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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
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DEFORMED HEISENBERG GROUP FOR A PARTICLE ON
NONCOMMUTATIVE SPACES VIA CANONICAL GROUP
QUANTIZATION AND EXTENSION

By
MOHD FAUDZI BIN UMAR

November 2020

Chairman : Hishamuddin bin Zainuddin, PhD
Faculty : Institute For Mathematical Research

The first part of this work focuses on the canonical group quantization approach ap-
plied to non-commutative spaces, namely plane R and two-torus 72. Canonical
group quantization is a quantization approach that adopts the group structure that
respects the global symmetries of the phase space as a main ingredient. This is fol-
lowed by finding its unitary irreducible representations. The use of noncommutative
space is motivated by the idea of quantum substructure of space leading to nontrivial
modification of the quantization. Extending to noncommuting phase space includes
noncommuting momenta that arises naturally in magnetic background as in Landau
problem. The approach taken is to modify the symplectic structures corresponding
to the noncommutative plane, noncommutative phase space and noncommutative
torus and obtain their canonical groups. In all cases, the canonical group is found
to be central extensions of the Heisenberg group. Next to consider is to generalize
the approach to twisted phase spaces where it employs the technique of Drinfeld
twist on the Hopf algebra of the system. The result illustrates that a tool from the
deformation quantization can be used in canonical group quantization where the de-
formed Heisenberg group H% is obtained and its representation stays consistent with
the discussion in the literature. In the second part, the two-parameter deformations of
quantum group for Heisenberg group and Euclidean group are studied. Both can be
achieved through the contraction procedure on SU(2),,, quantum group. The study
also continues to develop (g, p)-extended Heisenberg quantum group from the pre-
vious result. As conclusion, it is shown that the extensions of Heisenberg group arise
from quantizing noncommutative plane, noncommutative phase space, noncommu-
tative two-torus, and twisted phase space. The work on two-parameter deformation
of quantum group also further shows generalizations of the extension of Heisenberg

group.
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KUMPULAN HEISENBERG TERCANGGA BAGI SATU ZARAH KE
ATAS RUANG TAK KALIS TUKAR TERTIB MELALUI
PENGUANTUMAN KUMPULAN BERKANUN DAN LANJUTAN

Oleh
MOHD FAUDZI BIN UMAR

November 2020

Pengerusi : Hishamuddin bin Zainuddin, PhD
Fakulti : Institut Penyelidikan Matematik

Bahagian pertama kajian ini memfokuskan kepada kaedah penguantuman kumpu-
lan berkanun yang digunakan untuk ruang tak kalis tukar tertib, iaitu satah R dan
dua-torus T2. Penguantuman kumpulan berkanun ialah satu kaedah penguantu-
man yang mengambil struktur kumpulan berkaitan simetri global ruang fasa seba-
gai satu elemen utama. Seterusnya diikuti dengan mendapatkan perwakilan tertu-
run unitari. Penggunaan ruang tak kalis tukar tertib dimotivasikan dengan idea sub
struktur kuantum ruang yang memacu kepada pengubahsuaian remeh penguantu-
man. Melanjutkan ruang fasa tak kalis tukar tertib merangkumi momentum tak kalis
tukar tertib yang muncul secara semula jadi dalam latar belakang magnet seperti
dalam masalah Landau. Pendekatan yang diambil adalah bagi mengubahsuai struk-
tur simpletik yang sepadan dengan satah tak kalis tukar tertib, ruang fasa tak kalis
tukar tertib dan torus tak kalis tukar tertib, dan mendapatkan kumpulan berkanunnya.
Dalam semua kes, kumpulan berkanun ditemui adalah perluasan berpusat daripada
kumpulan Heisenberg. Seterusnya mempertimbangkan bagi mengitlak kaedah pada
ruang fasa terpulas, di mana ia menggunakan teknik pulasan Drinfeld ke atas alge-
bra Hopf sesuatu sistem. Keputusan menunjukkan bahawa satu alat daripada pen-
guantuman canggaan boleh digunakan dalam penguantuman kumpulan berkanun
di mana kumpulan Heisenberg tercangga Hé adalah diperolehi dan perwakilannya
tetap konsisten dengan perbincangan dalam literatur. Di bahagian kedua, canggaan
dua parameter kumpulan kuantum bagi kumpulan Heisenberg dan Euclidean adalah
dikaji. Kedua-duanya boleh dicapai melalui prosedur pengecutan ke atas kumpulan
kuantum SU (2)4,p. Kajian ini juga diteruskan bagi membangunkan kumpulan kuan-
tum (g, p)-Heisenberg terlanjut daripada keputusan sebelum. Sebagai kesimpulan,
ia telah menunjukkan bahawa lanjutan kumpulan Heisenberg muncul daripada men-
guantumkan satah tak kalis tukar tertib, ruang fasa tak kalis tukar tertib, dua-torus
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tak kalis tukar tertib, dan ruang fasa terpulas. Kajian ke atas canggaan dua parameter
kumpulan kuantum selanjutnya juga menunjukkan pengitlakkan lanjutan kumpulan
Heisenberg.
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CHAPTER 1

