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b Centre of Geographical Studies, Institute of Geography and Spatial Planning, Universidade de Lisboa, Rua Branca Edmée Marques, 1600-276 Lisboa, Portugal 
c Associated Lab TERRA   

A R T I C L E  I N F O   

Keywords: 
Life cycle inventory 
Sensitivity analysis 
ANN 
Urban core 
Case study 
Land use planning 
Urban metabolism 

A B S T R A C T   

The real-world urban systems represent nonlinear, dynamical, and interconnected urban processes that require 
better management of their complexity. Thereby, we need to understand, measure, and assess the structure and 
functioning of the urban processes. We propose an innovative and novel evidence-based methodology to manage 
the complexity of urban processes, that can enhance their resilience as part of the concept of smart and 
regenerative urban metabolism with the overarching intention to better achieve sustainability. We couple Life 
Cycle Thinking and Machine Learning to measure and assess the metabolic processes of the urban core of Lis-
bon’s functional urban area using multidimensional indicators and measures incorporating urban ecosystem 
services dynamics. We built and trained a multilayer perceptron (MLP) network to identify the metabolic drivers 
and predict the metabolic changes for the near future (2025). The prediction model’s performance was validated 
using the standard deviations of the prediction errors of the data subsets and the network’s training graph. The 
simulated results show that the urban processes related to employment and unemployment rates (17%), energy 
systems (10%), sewage and waste management/treatment/recycling, demography & migration, hard/soft cul-
tural assets, and air pollution (7%), education and training, welfare, cultural participation, and habitat- 
ecosystems (5%), urban safety, water systems, economy, housing quality, urban void, urban fabric, and health 
services and infrastructure (2%), consists the salient drivers for the urban metabolic changes. The proposed 
research framework acts as a knowledge-based tool to support effective urban metabolism policies ensuring 
sustainable and resilient urban development.   

1. Introduction 

It can be argued that urbanization and globalization are accelerated 
by technological advancements. These are often, the main drivers that 
influence and change the spatial and functional structure of the urban 
areas today. These two main drivers -urbanization and globalization- 
appear interdependent in how their influence upon urban systems, 
resulting in the increase of the global urban population. Specifically, the 
urban global population has grown rapidly from 751 million (30% of the 
world’s population) in 1950 to 4.2 billion (55% of the world’s popula-
tion) based on recent data from 2018 and it is projected to reach 6.7 
billion (68% of the world’s population) by 2050 (United Nations (UN) 
2018). It has been well documented that much of the world’s economic 
activities are now concentrated in urban areas, generating 80% of the 
global gross domestic product (GDP) (Ferrao & Fernandez, 2013) while 

simultaneously demanding nearly 75% of energy consumption 
(UN-Habitat, 2021) to support this activity. Therefore, urban areas are 
now responsible for metabolizing or consuming a vast proportion of 
natural resources in support of their inhabitants’ needs, generating a 
high rate of pollution and waste, and stress upon society. On the other 
hand, urban cores areas facilitate research and development, economic 
and social development while simultaneously providing the necessary 
infrastructure to support health care and well-being by employing a 
variety of advanced technologies. 

As part of the context of urban metabolism, an urban core area can be 
seen as a complex ecosystem requiring a neverending exchange of ma-
terials, energy, and information between its processes/systems and as a 
consequence must expand beyond its boundary in order to function and 
grow. This means that urban core areas require more “space” to survive 
than they typically encompass, perhaps suggesting that they lack 
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efficiency. Thus if one were to make urban sustainability, a priority, one 
must find ways to cope with the environmental, social, and economic 
challenges initiated by the increased demand for more resource 
extraction and consumption, that generates excess waste production. By 
doing so, it is essential to understand, measure, and therefore assess the 
complexity of the different urban metabolic processes/systems and the 
services they deliver that are critical for human survival and well-being. 
Different methodologies have been proposed and applied to measure 
urban metabolism with the intention of creating a more sustainable 
society since 1965, when it was first introduced by Wolman. In Section 
2, we provide a detailed analysis of the applied methodologies, high-
lighting their benefits and deficiencies. Summarizing the main short-
comings of these methodologies, we identify challenges related to the 
determination of the urban processes/systems’ boundaries and the lack 
of an integrated and multi-impact approach, including the lack of the 
impact of the ecosystem services on urban sustainability. 

Attempting to address the above-stated limitations, we propose an 
original methodology that assesses the multidimensional urban meta-
bolic processes by coupling Life Cycle Thinking (LCT) with Machine-
Learning (ML) from an ecosystem services perspective. We build and 
assess a smart and regenerative metabolic scenario that can simulta-
neously assess the main drivers for changes in purchasing power per 
capita in our study area, the urban core of the functional urban area of 
Lisbon (UCL) indicating, in which degree, where metabolic changes will 
occur in the near future and the level of impact on the overall urban 
system. We accept that the urban metabolism is derived indirectly from 
GDP changes expressed in purchasing power per capita (IpC) when the 
analysis is at an urban core area scale as in our study area. The meth-
odological approach applied in this study is described in detail in the 
Research framework Section 3, followed by the Results Section 4. These 
sections have raised several hypotheses and issues that we summarize in 
Section 5, Discussion. Finally, we highlight the main findings and nov-
elty of our study in the Conclusions Section 6. 

The objectives of this study are based on five key methodological 
steps. They are 1) to identify the main limitations of previously applied 
methodologies of urban metabolism (UM), 2) to introduce a new and 
novel methodology that addresses these limitations and contributes to 
the extent of state-of-art thinking, 3) to create evidence-based knowl-
edge from the multidimensional metabolic methodology under the 
perspective of ecosystem services 4) to identify the main drivers for 
urban metabolic changes; and 5) to predict metabolic changes for a near 
future. This newly developed methodology should be considered as a 
tool for optimizing planning and design, in support of critical policy-
making by measuring and assessing urban metabolism and thus ensuring 
urban sustainability. 

2. Background 

The concept of urban metabolism (UM) has been evolved and 
adapted over time in response to scientific and technical changes. Based 
on the literature, the concept of UM appeared first using Material flow 
Analysis (MFA), then the Emergy (embodied energy) method influenced 
by the work of Odum, 1983 or occasionally the Ecological Footprint (EF) 
method, and most recently coupled with Life Cycle Assessment (LCA) 
(Goldstein, Birkved, Quitzau & Hauschild, 2013). UM’s first approach is 
related to Industrial Ecology incorporating tools of MFA to assess ma-
terial, water, food, and nutrient fluxes and stocks within urban systems 
and the resulting outcomes to other systems in the form of pollution, 
waste, or exports (Sahely, Dudding & Kennedy, 2003 as cited in Pincetl, 
Bunje & Holmes, 2012). MFA is based on the principle of mass balance 
(mass in = mass out + stock changes), where matter cannot either be 
created or destroyed. Zhang, 2013 supports that by directly adding the 
weight of different materials, the quality differences among these ma-
terials are ignored. Moreover, the role of energy flows that drive all 
material flows throughout the urban metabolic process is also ignored. 
Scholars attempting to understand metabolic processes thoroughly have 

combined MFA along with energy flow analysis (EFA), focusing on 
physical material and energy flows in urban ecosystems, under one 
analytical framework (MEFA) (Kennedy, Pincetl & Bunje, 2011 as cited 
in Zhang, Lu, Tam & Feng, 2018). 

Moving the focus beyond mass, UM’s emergy-based accounting 
method (EMA) ensures that the emergy (solar energy) used directly or 
indirectly for the creation and flow of all products or services is 
accounted. Hence the qualitative differences of the materials and energy 
flows that were ignored previously are now highlighted (Pincetl et al., 
2012; Zhang, 2013). The Emergy method, initially originated by Odum 
in 1988, is based on ecology, thermodynamics, and general systems 
theory fields, emphasizing the fundamental dependence of cities on 
ecological processes that can occur only due to solar energy. Emergy is 
measured in solar emergy joules (seJ) and emphasizes standard units for 
all materials, energy, nutrient, and waste flows in biophysical systems 
(Pincetl et al., 2012). The main challenge of this method and, therefore, 
its limitation relies on the difficulty of converting materials and energy 
flows of different units to the seJ metric (Pincetl et al., 2012). 

In line with Goldstein et al. (2013), these first generations of UM 
methods fail to fully quantify the environmental impacts of larger-scale 
systems. In an attempt to face the limitations of the first generations of 
UM, in the last decade, authors have coupled UM with LCA assessing the 
environmental consequences of cities (Goldstein et al., 2013; Loiseau, 
Roux, Junqua, Maurel & Bellon-Maurel, 2014; Peuportier & Herfray, 
2010) and various urban processes (Ramos & Rouboa, 2020). In general, 
life-cycle assessment (LCA) is a cradle-to-grave standardized method 
accounting the associated environmental impacts of products or services 
over their different life cycle phases. Pincent, 2012 states that LCA 
provides methodologies and tools appropriate to quantify the materials 
or UM, including processes generating inputs and outputs. 

However, various shortcomings of LCA applications have been 
pointed out. Beloin-Saint-Pierre et al., (2017) in their review of the 
methodological choices of UM studies, found out that besides the fact 
that Life cycle modeling is essential for sustainability assessment, "the 
life cycle of complex system like UM is not clearly framed in most UM 
studies under review". Mirabella, Allacker & Sala, (2018) reviewing the 
application of LCA at the city scale, affirms that "no applications of 
comprehensive LCA at urban scale exist to date", in other words, "no 
complete urban LCA studies exist so far". The conventional LCA meth-
odologies provide only relative sustainability evaluation since they 
ignore ecosystem services’ role in supporting human activities (Bakshi, 
Ziv & Lepech, 2015 as cited in Liu, Charles & Bakshi, 2019). Another 
essential deficiency relies on system boundary determination; the results 
may reflect the authors’ subjectivity in system boundary, leading to 
errors or contradictory results. Moreover, LCA is data-dependent. 
Therefore, if the life cycle inventory is not complete may not return 
the total environmental impact of the process/product under analysis. 
As LCA uses a single standard approach ignoring multiple factors 
(environment, technology, and capital) that may affect the target pro-
cess, its environmental assessment lacks a multi-angle approach (Wang 
et al., 2020). 

