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Abstract: Land-use changes adversely may impact ecological entities and humans by affecting the
water cycle, environmental changes, and energy balance at global and regional scales. Like many
megaregions in fast emerging countries, Tamil Nadu, one of the largest states and most urbanized
(49%) and industrial hubs in India, has experienced extensive landuse and landcover change (LULC).
However, the extent and level of landscape changes associated with vegetation health, surface
permeability, and Land Surface Temperature (LST) has not yet been quantified. In this study, we
employed Random Forest (RF) classification on Landsat imageries from 2000 and 2020. We also
computed vegetation health, soil moisture, and LST metrics for two decades from Landsat imageries
to delineate the impact of landscape changes in Tamil Nadu using Google Earth Engine (GEE). The
level of vegetation health and drought for 2020 was more accurately assessed by combining the
Temperature Condition Index (TCI) and Vegetation Condition Index (VCI). A Soil moisture index was
subsequently used to identify surface permeability. A 75% expansion in urban areas of Tamil Nadu
was detected mainly towards the suburban periphery of major cities between 2000 and 2020. We
observed an overall increase in the coverage of urban areas (built-up), while a decrease for vegetated
(cropland and forest) areas was observed in Tamil Nadu between 2000 and 2020. The Soil-Adjusted
Vegetation Index (SAVI) values showed an extensive decline in surface permeability and the LST
values showed an overall increase (from a maximum of 41 ◦C to 43 ◦C) of surface temperature in
Tamil Nadu’s major cities with the highest upsurge for urban built-up areas between 2000 and 2020.
Major cities built-up and non-vegetation areas in Tamil Nadu were depicted as potential drought
hotspots. Our results deliver significant metrics for surface permeability, vegetation condition, surface
temperature, and drought monitoring and urges the regional planning authorities to address the
current status and social-ecological impact of landscape changes and to preserve ecosystem services.

Keywords: urban ecosystem services; landuse and landcover; Random Forest classification; land
surface temperature; environmental monitoring; remote sensing

1. Introduction

In the last three decades, the growth of landuse and landcover changes (LULC) have
led to an enormous transformation in global landscape patterns [1–4]. Landscape changes
result from many factors, including variability in abiotic conditions, such as climate, to-
pography, and soils, biotic interactions that generate spatial patterning even under homo-
geneous environmental conditions and past and present patterns of human settlement.
Land-use changes contributed to a reduction in vegetation health, surface permeability, and
the occurrence of Surface Heat Island (SHI), Urban Heat Island (UHI), and drought [5–8]. It
also drives climate change which affects humans and wildlife [9]. To enable sustainability
and changes in the environmental structure, it is necessary to understand the subtleties of
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landcover change [10]. It is given high importance as most of the metropolitan cities have
encountered substantial landcover changes over the decades [11–13]. Henceforth, these
metropolitan areas consume more energy and produce severe environmental problems and
thus lend land, water, and air pollution, which affects the functions of ecosystems [5,14,15].
Land Surface Temperature (LST) is an important parameter that influences the partition of
energy between ground and vegetation and determines the surface air temperature [14].
LST is also an important factor in global climate change, vegetation growth, and UHI [15,16].
A sudden increase in land-use changes also affects environmental factors, such as rainfall,
temperature, and groundwater level, which threatens the development process of the urban
areas. Thus, examining the impact of landscape changes on vegetation and LST is crucial
for efficient urban planning and management of land-use zones [17,18].

In India, one-third of the people live in cities [19]. During the last decade, the 4%
increasing trend in urbanization expresses that people from the Tamil Nadu state and other
neighboring states and millions of north Indian states people have relocated from rural
areas to a metropolitan city to find a job and make their lives in cities [20]. The urbanization
level in India went from 27.7% to 31.1%, with an increasing amount of 3.3% from 2001
to 2011 [21,22]. The statistics show that the urban population level in India will increase
to 600 million, which doubles the rate from the present scenario by 2031 [23]. Due to
urbanization, the cities in India are affected by unhygienic health conditions and damage
to ecosystems [24]. In India, Tamil Nadu secured the first rank in urbanization among
the fifteen primary states listed by the country [25]. The state has attained the uppermost
level of urbanization with 43.86% in the country, based on the 2001 census [26]. Around
27 million people live in the metropolitan city of Tamil Nadu [27]. The urbanization pattern
of Tamil Nadu is dispersed with municipalities in almost every district [28]. This rapid
rise in urbanization in Tamil Nadu leads to many problems, including deforestation, water
scarcity, flood, pollution, and other environmental damages [29]. Thus analyzing the
impact of landscape changes on vegetation and land surface temperature over Tamil Nadu
is crucial for sustainable urban planning and management [30].

Global Remote Sensing (RS) and satellite imageries processing techniques delivered
considerable potential for landscape change patterns and vegetation change analysis.
Thus, this study attempts to examine the impact of landscape changes on vegetation and
land surface temperature using RS. Several studies have been carried out to examine the
LULC changes, which are important indicators for examining the relationship between
the environment and anthropogenic activities that can be attained from satellite images
and other image processing techniques [31–35]. These are especially useful for a state like
Tamil Nadu, where ground/field monitoring data are not available and scarce [32,36]. But
the availability of satellite images helps to overcome this issue, especially Google Earth
Engine (GEE) cloud computing platform provides efficient methods and freely available
spatial data for storing, accessing, and analyzing spatial datasets on the high-performance
servers [37]. GEE was launched by Google in 2010 and makes freely available RS datasets
via its internet-based Application Programming Interface (API) provided by Python and a
JavaScript web-based Interactive Development Environment (IDE) used to detect changes,
landuse changes, map trends, landcover changes and quantify differences on the Earth’s
surfaces and atmospheres [37].

