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1
Introduction

This thesis consists of three essays inmatching theory andmarket design. In particular, the three essays

address the effects of incomplete information and behavioral biases on centralized matching markets.

In Chapter 2, I study the transparency of matchingmechanisms in an one-to-one object allocation

model through the lens of a commitment problem of a central matching authority. Chapter 3 and

Chapter 4 are concernedwithmarket participants’ incentives of acting truthfully in centralizedmatch-

ing markets if preferences are subject to behavioral biases. Specifically, Chapter 3, which is joint work

with Yiqiu Chen, studies regret-based incentives for students in the context of public school assign-

ment. In Chapter 4, I examine an one-to-one object allocation model and ask under what conditions
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participants’ incentives are shaped by aversion to the experience of envy.

Beginning with the seminal work of Gale and Shapley (1962), many applications have benefited

from theoretical research on matching markets. This thesis focuses on the assignment of market par-

ticipants to a limited amount of discrete resources without using transfers, as it is common for ap-

plications such as school choice (Abdulkadiroğlu and Sönmez, 2003), campus housing (Hylland and

Zeckhauser, 1979; Shapley and Scarf, 1974) or kidney exchange (Roth et al., 2004). These (one-sided)

matchingmarkets often operate priority-based in the sense that the limited resources, i.e., objects such

as school seats or campus flats, are each equipped with a priority ranking over the participants. How-

ever, as an input of thematchingmechanism, the priorities are notmere guides to themechanism; they

also fundamentally shape participants’ perceptions of how fair the assignment process is. Specifically,

under a final matching a participant could find an object she likes more than her own assignment be-

ing assigned to another participant. If that participant has lower priority at this more desirable object

than she has, then this may be perceived as unfair and is called an instance of justified envy (Abdulka-

diroğlu and Sönmez, 2003). Justified envy-freeness can be achieved by adopting stable mechanisms

(Gale and Shapley, 1962), a class of mechanisms which has been applied very successfully in practice

across variousmatching applications (Roth, 2008). Now, whereas in somematchingmodels, stability

is equivalent to efficiency, this equivalence breaks down in the context of priority-based object alloca-

tion. In fact, the equivalence is replaced by an incompatibility of these two desirable criteria, as there

is no matching mechanism that always selects an efficient and stable matching (Roth, 1982a; Balinski

and Sönmez, 1999).

The resulting trade-off between efficient mechanisms and stable mechanisms raises two important

questions that have been addressed by market design and matching theory over the past two decades

and are explored inmore detail in this thesis. First, if the market designer only has the choice of select-

ing amechanism that belongs to one of the two classes, which of the classes should be selected in favor

of the other? Second, does an appropriate relaxation of the stability requirement open up new av-
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enues with alternativematchingmechanisms that can also workwell in practice? The answers to both

questions depend, of course, on the underlying objectives, the particular characteristics of themarket,

and the intended applications. However, some market characteristics, such as incomplete informa-

tion and behavioral biases, are present in many real-world applications and are therefore of general

interest. From this perspective, this thesis examines participants’ incentive problems and central au-

thorities’ commitment problems when participants’ information about the market is limited and/or

when participants have nonstandard preferences. A compelling argument for focusing on incentive

and commitment problems is that the benefits of a mechanism are often realized only when they are

based on the actual preferences of market participants. Yet, since participants’ preferences are private

information, their use can only be ensured if participants have an appropriate incentive and trust the

responsible authority enough to actually disclose them. Thus, mechanisms that perform well in solv-

ing the above problems stand a good chance of proving themselves in practice by effectively steering

market participants toward their preferred actions and by improving market transparency.

A theoretical benchmark for good incentive properties of a mechanism in the literature is strategy-

proofness which requires that it is a weakly dominant strategy for each student to reveal her true pref-

erences. In Chapter 2, I study the ”transparency” of strategy-proof mechanisms using an one-to-one

object allocationmodel by taking theperspective of a central authority’s ability to commit to apublicly

announced mechanism. Specifically, I develop commitment criteria which describe to which extent

agents can be confident that the authority sticks to the announcements made. In the model, a central

matching authority publicly announces a strategy-proof mechanism and upon receiving agents’ re-

ported preferences the authority privately selects a mechanism to compute amatching that is publicly

revealed. Agents’ preferences are private information, other market features are common knowledge

and agents observe the final matching. In this sense, the authority’s commitment to comply with an

announcement is linked to the ability of agents to detect deviations from the announced mechanism

through their observations and their prior information.
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The main result of the chapter is that the authority can commit to stability. By contrast, I show

that commitment to efficiency, only works for dictatorships. The key drivers of the main results are

intuitive since stability of a matching can be described by passing an independent test for each agent

that checks observable conditions on the matching outcome, where the test of an agent is passed or

failed without the need for reference to other agents’ reported preferences. The efficiency criterion,

on the other hand, cannot generally be described in this fashion. Concretely, efficiency requires that

agents are aware that there is no remainingmutual interest for exchange, whichmeans that agents need

knowledge on other agents’ preferences to verify efficiency. The main contribution of this chapter is

to identify a transparency advantage of stability over efficiency, which could be an important factor in

the choice of mechanisms in practical applications.

Chapter 3 explores students’ incentives to report an honest ranking over schools if students wish to

avoid regret in the context of public school assignment. It is co-authored by Yiqiu Chen and both au-

thors contributed equally to this project. We adopt a notion of regret proposed by Fernandez (2020):

A student regrets her report at her match, if given her feedback from the matching mechanism, she

finds another report, which first, does not match her worse for all market unknowns compatible with

the feedback and second, matches her strictly better for some of the compatible unknowns. In our

framework, students privately submit a report to a matching mechanism and the mechanism gives

feedback including the final matching. However, the inputs of the mechanism, such as the reports

of other students are not disclosed even ex-post. The incentive concept we study is called regret-free

truth-telling (Fernandez, 2020) and is weaker than strategy-proofness. It requires that no student

ever regrets reporting her true preferences. We examine whether regret-free truth-telling can be satis-

fied by mechanisms that aim to address the trade-off between efficiency and stability, none of which

are strategy-proof (Abdulkadiroğlu et al., 2009; Erdil and Ergin, 2008; Alva and Manjunath, 2019).

Among the candidates one mechanism stands out with a quite elegant approach—the Efficiency Ad-

justed Deferred Acceptance Mechanism (EDA) (Kesten, 2010) of which the idea is to improve ef-
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ficiency on stable matchings, however, only if students give their consent for relaxing the stability

constraint.

Ourmain result is to show that EDA is regret-free truth-telling, which can be regarded as a practical

contribution highlighting EDA’s potential for implementation in applications such as school choice.

In addition, we study a class of mechanisms called efficient stable dominating rules. Efficient stable

dominating rules are mechanisms which always induce an efficient matching that Pareto dominates

a stable matching and is a refinement of stable dominating rules introduced by Alva and Manjunath

(2019). In contrast to EDA, efficient stable dominating rules do not consider consent, and the result

regarding efficient stable dominating rules is negative, i.e., none of them is regret-free truth-telling.

Finally, in Chapter 4, I study agents’ incentives to be truthful if agents’ behavior is influenced by

the dislike of envy. I employ an one-to-one agent object allocation model, where an agent can envy

another agent if that other agent is assigned to an object that she prefers over her own assignment,

i.e., envy is different from justified envy since priorities are not taken into account. I develop a new

incentive concept called envy-proofness, which is stronger than strategy-proofness. Envy-proofness

requires that for an agent who reports her true preferences, every instance of envy she experiences is

inevitable in the sense that no matter how she changes her action, she experiences these instances as

well. In other words, given the action of other agents, the instances of envy she experiences under her

true preferences is a weak subset of the instances of envy she experiences under any other action she

takes. In this sense, envy-proofness ensures that no agent has an incentive to lie about her preferences

if she wishes to avoid envy and also wants to be assigned to her most preferred object.

Themain results of this chapter are that the efficient TopTradingCycle (TTC)Mechanism (Shap-

ley and Scarf, 1974) is envy-proof, whereas I show that the unique stable and strategy-proof mecha-

nism, the Deferred Acceptance (DA) Mechanism (Gale and Shapley, 1962) is not envy-proof. The

main contribution of Chapter 4 is to provide new insights about the trade-off between efficiency and

stability. More concretely, while stable mechanisms by definition minimize certain forms of fairness-
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related envy (justified envy), stable mechanisms are shown not to account for various forms of envy-

driven incentives. On the other hand, some efficient mechanisms including TTC (see also Chapter 4

for more details) seem to be more robust to envy-driven incentives.
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2
Transparent MatchingMechanisms∗

2.1 Introduction

In matching theory the central authority usually appears as a pure and honest operator of the match-

ingmechanism. In practice, however, the authority’s overall objectives could be in conflict with using

the mechanism that was promised to participants in advance. For instance, rather than implementing

an efficient matching for applicants, a campus housing authority might be interested in fully utilizing

∗This chapter is based on Möller (2021a). Thanks to my advisor, Alexander Westkamp. Thanks to Yiqiu
Chen, Christoph Schottmüller and Marius Gramb for helpful comments. Remaining errors are of course my
own.
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the campus housing supply. Another example is a school choice authority that wants to satisfy dis-

tributional goals that can not be achieved by using the announced mechanism. As in both examples,

the authority’s commitment to comply with an announcement is tied to the ability of participants to

detect deviations from the announced mechanism. This paper examines to which extent participants

can be confident that the authority sticks to the announcements made.