Hybrid modeling approaches coupling different urban metabolism 
methodologies have been developed to cope with the shortcomings of 
the applied methods previously described. Authors have integrated 
Emergy and LCA to assess sustainability in urban systems under study 
(Cano Londoño et al., 2019; Li et al., 2020; Santagata, Zucaro, Fior-
entino, Lucagnano & Ulgiati, 2020) to reach maximum environmental 
benefits as well as the most cost-effective technologies according to the 
financial limits (Falahi & Avami, 2019). Wang et al., 2020 reviewed the 
EMA and LCA methods and suggested their coupling development to be 
based on three aspects; the aggregate emergy flow table, the indicator 
system construction, and indicator evaluation methods to exert the 
maximum functional advantages of each method. Westin et al., 2020 
have combined MFA and LCA to identify environmental hotspots of 
urban consumption. García-Guaita et al., (2018) integrated MFA and 
LCA under UM approach for urban environmental evaluation. The main 
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limitations of this study include a lack of local data and the absence of 
social and economic indicators in the analysis. Attempting to describe 
the links between the different variables of UM, authors have coupled 
the network approach (NE) with MFA, with ecological network analysis 
(ENA), Environmentally-Extended Input-output analysis (EE-1/O), and 
LCA (Berloin et al., 2017). This type of methodologies are data-driven, 
allowing comparisons and recognition of future trends. Urban systems’ 
metabolic patterns have been studied using the Multi-Scale Integrated 
Analysis of Societal and Ecosystem Metabolism (MuSIASEM) accounting 
method relating fluxing and funds, and therefore offering applicable and 
coherent indicators (Rallo† and Zucaro, 2019; Perez-Sanchez et al., 
2019). However, this method appears to be static, allowing the obser-
vation of a system’s evolution but not its dynamics (Ginard-Bosch and 
Ramos-Martín, 2016). LCA has also been combined with agent-based 
models (ABM) make it suitable to evaluate the sustainability of com-
plex systems through behavior-driven modeling (Marvuglia, Navarrete 
Gutiérrez, Baustert & Benetto, 2018; Walzberg, Dandres, Merveille, 
Cheriet & Samson, 2019; Micolier et al., 2019). Baustert and Beneto, 
2017 categorize the coupling of ABM and LCA based on the direction of 
the information flow as; ABM-enhanced LCA with the ABM to feed the 
LCA model, LCA-enhanced ABM opposite to the previous, and as 
ABM/LCA symbiosis when the information is looping between the two 
models (Marvuglia et al., 2018). Although there are already examples of 
using ABM for simulating LCA, there is still a long road to be made in 
order to make them more user-friendly and less computing 
expert-oriented. 

3. Research framework 

In this study, we couple Life Cycle Thinking (LCT) and Machine 
Learning (ML) adopting smart and regenerative urban metabolism to 
assess purchasing power per capita (IpC) changes driven by the multi-
dimensional metabolic processes of our study area UCL (Fig. 1). IpC 
indicator is a composite indicator drawn from the factor analysis 
calculation based on 16 variables selected by Statistics Portugal (Table C 
in Annex). The IpC is the main factor resulting from the factor analysis, 
as it explains more than 45,6% of the 16 variables’ total variation after 
rotation. The indicator explains the purchasing power expressed on a 
daily basis, in per capita terms using the figure of Portugal as a reference 
(STATISTICS PORTUGAL, 2017). Purchasing power by definition is "the 
quantity of goods and services that can be bought with a monetary unit," 
observing the real economic activity trends (production, consumption) 
globally concentrated in urban core areas as mentioned in the intro-
duction. Therefore indirectly, it can give a perception of the flows of 
materials, energy, and information representing the holistic and multi-
dimensional perspective of urban metabolism associated with the pro-
duction of waste and environmental impacts. 

We understand LCT as a systematic approach that offers a holistic 
vision of all generated impacts of an urban system, improving its 
multidimensional performance throughout its entire value chain. 
Adopting LCT to study urban metabolism allows coping with urban 
sustainability from both macro and micro scale points of view. UM re-
quires large-scale data and life cycle assessment, as standardized 
methodology requires more detailed data (Maranghi, Parisi, Facchini, 
Rubino & Basosi, 2020). Coupling LCT with Artificial Intelligence (AI) 
and Machine Learning (ML) methods enables us to adopt a data-driven 
and bottom-up-based methodology capable of building knowledge 
from the systems dialectic in an iterative way. AI is the development of a 
certain type of computational technique that can perform tasks simu-
lating human intelligence and behavior to solve practical problems 
(Goodfellow, Bengio & Courville, 2016; Openshaw & Openshaw, 1997). 
AI is powered by ML. ML consists of algorithms that learn by example 
using historical data to predict outcomes and uncover patterns not easily 
identified by humans. The obtained knowledge can be used by ML al-
gorithms to make predictions about future trends. ML is found in liter-
ature associated with different names such as; pattern recognition, 

statistical modeling, data mining, knowledge discovery, predictive an-
alytics, data science, adaptive systems, and self-organizing systems 
(Domingos, 2015). ML algorithms based on the learning role fall into 
three categories; supervised learning, unsupervised learning, and rein-
forcement learning (Graves A. 2012; Sathya & Abraham, 2013). The 
supervised ML algorithms reveal insights, patterns, and relationships 
from a labeled (classified) training dataset (input-output pairs) using 
regression or classification techniques. On the contrary, unsupervised 
ML algorithms infer patterns from a dataset without reference to known 
or labeled outcomes. Reinforcement learning (RL) reflects ideas from 
psychology. The RL algorithms learn using trial and error and related 
reward interactions with their environment to find optimal policies 
without being taught by examples (Fu, Liu, Ling & Cui, 2014). 

Artificial neural network (ANN) techniques have been extensively 
applied overall the last thirty years in several areas, e.g., medicine 
(diagnosis and decoding brain signals), security (face recognition), 
Linguistics (language recognition and translations), governance (deci-
sion support systems and smart cities), Banking and Insurance (loans 
and insurance attribution), Pharmaceutical (risk analysis), non- 
renewable resources exploration (prediction), advertising and market-
ing (customer profiling), remote sensing (automatic and semiautomatic 
analysis of satellite images), human and physical geographical studies 
(spatial data pattern & data relationships analysis), Landscape and 
urban planning (conflict management and urban growth simulation), 
and so forth (Bação, Lobo & Painho, 2005; Fischer, 1998, 2006; Hen-
riques, Bação & Lobo, 2012; Openshaw & Openshaw, 1997; Venugopal 
& Baets, 1994). With the advent of big data, and more specific geoBig 
data, and the increased parallel computing, ANN methods, and tech-
niques, also commonly known as the Neurocomputing field of studies, 
have gained more and more applicability across all types of scientific 
domains, ranging from art, social sciences & humanities to more phil-
osophical and ethics studies. To the best of authors’ knowledge, 
coupling LCT and ML to study urban metabolism changes has not been 
applied before. 

Our research framework is understood from an ecosystem services 
perspective. Specifically, under the urban metabolism concept, an urban 
core area could be seen as an ecosystem where biotic components are in 
conjunction with abiotic components of their environment, developing 
circular and ongoing complex relationships. Studying the functional 
aspects of an ecosystem responsible for the flows of energy and the cy-
cles of materials and the beneficial ecosystem services to human well- 
being, we are able to apply this knowledge for the design and plan-
ning of the urban environment. Therefore, maintaining the urban 
ecosystem services is the key to sustain urban places, reinforce system 
resilience, ensuring public health and well-being. 

After defining the goal and the scope of our study, we start imple-
menting our research framework by conducting the Life Cycle Inventory 
(LCI). The LCI is the first phase to implement a LCT methodology. By 
definition, LCI is the quantification of inputs (material and energy flows) 
and outputs (emissions to air, water, or soil) of a system under study. In 
this phase, all the processes involved in the life cycle of a product/ 
process/or system of processes have to be identified along with the data 
related to these processes, and their system boundaries need to be 
determined (Khanali, Mobli & Hosseinzadeh-Bandbafa, 2017; Nabavi--
Pelesaraei, Rafiee, Mohtasebi, Hosseinzadeh-Bandbafha & Chau, 2018). 
Doing the LCI, we identify the indicators representing the smart and 
regenerative urban metabolic processes, and we set their system 
boundaries by defining the dimensions and subdimensions. Last, we 
selected the related measures (Data components) to these urban meta-
bolic processes and again classified them under the urban ecosystem 
services perspective. We use for case study the urban core of the func-
tional urban area (FUA) of Lisbon, Portugal, and its administrative 
boundaries as overall system boundary to test the proposed methodol-
ogy. Having finished the LCI, we couple it with ML to obtain 
evidence-based knowledge on the drivers and dynamics of the metabolic 
processes of our study area. 
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3.1. Case study analysis 

In this subsection, we delineate our study area by setting the overall 
system boundary for our study and analyze it by conducting spatial and 
societal analysis. Hence, in this paper, we use the urban core of the 
functional urban area (FUA) of Lisbon city to assess and predict its smart 
and regenerative urban metabolism. FUAs consist of densely urban 
zones with more than 50,000 inhabitants (Copernicus, 2018). Using the 
core area of Lisbon FUA (UCL), we delimit the area of strong metabolic 
influence of the city of Lisbon. 

