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Abstract: Breast cancer diagnosis using radar-based medical MicroWave Imaging (MWI) has been
studied in recent years. Realistic numerical and physical models of the breast are needed for
simulation and experimental testing of MWI prototypes. We aim to provide the scientific community
with an online repository of multiple accurate realistic breast tissue models derived from Magnetic
Resonance Imaging (MRI), including benign and malignant tumours. Such models are suitable for
3D printing, leveraging experimental MWI testing. We propose a pre-processing pipeline, which
includes image registration, bias field correction, data normalisation, background subtraction, and
median filtering. We segmented the fat tissue with the region growing algorithm in fat-weighted
Dixon images. Skin, fibroglandular tissue, and the chest wall boundary were segmented from water-
weighted Dixon images. Then, we applied a 3D region growing and Hoshen-Kopelman algorithms
for tumour segmentation. The developed semi-automatic segmentation procedure is suitable to
segment tissues with a varying level of heterogeneity regarding voxel intensity. Two accurate breast
models with benign and malignant tumours, with dielectric properties at 3, 6, and 9 GHz frequencies
have been made available to the research community. These are suitable for microwave diagnosis,
i.e., imaging and classification, and can be easily adapted to other imaging modalities.

Keywords: realistic numerical models; breast tumour models; dielectric properties; image segmenta-
tion; breast model repository for microwave diagnosis

1. Introduction

Female breast cancer was the most common cancer diagnosed worldwide in 2020,
with over 2.26 million new cases [1]. Breast cancer was also reported the fifth deadliest
type of cancer in 2020, and the cancer with the highest mortality rate in the female popula-
tion [1]. Early detection and intervention have been identified as determining factors in the
reduction of breast cancer mortality rates and are the key factors for a successful treatment
outcome, thereby improving the quality of life of cancer patients and survival rates [2].

The most common imaging modality for breast cancer detection is X-ray mammogra-
phy [2,3]. Although mammography is still the go-to imaging method for cancer screening,
it does not provide reliable results for women with dense breasts, which are common
among younger women [4]. Sensitivity of mammography exams range from 62.9%, for
women with extremely dense breasts, to 87.0%, in women with mostly fatty breasts. Speci-
ficity has been reported to range from 89.1% to 96.9% for the same breast types [5]. Besides
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showing different sensitivities depending on tissue density, mammography also requires
the use of ionizing radiation, and an uncomfortable breast compression.

Microwave Imaging (MWI) has been identified as a technique that can tackle the
shortcomings of X-ray mammography [6,7]. In MWI, an external electromagnetic field
is applied onto the region of interest in the body, resulting in electromagnetic scattering
generated by tissues with different dielectric properties. The conductivity and relative
permittivity are the most relevant dielectric properties of biological tissues, where the latter
is intrinsically related to the water content present in the tissue sample. In recent years, MWI
systems have been studied for early-stage breast cancer diagnosis [8–10] due to the contrast
between the dielectric properties of cancerous and healthy breast tissues at microwave
frequencies [11]. Cancerous tissues differ from healthy tissues due to permeability changes
in tumour cell membrane causing an increase of water flow to the interior of the cell. Hence,
the extra quantities of water and dissolved ions inside the cancerous cells lead to greater
values of relative permittivity and conductivity when compared to healthy cells of the
same tissue type [12–15]. In addition to being a comfortable and non-invasive imaging
modality, MWI devices are also portable, low-cost, user-independent, use low-power, and
therefore, are suitable for screening programmes.

Simulations and experiments mimicking the realistic conditions and realistic patients
of a clinical exam are essential for the development and validation of MWI diagnostic
systems, as well as the development of therapeutic devices, such as those for microwave
hyperthermia and ablation [16,17]. Hence, realistic computational and physical models of
breast tissues and tumours with the respective dielectric properties estimated at microwave
frequencies are of utmost importance.

Realistic models of healthy breast tissues are currently available in public repositories,
however, due to their complex shape, tumour models are often oversimplified. Malignant
breast tumours generally have an irregular shape surrounded by spicules whereas benign
tumours present roughly rounded or elliptical shapes [18,19]. Therefore, we aim to provide
the scientific community with a repository of multiple anthropomorphic models of breast
tissues with realistic benign and malignant breast tumours.

In this study, we use MRI exams to develop the anatomically realistic models of
the breast, and estimate the dielectric properties of fat, fibroglandular, skin, muscle, and
tumorous tissues of this region. Additionally, we developed a robust segmentation pipeline
suitable to segment highly heterogeneous tumours from MRI exams. The developed
semi-automatic image processing pipeline includes the following steps: (i) Image pre-
processing, (ii) Image segmentation/Feature extraction, comprising the breast region (skin,
breast/chest wall boundary, fat and fibroglandular tissues) and the breast tumour, and
finally, (iii) Estimation of tissue dielectric properties. The second aim of our work is to
address the lack of realistic breast tumour phantoms for MWI prototype testing. Hence, we
have been preparing accurate models of the breast which will be used to simulate tissue
response to microwave radiation and later 3D printed for experimental testing. In short,
our work aims to:

• provide the scientific community with a repository of multiple anthropomorphic
models of breast tissues and tumours;

• address the lack of realistic physical breast tumour phantoms for MWI prototype
testing.

This paper is organised as follows: firstly, we present related work already conducted
concerning breast and breast tumour models; then, we detail the materials used and
the methodology developed for image pre-processing, segmentation, and estimation of
dielectric properties; then, we present the results of our proposed methodology, followed
by a discussion, and finally, we highlight the main conclusions of our work.

Related Work

Winters et al. [20] designed two numerical MRI-derived models of the breast surface.
Later, a public repository with nine numerical breast phantoms containing realistic distri-
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butions of skin, fat, glandular and muscle tissue was created [21]; the STL files to 3D print
these models was later published in [22]. More recently, an anthropomorphic breast model
repository including realistic models of skin, fat and fibroglandular tissues, and a model of
a 10 mm malignant tumour was made available in [23]. However, the segmentation of the
tumour volume was achieved by manual cropping and thresholding techniques.

