rithm, like the solution used in the WebFlow, we cluster the logs in buckets of similar data. In

this probabilistic data structure it is possible to search a huge dataset in a reasonable time. The

LSH algorithm utilised was min-wise independent permutations or MinHash. This LSH algorithm

is based on the Jaccard similarity measure to determine which instances of the dataset better suit

with the data we want to search.

In order to search for similar items we need to construct a database of items in which to search.

The adopted solution must take to account two constraints:

• Query speed.

We need to query the database often and the time it takes to get a result, must not be a

bottleneck.

• Speed to update the database.

Each index of the database has parameters that are dependent on the number of tokens in the

database. As we will see further on, we will need to update the database with new payloads.

In order to create an LSH index that complies with those two constraints we tested the use of the

algorithms MinHash LSH, MinHash LSH Ensemble and MinHash LSH Forest. The MinHash

LSH Forest had one major drawback for this study: the results are fixed sized. This means that we

must indicate the number of items we want as a result, meaning that to comply with the number

of items for the result, the algorithm return items with very little similarity. That is useful in some

34

use cases, but not in ours, as we need to study the number of results based on different thresholds

and permutations, to find the correct adjustment.

The LSH index is also affected by the need of tuning and re-tuning. In the case of the MinHash

LSH Ensemble, each time we need to update the database, we need to rebuild it from the scratch

to update the index. Compared to the other algorithms this is a major drawback.

The MinHash LSH has a different approach, and it is simpler to update its index. This update

does not force a total rebuild of the index, being a much faster solution than the MinHash LSH

Ensemble. For this reason our final selection was the MinHash LSH.

To tune the parameters of the algorithm we tested MinHash LSH with several values for its

parameters. We were able to test different hash functions, different thresholds and different per-

mutations. For the hash functions we did not find significant differences between the tested ones,

both in performance as well in accuracy. For the thresholds, we tried a significant range, with the

goal of finding the best value. In conjunction with the previously, we needed to test between 128

and 256 permutations. The higher permutation value was expected to produce better accuracy but

with slower speed and higher memory usage. In this section every tool must work with the same

threshold and the same permutation value, in order to work consistently.

Token builder
The objective of the Token builder is to standardised the payloads in tokens. Although in the

search engine the objects to search are payloads, the LSH hash is being represented as a sequence

of integers and because of that, the input data must be standardise in tokens. By creating tokens,

payloads that have the same short pieces in them will have many common elements. As seen in

Section 2.4.1.2 we may associate each payload with a set of tokens that appear one or more time

inside that payload by defining a k-shingle as any substring of k length presented in the payload.

In order to find the best k-shingle, we need to define which part of the payload we must search.

We started a comparison between a token with key and value and a token with just the value. We

observed that the keys produced too much noise and being a repetitive part in the token does not

offer any accuracy in the results, so we decided to remove the keys. We also observed some other

repetitive substrings, such as the Submit value from forms, that represented non dangerous values

and we decided to remove them as well. After this first step in the preparation of the tokens, we

realised that scanners tend to work with variations of strings.

Token 1: [4, ..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F, ..%2
↪→ F..%2F..%2F..%2F..%2F..%2F..%2FWindows%2Fsystem., in]

Token 2: [4, ..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F, ..%2
↪→ F..%2F..%2F..%2F..%2F..%2F..%2Fetc%2Fpasswd]

Token 3: [4, ..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F, ..%2
↪→ F..%2F..%2F..%2F..%2F..%2F..%2F]

Listing 3.2: Example of tokens

In the three examples of tokens presented in Listing 3.2, the difference between them is min-

imal. We needed to find a way of maximising the differences and producing more accuracy to

35

detect differences.

To find related payloads, the most effective technique is to define the payloads as sets, which

will produce short strings from the payloads. Each of these short strings is called a shingle. By

segregating the payloads in shingles, payloads with short sections in common, will have more sim-

ilarity. On the other hand, longer payloads with repetitive characters which are used to camouflage

parts of the payloads, will have less similarity.

To implement the k-shingle, we used n-grams, an approach most known in the field of com-

putational linguistics. This approach transforms our token into a continuous sequence of unique

n items. The value of n should be chosen so that the likelihood of any given shingle occurring in

any given payload is minimal.

For example, a n-gram with n=3, for the string "..%2F..%2F" is

[..%, .%2, %2F, 2F., F.., ..%, .%2, %2F]

These still have some repetitive shingles (e.g., ..%), so the token builder removes any dupli-

cates, and the final result is:

[..\%, .\%2, \%2F, 2F., F..]

With this approach the three tokens from Listing 3.2 will be transformed into the tokens pre-

sented in Listing 3.3

Token 1: [4, ..%, .%2, %2F, 2F., F.., 2FW, FWi, Win, ind, ndd,
↪→ ddo, dow, ows, ws%, s%2, %Fs, Fsy, sys, yst, ste, tem, em.,
↪→ m.i, .in]

Token 2: [4, ..%, .%2, %2F, 2F., F.., 2Fe, Fet, etc, tc%, c%2, 2
↪→ Fp, Fpa, pas, ass, ssw, swd]

Token 3: [4, ..%, .%2, %2F, 2F., F..]

Listing 3.3: Example of transformed tokens of Listing 3.2

As shown in Listing 3.3 we passed from three very similar tokens to three very distinct tokens.

We were able to minimise redundant parts of the payloads and produce meaningful tokens.

Evaluating the pairs of tokens within each Listing, it was visible that their Jaccard Similarity

which represent their similarity distance is lower, meaning that this is a good approach for max-

imising the differences in order to gain more accuracy. Table 3.2 shows this evaluation conducted

in Listings 3.2 and 3.3.

Table 3.2: Jaccard similarity of test case

Before After

Tokens
Equal
Tokens

Total
Tokens

Jaccard
Similarity

Equal
Tokens

Total
Tokens

Jaccard
Similarity

<1,2> 2 5 0,4 6 42 0,14
<1,3> 2 5 0,4 6 31 0,19
<2,3> 2 4 0,5 6 23 0,26

The final objective of the Token Builder is to get the payload logs as input and produce a set

of tokens. First the Token Builder removes everything but the meaningfully values, from each

36

payload. Then, each set of values is transformed into a token without repetitive values, and each

value is transformed into n-gram values and encoded into the LSH object. A complete example of

this processing, and so resulting in an LSH object, is depicted in the payload of Listing 3.4 that is

transformed in the token in Listing 3.5

login=ZAP&email=ZAP&password=ZAP&password_conf=ZAP&secret=ZAP+OR
↪→ +1\%3D1+--+&mail_activation=&action=create

Listing 3.4: An example of a complete payload

[ZAP,AP+,P+O,+OR,OR+,R+1,+1\,1\%,\%3,%3D,3D1,D1+,1+_,+--,--+,cre
↪→ ,rea,eat,ate]

Listing 3.5: The resulting token of the payload from Listing 3.4

Tokens Database
This section presents a token database, constructed beforehand. We produced a controlled dataset

of traffic generated with scanners, retrieved the logs, passed them through the log extractor, created

tokens with the token builder, and updated the tokens in the database.

The database is an LSH object, and as such it has a threshold value and a permutation value.

These values are determined in the Token Builder.

With the MinHash LSH, the LSH DB Updater can simply append a new token into the DB,

which makes having more than one DB with different thresholds and permutation a possibility that

we used.

Token Query
The token query searches for buckets with a similarity above a certain threshold. This component

works with a large dataset, and we need to make many queries. To do this in a capable manner we

can work with the hash function, the threshold and the permutations value. We tried different hash

functions as SHA1 and MurmurHash3, but without visible impact on the final result, so we opted

to work with the default hash function of SHA1. Bigger permutation values give higher accuracy,

but it reduces the speed and increases memory usage. These occurs because a higher permutation

value means more CPU instructions for every token and more tokens to be stored. From the initial

tests it was not obvious what the correct values of threshold and permutation to choose, so the

best option was to create several DB for the different values of threshold and permutations, and

perform queries to each database.

Token Classifier
The token classifier is a simple decision tool, easy to adjust by the Security Operation Center

(SOC) analyst, according to the feedback of previous decisions. Each query done in the Token

query will have between zero and several results, and the quantity of the results will let us choose

37

what to do. Basically we will have to decide between three options. The token is benign, it needs

further analysis, or it is an attack.

3.3.3 Continuous Improvement

The continuous improvement is an important stage of the overall process, as it will allow to update

the Tokens database with new entries. To achieve this improvement system, there is a need to use

additional tools and even the help of the SOC.

3.3.3.1 LSH DB Updater

The token query will return tokens based on its similarity. If the query returns an exact match then

the token is already present in the database and we do not need to update it. There are however

two situations where we can choose to update the DB:

• If the token is similar but not the same.

In this event, the query gives as a result similar tokens, but not an equal token. We can

update the database with this new token. This approach will increase the database overtime.

We can tweak this approach and we only update the database if the tokens in the database

are different but with a similarity between certain thresholds. For example a token with

similarity 0.99 is not updated to the DB, but a token with 0.8 is. In our case we opted to

update the database with all the tokens that are different, independent of its similarity, as we

did not face any problems with the database size.

• If the token classifier decides that the token is an attack.

In this event, we insert the new token into the LSH Index. Later through the analysis, every

time that it is decided that a new token is an attack and the LSH index does not yet have that

token, we use the LSH DB Updater to append the new token to the LSH DB and improve

the system.