The UCL is located in the country’s center, crossed by the Tagus River 
and it is met by the Atlantic Ocean to the west (Fig. 2). The UCL, is 
divided into nine municipalities: Lisbon, Loures, Odivelas, Amadora, 
Oeiras, Cascais in the northern margin of the Tagus River and Almada, 
Seixal and Barreiro in the southern margin. The UCL covers approxi-
mately 1040 (1036.847397) square kilometers, of which 19% is classi-
fied as agricultural, 27.3% is covered by forest, natural areas, and urban 
green areas, and 51% by the built environment (Copernicus Pro-
gramme, 2018). It has an annual average air temperature of 16,4◦C 
(Celsius), a maximum of 22 ◦C, and a minimum of 11,6 ̊C and the annual 
precipitation of the region of Lisbon is 692,3 mm (Statistics Portugal 
(INE), 2018). 

The total resident population of UCL is 1690,014 inhabitants (equal 
to 16% of the total population of Portugal), with a population density of 
1629.9 inhabitants per square kilometer (Statistics Portugal (INE) 
2011). The 49% of the total population of UCL constitutes the labor force 
almost equally divided by sex (24,19% male and 24,87% female). Nearly 
14,5% of the population is classified as young people under the age of 
15, while elderly people over the age of 65 make up account for 20% of 
UCL’s population (Statistics Portugal (INE) 2011). The UCL has an aging 
index of 120 elderly per 100 young people. The percentage of the foreign 

population as the total resident population of the area is 9% (Statistics 
Portugal (INE) 2011). 

The regional economic activities are based mainly on the tertiary 
sector, and the primary and manufacturing activities are low. In 2018, 
the tertiary sector contributed to 87.0% of the regional gross value 
added (GVA), the secondary sector (including construction) to 12.6%, 
and only 0.4% of the GVA comes from the primary sector (EC, 2021). 
The region of Lisbon comprises a science and tech hub concentrating the 
highest expenditure on Research and Development (R&D) activities, 
1.62% of GDP whilst the national average is 1.35%. In addition, it 
concentrates the highest share of personnel and researchers in R&D, 
16.6% per 1000 active inhabitants whereas the average for Portugal is a 
bit lower at only 11.1% (PORDATA, 2018). Looking at the index pur-
chasing power per capita of UCL, we see that the municipality of Lisbon 
has the greatest purchasing power (219.6) in-country, with Portugal as 
reference value 100. Six to nine municipalities of UCL, including the 
municipality of Lisbon, have purchasing power above the national 
average and three (Loures, Seixal, and Odivelas) below (PORDATA 
2018). 

Finishing our analysis, we examine a couple more urban metabolism 
parameters related to energy and material flows. The total electricity 
consumption in the study area is 4198.2 kgwatt-hour per inhabitant, 
while the national electricity consumption is 4754.4 kWh/inhab. The 
municipality of Seixal has the highest consumption 7072.70 kWh/ 
inhab., following Lisbon with 6038.40 kWh/inhab. The overall waste 
selectively collected1 of the UCL (not including the municipality of 
Odivelas) is 154 kg per inhabitant while the national average value is 
103 kg/inhab. The municipality of Cascais has more than double the 
national value (250 kg/inhab.), following Almada with 191.5 kg/inhab. 
and Lisbon with 179.8 kg/inhab. (PORDATA, 2018). 

Fig. 1. Research framework flow.  

1 Waste selectively collected in eco-points, door-to-door, recycling yards and 
special circuits of various materials and biodegradable urban waste selected for 
organic recovery the energy consumption (INE, 2018) 
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3.2. Life cycle inventory in urban ecosystem services perspective 

Under the smart and regenerative concept, the metabolic processes 
are not just the linear consumption of energy and materials that generate 
waste, but instead, they are circular, ongoing, and co-evolutionary, 
eliminating waste by regenerating resources using technology (Peponi 
& Morgado, 2020). As urban cores are metabolic complex systems that 
exist through the interactions and interdependencies of all 
social-cultural-technological-ecological urban processes, a holistic, 

multidimensional systematic network approach is essential to evaluate 
their urban metabolism. 

The social dimension of an urban metabolism includes all urban 
processes related to urban governance, human capital, economic capital, 
and health system. The focus is to plan and design a smart and regen-
erative social structure that improves and even eliminates situations 
perceived as social problems (social exclusion, inequalities, poverty, 
limited health care access, and so on). The cultural dimension of urban 
metabolism contains processes related to the hard and soft cultural 

Table 1 
Multidimensional metabolic analysis in the perspective of urban ecosystem services.  

Dimensions Subdimensions Indicators of urban processes Urban Ecosystem Services 

Social Urban Governance Public participation and stakeholder engagement in decision making Cultural services 
Human Capital Demography and migration Regulating services 

Fertility and Mortality Supporting services 
Education and training Cultural services 

Economic Capital Welfare Provisioning services 
Employment-unemployment rates Supporting services 
Economy Provisioning services 
Touristic attractiveness Cultural services 
Social inventions Provisioning services 

Health system Healthcare services and infrastructure Regulating services 
Cultural Cultural mapping Hard/ Soft cultural assets Cultural services 

Cultural Participation Cultural participation Cultural services 
Urban agriculture Urban agriculture All ecosystem services 

Technological Housing Housing quality Supporting services 
Mobility-Accessibility Road network Supporting services 

Railway Supporting services 
Maritime transport Supporting services 

Urban structure Urban fabric Supporting services 
Urban void No ecosystem services 

Innovation Research and development Cultural services 
Utility systems and infrastructure Sewage and Waste management/treatment/recycling Regulating services/ Supporting services 

Energy systems Provisioning Services 
Water systems Provisioning Services 
Urban safety Regulating services 

Ecological Habitat-ecosystems Habitat-ecosystems All ecosystem services 
Environmental protection Environmental protection All ecosystem services 
Environmental quality Air pollution All ecosystem services 

Air temperature All ecosystem services 
Soil exploitation All ecosystem services 
Water quality All ecosystem services  

Fig. 2. Geographical position of the study area.  
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Table 2 
Dataset for measuring smart and regenerative urban metabolism. (Where U.E.S. = urban ecosystem services, C.S.= cultural services, R.S.= regulating services, S.S.=
supporting services, P.S.= provisioning services, N.S.= no services, A.S.= all ecosystem services.).   

Indicators Data components/ measures Timespan U.E.S. 
Social Public participation and stakeholder 

engagement in decision making 
Registered voters in the elections for the Local Authorities: voters and abstention 2009, 

2017 
C.S. 

Demography and migration Resident population, according to the Census by major age group and sex:(0–14, 15–64, 65+) 2001, 
2011 

R.S. 

Annual population growth (Individual): (Natural increase, Migration net increase) 2011, 
2018 

R.S. 

Foreign population with legal resident status as a% of the resident population by sex 
(Proportion%) 

2011, 
2018 

R.S. 

Population density (Ratio- Average no. of individuals/ Km2) 2011, 
2018 

R.S. 

Fertility and Mortality Crude birth rate - ‰ 2011, 
2018 

S.S. 

Crude death rate - ‰ 2011, 
2018 

S.S. 

Education and training Enrolled students in higher education by sex: (Males, Females) 2011, 
2018 

C.S. 

Enrolled students in pre-school, primary, lower secondary, and upper-secondary education by 
sex: (Males, Females) 

2011, 
2018 

C.S. 

Schools in pre-school, primary, lower secondary, and upper-secondary education 2011, 
2018 

C.S. 

Teaching staff in pre-school, primary, lower secondary, and upper-secondary education 2011, 
2018 

C.S. 

Welfare Total dependency rate (Ratio -%) 2011, 
2018 

P.S. 

Proportion of buying power (Proportion -%) 2011, 
2017 

P.S. 

Purchasing power per capita - Index (number) -% 2011, 
2017 

P.S. 

Average monthly earnings of employees by the level of education and by sex: (Upper-secondary 
and post-secondary non-tertiary; Higher) 

2011, 
2018 

P.S. 

Employment- unemployment rates Activity rate, according to the Census: by age group (25–34, 35–44) and by sex (total) (Rate -%) 2001, 
2011 

S.S. 

Unemployment rate, according to the Census: by age group (25–34, 35–44) and by sex (total) 
(Rate -%) 

2001, 
2011 

S.S. 

Employment rate, according to the Census: by age group (25–34, 35–44) and by sex (total) 
(Rate -%) 

2001, 
2011 

S.S. 

Economy Value of goods imported and exported by enterprises: (Imports, Exports) (€) 2011, 
2018 

P.S. 

Industrial, commercial, public, military, and private units (sqkm) (class 12,100, urban atlas) 2012, 
2018 

P.S. 

Survival rate of Enterprises born 2 years before (Rate-%) 2011, 
2018 

P.S. 

Touristic attractiveness Guests in tourist accommodations per 100 inhabitants (Ratio -%- individual) 2011, 
2018 

C.S. 

Total incomes of tourist accommodations: total (€ - Thousands) 2011, 
2018 

C.S. 

Social inventions Public Administration Retirement Fund: retirees and pensioners 2011, 
2018  

P.S. 

Social Security and Public Administration Retirement Fund pensions in total of the resident 
population aged 15 and over (Rate -%) 

2011, 
2018 

P.S. 

Healthcare services and infrastructure Inhabitants per doctor and pharmacist (Ratio) 2011, 
2018 

R.S. 

Pharmacies and mobile medicine depots 2011, 
2018 

R.S. 

National Health Service: beds in general and specialist hospitals 2011, 
2018 

R.S. 

Cultural Hard/ Soft cultural assets Live shows: performances 2011, 
2018 

C.S. 

Live shows: box-office revenue (€ - Thousands) 2011, 
2018 

C.S. 

Cinema: screenings 2011, 
2018 

C.S. 

Cinema: box-office revenue (€) 2011, 
2018 

C.S. 

Museums: Number 2013, 
2018 

C.S. 

Art galleries and others temporary exhibition spaces (No.) 2011, 
2018 

C.S. 

Art galleries and other places for temporary exhibitions: exhibitions 2011, 
2018 

C.S. 

Cultural facilities: Number 2011, 
2019 

C.S. 

Town Council expenditure on culture and sports as a% of total expenditure: (Proportion -%) 2011, 
2018 

C.S. 