Studies including numerical breast tumour models often oversimplify their represen-
tation by using spherical [24–26], and cross- and peanut-shaped numerical models [14]. A
more sophisticated 3D breast mass model was developed in [27] using a growth model
with a dense centre and fading boundaries from an ellipsoid volume which resulted in a
stellate pattern.

Most of the physical breast tumour models reported in the literature to test MWI sys-
tems present an unrealistic simplified shape, generally spherical, elliptical, and cylindrical:
in [22], spherical glass bulbs with 5, 10 and 15 mm radii containing saline solutions were
used to mimic tumour tissues in phantom studies; an ellipsoid container with internal
dimensions 10 and 20 mm was 3D printed in [28] to study the feasibility of a radar-based
breast MWI dry setup; a 20 mm spherical phantom filled with a 10:90 ratio of water to
glycerine was used to emulate a breast tumour in [29]; two cylindrical shaped tumour
phantoms with 10 and 20 mm diameters and 30 mm height were tested in [30]; and in [31],
a small cylindrical plastic container filled with water was used as a breast tumour phantom
in experimental tests.

Breast tumours have been modelled, more realistically, with Gaussian Random
Spheres. These were used for validation tests of a microwave imaging device in [32],
and for tumour classification using a MWI prototype system in [33]. In [34], realistic benign
and malignant breast phantoms were carved by hand, resulting in approximate spherical
and spiculated models for benign and malignant tumours, respectively. We emphasize
that none of the models reported in the literature were based on accurate anatomical
representations of tumours.

A summary of previously developed methodologies to create breast models has been
recently published in [35].

2. Materials and Methods
2.1. Dataset

This study was approved by the Scientific and Ethical Commission of Hospital da
Luz—Lisboa, under references CES/44/2019/ME (19 September 2019) and CES/34/2020/
ME (6 November 2020). The breast MRI exams collected at Hospital da Luz—Lisboa were
anonymised before processing and informed consent was obtained from all patients.

The current dataset of this on-going study comprises exams from 16 patients, with a
total of 29 tumours: 15 benign and 14 malignant. In this paper, we selected breast masses
scored with BI-RADS 2 and 3 [1] (benign tumours) and BI-RADS 5 and 6 (malignant
tumours) [1].

Women were imaged in a prone position in a 3.0T MAGNETON Vida clinical Magnetic
Resonance (MR) scan (Siemens Healthineers, Erlangen—Germany) with a dedicated coil
for the breast (Siemens Breast 18 coil, Siemens Healthineers, Erlangen—Germany). Two
MRI sequences were collected: Dynamic Contrast Enhanced (DCE) transversal three-
dimensional (3D) T1-weighted (T1-w) Fast Low Angle Shot 3D (fl3D) Spectral Attenuated
Inversion Recovery (SPAIR) sequence; and Direct coronal isotropic 3D T1-w fl3D Volumetric
Interpolated Breath-hold Examination (VIBE) Dixon image sequence (T1-w Dixon).

DCE-fl3D consists of a fat-suppression sequence with six sets of images: a pre-contrast
image, acquired before the injection of gadolinium intravenous contrast agent, and five
post-contrast consecutive images where highly vascularised tissues, such as tumours, are
enhanced. Digital subtractions of each post-contrast image from the pre-contrast image
are also available. The digital subtractions enhance tumour regions due to the contrast
uptake in those locations and annul hypersignal regions present in the pre-contrast image.
These images present high resolution in all anatomical planes and have isotropic voxels.
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Even though our dataset includes images with different spatial resolutions (0.99 mm ×
0.99 mm × 1 mm and 1.04 mm ×1.04mm × 1 mm), we only use images with 0.99 mm ×
0.99 mm × 1 mm in this paper. We chose the subtraction DCE-fl3D image (SUB-DCE-fl3D)
that best reveals the whole tumour region for tumour segmentation. One must note that
larger tumours require more time delay for contrast enhancement to be observed.

The T1-w Dixon sequence relies on the difference in resonance frequency between
hydrogen nuclei bound to water and fat. This difference allows obtaining four sets of
images in a single acquisition: in-phase, opposite phase, fat-only, and water-only images.
For this study, we used fat-only (F), water-only (W), and in-phase (I) images to retrieve
structural information of the breast. To derive the dielectric properties of the tissues in
the breast (fat, fibroglandular, skin, and benign and malignant tumours), we used the
T1-w Dixon-I images, as the fat and fibroglandular tissues are easier to distinguish in their
histograms. These images had isotropic voxels (0.99 mm × 0.99 mm × 1 mm) and were
acquired in the coronal plane.

2.2. Pre-Processing Pipeline

This section details each step of the pre-processing pipeline applied to breast MRI
images before tissue segmentation.

2.2.1. Image Registration

We used two different MRI sequences to segment the breast tissues: the transverse
SUB-DCE-fl3D sequence (for tumour segmentation) and the coronal T1-w Dixon sequence
(for the segmentation of fat, fibroglandular, skin, and the breast/chest wall boundary,
predominantly composed of muscle); hence the alignment of the two images is required.
We used the Insight Toolkit (ITK) implementation (SimpleITK’s) [36] of a linear registration
with linear interpolation to register the SUB-DCE-fl3D sequence (moving image) to the
T1-w Dixon sequence (static image). T1-w Dixon was considered the static image due to
its higher information content regarding the different breast tissues. The application of
the linear transformation resulted in images with dimensions and resolution of the static
image, and in the same spatial referential, allowing their correct superimposition.

2.2.2. Bias Field Correction

MRI images are prone to the bias field artefact [37], which causes unreliable intensity
variations within voxels of the same tissue. As the accuracy of intensity-based imaging
processing algorithms, such as segmentation and classification, is greatly affected by the
bias field artefact, a pre-processing step addressing its effects and correction is required [38].