Alarm Generator
Every time a new payload is added to the database it means that it is a new payload observed by

the system, and as so there is an alarm generator implemented with the purpose of alerting the

SOC of the new payload.

3.3.3.2 String Analyser

To this point, from every token analysed we have come to three different conclusions:

• It is an attack

• It is probably not an attack

• It is not an attack

38

As we do not want uncertainty, the second conclusion is not good, and so in that case we need to

further investigate the token. In this area, the quantity of payloads is significantly lower, and we

can analyse the values of the payload in a more traditional way, with different string analysers.

The design of the solution is based on a sequential use of tools that filters the values. The number

of tools can vary and can be changed accordingly to the needs of the user of the tool. This modular

approach allows for the scalability of the system.

Sanitiser
The Sanitiser is a module that receives a payload, and uses a sanitisation function to compare the

input of that function with its output. First we must address the fact that an Uniform Resource

Identifier (URI) must be encoded identically for global compatibility. A two-step technique is

used to map the huge range of characters used throughout the world into the limited allowable

characters in a URI. This is achieved with the use of UTF-8 encoding to convert the character

string into a sequence of bytes and then each byte that is not a letter or digit is converted into

%HH, being HH the hexadecimal value of the byte. In order to use a sanitisation function, the

Sanitiser starts with a URL encode parsing, to prepare the string.

The sanitisation function removes from the string any characters that could represent a threat.

Like the entity where it resides, the Sanitiser can be one or more functions, according to the

intentions of the system owner. For example if the system owner wants to catch blank or empty

strings and consider those as an attack, there could be a custom Sanitiser. The overall behaviour

of the Sanitiser is observed in Figure 3.4

URL encode parsing

Sani�za�on Func�on

Payload String Sani�zed String= Payload safe

Payload String Sani�zed String!= Payload unsafe

Payload String

Payload String

Sani�zed String

Payload from Log

Figure 3.4: Sanitisation

String Classifier
The classifier will decide based on the result of each tool, if the string is an attack or not. It can

make a decision for each tool separately. It is not necessary to use every tool. As soon as the

39

classifier decides that the string is an attack or not, there is no need to use additional tools. If the

classifier cannot decide with accuracy, then we use another tool until we have no more tools, and

in that case the string must be analysed by the next area. The Classifier will receive the payloads

with the results from each tool used. It is the Classifier that defines what to do next.

If the result is that a payload is an attack, then that payload must be added to the Similarity

Search Engine DB, so that next time it is earlier identifiable by the Similarity Search Engine.

Otherwise the payload can go to the next tool of the String analyser.

Going through the tools, there can exist three possible outcomes:

• A tool considers that payload as an attack and the String Classifier sends it to the LSH DB

Updater, to update the Similarity Search Engine.

• All the tools consider the payload safe.

• Some or at least one of the tools does not provide a result with a high certainty. In that case,

the classifier must send the payload to the SOC analyst.

3.3.3.3 SOC

In the SOC, the security analyst receives all the payloads that the previous modules were not able

to correctly identify. The security analyst has two choices, it can consider the payload benign or

it can consider the payload an attack. There is a concern related to the number of payloads that

the security analyst must analyse. To reduce this quantity, it is necessary that all previous modules

correctly identify all the payloads. It is fundamental that the system maximises its accuracy. If the

security analyst marks the payload as an attack, the payload must be included on the Tokens DB,

in the similarity search engine. This is necessary, so that the payload is identified earlier next time,

in the similarity search engine, preventing from going to the String Analyser and the SOC.

It is also the security analyst job to select the parameters of the overall solution, which include

for example, the LSH parameters such as threshold, permutations, the number of databases to keep

(he may opt to keep only one database of a specific threshold and permutation, or he may keep

several databases with different parameters).

40

Chapter 4

Implementation

This chapter describes the implementation of the system proposed on this thesis. The overall

system was implemented with the use of a controlled network that is discussed in Section 4.1.

It allowed the study of the network traffic from beginning to end. Starting with a client, we

observe the Network Traffic in Section 4.2, which includes the explanation where the logs are

generated. Section 4.3 explains how the logs are extracted and prepared. Section 4.4 describes the

Similarity Search Engine and its components. Finally, in Section 4.5, we address the continuous

improvement approach in the String analyser entity. For the implementation of the system, we

used several different tools, some of which needed adjustments to be adapted to our goals and

others were specifically developed in this work.

4.1 Development Scenario

To test and build the tools needed for our implementation, there was a need to create a con-

trolled network to test different scenarios and collect data that allowed us to make implementation

decisions. This controlled network makes possible the use of vulnerable applications without en-

dangering live systems, the use of scanners without creating bottlenecks in real networks and the

creation of controlled network traffic with known traffic, giving accurate results in our testing.

The final network is observed in Figure 4.1. Client A was used for running specialised bots,

scanners and fuzzers. Clients B and C were used for running different clients for manual navigation

and testing. The webserver ran an Apache HTTP Server to offer a web application and storage.

All machines were Virtual Machines, implemented with Oracle VM VirtualBox version 6.1 [58].

Clients A and B ran a Debian based distro, Client C ran a Windows OS (all the OSes were 64 bit

versions). All machines were implemented with the specifications presented in Table 4.1.

Table 4.1: Basic specification of the virtual machines

Characteristic Value
Base Memory 4 GB
Processors 2
Acceleration VT - x/AMD-V, Nested Paging, PAE/NX, KVM Paravirtualization
Network VirtualBox Host-Only Ethernet Adapter

41

Figure 4.1: Controlled network build for testing

The network was a Host-only adapter of VirtualBox. This kind of network was needed as

we were testing vulnerable applications, which are not supposed to be installed in Internet facing

servers. With this network all the virtual machines can communicate to each other and with the

host as if they were connected through a physical Ethernet switch. This network is not connected

to the world outside the host since they are not connected to a physical networking interface. The

host was a personal computer, running a windows 64-bit OS, with the specifications of Table 4.2.

Table 4.2: Specification of the host machine

Characteristic Value
Processor Intel(R)w Core (™) i7-6600U CPU @ 2.60GHz
Installed memory (RAM) 20 GB
Network VirtualBox Host-Only Ethernet Adapter

The web application used for the testing was DVWA - Damn Vulnerable Web Application [59]

which is a PHP/MySQL web application with known severe vulnerabilities. It was created with

the purpose of facilitating the construction of a legal and safe environment for testing.

4.2 Network Traffic

The final implementation uses the WebFlow to construct a dataset. Flows originated on the App

Server are discarded as these are the responses, which was identified by the protocol, Destination

IP and Port features of the WebFlow. The available features in the WebFlow can be consulted in

Table 4.3, and for the machine learning analysis, the selected features were Source IP, Source port,

Number of packets and Duration. Source IP was selected because all the traffic from the scanner

will have the same origin and will help identify the source. Source port, Number of packets and

42

duration are related to each request. Source port is changed between requests and as such is easy

to count requests.

4.2.1 Exporter

For capturing the Network Traffic in a PCAP format, we use tcpdump [60]. The tcpdump is a

powerful command-line tool that is capable of capturing network traffic. This tool also allows the

analysis of network traffic, but in our implementation we only needed it for capturing the traffic.

We configured this tool to produce a PCAP file with UTC Timestamp, Source ID, Destination ID,

Protocol, Packet Length and the rest of the packet, including payload. In case of HTTPS traffic,

the packets of the TLS protocol are captured but their payload is encrypted.

4.2.2 Collector

After a few experiments in capturing, exporting and analysing the packets, we chose the SiLK [61]

framework, as it allows us to personalise the fields to work with, and it provides a full tool suite

that supports collection, storage and analysis. The major features we used from the SiLK tool

set [62] were:

• For filtering, displaying and sorting

rwfilter - Select SiLK Flow records form the data repository and partition the records into

one or more “pass” and/or “fail” output streams.

rwcut - Print the attributes of SiLK Flow records in a delimited, columnar, human-readable

format.

rwsort - Sort SiLK Flow records using a user-specified key comprised of record attributes,

and write the records to the named output path or to the standard output.

• For Counting and Grouping

rwcount - Summarise (i.e., group or bin) SiLK Flow records across time, producing textual

output with counts of bytes, packets, and flow records for each time bin.

rwuniq - Summarise SiLK Flow records by a user-specified key comprised of record at-

tributes and print columns for the total byte, packet, and/or flow counts for each bin. It can

also count the number of distinct values for a field.

rwstats - Summarise SiLK Flow records just like rwuniq, but sort the results by a value field

to generate the Top-N or Bottom-N list and print the results.

• For packet and IPFIX processing

rwp2yaf2silk - Convert a packet capture (PCAP) file - such as a file produced by tcpdump -

to a single file of SiLK Flow records.

rwpcut - Read a packet capture file and print its contents in a textual form similar to that

produced by rwcut.

