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ABSTRACT. Modeling a species' distribution can be a powerful tool for predicting the location of additional habitat. Identifying
suitable habitat is of critical importance for data-deficient species of conservation concern. The Black Rail (Laterallus jamaicensis), a
small marsh bird, is listed as globally endangered. We created a habitat suitability model for the eastern subspecies focusing on the
Atlantic coastal plain using eBird data contributed by citizen scientists and environmental data from the Esri databank using a maximum
entropy model framework. The map generated from the model indicated habitat suitability in areas known for Black Rail occupation
and predicted other suitable sites. Environmental factors that best predicted Black Rail presence were flooded areas with shrub and
herbaceous vegetation, proximity to water, and flat plains. These environmental associations were congruent with characteristics of
high marsh, emphasizing its importance for the species. Black Rails have been found to occupy this habitat type in the coastal part of
their range. Habitat association studies conducted in other parts of the species' range that focused on smaller areas and used presence/
absence survey data collected via species-targeted callback surveys identified similar habitat characteristics. Our habitat suitability
model thus adds to a growing list of studies using distribution data from public databases with significant power to predict occupancy
over a landscape scale. The map generated by this model will inform land management decisions and habitat restoration efforts.

Cartographie du caractère propice de l'habitat chez le Râle noir de l'Est dans son aire de répartition sur
la côte atlantique à l'aide de l'entropie maximale (MaxEnt)
RÉSUMÉ. La modélisation de la répartition d'une espèce peut être un outil puissant pour prédire l'emplacement d'habitat additionnel.
L'identification d'habitats propices est d'une importance capitale chez les espèces préoccupantes en matière de conservation et pour
lesquelles les données sont insuffisantes. Le Râle noir (Laterallus jamaicensis), un petit oiseau de marais, est classé comme étant en
danger au niveau mondial. Nous avons créé un modèle du caractère propice de l'habitat pour la sous-espèce de l'Est en nous concentrant
sur la plaine côtière de l'Atlantique, à partir de données eBird fournies par des citoyens et de données environnementales provenant de
la banque de données Esri, en utilisant un modèle d'entropie maximale. La carte générée à partir du modèle montre le caractère propice
de l'habitat dans des zones connues pour être fréquentées par le Râle noir et prédit d'autres sites adéquats. Les facteurs environnementaux
qui prédisaient le mieux la présence du Râle noir étaient les zones inondées avec une végétation arbustive et herbacée, la proximité de
l'eau et les plaines sans relief. Ces associations environnementales correspondaient aux caractéristiques de hauts marais, soulignant du
même coup leur importance pour l'espèce. On a constaté que le Râle noir occupait ce type d'habitat dans la partie côtière de son aire
de répartition. Des études d'association d'habitats menées dans d'autres parties de l'aire de répartition de l'espèce, qui se sont concentrées
sur des zones plus petites et ont utilisé des données de présence/absence recueillies au moyen de relevés réalisés avec des enregistrements
sonores de l'espèce, ont identifié des caractéristiques d'habitat similaires. Notre modèle du caractère propice de l'habitat s'ajoute donc
à une liste croissante d'études utilisant des données de répartition provenant de bases de données publiques et dont la capacité à prédire
la présence à l'échelle du paysage est élevée. La carte générée par ce modèle permettra d'éclairer les décisions qui seront prises quant à
la gestion des territoires et les activités de restauration des habitats.
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INTRODUCTION
The Black Rail (Laterallus jamaicensis) is a diminutive marsh bird
historically found along the southeastern coastal plain of North
America, with sparse populations detected in remote inland
patches (Taylor and van Perlo 1998). Two North American
subspecies are now recognized: the California Black Rail (L. j.
coturniculus) found almost exclusively in California and Arizona,
and the Eastern Black Rail (L. j. jamaicensis). Historically, the
range of the eastern subspecies spread broadly across the smaller
dispersed inland northern eastern half  of the U.S., as far north
as New Jersey and as far west as eastern Colorado and Texas, with

populations, but it is now principally found along the Gulf and
Atlantic Coasts (Spautz et al. 2005, U.S. Fish and Wildlife Service
2018a). Both subspecies have disjunct and fragmented
distributions (Richmond et al. 2008, Watts 2016). A significant
loss of occupied sites in recent years has exacerbated the shrinkage
of the range of the eastern subspecies (U.S. Fish and Wildlife
Service 2018a).  

Black Rails are now considered globally endangered (BirdLife
International 2020). Conservatively, it is estimated that the
Eastern Black Rail population has declined by more than 75%
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over the last decade (U.S. Fish and Wildlife Service 2018a). As of
2016, it was estimated that there were only 355-815 breeding pairs
along the Atlantic coast (Watts 2016). The Eastern Black Rail
was recently uplisted to Threatened status under the Federal
Endangered Species Act (U.S. Fish and Wildlife Service 2018b,
2020). The Eastern Black Rail Conservation Plan cites as urgent
priorities the need to identify and to expand suitable habitat for
the species (Atlantic Coast Joint Venture 2020).  

A better understanding of Black Rail habitat requirements is
urgently needed in support of the conservation management plan.
Watts (2016) compiled an extensive report on the status of the
Eastern Black Rail and identified five main habitat categories
where Black Rails have been detected: tidal saltmarshes,
impoundments, grassy fields, freshwater wetlands, and coastal
prairie. Despite their diversity, these habitats share common
features of hydrology (shallow water with consistent and regular
flooding) and the presence of dense, early successional vegetation
(Watts 2016). In addition to these characteristics, topographic
diversity has recently been associated with Black Rail occupancy
(Atlantic Coast Joint Venture 2020).  