The existing studies have focused mainly on the spatio-temporal relationship between
LULC and environmental changes [10,32,38–40]. However, the multivariate relationship
between LULC changes, vegetation, soil moisture, and land surface temperature has not
been analyzed widely. This paper aims to fill this gap by examining the LULC changes
effect on landuse vegetation and land surface temperature using GEE. The availability
of GEE codes helps future research to integrate different datasets from Tamil Nadu at
different resolutions.

The impact of land-use changes should be analyzed by considering the following
research questions: (i) how could landscape changes make a variation in the Spatial and
Temporal pattern of the land-use change? [41]; (ii) how could landscape changes affect the
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surface and land temperature conditions? [42], and (iii) how does the relationship exist
between land-use change patterns and environmental factors (temperature, soil moisture,
and vegetation) [43].

This paper is organized as follows: Sections 2.1 and 2.2 describe the study area
and data used in this work. Section 2.3 provides information about the observation and
assessment of LULC Classification, Normalized Difference Vegetation Index (NDVI), Soil
Adjusted Vegetation Index (SAVI), LST, Vegetation Condition Index (VCI), and Temperature
Condition Index (TCI), respectively. Section 3 then combines the results from the individual
stages of the research design to evaluate LULC changes to assess their impact on vegetation
and LST. Finally, Sections 4 and 5 provide the discussion and conclusion, respectively.

2. Materials and Methods
2.1. Study Area

Our study was undertaken in Tamil Nadu, a state located in the southern part of
India [10], which has a seashore surrounded by one dimension and consists of various
types of landscapes such as hilly terrain, wetlands, and forests [32]. It receives rainfall
predominantly during the monsoon season in the western parts and interior districts, while
the sea bordered districts receive rainfall from the emergence of cyclones [44]. Its capital
city is Chennai and is surrounded on the north by Andhra Pradesh, on the east by the
Bay of Bengal, on the west by Kerala, and on the south by the Indian Ocean (Figure 1).
The Western Ghats and the Eastern Ghats mountain ranges converge in the Nilgiri hills
in Tamil Nadu, making it the only state in India to have both. The total area of the state is
130,058 sq km making it the eleventh largest state in the country [45].

The geographic location of Tamil Nadu spans between 11.12◦ N 78.65◦ E with an
average elevation of 247 m and a maximum of 2599 m. Tamil Nadu has the largest tourism
industry in India [29].

Tamil Nadu is the most urbanized state in India, one of the foremost industrialized
states, and the highest tax-paying state to the central government. The urbanization trend
of Tamil Nadu is supposed to exaggerate in the upcoming years. The climate of the region
is sub-humid continental monsoon with an average annual temperature of 28.8 ◦C. The
average yearly precipitation of the state is about 945 mm, of which 32% is through the
southwest monsoon, and 48% is through the northeast monsoon. The cropping pattern in
the majority of the states depends on the monsoon, if the onset of the monsoon is delayed
or fails, then the probability of a drought event occurring is high [46].

2.2. Data

We used the Google Earth Engine (GEE) for most of the image processing and analysis
for this paper. On the GEE computing platform, the static input variables are existing
datasets, terrain, and geographic location, whereas the dynamic inputs are data acquired
from RS [47]. Data were collected between October to December, which is usually the
wet season because dry season data leads to low accuracy results on the vegetation and
temperature changes while doing the mean of all images for every single year. So we only
used the winter and monsoon data to classify landscape changes in vegetation along with
the soil moisture over land surface temperature [46]. For the classification operation, data
were collected from or uploaded to the GEE cloud computing platform. High-resolution
satellite images from the Landsat sensor with a spatial resolution of 30 m and temporal
resolution of 16-day images for the monsoon period October to December 2000, 2004, 2008,
2012, 2016, and 2020 were accessed from the GEE cloud computing platform. (Earth Engine
Data Catalog: https://developers.google.com/earth-engine/datasets/catalog/, accessed
on 1 January 2020) [48] (Table 1).

https://developers.google.com/earth-engine/datasets/catalog/
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Table 1. Technical description of the Landsat imageries used in this study.

Name Spatial Resolution Temporal
Resolution Date of Acquisition

Landsat 7 Collection 1 Tier 1
TOA Reflectance

LE07/C01/T1_SR
30 m 16 day

2000-10-10, 2000-10-17, 2000-10-19, 2000-10-26,
2000-11-04, 2000-11-20,2000-11-27, 2000-12-06,

2000-12-15, 2000-12-20 & 2000-12-29
2004-10-07, 2004-10-12, 2004-10-14, 2004-10-21,
2004-11-08, 2004-11-22, 2004-11-29, 2004-12-01,

2004-12-10, 2004-12-17 & 2004-12-26
2008-10-09, 2008-10-16, 2008-10-18, 2008-10-23,
2008-11-01, 2008-11-03, 2008-11-19, 2008-12-03,

2008-12-12, 2008-12-21 & 2008-12-28
2012-10-04, 2012-10-11, 2012-10-13, 2012-10-27,
2012-11-05, 2012-11-14, 2012-11-21, 2012-11-30,

2012-12-07, 2012-12-14, 2012-12-18 & 2012-12-28

Landsat 8 Collection 1 Tier 1
TOA Reflectance

LC08/C01/T1_SR
30 m 16 day

2016-10-07, 2016-10-15, 2016-10-24, 2016-10-31,
2016-11-08, 2016-11-16, 2016-11-25, 2016-12-02,