43

This set of tools allowed us to experiment and test different options. First the collector trans-

forms the PCAP file into a WebFlow with rwp2yaf2silk. This step produced a file (rw extension)

with a full WebFlow. Also, in the collector, the WebFlow is transformed into a CSV readable file

with the rwcut tool. With rwcut we transform a WebFlow file into a CSV file with all the fields

needed to use in the next steps. The chosen fields are presented in Table 4.3

Table 4.3: Fields used for the WebFlow

Field name Description
sIP source IP address
dIP destination IP address
sPort source port for TCP and UDP, or equivalent
dPort destination port for TCP and UDP, or equivalent
protocol IP protocol
packets packet count
bytes byte count
flags bit-wise OR of TCP flags over all packets
sTime starting time of flow in millisecond resolution
duration duration of flow in millisecond resolution
eTime end time of flow in millisecond resolution

4.2.3 WebApp

The WebLoger was constructed on the base of an Apache server. The Apache server logs all the

GET requests including their payloads, but it does not log the POST request payloads. To obtain

those payloads, the WebLoger uses the mod dumpio add-on. This Apache module logs all input

received by Apache and all output sent by Apache. Logging is done right after SSL decrypting

(for input) and right before SSL encrypting (for output). This means that we are able to access the

original payload, without being encrypted and without creating additional components where data

resides in plain text.

To make the module available, it must be loaded in the Apache configuration, and the Apache

LogLevel must be configured to trace7.

The Apache configuration file is presented in Listing 4.1.

Enabling Dumpio
LogLevel dumpio:trace7
DumpIOInput On
DumpIOOutput On

Listing 4.1: Apache configuration

LogLevel dumpio is used to set the log level for trace messages to the value 7, meaning

that the logs produced by mod dumpio are being registered in a full verbose way. DumpIOInput

indicates for mod dumpio to log all inbound traffic to the server and DumpIOOutput indicates

to log all outbound traffic.

44

Since mod dumpio logs to the error logs file, we must set up its error log format. Apache

makes available a large set of options to configure the log format [63]. In our case, the chosen log

format was with the following options:

ErrorLogFormat "[%{u}t] [Req_ID: %{c}L] [R: %L] [%l] [%F] [%E]
↪→ [%m] [client %a] [Local %A] | %M"

"[" , "]" and "|" were just placeholders to facilitate the parsing to be done afterwards and the

other parameters are described in Table 4.4

Table 4.4: Format String in Apache ErrorLogFormat Directive

Format String Description
%{u}t The current time including micro-seconds
%{c}L Log ID of the connection if used in connection scope, empty otherwise

%L Log ID of the request
%l Loglevel of the message
%F Source file name and line number of the log
%E APR/OS error status code and string
%m Name of the module logging the message
%a Client IP address and port of the request
%A Local IP-address and port
%M The actual log message

45

An example excerpt of mod dumpio logs is presented in Listing 4.2.

[Sat Apr 17 08:39:18.979837 2021] [Req_ID: a163MYZd+CE][R: [
↪→ trace7] [mod_dumpio.c(151)] [dumpio] [client
↪→ 192.168.56.105:48094] [Local 192.168.56.104:443]|
↪→ mod_dumpio: dumpio_in - 103

[Sat Apr 17 08:39:18.979846 2021] [Req_ID: a163MYZd+CE][R: [
↪→ trace7] [mod_dumpio.c(164)] [dumpio] [client
↪→ 192.168.56.105:48094] [Local 192.168.56.104:443]|
↪→ mod_dumpio: dumpio_out

[Sat Apr 17 08:39:18.979851 2021] [Req_ID: a163MYZd+CE][R: [
↪→ trace7] [mod_dumpio.c(63)] [dumpio] [client
↪→ 192.168.56.105:48094] [Local 192.168.56.104:443]|
↪→ mod_dumpio: dumpio_out (metadata-FLUSH): 0 bytes

[Sat Apr 17 08:39:18.979856 2021] [Req_ID: a163MYZd+CE][R: [
↪→ trace7] [mod_dumpio.c(63)] [dumpio] [client
↪→ 192.168.56.105:48094] [Local 192.168.56.104:443]|
↪→ mod_dumpio: dumpio_out (metadata-EOC): 0 bytes

[Sat Apr 17 08:39:18.980113 2021] [Req_ID: 0zm3MYZe+CE][R: [info
↪→] [ssl_engine_io.c(1381)] [ssl] [client
↪→ 192.168.56.105:48092] [Local 192.168.56.104:443]| AH02008:
↪→ SSL library error 1 in handshake (server
↪→ 192.168.56.102:443)

[Sat Apr 17 08:39:18.980142 2021] [Req_ID: [info] [ssl_engine_io
↪→ .c(1382)] [ssl] [client [Local SSL Library Error: error
↪→ :14094416:SSL routines:ssl3_read_bytes:sslv3 alert
↪→ certificate unknown (SSL alert number 46)

[Sat Apr 17 08:39:18.980151 2021] [Req_ID: 0zm3MYZe+CE][R: [info
↪→] [ssl_engine_io.c(1106)] [ssl] [client
↪→ 192.168.56.105:48092] [Local 192.168.56.104:443]| AH01998:
↪→ Connection closed to child 1 with abortive shutdown (server
↪→ 192.168.56.102:443)

[Sat Apr 17 08:39:18.980183 2021] [Req_ID: 0zm3MYZe+CE][R: [
↪→ trace7] [mod_dumpio.c(151)] [dumpio] [client
↪→ 192.168.56.105:48092] [Local 192.168.56.104:443]|
↪→ mod_dumpio: dumpio_in - 20014

Listing 4.2: Example of an ErrorLog produced by mod dumpio module.

4.3 Log Extractor

The LogExtractor works with the error log file from the Apache server, which was produced by

the WebLoger (as described in Section 4.2.3) and retrieves the logs associated with the result from

the WebFlow Analyser. The implementation used Python V3.8 as the programming language.

4.3.1 Filter

The WebFlow Analyser identifies the portion of traffic where there is evidence of a scanner. The

source ID and the datetime stamp of the Apache log allows the Filter to match the logs with the

46

subset of network traffic. This filter was also implemented in Python.

4.3.2 Parser

After identifying the part of the logs needed, there must be some more work in the error.log file

and that work is done by the Parser. From the format string options presented in the log file, as

mentioned in Table 4.4, the Parser uses the options %F and %M. Option %F allows to filter for the

log file produced by the line code # 103 as this is the code that outputs the logs with the payloads.

In Listing 4.3 one can see an example of this case in line 2.

1 [mod_dumpio.c(63)]
2 [mod_dumpio.c(103)]
3 [mod_dumpio.c(140)]

Listing 4.3: Examples of option %F in log file

The log message produced by format string option %M starts with a preposition that allows one

to infer the traffic direction. We want the inbound traffic, in the example in Listing 4.4 are the lines

1 and 2.

1 mod_dumpio: dumpio_in (data-TRANSIENT): POST /bWAPP/sqli_12.
↪→ php HTTP/1.1\r\n

2 mod_dumpio: dumpio_in (data-TRANSIENT): GET /bWAPP/iframei.
↪→ php?ParamUrl=robots.txt&ParamWidth=250&ParamHeight=250
↪→ HTTP/1.1\r\n

3 mod_dumpio: dumpio_out (data-HEAP): HTTP/1.1 200 OK\r\nDate:
↪→ Sat, 17 Jul 2021 21:00:07 GMT\r\nServer: Apache/2.4.38 (
↪→ Debian)\r\nLast-Modified: Sat, 17 Jul 2021 16:50:36 GMT\
↪→ r\nETag: "a7-5c75480d56028"\r\nAccept-Ranges: bytes\r\
↪→ nContent-Length: 167\r\nVary: Accept-Encoding\r\nKeep-
↪→ Alive: timeout=5, max=100\r\nConnection: Keep-Alive\r\
↪→ nContent-Type: text/plain\r\n\r\n

Listing 4.4: Examples of option %M in log file

One important aspect to consider was that the traffic is logged in chunked parts and not as a

whole. This fact means that, each log line is part of a request and since the lines are intermingled,

the POST and GET requests logs are scattered throughout the file. An example can be seen in

Listing 4.5, where there is an example with only datetime, Source file name and line number of

the log call and message.

47

1 [Sat Jan 02 18:03:30.394295 2021] [mod_dumpio.c(164)]
↪→ mod_dumpio: dumpio_out

2 [Sat Jan 02 18:03:30.394586 2021] [mod_dumpio.c(63)]
↪→ mod_dumpio: dumpio_out (metadata-FLUSH): 0 bytes

3 [Sat Jan 02 18:03:30.394703 2021] [mod_dumpio.c(140)]
↪→ mod_dumpio: dumpio_in [getline-blocking] 0 readbytes

4 [Sat Jan 02 18:03:31.005101 2021] [mod_dumpio.c(63)]
↪→ mod_dumpio: dumpio_in (data-HEAP): 1 bytes

5 [Sat Jan 02 18:03:31.005159 2021] [mod_dumpio.c(103)]
↪→ mod_dumpio: dumpio_in (data-HEAP): G

6 [Sat Jan 02 18:03:31.005169 2021] [mod_dumpio.c(63)]
↪→ mod_dumpio: dumpio_in (data-HEAP): 55 bytes

7 [Sat Jan 02 18:03:31.005195 2021] [mod_dumpio.c(103)]
↪→ mod_dumpio: dumpio_in (data-HEAP): ET /vulnerabilities/
↪→ sqli/?id=1&Submit=Submit HTTP/1.1\r\n

8 [Sat Jan 02 18:03:31.005218 2021] [mod_dumpio.c(140)]
↪→ mod_dumpio: dumpio_in [getline-blocking] 0 readbytes

9 [Sat Jan 02 18:03:31.005226 2021] [mod_dumpio.c(63)]
↪→ mod_dumpio: dumpio_in (data-HEAP): 22 bytes

10 [Sat Jan 02 18:03:31.005232 2021] [mod_dumpio.c(103)]
↪→ mod_dumpio: dumpio_in (data-HEAP): Host: 192.168.56.104\
↪→ r\n

11 [Sat Jan 02 18:03:31.005239 2021] [mod_dumpio.c(140)]
↪→ mod_dumpio: dumpio_in [getline-blocking] 0 readbytes

12 [Sat Jan 02 18:03:31.005245 2021] [mod_dumpio.c(63)]
↪→ mod_dumpio: dumpio_in (data-HEAP): 24 bytes

13 [Sat Jan 02 18:03:31.005251 2021] [mod_dumpio.c(103)]
↪→ mod_dumpio: dumpio_in (data-HEAP): Connection: keep-
↪→ alive\r\n

Listing 4.5: log file parsed example

From this example, we start by filtering the logs made by code line #103, with a mode con-

figuration of dump io. In Listing 4.5, that result is given by lines 5, 7, 10 and 13. After filtering

these lines, the request is complete, as presented in Listing 4.6.