Like most rails, Black Rails are secretive in nature. Their small
size, cryptic appearance and behavior make them difficult to
detect visually (Stuart 1920, Davidson et al. 1992). This has
hindered attempts to gain information about their habitat
requirements. Auditory callback survey is currently the main
detection method for Black Rails (Richmond et al. 2008, Wilson
et al. 2016, Tolliver et al. 2018). There is a paucity of data on the
ecology and behavior of the Eastern Black Rail, but see Hand et
al. (2019), for detailed breeding accounts in South Carolina.  

Empirical studies in disparate parts of the range have specifically
addressed habitat features associated with Black Rail occupancy
during the breeding season. A radiotelemetry and nest success
study in Florida concluded that Black Rails selected as nesting
habitat areas of low water level formed by salt pans (Legare and
Eddleman 2001). A habitat association study in South Carolina
found that Black Rails were commonly found in managed
impoundments and the habitat characteristics most associated
with Black Rail occupancy were proximity to forest and a greater
proportion of marsh surrounding the detection site (Roach and
Barrett 2015). The authors inferred that the proximity to forest
was not due to the presence of woody vegetation but that the birds
favored the sloped landscape and shallow water associated with
trees near marsh. There was also a weaker association with
vegetation height above half  a meter. Most recently, a study in
coastal Texas identified presence of cordgrass (Spartina spp.) and
intermediate marsh cover as important correlates of occupancy
(Tolliver et al. 2018). This type of information informs what kind
of habitat to look for but does not indicate where suitable habitat
might be.  

Habitat suitability modeling is a powerful way to predict sites
where individuals of rare species may be found. Ecological niche
modeling, species distribution modeling, and habitat suitability
modeling all describe approaches that make use of large-scale
remote sensing data across landscapes to determine areas that
have similar features associated with locations known to be
occupied by a target species (Corsi et al. 2000, Phillips et al. 2004,
2006, Pearce and Boyce 2006). Using values of biotic and abiotic
variables at locations where members of a species of interest have

been observed, a model is constructed that generates maps
estimating the probability of finding that species at other locations
based upon similar values for the same ecological variables (Corsi
et al. 2000, Phillips et al. 2004, 2006, Pearce and Boyce 2006).
Generated models are ideally suited to identifying habitat and
predicting distributions for secretive species threatened by
anthropomorphic activities (Hedley et al. 2020).  

Few previous studies have attempted to use ecological niche
modeling to predict current Black Rail distributions. One study
evaluated habitat suitability for the California Black Rail in the
Sacramento-San Joaquin Delta using a MaxEnt species
distribution model with presence-only data sampled for the study
from auditory surveys, with vegetation type and tidal status as
the predictor variables (Tsao et al. 2015). California Black Rail
presence was most often correlated with tall emergent vegetation
interspersed with riparian shrubs and indicated areas of
suitability that correlated with historical records (Tsao et al. 2015).
A more recent study investigating Eastern Black Rails along the
Texas gulf  coast used a large dataset of callback surveys to
determine occupancy of Black Rails across a number of
contiguous and non-contiguous refuges (Haverland 2019). The
model predicted rail presence mainly in high marsh habitats with
minimal tidal influence and >50% herbaceous vegetative cover.
Gulf cordgrass (Spartina spartinae) was the dominant species of
vegetation that correlated most highly with Black Rail occupancy
in this system (Haverland 2019). A major strength of this study
was that it used current presence and absence data based on
extensive surveying conducted by the author and her
collaborators. Detailed ground-truthing over a series of
contiguous coastal refuges allowed for greater understanding of
Black Rail habitat selection and identified suitable adjacent areas
that are not known currently to support rails.  

Black Rails are difficult to find, and occupancy data are scarce
along the East Coast. One solution for expanding the dataset of
Black Rail observations is utilizing citizen science data. Part of
the Cornell Lab of Ornithology’s citizen science initiative, eBird
(eBird 2018) is a valuable source of bird presence data and has
been shown to be a reasonable proxy for professionally collected
data in modeling species distributions (Coxen et al. 2017, Walker
and Taylor 2017). Models created from eBird data have been
found to be accurate and to have strong overlap in habitat
suitability scores in comparison to models created using satellite
tracking data (Coxen et al. 2017) and systematically-collected bird
survey data (Bradter et al. 2018). Models of 22 bird species in
Ontario generated independently from either Breeding Bird
Survey (where data are usually collected by experienced
technicians) or eBird data (where the data are largely contributed
by citizen scientists) were found to agree (Walker and Taylor
2017).  

The principal goals of this study were to better understand the
habitat requirements of the imperiled Black Rail and to find new
areas of suitable habitat in the eastern part of its mainland North
American range (primarily on the Atlantic coastal plain). Based
on previous studies of Black Rails (Legare and Eddleman 2001,
Roach and Barrett 2015, Tsao et al. 2015, Tolliver et al. 2018,
Haverland 2019) we predicted that the model would heavily
associate characteristics indicative of high marsh with Black Rail
habitat suitability such as flooded vegetation, proximity to open
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water, shallow water level, low relief  topography, low slope, loose
soils, wet and warm climate, and low human population density.
Our approach was to quantify biotic and abiotic characteristics
at sites where Black Rails have been detected and to determine
what environmental factors are associated with Black Rail
occupancy. Black Rail presence data were acquired from eBird.
Remotely-sensed environmental data from publicly-available
databases were entered into the model as predictor variables.
Other sites were then identified that have similar characteristics,
indicative of their possible suitability.