2016-12-10, 2016-12-18 & 2016-12-26
2020-10-07, 2020-10-15, 2020-10-23, 2020-10-31,
2020-11-08, 2020-11-16, 2020-11-24, 2020-12-02,

2020-12-10, 2020-12-18 & 2020-12-26

2.3. Methods

To summarize our research design, we provided a schematic representation for the
methodological framework used in this study (Figure 2), which is described in the follow-
ing subsections.
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2.3.1. Landuse and Landcover Classification

Land-use classification describes both landuse and landcover (LULC) significantly [32].
LULC change classification helps the policymakers to understand the environmental change
dynamics to ensure sustainable development [49]. Therefore, the classification of LULC into
different levels is essential [32]. Together, these classification system levels are described
as a hierarchy system that is useful in unfolding, monitoring, and forecasting LULC
changes [39]. The sources of classifying LULC changes are mainly satellite images and
aerial photographs [50,51].

In this study, we analyzed the changes in LULC with seven classes (Table 2) over two
decades using Random Forest classification. The Random Forest classification technique is
used to enhance the contiguities between the data points. The performance of RF requires
the following steps [52,53].

Table 2. Description of Landuse and Landcover (LULC) classes.

No. LULC Classes Land-Uses Included in the Class

1 Settlement Urban, Rural, Mining

2 Waterbodies Rivers, Lakes, Ponds, Streams, and Canals

3 Forest Deciduous, Evergreen, Scrub Forest, and Swamp/Mangroves

4 Plantation Agriculture
Agricultural plantation (tea, coffee, and rubber), Horticultural plantation

(coconut, citrus fruits, orchards, fruits, and vegetable gardens), and
Agro-horticultural plantation

5 Crop Land Agriculture Cropped in more than two seasons
Paddy, rice, sugarcane, cotton, and groundnut

6 Fallow Land Grass dominated land cover, Shrub and bush dominated land cover, and small
tree dominated land cover

7 Barren Land Bare Exposed Rock, Mixed Barren Land, and Sand dunes

Developing the N- Tree bootstrap model using satellite imageries.
Based on DN values, develop an unpruned classification for each bootstrap model.
In terms of DN values, gather the N-number of polygons.
Select the number of classifications for land-use classes.
Generate results of land-use classification.

LULC classification was done in R studio (4.1.3) software based on classes and methods
for spatial data, Raster Geospatial Data Abstraction Library (Rgdal), Raster, and Random
forests packages [54,55].

The land-use classification results were validated using the GEE images obtained from
the year 2000 to 2020. Randomly 75 points were selected, and pixel values of these selected
points were extracted for the various study periods. The accuracy assessment performed by
comparing land-use classification extracted points with the GEE Image results in identifying
those exact points on the GEE. To quantify the accuracy of the results, the kappa coefficient
was used in the ERDAS Imagine (8.7) software [56]. The confusion matrix is used in
calculating the user and producer accuracies. The kappa coefficient’s accuracy of more
than 80% shows the desired land-use classification. Henceforth, the classified results are
ancillary to the GEE reference data. The producer accuracy (1), user’s accuracy (2), overall
accuracy (3), and Kappa coefficient (4) are calculated using the following Equations [57].

ProducerAccuracy =
Number o f accurately classi f ied pixels in the each category o f LULC
Total number o f re f erence pixels in that category (The column total)

× 100 (1)

User′s Accuracy =
Number o f accurately classi f ied pixels in the each category o f LULC

Total number o f re f erence pixels in that category (The Row total)
× 100 (2)
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Overall Accuracy =
Total number o f accurately classi f ied pixels (Diagonal)

Total number o f re f erence pixels
× 100 (3)

Kappa coe f f icient =
(Obs− Exp)
(1− Exp)

(4)

where Obs = Observed Overall accuracy, represents accuracy reported in error matrix,
Exp = Expected correct, represents correct classification.

2.3.2. Normalized Difference Vegetation Index (NDVI)

NDVI estimates vegetation by calculating the disparity between infrared, in which
vegetation strongly reflects light portions and red light, in which vegetation absorbs light
portions [58]. The values of NDVI range from −1 to 1. In this contrast, negative values
almost depict the water bodies [59]. On the other hand, the NDVI value near +1 indicates
the portion with dense vegetation areas [60]. The value of NDVI around 0 may not be
green leaves, which could be urbanized areas [61]. NDVI uses the following Formula (5) to
estimate the vegetation areas [61].

NDVI =
NIR− RED
NIR + RED

(5)

where NIR—Near-Infrared Band.
The vegetation with high healthy condition reflects almost close to Near Infrared

(NIR) and red in terms of higher different frequencies [58]. The formula results create
inducements between the values from −1 to 1 [62]. The indication of low reflectance
near red and high reflectance in near-infrared represents the high yield of NDVI [59]. In
this study, we extracted NDVI values at regular intervals to differentiate the different
growth stages of vegetation productivity and its coverage, i.e., as high productivity, low
productivity, and medium productivity. The coverage changes and the productivity of
vegetation are quantified using the R packages, Sp, Rgdal, Raster, and rts [54].

2.3.3. Soil Adjusted Vegetation Index (SAVI)

Surface permeability in the study area region was assessed using the Soil Adjusted
Vegetation Index (SAVI). In general, SAVI specifies coverage of vegetation and health
concerning soil moisture and thus accounts for the high inconsistency of built-up and non-
built-up land cover in urban areas [63]. In SAVI, a transformation technique is presented to
minimize the effects of external factors from spectral vegetation indices.

