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A B S T R A C T   

In Europe, regional climate change prospects indicate the urgency of adapting to extreme weather events. While 
increasing temperature trends have already been detected, in the last decades, the adoption of a European 
heatwave (HW) early-warning index is not yet consensual, partially due to the significant number of alternative 
algorithms, in some cases adjusted to the measurement of sector-specific impacts (as per the Expert Team on 
Climate Risk and Sector-specific Indices (ET-SCI)). In particular, the Excess Heat Factor (EHF) has been shown to 
accurately predict heat-related human health outcomes, in mid-latitude climates, provided that local summer 
exposure to excess heat is mostly driven by extreme air temperatures, with a lower contribution from relative 
humidity. Here, annual summaries of EHF-based HW detection were calculated for the European region, using 
daily maximum and minimum temperatures from the homogenised version of the E-OBS gridded dataset. Annual 
HW frequencies, duration, mean magnitude, maximum amplitude, and severity were subject to climatology and 
trend analysis across the European biogeographical regions, considering the 1961–1990 period as the baseline 
reference for anomaly detection in the more recent (1991–2018) decades. As HW-dependent morbidity/mortality 
affects mostly the elderly, an EHF-based HW Exposure Index was also calculated, by multiplying the recent 
probability of severe events per the number of people aged 65, or more, in the European Functional Urban Areas 
(FUAs). Results show that recent historical EHF-based patterns diverge across European Biogeographical regions, 
with a clear latitudinal gradient. Both the historical mean and recent trends point towards the greater exposure in 
the southern European Mediterranean region, driven by the significant increase of HW frequency, duration and 
maximum severity, especially in the last 3 decades; conversely, annual maximum EHF intensities (i.e., greatest 
deviations from the local 90th daily mean temperature) are mostly found in the northern and/or high altitude 
Boreal, Alpine and Continental regions, as a consequence of the latitudinal effect of local climatology on the 
HWM/HWA indices (this also translates into greater magnitudes of change, in this regions). Nonetheless, by 
simultaneously considering the probability of Severe HW occurrence in the last three decades, together with the 
log transformation of people aged 65 or more, results show that greater HW Exposure Indices affect FUAs across 
the whole Europe, irrespective of its regional climate, suggesting that more meaningful vulnerability assess-
ments, early warning and adaptation measures should be prioritized accordingly.   

1. Introduction 

In Europe, regional climate change prospects point towards the ur-
gency of adapting to exceptional weather events, such as floods, 
droughts or temperature extremes (Brunetti et al., 2004; European 
Environment Agency (EEA), 2005; Beniston et al., 2007; EEA, 2012; 

Kovats et al., 2014; Gudmundsson and Seneviratne, 2015; Spinoni et al., 
2017). Particularly, increasing temperature trends - both season-
al/annual averages, and summer extremes - have already been detected, 
especially in the last two to three decades (Schär et al., 2004a; European 
Environment Agency (EEA), 2005; Beniston et al., 2007; EEA, 2012; 
Perkins et al., 2012; Kovats et al., 2014). 
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While a consensual definition of extreme temperatures, or heatwave 
events (HW), has not been established (Perkins and Alexander, 2013; 
Perkins, 2015), different temperature-based indices have been used to 
investigate corresponding sectoral impacts – e.g. agriculture produc-
tivity (Harding et al., 2015), biological impacts (Cardoso et al., 2008), or 
energy needs (Mavrogianni et al., 2009) - allowing to extract appro-
priate information from daily weather observations, such as HW fre-
quency, duration or intensity. Thorough assessments of such indices 
have been conducted by several authors (Perkins, 2015), and, despite 
the great diversity of definitions and statistical methods (Zhang et al., 
2011), 27 climate indices developed by the World Climate Research 
Program (WCRP) and the sponsored Expert Team on Climate Change 
Detection and Indices (ET-SCI) provide a reference framework, along 
with the R-based ClimPACT tool to facilitate its calculation, ensuring 
quality control over the input data (Alexander et al., 2013; L and N., 
2015; Alexander and Herold, 2016). 

In particular, the Excess Heat Factor (EHF) (Nairn et al., 2009), is a 
significant indicator of heat-related human health impacts, across 
mid-latitude climates, namely human mortality and morbidity (Langlois 
et al., 2013; Nairn and Fawcett, 2013, 2014; Scalley et al., 2015; Hat-
vani-Kovacs et al., 2016b; Jegasothy et al., 2017a; Nairn et al., 2018). 
The rationale supporting the EHF definition is to identify and quantify 
extreme temperatures as the three-day mean air temperature deviation 
from the long-term percentile-based climatology, in a given day of the 
year (DOY), multiplied by the past month acclimatization index (if > 1) 
(Nairn and Fawcett, 2013). 

As a result, the EHF is a quadratic function of both the long-term and 
short-term air temperature anomalies, and its magnitude reflects the 
human acclimatization to the local climate. Although the EHF does not 
include humidity in its calculation, it uses daily mean temperature (TM) 
as the simple average between the daily maximum (TX) and minimum 
(TN) temperature values, which is implicitly affected by relative hu-
midity changes; hence, according to the authors (Nairn and Fawcett, 
2013), the EHF provides local public health stake-holders with a simpler 
but efficient method to estimate potential human excess heat exposure 
levels, compared to other bioclimatic indices, such as the Universal 
Thermal Climate Index (UTCI) (Zare et al., 2018), the Physiological 
Equivalent Temperature (PET) (Matzarakis et al., 1999) or Apparent 
Temperature (AT), which require additional weather variables in their 
calculations (this are usually used in thermal comfort studies). 