METHODS

Spatial extent
The spatial extent of this study was restricted to the eastern coastal
plain of the United States and adjacent areas, which encompasses
the region covered by the Atlantic Coast Joint Venture and
includes the presumed dispersal range for the Atlantic coastal
population. Our aim was to inform the Atlantic Coast Joint
Venture’s comprehensive conservation management plan. We
included the coastal plain and contiguous areas where birds that
migrate along the Atlantic flyway might reasonably disperse to.
We demarcated a rectangular study area with an extent of
-87.274970 dd to -69.742052 dd longitude and 44.564868 dd,
25.135401 dd latitude, the final extent used in the analysis.

Data sources and acquisition
We downloaded from eBird (eBird 2018) Black Rail detection
data spanning the years 1851 to 2018. This dataset contained both
points recorded by citizen scientists and historical detections
added retroactively from records verified by staff  of the Cornell
Lab of Ornithology. Additional eBird observations were found
in more westerly parts of the subspecies’ range. Notably, there
were multiple detections in a small region in eastern Colorado,
and also across a much larger area along the gulf  coast of Texas.
Others were sparsely scattered across the species’ range.
Exploratory models we constructed based on varying the spatial
extent (including different extents of the historical range of the
eastern subspecies) gave us insights into how the importance of
the environmental predictor variables would vary. However, the
performance of these models was poor in predicting suitable
habitat along the east coast. In part, this was attributable to the
range-wide scarcity of eBird detections and their distributional
bias along the coasts. We concluded that the best predictive
models for identifying habitat suitability for this region was based
on modeling the geographic extent of our specific region of
interest, and we used only eBird detections that fell within this
range (Table 1). The eBird points were visualized in ArcMap 10.7
and points within the study area were selected, exported and used
in the analysis.  

Eight environmental data layers from the Esri data bank (Table
2) were accessed from https://www.arcgis.com and added to the
map in order to process them for use in the model. The "World
Land Cover ESA 2010" dataset describes categories of vegetation
cover types. This was chosen for the model because both previous
Black Rail habitat suitability models found vegetation type and
density to be important to Black Rail occupancy (Tsao et al. 2015,
Haverland 2019). Other habitat association studies for the species
also concluded that vegetation was important (Legare and
Eddleman 2001, Roach and Barrett 2015, Tolliver et al. 2018).  

Black Rails are known to be associated with wetlands, and these
often surround the perimeters of lakes and form living shorelines.
A layer describing "World Distance to Water" gives each cell a
value indicating its distance from surface water. This layer had no
data in raster cells categorized as being zero meters from open
water. We therefore used ArcMap tools to assign cells with no
data a value of zero to indicate open water.  

A layer describing general landscape features, "World Ecological
Facets Landform Classes", was used to represent the topography.
This dataset uses the Hammond’s landform classification which
created categories based on slope, local relief, and profile.
Topography of the landscape is used in some form in many
ecological models (Moreno et al. 2011, Wu et al. 2012, Hu and
Liu 2014, Coxen et al. 2017, Haverland 2019). The surface water
category was removed due to the overlap with the land cover data
water bodies category and the fact that Black Rails were not
expected to be detected in areas of open water.  

Underlying "Lithology" and soil type can influence vegetation
and hydrology and has been shown to be influential in habitat
models for birds in less vegetated areas. For species occurring in
areas with limited vegetation to influence habitat selection, factors
such as topography, lithology, and soil type are likely to play a
larger role (Palomino et al. 2008). Black Rails have small home
ranges, forage on the ground or in small pools, and build their
nests on mud or moist soil (Legare and Eddleman 2001, Hand et
al. 2019). Thus, we deemed it appropriate to include soil and
topography in the habitat selection model.  

"Terrain: Slope in Degree" was added to the model because slope
influences hydrology which is known to be important to Black
Rail occupancy (Richmond et al. 2008, 2010). Modifying slope
to favor shallow water depths is a proposed management strategy
for Black Rails (Atlantic Coast Joint Venture 2020). The "Terrain:
Slope in Degrees" dataset had to be reclassified because the value
number was based on the average elevation difference between
adjacent cells. To correct for the change in dimension of the raster
cell size, the layer was reclassified to have a continuous 0º to 90º
scale.  

The "World Population Estimate 2016" dataset was added to the
model to determine if  there was an association between human
occupation and Black Rails, which is important when considering
land management. The estimates in this dataset are based on the
surface footprint of the human population. This layer had no data
in raster cells categorized as having zero population, so we
assigned these cells a value of zero to indicate a lack of human
residency.  