INTRODUCTION

In the 1900s, there are two major theories in the development of physics namely rel-
ativity and quantum theory. Physics of relativity, especially general relativity histor-
ically developed a new perspective about gravitation through the geometry of space-
time, and the theory was first introduced by Albert Einstein. Meanwhile, quantum
mechanics was pioneered by Werner Heisenberg, Max Born, and Pascual Jordan,
in which the theory gave us an understanding of the nature of the atomic scale. In
addition, quantum mechanical system can be obtained via a procedure known as
“quantization”, and this idea fundamentally given by Heisenberg (1925) is about
noncommutative algebra of quantum operators, instead of commutative of classical
observables in his paper “Uber quantentheoretische Umdeutung kinematischer und
mechaniseher Beziehungen” (see Van Der Waerden, 2007). In the same year, with
Born and Jordan, they developed the matrix mechanics formulation of quantum me-
chanics based on Heisenberg’s quantum operators (Born et al. (1926); the paper was
received in November 1925).

Quantization is mathematically a transition of commutative algebra of classical ob-
servables into noncommutative algebra of quantum operators. The classical observ-
ables are functions on phase space, while the quantum operators are self-adjoint op-
erators acting on a Hilbert space. We can describe the classical mechanics via phase
space which is given by the cotangent bundle of the configuration space R", and it
provides the set of canonical observables, (q’~ ,i)- Quantization programs, in liter-
ature, have often been developed from classical mechanics which is formulated on
symplectic manifold given by cotangent bundle. Symplectic manifold is a manifold
# which is equipped with a closed nondegenerate two-form @ (known as symplec-
tic structure) and is denoted as a pair, (.#, ®). The symplectic structure of the phase
space provides the following set of Poisson bracket

{qi,q-’}=0={pi,pj}, {q’}pj}=5}7 (1.1)

where i = 1,2,3...,n, while qi and p; are respectively positions and momenta as
classical observables, and SJ’. is the Kronecker delta.

The quantization rules, in brief, are based on the following conditions; linearity,
identity, irreducibility of the self-adjoint quantum operators and commutator via
quantization map; ° (e.g. Dirac, 1925). Thus corresponding brackets (1.1) respec-
tively transform to the following canonical commutation relations (CCR):

4',¢") =0=[pi,pjl, [d'pj]=indi1, (1.2)

where 7 is the reduced Planck constant and 51’: is the Kronecker delta. The relation



(1.2) is also known as Heisenberg algebra which leads to Heisenberg uncertainty
principle. Moreover, some quantized systems also can be reduced to corresponding
classical systems via an appropriate classical limit, i — 0, and is called dequantiza-
tion.

Note that CCR (1.2) has been obtained through a canonical quantization framework
but some quantization approaches are used by mathematicians and physicists to de-
velop CCR only as outcomes of their approaches for linear spaces (Ali and Englis,
2005). Nevertheless, there are three issues we shall highlight here. First and fore-
most, quantization via CCR faces a problem with classical systems arising from
nonlinear configuration spaces such as circle S, n-sphere §* and n-torus 7". In
addition, the second issue of quantization is when it comes to polynomials of clas-
sical observables; g and p with degree n > 3. The commutator algebra and irre-
ducibility of quantization rule are not consistent with such polynomials and this is
known as “Groenewold-van Hove No-Go Theorem”, that revolves around operator
ordering issues; see Groenewold (1946); Zainuddin et al. (2007). Third issue is on
how we generalize the noncommutativity on positions or/and momenta. Therefore,
in the present thesis, we use canonical group quantization (CGQ) as proposed by
Isham (1984); Isham and Kakas (1984a,b) to investigate noncommutative algebra in
the standard quantum mechanics (1.2). Literally, CGQ is a quantization program is
based on the unitary irreducible representations of the Lie group that describes the
symmetries of the phase space. The approach considers the action of a Lie group on
the phase space by relating classical observables and vector fields with Lie algebra
without assuming CCR. CGQ uses symmetry of the system as a basis for quanti-
zation of systems on nonlinear and nontrivial configuration space; see Isham and
Linden (1988); Zainuddin (1989); Sumadi and Zainuddin (2014); Bouketir (2000);
Bojowald and Strobl (2000); Benavides and Reyes-Lega (2010); Jung (2012). There-
fore, in this work, we will also apply the quantization program for noncommutative
configuration spaces.