SAVI controls for the influence of soil brightness in the NDVI and it reduces the
brightness of soil-related noise in the coverage of vegetation estimation [32]. Vegetation
health is strongly associated with surface permeability and thus provides an essential
identification of impermeable surfaces, especially in urban areas. SAVI is calculated using
Equation (6) [32].

SAVI =
(NIR + RED)

(NIR + RED + L)
× (1 + L) (6)

where RED is the pixel value of band 3 (RED), and the NIR band is the pixel value of
Near-Infrared band 4. L—Soil brightness correction factor [64]. Dense vegetation and high
permeable surface areas L = 0, Less vegetation portion and impermeable surface areas
L = 1 [65]. Due to the vegetation and coverage of built-up land, the inconsistency level was
fixed at L = 0.5 [66].

SAVI was calculated for the satellite images for the period from 2000 to 2020. The
SAVI was extracted at natural breaks to differentiate surface permeability degrees. The
computation of area coverage for soil permeability zone between 2000 to 2020 was done
using SAVI. For each LULC class, the areal coverage and standard deviation of SAVI
are computed.
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2.3.4. Land Surface Temperature (LST)

In this study, the LST index was calculated for each pixel in the satellite images from
2000 to 2020 to quantity the radiative skin temperature of the land surface and its elements,
which depends on the optical brightness and reflectance of the surface (Albedo) [32]. In
general, low SAVI with soil and built-up lands having high albedo [67]. On the other
hand, high SAVI with dense vegetation portions has a low albedo, indicating variability
in the climatic condition over an urban and dense forest region associated with surface
permeability degrees [68]. The LST of each pixel was calculated using Equation (7) [68].

Lλ = {Lmax − Lmin ÷ QCALMAX −QCALMIN} × DN − 1 + LMIN (7)

where,

LMAX = the spectral radiance that is scaled to QCALMAX in W/(m2 *sr *µm)
LMIN = the spectral radiance that is scaled to QCALMIN in W/(m2 *sr *µm)
QCALMAX = the maximum quantized calibrated pixel value (corresponding to LMAX) in

DN = 255
QCALMIN = the minimum quantized calibrated pixel value (corresponding to LMIN) in

DN = 1

LST was applied to the satellite images for the period from 2000 to 2020. The LST was
extracted at natural breaks to differentiate with SAVI. For each LULC class, the areal cover-
age and standard deviation of LST were computed. Using Spearman correlation analysis,
the quantification between the association of surface permeability and LST was achieved.

2.3.5. Vegetation Condition Index (VCI)—Drought Intensity and Temperature
Condition Index

Kogan’s vegetation condition index delivers the relative Normalized Difference Vege-
tation Index changes concerning the historical NDVI pixel values [69]. VHI can be derived
based on both the LST and NDVI [70]. It distinguishes the present vegetation index, i.e.,
NDVI or EVI (Enhanced Vegetation Index), with the values observed in the same data
period of different previous years within particular significant pixel values. The VCI
calculated as per the Formula (8) [71] shown below

VCI =
NDVI− NDVImin

NDVImax − NDVImin
× 100 (8)

where NDVImax and NDVImin are the maximum and minimum NDVI values for a pixel
during a period of time [72]. As a resulting percentage of this formula, Table 3 represents
bad to good vegetation conditions in different colors.

Table 3. Interpretation of the VCI, recommended practice by the United Nations, office for outer
space affairs UN—Spider knowledge portal. (Recommended Practice: Drought monitoring using
the Vegetation Condition Index (VCI): https://un-spider.org/book/export/html/9206, accessed on
5 January 2020) [73].

Value Category

>40% No drought

30–40% Light drought

20–30% Moderate Drought

10–20% Severe Drought

0–10% Extreme drought

https://un-spider.org/book/export/html/9206
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2.3.6. Temperature Condition Index (TCI)

The Temperature Condition Index (TCI) proposed by Kogan was used to determine
the stress effect on the vegetation possessed by the temperature condition and enormous
wetness [74]. The implementation of TCI is anticipated by taking minimum and maximum
temperatures and correcting them to project various vegetation types for the different
temperature conditions represented by (9) [75]

TCI =
LSTmax − LST

LSTmax − LSTmin
(9)

where LST—Land Surface Temperature, LSTmax, LSTmin—Maximum and Minimum values
of Land Surface Temperature.

2.3.7. Vegetation Health Index (VHI)

Vegetation Health Index (VHI) assesses the effectiveness of drought over the area
by incorporating vegetation health (i.e.,) lower than average NDVI and higher than the
temperature on the vegetation conditions [76,77]. Vegetation Health Condition is the
combination of both VCI and TCI written as (10) [78]

VHI = α×VCI + (1− α) TCI (10)

where VCI—Vegetation Condition Index, TCI—Temperature Condition Index, and α—
parameter which quantifies the involvement of each component in the vegetation health.

3. Results
3.1. Analyzing the Landuse Landcover Changes

Seven LULC classes, namely urban settlements, forest, plantation agriculture, barren
land, water bodies, fallow land, and crop-land agriculture, are considered for the analysis,
with a spatial extent of about 130,159.46 km2. Analysis of the accuracy of the classified
LULC was achieved using user accuracy, producer accuracy, and kappa coefficient using
reference data obtained from other sources. Accuracy assessment for 2000 obtained a kappa
coefficient of 0.9 with a producer and user accuracy value of 95.62 and 92.15, respectively.
For the year 2020, the kappa coefficient is 0.85 and 89.35, 94.16 for producer and user
accuracy, respectively (Table 4).

Table 4. Accuracy assessment for generated LULC map.