I employ a one-to-one object allocation model, where a central authority publicly announces a

strategy-proof 1 mechanism. Then, upon receiving agents’ reported preferences, the authority pri-

vately selects a mechanism to induce a publicly observable matching. I assume that agents’ strict

preferences over objects are private information, while othermarket features are common knowledge,

including how the announcedmechanismworks. Agents trust the announcement as long as they have

not received any counterfactual evidence in this regard. In this setting, I adopt the notions of innocent

explanations and safe deviations by Akbarpour and Li (2020). Concretely, an observation in form

of the final matching has an innocent explanation for the observing agent if, given her own reported

preferences, there is a possible combination of other agents’ preferences that would lead to an identi-

cal observation under the announcedmechanism. Furthermore, a mechanism is a safe deviation with

respect to the announcedmechanism, if for each agent, each observation produced by themechanism

has an innocent explanation.

I develop a set of ”transparency” notions to explore different forms of commitment to an author-

ity’s announcement. For the case of full commitment I introduce the notion of full-transparency

which requires that the authority has no safe deviation from the announced mechanism. It turns out

that for the strategy-proof mechanisms studied in this paper, full-transparency can only be achieved

formechanisms which are dictatorial. More precisely, I show that a strategy-proof and efficientmech-

anism is fully-transparent if and only if it is identical to a sequential dictatorship known from (Pápai

1Strategy-proofness requires that it is a weakly dominant strategy for agents to report their true preferences
over objects.
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(2001), Ehlers and Klaus (2003) and Pápai (2000)). Furthermore, the unique strategy-proof and sta-

ble2 mechanism, known as theDeferred Acceptance (DA)Mechanism from Gale and Shapley (1962),

is fully-transparent if and only if it is equivalent to a serial dictatorship from Satterthwaite and Son-

nenschein (1981) and Svensson (1994).

Moving to the case ofpartial commitment, I define thenotions identity-transparency and cardinality-

transparency, which do not permit safe deviations under which the set and number ofmatched agents

change, respectively. A main finding of this paper is thatDA satisfies both of these criteria, while the

same holds forTTC if and only if TTC is stable. In fact, bothDA andTTCwere touted as candidates

for assigning students to Boston Public Schools in 2005. The committee ultimately choseDA, argu-

ing that ”the behind the scenes mechanized trading [in TTC] makes the student assignment process less

transparent.”. More recently, Leshno and Lo (2020) characterizedTTC outcomes in terms of cutoffs,

which take the form of competitive-equilibrium prices assigned to each pair of objects and fromwhich

the agent’s eligibility for an object can be inferred. As Leshno and Lo (2020) argue, the interpretation

of TTC cutoffs are thus more complicated than those that can be used to explain the results of DA

(Azevedo and Leshno, 2016), since underDA eligibility for an object is described by a single cutoff for

each object.3

Adding another form of partial commitment, I also ask to which extent the authority can commit

to a desirable property of the announced mechanism. More concretely, a mechanism with property p

is p-transparent, if each safe deviation from themechanismmust still have property p. Amain result of

this paper is thatDA is stable-transparent. However,DA allows the authority to safely deviate to any
2Stability of a matching is defined given a set of object specific priorities over agents and a set of agents’

preferences: A matching is blocked, if there exists an agent and an object she prefers to her own match and
another agent with lower priority is assigned to this preferred object. A matching is non-wasteful if there is no
object that is unassigned although there is an agent that prefers the object over her own assignment. Amatching
is individually rational if no agent prefers the outside option over her final assignment. Amatching is stable if it
individually rational, non-wasteful and not blocked. A mechanism is stable if it only induces stable matchings
for each reported preference profile.

3In case ofDA, the cutoff entails information about the lowest priority an agent must have at an object to
be eligible for it.
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other stable mechanism. I also show that an efficient and group strategy-proof mechanism is efficient-

transparent if and only if it is equivalent to a sequential dictatorship mechanism.4

Related literature

This paper is among the first to relax the authority’s full commitment assumption in the context of

matching markets. Closely related in this regard is Hakimov and Raghavan (2020) who propose a

transparency notion for general centralized allocation settings. Similar to the notion of full trans-

parency considered in the current paper, their transparency notion requires that agents detect every

deviation and thus only applies to the case of full commitment. They show that sequential versions

of DA and serial dictatorships can be implemented in a transparent way. However, a crucial differ-

ence to the current paper is that transparency is mainly a consequence of designing suitable sequential

public communication between authority and agents. By contrast, in this paper, the communication

between each agent and the authority remains private. Thus, the transparency notions I consider are

features of themechanism, whereas inHakimov andRaghavan (2020) transparency is a feature of the

general information structure.5

The second paper that is closely connected is Akbarpour and Li (2020) from which I adopt the

notions of innocent explanations and safe deviations. Akbarpour and Li (2020) study a partial com-

mitment framework with sequential private communication between the authority and agents and

examine the authority’s commitment to various standard auction formats. They focus on credible

implementations of Bayes-NashMechanismswith imperfect information, which requires that the au-

4Amechanism is group strategy-proof if there is no group of agents that can generate weakly better assign-
ments by misrepresenting their preferences and at least one agent in the group profits from the misrepresenta-
tion.

5In this sense related is also Woodward (2020), who analyzes a setting where an auctioneer maximizes her
utility conditional on information that is released to bidders after the auction is run. For different auction
formats and incentives of the auctioneer, Woodward (2020) asks what information bidders need to have to
conclude that the auction was run as claimed.
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thority has no incentive to safely deviate to another mechanism. Akbarpour and Li (2020) show that

the first-price auction is the unique static credible and optimal auction, which drives a wedge between

incentive compatibility for the authority and strategy-proofness for agents. The key differences to my

analysis are the following. First, whereas credibility requires incentive compatibility for the authority,

transparency remains silent on the authority’s incentives and only asks for potential safe deviations.

Second, Akbarpour and Li (2020) analyze also extensive-formmechanisms. Third, Akbarpour and Li

(2020) study credibility given an equilibrium of the announced mechanism and additionally require

that agents’ equilibrium strategies remain optimal conditional on the authority’s set of safe deviations.

By contrast, in the current paper agents do not take the authority’s strategic behavior into account.

To motivate this last departure, note that in many matching applications (e.g. school choice, college

admission or house allocation) participants are often inexperienced and typically take part only once.

It thus seems natural that participants will first not distrust the authority in these settings. In the con-

text of auctions, however, bidders may be more sophisticated and can be repeatedly exposed to the

same auctioneer. In this sense, a bidder may have a clearer picture of the auctioneer’s incentives and

thus takes the auctioneer’s strategic behavior into account when deciding how to bid.

Also related is the line of research that followsLi (2017)’sworkon obvious-strategy-proofness (OSP).6

He characterizes OSPmechanisms as those that can be supported by bilateral commitments between

agents and authority. Li (2017) applies his framework to matching contexts and obtains that TTC is

notOSP-implementable in some settings. Following the work of Li (2017), Troyan (2019) shows that

TTC is OSP-implementable if and only if the priority structure satisfies an acyclicity condition that

is weaker than the one characterizing the priority structures for which TTC is identity-transparent.7

Ashlagi andGonczarowski (2018) establish that stablemechanisms arenot alwaysOSP-implementable,

6Amechanism is OSP if each agent has an obviously dominant strategy which requires that the worst possi-
ble outcome from following the truth is better than the best case outcome from any possible untruthful report.

7Specifically, the acyclicity condition used in the current work is due to Ergin (2002) and characterizes the
priority structures for which TTC is stable and thus those for which TTC is identity-transparent.
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whereas Thomas (2020) characterizes the priority structures under whichDA is OSP-implementable.

Note that apart from the fact that Li (2017) limits attention to strategy-proof mechanisms and that

the authority’s incentives do not play a role, the commitment framework is similar to the framework

in Akbarpour and Li (2020). In particular, the key differences to the current work and the work that

followsLi (2017) coincidewith those outlined forAkbarpour andLi (2020) in theprevious paragraph.

More broadly, this paper relates to the literature which models limited commitment as measurable

with respect to agents’ observations on final outcomes, as for example in Dequiedt and Martimort

(2015), Baliga et al. (1997), Bester and Strausz (2000) and Bester and Strausz (2001).

The rest of this paper is organized as follows. Section 2.2 introduces the basic model along with

the transparency framework. Section 2.3 analyzes the transparency characteristics ofDA. Section 2.4

contains the analysis of efficient mechanisms. Section 2.5 concludes.