Mathematically, there is a correspondence between spaces and algebras, where the
commutative algebras will be replaced by noncommutative algebra implying non-
commutative generalization of geometries (also known as noncommutative geome-
try). This issue has been often discussed by means of spectral triples (e.g Connes,
1994; Connes and Marcolli, 2008). Noncommutative geometry (NCG) is a plausible
model that has influenced in many disciplines in physics especially quantum me-
chanics. Quantum mechanics in noncommutative space or noncommutative quantum
mechanics (NCQM) can be studied via several formulations (Gouba, 2016). Most
often discussed and used in literature is by modification of the CCR from the stan-
dard quantum mechanics (1.2). The idea of NCQM was first introduced by Snyder
(1947), when he studied the quantized space-time to formalize Heisenberg’s idea.
Noncommutativity of the positions implies non-standard structure of space at very
tiny scale, where below Planck scale, localization of space-time has no operational
meaning (Doplicher et al., 1995). The noncommutativity of the momenta implies the
adoption of a gauge field in the momentum operator in Landau problem. However, a



phenomenon occurs at the lowest-Landau level requires Haldane (2018) to introduce
Heisenberg description of the noncommutative torus of guiding centers.

NCQM can be achieved by introducing new coordinates, Moyal *x-products, Bopp
shift, and Seiberg-Witten map (Seiberg and Witten, 1999). In addition, operator the-
oretic formulation has also attracted the attention of many authors such as Scholtz
et al. (2009). They proposed the set of Hilbert-Schmidt operators acting on the non-
commutative configuration space, which is isomorphic to boson Fock space. When
one also considers noncommutativity of momenta, one finds the representation of
noncommutative phase spaces such as the one studied by Li et al. (2005). The rep-
resentations used by Balogh et al. (2015) for instance, to study deformed Hermite
polynomials leads to the family of biorthogonal polynomials. Another aspect of
NCQM which is closely related to this thesis is by studying via its group-theoretic
structure. Such studies using the group-theoretic approach can be seen in two well-
known methods i.e. Souriau’s and Kirillov’s orbit method where they both use coad-
joint orbit in their formulation. Those formulations in NCQM have been summarized
in Table 1.1. In this work, we propose an alternative approach using Isham’s canon-
ical group quantization, which identifies directly the symmetries of the underlying
phase space as key feature of the quantization.

Table 1.1 Formulations of NCQM

Formulation Methods Studied by
Canonical formulation New coordinates Chaichian et al. (2001)
Moyal *-product Gamboa et al. (2001a,b)
Bopp shift Li and Sayipjamal (2010)
Seiberg-Witten map Seiberg and Witten (1999)
Operator-theoretic Systematic approach Scholtz et al. (2009)
Representation theory Li et al. (2005)
Polynomial Balogh et al. (2015)
Group-theoretic Coadjoint orbit method Ngendakumana et al. (2011)

Duval and Horvathy (2000)
Vanhecke et al. (2006)
Chowdhury and Ali (2014)

1.1 Motivation

Canonical group quantization is a quantization approach that is geometrical in na-
ture with the group structure as a main ingredient in the scheme and it has been used
for quantization of nonlinear systems such as gravity (Isham and Kakas, 1984a,b;
Isham, 1984), string on tori (Isham and Linden, 1988) and particle on torus in a con-
stant magnetic field background (Zainuddin, 1989). The group of symmetries of the



phase space identified is called the canonical group, which reminds us of the use of
the canonical commutation relation based on a Lie algebra. It is of interest to con-
sider whether the procedure can be extended to non-commuting position coordinates,
and thus producing a new set of commutation relations reflecting noncommutativity
of the position. It is to be noted that another group-theoretic approach for noncom-
mutative systems have been considered via the coadjoint orbit method i.e. the group’s
action on the dual space of its Lie algebra (known as Kirillov-Kostant-Souriau’s
method; Kirillov (2004); Kostant (1970); Souriau (1997)), and this is illustrated in
Table 1.1. Noncommutative phase space, where both positions and momenta are no
longer commute, suggests the existence of the non-standard structure of space at very
short distances, with the associated Landau problem. There is a strong motivation to
examine closely the symmetries of the phase space of the system and along with its
representations.