Previous studies have emphasized the importance to California
Black Rails of permanent groundwater (Richmond et al. 2008),
so the "U.S. Soils Water Table Depth" was used in the model to
help inform habitat suitability. This water table depth layer did
not have values for areas that were considered as having surface
water and areas lacking a water table. To resolve this, areas of
surface water were given a value of 0 by integrating the surface
water data from the distance to water layer. All other areas lacking
data were assumed to have no water table and were given a value
of 256 cm (one cm more than the highest value before the
modification).  
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Table 1. Summary of observations downloaded from eBird within the selected spatial extent by state or province, and the subset of
unique locations used as the response variable for constructing the MaxEnt model. The data are broken down into observations before
and after 2002, when observers began uploading their own observations to eBird, to reflect the proportion of observations added to
the database retroactively.
 

eBird records Unique points

State or
province

Total
observations

Before 2002 After 2002 All unique
points

Before 2002 After 2002 Both Points with
multiple

observations

Points with a
single

observation

Ontario 6 6 0 4 4 0 0 0 4
Connecticut 15 15 0 6 6 0 0 2 4
Delaware 44 22 22 6 0 4 2 3 3
District of
Columbia

3 3 0 1 1 0 0 1 0

Florida 343 47 296 90 16 70 4 37 53
Georgia 6 0 6 2 0 2 0 0 2
Indiana 61 0 61 20 0 20 0 3 17
Maryland 224 104 120 27 18 4 5 14 13
Massachusetts 75 1 74 7 1 6 0 3 4
Michigan 15 2 13 5 1 4 0 4 1
New
Hampshire

10 0 10 6 0 6 0 2 4

New Jersey 307 38 269 34 10 20 4 16 18
New York 26 19 7 12 6 6 0 2 10
North
Carolina

169 61 108 35 13 15 7 16 19

Ohio 62 3 59 20 2 18 0 7 13
Pennsylvania 24 10 14 16 10 6 0 3 13
Rhode Island 13 0 13 4 0 4 0 1 3
South
Carolina

96 20 76 16 3 10 3 7 9

Tennessee 1 1 0 1 1 0 0 0 1
Virginia 62 15 47 12 2 9 1 4 8
West Virginia 37 1 36 30 1 29 0 3 27
Total 1599 368 1231 354 95 233 26 128 226

Finally, "World Bioclimate" data were added to the model. Most
ecological niche models use some form of climate data when
modeling species distributions over a large area (Phillips et al.
2004, 2006, Moreno et al. 2011, Wu et al. 2012, Hu and Liu 2014,
Coxen et al. 2017). This dataset uses temperature and aridity
descriptions which are appropriate to characterize climatic
conditions across this range.

File manipulation and resampling
The raster analysis cell size for all datasets was set to the resolution
of the geographically coarsest dataset (928 m X 928 m, 0.86 km2)
or approximately a square kilometer. When the layers were copied,
the raster grids were resampled to this cell size using the nearest
neighbor method, which defines the value of the larger cell by
assigning the value of the smaller cell closest to the center of the
larger cell when being resampled. All of the modified raster layer
files were converted to ASCII files.  

Under a systematic data collection protocol with the objective of
determining species presence by surveying an area multiple times,
multiple observations in the same vicinity would help strengthen
a spatial model by adding meaningful information about species
density. With eBird data, there is no formal collection protocol.
Yet, there were incidences of multiple observations for the exact
same coordinates, possibly submitted for the same bird by
multiple observers. These stochastic multiple entries for the same
coordinates are meaningless for the model. For this reason, repeat
detections with the exact same coordinates were eliminated.  

The eBird dataset had 1599 observations of Black Rail within the
bounds of the area set for this study. Of these observations, 368
of them had observation dates before 2002 when the eBird
database was created (Table 1). After eliminating replicate
detections, we were left with 354 unique points used to construct
the model. Removing replicates mitigates bias in the eBird data
while retaining a reasonable sample size. Of the 354 unique points
used to build the model, 95 of them had detections exclusively
before 2002, 233 points had observations exclusively in or after
2002, and 26 points had observations both before and after 2002
(Table 1).

Model selection
To select the best habitat suitability model, we used the
MaxEntVariableSelection package in R (Jueterbock et al. 2016,
R Core Team 2019). We used our Black Rail occurrence file and
produced a background file (Sample With Data file, SWD) of
random points representing no occurrence, each containing the
geographic coordinates along with columns for each
environmental variable. In the absence of having points known
to be lacking Black Rails, a random selection of pseudo-absence
points were created (Jueterbock et al. 2016). Using a Python script
in ArcMap, 10,000 background points within the study extent
were randomly selected from raster cells classified as being non-
surface water that did not contain Black Rail eBird detections. Of
the randomly selected points, 33 had missing values for one or
more of the environmental layers, reducing the background file
to 9967 points.  
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Table 2. Environmental predictor variables used to develop the full habitat suitability model for Black Rails on the Atlantic coastal
plain using occurrence records derived from eBird. The scale indicated is the original definition of the variable in Esri before the variables
were rescaled to a common raster size of 928m X 928m (0.86 km²).
 
Environmental predictor Description Original sampling resolution Data source

World Land Cover ESA 2010 The surface of the earth classified into
36 classes focused on vegetation type,
including agriculture, forests, grasslands,
artificial surfaces, and other categories.