Several studies have identified upward trends in HW-related indices, 
covering the whole or part of the European region, either using relative 
(Russo et al., 2015; Perkins-Kirkpatrick and Lewis, 2020) or absolute 
(Qiu and Yan, 2020) thresholds criteria. In some studies, links with 
temperature variability, atmospheric circulation or earth-system pro-
cesses have also been addressed (e.g., Schär et al., 2004b; Jézéquel et al., 
2018; Zhang et al., 2020). However, a Pan-European climatological EHF 
assessment is still lacking. 

Regarding the HW exposure analysis, several studies have been 
conducted, recently, to determine the spatial incidence of heat- 
dependent impacts (Wolf and McGregor, 2013; Chambers, 2019; Smid 
et al., 2019). A great level of diversity exists regarding risk assessment 
terminologies, with different algorithms being proposed in the 
peer-reviewed literature (Bao et al., 2015; Ranke, 2016), from weighted 
average approaches (Tomlinson et al., 2011), dimension reduction 
strategies such as principal components or clustering analysis (Wolf and 
McGregor, 2013) or regression-based methods (Loughnan et al., 2012). 
Following a previous compilation of alternative definitions (Ranke, 
2016), the formula proposed by the United Nations Disaster Relief Office 
(UNDRO, 1979) best summarises how a risk assessment index should be 
quantified. According to several authors, risk levels should be measured 
as a function of three components(Engle, 2011; Ranke, 2016; Thomas 
et al., 2019): (i) hazard exposure, comprising a given frequency, severity 
and items exposed, (ii) vulnerability, depicting the potential conse-
quences of the exposure (e.g. mortality, economic losses), and (iii) 
preparedness, which is the system’s ability to withstand those impacts. 

The author proposes that the first components should be combined 
through a multiplication approach: it ensures that, whenever the haz-
ard’s incidence does not overlap with items subject to its consequences 
(e.g., no population), the risk becomes null (Ranke, 2016). 

In this study, annual summaries of EHF-based HW detection are 
analysed, to reveal regional patterns of HW frequency, duration, in-
tensity and severity, as well as recent changes. In addition, given its 
track record on predicting human health outcomes, especially within the 
most sensitive social groups (e.g. elderly, children), an HWEXPOSURE 
Index is also proposed to prioritize HW adaptation in European main 
metropolitan regions. In these European Functional Urban Areas (FUAS) 
(European Union, 2016; Dijkstra et al., 2019), HW impacts are more 
likely to reach significant numbers, given the population concentration 
and the recent trends of an ageing population (United Nations, 2014; 
EUROSTAT, 2017). 

2. Data and methods 

2.1. Air temperature data 

Input Daily Maximum (TX) and Minimum (TN) near-surface air 
temperature data corresponding to the extended summer season (from 
June to September) from the gridded Europe-wide ensemble dataset (E- 
OBS) - homogenised version ‘19.0eHOM’, at 0.1◦ × 0.1◦ spatial resolu-
tion - was retrieved from the EU-FP6 project UERRA (http://www.uerra. 
eu) and the Copernicus Climate Change Service, based on station ob-
servations data provided by the European Climate Assessment & Dataset 
(ECA&D project, available at https://www.ecad.eu) (Cornes et al., 
2018). 

The dataset includes the TN and TX ‘best guess estimations’ (mean 
value) of 100 ensemble members, covering a period from 1950 to 2018. 
It results from the interpolation of station-derived meteorological ob-
servations from the ECA&D initiative (Klein Tank et al., 2002; Klok and 
Klein Tank, 2009). While most stations’ data have been previously 
quality-controlled by their providers, ECA&D follows additional pro-
cedures, including homogeneity tests and corrections (Royal 
Netherlands Meteorological Institute (KNMI), 2015a) and merges 
neighbouring series to provide a more complete blended series. Details 
on the homogeneity correction process for the gridded data itself have 
also been published (Squintu et al., 2020). Pre-processing of the original 
E-OBS TX and TN datasets was done with Climate Data Operators (CDO) 
(Schulzweida et al., 2009; Mueller and Schulzweida, 2011), to comply 
with ClimPACT instructions (Alexander et al., 2013). 

2.2. Excess Heat Factor 

The EHF calculation is the product of two excess heat sub-indices: (i) 
the Excess Heat Index Significance (EHIsig), which measures the 3-day 
difference to the 90th TM percentile of the reference period (here, 
1961–1990); and (ii) the Excess Heat Index Acclimatization (EHIaccl) 
which measures the 3-day TM difference to the average TM of the pre-
ceding 30 days. While the former sub-index represents the excess heat as 
a long-term (climate-scale) anomaly, the later sub-index is intended to 
measure heat stress as a short-term anomaly, based on the principle that 
biological systems are less able to cope with a sudden rise in temperature 
(Nairn and Fawcett, 2013). The two sub-indices are calculated according 
to Equation (1) and Equation (2), and the EHF as per Equation (3), as 
follows (Nairn and Fawcett, 2013; Alexander and Herold, 2016): 

EHIsig = TM3− day⋅ − ⋅TM90p Eq.1  

EHIaccl = TM3− day⋅ − ⋅TM30− day Eq.2  

EHF = EHIsig ×MAX(1, EHIaccl) Eq.3 

where TM3-day/TM30-day is average TM over 3/30 days, respec-
tively (calculated as the average between TN and TX), and TM90p is the 
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90th percentile of TM for the correspondent calendar DOY. In the pre-
sent study, each grid cell’s 90th percentile threshold is calculated based 
on the 1961–1990 30-years baseline period (World Meteorological Or-
ganization, 2017), and the annual DOY curve is smoothed using a 
15-days moving average (Alexander and Herold, 2016). 