LULC Classes
2000 2020

Producer Accuracy User Accuracy Producer Accuracy User Accuracy

Settlement 85.06 80.21 79.14 84.27

Forest 89.12 89.95 82.26 91.66

Plantation Agriculture 88.75 91.64 84.59 86.74

Barren Land 93.41 86.35 86.03 88.35

Waterbodies 89.23 94.72 86.41 86.98

Fallow Land 92.39 84.83 87.26 92.83

Crop Land Agriculture 95.62 92.15 89.35 94.16

Kappa 0.90 0.85

Urban settlements and barren lands increased rapidly by 150% and 120%, respectively,
while all other five classes decreased in considerable amounts (Figure 3). The aerial
declination of classes forest, plantation-agriculture, water bodies, fallow land, and cropland-
agriculture are 21%, 36%, 2%, 14%, and 4%, respectively. The sudden evolution of sub-urban
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periphery landforms from cropland to impervious constructions was observed, which is
depicted as the rapid increase in the settlements as seen in Figure 3 as red patches. Chennai
and its fringes had rapid urban development and other sub-urban cities also urbanized
due to the migration of the population to cities for various purposes. The barren land
also increased by 6477 km2 mainly due to urbanization, leaving the agricultural lands,
leading to an increase in uncultivable barren land and water bodies change is around
185 km2, which is at an alarming rate of sign (Table 5). Thus, the landscape of Tamil Nadu
is urbanized with the decrease in fertile cropland pastures over the last two decades and
the conversion of those lands into barren landforms.
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3.2. Assessment of Vegetation Health

Normalized Difference Vegetation Indices (NDVI) are primarily used to detect the
presence of vegetation and the health status of existing plantations. For the analysis carried
out over two decades in Tamil Nadu, the plantations are undergoing severe stress and
agriculture is becoming difficult as the years pass on. From this study, nearly one-third of
the entire area was stress-free in 2000 and the healthy vegetation pattern is clearly visible
in river basins because of the high reflectance value in the NIR band (Figure 4). The year
2004 and 2008 has almost the same healthiness in the outpost with slight declination in the
landscapes having high productivity compared to that of 2000. In 2012, there was around
50 percent increase in the area ranging between 0.1 to 0.2, which clearly reveals that few
plantations are undergoing stress, whereas a lot of agricultural areas are left uncultivated,
which is derived from the analysis of high productivity landform changes in comparison
with 2008 in which change is around 20%. By comparative analysis of NDVI maps between
2016 and 2020, the southern portion of the study area is undergoing severe stress, as is
clearly visible with a decrease in highly productive land by around 45%. From the overall
analysis of the healthiness of the vegetation carried over for two decades, we learned that
areas with no plantation increased by 218% and low productivity (0.1–0.3) areas increased
adversely by about 600% and the average productive land (0.3–0.5) changes around 7.7%
and there is a decrease in the healthy regions by about 75% roughly (Table 6). Southern
Tamil Nadu has an unhealthy vegetation pattern, while the western portion possesses good
healthiness due to the Western Ghats existing in that particular belt.
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Table 6. Change in the areal distribution of the NDVI classes for Tamil Nadu for two decades.

NDVI
Classes

Vegeta-
tion

Produc-
tivity

Area Coverage
(km2)

Change
in Area
Cover-

age
2000–
2004
(%)

Area Coverage
(km2)

Change
in Area
Cover-

age
2008–
2012
(%)

Area Coverage
(km2)

Change
in Area
Cover-

age
2016–
2020
(%)

Change
in Area
Cover-

age
2000–
2020
(%)

2000 2004 2008 2012 2016 2020

−1–0.1 No 6507.97 9111.16 40.13 10,412.75 11,714.35 12.50 18,222.32 20,695.35 13.57 218.00

0.1–0.2 Low 2603.18 3904.78 50.68 5206.37 7809.56 50.00 11,714.35 13,146.10 12.22 405.73

0.2–0.3 Low 1301.59 3253.98 50.00 3774.62 4555.58 20.68 7809.56 10,282.59 31.66 690.00

0.3–0.4 Average 57,270.16 50,762.18 −11.36 54,666.97 66,381.32 21.42 67,813.07 68,333.71 0.76 19.31

0.4–0.5 Average 27,333.48 29,285.87 −7.17 26,682.68 15,619.13 −41.46 10,542.91 10,152.43 −3.70 −62.85

0.5–1 High 35,143.05 33,841.45 −3.70 29,416.03 24,079.48 −18.14 14,057.21 7549.24 −46.29 −78.51

3.3. Soil Moisture Assessment

SAVI is the ideal index to assess soil moisture which is evaluated based on the surface
permeability. When the SAVI value ranges between −1 to 0.1, then the area may be either
water bodies or areas with no soil moisture, i.e., impermeable surfaces; similarly, when
the SAVI value increases, the soil moisture tends to increase due to an increase in the soil
penetration capability.

From this analysis, due to the population explosion, deterioration of soil moisture
was observed, which is mainly due to an increase in impermeable surfaces. In 2000, nearly
40% of Tamil Nadu had high to very high soil moisture, which was spatially scattered over
the state (Figure 5). Similarly, in 2004, very high-high soil moisture areas diminished to
20% and are seen in the Western Ghats and along the water sources. By 2008, soil moisture
regained around 35% and there was a considerable rise in the areas having no permeability.
Again in 2012, soil moisture deteriorated, which resulted in the increase in areas having
medium soil moisture. This leads to stress in the vegetation. From 2012, soil moisture
followed a decreasing trend only, i.e., high soil moisture areas get converted into low to no
moisture areas. In 2020, nearly 90% of the area fell in the no-medium soil moisture range.
By the comparative study of SAVI between 2000 and 2020, areas with no permeability
increased by 27.67% and an increase of 76.57% and 107.91% for low and medium permeable
areas, respectively, whereas the high and very high permeable areas decreased by 79.41%
and 69.52%, respectively (Table 7). The southeast coastal areas of Tamil Nadu are facing
continuous declination of soil moisture and a similar trend is visualized in the northwestern
parts also.
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Table 7. Change analysis of soil moisture for Tamil Nadu for two decades between 2000–2020.