2.2 Preliminaries

2.2.1 TheModel

Let I be a set of agents and X ∪ {∅} a set of indivisible objects, where ∅ denotes the outside option

for agents. Throughout the paper, I fix the set of agents and objects. To avoid trivial cases I assume

|X| ≥ 2 and |I| ≥ 2. Let i, j, k denote generic agents in I and let x, y, z refer to generic objects in

X∪{∅}. Equip each object x ∈ Xwith a strict priority ranking▷x over agents I. A priority structure

▷ ≡ (▷x)x∈X is a profile of priority rankings and the domain of all priority structures is denotedwith

P̄r. For the rest of this paper, fix an arbitrary priority structure▷ ∈ P̄r.

Each agent i ∈ I has a strict preference relation Pi over X ∪ {∅}, where Ri is the corresponding

weak preference relation.8 For each x ∈ X and i ∈ I, object x is acceptable if x Pi ∅ for i and x is

8That it, Ri is a complete, transitive and anti-symmetric binary relation. For each pair of objects x, y ∈
X ∪ {∅}, I write x Ri y if either xPiy or x = y.
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unacceptable for i if it is not acceptable. I refer to Pi as agent i’s type and to P ≡ (Pi)i∈I as a type

profile. For each i ∈ I, let Pi be the domain of all possible types and let P = ×i∈IPi be the domain

of all type profiles. For any J ⊂ I, PJ = (Pj)j∈J is a type profile for agents J, wherePJ ≡ ×j∈JPj is the

corresponding domain. Denote with−i the set of all agents except agent i.

Amatching is a function μ : I → X ∪ {∅} under which each object x ∈ X ends up with at most

one agent and any agent i ∈ I, who is not assigned to some object x ∈ X, is assigned to ∅. LetM

collect the set of all possible matchings and for each μ ∈ M, denote with μi the object that is assigned

to agent i ∈ I. For any μ ∈ M, let μX be the set of objects from X assigned to agents under μ and

define μI symmetrically.

Consider some matching μ ∈ M and some type profile P ∈ P . The matching μ is non-wasteful

if there exists no i ∈ I and no object x ∈ X such that x Pi μi and x is unassigned under μ. Call the

matching μ individually rational if, for each i ∈ I, μi Ri ∅. The matching μ is blocked if there exists a

pair of agents i, j ∈ I and an object x ∈ X such that x Pi μi, μj = x and i▷x j. Then, one refers to the

matching μ as▷-stable with respect to P if it is not blocked, individually rational and non-wasteful.

Let Σ▷(P) be the set of ▷-stable matchings with respect to P. Next, let a matching ν ∈ M weakly

Pareto dominate matching μ if, for each i ∈ I, νi Ri μi, and say that ν strictly Pareto dominates μ, if

ν weakly Pareto dominates μ and there exists an agent j ∈ I with νj Pj μj. The matching μ is (Pareto)

efficient if there exists no matching that strictly Pareto dominates it.

Amechanism is a function g : P → M from type profiles into matchings. For each P ∈ P , let

gi(P) denote the assignment of agent i ∈ I under g(P). Let G be the set of all mechanisms. Consider

the following standard properties given any mechanism g ∈ G. The mechanism g is individually

rational, whenever it only leads to individually rational outcomes. If g produces only non-wasteful

matchings then g is said to be non-wasteful. The mechanism g is ▷-stable if it produces a ▷-stable

matching for each type profile. Moreover, mechanism g is (Pareto) efficient if it only induces efficient

matchings.
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I proceed with two standard incentive notions, where the first one requires that it is a weakly domi-

nant strategy for agents to report their true type. Formally, define amechanism g ∈ G as strategy-proof

if, for all P ∈ P , there is no i ∈ I and P′i ∈ Pi such that gi(P′i,P−i)Pigi(P). Denote with SP ⊂ G

the set of strategy-proof mechanisms. The second notion requires that no group of agents can jointly

misrepresent their types, such that each agent in the group is weakly better off and at least one agent

in the group is strictly better off. A mechanism g ∈ G is group strategy-proof if, for all P ∈ P , there

exists no J ⊆ I and P′J ∈ PJ such that gi(P′J,P−J) Ri gi(P) for each i ∈ J, and gj(P′J,P−J) Pj gj(P) for

at least one j ∈ J.

2.2.2 A Transparency Framework

Let a centralmatching authoritymake a public announcement in formof a strategy-proofmechanism

g ∈ SP . The announcement is treated as a promise that g will be used to assign objects X ∪ {∅} to

agents I. Agents know I,X,▷, their own type and how gmaps type profiles intomatching outcomes.

Furthermore, assume that agents do not receive any information on other agents’ types and actions.

Once the announcement has been made the authority privately selects a mechanism g̃ ∈ G that

will be used to produce a final matching. Refer to g̃ as a deviation from g, if there exists a type profile

P′ ∈ P such that g̃(P′) ̸= g(P′). Given any reported type profile, the induced final matching is

publicly revealed and observable for all agents.

For expositional simplicity, it will be useful to treat an agent’s type as a part of her individual ob-

servation. Formally, given a mechanism g′ ∈ G, a type profile P ∈ P and an agent i ∈ I, observation

oi(g′(P)) is a pair which consists of agent i’s type Pi and the final matching g′(P). In this setting,

I adopt criteria developed by Akbarpour and Li (2020) which specify the conditions under which

agents’ individual observations conceal or reveal a deviation:

Definition 2.1 (Akbarpour and Li (2020)). Given announcement g ∈ SP , deviation g̃ ∈ G and a
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type profile P ∈ P , agent i ∈ I has an innocent explanation for observation oi(g̃(P)) if there exists

P′−i ∈ P−i such that oi(g̃(P)) = oi(g(Pi,P′−i)).

That is, agent i’s observation under the deviation has an innocent explanation if one of i’s observa-

tions that could follow from the announcement is identical to the one she made under the deviation.

Definition 2.2 (Akbarpour and Li (2020)). Given announcement g ∈ SP , deviation g̃ ∈ G is safe

if, for each i ∈ I and each P ∈ P , observation oi(g̃(P)) has an innocent explanation for i.

In words, a deviation is safe if each observation produced by the deviation has an innocent expla-

nation for the agent who makes the observation. In what follows, I assume that agents tell the truth

about their preferences if the designer sticks to selecting only safe deviations. That is, given any type

profile P ∈ P , each agent i ∈ I submits her true type Pi to the authority.

I now define a set of notions to study the authority’s commitment to its announcement. The first

and straightforward notion requires full commitment power.

Definition 2.3. An announcement g ∈ SP satisfies full-transparency if there exists no safe deviation

g̃ ∈ G from g.

In other words, a mechanism is fully-transparent if any deviation will be detected by at least one

agent. However, as will become clear in the course of this paper, the more interesting findings lie

beyond the case of full commitment, since of themechanisms examined, only dictatorships guarantee

full-transparency.

Specifically, I define a set of weaker transparency notions that address different forms of partial

commitment. For example, take a school choice setting in which properties such as stability or ef-

ficiency are usually perceived as desirable by participants. In the case of an announced mechanism

which satisfies such a desirable property, that property may even be publicly advertised to convince

agents of the mechanisms’ benefits. However, it is unclear to what extent participants may view the
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authority’s claim to implement a particular property as valid. In light of these considerations, the next

transparency notion sets up the conditions underwhich an authoritymay commit to a desirable prop-

erty of the announcedmechanism. Concretely, let p be an arbitrary property or condition that can be

satisfied by a mechanism and collect in Gp ⊆ G all mechanisms sharing the property p.

Definition 2.4. An announcement g ∈ SP is p-transparent if there exists no safe deviation g̃ /∈ Gp

from g.

In other words, given announcement g ∈ Gp the transparency notion ensures that the authority

has full commitment power to a mechanism with property p. As a concrete example, if the authority

announces a mechanismwith property▷-stable and themechanism is▷-stable-transparent, then the

authority has full commitment to induce only▷-stable outcomes.

Next, I introduce two transparency notions which are not property-specific. Under these notions

the authority can not change either the sets or the numbers ofmatched agentswithout being detected.

In this way, one can already substantially limit the authority’s scope even if one does not have detailed

information what deviations the authority would perceive as desirable. For any mechanism g ∈ G

and any type profile P, be gI(P) the set of agents assigned to an object in X under g(P). Then, given a

mechanism g ∈ G, another mechanism g̃ ∈ G is identity-equivalent to g if for each P ∈ P , we have

g̃I(P) = gI(P). In a similar vein, mechanism g̃ ∈ G is cardinality-equivalent to g, if for each P ∈ P ,

we have |̃gI(P)| = |gI(P)|. Now consider the following transparency notions.

Definition 2.5. An announcement g ∈ SP is

1. identity-transparent if any deviation which is not identity-equivalent to g is not safe.