Whenever a positive EHF result is detected, its value is a quadratic 
measure of HW intensity, responding to both the long-term and short- 
term anomalies. The measurement unit is ◦C2

L, where the ‘L’ refers to 
the local nature of the threshold and EHF results, i.e., results are local- 
specific, and lower values are expected where the climate temperature 
range is lower (Nairn et al., 2018). The underlying rationale is the fact 
that similar quadratic responses to extreme HW have been documented 
regarding impacts on human health or energy (Ziser et al., 2005; Hat-
vani-Kovacs et al., 2016a; Jegasothy et al., 2017a; Nairn et al., 2018). 

Following the framework of the ClimPACT tool (Perkins et al., 2012; 
Alexander et al., 2013), EHF results are gathered as annual HW time 
series, depicting five HW aspects to be used in the climatology and 
trends analysis: (i) annual Number of Heatwaves (HWN); (ii) annual 
Heatwave Days Frequency (HWF); (iii) annual Maximum Heatwave 
Duration (HWD); (iv) annual Mean Heatwave Magnitude (HWM); and 
(v) annual Maximum Heatwave Amplitude (HWA). It should be noted 
that the two HW intensity summaries (i.e., HWA and HWM) are inher-
ently dependent upon the local temperature range, which varies in 
latitude. Hence, the HWA/HWM annual values and magnitude of change 
can only be compared meaningfully across different regions through 
local HW intensity normalization. To overcome this limitation, the 
EHF-based severity methodology (EHFSEVERITY) has been included by 
the authors, to allow the identification of how extreme is a given HW day 
compared to local climatology (Nairn et al., 2018). The dimensionless 
EHFSEVERITY index is based on extreme value theory, corresponding to 
the normalization of each daily EHF intensity value by the 85th 
percentile (EHF85p) over a climatology period, as per Equation (4). 
Here, daily EHF intensities were normalized by the 85th percentile 
corresponding to the 1961–1990 period. To agree with the annual 
temporal resolution of the ClimpPACT outputs, daily EHFSEVERITY values 
were then summarised into an annual Maximum Heatwave Severity 
(HWS) time series. 

EHFSEVERITY = EHF ÷ EHF85p Eq.4 

For the climatological analysis, mean annual values and standard 
deviation for reference 1961–1990 period were considered. Climatology 
and anomalies from 1991 to 2018 were also calculated, for comparison 
purposes. The HW trend significance was assessed through the non- 
parametric Mann-Kendall’s test (statistical significance level computed 
at 5%) (Mann, 1945; Kendall, 1975; Sneyer, 1990), and the linear 
magnitude of change calculated per the Sen’s method (Sen, 1968). The 
results are presented for the main continental European Biogeographical 
Regions (European Environment Agency (EEA), 2016). 

2.3. HW exposure in Functional Urban Areas 

To calculate HW exposure in European greater metropolitan areas, 
an existing methodology (Smid et al., 2019) was adapted to use the EHF 
index and the Functional Urban Areas (FUAS) inputs. In the original 
study (Smid et al., 2019), the authors propose an HW exposure level that 
results from the product between (i) the annual probability of HW 
occurrence (HWPROB) per a given Heat Wave Magnitude Index-based 
(HWMId) threshold, and (ii) the population density of each capital city. 

In this study, the authors’ rationale of using normalization and 
multiplicative effect rational is maintained(Smid et al., 2019) (see). 
however, given the EHF specificity (health-related applications), several 
adaptations were required. Firstly, while in the original study the au-
thors used three arbitrary HWMId threshold values for their probability 
assessment (selected per statistical distribution), here the EHFSEVERITY 
levels were considered. These have been supported by previous studies 
as appropriate proxies in identifying the thresholds of HW impacts 

(Nairn and Fawcett, 2013, 2014; Scalley et al., 2015; Hatvani-Kovacs 
et al., 2016b; Jegasothy et al., 2017a; Urban et al., 2017). According to 
the index authors (Nairn et al., 2018), HW events are considered Severe 
or Extreme when the EHFSEVERITY surpasses levels 1 or 3, respectively. 
Accordingly, to calculate HWPROB, the number of years since 1991 (more 
recent climatological period) in which the annual HWS reaches the Se-
vere level (i.e., maximum annual EHFSEVERITY equal or greater than 1) 
was divided by the time series size (i.e., 28 years) (see Equation (6)). 
Since strong upward trends and anomalies were detected in the more 
recent decades, only the last 28-years were considered in these statistics. 