The implementation of the Parser was done in Python, by traversing the log file, keeping the

lines that we were interested in and discarding the others. From the result in Listing 4.6 we get

the final payload in the first line id = 1&Submit = Submit. In case of a POST request, the

payload is in the message at the last line. Those are the final values passed to the next module of

our system, the Similarity Search Engine.

48

GET /vulnerabilities/sqli/?id=1&Submit=Submit HTTP/1.1
Host: 192.168.56.104
Connection: keep-alive
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit

↪→ /537.36 (KHTML, like Gecko) Chrome/83.0.4103.116 Safari
↪→ /537.36

Accept: text/html,application/xhtml+xml,application/xml;q
↪→ =0.9,image/webp,image/apng,*/*;q=0.8,application/signed-
↪→ exchange;v=b3;q=0.9

Referer: http://192.168.56.104/vulnerabilities/sqli/
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9
Cookie: PHPSESSID=vjdso0ulg77g2ennu1r18skq5k; security=low

Listing 4.6: Example of complete request

4.4 Similarity Search Engine

The similarity search engine works with tokens obtained from the payloads. This module needs to

transform the payloads into tokens, construct a database of tokens and create a tool to query that

database. We chose to continue with Python and used the datasketch [64] library to estimate the

Jaccard similarity between payloads.

The main objective was building a LSH object with tokens built from the payloads of the

anomalous traffic. After that, the similarity search engine can query the LSH object and find

similar tokens (and therefore similar payloads). When a new payload is found, this module can

also transform the new payload into a token and update the LSH database with it.

4.4.1 Token Builder

The first step is to retrieve all the payloads values. To do so, the token builder uses basic string

manipulation as the payloads are always in the format: key1 = value1&key2 = value2&key3 =

value3 and so on. As already stated in Section 3.3.2.1 the token builder must:

• Use only the values of the payload

• Transform the values into n-grams of n=3

• Remove duplicates

All of these requirements are easily accomplished in Python, using string manipulation, and

Python data structures, as for example the set. In Python, a set is a data type used to store

collections of data, which are unordered, unchangeable (items are not changeable), and do not

allow duplicate values.

49

4.4.2 Token Database

The tokens database was previously constructed by creating a dataset. In order to create a database

we used the network built in Section 4.1, and set up a Client A with a scanner. We used OWASP

Zed Attack Proxy (ZAP) [65].

First, we had to create a ZAP script that allowed for the scanner to login into DVWA and

perform a scan. DVWA has several security levels, and it was fundamental that the ZAP scanner

did not change the security level from low. A low security level means that the application has

several active vulnerabilities and the scanner will try to detect and exploit them. The ZAP script

was a JavaScript/ECMAScript. It started by creating a context that had a username and password

necessary to create the requests for a login, verifying if the authentication is working, and creating

a seed for the spider. In order to get the maximum examples of payloads created by the scanner, all

the scan tests were chosen. These included tests for the following classes of web vulnerabilities:

• Directory Browsing

• Source Code Disclosure - /WEB-INF folder

• Buffer Overflow

• CRLF Injection

• Cross Site Scripting (Persistent)

• Cross Site Scripting (Persistent) - Prime

• Cross Site Scripting (Persistent) - Spider

• Cross Site Scripting (Reflected)

• Format String Error

• Parameter Tampering

• Remote OS Command Injection

• Server Side Code Injection

• Server Side Include

• SQL Injection

• External Redirect

• Script Active Scan Rules

• Path Traversal

• Remote File Inclusion

50

After making the client script work with ZAP, we captured the logs at the Apache server.

From there, we created the tokens, and with these tokens we built the LSH database, as illustrated

in Figure 4.2.

Figure 4.2: DB creation

There was no need to pinpoint the logs related to the traffic from the ZAP scanner, because

it was a session without any other traffic. The final log file had 1,8 GB in size, corresponding to

373k lines, which included:

• 170k - Replies

• 164k - Get requests

• 19k - Post requests

As explained in Section 3.3.2.3 the algorithm used for LSH was the MinHash LSH. We needed

several Databases with different parameters, a set with 128 permutations and a different set with

256 permutations. In each of these sets, we need a DB for each similarity threshold we chose.

The option was to construct one Database for 0.60, 0.70, 0.80, 0.90, 0.95, 0.98 and 0.99. With

this many Databases we can twitch the token classifier as we want. If the token query returns too

many false results, we must use a higher threshold, if the token query is too slow then we can use

a Database from the 128 permutations.

This many Databases comes with a price. Of course the used space is a point of interest, and

can be a problem, but it is easily addressed if needed. The biggest problem is the time needed to

construct all of these Databases. However the more prepared we get, the better answers we are

able to present later on. As the implementation of this system was made in Python, the Tokens

Database is an LSH object that is serialised to the disk drive using the pickle library [66].

51

4.4.2.1 Pickling

We wanted to find out the behaviour of the LSH object during pickling and unpickling. For that

analysis, we used the log file mentioned above and created the same set of Database of tokens 100

times each. The time for pickling and unpickling the LSH object to and from a file was measured

in microseconds within the testing environment described in Section 4.1. The measured values

depend on several parameters such as the CPU speed, RAM and hardware disk among others, and

it will vary on different environments. The behaviour however will be the same. We are interested

in the evolution between thresholds for each permutation.

Figures 4.3 and 4.4 presents the results of these experiments, from which we can derive some

conclusions:

Figure 4.3: Mean dump and load time, and file size of the LSH object with 128 Permutations

• More permutations imply more calculations and, therefore, the time to create the LSH object

and to serialise it to a file is bigger.

• More permutations implies a bigger LSH object and, therefore, the file representation of the

object takes more space.

• The smaller the threshold, more pairs of similar tokens and less buckets will exist, which

means more time to serialise the LSH object to a file and more time deserialise that file,

because it is a bigger file.

4.4.3 Token Query

To perform a query, the query token must be hashed to an existing bucket in each multimap of the

LSH object. Tokens which hash to the same bucket are returned as similar. For this test we did

52

Figure 4.4: Mean dump and load time, and file size of the LSH object with 256 Permutations

1000 queries of 3 different tokens, in each combination of permutations with threshold. The tokens

were one with many results, one with fewer results and one with no results, the permutations values

were 128 and 256, and threshold values were 0.6, 0.7, 0.8, 0.9, 0.95, 0.98 and 0.99. In total, we

executed 42 thousand queries.

The query time was measured and its average is presented in Figure 4.5. It was only possible

to measure the time in microseconds, due to the fact that it was such a small timeframe, that a more

detailed precision would cause an overflow in the time object and sometimes produced a negative

time difference. These values must take into consideration that the variation is high, as most of the

values are zero. However, it is safe to conclude that, the bigger the threshold, the less time it takes

for the query to return a result.

4.4.4 Token Classifier

If a query is made to a high threshold LSH object database, and it returns one or more results,

then as we have several similar payloads in the database, it is very likely that the payload we are

analysing should also be a member of the DB. In this case, we update the DB and send a message

to the SOC.

If a query is made to a low threshold LSH object, and returns few or any results, means that

the token has no similarity with the other tokens in the DB. It implies that it is not a payload from

a known scanner. We must be careful here, because we previously identified this payload, as part

of a WebFlow from anomalous traffic. Because of this uncertainty, created by different indicators,

we must further analyse the token.

In our tests we found that a threshold of 0.8 and considering a query with one or more results

were sufficient to identify the use of a scanner, but the system is easily adjusted as needed. For

53

Figure 4.5: Average query time (in Microseconds)

example, we can use an LSH object with a 0.7 threshold and only choose to consider it an attack

if the query returns 3 or more tokens or we can choose a 0.9 threshold and consider it an attack if

the query results in 1 or more tokens.

Whichever the adjustments used, the actions of the classifier are always the same: either con-

sidering the token an attack, updating the DB and alerting the SOC or in face of uncertainty

continuing to analyse the token.

4.4.5 LSH DB Updater

The LSH DB updater is used to include a new payload as a token in the DB. This process occurs

when a payload is identified as an attack or as belonging to a scanner. This identification can

be performed by the SOC or via the Classifier presented in the String Analyser module. The

objective is to make the Similarity Search Engine more precise in future analyses. In terms of

implementation, the LSH DB is an LSH object, and the way to update is simple by loading it

in memory and using an insert function to simply append the new token. In Figure 4.6, one can

observe a time analysis of the insert function for the different thresholds and permutations. It was

only possible to measure the time in microseconds, because a more detailed precision would cause

an overflow in the time object and sometimes produced a negative time difference. Because most

of the values are zero, these analysis must account for the high variance, but it is reasonable to

deduce that the higher the threshold, the less time it takes for the update function to execute.