(continued on next page) 
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Table 2 (continued ) 

Cultural participation Museums: total visitors (individual) 2013, 
2018 

C.S. 

Cinema spectators (No.) 2011, 
2018 

C.S. 

Live shows spectators (No.) 2011, 
2018 

C.S. 

Sports and leisure facilities (sqkm) (class 14,200, urban atlas) 2012, 
2018 

C.S. 

Urban agriculture Arable land (annual crops), Permanent crops, Pastures (sqkm) (classes 21,000, 22,000, 23,000, 
urban atlas) 

2012, 
2018 

A.S. 

Technological    Housing quality Licensed buildings by type of building work (New constructions- Extensions, alterations, and 
reconstructions) 

2011, 
2018 

S.S. 

Buildings, according to the Census by type: Mainly residential - Mainly non-residential 2001, 
2011 

S.S. 

Conventional dwellings: total (Dwelling) 2001, 
2018 

S.S. 

Average bank valuation of flats by type: (Dwelling typology 2-berdoom, 3-bedroom) (Mean- €) 2011, 
2018 

S.S. 

Road network Fast transit roads, other roads and associated land (sqkm) (classes 12,210, 12,220 urban atlas) 2012, 
2018 

S.S. 

Railway Railways and associated land (sqkm) (class 12,230, urban atlas) 2012, 
2018 

S.S. 

Maritime transport Port areas (sqkm) (class 12,300, urban atlas) 2012, 
2018 

S.S. 

Urban Fabric Continuous urban fabric (S.L. > 80%) (sqkm) (class 11,100, urban atlas) 2012, 
2018 

S.S. 

Discontinuous dense urban fabric (S.L. 50% - 80%) and Discontinuous medium density urban 
fabric (S.L. 30% - 50%) (sqkm) (classes 11,210, 11,220, urban atlas) 

2012, 
2018 

S.S. 

Urban void Land without current use (sqkm) (class 13,400, urban atlas) 2012, 
2018 

N.S. 

Research and development Employees in high technology sectors: by economic activity (research activities) 2011, 
2018 

C.S. 

Sewage and Waste management/ 
treatment/recycling 

Urban waste by type of destination t (tonne): (Landfill, Energy recycling, Organic recycling, 
Recycling) 

2011, 
2018 

S.S. 
R.S. 

Urban waste selective collection per inhabitant (Ratio-kg/ inhab.) 2011, 
2018 

S.S. 
R.S. 

Urban waste collection per inhabitant (Ratio-kg/ inhab.) 2011, 
2018 

S.S. 
R.S. 

Dwellings connected to sewerage systems (Proportion -%) 2011, 
2018 

S.S. 
R.S. 

Energy systems Electricity consumption per inhabitant by type of consumption kWh (kilowatt-hour) / inhab. - 
Ratio: (Street Lighting, State Buildings, non-Domestic, Domestic, Industry, Agriculture) 

2011, 
2018 

P.S. 

Natural gas consumption per inhabitant (Ratio - Nm3/ inhab.) 2011, 
2018 

P.S. 

Fuel sales for consumption t(ton): (Butane gas, Propane gas, Liquefied petroleum gas (LPG), 
Unleaded petrol 98, Unleaded petrol 95, Fuel diesel) 

2011, 
2018 

P.S. 

Water systems Water supplied/consumed per inhabitant (ratio- m3/ inhab.) 2011, 
2018 

P.S. 

Urban safety Inhabitants per firemen (Ratio- individual) 2011, 
2018 

R.S. 

Crimes registered by the police: total and for some categories of crime: (Domestic violence 
against spouse or similar; Motor vehicle theft; Burglary in residence; Burglary in commercial or 
industrial building; Total) 

2011, 
2018 

R.S. 

Deaths in road traffic accidents 2011, 
2018 

R.S. 

Injuries in road traffic accidents 2011, 
2018 

R.S. 

Pedestrian accidents deaths 2011, 
2018 

R.S. 

Pedestrian accidents 2011, 
2018 

R.S. 

Ecological Habitat-ecosystems Urban Atlas (classes 3, 4, 5 including green urban areas) 2012, 
2018 

A.S. 

Environmental Protection Expenditure by municipalities on the environment: by environmental management and 
protection domains (Euro-Thousands): (Protection of biodiversity and landscape; Protection 
against noise and vibrations; Waste management; Other areas) 

2011, 
2018 

A.S. 

Expenditure of municipalities in environment as% of total expenditure (Proportion-%) 2011, 
2018 

A.S. 

Environmental Non-Governmental Organizations (ENGO): Number 2011, 
2018 

A.S. 

Air pollution Annual mean concentration of PM10 particles (µg/ m3); Annual 2013, 
2018 

A.S. 

Annual mean concentration of CO (8 h) (mg/m3) 2014, 
2018 

A.S. 

Annual mean concentration of O3 (hourly) (µg/m3) 2013, 
2018 

A.S. 

Annual mean concentration of NO2 (VL=40 µg/m3) (ug/m3) 2013, 
2018 

A.S. 

(continued on next page) 
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assets of the area under study, their accessibility, and public participa-
tion. The hard-cultural assets are publicly owned, and the soft-cultural 
assets are found within communities (e.g., artists and creative people), 
businesses (e.g., creative industry), and other stakeholders’ groups. In 
the cultural dimension of urban metabolism, we include processes 
related to urban agriculture, highlighting its beneficial role in building 
community cohesion, providing a place where community members can 
come together, interact, and strengthen their bonds. The smart and 
regenerative cultural planning refers to the planning and implementa-
tion of strategies that highlight the unique hard and soft cultural assets 
of a place, boosting the local and regional competitiveness (urban art 
interventions, collaborative community projects and networks, urban 
culture inheritance, and the creation of the contemporary city culture). 
The technological dimension of urban metabolism lies in implementing 
advanced technologies in urban planning and design, which is required 
to solve the technical issues of supplying energy, water, materials, 
construction, planning, and design and do it while regenerating the 
urban metabolisms. Examples of this implementation are applying the 
Internet of Things (IoT) and the Information and Communication 
Technology (ICT) to support interconnection among heterogeneous 
systems, laser cleaning technologies, sensors for data collection, barriers 
to prevent floods, management, and disposal of the city’s waste. The 
ecological dimension of urban metabolism refers to understanding and 
mimicking organisms and ecosystems (including their functions and 
services). By learning from ecosystem processes, we apply this knowl-
edge to regenerate the exploitation of natural resources, the human and 
social capital, the economy, mobility, and governance and how they 
interact with each other. 

Having defined the metabolic dimensions and subdimensions 
establishing the boundaries of their related urban processes, we identify 
their representative indicators as shown in Table 1. Adopting the 
ecosystem services perspective, we classify these indicators according to 
four well-known groups; provisioning services, regulating services, 
supporting services, and cultural services proposed by the Millennium 
Ecosystem Assessment (MA), 2005 classification system. Pedersen Zari, 
2012 provides a list (Table A in Annex) with the main ecosystem services 
of each category after conducting a comparative survey of the existing 
research. In line with this list, we classify the urban processes of a smart 
and regenerative urban ecosystem into these four categories, trans-
ferring the ecological knowledge to the built environment aiming to 
maintain the overall health and resilience of the urban ecosystem as a 
whole (Table 1). Therefore, the provisioning services offered by a ho-
listic smart and regenerative urban ecosystem are related to the welfare, 
economy, social inventions, energy and water systems, and all urban 
ecological processes, including processes related to urban agriculture. 
The regulating services regulate environmental media or processes, such 
as pollination and dispersal, climate regulation, biological control 
decomposition, and disturbance prevention and moderation of ex-
tremes. Thus, the regulating services are provided by urban processes 
related to demography and migration, Healthcare services and infra-
structure, urban agriculture, sewage and waste management, treatment 
and recycling, urban safety processes, and all urban ecological pro-
cesses. Following the supporting services are these ecosystem processes 
and functions that support other services like soil formation, soil 
retention, renewal of fertility, quality control, nutrient cycling, habitat 
provision, and species maintenance. Therefore, the supporting services 
are provided by urban processes related to fertility and mortality, 
employment- unemployment rates, urban agriculture, mobility - 

accessibility, urban fabric, sewage and waste management, treatment 
and recycling, and all urban ecological processes. Finally, the cultural 
services are the services offered by the urban ecosystem responsible for 
covering cultural or spiritual needs, such as artistic inspiration, educa-
tion, and knowledge, esthetic value, cultural diversity and history, rec-
reation and tourism, creation of sense of place, spiritual and religious 
inspiration, relaxation and psychological well-being (Table 1, Table A). 

We finish the life cycle inventory phase by building the dataset 
reflecting these urban processes and functions responsible for smart and 
regenerative metabolism and circularity of resources, information, and 
waste emissions in all dimensions for two different years (2011, 2018). 
The built dataset consists of 254 measures. These measures represent the 
biophysical characteristics of the ULC, for instance, land use and land 
cover, the UCL’s socioeconomic profile, as population growth and 
density, economic prosperity, lifestyle practices, access to services, and 
quality of life. Moreover, we include measures representing the material 
and energy flows, including energy, water, waste flows. Some of these 
measures could be used for more than one indicator/ urban process of 
different metabolic dimensions. Still, to avoid data redundancy, we 
chose to use them once to measure the urban process they represent 
more generally. 

For our analysis, we set the year 2011 as the oldest year and the year 
2018 as the most recent year to study the metabolism of ULC before the 
COVID-19 pandemic; 2018 was the year with the majority of the 
available data. When a specific dataset was not available for the target 
years 2011 and 2018, we chose the closest year to them available. The 
Census data were only available for the years 2001 and 2011. We 
retrieved statistical data from the Database of Contemporary Portugal 
(PORDATA), Statistics Portugal (INE), and the Urban Atlas land use and 
land cover (Copernicus Programme, 2012, 2018). 

Overall, the built dataset consists of 4 dimensions organized in 15 
sub-dimension, comprising 29 indicators and 254 measures, for two 
time periods focusing on the system dynamics over time and space 
(Table 2). 