Secondly, while population density might reflect the number of 
people exposed, previous studies have pointed out how heat-related 
morbidity/mortality rates prevail upon the elderly (the most sensitive 
group) (Williams et al., 2012; Hatvani-Kovacs et al., 2016b; Jegasothy 
et al., 2017b). Hence, the number of people aged 65 is frequently 
introduced as contributing to the vulnerability assessment (e.g. Tom-
linson et al., 2011; Wolf and McGregor, 2013). The HWEXPOSURE analysis 
focuses on the European Greater Metropolitan Areas, which corresponds 
to the Functional Urban Areas (FUAs) (Eurostat, 2016), and corre-
sponding demographic statistics (for the 2008–2018 period) and 
vectorial geodata were retrieved from the EUROSTAT database 
(EUROSTAT, no date). The total ‘number of people aged 65 or over’ 
(POP65) across the European FUAs shows an exponential statistical 
distribution – hence, a logarithmic transformation was applied (log10-

POP65), followed by the normalization procedure, by dividing POP65 per 
the maximum log10POP65 across the FUAS (nPOP65) (see Equation (7)). 

HWEXPOSURE = HWPROB × nPOP65 for HWSEVERITY ≥ 1 Eq.5  

HWPROB = P(HW)=
n(HW)

n
for HWS≥ 1, in the 1991 − 2018 period

Eq.6  

nPOP65 =
log10POP65

MAX(log10POP65)
Eq.7 

As both inputs correspond to normalized values, in a 0–1 scale, the 
exposure level translates also into a dimensionless (0–1) index (Equation 
(5)). The resulting HWEXPOSURE expresses, in the range 0–1, the level of 
exposure, where an HWEXPOSURE value of 1 means that both the 
maximum nHWPROB and nPOP65 are found in a given FUA. 

3. Results 

3.1. Excess Heat Factor climatology and trends 

Figs. 1 and 2 illustrate the EHF-based climatology maps of 
1961–1990 and 1991–2018, depicting the most significant HW aspects 
of the extended summer season (June–September): the number of events 
(HWN), number of days (HWF), maximum duration (HWD), mean 
magnitude (HWM), maximum amplitude (HWA) and maximum EHFSE-

VERITY (HWS). Recent anomalies are also shown as the percentage de-
viation between these two adjacent 30-years periods. Fig. 3 depicts the 
corresponding Sen’s linear trend estimation with hashed regions high-
lighting the Mann-Kendall 95% significance level. The results can be 
interpreted as the magnitude of the average decadal rate of change, over 
the full 59-year period (long term), and time series plots for HWN and 
HWS are also shown per the European Biogeographical regions (Figs. 5 
and 6). 

Results show that an aggravation tendency of EHF-based HW events 
is common to the whole European region, with the greatest anomalies 
found in the frequency and maximum intensity/severity HW aspects (i. 
e., HWN, HWF, HWA and HWS in Figs. 1 and 2). The greatest HW fre-
quencies (HW events or days) are found in Southern Europe, particularly 
in the Mediterranean bioregion, where the annual number of HW events 
has increased from an average of 2.4events/year in 1961–1990 to 
4.5events/year in 1991–2018, at an average rate of 0.5vents/decade. 
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These numbers are even greater when the HWF is considered, with HW 
days increasing more than twofold in the more recent 1991–2018 period 
(on average, from 11.8 to 28.3 day/year). In particular, more than 30 
EHF-based HW days (i.e., daily TM surpassing the 90th percentile of the 
1961–1990 reference period) have been occurring per year in extended 
areas of the Iberian and Italian Peninsulas, and in Southeast Europe, 
since 1991. Accordingly, the greatest HWF upwards trends are also 
found in the Mediterranean, with HW frequencies increasing at a rate of 
3.7 day/decade. Nonetheless, significant HWN/HWF increases are 
detected in every European biogeographical region, except in Northern 
Scandinavia. The same pattern is found regarding the HW duration 
aspect, HWD. On the other hand, the greatest climatological mean/ 
maximum HW intensities (HWM/HWA) are found in the higher latitudes 
and altitudes, particularly in the highest mountain areas such as the 
Alps, Pyrenees or the Scandinavian Mountains. The trend analysis 
regarding the annual mean HW magnitude (HWM) is the only case of 
overall non-significant results. By contrast, the annual maximum HW 
amplitude (HWA) has been increasing significantly in almost all Europe, 
with maximum positive rates of change in the Pannonian region 
(2.0◦C2

L/decade), and throughout the Continental and Boreal Biogeo-
graphical regions (1.7 and 1.9 ◦C2

L/decade, on average). Another rele-
vant finding is that, in this Boreal region, variability has also increased, 
especially since 2000 – not only are annual summaries reaching new 
maximum values, but also, in some years, reaching or surpassing pre-
vious minimums. 

However, it should be noted that these values are only suitable for 
local reference, as the EHF intensity is strongly dependent upon the local 
climatic range. Hence, a more meaningful inter-regional comparison can 
be drawn from the EHFSEVERITY annual summary, HWS, which shows 
that the greatest aggravation is found also in the Mediterranean, as well 
in the Pannonian regions, where an EHFSEVERITY level 1 (Severe HW 
event), has been reached, on average, every year since 1991. Nonethe-
less, a significant increase in the severity of HW events is also detected 
throughout most of the Continental and Atlantic regions, with cases of 
non-significant changes occurring in the British Isles and North of the 
Scandinavian Peninsula. 