54

Figure 4.6: Average time to update DB

4.5 String Analyser

All the payloads that the Similarity Search Engine is not certain to be an attack, must go to the

next entity, the String Analyser. In this module, we have the same objective, to analyse a payload

and detect if it is an attack, but with a different approach. In this set of tools, we analyse each

string, to classify it. We work with the payload and its original values as strings. The way this

entity is constructed allows us to use more tools if we need it. When a payload arrives at this

point, it has gone through a similarity search engine, as there is no similar payload in the DB. This

indicates that the payload being examined is being analysed by our solution, for the first time. So

our approach at this time is more conventional, and we focus on the payload content. The objective

here is to identify a payload with an attack, so it can be added to the DB of the similarity search

engine.

4.5.1 Sanitiser

In our implementation in Python we used MySQLdb [67], which is an interface to the popular

MySQL database server that provides the Python database API. By accessing the MySQL C API,

the Sanitiser can use the mysql real escape string quote() function that creates a legal SQL

string for use in an SQL statement [68].

4.5.2 Classifier

The classifier implemented a simple rule. If the Sanitiser discovers an unsafe payload then the

classifier send the token to the database by the LSH DB Updater, if the Sanitiser result is that the

payload is safe, the classifier discards that payload.

55

4.6 Final Considerations

The amount of data to analyse in each module is smaller in each step. We start with all the traffic

captured in the network, we identify a subset of that traffic as suspicious with the use of WebFlow

and ML, we then get the corresponding logs, and filter them to obtain the payloads. After the use

of similarity search engine, we are left with a smaller subset of payloads that did not had a match.

These residual payloads must be analysed in the string classifier, and there will be a marginal

subset of payloads for the SOC analysis. Additionally, the String Analyser can be populated with

more than one tool. Our case used a Sanitiser, but the overall system can have more string analyser

tools.

56

Chapter 5

Evaluation

This chapter contains the experimental evaluation of the system proposed in this thesis. The ex-

periments will be conducted on a controlled network to create normal traffic and traffic originated

by a scanner. The chapter describes the experiment environment in Section 5.1 and in Section 5.2

we discuss the results. The evaluation aims to answer the following questions:

Q1 - Can the system detect anomalous traffic with high chances of including web attacks like

SQLi or XSS?

Q2 - Can the system analyse the payload content of the anomalous traffic previously detected and

confirm the payloads are from attackers?

Q3 - Can we improve the process?

5.1 Experimental Environment

This section describes the experimental environment we set up to conduct the experiments. The

conceptual architecture follows the diagram presented in Figure 4.1 and uses the same develop-

ment scenario described in Section 4.1. More specifically, we describe the concrete tools employed

in each component as well as the remaining software stack when appropriate.

WebServer
We started by deploying a webserver running the web application DVWA [59], v1.10, for monitor-

ing it. This machine also runs tcpdump [69] version 4.9.3 which depends on libpcap version 1.8.1

and OpenSSL version 1.1.1d 10 Sep 2019. The tcpdump tool was used to collect all the network

traffic. Before starting the test we prepared the Apache server [70] version 2.4.38 (Debian), by

installing the add-on mod dumpio and created a configuration file to create the necessary logs, as

described in Section 4.2.3. This machine runs a Debian GNU/Linux 10 (buster), with the config-

urations as described in Table 4.1.

Bot Traffic
To simulate normal human traffic, we created a Bot in Python [71] version 3.8. . To achieve

57

this, the bot will go to different pages of the application and perform different actions. Some

of the actions are normal and some are attacks. As we wanted the traffic to remain similar to a

human originated traffic, we created some randomness to the navigation. The time between each

action was randomised and also the actions were randomised. In Figure 4.1 this was implemented

in Client A, using a machine with the configurations as described in Table 4.1 and running Kali

GNU/Linux Rolling, 2020.3 release.

Scanner
The scanner utilised was OWASP ZAP [65] Version 2.9.0, we used the same script as in Sec-

tion 4.4.2. This script allowed for the scanner to login into DVWA and perform a scan. In the

Figure 4.1 the scanner was implemented in Client B, using a machine with the configurations as

described in Table 4.1 and running Kali GNU/Linux Rolling, 2020.3 release.

Traffic generation
To perform the evaluation of the traffic, we ran the bot described in Section 5.1 two times as this

will create some random traffic. We opted to run the bot at two distinct times in order to create two

different navigation events. Each of those times, the bot spent at least 2 hours navigating the app

and performing actions. We also ran the Scanner, which took 17 minutes to perform the full scan.

The traffic generated by the Scanner included traffic generated by a spider and traffic with attacks.

A spider is a passive scanner tool that collects new URLs on the site being scanned. The spider

starts with a list of known URLs, navigate through those URLs and retrieve all the hyperlinks in

the page. It then adds the hyperlinks to the list of URLs, and keep doing so until it captures all

the URLs of the website. The active scan uses the URLs captured by the spider, and attempt to

discover vulnerabilities by using known attacks on those URLs. All of this traffic was captured

using tcpdump.

5.1.1 Attack Detection

To analyse the network traffic we followed the proposed architecture and as so, we pass the traffic

throughout the several entities described in Figure 3.2. The objective was to perform all three

phases of the proposed approach:

1. Detecting anomalous traffic with high chances of including web attacks like SQLi or XSS.

2. Analyse the payload content of the previously selected traffic.

3. Continuous improvement process.

5.1.1.1 Detecting Anomalous Traffic

The traffic to analyse was all the traffic generated in Section 5.1, which included the (normal)

traffic from the bot and the traffic from the scanner. The first step is to produce a WebFlow and

then analyse the payload content.

58

WebFlow
The Exporter tool used was tcpdump, and this tool produced a PCAP file. In the Collector, we

used the SiLK [61] Version 3.19.1, framework to transform the traffic from the PCAP file, into a

WebFlow. The result observed in Table 5.1 had more than 16k lines.

Table 5.1: WebFlow before filter

sIP dIP sPort dPort Proto Packets Bytes Flags Duration
3232249957 3232249958 37152 443 6 6 867 27 0.045
3232249958 3232249957 443 37152 6 5 1818 27 0.045
3232249957 3232249958 37154 443 6 7 919 27 0.043
3232249958 3232249957 443 37154 6 4 1766 27 0.043
...

The Analyser uses this WebFlow to find the traffic of the scanner. It starts by filtering the

WebFlow to keep just the traffic from the TCP protocol, easily identified by the value 6 in the

Proto field of the WebFlow, it then filters just the inbound traffic, identified by the value of server

IP in the dIP field. It is also safe to discard the dPort field, as it will always have the value 443,

the port of HTTPS connections.

Table 5.2: WebFlow after filter

sIP sPort Packets Bytes Flags Duration
3232249957 42516 18 4518 30 30.686
3232249957 37478 18 4584 30 27.89
3232249957 40634 18 4688 30 24.99
3232249957 38214 16 3932 30 20.277
...

This filter result in a subset as observed in Table 5.2, with 7 728 lines. We then perform the

analyses by using the K-means algorithm with the MixMax scaler. The features analysed were sIP,

sPort, packets and duration. By using the Elbow curve approach to detect the amount of clusters

we discover the optimal k to be 3, where the inertia value is 86 and after which point the changes

in inertia value are insignificant. This elbow curve can be observed in Figure 5.1.

Figure 5.1: Elbow calculation

59

The K-means algorithm identifies three clusters with different sizes, described in Table 5.3.

During the cluster formation, it is expected to group in the smaller cluster, the traffic from the

Table 5.3: Clusters sizes

Cluster size
0 3746
1 332
2 3650

scanner, as this traffic is in smaller quantity than the normal traffic. This is a typical scenario in

real life, were there is more normal traffic than anomalous. Analysing cluster # 1 we can compare

it to the original traffic and got a match for the traffic of the scanner.

Figure 5.2: Clusters features analyse

We can observe in Figure 5.2 that the major difference is the sIP. This difference is expected

in a real world scenario, but there are others differences. A closer look, in Figure 5.3, will show

that there is a clear difference in cluster # 1 from the other two clusters on the duration and packets

features. This cluster # 1 includes only traffic from the scanner and no traffic from the bot. Clusters

0 and # 2 include traffic from the bot, but no traffic from the scanner.

5.1.1.2 Analyse the Payload Content

As described in Section 5.1, the webserver was previously prepared, and there was no need to do

anything else at this stage, as the log error file was already created.

Log Extractor
In the Log Extractor we ran the Filter and the Parser, as stated in the Section 4.3. The Filter uses

60

Figure 5.3: Clusters features analyse detail

the traffic identified in cluster #1, and created a subset of those logs, from the error log file, and

this subset was transformed in the Parser.

Similarity Search Engine
The similarity search engine (SSE) is a major point in the proposed solution of this work. To

properly evaluate it, we opted to do a Cross-validation. Cross validation is a resampling strategy

that tests a model using various chunks of the data on successive rounds. It is most commonly

employed in situations when the aim is the prediction and the user wants to know how well a

predictive model will perform in practice. Our evaluation is based on a ratio of 80/20 and 20 tests.