3.3. Urban metabolism sensitivity analysis and prediction 

Coupling LCI and ML, we support the application of the smart and 
regenerative urban metabolism concept. The LCI under the ecosystem 
services perspective enables the smart and regenerative aspect of the 
system dynamics. ML  allows us to capture the feedback effect coming 
from the different urban processes and system dynamics components. In 
this way, we encapsulate the circularity of urban metabolism, adopting a 
data-driven methodology. From the ML algorithms, we have used Arti-
ficial Neural Networks (ANN) to accomplish this task. ANN is an infor-
mation processing technique that mimics the way in which a biological 
nervous system operates. It uses a variety of highly connected processing 
units that co-work to process information and generate meaningful 
results. 

Specifically, in the STATISTICA software2 environment, we devel-
oped an algorithmic representation of the urban metabolism of our study 

Table 2 (continued ) 

Air temperature Annual mean air temperature ( ◦C) 2012, 
2018 

A.S. 

Soil exploitation Mineral extraction and dump sites (class 13,100, urban atlas) and Constructions sites (sqkm) 
(class 13,300, urban atlas) 

2012, 
2018 

A.S. 

Water pollution Quality for human consumption (Proportion%) 2011, 
2018 

A.S.  

2 STATISTICA software is an advanced analytical package for data analysis, 
management, mining, statistics, ML, text analytics, data visualization. It can be 
used for predictive modeling, clustering, and classification. More details 
regarding the tools and applications of the software can be found on (StatSoft 
Inc., 2004). 
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area, using the Multilayer Perceptron (MLP) a supervised algorithm of 
ANN,  and create a network of 253 input units and one output unit (the 
dependent variable) where here represents the purchasing power per 
capita for the year 2018. MLPs are often identified as the most common 
neural network architecture that produces predictive models for one or 
more dependent (target) variables based on the values of the predictor 
(independent) variables (Lievano & Kyper, 2006). MLP training pro-
cedure starts by setting a layered feedforward topology (input 
layer-hidden layer(s)-output layer). Then training algorithms using 

optimization functions set the network’s weights and thresholds and 
update the network parameters at every iteration of the training aiming 
to minimize the prediction error3 made by the network. Ultimately, a 
network is appropriately trained when it has learned to model the 
function that relates the input variables to the output variables. There-
fore, it can be used to make predictions where the output is unknown 
(Lievano & Kyper, 2006). For explanatory or causal forecasting prob-
lems as of this study, the functional relationship of predictors and the 
dependent variable is of the form y = f(x1, x2,…, xp) where x1, x2,…,xp 

Fig. 3. Flowchart of MLP network training.  

3 An error function combines all the differences between the actual outputs 
and the target outputs of all training cases and gives the networks error. For 
regression problems the error function is usually the sum of the squared errors. 
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are p predictors and y the target variable (Zhang, Patuwo & Hu, 1998). 
Another important output that we can perform once the network is 
trained, is the sensitivity analysis on the network inputs. From this 
analysis, we can examine the inputs’ interdependencies and obtain in-
formation regarding the variables of the data set that most affect the 
output of our analysis, or in other words the network’s performance. To 
do so, sensitivity analysis rates the input variables according to the 
deterioration in network’s performance that occurs if that variable is 
“unavailable” to the network. STATISTICA software has a missing value 
substitution procedure allowing forecasting where the value of one or 
more input variables v is missing. To define the sensitivity of a variable 
v, the network initially runs using a set of test cases, and the network 
error is accumulated. Then network runs again using the same test cases 
and replacing the observed values v with the estimated value by the 
missing value procedure and the network error is accumulated again. 
The variables are rated based on the ratio of the error with the missing 
value substitution to the original error; greater the ratio means greater 
the expected deterioration in error and therefore the network is more 
sensitive to the specific v input variable (StatSoft Inc., 2004). 

To train the network, we typically divide the original data set into 
training, selection, and testing sets. The training set is normally the 
biggest in size and is used to learn the parameters of the model during 
the training process. The selection test or validation test is used to tune 
the parameters of the model (network configuration, regularization 
techniques, and so on) and eventually to select the "best" model. Finally, 
when the model has been trained, the testing set is used to evaluate its 
performance, ensuring that it can generalize well to unseen data. 

We adopted an explorative approach to train our network, trying 
different sizes of hidden layers and units, learning algorithms and pa-
rameters aiming to find an affective network configuration for our study 
(Fig. 3). Starting with the network’s topology, we tested various 
approaches-rules of thumb suggested by the literature for choosing the 
number and the size of hidden units. One approach suggests that a 
hidden layer should never be more than twice as large as the input layer 
(Berry & Linoff, 1997). Another tested approach was that the number of 
hidden units should be 2/3 the size of the input units plus the output 
unit. We also tested the default configuration of STATISTICA software of 
one hidden layer with the number of hidden units equal to half of the 
sum of the input and output units. Another rule of thumb that we tied 
suggests that the second hidden layer has to be at least three times the 
size of the first hidden layer (Lippmann, 1987). Moreover, we also tested 
random sizes of hidden units, increasing or decreasing them according to 
the network’s performance. 

After setting the network’s topology, we selected the linear approach 
to map the output variable using the identity activation function (γ(c) =
c). This function takes real-valued arguments and returns them un-
changed, supporting a substantial amount of extrapolation, although not 
unlimited (the hidden units will saturate eventually) (StatSoft Inc., 
2004). We randomly assigned five out of nine (total) training cases to the 
training set, two to the selection set, and two to the testing set. 

To start the training process, we followed a two-phased standard 
training procedure for MLPs. We used the Backpropagation learning 
algorithm for the first phase of 100 epochs. We tried different powerful 
algorithms for the second phase of 600 epochs Quasi-Newton (BFGS), 
and Levenberg-Marquardt, and the Conjugate Gradient Descent. The 
BFGS (Broyden–Fletcher–Goldfarb–Shanno) algorithm belongs to the 
Quasi-Newton methods. It is a local search optimization algorithm that 
approximates the inverse Hessian matrix. The approximation at first 

follows the line of steepest descent and later follows the estimated 
Hessian more closely. The BFGS’s main drawback is that it needs O(n2) 
memory to store the inverse Hessian Matrix, making it impractical for 
most sophisticated ML models with millions of parameters. To decrease 
the memory cost, the Limited Memory BFGS (L-BFGS) extension can be 
applied to avoid storing the complete inverse Hessian approximation 
matrix (StatSoft, Inc. 2004); Goodfellow et al., 2016). The following 
tested optimization algorithm was the Levenberg-Marquardt (LM), a fast 
convergence algorithm for small networks, able to solve nonlinear 
least-square problems. LM combines the gradient descent and 
Gauss-Newton minimization algorithms. When the parameters of the 
network are far from their optimal value, LM acts more like a 
gradient-descent, and when the parameters are closer to their optimal 
value, it acts more like a Gauss-Newton (Gavin, 2019). The main 
disadvantage of LM algorithm is that can be very slow to converge when 
the network has more than ten parameters (Waterfall et al., 2006), and 
for flat functions can be lost in parameter space (Transtrum & Sethna, 
2012). The last optimization algorithm tested was the Conjugate 
Gradient Descent that we eventually selected for the second phase of the 
training phase showing the best results for our network. The Conjugate 
Gradient Descent is an advanced optimization algorithm to train MLP 
recommended for networks with a large number of weights and/or 
multiple output units. The technical details on how the optimization 
algorithms carry out the network training process, how they update the 
network weights and minimize the prediction error are presented in the 
supplementary material. 

For the first phase of training, we used a learning rate of 0.01 (initial 
and final) on each epoch. The learning rate is the amount that the 
weights are updated during the training; how far to move the weights in 
the direction opposite of the gradient.  During the training, the back-
propagation algorithm estimates the amount of error for which a node’s 
weights in the network are responsible. Then the node’s weight is 
updated based on learning rate-scaled error instead of the full amount of 
error. Using 0.01 learning rate, the weights of the network are updated 
0.01 times the estimated weight error. To give faster training and better 
predictive accuracy to the network, we used a momentum value of 0.3. 
During the training, the gradient keeps changing direction and slower 
the process of training. Introducing the training momentum (a history of 
weights), the weights are adjusted to one direction smoothing the var-
iations and making the training faster without losing information caused 
by highspeed convergence. We used the online type of training of 
Backpropagation that updates the weights of the network when each 
training case is presented. If all training cases are presented, and none of 
the stopping rules has been met, the process continues by recycling 
them. We shuffled the order of the presentation of the training cases at 
each epoch. The last parameter added for the first training phase was the 
Gaussian noise with a deviation of 0.1 to the output value on each 
training case. For the second phase of the training process no shuffle 
option was available since Conjugate Gradient Descent is a batch update 
algorithm that updates the weights once at the end of each epoch based 
on the average gradient of the error surface across all cases. For the same 
reason to avoid adding noise the learning rate and momentum are not 
available either (StatSoft Inc., 2004). 

At the beginning of the training, we used the random-uniform 
method to initialize the network’s weights normally-distributing small 
random values within a range of minimum and maximum values (0–1). 
We applied a pruning algorithm at the end of the training to prune 
neurons in input and hidden layers with fan-out weights below 0.05 

Table 3 
Model summary.  

Profile Train Perf. Select 
Perf. 

Test Perf. Train 
Error 

Select 
Error 

Test Error Training/ 
Members 

Inputs Hidden nodes 
(1) 

Hidden nodes 
(2) 

MLP 
76:76–12–31–1:1 

0.488857 0.837801 0.803547 0.216065 0.104959 0.352127 BP100, CG593b 76 12 31  
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since they don’t significantly contribute to the network’s performance. 
We also used sensitivity analysis with a ratio of 1.0 to perform input 
pruning. Considering that large weights make the network unstable, we 
applied a weight decay regularization to both training phases using a 
decay factor of 0.01. Overall, this parameterization road map forges the 
best network for the case study. 