300 m Esri, ESA
(https://www.arcgis.com/home/)

World Distance to Water Distance in meters from surface water
calculated using Euclidian distance

250 m Esri, USGS, ESA

World Ecological Facets Landform
Classes

Topographic classification based on
Hammond Landform Classification
combining slope, relief, and profile

232 m Esri

World Lithology Classification of underlying soils and
rock

250 m Global Lithological Map Database v1.0

U.S. Soils Water Table Depth Shallowest depth to water in the soil at
any time of the year in centimeters in
the United States and territories

30 m USDA NRCS, Esri

World Population Estimate 2016 Global estimate of human population
for 2016 based on human settled area
footprint

~ 150 m Esri

Terrain: Slope in Degrees Slope values calculated dynamically
from the elevation data (within the
current extents) using the server-side
slope function applied to a Terrain layer

0.25 m Airbus, USGS, NGA, NASA, CGIAR,
NLS, OS, NMA, Geodatastyrelsen,
GSA, GSI and the GIS User
Community

World Bioclimate Climate classification combining
temperature and aridity categories

928 m Esri, USGS,
Metzger et al. 2012

We conducted model selection using MaxEntVariableSelection
starting with the full model of eight environmental variables and
running subsets of environmental variables while varying Beta
multipliers ranging from 1-5 with 0.5-point increments (Table 3).
We tested ten different multipliers. Using only the hinge feature,
we ran ten replicates of each model. The random test percentage
was set to 50 percent. We compared the models according to
criteria of corrected Akaike’s Information Criterion (AICc) and
“Area Under the Receiver Operating Characteristic Curve”
(AUC). The AUC is a threshold independent measure with a value
range of 0 to 1. An AUC value of 1 indicates a model with perfect
predictive ability and a value of 0.5 indicates a model with
predictive abilities no better than random (Phillips et al. 2004,
2006). To determine which combination of variables produced
the most predictive model, we set the contribution threshold to
5% (to exclude any variables with lower contributions) and a
correlation threshold of 90% to exclude highly correlated
variables (Jueterbock et al. 2016).

Model evaluation
The full model and the selected top model were each replicated
using the MaxEnt desktop program (v. 3.4.1) in order to obtain
habitat suitability maps and response curves for the
environmental variables. The Black Rail presence file was used as
the sample file and the background SWD file as the input for the
environmental layers and a folder that contained the ASCII files
of the modified environmental layers as the projection layers
directory. Adding the projected layers directory allowed the
program to create a map. The random test percentage was set to
50 percent, number of replicates was set to ten, replicate run type
set to "subsample", and the hinge feature was the only feature
used. Response curves and jackknife plots were generated from
these models. To replicate the model with the lowest AICc, only

Population and Water table were excluded from the model.
Response curves were used to determine what values or categories
of each environmental variable were strongly associated with
Black Rail presence based on their relative degrees of association.
We used percent contribution of each variable to the model as the
main criterion for assessing its importance. Secondarily, we also
considered the variable’s influence on the gain of the model and
its permutation importance.

RESULTS
Inspection of the North American eBird dataset revealed that
within the range of the eastern subspecies, the density of
detections on the east coast was greater than in other regions. The
only other areas with significant numbers of detections were the
Gulf Coast of Texas and a small region in eastern Colorado that
had a scattering of observations. Outside of these areas, eBird
detections were sparse and separated by large tracts devoid of
suitable habitat (e.g., human-modified areas, areas of high relief,
etc.). Our aim, however, was to model the Black Rail population
on the eastern coastal plain, and the density of eBird observations
was higher in the southeastern region.  

Upon examination of the model selection results, Water table
depth, human Population, and Bioclimate were the variables that
consistently had the least influence on the model. The top model
with the lowest AICc (Model 2, top of Table 3) retained the
variable Bioclimate, though it barely met the contribution level
threshold of 5%. When we ran the same model (Model 2) on the
desktop version of MaxEnt, it had a mean test AUC of 0.855,
and Bioclimate cleared the threshold with mean contribution of
5.5% over ten replicates (Table 4). This was considered the final
model and was used to characterize the contributions of
individual environmental variables (Table 4).  
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Table 3. Summary of performance indicators of a subset of the MaxEnt models tested using the MaxEntVariableSelection package in
R. Full models used all 8 variables and the others used different subsets of variables in combination with Beta multipliers ranging from
1 to 5 in 0.5 increments. This table lists the models that returned the lowest corrected Akaike’s Information Criterion (AICc) values,
and performance indicators are the means of ten replicates. The results are sorted by AICc, with the best performing model at the top
(Model 2 with a Beta multiplier of 1). The full model with a Beta multiplier of 1 had the second lowest AICc. The Area Under the
Receiver Operating Characteristic Curve (AUC) values are presented for the test data, the training data and the difference between the
two. Model 5 had the highest test AUC and the smallest difference between test and training datasets.
 