Both the HWF and HWS time series are presented in Figs. 4 and 5, 
where each panel shows the time series per Biogeographical region, and 
the boxplots depict the range of intra-region variability (quartiles and 
extremes). 

While the climatologies show the spatial variation of the anomalies 
and the pixel-wise linear magnitude of change, these plots show also the 
increased variability that has been occurring in the last decades. In 
particular, Fig. 4 shows that while the number of HW days ranged from 
0 to 20 before the ’90s, this range has since shifted to 10–40 (Alpine, 
Continental regions) or 10–60 (Mediterranean, Continental, Boral and 
Pannonian). In Fig. 5, similar findings are shown, with Extreme HW (i.e., 
years when the annual maximum EHFSEVERITY surpasses level 3) 
becoming more frequent since 1990. 

Finally, to provide a more practical synthesis, Table 1 presents the 

Fig. 1. Climatology (1961–1990 and 1991–2018) and anomaly (percentage difference) of EHF-based HW frequency and duration annual summaries: (a1-a3) number 
of HW events (HWN), (b1-b3) number of HW days (HWF); and (c1-c3) maximum duration of HW events (HWD). Due to missing data in the E-OBS dataset (in more 
recent years), some parts of south-eastern Europe (eg., southern Greece, Turkey) are omitted in the 1991–2018 climatology and anomaly analysis. 
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aggregated statistics of the 1961–1990 and 1991–2018 periods, namely 
the spatial mean (standard deviation, s.d.) climatology and magnitude 
of change, per Biogeographical region – while this table highlights the 
average contrasts and variability between regions, it should be noted 
that the fixed nature of the Biogeographical delimitation may include 
non-homogenous HW patterns, which are better noticeable in the spatial 
patterns visible in Figs. 1–3. 

3.2. Functional Urban Areas severe heatwaves exposure 

The FUAs analysis provides further insights into which metropolitan 
regions should be prioritized in terms of the interaction between the 
probability of severe EHF-based HW events and the number of people 
exposed to them. Fig. 6 depicts the map of the FUAs location and their 
corresponding HW Exposure (HWEXPOSURE) levels (from Equation (5)) 
overlaying the 85th percentile of the EHF intensity (1961–1990) which 
is the divisor in determining the severity threshold. The name of the 
FUAs where the HWEXPOSURE is equal to or greater than 0.4 are labelled 
on the map. In Fig. 7, the ranking of the 100 cities with greater HWEX-

POSURE is shown, together with their probability of severe HW occur-
rence (HWPROB) and the number of population aged 65 or more (POP65). 
The results show that the position of the higher-ranked FUAs in the 
HWEXPOSURE index is mostly set by the population numbers, which was 
expected due to the exponential distribution (i.e., larger inter-FUAs 
contrasts) in this input, even if logarithmically transformed. Even 

though HW frequencies and severity are greater in the Mediterranean 
region (see the previous section), the probability of a severe HW 
(HWPROB) has small variations amongst FUAs in the last 28 years, 
ranging from 70 to 100% in most cases. FUAs located in the Continental 
(41 cases) and Atlantic (36 cases) biogeographical regions are the most 
represented, due to the concentration of large cities in central European 
states, where both the numbers of the elderly population and Severe HW 
probabilities are above-average. 

Hence, several Continental and Atlantic conurbations surpassing a 
70% probability of Severe HW occurrence in the last 28 years appear in 
the first 20 places (e.g., Milano, HWPROB = 90%, POP65 = 1 080; 
Ruhrgebiet, HWPROB = 82%, POP65 = 1 100; Paris, HWPROB = 75%, 
POP65 = 17470; Frankfurt, HWPROB = 96%, POP65 = 500; Stuttgart, 
HWPROB = 93%, POP65 = 530; or Berlin, HWPROB = 77%, POP65 = 1 
015). Nonetheless, cases such as London (POP65 = 1623, HWPROB =

64%) are placed lower, compared to FUAs of equivalent elderly popu-
lation size (e.g., Paris, HWPROB = 75%, POP65 = 17470). 

This order is intertwined with expected cases of greater HWEXPOSURE 
driven also by the greatest probabilities found in the Mediterranean 
region (in many cases, HWPROB = 100%), such as Madrid (HWPROB =

89%, POP65 = 1 061), Roma (HWPROB = 86%, POP65 = 869), Barcelona 
(HWPROB = 77%, POP65 = 877), Lisboa (HWPROB = 93%, POP65 = 577), 
or Napoli (HWPROB = 93%, POP65 = 536). These relative contrasts are 
useful in that they highlight how, in some cases, the number of 
vulnerable people is overcompensated by greater regional probabilities 

Fig. 2. Climatology (1961–1990 and 1991–2018) and anomaly (percentage difference) of EHF-based HW intensity and severity annual summaries: (a1-a3) mean HW 
magnitude (HWM), (b1-b3) maximum HW amplitude (HWA); and (c1-c3) maximum HW severity (HWS). Due to missing data in the E-OBS dataset (in more recent 
years), some parts of south-eastern Europe (eg., southern Greece, Turkey) are omitted in the 1991–2018 climatology and anomaly analysis. 
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of being exposed to severe HW. 

4. Discussion and conclusion 

The implications of the present study can be framed within two 
scopes: (i) the climatology/trend findings, and (ii) the integration of 
these findings in public health actions. 