A nonparametric nonuniform signal intensity normalisation (N3) algorithm, proposed
by Sled et al. [39], uses a Gaussian model to correct the bias field without the need for a
priori knowledge. Later, an improvement of this technique led to the development of the
N4 algorithm [40], which uses a multi-scale optimisation approach to compute the bias
field. This algorithm has shown promising results in removing the bias field from breast
MRI images [41]. The bias field artefact correction was applied to all images using the
SimpleITK N4BiasFieldCorrectionImageFilter implementation [40].

2.2.3. Data Normalisation

Subsequently, the images were scaled between 0 and 255 using the Minimum-Maximum
(Min-Max) normalisation approach, following Equation (1):

v′ =
v−min(A)

max(A)−min(A)

(
newmax(A) − newmin(A)

)
+ newmin(A), (1)

where ν′ and ν are the original and scaled values of each voxel respectively; A is the volume
data, and max(A) and min(A) are the maximum and minimum values of A, respectively.
newmax(A) and newmin(A) are the [new] maximum and minimum values of the scaled range,
respectively [42].
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2.2.4. Image Filtering

MRI images are prone to noise due to image acquisition errors, which corrupts their
quality and deteriorates the performance of intensity-based automatic segmentation algo-
rithms. Salt-and-Pepper noise, commonly present in MRI images, consists of randomly
distributed corrupted voxels which were either set to have the value 0 or the maximum
intensity value of the voxels in the image [43]. The median filter is a well-known non-linear
filter which allows the replacement of the value of a voxel by the median of the gray levels
in its neighbourhood and has been proven very effective in the presence of Salt-and-Pepper
noise [44]. Besides removing noise, the implemented 3-by-3-by-3 median filter, applied
to the SUB-DCE-fl3D images, also smooths voxel signal intensity differences between
tumorous and non-tumorous tissues. However, we did not apply the median filter for
infra-centimetric tumours, as it produces substantial changes in the size and shape of
tumours.

2.3. Image Segmentation

Accurate breast tissue segmentation is of paramount importance to obtain anatomi-
cally realistic numerical and physical breast models. Most tissue segmentation algorithms
rely on the discontinuity or similarity properties of the image’s intensity values [44,45]. Sev-
eral processing pipelines have been developed to identify the different tissues of the breast
and use a combination of both properties to achieve a correct segmentation. Discontinuity-
based approaches for breast tissue segmentation rely on the identification of air-breast
and breast-chest wall boundaries [46,47], while similarity-based techniques mostly rely on
thresholding [48], region-growing [47], and clustering [49,50]. Energy-based approaches,
such as active contour, have also been proposed to segment the skin of the breast [51].

We detail the segmentation methodology used for the different breast tissues in this
section. Figure 1 represents a simplified schematic of the steps followed to obtain a mask
of the breast region.

2.3.1. Breast Region

We used T1-w Dixon-F and T1-w Dixon-W images to generate a binary mask of the
breast region. We chose these images since fat is represented with high-intensity values
in the T1-w Dixon-F images, while fibroglandular, skin, and muscle have high-intensity
values in the T1-w Dixon-W images. We present the results from our processing pipeline
in Section 3.2.1, for clarity.

1. Step 1: Fat mask + removal of organs inside the thoracic cavity

The organs inside the thoracic cavity, such as the heart, lungs, stomach, and liver,
presented low-intensity values compared with the high-intensity values of the fat tissues
in the T1-w Dixon-F image. Hence, we used these images to exclude them from the breast
region mask.

Firstly, we needed to locate the sternum in the T1-w Dixon-W image. To do this, we
identified, in each frame, the voxels with an intensity higher than the mean intensity of the
T1-w Dixon-W image. We then picked the coordinates of the outer-most identified voxel
and used these to later compute the seed to grow the fat region.
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Figure 1. Simplified schematic of the processing steps to obtain the mask of the breast region.

We applied a region growing algorithm, implemented using SimpleITK’s Neighbor-
hoodConnectedImageFilter, to the T1-w Dixon-F image to identify the voxels connected to
the seed and whose neighbours lie within a user-defined intensity range. We automatically
calculated the intensity range assigned to fat tissue. The lower limit has been identified by
other authors [47] as the sum of the mean and three times the standard deviation values of
the voxel intensities of non-fat suppressed breast MRI images, where fat, fibroglandular,
muscle, and skin tissues are represented with medium to high-intensity values. Since only
fat has high-intensity values in the T1-w Dixon-F image, we adjusted the lower limit of the
intensity to the sum of the mean and standard deviation values of the voxel intensities. We
set the upper limit to the maximum intensity voxel of the image. In breast MRI images,
with no clear separation between the fat tissues of the breast and the inner part of the
thoracic cavity, the region growing algorithm may not correctly segment both fat tissues.
However, the application of morphological watershed transform from markers [52] (the
marker image obtained from the output of the region growing algorithm by applying a
distance transform) to the region growing algorithm output successfully distinguishes the
two types of fat.

2. Step 2: Skin + Fibroglandular + Fat mask

We included the skin by dilating the fat mask. According to [53], the thickest skin
area of the breast corresponds to the areolar region with 2.04 ± 0.31 mm. With a voxel
spacing, in millimetres, of 0.9965 × 0.9965 × 1, we performed a dilation using a structuring
element of radius 3. The dilated mask was whited out on the anterior part of the body
and then multiplied by the T1-w Dixon-W image to include the fibroglandular tissue. We
binarized the resulting image by thresholding, using statistical information (mean and
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standard deviation) of the image, and added the binarized image to the dilated mask. The
threshold was defined, in Equation (2), as:

threshold = mean +
standard deviation

4
. (2)

To binarize the image, we had to consider the following: the threshold had to be
higher than the mean voxel intensity to remove the background voxels introduced by
multiplication with the T1-w Dixon-W image, but not excessively high that the holes left
from the fat mask were not filled, especially in the nipple area. From this step, we obtain a
mask that includes the skin, fat, and fibroglandular tissue.