2. cardinality-transparent if any deviation which is not cardinality-equivalent to g is not safe.

In words, whereas identity-transparency requires that under any safe deviation and given any pro-

file of types, the set of matched agents is the same as under the announcement, under cardinality-
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transparency it is only required that the number of matched agents is the same. Hence identity-

transparency implies cardinality-transparency, whereas the converse is not true.

2.3 StableMechanisms

This section deals with the transparency of▷-stable mechanisms. It should be noted that the results

in this section generalize to the setting ofmany-to-onematching. As a preliminarywork for the deriva-

tion of the main results, I establish that stability can be verified by agents independently—a feature

that does not apply for the efficiency criterion studied in Section 2.4. To make this feature apparent,

I first decompose the conditions of ▷-stability agent by agent. Fix a matching μ ∈ M and a type

profile P ∈ P . Given any agent i ∈ I, say that μ is i-blocked at x ∈ X, if there exists j ∈ I \ {i} such

that x Pi μi, μj = x and i ▷x j. Matching μ is i-non-wasteful if there is no x ∈ X unassigned under μ

for which x Pi μi. Say that μ is i-individually rational if μi Ri ∅. Then, matching μ is i-▷-stable with

respect to Pi, if μ is not i-blocked, i-individually rational and i-non-wasteful. Let Σ▷(Pi) be the set of

matchings which are i-▷-stable with respect to Pi. Note that it does not depend on the preferences of

any agent j ̸= i. The following result is immediate from the two stability definitions.

Lemma 2.1. For each P ∈ P , Σ▷(P) =
∩

i∈I Σ
▷(Pi).

I now move to the unique strategy-proof and ▷-stable mechanism which is known to be equiva-

lent to the agent-proposing Deferred Acceptance (DA)Mechanism (Gale and Shapley, 1962). Denote

theDAmechanism that is▷-stable withDA▷. TheDA Algorithm (Gale and Shapley, 1962) which

inducesDA▷ can be found in Appendix 2.D.

We are ready for the main result of this section.

Theorem 2.1. DA▷ is▷-stable-transparent.

To prove this statement, I mostly rely on Lemma 2.1.
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Proof. Given announcement DA▷ consider an arbitrary deviation g̃ that is not ▷-stable. One has

to show that deviation g̃ is not safe. Take any P ∈ P for which g̃(P) /∈ Σ▷(P). By Lemma 2.1,

there exists i ∈ I such that g̃(P) is not in Σ▷(Pi). Now consider agent i’s observation oi(g̃(P)). By

Lemma 2.1, for any P′−i ∈ P−i, we have DA(Pi,P′−i) ∈ Σ▷(Pi). Thus, i cannot have an innocent

explanation for oi(g̃(P)) in which g̃(P) is not in Σ▷(Pi). Therefore, g̃ is not a safe deviation andDA▷

is▷-stable-transparent.

It turns out that Theorem 2.1 can be used to derive an additional transparency property ofDA▷.

To do so, consider the following famous result on▷-stable matchings.

Theorem (Lone Wolf Theorem (McVitie and Wilson, 1970)). For any type profile P ∈ P and any

pair of matchings μ, ν ∈ Σ▷(P), we have μX = νX and μI = νI.

In words, for any given type profile, the set of assigned objects and agents is the same across all▷-

stablematchings. Hence given any▷-stablemechanism g, any other▷-stablemechanism g̃ is identity-

equivalent and cardinality-equivalent to g and together with Theorem 2.1 the following result is im-

mediate.

Corollary 2.1. DA▷ is identity-transparent.

The next result provides information on sufficient conditions for deviations to be safe underDA▷.

More concretely, Theorem 2.1 and the result presented below together say that a deviation fromDA▷

is safe if and only if the deviation is▷-stable.

Proposition 2.1. If g̃ is▷-stable, then g̃ is a safe deviation with respect to DA▷.

Proof. Consider an arbitrary▷-stable deviation g̃ from announcementDA▷. One has to show that

g̃ is safe by constructing an innocent explanation for each agent and each of her observations under g̃.

Take an arbitrary i ∈ I, an arbitraryP ∈ P and consider the associated observation oi(g̃(P))under the
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deviation. To show that oi(g̃(P)) has an innocent explanation, consider the type profile P′−i ∈ P−i

where for each j ̸= i, j’s top choice on P′j is g̃j(P). Now note that since g̃(P) ∈ Σ▷(P), this implies

that g̃(P) ∈ Σ▷(Pi,P′−i). Moreover, for each agent j ̸= i, g̃j(P) is either the unique acceptable object

on P′j or the outside option and hence we obtain that Σ▷(Pi,P′−i) is a singleton. Thus, one reaches

g̃(P) = DA▷(Pi,P′−i) and therefore P′−i provides an innocent explanation for oi(g̃(P)).

Note that agent i and type profile P were chosen arbitrarily and thus each agent has an innocent

explanation for each of her observations under g̃. Thus, g̃ is a safe deviation. Finally, since the choice

of g̃ among the▷-stable deviations was also arbitrary, the proof is complete.

A direct consequence of Proposition 2.1 and Theorem 2.1 is that full-transparency of DA▷ is

achieved if and only if there exists a unique stable matching in Σ▷(P) for each P ∈ P . However,

as shown in the following, this can only be guaranteed if DA▷ reduces to a serial dictatorship from

Satterthwaite and Sonnenschein (1981) and Svensson (1994) defined as follows. Amechanism g ∈ G

is a serial dictatorship if there exists a fixed ordering over agents, such that upon following the ordering,

each agent is assigned to the most preferred object that is still available. Clearly, in case ofDA▷, this

means that▷x = ▷y must hold for all x, y ∈ X.

Proposition 2.2. DA▷ is fully-transparent if and only if it is equivalent to a serial dictatorship.

Proof. See Appendix 2.A.

2.4 EfficientMechanisms

In this section, I study the transparency features of efficient mechanisms. I start with two character-

izations: First, I characterize the set of strategy-proof and efficient mechanisms that are fully trans-

parent and in a next step, I identify the set of group strategy-proof and efficient mechanisms which

are efficient-transparent. I then turn to a popular special case of group strategy-proof and efficient
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mechanisms, the Top Trading Cycles (TTC)Mechanism from Shapley and Scarf (1974). The version

of TTC under study is known from Abdulkadiroğlu and Sönmez (2003) and operates on a fixed pri-

ority structure ▷ ∈ P̄r, such as is common in school choice. I characterize the domain of priority

structures for which TTC▷ is identity-transparent and cardinality-transparent.

2.4.1 Strategy-Proof and EfficientMechanisms

I begin with an example that illustrates that announcing a strategy-proof and efficient mechanism

may give the authority an opportunity to safely deviate to a non-efficient mechanism. As a motiva-

tion, consider an application such as school choice or college admission, where authorities tend to

be interested in efficiency, but also to satisfy some distributional constraints that are in conflict with

efficiency (e.g., equal distribution of different genders, meeting some regional quota, or other socioe-

conomic considerations).9 Thus, a reasonable scenario is that an authority first announces an efficient

and strategy-proof mechanism to encourage participation and honest revelation, but then deviates to

a non-efficient mechanism that redistributes agents according to a distributional constraint it wants

to satisfy. For illustrative purposes, I keep the size of the example small, but note that one can easily

extend the example to a market of larger size.

Example 2.1. Let I = {i, j} and X = {x, y} and suppose that the authority announces g such that

• if i reports y as her top choice, then she is assigned to y and j gets her favorite object among the

remaining ones.

• if j reports x as her top choice, then she is assigned to x and i gets her favorite object among the

remaining ones.

• if i and j report two different top choices, assign both agents to their top choices.

9See, for instance, theworkonmatchingunder regional constraints (Kamada andKojima, 2015), affirmative
action (Abdulkadiroğlu and Sönmez, 2003; Abdulkadiroğlu et al., 2005; Kojima, 2012; Hafalir et al., 2013),
matching under complex constraints (Westkamp, 2013), or diversity constraints (Ehlers et al., 2014).
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It is easily checked that g is efficient and strategy-proof. Next, consider a selection of agents’ types

presented in the table below:

Pi P′
i Pj P′

j
x y y x
y x x y
∅ ∅ ∅ ∅

Assume that once g is announced, the authority uses mechanism g̃ ∈ G, where

• g̃(P) = {(i, y), (j, x)} and;

• g̃(P̃) = g(P̃), for all P̃ ∈ P \ {P}.

Note that g̃ is a deviation from g and that g̃ is not efficient, since g(P) ̸= g̃(P) and, given type profile

P, agents prefer to swap their assigned objects under g̃(P). Asmotivated in the preface of the example,

redistributing agent i and jmight be in linewith somedistributional goal of the authority that depends

on agents’ characteristics.