Regarding the climatology and trend analysis, Several previous 
studies have been reporting a warming trend in the recent past and 
climate change prospects, over Europe (Giorgi et al., 2004; Giorgi, 2005; 
EEA, 2012; IPCC, 2014; Qiu and Yan, 2020), including the greater 
prevalence of extreme temperature summer events (Schär et al., 2004a; 
Russo et al., 2015; Zhang et al., 2020). European-level open data 

services, such as ECAD (Royal Netherlands Meteorological Institute 
(KNMI), 2015b), already provide several extreme temperature indices to 
the community, such as the number of Summer Days (SU) and Tropical 
Nights (TR), the Heatwave Duration Index (HWDI) or the percentage of 
warm days/nights (TX90p/TN90p). As with the Excess Heat Factor 
(EHF), these are also included in the sector-specific HW indices 
compiled by the ET-SCI and the corresponding ClimPACT tool but pro-
vide only HW frequency information. Examples of European studies are 
thus focused in such indices (Klein Tank and Können, 2003), in the 
analysis of the seasonal temperature frequency and anomalies distri-
bution (Schär et al., 2004), or the Heat-wave magnitude index daily 
(HWMId) (Russo et al., 2015). From these examples, only the HWMId 
provides a daily intensity measurement of the HW. Even if different 

Fig. 3. Annual changes in HW events in Europe, from 1950 to 2018. Shaded gradient depicts the linear rate of change, as per Sen’s slope estimation, and hashed 
pattern highlights Mann-Kendall significance at the 95% level. The trend analysis considers EHF-based annual summaries: (a) Number of HW events (HWN), (b) 
number of HW days (HWF); (c) maximum duration of HW events (HWD); (d) mean HW intensity (HWM), (e) maximum HW intensity (HWF); and (f) maximum HW 
severity (HWS). Due to missing data in the E-OBS dataset (in more recent years), some parts of south-eastern Europe (eg., southern Greece, Turkey) are omitted in the 
1991–2018 climatology and anomaly analysis. 
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index formulations prevent meaningful comparisons on the magnitude 
aspect of HW changes across studies, The present study agrees with 
previous regional findings as to the significant HW upward changes 
which can also be detected through the Excess Heat Factor (EHF), in 
Europe. 

Accordingly, several parallels can be drawn. As with other cases of 
HW indices, (which methodology ranges from absolute to relative/ 
percentile-based thresholds), HW occurrence is significantly increasing 
throughout Europe, particularly in the Mediterranean region where the 
greatest annual HW frequencies of events/days (HWN/HWF), duration 
(HWD) and maximum Severity (HWS) are detected in the more recent 
1991–2018 period, compared to the baseline reference (1961–1990). 
This spatial Mediterranean aggravation detected in the EHF frequency 
and duration summaries (HWN, HWF and HWD) agrees with both the 
peer-reviewed literature (Kostopoulou and Jones, 2005; Beniston et al., 
2007; Garcia-Herrera et al., 2010; Katavoutas and Founda, 2019), as 
well as international reports such as those from the European Environ-
ment Agency (EEA) or the Intergovernmental Panel on Climate Change 
(IPCC) (EEA, 2012; IPCC, 2014). 

As per this study results, while HW frequencies are not surprisingly in 
agreement with other frequency-based metrics, the mean HW magni-
tude (HWM) has not changed significantly since 1950. Conversely, the 
annual strongest HW magnitude (HWA) and greatest HW severity 
(HWS) have significantly become more extreme, but as the EHF depicts 
local deviations from the historical climatology, the greatest HWA 
trends are noticeable in the higher latitudes and longitudes, where the 
climate is expected to be cooler. Such contrasts in the spatial patterns of 

the HW frequency versus HW amplitude suggest underlying shifts in the 
statistical distribution of the temperature anomalies themselves. Indeed, 
some authors have pointed out alternative schematics of potential 
changes in the probability of occurrence of temperature extremes (e.g., 
Perkins, 2015): (i) a shifted mean scheme, where the whole histogram is 
shifted upwards in the temperature axis (hence mean temperature 
augmenting and extreme cold extremes reducing); and (ii) an increased 
variability scheme where the histogram ‘flattens’ and both tails of the 
distribution reach values farther from the mean. In some regions, both 
changes may overlap. While the current analysis does not provide an-
swers on these aspects, results suggest that, in the Mediterranean, the 
shifted distribution scenario might be the main HW increase culprit, 
whereas, in the Alpine, Continental and Boreal regions increased vari-
ability might also contribute – similar considerations can be found in 
other studies (Schär et al., 2004a; Fischer and Schär, 2010). Where 
statistical distribution shifts occur, it should be noted that the usage of 
climatological reference periods different from the one used in this study 
(1961–1990), particularly the most recent (and ‘warmer’) 30-years, 
would probably entail fewer events and/or smaller EHF maximums. 
The study is, however, limited to the WMO reference(World Meteoro-
logical Organization, 2017), which was particularly cooler; hence, the 
aspects resulting from this study can be interpreted as a ‘worst-case 
scenario estimation’, framed by the 1950–2018 available time series. 
Only full air temperature statistical distribution analysis, together with 
alternative thresholds comparison, could support or disprove these hy-
potheses of a climate shift and/or increased variability to support the 
adoption of a more recent baseline period to account for human 

Fig. 4. Time series of annual Number of Heatwave Days (HWF), per European Biogeographical Regions. Boxplots represent the second and third quartiles within a 
region, per year, and error bars depict the upper/lower (90/10th) percentile limits. 
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acclimatization capacity (which is in itself a topic being addressed in the 
literature (Bao et al., 2015; Hanna and Tait, 2015)). 