3. Step 3: Mask evaluation

As our methodology uses the sternum coordinates as reference, areas where a tumour
invades the pectoralis muscle are not included in the breast region mask. An invasive
tumour introduces an asymmetry in the breast; hence, the obtained breast mask and its
flipped image (flipped along the sagittal plane) are evaluated. We chose the mean-squared
error (MSE) metric (Equation (3)) to evaluate the differences between the mask and its
flipped image:

MSE =

(
1
n ∑ n

i=1(Ai − Bi)
2
)
× 100, (3)

where n represents the number of data points, i varies from 1 to n, A is the mask, and B is
the flipped image of the mask.

The lower the mean-squared error, the more similar are the images under evaluation.
We considered that a mean-squared error value higher than 10% indicated the presence of
an invasive tumour.

4. Step 4: Mask for an exam with an invasive tumour (optional, when MSE > 10%)

For a mean-squared error value higher than 10%, we added the breast region mask and
its flipped image. Then, we compared non-coinciding areas to the T1-w Dixon-I image and
reassigned voxels with intensity lower than the mean voxel intensity of the T1-w Dixon-I
image to 0. After this process, the breast mask becomes symmetric in the breast/chest wall
boundary region (mask for invasive tumours). To close any holes left from the process
of reassigning the voxels to 0, we applied SimpleITK’s BinaryFillholeImageFilter to the
symmetric breast mask.

5. Step 5: Segmentation of skin + breast/chest wall boundary

We used the breast mask contour to identify the skin and the breast/chest wall
boundary. We scanned it to retrieve the first white voxel from left to right, right to left, and
top to bottom in the sagittal plane. The resulting image corresponded to a 1-voxel-thick
skin contour, where some areas in the sagittal centre of the body, between the breasts,
were not included. A 1-voxel-thick breast/chest wall boundary contour corresponded to
the largest-connected component resulting from the subtraction between the breast mask
contour and the skin contour, followed by blacking out the voxels in the anterior part of
the body, above the sternum.

The final skin contour corresponded to the largest connected component of the sub-
traction between breast mask contour and the 1-voxel-thick breast/chest wall boundary
contour. We obtained the final breast/chest wall boundary contour by subtracting the final
skin contour from the breast mask contour.

As mentioned in Section 2.3.1, we dilated the fat mask obtained from applying region
growing to the T1-w Dixon-F image, using a structuring element of radius 3. As a result, it
is necessary to dilate the contours by the same structuring element to estimate the skin and
breast/chest wall boundary tissues. After the dilation, we multiplied the resulting image
by the original mask to remove the “excessive” breast area.
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For an invasive tumour exam, we adjusted the method to identify the breast/chest
wall boundary tissues by building upon the breast region mask that was made symmetric
in the sagittal plane. We obtained the breast/chest wall boundary tissues by subtracting the
mask for invasive tumours and the “original” mask (the mask obtained before its addition
with its flipped image, as obtained in Step 4), followed by dilation with a structuring
element of radius 3. Although the breast/chest wall boundary is predominantly muscle, it
may include other nearby tissues.

6. Step 6: Skin evaluation

Since the skin has varying thickness throughout the breast—ranging from 2.35 mm in
the areolar region to 1.52 mm in the lateral quadrant [53]—we needed to adjust the skin
mask to portray an accurate skin thickness. Firstly, we multiplied the T1-w Dixon-W image
by the negated fat mask to obtain an image with skin and fibroglandular tissue. Then, we
binarised the resulting image by thresholding, and multiplied the binarised image by the
dilated skin contour.

7. Step 7: Fibroglandular tissue segmentation

With the fat tissue, skin, and breast/chest wall boundary separately segmented, the
fibroglandular tissue can be identified by subtracting those tissues from the whole breast
mask. In this work, we further applied the Gaussian Mixture Model described in [53] to
segment both fat and fibroglandular tissues into sub-categories (low, median, and high),
allowing to incorporate tissue heterogeneity, as reported in [54].

2.3.2. Tumour Segmentation

Accurate tumour segmentation is of utmost importance for tumour evaluation and
extraction of its characteristics. This task is very challenging as breast lesions widely
vary in shape and intensity distribution. Strategies based on data clustering, particularly
unsupervised clustering methods such as K-means and Fuzzy C-means, have been used for
breast tumour segmentation using MRI exams [55–58]. Such methods group a set of data
objects of the whole image/volume into clusters by maximizing intraclass similarity and
minimizing interclass similarity. The proposed approaches using K-means in [55,56] and
Fuzzy C-means in [57,58] outperformed standard techniques and showed high accuracy
in segmenting breast tumours. A semi-automatic algorithm using a marker-controlled
watershed method proposed in [59] was proven more efficient in connecting disjoint
areas in lesions compared to classical K-means clustering and Gaussian Mixture Model
clustering [60]. Thakran et al. [61] developed an automatic methodology for breast tumour
segmentation based on Otsu thresholding.

All previous methodologies rely on intensity values of the whole image to obtain the
region of interest (tumour), as they were developed under the assumption that, generally,
biological tissues are fairly well separated within a grayscale image. However, in the
case of heterogeneous structures comprising a wide range of intensity values, such as
heterogeneous malignant tumours, these methods cannot include all voxels comprising
the tumour within the same cluster, leading to poor segmentation of the tumour volume.

In this work, we used a 3D region growing algorithm, based on [62], to address
tumours with voxels spreading over a wide range of intensity values. As previously
mentioned in Step 1, this method uses a seed to grow the region to adjacent points based
on an intensity threshold criterion. Such criterion defines the intensity range of the voxels
in the growing region as the seed intensity value ± threshold.