After training more than 300 networks, we found the most effective 
model that generalizes well (Table 3). We trained the model with 76 
input variables of the 253 having two hidden layers with 12 and 31 
hidden units, respectively. Backpropagation with 100 epochs and Con-
jugate Gradient Descent (CG) were used to find the best network with 
the lowest selection error on the 593rd epoch of CG. The network’s 
performance on the different data subsets used during the training 
process is shown in Table 3. The performance for regression networks 
like ours is the Standard Deviation Ratio. When the network’s perfor-
mance equals 1, the network performs as a simple average, and a lower 

ratio implies a better estimate. In Table 3, we can also find the network 
error on the subsets as the root mean squared (RMS) errors generated by 
the error function (sum-squared differences between the target and 
actual output values on each output unit). Based on a rule of thumb, 
when RMS error is greater or equal to 0.5, the model does not generalize 
well. 

Another way to validate the model and assess its generalization 
ability in combination with the model summary is the graph of the 
training and selection errors on each epoch (Fig. 4.). The training should 
stop when the training error curve and the selection error curve are close 
to each other. Flat lines or noisy values of relatively high error indicate 
that the model was unable to learn for the training dataset. The same 
applies when the training error curve continues to decrease at the end of 
the graph. In the opposite case, when the model has learned the training 
dataset too well (including noise or random fluctuations), while the 
training error curve continues to decrease through epochs and the se-
lection error curve decreases up to a point and then starts to increase 
again. When the selection dataset does not provide enough information 
to evaluate the model’s generalization ability, the selection error curve 
shows noisy movements around the training error curve even if the 
training error curve indicates a good fit. The selection dataset is un-
representative also when the selection error curve is lower than the 
training error curve. On the other hand, when the training dataset is 
unrepresentative, both training and selection error curves show 
improvement, but there is a large gap between them. Our model’s graph 
shows a good fit with the training and selection error curves to decrease 
to the point of stability with a very small gap between them. 

4. Results 

ANN - MLP network training provided us with two main outcomes. 
First, as a result of the sensitivity analysis, we obtained the main drivers 
representing the urban processes that most influence the predicted 
urban metabolism changes (the dependent variable) in terms of IpC 
changes. Second, we predicted where and to which degree these changes 
in urban metabolism will occur in the near future. 

In Table B (Annex), we present the output variables of our model’s 
sensitivity analysis ranked by descendent order, from higher sensitivity 

Fig. 4. Network’s training graph: training (T.1) and selection (S.1) error, axis 
(x) shows epochs, and axis(y) shows the error function. 

Fig. 5. Occurrence of data components/ measures per indicator with high sensitivity to urban metabolism changes (%).  
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Table 4 
Important measures to urban metabolic changes under the perspective of ecosystem services.  

Dimensions Sub-dimensions Indicators of Urban processes Data components/ measures Year Code Rank U. 
E.S 

Social Human capital Demography & migration Resident population, according to the Census male 65+ 2001 ml65_01 1 R. 
S. 

Cultural Cultural Mapping Hard/ Soft cultural assets Cinema: box-office revenue (€) 2011 cn_bxof11 2 C. 
S. 

Social Human capital Demography & migration Resident population, according to the Census female 65+ 2011 fml65_11 3 R. 
S. 

Social Human capital Education and training Teaching staff in pre-school 2011 tch_pre11 4 C. 
S. 

Ecological Environmental 
quality 

Air pollution Annual mean concentration of NO2 (VL=40 µg/m3) (ug/ 
m3) 

2013 N02_13 5 A. 
S. 

Social Economic capital Welfare Average monthly earnings of male employees by Upper- 
secondary and post-secondary non-tertiary level of 
education 

2011 ernml_upp11 6 P.S. 

Ecological Environmental 
quality 

Air pollution Annual mean concentration of PM10 particles (µg/ m3); 
Annual 

2013 PM10_13 7 A. 
S 

Cultural Cultural Mapping Hard/ Soft cultural assets Live shows: box-office revenue (€ - Thousands) 2001 lv_bxof01 8 C. S 
Social Economic capital Employment- unemployment 

rates 
Employment rate, according to the Census by age group 
(%) (35–44) 

2011 empl3544_11 9 S. S 

Ecological Environmental 
protection 

Environmental protection Expenditure by municipalities on Protection against noise 
and vibrations (€ -Thousands) 

2018 exp_noise18 10 A. 
S 

Social Economic capital Economy Industrial, commercial, public, military, and private units 
(sqkm) (class 12,100, urban atlas) 

2012 ind_ua12 11 P. S 

Technological Housing Housing quality Non-residential buildings, according to the Census 2001 tb_nrsd01 12 S. S 
Social Economic capital Employment- unemployment 

rates 
Unemployment rate, according to the Census male (%) 
(total) 

2011 unmpl_ml11 13 S. S 

Social Economic capital Employment- unemployment 
rates 

Employment rate, according to the Census male (%) (total) 2011 empl_ml11 14 S. S 

Cultural Cultural participation Cultural participation Cinema spectators (No.) 2011 cn_spct11 15 C. 
S. 

Technological Utility systems and 
Infrastructure 

Energy systems Electricity consumption per inhabitant by type of 
consumption kWh (kilowatt-hour) / inhab. – Ratio: (street 
lighting) 

2011 elc_strligh11 16 P. S 

Social Health system Healthcare services and 
infrastructure 

National Health Service: beds in general and specialist 
hospitals 

2018 bed_hspt18 17 R. S 

Technological Utility systems and 
Infrastructure 

Energy systems Fuel sales for consumption t(ton): (propane gas) 2018 propn_18 18 P. S 

Social Economic capital Employment- unemployment 
rates 

Employment rate, according to the Census female (%) 
(total) 

2011 empl_fml11 19 S.S. 

Technological Urban structure Urban void Land without current use (sqkm) (class 13,400, urban atlas) 2012 ncuse_ua12 20 N. 
S. 

Technological Urban structure Urban fabric Continuous urban fabric (S.L. > 80%) (sqkm) (class 11,100, 
urban atlas) 

2012 cntufb_ua12 21 S.S. 

Ecological Habitat-ecosystems Habitat- ecosystems Urban Atlas classes 3,4,5 included urban green areas 2012 ecstm_12 22 A. 
S. 

Ecological Habitat-ecosystems Habitat- ecosystems Urban Atlas classes 3,4,5 included urban green areas 2018 ecstm_18 23 A. 
S. 

Ecological Environmental 
quality 

Air pollution Annual mean concentration of CO (8 h) (mg/m3) 2014 CO_14 24 A. 
S. 

Social Economic capital Employment- unemployment 
rates 

Unemployment rate, according to the Census female (%) 
(total) 

2011 unmpl_fml11 25 S.S. 

Social Economic capital Welfare Average monthly earnings of female employees by higher 
level of education 

2011 ernfml_hgh11 26 P.S. 

Social Economic capital Employment- unemployment 
rates 

Unemployment rate, according to the Census female (%) 
(total) 

2001 unmpl_fml01 27 S.S. 

Technological Utility systems and 
Infrastructure 

Energy systems Electricity consumption per inhabitant by type of 
consumption kWh (kilowatt-hour) / inhab. – Ratio: 
(agriculture) 

2011 elc_agr11 28 P.S. 

Technological Utility systems and 
Infrastructure 

Energy systems Fuel sales for consumption t(ton): (fuel diesel) 2011 fueldsl_11 29 P.S. 

Technological Utility systems and 
Infrastructure 

Sewage and Waste 
management/ treatment/ 
recycling 

Urban waste collection per inhabitant (Ratio – kg/ inhab.) 2011 uw_clct11 30 R. 
S. 

S.S.        
Technological Utility systems and 

Infrastructure 
Sewage and Waste 
management/ treatment/ 
recycling 

Urban waste by type of destination t (tonne): (organic) 2018 uw_orgrcl18 31 R. 
S. 

S.S.        
Social Economic capital Employment- unemployment 

rates 
Employment rate, according to the Census by age group 
(%) (25–34) 

2011 empl2534_11 32 S.S. 

Cultural Cultural participation Cultural participation Live shows spectators (No.) 2011 lv_spct11 33 C. 
S. 

(continued on next page) 

A. Peponi et al.                                                                                                                                                                                                                                  



Sustainable Cities and Society 80 (2022) 103754

13

(1) to lower sensitivity (76) based on their ratio. Focusing on the mea-
sures with a ratio of about one, we summarize the occurrence of the 
different data components/ measures (variables) per indicator (Fig. 5). 
The summarized occurrence of the measures per indicator shows us to 
which urban processes the metabolic changes are more sensitive, 
examining holistically all the measures of the different metabolic di-
mensions of the study area. We see that the Employment- unemployment 
rates indicator measures have the greatest percentage of occurrence 
(17%) among the variables that most affect the network’s performance. 
Second in place come the indicators Environmental protection, and 
Energy systems with 10% measures’ occurrence. The indicators Sewage 
and Waste management/treatment/recycling, Demography & migration, 
Hard/Soft cultural assets, and Air pollution appear with 7% of measures 
occurrence followed by the Education and training, Welfare, Cultural 
participation, and Habitat-ecosystems indicators’ measures with 5%. Last 
is the group of measures with 2% occurrence for the Urban safety, Water 
systems, Economy, Housing quality, Urban void, Urban fabric, and Health 
services and infrastructure indicators. 

The output of the sensitivity analysis shows evidence of the multi-
dimensionality of a smart and regenerative urban metabolism. The most 
important measures (predictor variables) to urban metabolism changes 
cover all four metabolic dimensions, eleven out of fifteen subdimensions 

and eighteen out of 29 indicators (Table 4). Therefore, these indicators 
and related measures show a system-based representation of the in-
terdependencies between different urban metabolic processes respon-
sible for resource use, materials, energy and information circulation, 
waste production, and their associated performance throughout their 
entire value chain. These urban processes provide all urban ecosystem 
services benefiting human well-being. 