This is 80% of tokens are used to create the LSH DB, 20% of tokens are used to query the DB

and this is done 20 times, being that each time the tokens are randomly selected. We also wanted

to evaluate the permutation and the threshold values, and to accomplish that, we build a separated

DB for each pair of permutation-threshold in each of the 20 tests.

Token Builder
The 332 lines of WebFlow traffic presented in cluster #1 belonged to a subset of logs, that pro-

duced 5951 tokens.

Tokens BD
Based on the cross validation approach, the DB was constructed each time with 4760 randomly

selected tokens.

Token query
The remaining 1191 tokens were queried in the DB. What we want is to find if these searched

tokens match to tokens that were previously identified as belonging to a scanner.

After finalising all the tests, we evaluate the percentage of tokens with one or more results in

the DB. The results of this evaluation are in Table 5.4, which represents the percentage of tokens

with one or more results from the query. As we can observe with a permutation of 128 and a

threshold of 0.6, 94,55% of the 1191 searched tokens had one or more positive results. Since we

know that all the tokens belongs to traffic originated by a scanner, we can say that in this example

61

we have 94,55% positive rate of identified tokens.

Table 5.4: Token query evaluation

Threshold 128 256
0.6 94,55% 93,97%
0.7 93,14% 93,12%
0.8 89,36% 89,67%
0.9 67,61% 72,06%
0.95 37,72% 38,62%
0.98 14,41% 12,27%
0.99 2,61% 2,27%

5.1.1.3 Continuous Improvement Process

The continuous improvement process is intended to be continuous, and as such this preliminary

evaluation will just indicate a tendency, being necessary more prolonged tests in real life situa-

tions to correctly determine its usefulness. The major objective with this process is to increase

the robustness of the tools used in Section 5.1.1.2. If the detection done in Section 5.1.1.2 was

successful, then all the payloads from that traffic should be included in the DB. The DB already

includes some of those payloads, and we just update the new ones. This means that the next time

this anomalous traffic is detected, our DB already includes those payloads.

To test this improvement in the DB, we will perform one more test of queries. After updating

the DB, we now have all of the 5951 tokens in it. From the 5951 tokens we randomly select 20%

to query the DB and again this is done 20 times. After finalising all the tests, we evaluate the

percentage of tokens with two or more results in the DB. This time the results must be two or

more, because each searched token was itself already in the DB.

The results of this evaluation are in Table 5.5 which represents the percentage of tokens with two

or more results from the query. The Table also presents the change (∆) in growth of accuracy

in comparison with the test done before the improvement, which results are in Table 5.4. As ob-

served this approach produces an increased accuracy, and as expected by continuing to update the

DB with new tokens, its accuracy will continue to improve over time.

Table 5.5: Token query evaluation after continuous improvement and ∆ growth of accuracy

Threshold 128 256 ∆ 128 ∆ 256
0.6 94,75% 94,32% 0,20% 0,35%
0.7 93,63% 93,39% 0,49% 0,27%
0.8 90,09% 90,46% 0,73% 0,79%
0.9 69,03% 73,68% 1,42% 1,62%
0.95 38,73% 39,87% 1,01% 1,25%
0.98 15,02% 12,73% 0,61% 0,46%
0.99 2,84% 2,45% 0,23% 0,18%

62

String Analyser
The string analyser is a set of tools that can validate if a string contains an attack or not. All the

tools in this module will help to classify a string as an attack. Each tool is a function that receives

as an input a payload and returns a value that states if that payload is an attack or not. For example

the sanitiser we used in Section 4.5 has 100% accuracy in the character escaping for which it was

designed. If we want to escape spaces then we must include another sanitiser. Each implementa-

tion of these tools is done according to the SOC Analyst decision. These sanitisation checks were

study by Shar et.al. [72] [73]. The Software Engineering Institute at the Carnegie Mellon Uni-

versity have extensive code standards accordingly to the programming language, like Java [74],

Pearl [75] and C++ [76]. The PHP Group have a list of filters for sanitisation [77]. For Python

there are several packages available like the Schema package [78] or the HTML package [79]. We

did not test any individual tool, as the objective of this module for our work, is to improve the

attack detection.

5.2 Evaluation Conclusion

In the beginning of this chapter we presented three questions. This evaluation was able to respond

all of the question.

Q1 - Can the system detect anomalous traffic with high chances of including web attacks like

SQLi or XSS?

Yes. In the Attack Detection, section 5.1.1 we were able to perform a cluster analysis on the

NetFlow and detect a cluster with the anomalous traffic.

Q2 - Can the system analyse the payload content of the anomalous traffic previously detected and

confirm the payloads are from attackers?

Yes. We were able to analyse the payload and with the use of LSH we confirmed that the

payloads with origin in the scanner were web application attacks. As long as the Token DB

in our SSE is prepared, the SSE can make an accurate evaluation of the tokens. For example

using the SSE with 256 permutations and a similarity threshold of 0.8 we concluded with

89% positive rate, that the traffic was from a scanner.

Q3 - Can we improve the process?

Yes. We observed an improvement in the SSE, because of the updates to the Token DB. The

improvement was between 0.18% and 1.62%. Although it is not much, it shows a tendency

of improvement, and this compound improvement will help the accuracy of SSE as it keeps

evolving.

In summary it was possible to detect the anomalous traffic originated by the scanner and seg-

regate that traffic to analyse it with a SSE. Using the SSE with 256 permutations and a threshold

of 0.8 we concluded with 89% positive rate, that the traffic was from a scanner, and that with a

continuous improvement approach the accuracy of the SSE improved from said 89% to 90%.

63

Chapter 6

Conclusion

6.1 Conclusion

The use of web applications is a major part of the Internet success. The web applications are the

ones that allow the remote work, sharing economy, education democratisation and many others

paradigms. Because of the importance of web applications, they are the focus of many attacks.

We have analysed the common approaches, to detect attacks in network traffic, and the most

established tools to prevent and detect such attacks tend to loose performance when inspecting

HTTPS traffic, the web protocol widely adopted nowadays. The use of DPI is not appropriate

in the presence of HTTPS traffic, and the mainstream solution of using an intermediary proxy

server to decrypt the traffic, introduces a new weak point susceptible of more attacks. We propose

an approach to inspect HTTPS traffic in a light way for detection of web attacks, namely SQLi

and XSS. Our approach was capable of identifying anomalous traffic with the use of Machine

Learning. By using an unsupervised machine learning algorithm we were able to cluster the

anomalous traffic in a NetFlow created from HTTPS traffic. We also develop and implemented a

Similarity Search Engine capable of confirming that the anomalous traffic contains web application

attacks, without the need to decrypt the traffic between the client and the server. In order to

keep our solution viable, we develop a continuous improvement process, capable of extending the

Similarity Search Engine accuracy as new attacks are observed. All of our solution was develop

in a way that a SOC analyst can perform adjustments on any module, accordingly to his intents.

6.2 Future Work

In future work, we plan to use the continuous improvement process, to lengthen the Similarity

Search Engine database, by including traffic from more web scanners. By growing our database,

one important study to follow is the ability of the system to surpass scanners traffic and perform

more broad analysis.

64

Bibliography

[1] TechnoHub. Difference Between HTTP and HTTPS Protocols for SEO. https://www.

technohub.org/difference-between-http-and-https-seo/. Accessed:

2022-03-15.

[2] R. Hofstede, P. Čeleda, B. Trammell, I. Drago, R. Sadre, A. Sperotto, and A. Pras. Flow

Monitoring Explained: From Packet Capture to Data Analysis With NetFlow and IPFIX.

IEEE Communications Surveys Tutorials, 16(4):2037–2064, 2014.

[3] CISCO. NetFlow Version 9 Flow-Record Format. https://www.cisco.

com/en/US/technologies/tk648/tk362/technologies_white_

paper09186a00800a3db9.html. Accessed: 2022-03-15.

[4] T. N. Rincy and R. Gupta. A Survey on Machine Learning Approaches and Its Techniques.

In Proc. of the IEEE International Students’ Conference on Electrical,Electronics and Com-

puter Science (SCEECS), pages 1–6, 2020.

[5] D. A. Kindy and A. K. Pathan. A survey on SQL injection: Vulnerabilities, attacks, and

prevention techniques. In Proc. of the 15th IEEE International Symposium on Consumer

Electronics (ISCE), pages 468–471, 2011.

[6] Aplextor Laboratory. Web Statistics. https://medium.com/@aplextorlab/

web-statistics-69493eebbd01. Accessed: 2022-02-21.

[7] Debah Ahmed. Massive privacy risk as hacker sold 2 million MyFreeCams user records.

https://www.hackread.com, 2021. Accessed: 2022-03-15.

[8] Open Web Application Security Project (OWASP). OWASP Top Ten. https://owasp.

org/www-project-top-ten/. Accessed: 2022-03-15.

[9] Mark O’Neill, Scott Ruoti, Kent Seamons, and Daniel Zappala. Tls proxies: Friend or foe?

07 2014.

[10] K. Kent, S. Chevalier, T. Grance, and H. Dang. Recommendations of the National Institute

of Standards and Technology. Technical report, 2006.