To show that g̃ is a safe deviation, I set out to find innocent explanations for observations oi(g̃(P))

and oj(g̃(P)). First, type P′j provides an innocent explanation for oi(g̃(P)) = oi(g(Pi,P′j)). Symmet-

rically, P′i leads to an innocent explanation for oj(g̃(P)) = oj(g(P′i,Pj)). Finally, under any other type

profile the matchings under g and g̃ coincide. Thus, g̃ is safe and we conclude that g is not efficient-

transparent.

Note that the announced mechanism g essentially distributes guarantees to obtain objects y and x

among i and j, respectively. These guarantees can be exploited by the authority once both agents rank

all objects as acceptable and their top choices differ from their own guarantees. Specifically, in this

case, agents can be assigned to the objects guaranteed to them, since this always provides an innocent

explanation for the remaining agent.
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Aswill become clear soon, the construction of the safe deviation in the example has some generality

and will be helpful to prove the main results of this section.

Next, I introduce sequential dictatorshipmechanisms—aclass ofPareto efficient andgroup strategy-

proof mechanisms known from Pápai (2001), Ehlers and Klaus (2003) and Pápai (2000) which play a

key role in the main result of this section. For each X̃ ⊆ X ∪ {∅} let X̃C be the complement of X̃. For

any X̃ ⊆ X ∪ {∅}, i ∈ I and Pi ∈ Pi, let

Topi(Pi, X̃) = {x ∈ X̃C ∪ {∅}| ∀x′ ∈ X̃C ∪ {∅}, x Ri x′}

be agent i′s most preferred object in X̃C ∪ {∅}. Let bijection π : {1, . . . , |I|} → I be an ordering

over agents I and collect in Π the set of all possible orderings on I. Given any π ∈ Π, let for each

m ∈ {1, . . . , |I|}, be π(m) themth-dictator at π.

Definition 2.6. Amechanism g ∈ G is a sequential dictatorship, if there is a set of orderings Πg ⊆ Π

such that the following conditions are satisfied:

(a) For each P ∈ P , πP ∈ Πg is an associated ordering such that

gπP(1)(P) = TopπP(1)(PπP(1), ∅)

and for each n ∈ {2, . . . , |I|}

gπP(n)(P) = TopπP(n)(PπP(n),∪
n−1
l=1 gπP(l)(P)).

(b) Given each pair P′, P̃ ∈ P ,

(b1) we have πP′(1) = πP̃(1).
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(b2) if m′ < |I| is such that for each n′ ∈ {1, . . . ,m′}, πP′(n′) = πP̃(n
′) and

gπP′ (n′)(P
′) = gπP̃(n′)(P̃), then πP′(m′ + 1) = πP̃(m

′ + 1).

In words, condition (a) recursively defines the matchings such that, for each type profile themth-

dictator is assigned to hermost preferred object still left after all previous dictators have been assigned.

Condition (b1) ensures that the first dictator is the same under each ordering and condition (b2)

requires that the identity of the next dictator only depends on the assignments of previous dictators.

We are ready for the first result of this section.

Theorem 2.2. Let announcement g ∈ SP be efficient. Then, g is fully-transparent if and only if it is a

sequential dictatorship.

Proof. See Appendix 2.C.

Intuitively, under a sequential dictatorship, at each step, at most one agent has the guarantee to

select her favorite object among the remaining ones. Note that observing the assignment of the first

dictator reveals the identity of the second dictator, whose assignment then reveals the identity of the

third dictator and so forth. Now, if the authority deviates from some type profile, then following the

correct ordering of dictators, there must be a first agent who infers the stage she must have been the

dictator and notices that she is not assigned to her favorite choice of objects she should have been able

to choose from. This agent cannot have an innocent explanation for her observation and accordingly

the deviation is not safe.

The proof to reach necessity is divided into arguments for those candidates are that group strategy-

proof and those that are strategy-proof but not group strategy-proof. Since the arguments for group

strategy-proof candidates are also central to the next result, I briefly explain the basic line of reasoning

here. Concretely, consider again how I constructed the safe deviation in Example 2.1. One can essen-

tially use the general idea of the construction for all efficient mechanisms which are group strategy-

proof and not equivalent to a sequential dictatorship. I rely on a characterization by Pycia and Ünver
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(2017) saying that any efficient and group strategy-proof mechanism is equivalent to aTrading Cycles

(TC)Mechanismwhich can be implemented via the TC Algorithm. Under each step of the TC algo-

rithm, each unmatched object points to an unmatched agent and each unmatched agent points to an

unmatched object. Once a cycle forms, agents in the cycle are assigned to the object they point to.10

Now, whenever a TCmechanism is not equivalent to a sequential dictatorship, then at some step of

the TC algorithm, two different agents are pointed by the objects in the form of guarantees similar to

those distributed to agents in Example 2.1. Once reaching this step, the authority can exploit agents’

guarantees if the two agents prefer each others’ guaranteed objects most and their own guarantees are

their second preferred choices. Specifically, instead of honestly assigning agents to their top choices

the authority assigns them to their second choices, whereas innocent explanations follow from other

agents’ possible preference for their own guarantees. I refer to Appendix 2.B for the formal statement

of the characterization by Pycia and Ünver (2017) along with a description of the TC algorithm.

Next, note that the deviation described in the last paragraph is not efficient and that similar to

Example 2.1, a possible way to motivate such a non-efficient deviation might be the tension between

efficiency and some additional distributional constraint the authority wants to satisfy. Hence, the

following result is immediate from applying the outlined arguments also used to prove Theorem 2.2.

Theorem 2.3. Let announcement g ∈ SP be efficient and group strategy-proof. Then, the following

three statements are equivalent: Announcement g is

1. fully-transparent.

2. efficient-transparent.

3. a sequential dictatorship.
10The idea of the TC algorithm builds on Gale’s Top Trading Cycles (TTC) Algorithm (Shapley and Scarf,

1974). However, pointing rules are more complex under TC compared to TTC. In fact, the mechanisms in-
duced by the TTC algorithm are special cases of TC mechanisms and will be studied in more detail in the next
subsection.
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Proof. See Appendix 2.C.

2.4.2 Top Trading Cycles

I proceed with TTC mechanisms as have been proposed for the school choice problem by Abdulka-

diroğlu and Sönmez (2003). For the rest of this section, let |I| ≥ 3 and |X| ≥ 3. Denote the TTC

mechanism operating on ▷ with TTC▷, where the TTC algorithm inducing TTC▷ is described in

Appendix 2.D.

As a starting point for the discussion, I first apply the results of the previous subsection to TTC▷.

Specifically, since TTC▷ is efficient and group strategy-proof (Pápai, 2000) one can apply Theorem

2.3. More concretely, note that sequential dictatorships are a natural generalization of serial dictator-

ships and as can be easily seen, TTC▷ is only equivalent to a sequential dictatorship, if it reduces to a

serial dictatorship. Thus, one must have▷x = ▷y for all x, y ∈ X. Summarizing these observations

thus leads to the following corollary.

Corollary 2.2. The following three statements are equivalent:

1. TTC▷ is a serial dictatorship.

2. TTC▷ is fully-transparent.

3. TTC▷ is efficient-transparent.

Next, I provide an example which shows that there exist priorities ▷ under which TTC▷ is not

cardinality-transparent. To justify why an authority could be interested in a deviation as I construct

in the example, consider a school choice setting where students expressed their desire for an efficient

mechanism. It is well known from Balinski and Sönmez (1999) that efficiency is not generally com-

patible with stability and while stable mechanisms have proven successful in matching markets for

decades, their unstable counterparts have often been replaced (Roth, 2002). Thus, a school choice
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authority may have conflicting goals if, on the one hand, it views stability as a desirable long-term

goal, but on the other hand, it wants to give students the impression that their desire for efficiency is

being taken into account. However, as shown in the example, the authority can accommodate this

tension by first responding to participants’ desire to announce an efficient mechanism, but then oc-

casionally deviating to a stable matching when it is safe to do so. In fact, as the example shows, the

stablematching deviated to assigns a different number of agents compared towhatwould follow from

TTC▷.

Example 2.2. There are four agents I = {i, j, k, l} and four objects X = {w, x, y, z}. Relevant

types for agents and priorities▷ are given in the following table, whereas the priorities for object z are

specified arbitrarily:

Pi P′
i Pj Pk P′

k Pl ▷w ▷x ▷y
w w x x y w l i k
y ∅ z y ∅ x i j i
∅ y ∅ ∅ x y j k j
x x y z z z k l l
z z w w w ∅

Suppose the authority announcesTTC▷. Under typeprofileP, the finalmatchingproducedbyTTC▷

is

TTC▷(P) = {(i, y), (j, z), (k, x), (l,w)}.

Note thatTTC▷(P) is not▷-stable since j blocks thematching at object x. Assume that the authority

deviates to a stable matching under type profile P as motivated in the preface of this example. Specif-

ically, consider deviation g̃ for which

g̃(P) = {(i, ∅), (j, x), (k, y), (l,w)}
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and

∀P′ ∈ P \ {P} : g̃(P′) = TTC▷(P′).