In literature, the noncommutative torus is often discussed using spectral triples and
deformation theory, and the attempt made is to approach this matter through the
group-theoretic approach e.g. CGQ. The quantization on torus has first been consid-
ered through the canonical group approach in Isham (1984), and more application
can be seen in Isham and Linden (1988) where they considered string quantization
on the torus. In Zainuddin (1989), he considered the quantization on the torus with
and without the magnetic field background. The system with the magnetic field
background showed the noncommutativity of momenta with a Landau gauge choice.
The canonical group obtained is E2 x (E? x U(1)), where E? is the universal cover
of the two-dimensional Euclidean group whose subgroup SO(2) is being replaced
by R. This standpoint suggests that we can continue to study the quantization on
torus with noncommutativity of positions ¢, ¢/, and this is considered in Chapter
5. It would be interesting to quantize the nonlinear configuration space of 72 whose
angular coordinates do not commute, so that we can comprehend the nature of the
symmetries of the noncommutative two-torus.

In this thesis we propose two approaches namely extended and deformed methods to
make generalization of Isham’s method for the case of a noncommutative system as
underlying phase space. For the first approach, we modify the symplectic structure
of the phase space and investigate the symmetries that preserve this new symplectic
structure. As a result, we have the noncommutative algebra with extended observ-
ables and operators. For the deformed method, we will utilize the Drinfeld twist on
Hopf algebra of the system to obtain the deformed system i.e. deformed observables
and operators, symplectic structure and canonical group. Here, we seek to recon-
cile the canonical group quantization with some basic ingredients of deformation
quantization namely Moyal x-product, and we also pursue possible ramifications.

The canonical groups for plane and torus with the natural symplectic form are re-
spectively Heisenberg group and Euclidean group. Another possible related topic is
to consider the quantum group of such groups. Both groups were studied by Celegh-



ini et al. (1990, 1991) using contraction procedure on SU,(2) group. In a similar
piece of the work, the group SU(2) will be deformed with another deformation pa-
rameter and this is known as a two-parameter quantum group. Closely imitating the
similar procedure of Celeghini et al. (1990, 1991) the contraction method can be ap-
plied to the group SU(2), to obtain (g, p)-Heisenberg and (g, p)-Euclidean groups.
Due to the fact that the extended Heisenberg group arises from the non-commutative
plane, it will be of interest how the extended Heisenberg group can be deformed or
generalized further to its quantum group counterparts.

1.2 Problem Statements and Objectives

This thesis comprises two parts, the first part mainly discusses the quantization pro-
gram. Recent studies show that the quantization program can be used to explore
the noncommutative system. Among all the formulations introduced in the Table
1.1, this work is inspired by the efforts of Ngendakumana et al. (2011, 2014); Duval
and Horvathy (2000); Chowdhury and Ali (2013, 2014); Vanhecke et al. (2006) who
studies NCQM via coadjoint orbit method of geometric quantization. Alternatively,
in this thesis we use CGQ which was proposed by Isham (1984); Isham and Kakas
(1984a,b) to study such noncommutative systems. The canonical group for the con-
ventional case R with noncommutative space requires us to extend the Heisenberg
group. We proceed with the case by including the magnetic field background to the
system when momenta no longer commute, and this case has been often discussed in
Landau effect literature. Nonetheless, in this case, our main research questions here
are, “What is the canonical group to describing the symmetries of the phase space
with the noncommutative plane with and without magnetic field?” and of course
“How to apply them to classical and quantum mechanics?”

In the next part we consider quantization on one nonlinear configuration space since
CGQ was very successful for nonlinear configuration spaces such Zainuddin (1989);
Bouketir (2000); Sumadi and Zainuddin (2014). Hence it is of interest, how can the
quantization be adapted to a nonlinear configuration space whose coordinates do not
commute and in this case, the torus. Noncommutative torus has been studied often
in literature, based on the spectral triples theory (Connes, 1987; Connes and Landi,
2001) but they tend to be obscure. However, it is not easy to overcome this difficulty
i.e. nonlinear configuration space with noncommutativity system.

In literature, some authors generalized *-product originally comes from Moyal
(1949) to develop noncommutativity of the positions in a two-dimensional plane
(Gouba, 2016). Therefore, we also attempt to generalize the scheme (CGQ) to ac-
commodate the noncommutative quantum mechanics with x-product. The idea of
this part is to deform Hopf algebra structures with the Drinfeld twist in the sense of
deformation quantization. A deformed Hopf algebra leads to the noncommutative
algebra of the phase space, and this agrees with what is in the literature.