In SUB-DCE-fl3D images, tumour regions generally present higher intensities when
compared to neighbouring tissues, so we used the highest intensity voxel as the seed in
the region growing algorithm. For that, one must select a slice (per tumour) in which the
algorithm should choose the seed voxel. Although, most of the time, the highest intensity
voxel corresponds to the tumour, it is possible that in some cases this will not be true—a
manual assignment may be required. For the choice of the threshold value, one should
confirm that the seed value minus the threshold corresponds to the minimum intensity
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value of the tumour voxels; hence only voxels belonging to the tumour will be included in
the growing region. Experiments using our dataset showed that a lower bound of threshold
defined by the mean minus three times the standard deviation of all body voxels provided
good results.

Oftentimes, the 3D region growing algorithm was unable to segment the tumour
exclusively, especially for heterogenous tumours with a wide range of voxels’ intensities.
Instead, other body tissues were included in the growing region. Hence, in order to
segment only the tumour, the Hoshen-Kopelman algorithm was applied [63] to retrieve
the largest connected component. A schematic of the methodology used for breast tumour
segmentation is shown in Figure 2.

Figure 2. Simplified schematics of the processing steps to obtain the mask of the breast tumours.

2.4. Dielectric Properties Estimation

We performed the dielectric properties estimation by assigning the voxel intensities
of the different tissues of the breast (fat, fibroglandular, skin, muscle, and tumour), in the
T1-w Dixon-I image, to the corresponding dielectric properties reported in the literature
via piecewise-linear mapping [21,64,65].

Relative permittivity and conductivity curves of single-pole Debye model have been
described [21,64,65] for each tissue type of the breast (fat, fibroglandular, tumour, skin, and
muscle). In addition, we further separated the fat and fibroglandular tissues into six cate-
gories with the corresponding dielectric property curve: fibroglandular-low, fibroglandular-
medium, fibroglandular-high, fat-low, fat-medium, and fat-high. To obtain an appropriate
mapping between the voxel intensities and the corresponding dielectric properties, we
fitted a two-component Gaussian Mixture Model to the histogram of the pre-processed im-
ages, adapted from [21]. The histogram contains the contribution of fat and fibroglandular
tissues as defined in Equation (4), for fat, and Equation (5), for fibroglandular tissue, by the
Gaussian Mixture Model method,

γ f at =
(

µ f at, δ f at
2
)

(4)

γ f g =
(

µ f g, δ f g
2
)

, (5)
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where µx and δx
2 represent the mean and variance of each distribution. The remaining

parameters are defined in Table 1. Skin also has specific dielectric curves reported in the
literature [64,65].

Table 1. Linear piecewise mapping between the voxel intensities and the corresponding dielectric
property curve for the histogram of an exam where the contribution of the gaussian curves of fat and
fibroglandular tissue are separated.

Dielectric Property Curves Voxel Intensity

Minimum 0
Fibroglandular_low µ f g − σf g

Fibroglandular_median µ f g
Fibroglandular_high µ f g + σf g

Fat_low µ f at − σf at
Fat_median µ f at

Fat_high µ f at + σf at
Maximum Maximum intensity of the image

When a histogram does not show sufficient separation between the Gaussian curves
corresponding to the contributions of the fat and fibroglandular tissues, we used the
parameters in Table 2, where δ is a user-defined positive scalar [21]. In our work, we define
δ as in Equation (6),

δ =
Fat_low− Fibroglandular_high

2
(6)

Table 2. Linear piecewise mapping between the voxel intensities and the corresponding dielectric
property curve for a histogram of an exam where the fat tissue is predominant over the fibroglan-
dular tissue and the contributions of the gaussian curves of fat and fibroglandular tissues are not
clearly separated.

Dielectric Property Curves Voxel Intensity

Minimum 0
Fibroglandular_low 2× µ f g −M f g

Fibroglandular_median µ f g
Fibroglandular_high M f g = µ f at − σf at − δ

Fat_low µ f at − σf at
Fat_median µ f at

Fat_high µ f at + σf at
Maximum Maximum intensity of the image

For each segmented tissue type, the minimum and the maximum value of the intensity
voxels of the MRI exam are associated with the lower- and upper-bound curve of each
tissue, respectively. At each frequency, the remaining voxels are linearly mapped to a value
between the curves of that tissue using a piecewise linear interpolation.

Table 3 contains single-pole Debye parameters (permittivity at high frequency—ε∞, the
difference between static permittivity and permittivity at high frequency—∆ε, relaxation
time—τ, and static conductivity—σs) of the dielectric curves for each tissue type [64,65].
As reported in [64,65], Debye parameters are only valid for frequencies between 3 and
10 GHz. We assumed that the breast/chest wall boundary was composed of muscle.
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Table 3. Single-pole Debye parameters for the dielectric property curves for each tissue type [64].

ε∞ ∆ε τ(ps) σs(S/m)

Minimum 2.309 0.092 13.00 0.005
Fibroglandular_low 12.99 24.40 13.00 0.397

Fibroglandular_median 13.81 35.55 13.00 0.738
Fibroglandular_high 14.20 40.49 13.00 0.824

Fat_low 2.848 1.104 13.00 0.005
Fat_median 3.116 1.592 13.00 0.050

Fat_high 3.987 3.545 13.00 0.080
Maximum 23.20 46.05 13.00 1.306

Skin 15.93 23.83 13.00 0.831
Muscle 21.66 33.24 13.00 0.886

According to Lazebnik et al. [15], the dielectric properties of benign tissues are similar
to the properties of lower-adipose-content normal breast tissues, hence, we used the same
linear interpolation obtained from the whole image to estimate the dielectric properties of
benign tissues. Regarding malignant breast tumours, the 1-pole Cole-Cole parameters of
the dielectric property curves are reported [15]. Two curves limiting the lower- and upper-
bounds were obtained from parameters of the 25th and 75th percentiles curves, respectively.
The 1-pole Cole-Cole parameters are valid for a frequency range from 0.5–20 GHz.

In order to compare the dielectric properties of tumours to other breast tissues, we
converted the 1-pole Cole-Cole model to the Debye model. From the reported dielectric
property curves, we generated a Debye model fitted to the data points and extracted the
Debye parameters for malignant tumours. The fitted parameters are detailed in Table 4.