On the other hand, the EHF distinguishes itself from other indices 
due to its ability to quantify the intensity and severity of each HW event 
(Nairn and Fawcett, 2013, 2014), which is a more significant predictor 
of acute human health response to extreme temperature exposure (Xu 
et al., 2016), compared to HW duration or frequency. As such, the 
outcome of this study is also linked with the implications of an 
increasing EHFSEVERITY in the scope of the European public health 
response. For example, while several studies have described historical 
changes in this index (Perkins et al., 2012; Perkins, 2015; Perkin-
s-Kirkpatrick and Lewis, 2020), they have been focusing on other re-
gions or the global scale, while EHF maps depicting the intra-European 
differences were still lacking – and this information on the spatial pat-
terns of mensurable HW indices is required to pursue European-wide 
epidemiology studies on heat-dependent impacts, for informed 
regional decision making (Lass et al., 2012). 

The EHF methodological specificity is tied to its ability to better 
predict human health outcomes, which respond non-linearly to tem-
perature extremes, particularly in terms of human excess mortality and 
morbidity (Langlois et al., 2013; Nairn and Fawcett, 2013, 2014; Scalley 
et al., 2015; Hatvani-Kovacs et al., 2016b; Jegasothy et al., 2017a; Nairn 
et al., 2018). Recently, a public health study (Nairn et al., 2018) has 
tested the usage of the EHFSEVERITY to anticipate health impacts across 
the globe (Melbourne, Australia; London, United Kingdom; Chicago, 
United States of America; Paris, France; Moscow, Russia; Guangzhou, 

China), irrespective of the local climate. The authors have proved that a 
significant agreement exists between the maximum index values and 
local excess mortality or ambulance calls, from the time series of HW 
events in those case study cities. In addition, the authors show that the 
EHFSEVERITY anticipates by 1–2 days the date when the maximum health 
impacts are reached, a feature of importance for early warning systems 
(Lowe et al., 2011; McGregor et al., 2015; Vanderplanken et al., 2021) 
that is not always ensured by local-specific indices. For this reason, the 
EHFSEVERITY authors endorse its adoption at an international level (Nairn 
et al., 2018), following successful experiences in Australia (Nairn and 
Fawcett, 2014; Scalley et al., 2015; Hatvani-Kovacs et al., 2016c; Van-
derplanken et al., 2021). Additional studies focusing on other locations 
have pointed to similar significant findings (Lin et al., 2012; Hatvani--
Kovacs et al., 2016b; Urban et al., 2017; Tolika, 2019), which supports 
its usage for human heat exposure assessment. 

In Europe, while many studies exist linking HW with excess mortality 
(Nogueira, 2005; Vandentorren et al., 2006; D’Ippoliti et al., 2010a, 
2010b; Michelozzi et al., 2010; Sunyer, 2010; Laaidi et al., 2012; Mor-
abito et al., 2012; Tobias et al., 2012; Heaviside et al., 2016; Arbuthnott 
and Hajat, 2017; Urban et al., 2017), these are mostly concerned with 
specific events and/or regions. There are, however, cases of EHF 
application describing promising results of its application in the Euro-
pean geographic domain (Nairn et al., 2018; Morais et al., 2020; Royé 
et al., 2020). 

These preliminary findings support the usefulness of the HWEXPOSURE 
mapping analysis included in the present study, following the rationale 

Fig. 5. Time series of annual Maximum Heatwave Severity (HWS), a dimensionless ratio between each year’s HWA and the 85th percentile of the EHF intensity over 
the 1961–1990 reference period, per European Biogeographical Regions. Boxplots represent the second and third quartiles within a region, per year, and error bars 
depict the upper/lower (90/10th) percentile limits. 
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that human exposure is the product of the probability of a given harmful 
phenomenon multiplied by the number of susceptible individuals (Bao 
et al., 2015). Accordingly, the multiplicative methodology developed in 
a previous study (Smid et al., 2019) is here adapted for health-related 
impacts, to provide a ranking of which European urban areas are 
more exposed to Severe HW, in the last decades. Whether this algorithm 
(or any other) is the most suitable solution can only be validated by 
comparing its results with the human health consequences it aims to 
represent – a limitation that has not been addressed in this study due to 
the lack of access to consistent daily health (mortality and/or morbidity) 
data, at the European-level. Even in cases where such data is available 
(e.g., through national institutions), it is often difficult to access long or 
detailed enough time series for meaningful relations to be established 
(Nairn et al., 2018). 

Limitations of its usage at the European level are mostly related to 

the lack of additional epidemiological studies comparing the EHF per-
formance as an indicator for heat-dependant health impacts, across 
Europe. In addition, for the HWEXPOSURE index to evolve towards an 
HWVULNERABILITY indicator, as per several authors (Engle, 2011; Ranke, 
2016; Thomas et al., 2019), additional confounders must be considered, 
such as the prevalence of vulnerable groups, the housing thermal per-
formance or availability of indoor acclimatization solutions, the health 
care response capacity or the presence of aggravating/attenuating urban 
factors (e.g., urban heat island, the density of tree coverage). Hence, 
further advances in the use of these HWEXPOSURE indicators can be 
developed as soon as European-level health data becomes readily 
available. 