The second part of the thesis is about the quantum group (or Hopf algebra). In
Celeghini et al. (1990, 1991), Heisenberg and Euclidean quantum group have been
contracted from the SU(2), quantum group. However, our contribution is to explore
the contraction method from the two-parameter quantum group namely SU(2),,,
to obtain the two-parameter deformation of Heisenberg Hq{ p» deformed Heisenberg
Hg ap and Euclidean E,i p quantum group.

The problems which are highlighted here will be elaborated in detail from Chapters
4 until 7 respectively. Finally, one summarizes the work in the Chapter 8. The
objectives of this thesis are:

1. To quantize the system of a particle moving on noncommutative plane R29
with, and without the effect of an external magnetic field.

2. To extend the quantization on nonlinear configuration space namely noncom-
mutative two-torus.

3. To develop the quantization program for twisted phase space, particulaly R% X
R2.

4. To explore the Heisenberg and Euclidean quantum group with two-parameter
deformation.

1.3 Organization

The organization of the thesis will be as follows:

Chapter 2: We will review some literature that are related to our work, namely canon-
ical group quantization (CGQ) and noncommutative systems. We discuss the foun-
dations of quantum theory and general quantization prescription as well as outlines
of some quantization approaches. This is followed by various approaches to non-
commutative quantum mechanics. (NCQM).

Chapter 3: In this chapter, we present the mathematical tools and theoretical back-
ground that will be used throughout the thesis related to CGQ as our main method.
We first discuss the symplectic manifold as classical phase space. Since CGQ ap-
proach is based on two steps; canonical group, and its unitary irreducible represen-
tations, we will review Lie group and algebra, as well as group representation and
their irreducibility and unitary conditions. We also will cover Hopf algebra, and
twist elements that are used to study the deformed system in Chapter 6 and quantum
group in Chapter 7. This is followed by our methodology is our main methodology
namely CGQ. The method will be reviewed in detail, and some related examples of
quantization on Rz, T2, Sz, and R%r will be given.



Chapter 4: This chapter is the backbone of the thesis, whose purpose is to quantize
the noncommutative plane by using canonical group quantization. This quantization
work is applied to a particle that propagates through a noncommutative plane where
the positions no longer commute. The canonical group for the phase space with
modified symplectic structure is obtained, followed by its unitary irreducible rep-
resentation. We then extend this work, to study the quantum system using Landau
and symmetric gauges of the magnetic field, and three-dimensional noncommutative
system. The chapter studies the noncommutativity of momenta which also enlarges
the algebra, and modifies some symplectic structures that finally we have some of
the groups and their representations. We apply noncommutative phase space to study
classical and quantum mechanics, with the examples of such systems are also given,
respectively. We also apply the representations in supersymmetric quantum mechan-
ics.

Chapter 5: In this chapter, we study the quantization on nonlinear configuration
space namely two-torus 7'2. Following Chapter 4, we also modify symplectic form
with an additional term in order to obtain noncommutativity of ¢ coordinates. The
nonclosure of the algebra becomes a problem there, and therefore, will be resolved
using Inonii-Wigner contraction procedure. As a result, we have found the extended
Heisenberg group from Chapter 4 as the canonical group for the noncommutative
torus. This also agrees with the Heisenberg algebra of the NCG of guiding centers
(Haldane, 2018).

Chapter 6: Quantization on twisted phase space will be done using Hopf algebra
with Drinfeld twist to obtain noncommutative classical mechanics based on Aschieri
et al. (2008); Aschieri (2009). Thereafter, the work continues with its group repre-
sentations.

Chapter 7: The second part of our work is to study the two-parameter deformation of
quantum group where it can be associated with Hopf algebra. The chapter basically
uses the Celeghini et al. (1991, 1990)’s contraction method on SU(2),,, to obtain
Heisenberg and Euclidean quantum group with two-parameter deformation, respec-
tively are Hfb p and E; - The discussion starts with SU(2)4,, quantum group which
is the generalization of the work of Biedenharn (1989) to develop the representation
of SU(2)4,p quantum group that is based on deformed boson operators ((g, p)-boson
operator in our case). We then extend the work to develop (g, p)-extended Heisen-
berg quantum group from the extended group in Chapter 4.

Chapter 8: The chapter ends with some concluding remarks, and further outlook.
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