Table 4. Fitted Debye parameters for the dielectric property curves of malignant breast tumours.

Percentile ε∞ ∆ε τ(ps) σs(S/m)

25th 12.9 33.9 13.0 1.38
75th 14.6 47.2 13.0 1.60

Figure 3 represents the behaviour of the dielectric properties (relative permittivity and
conductivity) as a function of frequency for non-tumorous tissue types. Figure 4 represents
the dielectric properties of malignant tumour tissues for different frequencies.

2.5. Creation of Breast Region Models

We derived anthropomorphic breast computational models from MRI exams. Such
models are the result of the application of the proposed pre-processing and segmentation
pipelines, detailed above. These models include skin, fat, fibroglandular, and muscle tissues,
as well as benign and malignant tumours, segmented from the MR images. Microwave-
frequency properties of breast tissues at 3, 6, and 9 GHz are also available in our models.
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Figure 3. Relative permittivity (a) and effective conductivity (b) curves of non-tumorous tissues
adapted from [64,65] for the frequency range of 3–10GHz.



Sensors 2021, 21, 8265 13 of 27

Figure 4. Relative permittivity (a) and effective conductivity (b) curves obtained from the fitted
Debye parameters shown in Table 4.

3. Results

This section shows the results of the developed segmentation pipeline applied to breast
MRI exams for breast tissue segmentation and the estimation of the dielectric properties
of the segmented tissues from MRI exams. In this paper, we depicted the results of the
steps previously described for two exams (one with a benign tumour and the other with an
extremely heterogeneous malignant tumour). Both models include the dielectric properties
estimated for 6 GHz. Additionally, the repository contains more breast models, including
benign and malignant tumours, with the estimated dielectric properties also for 3 GHz and
9 GHz.
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3.1. Pre-Processing Pipeline
3.1.1. Registration

The transverse SUB-DCE-fl3D sequence used for tumour segmentation was initially
registered to the coronal T1-w Dixon sequence. Figure 5 shows the resulting images of the
alignment of the two images in T1-w Dixon spatial reference.

Figure 5. Resulting images from the registration of the transverse SUB-DCE-fl3D image (moving
image) to the coronal T1-w Dixon-W image (static image), in a breast exam with a (a) benign and (b)
a malignant tumour.

3.1.2. Bias Field Correction

The correction of the bias field is a common step to T1-w Dixon-I, T1-w Dixon-W,
and T1-w Dixon-F images, as well as SUB-DCE-fl3D images. Figure 6 illustrates (a,d)
the original T1-w Dixon-I images, (b,e) the bias field present in each image, and (c,f)
the corrected images, for an exam with a benign tumour (top) and a malignant tumour
(bottom).

Figure 6. Bias field correction performed on a breast MRI exam with a benign tumour (top) and a malignant tumour (bottom).
(a,d) show one slice from each exam before the application of the bias field correction filter. (b,e) show the inhomogeneity
between the voxel intensities. Red regions represent areas where the inhomogeneity between voxel intensities is larger.
(c,f) show the same slices after correction of the bias field.
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3.1.3. Image Filtering

The application of a median filter to the pre-processed image, with a tumour larger
than 1 cm, smooths the edges, facilitating the breast tumour segmentation process. Figure 7
depicts the application of a median filter for edge smoothing.

Figure 7. Median filter for edge smoothing: (a) image pre-filtering and (b) image post-filtering.

3.2. Image Segmentation
3.2.1. Breast Region

• Step 1: Fat mask + removal of organs inside the thoracic cavity

Figure 8 shows a representation of the number of voxels with an intensity higher
than the mean intensity of the T1-w Dixon-W image counted at the centre of the body,
starting outside the patient’s body, and finishing at the patient’s spine. The coordinates
of the sternum correspond to the outer-most highlighted voxel. The coordinates of the
centre of the body are selected, and then we sweep the coordinate along the coronal plane.
The coordinate for the coronal plane that indicates the first sternum voxel is identified in
Figure 8 by a dark blue circle.

Figure 8. The number of voxels with intensity higher than the mean intensity of the input image
(T1-w Dixon-W image) was counted to detect the coordinates of the sternum in (a) the exam with the
benign tumour, and in (b) the exam with the malignant tumour.

Figure 9 shows the result of the region growing algorithm applied to the T1-w Dixon-F
images. For both exams, the region growing algorithm separates the fat tissue of the breast
region from the fat tissue in the thoracic cavity, and the watershed transform from markers
was not necessary.

• Step 2: Skin + Fibroglandular + Fat mask
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Figure 9. Output of the region growing algorithm applied to (a) the exam with the benign tumour
and to (b) the exam with the malignant tumour.

In Figure 10, we depict the several steps followed to obtain a breast mask with fat, skin,
and fibroglandular tissues described in Step 2 for the exam with the malignant tumour.
Figure 10a represents the fat mask resulting from Step 1. After dilating the fat mask
obtained from region growing (Figure 10b) and whiting out the anterior side of the body
(Figure 10c), we multiplied the resulting mask and the T1-w Dixon-W image (Figure 10d).
After thresholding, we obtain a mask of the breast region (Figure 10e).

Figure 10. Step-by-step images obtained in Step 2. (a) Mask representing the fat tissue obtained from
the region growing algorithm. (b) Mask obtained from region growing, dilated by a structuring
element of radius 3, to include the skin. (c) Dilated mask with the anterior region of the body whited
out. (d) Image obtained by multiplying the image in (c) and the original T1-w Dixon-W image.
(e) Resulting mask after thresholding the image represented in (d).
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Figure 11 shows the breast mask obtained after concluding Step 2 for the exam with
the benign tumour.

• Step 3: Mask evaluation

Figure 11. Mask obtained after Step 2 of our methodology for the exam with the benign tumour.