SAVI
Classes

Surface
Perme-
ability

Area Coverage
(km2)

Change
in Area
Cover-

age
2000–
2004
(%)

Area Coverage
(km2)

Change
in Area
Cover-

age
2008–
2012
(%)

Area Coverage
(km2)

Change
in Area
Cover-

age
2016–
2020
(%)

Change
in Area
Cover-

age
2000–
2020
(%)

2000 2004 2008 2012 2016 2020

−1–0.1 No 71,473.47 77,499.89 8.43 78,610.48 83,528.91 6.25 86,158.26 91,253.43 5.91 27.67

0.1–0.2 Low 6897.59 8520.95 23.53 6024.32 8072.63 34.00 10,349.75 12,179.67 17.68 76.57

0.2–0.3 Medium 7352.34 16,824.72 128.83 5102.44 10,412.58 104.07 13,385.42 15,286.84 14.20 107.91

0.3–0.5 High 21,270.30 10,981.54 −48.37 19,301.68 12,861.74 −33.36 7039.58 4378.71 −37.97 −79.41

0.5–1 Very
High 23,165.76 16,332.36 −29.49 21,120.54 15,283.6 −27.63 13,226.47 7060.81 −46.61 −69.52

3.4. Calculating Land Surface Temperature

LST is an important parameter related to urban expansion, which increases due to an
increase in the terrain temperature. In 2000, the average LST ranges between 18–23 ◦C and
the emissivity was more in the southern part as these areas had a higher LST of around 40 ◦C
and most of the coastal areas in the northern part of Tamil Nadu and the western regions
registers an LST between 25–30 ◦C (Figure 6). By 2004, the LST average in Tamil Nadu
declined to a few degrees due to the decrease in LST in the southern part. After 2004, due
to various factors like urbanization and industrialization, LST kept on increasing gradually,
with the interior parts of Tamil Nadu experiencing a severe rise in LST. Between 2008–2012,
there was a bump in the trend in the entire study area, with a 30% increase in the range
between 35–42 ◦C and a decrease in the range between 15–20 ◦C by 28%. In 2016, it also
followed a similar trend with increased LST in the sub-urban areas except the Western Ghats
running in the western portions of Tamil Nadu. In 2020, again, the LST increased by 10%



Earth 2022, 3 629

in the range of 35–42 ◦C and around a 147% decrease in the area ranging between 15–25 ◦C.
Thus, the time series analysis of LST reveals that there has been an increase in the LST over
two decades enormously due to various reasons and conditions that prevail. An increase in
area by 282% with an LST of more than 35 ◦C observed and 12.46% and 31.66% increases
in temperature ranging between 25–30 ◦C and 30–35 ◦C, respectively, whereas LST ranging
between 15–20 ◦C and 20–25 ◦C decreased by 66% and 68%, respectively (Table 8). The
areas with mountainous regions also faced a rise in LS in the interior and the southern part
experiences severe climatic changes due to urban expansion and a decrease in green cover.
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Table 8. Change analysis of LST for Tamil Nadu for two decades between 2000–2020.

LST
Classes

(◦C)

Area Coverage
(km2)

Change
in Area
Cover-

age
2000–
2004
(%)

Area Coverage
(km2)

Change
in Area
Cover-

age
2008–
2012
(%)

Area Coverage
(km2)

Change
in Area
Cover-

age
2016–
2020
(%)

Change
in Area
Cover-

age
2000–
2020
(%)

2000 2004 2008 2012 2016 2020

15–20 39,325.74 36,129.23 −8.12 32,427.97 23,257.45 −28.27 18,138.61 13,175.31 −27.36 −66.49

20–25 29,118.11 25,574.10 −12.17 22,142.12 18,269.29 −17.49 13,462.45 9252.15 −31.27 −68.22

25–30 16,134.25 15,604.11 −3.28 12,219.51 14,367.75 17.58 17,021.38 18,145.74 6.60 12.46

30–35 20,029.62 21,303.74 6.36 22,401.62 23,295.88 3.99 24,313.57 26,372.68 8.46 31.66

35–41 11,325.36 12,335.21 8.91 14,536.49 16,394.36 12.78 19,149.60 21,048.45 9.91 85.85

>41 14,226.38 19,213.07 35.05 26,431.75 34,574.73 30.80 38,073.84 42,157.11 10.72 196.33

3.5. Comparative Study between NDVI, SAVI, and LST Associated with Each LULC Class

In general, SAVI and NDVI are positively correlated, while the LST has a negative
correlation with these two indices. Analysis of the Spearman coefficient reveals that settle-
ments exhibit the highest coefficient value of 0.0061 with the increase in coefficient values
(Table 9). This is because urban areas have fewer plantations and very low permeability,
which has led to an increase in LST for two decades in Tamil Nadu. Forest and water
bodies have the least coefficient values due to healthy dense green cover and high moisture
content. The correlation values tend to increase from 2000 to 2020 because of a decrease in
plantation and an increase in impervious layer concentration in Tamil Nadu. Thus, to avoid
the consequences of LST changes, planners and administrators should focus on increasing
the green cover in urban areas where surface permeability is low to avoid the impactful
effect on ecosystem services.
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Table 9. Spearman correlation between Normalized Difference Vegetation Indices (NDVI), Soil-
adjusted vegetation index (SAVI), and land surface temperature (LST) by landuse and landcover
(LULC) zones. All correlation coefficients are statistically significant at p ≤ 0.01.