Model ID Beta multiplier No. variables No.
parameters

Log
likelihood

AICc ∆AICc AUC
Test

AUC
Training

AUC
Difference

2 1 6 44 -4728.22 9557 0 0.8535 0.8791 0.0256
1 1 8 50 -4723.21 9563 6 0.8510 0.8831 0.0321
6 1.5 8 44 -4733.10 9567 10 0.8512 0.8764 0.0252
12 2 6 42 -4741.07 9578 21 0.8569 0.8659 0.0090
21 3 6 34 -4753.99 9583 26 0.8525 0.8644 0.0119
11 2 8 45 -4742.49 9588 31 0.8538 0.8682 0.0144
16 2.5 8 40 -4753.02 9597 39 0.8542 0.8684 0.0142
3 1 5 42 -4752.58 9601 44 0.8556 0.8742 0.0186
4 1 5 42 -4752.58 9601 44 0.8549 0.8737 0.0188
5 1 5 42 -4752.58 9601 44 0.8603 0.8692 0.0089
13 2 5 35 -4762.58 9603 46 0.8383 0.8757 0.0374
14 2 5 35 -4762.58 9603 46 0.8545 0.8670 0.0125
15 2 5 35 -4762.58 9603 46 0.8504 0.8706 0.0202
7 1.5 5 41 -4757.62 9608 51 0.8486 0.8749 0.0263
8 1.5 5 41 -4757.62 9608 51 0.8578 0.8679 0.0101
9 1.5 5 41 -4757.62 9608 51 0.8511 0.8725 0.0214
10 1.5 5 41 -4757.62 9608 51 0.8525 0.8690 0.0165
17 2.5 5 35 -4767.02 9612 55 0.8454 0.8683 0.0229
22 3 5 40 -4770.50 9631 74 0.8448 0.8659 0.0211
20 3 8 48 -4760.45 9632 75 0.8493 0.8678 0.0185
24 3.5 8 45 -4768.31 9640 83 0.8391 0.8695 0.0304
32 4.5 8 36 -4783.17 9647 89 0.8415 0.8613 0.0198
28 4 8 43 -4776.02 9650 93 0.8490 0.8633 0.0143
36 5 8 34 -4789.56 9655 97 0.8373 0.8635 0.0262
18 2.5 4 27 -4798.49 9656 98 0.8265 0.8500 0.0235
19 2.5 4 27 -4798.49 9656 98 0.8312 0.8476 0.0164
23 3 4 30 -4801.65 9669 112 0.8172 0.8493 0.0321
25 3.5 4 29 -4805.19 9674 116 0.8277 0.8379 0.0102
26 3.5 4 29 -4805.19 9674 116 0.8256 0.8397 0.0141
27 3.5 4 29 -4805.19 9674 116 0.8258 0.8419 0.0161
33 4.5 5 37 -4800.03 9683 126 0.8202 0.8478 0.0276
29 4 4 30 -4809.12 9684 127 0.8193 0.8413 0.0220
30 4 4 30 -4809.12 9684 127 0.8250 0.8351 0.0101
31 4 4 30 -4809.12 9684 127 0.8213 0.8385 0.0172
37 5 4 31 -4817.87 9704 147 0.8093 0.8338 0.0245
38 5 4 31 -4817.87 9704 147 0.8133 0.8360 0.0227
39 5 4 31 -4817.87 9704 147 0.8081 0.8322 0.0241
34 4.5 4 35 -4813.39 9705 147 0.8159 0.8389 0.0230
35 4.5 4 35 -4813.39 9705 147 0.8144 0.8378 0.0234

Land cover class was most predictive of Black Rail presence,
yielding the greatest influence independently, hence accounting
for the greatest amount of information not explained by the other
variables (Fig. 1). Land cover class, which described the vegetation
structure, had the highest percent contribution and permutation
importance (Table 4). Land cover classes that had the highest
responses were “flooded shrub or herbaceous cover”, “closed to
open canopy, needleleaved deciduous tree cover”, “bodies of
water”, “saline water flooded tree cover”, and “bare areas” (Fig.
2a).  

Distance to water had the next highest percent contribution (Table
4) and the next highest gain in the jackknife plot indicating its
importance to the model (Fig. 1). The response plot for distance
to water shows a precipitous drop in probability of finding Black
Rails the farther away one travels from water (Fig. 3a).

Fig. 1. Jackknife of test gain for the final model (Model 2, Beta
multiplier =1). The change in model gain, or effectiveness, is
illustrated when the indicated variable is excluded (green) or
used exclusively (blue). The gain when all variables are included
is shown in red.

http://www.ace-eco.org/vol16/iss1/art23/


Avian Conservation and Ecology 16(1): 23
http://www.ace-eco.org/vol16/iss1/art23/

Fig. 2. Environmental variable response plots for each categorical variable entered into the final model (Model 2, Beta multiplier = 1).
Probability of Black Rail presence is expressed as the complimentary log-log transformation as the independent response in relation to
(a) Land cover classes, (b) Ecological landform classes, (c) Lithology classes and (d) Bioclimate classes. Mean (± SE) responses are
shown based on ten replicate Maxent runs.

The next most important variables were the Ecological landform
classes and Lithology (Fig. 1, Table 4). The category of Ecological
landforms that stood out was “flat or nearly flat plains”, but the
relatively high association with “low mountains” is noteworthy
(Fig. 2b). The Lithology data described soil types and was almost
equivalent in contribution though lower in permutation

importance with fairly low percent contribution (Table 4). The soil
types associated with the strongest responses were “unconsolidated
sediment”, “non-defined”, and “basic volcanic” (Fig. 2c).  

The Slope variable had a lower percent contribution but the second
highest permutation importance score (Table 4). Permutation
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Table 4. Performance criteria for the top model (Model 2, Beta
multiplier = 1). Model output is from the MaxEnt desktop run
(see also Figs. 1-4). The percent contribution of each variable is
based on the increase in regularized gain contributed by the
variable. The permutation importance of each variable is based
on the effect on the model of randomly permuting only that
variable, and the resulting drop in the training AUC normalized
to percentages.
 