65

https://www.technohub.org/difference-between-http-and-https-seo/
https://www.technohub.org/difference-between-http-and-https-seo/
https://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a00800a3db9.html
https://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a00800a3db9.html
https://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a00800a3db9.html
https://medium.com/@aplextorlab/web-statistics-69493eebbd01
https://medium.com/@aplextorlab/web-statistics-69493eebbd01
https://www.hackread.com
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/

[11] Yadong Li, Danlan Li, Wenqiang Cui, and Rui Zhang. Research based on OSI model. In

Proc. of the 3rd IEEE International Conference on Communication Software and Networks,

pages 554–557, 2011.

[12] ISO/IEC JTC 1 Information technology - Technical Committee. Information technology -

Open System Interconnection - Basic reference model - The basic model. Standard, Teleco-

munication standardization sector of Internacional Telecomunication Union, 07 1994.

[13] The Internet Society. Requirements for Internet Hosts – Communication Layers. https:

//datatracker.ietf.org/doc/html/rfc1122. Accessed: 2022-03-15.

[14] The Internet Society. Requirements for Internet Hosts – Application and Support. https:

//datatracker.ietf.org/doc/html/rfc1123. Accessed: 2022-03-15.

[15] The Internet Society. Hypertext Transfer Protocol – HTTP/1.1. https://tools.ietf.

org/html/rfc2616. Accessed: 2022-03-15.

[16] The Internet Society. Hypertext Transfer Protocol Version 3 (HTTP/3) draft-ietf-

quic-http-33. https://tools.ietf.org/html/draft-ietf-quic-http-33#

section-2. Accessed: 2022-03-15.

[17] The Internet Society. Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content.

https://tools.ietf.org/html/rfc7231#section-4.1. Accessed: 2022-03-

15.

[18] Internet Assigned Numbers Authority (IANA). Permanent Message Header Field

Names. https://www.iana.org/assignments/message-headers/

message-headers.xml. Accessed: 2022-03-15.

[19] The Internet Society. HTTP Over TLS. https://tools.ietf.org/html/

rfc2818. Accessed: 2022-03-15.

[20] The Internet Society. The TLS Protocol Version 1.0. https://tools.ietf.org/

html/rfc2246. Accessed: 2022-03-15.

[21] NetApplications.com. Market Share Statistics for Internet Technologies. https://

netmarketshare.com/. Accessed: 2022-03-15.

[22] A. Pramod, A. Ghosh, A. Mohan, M. Shrivastava, and R. Shettar. SQLI detection system for

a safer web application. In Proc. of the IEEE International Advance Computing Conference

(IACC), pages 237–240, 2015.

[23] D. Naylor, A. Finamore, I. Leontiadois, Y. Grunenberger, M. Mellia, M. Munafò, K. Papa-

giannaki, and P. Steenkiste. The Cost of the “S” in HTTPS. In Proc. of the CoNEXT ’14,

pages 1–7, 2014.

66

https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/rfc1123
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/draft-ietf-quic-http-33#section-2
https://tools.ietf.org/html/draft-ietf-quic-http-33#section-2
https://tools.ietf.org/html/rfc7231#section-4.1
https://www.iana.org/assignments/message-headers/message-headers.xml
https://www.iana.org/assignments/message-headers/message-headers.xml
https://tools.ietf.org/html/rfc2818
https://tools.ietf.org/html/rfc2818
https://tools.ietf.org/html/rfc2246
https://tools.ietf.org/html/rfc2246
https://netmarketshare.com/
https://netmarketshare.com/

[24] The Internet Society. INTERNET ACCOUNTING: BACKGROUND. https://tools.

ietf.org/html/rfc1272. Accessed: 2022-03-15.

[25] Carnegie Mellon University Software Engineering Institute . Cisco ASA and FTD SIP

Inspection denial-of-service vulnerability. https://www.kb.cert.org/vuls/id/

339704. Accessed: 2022-03-15.

[26] The Internet Society. Requirements for IP Flow Information Export (IPFIX). https:

//tools.ietf.org/html/rfc3917. Accessed: 2022-03-15.

[27] B.Claise. From NetFlow to IPFIX via PSAMP: 13 years of

Standardization Explained. https://www.ietf.org/blog/

netflow-ipfix-psamp-13-years-standardization-explained/. Ac-

cessed: 2022-03-15.

[28] Internet Assigned Numbers Authority (IANA). IPFIX Information Elements. https://

www.iana.org/assignments/ipfix/ipfix.xhtml. Accessed: 2022-03-15.

[29] P. Matoušek, O. Ryšavý, M. Grégr, and M. Vymlátil. Towards identification of operating

systems from the internet traffic: IPFIX monitoring with fingerprinting and clustering. In

Proc. of the 5th International Conference on Data Communication Networking (DCNET),

pages 1–7, 2014.

[30] R. Hofstede, V. Bartoš, A. Sperotto, and A. Pras. Towards real-time intrusion detection for

NetFlow and IPFIX. In Proc. of the 9th International Conference on Network and Service

Management (CNSM 2013), pages 227–234, 2013.

[31] Jordi Zayuelas I Muñoz. Detection of Bitcoin miners from network measurements. Master’s

thesis, Universitat Politècnica de Catalunya, 4 2019.

[32] Olivier van der Toorn, Rick Hofstede, Mattijs Jonker, and Anna Sperotto. A first look at

HTTP(S) intrusion detection using NetFlow/IPFIX. In Proc. of the IFIP/IEEE International

Symposium on Integrated Network Management (IM), pages 862–865, 2015.

[33] ISO/IEC JTC 1/SC 27 Information security, cybersecurity and privacy protection - Technical

Committee. ISO/IEC 27001:2013. Standard, International Organization for Standardization,

10 2013.

[34] Z. Lin, X. Li, and X. Kuang. Machine Learning in Vulnerability Databases. In Proc. of the

10th International Symposium on Computational Intelligence and Design (ISCID), volume 1,

pages 108–113, 2017.

[35] European Union Agency for Cybersecurity. List of top 15 threats. https://www.enisa.

europa.eu/topics/threat-risk-management/threats-and-trends/

etl-review-folder/etl-2020-enisas-list-of-top-15-threats, 2020.

Accessed: 2022-03-15.

67

https://tools.ietf.org/html/rfc1272
https://tools.ietf.org/html/rfc1272
https://www.kb.cert.org/vuls/id/339704
https://www.kb.cert.org/vuls/id/339704
https://tools.ietf.org/html/rfc3917
https://tools.ietf.org/html/rfc3917
https://www.ietf.org/blog/netflow-ipfix-psamp-13-years-standardization-explained/
https://www.ietf.org/blog/netflow-ipfix-psamp-13-years-standardization-explained/
https://www.iana.org/assignments/ipfix/ipfix.xhtml
https://www.iana.org/assignments/ipfix/ipfix.xhtml
https://www.enisa.europa.eu/topics/threat-risk-management/threats-and-trends/etl-review-folder/etl-2020-enisas-list-of-top-15-threats
https://www.enisa.europa.eu/topics/threat-risk-management/threats-and-trends/etl-review-folder/etl-2020-enisas-list-of-top-15-threats
https://www.enisa.europa.eu/topics/threat-risk-management/threats-and-trends/etl-review-folder/etl-2020-enisas-list-of-top-15-threats

[36] W. Zhenqi and W. Xinyu. NetFlow Based Intrusion Detection System. In Proc. of the

International Conference on MultiMedia and Information Technology, pages 825–828, 2008.

[37] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and B. Stiller. An Overview of IP

Flow-Based Intrusion Detection. IEEE Communications Surveys Tutorials, 12(3):343–356,

2010.

[38] Maryam M. Najafabadi, Taghi M. Khoshgoftaar, Chad Calvert, and Clifford Kemp. De-

tection of SSH Brute Force Attacks Using Aggregated Netflow Data. In Proc. of the 2015

IEEE 14th International Conference on Machine Learning and Applications (ICMLA), pages

283–288, 2015.

[39] Sean Michael Kerner. How Was SQL Injection Discov-

ered? https://www.esecurityplanet.com/networks/

how-was-sql-injection-discovered/. Accessed: 2022-03-15.

[40] D. Patel, N. Dhamdhere, P. Choudhary, and M. Pawar. A System for Prevention of SQLi

Attacks. In Proc. of the International Conference on Smart Electronics and Communication

(ICOSEC), pages 750–753, 2020.

[41] Girdhar Gopal Sonakshi*, Rakesh Kumar. Case study of sql injection attacks. INTER-

NATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY,

5(7):176–189, July 2016.

[42] M. Dayal Ambedkar, N. S. Ambedkar, and R. S. Raw. A comprehensive inspection of cross

site scripting attack. In Proc. of the International Conference on Computing, Communication

and Automation (ICCCA), pages 497–502, 2016.

[43] M. Liu, B. Zhang, W. Chen, and X. Zhang. A Survey of Exploitation and Detection Methods

of XSS Vulnerabilities. IEEE Access, 7:182004–182016, 2019.

[44] K. Gupta, R. Ranjan Singh, and M. Dixit. Cross site scripting (XSS) attack detection using

intrustion detection system. In Proc. of the International Conference on Intelligent Comput-

ing and Control Systems (ICICCS), pages 199–203, 2017.

[45] G. Habibi and N. Surantha. XSS Attack Detection With Machine Learning and n-Gram

Methods. In Proc. of the International Conference on Information Management and Tech-

nology (ICIMTech), pages 516–520, 2020.

[46] L. Lei, M. Chen, C. He, and D. Li. XSS Detection Technology Based on LSTM-Attention.