Note that the deviation g̃ is not cardinality-equivalent since g̃I(P) < gI(P). In fact, given type profile

P, the authority refuses to execute a trading cycle between agent i and agent k. Instead, the authority

enforces i to be matched with the outside option.

I now argue that deviation g̃ is safe, startingwith innocent explanations for each agent’s observation

under type profile P:

• For agent i, type profile (Pi,Pj,P′k,Pl) provides an innocent explanation for oi(g̃(P)).

• For agent j, type profile (P′i,Pj,Pk,Pl) provides an innocent explanation for oj(g̃(P)).

• For agent k, type profile (P′i,Pj,Pk,Pl) provides an innocent explanation for ok(g̃(P)).

• For agent l, type profile (P′i,Pj,Pk,Pl) provides an innocent explanation for ol(g̃(P)).

For agent j, k and l the innocent explanation is that i finds only w acceptable. Specifically, once i is

assigned to the outside option in the second step of the TTC algorithm (l left with w in the first step),

agent j is pointed by x. Moreover, agent i can explain her observation with k having top choice y.

Finally, note that except for type profile P, all observations produced under the deviation are the same

as those under the announcement. Hence g̃ is safe and thereforeTTC▷ is not cardinality-transparent.

It turns out that a similar safe deviation as constructed in the example is always possible if the pri-

ority structure contains a cycle of the following type:

Definition 2.7 (Ergin (2002)). An Ergin-cycle consists of three agents i, j, k ∈ I and two objects

x, y ∈ X such that i▷x j▷x k▷y i. A priority structure▷ is Ergin-acyclic if there exists no Ergin-cycle

in▷.

The result by Ergin (2002) presented next relates the acyclicity condition to▷-stability of TTC▷.
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Theorem (Ergin (2002)). TTC▷ is▷-stable if and only if▷ is Ergin-acyclic.

We are ready for the final result of this paper.

Proposition 2.3. The following three statements are equivalent:

1. TTC▷ is▷-stable.

2. TTC▷ is identity-transparent.

3. TTC▷ is cardinality-transparent.

Proof. The sufficiency parts of the statements follow from applying Corollary 2.1 to TTC▷. The

proofs for the necessity parts of the statements can be found in Appendix 2.E.

2.5 Conclusion

Using newly developed transparency criteria as commitment devices, I studied to which extent a cen-

tral authority can commit not to deviate from an announcedmatchingmechanism. I established that

DA provides full commitment to stability, whereas among efficient and group strategy-proof mecha-

nisms only sequential dictatorships guarantee full commitment and commitment to efficiency. I also

showed that in case of DA the authority can commit not to change identities (and the number) of

matched agents, while TTC provides the same guarantee if and only if TTC is stable. However, for

both candidates full-transparency is satisfied if and only if they reduce to a serial dictatorship.

As an open question for future research it would be interesting to see if the characterization of

efficient-transparent mechanisms for group strategy-proof and efficient mechanisms can be extended

to the more general class of all strategy-proof and efficient mechanisms.
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2.A Proof of Proposition 2.2

(⇐) IfDA▷ is a serial dictatorship, then▷x = ▷y, for all x, y ∈ X. Given any P ∈ P , following the

ordering of▷x for some x ∈ X, for each n ∈ {1, . . . , |I|} the nth-ranked agent is guaranteed her top

choice among the remaining objects after all previous agents in line have left.11 Hence for each P ∈ P

it is clear that Σ▷(P) is a singleton. Therefore, Theorem 2.1 implies that there exists no safe deviation

fromDA▷ and thusDA▷ is fully-transparent.

(⇒) Suppose that DA▷ is not a serial dictatorship. By definition, there exist objects x, y ∈ X such

that ▷x ̸= ▷y. This implies that there exist two agents i, j ∈ I such that i ▷y j and j ▷x i. Denote

I′ = I \ {i, j} and let type profile PI′ ∈ PI′ be such that for each k ∈ I′, Pk ranks ∅ as the top choice

and the ranking below ∅ is specified arbitrarily. Moreover, consider the following relevant types for

agents i and j.

Let Pi,P′i ∈ Pi be described by

• x Pi y and for all x′ ∈ X ∪ {∅} \ {x, y}: y Pi x′ and

• y P′i x and for all x′ ∈ X ∪ {∅} \ {x, y}: x P′i x′.

Similarly, for agent j let the types Pj,P′j ∈ Pj be

• y Pj x and for all x′ ∈ X ∪ {∅} \ {x, y}: x Pj x′ and

• x P′j y and for all x′ ∈ X ∪ {∅} \ {x, y}: y P′j x′.

Next, I construct a safe deviation g̃ ∈ G fromDA▷. For profile P = (Pi,Pj,PI′) suppose that g̃(P)

yields g̃i(P) = y, g̃j(P) = x, and for all k ∈ I′, g̃k(P) = ∅. Moreover, be g̃ such that

∀P′ ∈ P \ {P} : g̃(P′) = DA▷(P′).

11The first ranked agent must receive her top choice under any stable matching in Σ▷(P). Next, the second
ranked agent receives, under any stable matching in Σ▷(P), her top choice among objects once the first agent
left, and so forth.
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It is simple to check that the DA algorithm yields DA▷
i (P) = x, DA▷

j (P) = y, and for all k ∈ I′,

DA▷
k (P) = ∅. Thus, g̃ is a deviation.

It remains to show that g̃ is safe. Thus, each observation possibly made under the deviation g̃must

have an innocent explanation for the observing agent. Except for type profile P, any observation has

an innocent explanation for the respective agent, since observations produced by the deviation are

identical to those under the announcementDA▷.

To complete the proof, we need for each i′ ∈ I an innocent explanation for her observation

oi′(g̃(P)). It is easily checked that one reaches

DA▷(P′i,Pj,PI′) = DA▷(Pi,P′j,PI′) = g̃(P).

from which one can see that for each agent i′ ∈ I, the observation oi′(g̃(P)) has an innocent explana-

tion. Hence g̃ is a safe deviation andDA▷ is not fully-transparent.

2.B Trading Cycles and Characterizations of Group Strategy-Proofness

In this section, I introduce Trading Cycles (TC) Mechanisms (Pycia and Ünver, 2017) together with

the main characterization of group strategy-proof and Pareto efficient mechanisms.12 Moreover, I

provide an additional characterization of group strategy-proof mechanisms by Pápai (2000) that will

be useful for the proofs of Theorem 2.2 and Theorem 2.3.

Starting with some necessary terminology, a submatching for J ⊆ I is a matching σ : J → X ∪ {∅}

restricted to agents J. The set of possible submatchings is S and let M̂ ≡ S \ M. Denote with

σI the set of agents assigned under submatching σ ∈ S and with σX the set of objects from X that

12I augment the description of Pycia and Ünver (2017) to the setting with outside options as described in
(Pycia and Ünver, 2017, Supplement, p.5). The characterization of group strategy-proof and Pareto efficient
mechanisms presented at the end of this section extends to the setting with outside options according to (Pycia
and Ünver, 2017, Supplement, p.6).
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are matched under submatching σ. Moreover, let Îσ ≡ I \ σI and let X̂σ ≡ (X \ σX) be the set of

unmatched agents and objects from X under σ, respectively. Note that an agent does not belong to

the set of unmatched agents if she is assigned to the outside option. Denote the empty submatching

with σ∅. The set of submatchings is ordered if one associates each submatching with its graph: for any

σ, σ′ ∈ S , σ ⊂ σ′ if and only if each agent-object pair matched under σ is also matched under σ′.

The TC algorithm operates on a well-defined control right structure on the set of submatchings,

which is defined as follows.

Definition 2.8. A structure of control rights is a collection of mappings

(c, b) ≡ {(cσ, bσ) : X̂σ → Îσ × {owner, broker}}σ∈M̂

That is, for a given submatching σ and an unmatched object x, the mapping cσ appoints the un-

matched agent cσ(x) as the unique controller of x. The type of control is determined by bσ. The agent

cσ(x) owns x at σ if bσ(x) = owner and cσ(x) brokers x at σ if bσ(x) = broker. In the former case, call

an agent an owner of x and in the latter case call an agent a broker of x. Refer to x as the owned object

or brokered object, respectively. Note that the outside option is neither owned nor brokered.

The control right structure has to satisfy several consistency conditions to ensure that the induced

mechanism is group strategy-proof and efficient. I will discuss some of these conditions when ex-

plicitly needed in the proof of Theorem 2.3. The interested reader is kindly referred to an excellent

discussion and interpretation of these conditions in Pycia and Ünver (2017).

Definition 2.9. A control right structure (c, b) is consistent if each of the following conditions is

satisfied. For any σ ∈ M̂

(C1) there is at most one brokered object at σ.

(C2) if i is the only unmatched agent at σ, then i owns all unmatched objects at σ.
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(C3) if agent i brokers an object at σ, then i does not control any other object at σ.