Future developments of the present study should consider the several 
limitations mentioned, namely a simultaneous air temperature fre-
quency analysis, reference periods comparison and performance 

Fig. 6. Heatwave Exposure (HWEXPOSURE) levels for the European Functional Urban Areas (FUAs) over Severe Heatwave Probability (HWPROB) in the 1991–2018 
period. Labelled FUAs have HWEXPOSURE levels equal or greater than 0.5 (0–1 normalized scale). 

Table 1 
EHF-based HW aspects per European biogeographical region: mean (s.d.) of annual summaries and magnitude of change, considering the extended summer 
(June–September) of two climatological periods (1961–1990 and 1991–2018).  

Biogeographical regions summary HWN HWF HWD HWM HWA HWS 

(events) (days) (days) (◦C2
L) (◦C2

L) (dimensionless) 

Alpine 1961–1990 2.2 (±1.1) 10.7 (±6.6) 6.1 (±3.2) 7.6 (±5.3) 19.0 (±14.1) 1.2 (±0.8) 
1991–2018 3.6 (±1.9) 21.0 (±13.8) 8.6 (±4.3) 7.4 (±4.3) 24.8 (±16) 1.6 (±1.2) 
linear trend (decade− 1) 0.2 (±0.2) 1.8 (±1.3) 0.3 (±0.3) 0.0 (±0.3) 1.2 (±0.8) 0.1 (±0.1) 

Atlantic 1961–1990 2.4 (±1.4) 11.9 (±8.3) 6.4 (±3.3) 6.5 (±4.3) 17.3 (±12.6) 1.3 (±1) 
1991–2018 3.7 (±1.8) 21.0 (±12.1) 8.8 (±4.4) 6.6 (±3.9) 21.5 (±12.9) 1.5 (±1) 
linear trend (decade− 1) 0.4 (±0.2) 2.5 (±0.7) 0.5 (±0.2) 0.1 (±0.2) 1.4 (±0.7) 0.1 (±0.1) 

Boreal 1961–1990 2.2 (±1.2) 11.0 (±6.7) 6.3 (±3.3) 7.2 (±4.8) 18.7 (±12.7) 1.2 (±0.8) 
1991–2018 3.5 (±1.8) 21 (±13.2) 9.5 (±5.9) 6.9 (±4.5) 24.7 (±18) 1.4 (±1) 
linear trend (decade− 1) 0.3 (±0.1) 2.0 (±0.7) 0.4 (±0.3) 0.2 (±0.2) 1.9 (±0.8) 0.1 (±0.1) 

Continental 1961–1990 2.3 (±1.2) 10.6 (±6.7) 5.7 (±2.7) 6.8 (±4.2) 16.6 (±10.9) 1.3 (±0.8) 
1991–2018 4.1 (±2) 23.2 (±14.8) 8.8 (±4.7) 7.4 (±3.8) 24.4 (±13.2) 2.1 (±1.3) 
linear trend (decade− 1) 0.5 (±0.1) 2.8 (±1.1) 0.5 (±0.3) 0.1 (±0.2) 1.7 (±0.7) 0.2 (±0.1) 

Mediterranean 1961–1990 2.4 (±1.3) 11.8 (±8.1) 6.2 (±3.2) 5.4 (±4.2) 14.4 (±12.5) 1.4 (±1.2) 
1991–2018 4.5 (±2.2) 28.3 (±18.4) 10.2 (±5.9) 5.6 (±3.1) 20.2 (±12.5) 2.1 (±1.4) 
linear trend (decade− 1) 0.5 (±0.2) 3.7 (±1.8) 0.8 (±0.5) 0.1 (±0.2) 1.3 (±0.8) 0.2 (±0.1) 

Pannonian 1961–1990 2.4 (±1.2) 10.8 (±5.5) 5.6 (±2) 5.5 (±3.3) 14.1 (±9) 1.3 (±0.7) 
1991–2018 4.2 (±2.1) 24.2 (±14.8) 8.7 (±3.9) 6.8 (±3.1) 23.1 (±10.9) 2.6 (±1.4) 
linear trend (decade− 1) 0.5 (±0.1) 2.8 (±0.6) 0.5 (±0.1) 0.3 (±0.1) 2.0 (±0.4) 0.3 (±0.1)  
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assessment on its relation with European heat-related health impacts, 
controlling for the above-mentioned confounders. 
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Jézéquel, A., Yiou, P., Radanovics, S., 2018. Role of circulation in European heatwaves 
using flow analogues. Clim. Dynam. https://doi.org/10.1007/s00382-017-3667- 
0 [Preprint].  

Katavoutas, G., Founda, D., 2019. Intensification of thermal risk in Mediterranean 
climates: evidence from the comparison of rational and simple indices. Int. J. 
Biometeorol. https://doi.org/10.1007/s00484-019-01742-w. 

Kendall, M., 1975. Multivariate Analysis. Charles Gr., London, UK.  
Klein Tank, A.M.G., et al., 2002. Daily dataset of 20th-century surface air temperature 

and precipitation series for the European Climate Assessment. Int. J. Climatol. 
https://doi.org/10.1002/joc.773 [Preprint].  
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