In Proc. of the 5th International Conference on Control, Robotics and Cybernetics (CRC),

pages 175–180, 2020.

[47] A. L. Buczak and E. Guven. A Survey of Data Mining and Machine Learning Methods for

Cyber Security Intrusion Detection. IEEE Communications Surveys Tutorials, 18(2):1153–

1176, 2016.

68

https://www.esecurityplanet.com/networks/how-was-sql-injection-discovered/
https://www.esecurityplanet.com/networks/how-was-sql-injection-discovered/

[48] Jure Leskovec, Anand Rajaraman, and Jeffrey D. Ullman. Mining of massive datasets. Cam-

bridge University Press, 2020.

[49] Tommaso Rescio, Thomas Favale, Francesca Soro, Marco Mellia, and Idilio Drago. DPI So-

lutions in Practice: Benchmark and Comparison. In Proc. of the IEEE Security and Privacy

Workshops (SPW), pages 37–42, 2021.

[50] Zhihui Cheng, Mykola Beshley, Halyna Beshley, Orest Kochan, and Oksana Urikova. De-

velopment of Deep Packet Inspection System for Network Traffic Analysis and Intrusion

Detection. In Proc. of the 15th IEEE International Conference on Advanced Trends in Ra-

dioelectronics, Telecommunications and Computer Engineering (TCSET), pages 877–881,

2020.

[51] Jeff Jarmoc. Transitive trust: Ssl/tls interception proxies, 3 2012.

[52] Justine Sherry, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy. BlindBox: Deep Packet

Inspection over Encrypted Traffic. SIGCOMM Comput. Commun. Rev., 45(4):213–226, aug

2015.

[53] Jiangpan Hou, Peipei Fu, Zigang Cao, and Anlin Xu. Machine Learning Based DDos Detec-

tion Through NetFlow Analysis. In Proc. of the IEEE Military Communications Conference

(MILCOM), pages 1–6, 2018.

[54] Maryam M. Najafabadi, Taghi M. Khoshgoftaar, Chad Calvert, and Clifford Kemp. Detec-

tion of SSH Brute Force Attacks Using Aggregated Netflow Data. In Proc. of the 14th IEEE

International Conference on Machine Learning and Applications (ICMLA), pages 283–288,

2015.

[55] Atieh Bakhshandeh and Zahra Eskandari. An efficient user identification approach based

on Netflow analysis. In Proc. of the 15th International ISC (Iranian Society of Cryptology)

Conference on Information Security and Cryptology (ISCISC), pages 1–5, 2018.

[56] David Tulloh. dumpio2curl.pl - Extracts dumpio output from Apache logs for debugging and

replaying. https://github.com/lod/dumpio2curl. Accessed: 2022-03-15.

[57] Geoffrey Simmons. dumpio parse.pl - Parse Apache error logs. https://uplex.de/

replay/dumpio_parse.pl. Accessed: 2021-04-14.

[58] Oracle. Oracle VM VirtualBox. https://www.virtualbox.org/. Accessed: 2022-

03-15.

[59] DVWA team. Damn Vulnerable Web Application (DVWA). https://dvwa.co.uk/.

Accessed: 2022-03-15.

[60] Wireshark Team. tshark - Dump and analyze network traffic. https://www.

wireshark.org/docs/man-pages/tshark.html. Accessed: 2022-03-15.

69

https://github.com/lod/dumpio2curl
https://uplex.de/replay/dumpio_parse.pl
https://uplex.de/replay/dumpio_parse.pl
https://www.virtualbox.org/
https://dvwa.co.uk/
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/docs/man-pages/tshark.html

[61] CERT Network Situational Awareness Team. SiLK, the System for Internet-Level Knowl-

edge. https://tools.netsa.cert.org/silk/index.html. Accessed: 2022-

03-15.

[62] CERT Network Situational Awareness Team. SiLK Documentation. https://tools.

netsa.cert.org/silk/docs.html. Accessed: 2022-03-15.

[63] Apache. Apache ErrorLogFormat Directive. https://httpd.apache.org/docs/

2.4/mod/core.html#errorlogformat. Accessed: 2022-03-15.

[64] Eric Zhu. datasketch: Big Data Looks Small. https://github.com/ekzhu/

datasketch. Accessed: 2022-03-15.

[65] ZAP Dev Team. OWASP Zed Attack Proxy. https://www.zaproxy.org/. Accessed:

2022-03-15.

[66] Python Software Foundation. Python object serialization. https://docs.python.

org/3/library/pickle.html. Accessed: 2022-03-15.

[67] Andy Dustman. MySQLdb User’s Guide. https://mysqlclient.readthedocs.

io/user_guide.html. Accessed: 2022-03-15.

[68] Oracle Corporation and/or its affiliates. MySQL Documentation. https://dev.mysql.

com/doc/c-api/8.0/en/mysql-real-escape-string-quote.html. Ac-

cessed: 2022-03-15.

[69] The Tcpdump Group. tcpdump, a powerful command-line packet analyzer. https://

www.tcpdump.org/index.html. Accessed: 2022-03-15.

[70] The Apache Software Foundation. The Apache HTTP Server Project.

https://httpd.apache.org/. Accessed: 2022-03-15.

[71] Python Software Foundation. Python.org. https://python.org. Accessed: 2022-03-

15.

[72] Lwin Khin Shar and Hee Beng Kuan Tan. Predicting common web application vulnerabil-

ities from input validation and sanitization code patterns. In Proc. of the 27th IEEE/ACM

International Conference on Automated Software Engineering, pages 310–313, 2012.

[73] Lwin Khin Shar and Hee Beng Kuan Tan. Mining input sanitization patterns for predicting

SQL injection and cross site scripting vulnerabilities. In Proc. of the 34th International

Conference on Software Engineering (ICSE), pages 1293–1296, 2012.

[74] Carnegie Mellon University. Input Validation and Data Sanitization. https:

//wiki.sei.cmu.edu/confluence/display/java/Input+Validation+

and+Data+Sanitization. Accessed: 2022-03-15.

70

https://tools.netsa.cert.org/silk/index.html
https://tools.netsa.cert.org/silk/docs.html
https://tools.netsa.cert.org/silk/docs.html
https://httpd.apache.org/docs/2.4/mod/core.html#errorlogformat
https://httpd.apache.org/docs/2.4/mod/core.html#errorlogformat
https://github.com/ekzhu/datasketch
https://github.com/ekzhu/datasketch
https://www.zaproxy.org/
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://mysqlclient.readthedocs.io/user_guide.html
https://mysqlclient.readthedocs.io/user_guide.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-escape-string-quote.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-escape-string-quote.html
https://www.tcpdump.org/index.html
https://www.tcpdump.org/index.html
https://python.org
https://wiki.sei.cmu.edu/confluence/display/java/Input+Validation+and+Data+Sanitization
https://wiki.sei.cmu.edu/confluence/display/java/Input+Validation+and+Data+Sanitization
https://wiki.sei.cmu.edu/confluence/display/java/Input+Validation+and+Data+Sanitization

[75] Carnegie Mellon University. SEI CERT Perl Coding Standard. https:

//www.securecoding.cert.org/confluence/display/perl/CERT+

Perl+Secure+Coding+Standard. Accessed: 2022-03-15.

[76] Carnegie Mellon University. CERT C++ Secure Coding Guidelines. https://wiki.

sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046682.

Accessed: 2022-03-15.

[77] The PHP Group. List of filters for sanitization. https://www.php.net/manual/en/

filter.filters.sanitize.php. Accessed: 2022-03-15.

[78] Vladimir Keleshev. Python Schema Package. https://github.com/keleshev/

schema. Accessed: 2022-03-15.

[79] Richard Jones. Python HTML Package. https://pypi.org/project/html/. Ac-

cessed: 2022-03-15.

71

https://www.securecoding.cert.org/confluence/display/perl/CERT+Perl+Secure+Coding+Standard
https://www.securecoding.cert.org/confluence/display/perl/CERT+Perl+Secure+Coding+Standard
https://www.securecoding.cert.org/confluence/display/perl/CERT+Perl+Secure+Coding+Standard
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046682
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046682
https://www.php.net/manual/en/filter.filters.sanitize.php
https://www.php.net/manual/en/filter.filters.sanitize.php
https://github.com/keleshev/schema
https://github.com/keleshev/schema
https://pypi.org/project/html/

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Objectives
	Contributions
	Thesis Organisation

	Background and Related Work
	Network Traffic
	HTTP and HTTPS
	NetFlow

	Web Attacks
	SQLi
	XSS

	Machine Learning
	Similarity Search
	Locality-Sensitive Hashing

	Related Work

	Proposed Approach
	Challenges
	Capture Suspicious HTTPS Network Traffic Related to Web Application Attacks
	Web Application Attacks Constraints
	How to Find Web Application Attacks from a Scanner?

	Solution Overview
	Main Modules
	Detecting Anomalous Traffic
	Analyse Payload
	Continuous Improvement

	Implementation
	Development Scenario
	Network Traffic
	Exporter
	Collector
	WebApp

	Log Extractor
	Filter
	Parser

	Similarity Search Engine
	Token Builder
	Token Database
	Token Query
	Token Classifier
	LSH DB Updater

	String Analyser
	Sanitiser
	Classifier

	Final Considerations

	Evaluation
	Experimental Environment
	Attack Detection

	Evaluation Conclusion

	Conclusion
	Conclusion
	Future Work

	Bibliography