Variable Percent contribution Permutation

importance (%)

Land cover 47.6 27.0
Distance to water 24.2 16.6
Lithology 8.6 4.1
Ecological landforms 8.0 18.8
Slope 6.2 22.5
Bioclimate 5.5 11.1

Fig. 3. Environmental variable response curves for each
continuous variable entered into the final model (Model 2, Beta
multiplier = 1) Probability of Black Rail presence is expressed
as the complimentary log-log transformation in relation to (a)
Distance from water (m) and (b) Slope (degrees). These plots
reflect the dependence of Black Rail habitat suitability on the
selected variable and on dependency induced by correlation to
other variables. Curves show the mean responses of ten
replicate MaxEnt runs ± SD (blue).

importance is another measure of the influence of the variable
on the model. The response curve showed a steep drop between
slopes of 0º ~ 4° and then a steadier decline in probability as slope
increased (Fig. 3b). The low percent contribution of the Slope
variable likely reflects the fact that a lot of area along the coastal
plain is flat or has only a very gentle slope, but not all of these
areas are suitable for Black Rails. Yet, the relatively high
permutation importance indicates that areas with very significant
slope are generally not going to be well suited to Black Rails.  

Bioclimate was the least explanatory variable to make the cut in
the top model. The categories that were most predictive of Black
Rails all contained the descriptors “hot” and “wet” (Fig. 2d),
reflecting that more suitable habitat was found at lower latitudes.
Nevertheless, the percent permutation importance of the variable
was relatively low (Table 4).  

The map created by the final model shows that suitable habitat is
generally on the coast with only sparse small pockets inland (Fig.
4). Several hotspots emerged that have larger tracts of suitable
habitat. Some of these are areas known for recent occupancy such
as the Maryland shore of the Chesapeake Bay (Wilson et al. 2007),
the Pamlico peninsula of North Carolina (Wilson et al. 2016),
and the ACE Basin region of South Carolina (Hand et al. 2019).
However, the map also revealed land not currently regarded as
hosting Black Rails including significant tracts of the South
Carolina and Georgia coastlines, areas on the southern coast of
Florida and surrounding the Everglades, and coastal New Jersey.
Smaller inland areas that are promising for Black Rails were also
identified; these can be better seen on higher-resolution maps
(available from the authors).

DISCUSSION
We selected the geographic extent of the Atlantic coastal states,
the region of interest for the recently completed conservation
action plan of the Atlantic Coast Joint Venture. This extent gave
a robust model that identified habitat characteristics predictive
of Black Rail occupancy. The environmental factor that was most
explanatory was land cover, and the specific categories identified
were pertinent descriptors of specific wetland types found in the
east: generally flooded areas with herbaceous and other wetland
vegetation types.  

The final model for Black Rail habitat suitability included land
cover, distance to water, ecological landforms, lithology, slope,
and bioclimate. This model was selected for having the lowest
AICc. There was scant difference in AUC values among top
models. Our top model AUC (0.855) was well within the
acceptable range and consistent with other MaxEnt models for
birds (Moreno et al. 2011 [AUC= 0.87 and 0.99], Wu et al. 2012
[AUC=0.7-0.98], Hu and Liu 2014 [AUC= 0.81], Tsao et al. 2015
[AUC=0.92], Haverland 2019 [AUC=0.67]).  

The factor most associated with Black Rail presence in this model
was land cover, and specifically flooded shrub and herbaceous
vegetation. All of the land cover categories that had the highest
responses in the model support the hypothesis that flooding in
association with vegetation (characteristics of wetlands) were
important. These were all categories that fit the high marsh habitat
that Black Rail were found to occupy in another habitat
association study that looked at vegetation type on the Gulf coast
in Texas (Haverland 2019).  
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Fig. 4. Eastern Black Rail habitat suitability across the Atlantic coastal plain of the U.S. created using the final optimized MaxEnt
model (Model 2, Beta multiplier = 1). The color scale indicates the probability of Black Rail habitat with warm colors and higher
values predicting greater suitability. Terrestrial areas coded white lacked data for one or more environmental variables.
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As predicted for a wetland bird, proximity to water was also
important. It is reasonable to assume that most marsh habitat
would be classified as being within a kilometer of water. In
California, using habitat data collected at each survey site, Black
Rail presence was shown to be correlated with proximity to
channels (Tsao et al. 2015). Our model agrees with the finding
that Black Rails are associated with proximity to open water,
notwithstanding its larger scale and use of citizen science data.  

Among the ecological landform classes, flat land was most
predictive, also supporting our hypothesis considering that, in a
remote-sensing framework, marshes typically have little to no
above-water topographic relief. Even in areas with more
surrounding topography than the Atlantic coastal plain, it has
been shown previously that Black Rails choose relatively level
areas. We found a secondary association with low mountains,
which is also consistent with a study of California Black Rails in
the Sierra Nevada foothills. Though the scale used in our model
would not likely be able to discriminate this, in this hilly region,
California Black Rails were found mostly at locations with
relatively little slope or elevation (Richmond et al. 2010).  