For the exam with the benign tumour, the mean-squared error value between the
original mask and its flipped image, is 4.8%. For the exam with the malignant tumour, the
mean-squared error value is 11.1%. As observed in Figure 11, the mask for the exam with
the benign tumour is complete, and the mask for the exam with the malignant tumour
(Figure 10e) has a hole where the tumour invades the pectoralis muscle.

• Step 4: Mask for an exam with an invasive tumour (optional)

To complete the mask for the exam with the malignant tumour, the method described
in Step 4 was followed. Figure 12a shows the superimposition of the mask obtained from
Step 2 and its flipped image. Figure 12b corresponds to the binarised T1-w Dixon-I image
using the mean voxels intensity as threshold. Figure 12c corresponds to the resulting
output of Step 4.

• Step 5: Segmentation of skin and breast/chest wall boundary

Figure 12. (a) Superimposition of the original mask from Step 2 and its flipped image. (b) Binarised T1-w Dixon-I image
using the mean voxels intensity as threshold. (c) Resulting mask of the intersection of (a,b), after the application of
SimpleITK’s BinaryFillholeImageFilter.

Figure 13 shows, in detail, the steps followed to obtain the skin and breast/chest wall
boundaries for the exam with the malignant tumour. After scanning the voxels in the breast
contour (Figure 13a), we obtained a 1-voxel-thick skin contour (Figure 13b). An artefact
corresponding to the breast/chest wall boundary appears in Figure 13b since part of the
skin in the original T1-w Dixon-W image was not visible. The 1-voxel-thick chest wall
boundary contour is shown in Figure 13c. The final skin contour, represented in Figure 13d,
corresponds to the largest connected component of the subtraction between Figure 13a,c.
The final contour of the breast/chest wall boundary, in Figure 13e, corresponds to the
subtraction between Figure 13a,d.
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Figure 13. (a) Contour of the breast mask. (b) Skin contour (1-voxel-thick) after scanning the voxels
of the contour breast mask from left to right, top to bottom and right to left. (c) Breast/chest wall
boundary contour (1-voxel-thick) obtained after subtracting the contour represented in (b) from the
contour represented in (a). Final (d) skin and (e) breast/chest wall boundary contours obtained after
Step 5.

The skin and breast/chest wall boundaries obtained after following Step 5 are pre-
sented in Figure 14, for the exam with the malignant tumour.

Figure 14. (a) Skin contour obtained for the exam with the malignant tumour, and corresponding (b)
breast/chest wall boundary obtained after following Step 5.

In Figure 15, the skin and breast/chest wall boundaries obtained after following Step 5
are presented for the exam with the benign tumour.
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• Step 6: Skin evaluation

Figure 15. (a) Skin contour for the exam with the benign tumour, and the corresponding (b)
breast/chest wall boundary obtained after following Step 5.

Figure 16 shows the output of Step 6 for the exams with the benign and the malignant
tumours.

Figure 16. Skin mask obtained after step 6 for (a) the exam with the benign tumour, and for (b) the
exam with the malignant tumour.

Figure 17 shows the final label map obtained from the segmentation pipeline, as
previously described. The labels for each component are as follows: 0 for the background,
1 for the foreground (including fat and fibroglandular tissues), −2 for the skin and −1 for
the chest/breast wall boundary.

Figure 17. Label map obtained from the processing pipeline. Background is labelled as 0, foreground,
which includes fat and fibroglandular tissues, are labelled as 1, the skin is labelled as −2 and the
breast/chest wall boundary is labelled as −1. Label maps for (a) the exam with the benign tumour,
and for (b) the exam with the malignant tumour.

3.2.2. Tumour Segmentation

Figure 18 shows the location of the seed marked with a red cross for (a) the benign
tumour and (b) the malignant tumour, which is the starting point of the 3D region growing
algorithms. The choice of the seed was automatic for (a) and manual for (b).
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Figure 18. Location of the 3D region growing algorithm seed marked with a red cross in (a) the exam
with the benign tumour and (b) the exam with the malignant tumour.

Figure 19 illustrates the output of the region growing algorithm for the exam with the
benign tumour, in the three anatomical planes.

Figure 19. Output of the region growing algorithm for the exam with the benign tumour: (a–c) correspond to transverse,
coronal, and sagittal planes of the pre-processed SUB-DCE-fl3D image for tumour segmentation, respectively; (d–f),
illustrate the superimposition of the tumour mask (yellow) to the pre-processed SUB-DCE-fl3D image in the transverse,
coronal, and sagittal planes.

Figure 20 illustrates the output of the region growing algorithm for the exam with the
malignant tumour, in the three anatomical planes.

Figure 21 illustrates the output of the Hoshen-Kopelman algorithm plus manual cor-
rection of the tumour mask, in the three anatomical planes. Hoshen-Kopelman isolates
tumours by removing regions that do not belong to the tumour tissue. However, for ex-
tremely heterogenous cases such as the one presented in this paper, the Hoshen-Kopelman
algorithm was not enough to isolate the tumour since nearby blood vessels are present in
contiguous regions; therefore, manual correction was required to obtain a binary mask of
the tumour.
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Figure 20. Output of the region growing algorithm for the exam with the malignant tumour: (a–c) correspond to transverse,
coronal, and sagittal planes of the pre-processed SUB-DCE-fl3D image for tumour segmentation, respectively; (d–f) illustrate
the superimposition of the tumour mask (yellow) to the pre-processed SUB-DCE-fl3D image in the transverse, coronal, and
sagittal planes.

Figure 21. Output of the Hoshen-Kopelman algorithm plus manual correction of the tumour mask: (a–c)correspond to
transverse, coronal, and sagittal planes.

The final label maps, including the tumour segmentation are shown in Figure 22.
Tumour label corresponds to −3.