LULC Class
Correlation Coefficient

p-Values
2000 2020

Settlement −0.28 −0.51 0.0061

Forest −0.06 −0.11 0.0011

Plantation Agriculture −0.11 −0.20 0.0049

Barren Land −0.18 −0.24 0.0023

Waterbodies −0.15 −0.17 0.0017

Fallow Land −0.17 −0.27 0.0031

Crop Land Agriculture −0.12 −0.22 0.0048

3.6. Assessing the Drought Intensity for 2020

Tamil Nadu experiences a tropical climate, which receives rainfall from monsoons
or cyclones, depressions prevailing in the Bay of Bengal. The annual vegetation cycle of
Tamil Nadu primarily depends on the southwest and northeast monsoon. If any failure
in the monsoon occurs, then disaster begins. VCI is the commonly used index to portray
the impacts of drought on vegetation irrespective of the climatic variations. When the VCI
value exceeds 60, then crops sustain no impacts due to drought and when it falls below 20,
severe impacts occur. In Tamil Nadu, during the year 2020, the drought-prone areas like
southern coastal districts and a few western interior districts experience severe impacts
due to drought leading to a subsequent deficit in crop yield. The northern districts and
Western Ghats (VCI > 60) experience no vegetation stress and vegetation remains healthy
because monsoon in those particular regions onset at the correct timeframe and provides
enough rainfall for crops. The moderate drought occurs primarily in the outer fringes of
severe drought-affected regions and certain riparian parts of the Cauvery deltaic regions,
with VCI values ranging between 20 to 60 (Figure 7).

3.7. Monitoring the Vegetation Health by VHI

Vegetation health generally depends upon the water availability for the survival of
the vegetation prevailing. Water availability, i.e., soil moisture that is related to surface
temperature, is also considered the major factor for deriving the health index. VHI also
considers the VCI, which is related to stress either because of water availability or stress
due to diseases that exist in the crop. VHI analyses of all the aforementioned conditions
and mapping of the health of the crop, almost 35% of Tamil Nadu has stressed vegetation
distribution, and the Western Ghats have healthy vegetation characteristics because of
healthy vegetation circumstances and high moisture content (Figure 8). In the case of a
failed monsoon, VHI can be improved by providing water supply to crops in the correct
proportion by implementing precision agriculture methodologies or changing the irrigation
pattern to avoid stress.
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3.8. Comparative Study between VCI, VHI, and LST Associated with Each LULC Class

Indices related to vegetation like VCI and VHI are positively correlated, while the LST
is negatively correlated to that of the vegetation indices. Drought is the primary causative
factor for increasing LST, as clearly portrayed; as drought leads to the decline of crop health,
this will result in the emergence of LST. The settlement has the highest spearman coefficient
values of 0.0064 with increases in coefficient values of −0.31 and −0.54 for 2000 and 2020,
respectively, while the forest has the minimal correlation of 0.0012 among all the LULC
classes considered for our analysis (Table 10). Cropland and plantation have almost similar
correlation values due to their similar characteristics. However, the correlation values for
each class increased from 2000 to 2020 due to urbanization and a decrease in green cover
resulting in increased LST.

Table 10. Spearman correlation between Vegetation Condition Index (VCI), Vegetation Health Index
(VHI), and Land Surface Temperature (LST) by landuse and landcover (LULC) zones. All correlation
coefficients are statistically significant at p ≤ 0.01.

LULC Class
Correlation Coefficient

p-Values
2000 2020

Settlement −0.31 −0.54 0.0064

Forest −0.09 −0.15 0.0012

Plantation Agriculture −0.12 −0.22 0.0048

Barren Land −0.20 −0.26 0.0025

Waterbodies −0.13 −0.15 0.0016

Fallow Land −0.18 −0.28 0.0032

Crop Land Agriculture −0.14 −0.24 0.0050

4. Discussion

Our study on LULC changes in Tamil Nadu over two decades reveals that there is
abundant growth in urban areas and fallow landscapes monotonically, about 150% and
120%, respectively, and shrinkage in cropland and plantation agriculture landforms by a
notable margin. These changes are mainly due to the movement of people from the rural
areas to the towns in Tamil Nadu, notably Chennai, Coimbatore, Trichy, and Madurai,
seeking employment by leaving their owning premises, which results in the conversion of
agricultural lands into fallow lands and similarity due to high demand urban-fringes are
plotted and sold, leading to increase in settlements results in urbanization [25].

Due to the boom in construction, there is an increase in the percentage of impervious
layers in landforms, which leads to several other consequences like reduction in green
cover, degradation of groundwater, and saltwater intrusion in coastal belts [79], for example,
Vedanta Sterlite copper industry (currently closed for violating environmental measures) in
Tuticorin and thermal power stations in Tuticorin and Ennore extracted millions of gallons
of groundwater drives saltwater intrusion and, toxic discharges degrades the groundwater
in the coastal belts of Tuticorin and Chennai, respectively [80,81]. Another example, nu-
clear power plants in Kalpakkam and Kudankulam also degrade the groundwater and
environment due to the discharge of heavy metals and other toxic substances [36]. Surface
permeability is assessed using SAVI, a modified NDVI index, which shows that the urban
areas and fallow lands have very low surface permeability, resulting in an upsurge of
LST [42]. From the NDVI map, it is clear that the healthiness of the vegetation deterio-
rates during the period of study, and the reality is that major basins (Cauvery basin and
Thamirabarani basin) experience stress in the plantation growth, due to inadequate water
availability. The stopping or delayed release of Cauvery water from Karnataka dam’s by
the Karnataka government is also a driving force of water scarcity in the Cauvery basin and
several districts of Tamil Nadu [82]. Thanjavur (the rice bowl of Tamil Nadu) residing in
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the Cauvery delta plain experiences severe degradation in the healthiness of the crop after
2008, which has severe impacts on the economy of the state. Thus, proper planning must
be employed in deltaic and basin areas to renovate the agricultural landforms to achieve
sustainable development. VHI and VCI are used to show the healthiness of the vegetation
in relation to drought and temperature, respectively. When a certain area is influenced
by drought, health deteriorates, and rises in temperatures also cause stress in vegetation
due to decreases in soil moisture; however, agricultural crops prevail due to water supply
provided by farmers from various water sources.