Moreover, for any two submatchings σ, σ′ ∈ M̂ such that σ ⊂ σ′ with an agent i ∈ Îσ′ who owns an

object x ∈ X̂σ′ at σ it holds that

(C4) agent i owns x at σ′.

(C5) if i′ brokers object x′ at σ and i′ ∈ Îσ′ , x′ ∈ X̂σ′ , then either i′ brokers x′ at σ′ or i owns x′ at σ′.

(C6) If agent i′ ∈ Îσ′ controls x′ ∈ X̂σ′ at σ, then i′ owns x at σ ∪ {(i, x′)}.

Let the domainof consistent control right structures beC and in the following take any (c, b) ∈ C. I

nowdescribe theTC algorithmoperating on (c, b), whereTC(c,b) denotes the inducedTCmechanism.

The TC algorithm For any P ∈ P , one calculates TC(c,b)(P) as follows: There is a finite se-

quence of steps t = 1, 2, .... Denote with σt−1 the submatching of agents and objects matched before

step t. Prior to the first step, the submatching is empty, i.e. σ0 = ∅. The algorithm terminates with

σt−1 if each agent is matched to an object, that is, if σt−1 ∈ M. If σt−1 ∈ M̂ , then the algorithm

proceeds with the following substeps in Step t:

Step t(a): Pointing Let each object x ∈ X̂σt−1 point to its controller cσt−1(x). Let the outside

option point to each agent in i ∈ Îσt−1 . If there is a broker in Îσt−1 for whom the brokered object is the

only acceptable object, let the broker point to the outside option. If there is a broker in Îσt−1 , then she

is pointing to her most preferred object among all objects that are owned. For the remaining agents,

let each agent i ∈ Îσt−1 point to her top choice x among objects X̂σt−1 ∪ {∅}.

Step t(b): Trading Cycles Given n ∈ N, there is a cycle at σt−1

x1 → i1 → . . . xn → in → x1
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in which agents il ∈ Îσt−1 point to xl+1 ∈ X̂σt−1 , and objects xl point to agents il (here l = 1, ..., n and

superscripts are added modulo n).

Step t(c): Matching Collect all cycles which do not contain a broker and match each agent in a

cycle to the object she points to. Match agents in a cycle with a broker if and only if there is at least

one owner who points to the brokered object. Assign each owner who points to the outside option to

the outside option. Let σt be the union of σt−1, the set of just assigned agent-object pairs and assigned

owner-outside option pairs.

A cycle exists in each step until each agent is matched and the number of steps is finite. Moreover,

no pair of cycles intersects and there is at least one pair matched at each step.

The proof of Theorem 2.3 presented in Appendix 2.C builds on the following result.

Theorem (Pycia andÜnver (2017)). Amechanism g ∈ G is group strategy-proof and Pareto efficient

if and only if it is equivalent to a TCmechanism TC(c,b) with some consistent control right structure

(c, b) ∈ C.

Finally,TC(c,b) satisfies the following property of non-bossiness as defined by Satterthwaite and Son-

nenschein (1981) which requires that there is no agent who can change other agents’ assignments

by misreporting her type, without changing her own assignment. Formally, a mechanism g ∈ G

is non-bossy if for all P ∈ P , there is no i ∈ I, and P′i ∈ Pi, such that gi(P) = gi(P′i,P−i), but

g(P) ̸= g(P′i,P−i). More specifically, as known from Pápai (2000), the domain of group strategy-

proof mechanisms is characterized through the collection of strategy-proof and non-bossy mecha-

nisms.

Lemma 2.2 (Pápai (2000)). Amechanism is group strategy-proof if and only if it is strategy-proof and

non-bossy.
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2.C Proofs of Theorem 2.2 and Theorem 2.3

This section contains all results needed to obtain Theorem 2.2 andTheorem 2.3. Specifically, Lemma

2.3 presented first, implies the sufficiency parts of the statements. Necessity for Theorem 2.2 follows

from applying Lemma 2.4 and Lemma 2.5, whereas the necessity parts of Theorem 2.3 only require

Lemma 2.4.

Lemma 2.3. If announcement g ∈ SP is a sequential dictatorship, then g is fully-transparent.

Proof. Suppose that announcement g is a sequential dictatorship and let g̃ ∈ G be an arbitrary devi-

ation from g. I aim to show that there exists at least one agent who has no innocent explanation for

one of her observations she makes under deviation g̃.

To start, by definition of a deviation, there must exist a type profile P ∈ P such that g̃(P) ̸= g(P).

Let I′ = {i′ ∈ I| gi′(P) ̸= g̃i′(P)}. Next, select i ∈ I′ such that, for all i′ ∈ I′ \ {i}, we have

π−1
P (i) < π−1

P (i′). Thus, since for all k ∈ I with π−1
P (k) < π−1

P (i), g̃k(P) = gk(P) and since

Definition 2.6 (a) implies that gi(P) = Topi(Pi,∪
π−1
P (i)−1

l=1 gπP(l)(P)), we have gi(P)Pig̃i(P).

I now show that agent i has no innocent explanation for her observation oi(g̃(P)). Note that Def-

inition 2.6 implies that π−1
P (i) = π−1

(Pi,P̃−i)
(i), if P̃−i ∈ P−i is such that gk(P) = gk(Pi, P̃−i) for all

k ∈ Iwith π−1
P (k) < π−1

P (i). Thus, since for all k ∈ Iwith π−1
P (k) < π−1

P (i), we have g̃k(P) = gk(P),

we obtain gi(P) = gi(Pi, P̃−i). However, since gi(P) ̸= g̃i(P), the previous arguments then imply

that agent i cannot have an innocent explanation for oi(g̃(P)). We thus conclude that g̃ is not safe and

therefore g is efficient-transparent.

I now turn to two additional lemmas for the necessity parts of Theorem 2.2 andTheorem 2.3. The

next lemma shows that a non-efficient safe deviation exists for an efficient and group strategy-proof

mechanism which is no sequential dictatorship.
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Lemma 2.4. Let announcement g ∈ SP be efficient and group-strategy-proof. If g is not a sequential

dictatorship, then there exists a safe deviation from g, which is not efficient.

Proof. Let the authority announce a group strategy-proof mechanism gwhich is no sequential dicta-

torship. By Pycia and Ünver (2017) there exists a TCmechanism TC(c,b) with control right structure

(c, b) ∈ C, which is equivalent to the announced mechanism g (See Appendix 2.B). Thus, it is suf-

ficient to show that TC(c,b) is not efficient-transparent, i.e. there exists a non-efficient safe deviation

from TC(c,b).

As has been shown by Pycia and Ünver (2017) (Theorem 6), given (c, b) and any submatching

σ ∈ M̂, if there is a single agent who owns all objects in X̂σ, then there is no broker at σ. Moreover,

if at control right structure (c, b) there is a single owner at each submatching then, as can be easily

shown, TC(c,b) is equivalent to a sequential dictatorship as defined by Definition 2.6. Conversely,

since TC(c,b) is not equivalent to a sequential dictatorship, there must exist a submatching σ ∈ M̂

which has at least two owners.

Next, because the set of submatchings M̂ is finite, we can pick a smallest submatching σ∗ ∈ M̂

with at least two owners. Let Pσ∗I be such that for each k ∈ σ∗I , σ∗(k) is k’s top choice under Pk. Note

that under any profile (Pσ∗I , P̃Îσ∗ ) ∈ P , where P̃Îσ∗ is chosen arbitrarily, the TC algorithm arrives at

submatching σ|σ∗I | = σ∗ in Step |σ∗I |+1. Moreover, note that any agent k ∈ σ∗I is matched to an object

she owns at the step she is assigned or she is assigned to the outside option.

Now consider Step |σ∗I | + 1 and let i, j ∈ Îσ∗ denote two arbitrary owners at σ∗. Assume that i

owns object x ∈ X̂σ∗ and j owns object y ∈ X̂σ∗ .

The following types of agent i and jwill be central. Let Pi,P′i ∈ Pi be described by

• yPix and for all x′ ∈ X ∪ {∅} \ {x, y}: x Pi x′ and

• xP′iy and for all x′ ∈ X ∪ {∅} \ {x, y}: y P′i x′.

Similarly, for agent j let the types Pj,P′j ∈ Pj be
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• x Pj y and for all x′ ∈ X ∪ {∅} \ {x, y}: y Pj x′ and

• y P′j x and for all x′ ∈ X ∪ {∅} \ {x, y}: x P′j x′.

DenoteK = I \ {σ∗I ∪ {i, j}} and let PK ∈ PK be specified arbitrarily.

I now construct the candidate deviation g̃ ∈ G as follows:

• For all P̃ ∈ P \ {(Pσ∗I ,Pi,Pj,PK)}, suppose that g̃(P̃) = TC(c,b)(P̃) and,

• let g̃(Pσ∗I ,Pi,Pj,PK) = TC(c,b)(Pσ∗I ,P
′
i,P′j,PK).