3.3. Dielectric Properties

The histograms of the breast data of the fat and fibroglandular tissues (labelled as 1
in the label maps) for both exams are represented in Figure 23. For the benign tumour, it
is possible to separate fat and fibroglandular tissues through the histogram (Figure 23a)
using parameters described in Table 1. The voxel intensities corresponding to fat and
fibroglandular tissues can be separated in the histogram of the exam with the malignant
tumour (Figure 23b) using parameters described in Table 2. Table 5 includes a list of the
parameters extracted from the Gaussian Mixture Model used to obtain the piecewise-linear
mapping curve between the MRI voxel intensity and the dielectric properties.
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Figure 22. Final label map for (a) the exam with the benign tumour and for (b) the exam with the malignant tumour.

Figure 23. Histogram of MRI voxel intensities for (a) the exam with the benign tumour and for (b) the exam with the
malignant tumour.

Table 5. Parameters of the Gaussian Mixture Model for the exam with the benign tumour and the exam with the malignant
tumour (rounded to the nearest unit).

Exam with the Benign Tumour Exam with the Malignant Tumour

Voxel Intensity
Equations Voxel Intensity Voxel Intensity

Equations Voxel Intensity

Minimum 0 0 0 0
Fibroglandular_low µ f g − σf g 55 2× µ f g −M f g 104

Fibroglandular_median µ f g 80 µ f g 115
Fibroglandular_high µ f g + σf g 104 M f g = µ f at − σf at − δ 127

Fat_low µ f at − σf at 113 µ f at − δ f at 134
Fat_median µ f at 129 µ f at 143

Fat_high µ f at + σf at 144 µ f at + δ f at 152

Maximum Maximum intensity of
the image 221 Maximum intensity of

the image 255

An example of a piecewise-linear map between the relative permittivity/effective
conductivity at the frequency 6 GHz and the MRI voxel intensity for the exam with the
benign tumour is represented in Figure 24.
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Figure 24. Example of the piecewise linear mapping obtained at 6 GHz (a) of the relative permittivity
and (b) effective conductivity for the exam with the benign tumour.

Figures 25 and 26 show the dielectric property maps for the relative permittivity
and effective conductivity (S/m) at 6 GHz for the exams with the benign and malignant
tumours, respectively. We would like to note the different colour scales in both figures; for
the benign tumour, the relative permittivity and conductivity values vary between 0 and
60.3, and 0 and 7.37 (S/m), respectively; for the malignant tumour, the relative permittivity
and conductivity values vary between 0 and 60.3, and 0 and 7.82 (S/m), respectively.

Figure 25. Map of the dielectric properties for the exam with the benign tumour: (a) relative permittivity at 6 GHz and (b)
effective conductivity (S/m) at 6 GHz.

3.4. Breast Region Models Repository

The repository is available for download in GitHub (https://github.com/acpelicano/
breast_models_repository, created on 27 October 2021). Initially, it only included two
breast models, as portrayed in this paper: one of a benign infra-centimetric tumour of
rounded shape; and the other of a malignant invasive tumour of irregular shape, with
approximately 8 cm along its major axis, and extremely heterogenous regarding voxels
intensities. The models include the dielectric properties of the breast tissues estimated at
frequencies of 3, 6, and 9 GHz. Models from the full dataset collected from patients, as
described in Section 2.1, will be added as the processing of each is completed.

https://github.com/acpelicano/breast_models_repository
https://github.com/acpelicano/breast_models_repository
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Figure 26. Map of the dielectric properties for the exam with the malignant tumour: (a) relative permittivity at 6 GHz and
(b) effective conductivity (S/m) at 6 GHz.

4. Discussion and Conclusions

We presented an image processing pipeline to segment healthy breast tissues and
tumours inspired by the available literature. Most models for the breast region are based on
clustering algorithms or the identification of air/breast and breast/chest wall boundaries.
However, the fat tissue inside the thoracic cavity, with no clear separation from other
tissues inside the breast, hinders the correct identification of the breast region. Additionally,
the identification of the breast/chest wall boundary is especially difficult in the presence of
a heterogeneous malignant tumour that is invading the pectoralis muscle, as is the case
presented in this paper.

The proposed segmentation pipeline can separate the fat tissues in the breast and
inside the thoracic cavity by applying the region growing algorithm. In addition, we
suggested using the watershed transform from markers when the region growing algorithm
fails to provide a good separation between both fat tissues. If there is no prior knowledge
of whether an invasive tumour is present in the MRI image, and to account for the area
where it invades the pectoralis muscle, we proposed a method that automatically evaluates
the breast mask after region growing/watershed transform and fills that area.

We developed a semi-automatic segmentation pipeline particularly robust when
segmenting breast tumours with a varying level of heterogeneity regarding voxel intensity.
The proposed pipeline is flexible since it does not operate under the assumption that,
generally, biological tissues are well separated within a grayscale image. For the tumour
segmentation pipeline, we used a 3D region growing algorithm. Although not fully
automatic, it suggests using the highest intensity point in a slice containing the tumour as
the seed point and using, as the lower threshold, the mean minus three times the standard
deviation of all body voxels intensity values. This methodology provided better results
when compared to widely used segmentation methods, such as K-means. The Hoshen-
Kopelman algorithm eliminated voxels included in the growing region of the tumour that
did not belong to that tissue. For the malignant tumour presented in this paper, we also
performed manual correction of the tumour mask.

We estimated the dielectric properties for the malignant tumour tissue from the
reported Debye parameters. For the benign tumour tissue, literature reports that the
dielectric properties of these tissues are similar to the properties of lower-adipose-content
normal breast tissues; hence, we estimated the dielectric properties using interpolation
between the curves of healthy breast tissues.
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In this paper, we presented two realistic breast models where skin, muscle, fat, fi-
broglandular, and tumour tissues (malignant and benign) are identified. In addition, the
models in our paper include the dielectric properties calculated for the frequency of 6 GHz.
Anatomically realistic breast and tumour (benign and malignant) models, portraying the
realistic shapes of these tissues, are available to all with estimated dielectric properties for
frequencies of 3, 6, and 9 GHz in a public repository.
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