The high response for unconsolidated lithology is logical because
flooded soils associated with marshes generally have loose
sediment (Gornitz et al. 1994). Unconsolidated soils make up a
large portion of the Atlantic coastal plain and are most vulnerable
to erosion, adding to the sensitivity of salt marsh habitat (Gornitz
et al. 1994). Another significant lithology type identified by the
model, volcanic soils of basic pH, had lower predictability than
the unconsolidated category. There were comparatively few raster
cells entered into this model with volcanic lithology (basic: 10,250
cells or 0.3%; intermediate: 2,639 cells or 0.08%) on the East
Coast. However, in the few places Black Rails have been recorded,
these lithology types were overrepresented. This was one of the
more variable findings among model replicates, suggesting it may
be an artifact of small sample size. Considering the possibility
that there may be something favorable about these lithology types
to Black Rails, volcanic soils are known to be comparatively
mineral- and nutrient-rich, promoting plant growth (Shamshuddin
et al. 2011) and thus likely enhanced levels of arthropod and other
prey. This possibility warrants further investigation. Nevertheless,
considering the low permutation importance of the lithology
data, they had comparatively little influence on the model as a
whole.  

California Black Rails live in a severely water-limited environment
in the Sierra Nevada foothills, and their occupancy is strongly
related to the presence of even small tracts of marsh (depressional,
fluvial, fringe marsh, or slope) (Richmond et al. 2010). That
flooding is an important habitat requirement is evidenced by rapid
colonization occurring within a year of marsh creation
(Richmond et al. 2008). On the East Coast, water is not limiting
to the same extent, but presence of permanent water remains
important. Previous studies provide evidence that a moderate
slope facilitates the essential hydrology required for Black Rail
habitat (Nadeau and Conway 2015, Atlantic Coast Joint Venture
2020). Persistent shallow water is difficult to achieve in flat areas
that are flooded, but the presence of a gentle slope in a permanent
wetland means that while the water may rise and recede, there
should always be an area within the favorable range of depth. The
percent contribution of slope in the final model emphasized less

importance of sloped landscape. However, considering that
marsh habitat has on average little topographic relief, it is
unsurprising that having less slope overall is what a model of this
scale predicts. Quantifying habitat characteristics, including
slope, on a more regional scale in California, Black Rails were
found in areas with an average slope of only 3.7 degrees
(Richmond et al. 2008). Representing the moderate degree of
slope required locally for suitable hydrology in natural habitats is
probably not compatible with the scale of this model.  

The categories of bioclimate predicting Black Rails were those
describing high temperature and high humidity and precipitation.
Though climate had limited importance to our model, it is clear
that these tiny rails are primarily resident at lower latitudes with
hotter, wetter climate data. The species is also found in the
neotropics (Taylor and van Perlo 1998, BirdLife International
2021). Where they have been reported in northeastern states, they
are migratory (Watts 2016).  

In developing our model, we excluded replicate eBird detections
from identical coordinates that we reasoned were likely submitted
by observers reporting the same bird. However, we retained
detections reported at different coordinates that then fell within
the same raster cell (~1 km²). Given that the home range of Black
Rails is closer to 0.01 km² (Legare and Eddleman 2001) and that
they are territorial in the breeding season, it is more likely that
detections at different coordinates were of different birds. Black
rail detections are very rare. Though the model does not explicitly
incorporate density, inclusion of multiple detections at important
sites of occupancy increased the power of the model in
emphasizing key variable classes.  

Human population density is a concern when dealing with
sensitive species, especially when considering land management
(i.e., where to invest in land preservation and restoration projects)
(Jarnevitch et al. 2016). Our full model supported the prediction
that probability of Black Rail presence is negatively related to
human population density, although the percent contribution did
not meet the threshold for inclusion in the final model. Rails have
been declining in coastal areas in the southeast where human
development has increased substantially over the same period
(Crossett et. al. 2004, Crossett et. al. 2013). Future studies should
investigate whether there is a causal effect of human disturbance
on Black Rail occupancy.  

Our model illustrates that suitable habitat remains for Eastern
Black Rails both on the coast and farther inland. These rare inland
sites may become especially important as refuges for Black Rails
as coastal marshes disappear due to sea level rise or human
development (Nicholls 2004). Due to predicted loss of coastal
wetlands, an explicit goal of the Eastern Black Rail conservation
plan is to increase non-tidal habitat for Black Rails (Atlantic
Coast Joint Venture 2020). The habitat suitability map generated
by this model identifies areas that should be explored for Black
Rail occupancy and considered for future management and/or
restoration.  

This model is the first to predict habitat suitability for Black Rails
on the east coast of the United States. It adds to a growing list of
studies showing that models using distribution data collected
through citizen science can have significant predictive ability. Data
from eBird can be used to generate models independently, as we
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demonstrate here, or they can supplement survey data such as
breeding bird survey data to forecast future habitat suitability
(Nixon et al. 2016). Areas that our model predicted would have
high habitat suitability were consistent with historically known
locations (Watts 2016, U.S. Fish and Wildlife Service 2018a,
Atlantic Coast Joint Venture 2020). Furthermore, the model
corroborated the same general habitat requirements for Black
Rail found in California, Texas, and other parts of the species’
range (Tsao et al. 2015, Haverland 2019), namely flooding in
association with herbaceous and shrubby vegetation, also apply
to the broader East Coast range. This model better elucidated the
environmental variables that are most predictive of Black Rail
occupancy. The most influential variables were characteristic of
high marsh, confirming the importance of this habitat type to
Black Rails. The map product will be useful for finding areas that
are likely to support Black Rails now and in the future, and help
inform land management decisions in support of species
conservation.

Responses to this article can be read online at: 
https://www.ace-eco.org/issues/responses.php/1919
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