The main consequence of urbanization is global warming, i.e., an increase in earth
temperature to a certain degree is clearly envisaged in the LST map; there is a spike in
LST values of about 4–5 ◦C in two decades. Due to deforestation, which minimizes the
natural cooling effect, LST may rise further, causing severe health ailments to the people
residing in those areas because of the trap of heat energy by the built-up areas and small
roads with the added heat from the air conditioners, vehicle discharge still exacerbates the
effect [83]. Southern districts like Rameswaram, Thoothukudi, Virudhunagar, Kanyaku-
mari, Sivagangai, and part of Tirupur had the higher LST values in 2020; however, it
can be controlled by improving green cover and erecting artificial groundwater recharge
structures to enhance the growth of trees in urban areas, thereby, there will be increased
chances of rainfall due to a phenomenon called evapotranspiration [4]. Recently, the LST
value upsurges in Kanyakumari districts may be due to the conversation of agriculture
and farmland into a national highway project implemented by the National Democratic
Alliance (NDA) government. Future research should focus on the Kanyakumari district to
identify the cause of the sudden increase in LST.

Urban Sprawl (US) is another major influential factor in the conversion of land-
scapes [84,85]. Urban areas tend to grow on the outer fringes of the major cities, which
results in the shrinkage of production landforms and water bodies being encroached upon,
leading to severe impacts on ecosystems. Our study showcases the growth of towns from
2000 to 2020 in the fringes; in this process, the people start to reside in those outer fringes
and they start facing troubles like lack of infrastructures, sewage treatment, and proper
water supply. To avoid those circumstances, proper urban planning and environmental
management practices should be done to achieve sustainable development in those ar-
eas [27]. With the increase in urban population and unsustainable replacement of green
cover into impervious layer results to cause severe ecological and economic damages. Due
to urbanization and population rise ESV (Ecosystem Service Value) falls rapidly, which
results in a shortage of multi-utility services provided to the people with needs. Due
to the conversion of agricultural land to other landscapes, there is a huge loss in ESV
and Gross Domestic Product (GDP) of the state between 2000 and 2020 and demand for
food grains increases; thus, ESV and GDP should be evaluated in future research. As the
transformation of agricultural or forest land into impervious layers is uncontrollable in
developing countries, certain norms of regulations should be incorporated strictly on the
public to reduce the impacts of the transformation of landforms [31]. Similarly, certain
schemes like the Conversion of Cropland to Forest Program (CCFP) can be implemented,
and subsidies can be provided to the farmers who are involved in such schemes, which
can be helpful for communities who are all switching their location to urban areas due to
any reasons and gaining more ecosystem values. The comparative study of various indices
using spearman’s coefficient shows that when the vegetation health and soil moisture
deteriorate, then the surface temperature increases, and simultaneously the presence of
the severity of drought and the health of vegetation deteriorates, then the area is highly
susceptible to the upsurge of LST.

The combined approach of RS, geographical information system (GIS), and LULC
change the analysis associated with vegetation and temperature change measures provide
useful information and efficient methods and modeling landscape changes on vegetation
and land surface temperatures in Tamil Nadu. Therefore, this study also contributes several
indices and indicators to monitor drought and vegetation health in Tamil Nadu. It also
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delivers useful information for urban planning and sustainable development as well as
mitigation of environmental impact in Tamil Nadu.

5. Conclusions

In this study, the creation of a LULC map using the RF Algorithm for the entire Tamil
Nadu to analyze the spatial and temporal pattern of landcover changes and the accuracy
of the LULC map was carried out. We found a rapid increase in the urban settlements
and barren lands while the agricultural landscape decreased alarmingly due to various
anthropogenic activities from 2000 to 2020. Various indices like NDVI, SAVI, LST, VHI, and
VCI were derived using RS data for six different years during the last two decades. The
NDVI map was used to identify the vegetation health based on reflectance from chlorophyll
pigment. Using NIR imagery, soil moisture was studied using SAVI, which identified the
regions having low surface permeability and the areas having low moisture.

The increase in LST values reflects the relationship between urbanization and its
impacts on climatic conditions. The intensity of drought in Tamil Nadu is depicted by VCI,
while VHI is used to deduce the health of vegetation by including the soil moisture with
the NDVI, which will be used to portray the emergence of heat islands in future research.
LST is inversely related to VHI and VCI, and the Spearman coefficient relationship shows
that urban areas are at a higher risk for the evolution of heat islands. To conclude, our study
is done primarily to analyze the impact of landscape changes on vegetation and LST, and a
relationship is deduced along with the identification of hotspot areas for the emergence of
LST in various districts in Tamil Nadu and plan developmental proposals at the landscape
level and maintain the economic benefits and ecological gains of the different land cover
classes and monitor the region.
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