The second output obtained from our model was the prediction with 
high accuracy of the urban metabolic changes in terms of IpC changes 
for the UCL for the year 2025. The year 2025 is calculated by adding to 
the present year (2018) the number of years (7) between the two time 
periods of the input data (2018, 2011).  Looking at Table 5, we can 
observe that the degree to the UCL’s urban metabolism at the munici-
pality level either increases, decreases, or stays stable in 2025. In order 
to have a spatial visualization upon where the forecasting metabolic 
changes in 2025, we mapped the current metabolism of our study area 
(Fig. 6) and the prediction results of the urban metabolism (Fig. 7) at the 
municipality level. 

Results show that Lisbon’s metabolism decreased dramatically, fol-
lowed by Cascais’ and Almada’s in 2025. On the other hand, Loures, 
Odivelas, and Seixal show an increased metabolism of the same class 
(Fig. 6, 7). The municipality of Oeiras has one of the highest urban 
metabolism in 2018, and it continues to have for the year 2025. Ama-
dora municipality does not show any significant metabolic changes for 
the near future, contrary to Barreiro’s municipality that presents an 
intensive metabolism. 

From our previous analysis, the main drivers of these metabolic 
changes are the urban processes related to the 42 higher ranks of higher 
sensitivity (Table 4). Therefore, those with decision responsibility can 
either stabilize, increase, or decrease the metabolism of the study area 
by activating these key metabolic drivers. Knowing the degree, the 
spatial distribution of the future metabolic changes, and the key drivers 
of change provides important information to link with potential urban 
development strategies related to urban governance. Provided by spe-
cific guidance coming from our model, we can enhance the relevant 
urban metabolic functions and services in a way to plan and manage 
resilient and sustainable urban development. 

Table 4 (continued ) 

Dimensions Sub-dimensions Indicators of Urban processes Data components/ measures Year Code Rank U. 
E.S 

Social Human capital Education and training Teaching staff in pre-school 2018 tch_pre18 34 C. 
S. 

Technological Utility systems and 
Infrastructure 

Sewage and Waste 
management/ treatment/ 
recycling 

Urban waste selective collection per inhabitant (Ratio – kg/ 
inhab.) 

2011 uw_slctv11 35 R. 
S. 

S.S.        
Technological Utility systems and 

Infrastructure 
Urban safety Crimes registered by the police (motor vehicle theft) 2011 thfmoto11 36 R. 

S. 
Technological Utility systems and 

Infrastructure 
Water systems Water supplied/consumed per inhabitant (ratio- m3/ 

inhab.) 
2011 water_cons11 37 P.S. 

Social Human capital Demography & migration Annual population growth (individual): (natural increase) 2018 grth_natu18 38 R. 
S. 

Cultural Cultural Mapping Hard/ Soft cultural assets Art galleries and other places for temporary exhibitions: 
exhibitions 

2011 art_exh11 39 C. 
S. 

Ecological Environmental 
protection 

Environmental protection Environmental Non-Governmental Organizations (ENGO): 
number 

2011 engo_11 40 A. 
S. 

Ecological Environmental 
protection 

Environmental protection Expenditure by municipalities on the environment (€ 
-Thousands) by environmental management and 
protection domains: (others) 

2018 exp_oth18 41 A. 
S. 

Ecological Environmental 
protection 

Environmental protection Expenditure by municipalities on protection of biodiversity 
and landscape (€ -Thousands) 

2018 exp_biolsc18 42 A. 
S.  

Table 5 
Purchasing power per capita by municipality for the years 2018 and 2025.  

Municipalities IpC 2018 IpC 2025 

Lisboa 219.6 172.1422 
Loures 92.3 104.6195 
Odivelas 89.3 104.1329 
Amadora 100.6 100.6236 
Oeiras 156.5 173.5109 
Cascais 122.1 89.2158 
Almada 108.7 91.0583 
Seixal 89.7 106.8435 
Barreiro 100 162.4113  
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5. Discussion 

Urban cores are complex systems where various urban processes are 
responsible for resource use, flows of materials-energy-information, and 
waste emissions, establishing social, cultural, technological, and ecological 
relationships. Therefore, urban cores have their own metabolism, requiring 
a systematic approach that encapsulates its complexity and assess its 

sustainability. Adopting the concept of smart and regenerative urban 
metabolism, we describe the urban processes and their relationships as 
circular ongoing, co-evolutionary, focusing on eliminating waste by 
regenerating resources using technology. The urban processes represent 
different sub-systems of the urban system of which they are part. They are 
delimited by flexible and open boundaries that allow communication 
channels between the sub-systems and beyond the system boundary 

Fig. 6. Urban metabolism per municipality for the year 2018.  

Fig. 7. Urban metabolism per municipality for the year 2025.  
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enabling their interdependence. In line with the UM framework, we treat 
the urban systems like ecosystems and the services offered by the different 
urban processes as ecosystem services. Natural ecosystems provide func-
tions and services essential to human welfare and long-term survival. 
Studying the structure and services of ecosystems, we obtain guidance on 
how to achieve system resilience. In this way, we can build a research 
framework supporting a holistic understanding of how urban systems 
function, considering their multiple dimensions. Therefore, we can design a 
methodology able to capture the metabolic dynamics highlighting the 
impact of urban ecosystem services on urban sustainability. 

We proposed a novel methodology that couples LCT and ML under 
ecosystem services perspective. LCT is the way of thinking of the conse-
quences in the environmental, economic, and social dimensions of a 
product/process/system of processes throughout its entire life, meaning the 
effects on ecology, resources, and human health (Farjana, Parvez Mahmud 
& Huda, 2021). It facilitates the links between the different dimensions of 
urban processes aiming to reduce resource use, waste production and 
improve a process’s socioeconomic performance through its entire cycle. 
The main limitations when applying LCT and mostly LCA at the city level 
are the definition of system boundaries giving insights into the fundamental 
urban dynamics, the appropriate functional units, and the use of data that 
capture the complexity of urban systems at micro and macro scales. Indeed, 
to measure and access UM at a local scale demands data with a high level of 
granularity produced and or collected systematically through time and 
space and with ground truth. Unfortunately, the type of multidimensional 
data meeting such requirements is scarce, affecting knowledge-based 
analysis due to uncertainty and data gaps. 

Coupling LCT with ML, we are able to overpass/minimize these limi-
tations, modeling a neural network of the different urban processes. ML 
algorithms have proven to be suitable for dealing with problems of data 
scarcity, where are uncertainty and unpredictable system dynamics. 
Although the demand for quality data at a local and even human scale still 
remains to be fulfilled, ML algorithms can work with data gaps and help the 
network perform better, enhancing its integrated systematic multidimen-
sionality. For instance, while preparing the input dataset for implementing 
the proposed research framework at municipality level, we faced diffi-
culties to encounter crucial data to measure important urban metabolic 
processes related to food consumption, construction materials, air quality 
measures at human scale, noise pollution, number of passengers trans-
ported by public transportation, domestic material consumption, number 
of people exposed to conditions beyond a critical threshold, among others. 

Moving to the network training process’s limitations, we must confront 
the general nonconvex case during the training. When training neural 
networks, ML traditionally avoids the general optimization problems by 
designing the objective function and constraints to guarantee that the 
optimization problem is convex. Although, even convex optimization 
comes with complications (Goodfellow et al., 2016). There are a few main 
challenges involved when optimizing convex functions—starting with the 
ill-conditioning of the Hessian matrix a common problem in numerical 
optimization where the Stochastic Gradient Decent (SGD) is “stuck” 
meaning that even very small steps of the gradient increase in cost function, 
the learning is very slow regardless a strong gradient (Goodfellow et al., 
2016). Another important optimization issue is the convergence to a local 
minima when the training algorithm stops in a low point (the lowest of the 
surrounding terrain) rather than continuing to seek for the global minima, 
and therefore, it has not learned the entire training set. Plateaus, Saddle 
Points, and Other Flat Regions are common nonconvex optimization 
problems. In these points or regions on the landscape, the gradient is zero 
(very flat), which means it does not know which direction to move to 
optimize the model; therefore, the iterative algorithm is stuck mimicking 
local minima (Bishop, 1995). 

An important task of neural networks is to have a final model that can 
perform well both on the training dataset and the unseen dataset (test 
dataset). When the predictive model has learned from the details of the 
training set (noise in the data) instead of the general behavior (the under-
lying function), it has overfitted the training dataset, and therefore, it is not 

able to perform the same with the testing set. Overfitting is a typical cause of 
poor generalization of the model, having high generalization error. A pre-
dictive model can underperform when it has learned too little from the 
training dataset and does not perform well on the testing dataset 
(underfitting). 

In order to tackle these challenges while training neural networks, 
we looked for the optimum network topology (structure), and configu-
ration we tried different training algorithms. We used regularization 
methods (parameters) to control the complexity of the network. Going 
through the literature, we noticed that there is not a consensus regarding 
the number of hidden layers and hidden units to be used, we tested the 
related rules of thumb. We trained the network using a two-phased MLP 
designed to address problems related to convergence to local minima 
and network overfitting. More precisely, the first stage is a light run on 
backpropagation in conjunction with a soft training rate in order to 
perform the raw convergence. This first stage could be sufficient to solve 
simple problems. Due to the complexity of the systems under analysis, 
the first phase is not enough. Therefore, we moved to the second more 
powerful training phase, using an extended run of conjugate gradient 
descent. As it benefits from the backpropagation performance first stage, 
this algorithm is less likely to bump into convergence problems. 

We tried different learning rates for the first phase of training until 
finding the best for our network. If the learning rate is very low, the 
training process will take too much time with no significant updates to 
the weights. On the other hand, if the training rate is too high, it results 
in an undesirable divergent function behavior. We also added Gaussian 
noise to the output value on each training case to reduce the network’s 
tendency to overfit. We used smaller weights and early stopping to 
reduce the problem of overfitting. We shuffled the order of the presen-
tation of the training cases at each epoch, so the training algorithm to be 
less prone to stuck in a local minima. We applied a sensitivity analysis- 
based pruning algorithm, using a threshold ratio equal to 1.0. In this 
way, we excluded the input variables with sensitivity analysis below 1.0 
to not compromise the network’s performance since it most likely con-
stitutes a by-product of overfitting. 

We conclude that the network optimization process cannot be based 
on rules of thumb but by conducting an exploratory procedure consist-
ing of fine-tuning the network parameters based on the previous training 
results. It is worth mentioning that the complexity of the network under 
study is based on the complexity of the dataset. 

When the optimization process was successfully completed, we performed 
sensitivity analysis on the network’s input to identify the most influential in-
dicators and their related measures for the urban metabolism changes (Table  4, 
Table B). It is essential to highlight that the rate of the indicators’ sensitivities 
does not occur in an absolute manner; instead, it is measured considering the 
interdependencies between the input variables. Therefore, the obtained re-
sults regarding the importance of particular indicators concern the specific 
network considering the specific dataset used.  The metabolic changes in this 
study are expressed in terms of purchasing power per capita (IpC) changes. As 
mentioned before, the IpC is a composite indicator provided by STATISTICS 
Portugal as a result of a factorial analysis using 16 variables. Using IpC for two 
time periods in our analysis it is important to say that there is a risk that the 
variation in IpC values could be a result of using associated variables that do not 
totally match between the different years or to use different reference periods 
for the associated data. For the purpose of this study, we assume that the IpC 
values of the two different years have been calculated using the same associated 
variables with the same year of reference. Knowing the key indicators causing 
metabolic changes, the degree of these changes, and their spatial location, one 
step further would be to qualitatively assess the metabolic changes. For 
instance, an increase in the urban metabolism in terms of IpC is predicted to 
happen in the municipality of Barreiro for the year 2025. What does this in-
crease mean? that consumption and production in the area are going to increase 
due to increased migration? or due to individual earnings increase? or due to 
poor environmental protection policies that do not promote circular economy 
principles of reuse, reduce, recycle? Insights can be drawn by studying the 
dynamic changes of the key indicators as a result of the current study in the two 
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different years of study (2011, 2018) individually and as a sum. 
The proposed methodology can be applied to evaluate the multidimen-

sional urban metabolism of urban areas and compare the metabolism of 
different urban areas at different levels; neighborhood-place; parish; mu-
nicipality; metropolitan; country depending on the scale of the available 
data to be used for the analysis. The methodological framework and the 
proposed workflow are reproducible and can be used in different geogra-
phies to identify the main drivers for the urban metabolism changes, as well 
as to enable an alternative vision of the future. This approach contributes to 
both evidence-based policymaking and for professionals to adopt a new 
urban planning paradigm, more in line with the environmental and societal 
challenges cities are facing. 

6. Conclusions 

This study carries out a UM-LCT-ANN methodological framework from 
an ecosystem services perspective to overcome the limitations of previously 
applied UM methodologies and extend the state of the art of the subject. The 
proposed framework is applied to the urban core of Lisbon’s functional 
urban area allowed us to obtain evidence-based knowledge on the complex 
metabolism of the different urban processes. The study results demonstrated 
the main drivers causing urban metabolic changes, and in which degree, and 
where. We were also able to forecast/predict urban metabolism changes for 
the near future, providing a data-based vision of how urban metabolism 
unfolds. Even though different urban processes require different dimensions 
and scales of analysis to measure and assess their metabolism accounting for 
the flows and storage of energy-material-information and their socioeco-
nomic and environmental impacts, it is of utmost importance to design a 
framework that can be applied at various temporal and spatial scales. The 
proposed research framework has the ability to investigate the in-
terdependencies of the urban metabolic processes of different dimensions 
holistically through time and space. Along with its main findings, we have 
shown that our methodology can be used as a tool to develop efficient pol-
icies for improving and fostering urban sustainability and contribute to a 
change of paradigm for urban planners and urban designers practitioners. 
Further research would be to build different scenarios based on experts, 
stakeholders, and local communities’ visions, on how a city should be. 
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Annex  

Table A 
Ecosystem Services (Pedersen Zari, 2012).  

Provisioning services Regulating services Supporting services Cultural services 

Food: 
Human (land/fresh water/ marine) 
Forage 

Pollination and seed dispersal Soil: 
Formation 
Retention 
Renewal of fertility 
Quality control 

Artistic inspiration 

Biochemicals: 
Medicines 
Other 

Biological control: 
Pest regulation 
Invasive species resistance 
Disease regulation 

Fixation of solar energy: 
Primary  
production/plant  
growth (above ground,  
below ground, marine,  
fresh water) 

Education and knowledge 

Raw materials: 
Timber 
fiber 
Stone 
Minerals 

Climate regulation: 
Greenhouse gas (GHG) 
regulation 
Ultraviolet light (UV)  
protection 
Moderation of temperature 

Nutrient cycling: 
Regulation of  
biogeochemical cycles 
Retention of nutrients 

esthetic value 

Fuel: 
Biomass 
Mineral 
Other 

Prevention of disturbance and the moderation of extremes: 
Wind/wave force modification 
Mitigation of flood/drought 
Erosion control 

Habitat provision: 
Refugium 
Nursery function 

Culture diversity and history 

Fresh water: 
Consumption 
Irrigation 
Industrial  
processes 

Decomposition: 
Waste removal 

Species maintenance: 
Biodiversity 
Natural selection 
Self-organization 

Recreation and tourism 

Ornamental resources Purification: Water/air/soil  Spiritual and religious inspiration 
Genetic information   Creating of sense of place    

Relaxation and psychological well-being  
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Table B 
Sensitivity analysis of input variables (authors).  

ml65_01 cn_bxof11 fml65_11 tch_pre11 NO2_13 ernml_upp11 PM10_13  

1.381698 1.327549 1.232948 1.139873 1.101623 1.100816 1.045264 Ratio 
1 2 3 4 5 6 7 Rank 
lv_bxof01 empl3544_01 exp_noise18 ind_ua12 tb_nrsd01 unmpl_ml11 empl_ml11  
1.036905 1.028956 1.02440 1.01827 1.01532 1.01367 1.01254 Ratio 
8 9 10 11 12 13 14 Rank 
cn_spct11 elc_strligh11 bed_hspt18 propn_18 empl_fml11 ncuse_ua12 cntufb_ua12  
1.01199 1.01109 1.01082 1.00942 1.00843 1.00831 1.00818 Ratio 
15 16 17 18 19 20 21 Rank 
ecstm_12 ecstm_18 CO_14 unmpl_fml11 ernfml_hgh11 unmpl_fml01 elc_agr11  
1.00792 1.00692 1.00619 1.00604 1.00521 1.00435 1.00424 Ratio 
22 23 24 25 26 27 28 Rank 
fueldsl_11 uw_clct11 uw_orgrcl18 empl2534_11 lv_spct11 tch_pre18 uw_slctv11  
1.00407 1.00284 1.00177 1.00131 1.00118 1.00110 1.00087 Ratio 
29 30 31 32 33 34 35 Rank 
thfmoto11 water_cons11 grth_natu18 art_exh11 engo_11 exp_oth18 exp_biolsc18  
1.00081 1.00064 1.00037 1.00036 1.00035 1.00031 1.00020 Ratio 
36 37 38 39 40 41 42 Rank 
scrt_pens18 cn_spct18 fueldsl_18 inh_phrm11 fml0_14_01 empl2534_01 cn_src18  
0.99991 0.99957 0.99953 0.99953 0.99947 0.99934 0.99919 Ratio 
43 44 45 46 47 48 49 Rank 
bnk_dw218 empl3544_11 LPG_18 O3_18 dm_viol18 agr_ua12 ppldns18  
0.99907 0.99855 0.99775 0.99767 0.99757 0.99743 0.99729 Ratio 
50 51 52 53 54 55 56 Rank 
act3544_11 uw_clct18 firefght18 ppldns11 ernfml_hgh18 firefght11 NO2_18  
0.99711 0.99699 0.99689 0.99663 0.99622 0.99598 0.99556 Ratio 
57 58 59 60 61 62 63 Rank 
dw_swgstm18 butn_18 airtemp_18 CO_18 art_sp11 uw_land18 ml15_64_01  
0.99511 0.99143 0.99086 0.99038 0.98698 0.98338 0.97367 Ratio 
64 65 66 67 68 69 70 Rank 
exp_biolsc11 lv_perf11 elc_agr18 petr95_18 fml15_64_01 rd_ua12   
0.96218 0.93563 0.90899 0.81710 0.75047 0.70421  Ratio 
71 72 73 74 75 76  Rank  

Table C 
Associated variables for the calculation of the IpC indicator through factorial analysis (STATISTICS PORTUGAL, 2017).  

Variables Description 

IRS Personal income tax 
Gross income It’s the reported income for taxes purposes 
Value of domestic purchase through ATMs, per capita The value is drawn by the location of the ATMs 
Value of the payment transactions (services and special services) through ATMs, per capita The value is drawn by the location of the ATMs 
Value of domestic withdrawals from ATMs The value is drawn by the location of the ATMs 
Loans granted for housing purposes, per capita The value is drawn based on the location of the real estate 
Monthly earnings of full-time full-paid employees The value is drawn by company location/municipality 
Population living in places with over 5 K inhabitants as a proportion of the resident population Drawn from the Census 
Number of cars sold according to the place of residence of owners, per capita The value is drawn based on the location of the car owners 
Companies’ turnover according to their location, per capita The retail market only, with exception of cars and motorbikes business) 
Value of international withdrawals from ATM The value is drawn by the location of the ATMs 
Value of international purchases from ATMs The value is drawn by the location of the ATMs 
Municipal tax on onerous transfers of real estate, per capita The value is drawn by the location of the houses 
Municipal property (real estate) tax The value is drawn based on the location of the real estate 
Corporate turnover of catering business, per capita The value is drawn based on the location of the real estate  
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