I first establish that g̃ is indeed a non-efficient deviation from TC(c,b). As argued before, under any

profile where each k ∈ σ∗I reports Pk, we eventually arrive at submatching σ|σ∗I | = σ∗ in Step |σ∗I |+ 1.

Hence, for all k ∈ σ∗I ,

g̃k(Pσ∗I ,Pi,Pj,PK) = TC(c,b)
k (Pσ∗I ,P

′
i,P′j,PK) = TC(c,b)

k (Pσ∗I ,Pi,Pj,PK).

Next, under type profile (Pσ∗I ,Pi,Pj,PK) at Step |σ
∗
I | + 1, there is a cycle consisting only of owners,

namely

x → i → y → j → x,

and as such, we must have that

TC(c,b)
i (Pσ∗I ,Pi,Pj,PK) = y,

TC(c,b)
j (Pσ∗I ,Pi,Pj,PK) = x.

However, if agents report (Pσ∗I ,P
′
i,P′j,PK), then there are two cycles only of owners at Step |σ∗I |+ 1,

namely:

x → i → x, y → j → y,
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and thus,

TC(c,b)
i (Pσ∗I ,P

′
i,P′j,PK) = x,

TC(c,b)
j (Pσ∗I ,P

′
i,P′j,PK) = y,

which implies that

TC(c,b)(Pσ∗I ,Pi,Pj,PK) ̸= TC(c,b)(Pσ∗I ,P
′
i,P′j,PK).

Hence, g̃ is a deviation fromTC(c,b) and g̃ is not efficient since agent i and jwould both prefer to swap

their assignments.

It remains tobe shown that g̃ is safe. First, for all P̃ ∈ P\(Pσ∗I ,Pi,Pj,PK), since g̃(P̃) = TC(c,b)(P̃),

innocent explanations for the corresponding observations are immediate. Second, for each i′ ∈ I, we

need an innocent explanation for observation oi′(g̃(Pσ∗I ,P
′
i,P′j,PK)). Again, innocent explanations

are immediate for each k ∈ σ∗I ∪ K, since

g̃k(Pσ∗I ,Pi,Pj,PK) = TC(c,b)
k (Pσ∗I ,P

′
i,P′j,PK).

Note that this holds irrespective of whether agents inK have been affected by the deviation or not.

I proceed with considering agents i and j and the pair of candidate profiles (Pσ∗I ,P
′
i,Pj,PK) and

(Pσ∗I ,Pi,P
′
j,PK). I aim to show that

oi(TC(c,b)(Pσ∗I ,Pi,P
′
j,PK)) = oi(g̃(Pσ∗I ,Pi,Pj,PK)), (2.1)

oj(TC(c,b)(Pσ∗I ,P
′
i,Pj,PK)) = oj(g̃(Pσ∗I ,Pi,Pj,PK)). (2.2)

We already know that for each k ∈ σ∗I the assignment is identical to the one under the deviation and

that under both candidate profiles above we have to arrive at submatching σ∗ at Step |σ∗I | + 1. Now
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consider Step |σ∗I |+ 1 under candidate profile (Pσ∗I ,Pi,P
′
j,PK), where cycle

y → j → y

exists and hence jmust be assigned to y. This implies that i is assigned to x, since i owns x at σ∗ = σ|σ∗I |

and it is her favorite choice among the remaining objects according to Pi.13 Symmetrically, at Step

|σ∗I |+ 1 with candidate profile (Pσ∗I ,P
′
i,Pj,PK), there is a cycle

x → i → x.

This implies that j is assigned to y, since j owns y at σ∗ = σ|σ∗I | and it is her favorite remaining choice

according to Pj. Thus, for both i′ ∈ {i, j}, we have

TC(c,b)
i′ (Pσ∗I ,P

′
i,P′j,PK) = TC(c,b)

i′ (Pσ∗I ,P
′
i,Pj,PK) = TC(c,b)

i′ (Pσ∗I ,Pi,P
′
j,PK)

Using non-bossiness of TC(c,b) (See Lemma 2.2), it must be true that, for all k ∈ K, we have that

TC(c,b)
k (Pσ∗I ,P

′
i,P′j,PK) = TC(c,b)

k (Pσ∗I ,P
′
i,Pj,PK) = TC(c,b)

k (Pσ∗I ,Pi,P
′
j,PK)

and as such conditions (1) and (2) are satisfied and each agent has an innocent explanation for any

of her observations under g̃. We conclude that g̃ is safe and that TC(c,b) is not efficient-transparent.

Since g is equivalent to TC(c,b), the same conclusion holds for announcement g. This completes the

proof.

To complete the proof, I next establish that each efficient mechanism allows safe deviations if it is

13Note that ownership rights persist according to Condition (C4) of a consistent control rights structure, as
long as the owner is not yet assigned to a different object.
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strategy-proof but not group strategy-proof.

Lemma 2.5. Let announcement g ∈ SP be efficient and not group strategy-proof. Then, there exists a

safe deviation from g.

Proof. Since g is not group strategy-proof but strategy-proof, g is bossy by Lemma 2.2. If g is bossy

then, by definition, there exists an agent i ∈ I with Pi,P′i ∈ Pi and P−i ∈ P−i such that we have

g(Pi,P−i) ̸= g(P′i,P−i) and gi(Pi,P−i) = gi(P′i,P−i). Second, since g is strategy-proof, for any

P∗i ∈ Pi, where gi(Pi,P−i) is ranked as i′s top choice, it must hold

gi(P∗i ,P−i) = gi(Pi,P−i) = gi(P′i,P−i).

Thus, since g(Pi,P−i) ̸= g(P′i,P−i), it is either true that g(P∗i ,P−i) ̸= g(Pi,P−i) or it is true that

g(P∗i ,P−i) ̸= g(P′i,P−i)or both. Assume in the following that g(P∗i ,P−i) ̸= g(Pi,P−i) (a symmetric

argument will apply for the case, where g(P∗i ,P−i) ̸= g(P′i,P−i) and not g(P∗i ,P−i) = g(Pi,P−i)).

Next, consider adeviation g̃, wherewehave g̃(P∗i ,P−i) = g(Pi,P−i) and for all P̃ ∈ P\{(P∗i ,P−i)},

g̃(P̃) = g(P̃). Since all observations under g and g̃ coincide except under type profile (P∗i ,P−i), in

order to obtain that g̃ is safe, it remains to show that each agent k ∈ I has an innocent explanation for

her observation ok(g̃(P∗i ,P−i)).

First, note that for each j ̸= i, the type profile of other agentsP−j provides an innocent explanation

for observation oj(g̃(P∗i ,P−i)). Second, for agent i consider type profile P∗−i such that for each agent

j ̸= i,P∗j ranks gj(Pi,P−i) as the top choice. Now, under type profile (P∗i ,P∗−i), the uniquePareto effi-

cientmatching is g(Pi,P−i) and since g is Pareto efficient, we thusmust have g(P∗i ,P∗−i) = g(Pi,P−i).

Thus, P∗−i provides an innocent explanation for oi(g̃(P∗i ,P−i). Hence g̃ is a safe deviation from g.
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2.D Algorithms

2.D.1 The (Agent-proposing) Deferred Acceptance Algorithm

Given any▷ ∈ P̄r, the outcome ofDA▷ given any input profile P ∈ P is calculated as follows:

Step 1 Each agent i ∈ Iproposes tohermost preferredobject inX∪{∅}. Eachobject x ∈ X considers

all the proposals and tentatively accepts the candidate who applies to x and has the highest

ranking on▷x. The remaining proposals are rejected. Moreover, all agents that propose to the

outside option ∅ are accepted.

Step k, k ≥ 2 Each agent who was rejected at step k− 1 applies to her most preferred object not yet

applied to. Each object x ∈ X considers all the new applicants including the agent tentatively

assigned to it at step k− 1. Among all applicants the object x accepts the highest ranked appli-

cant according to▷x. The remaining proposals are rejected. Moreover, all agents that propose

to the outside option ∅ are accepted.

The algorithm terminates with the tentative assignments of the first step in which no agent is re-

jected.

2.D.2 The Top Trading Cycles Algorithm

Given any profile P ∈ P , the outcome of TTC▷ is calculated via the following algorithm:

Step 1 Each agent i ∈ I points to her most preferred object x ∈ X∪ {∅} according to Pi, and each

object x ∈ X points to the agentwho has the highest priority according to▷x. There exists at least one

cycle. Each agent in a cycle is assigned to the object she is pointing to and each such pair is removed.

Each agent that points to ∅ is assigned to ∅ and is removed. If there is an agent left unmatched, move

to Step 2; otherwise, the algorithm terminates.
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Step k ≥ 2 Each agent that has not been removed in a previous step points to her most preferred

object according to Pi among those still unallocated. Each object x ∈ X points to the agent who has

the highest priority according to▷x among all agents that unmatched. There exists at least one cycle.

Each agent in a cycle is assigned to the object she is pointing to and each such agent is removedwith her

object. Each agent that points to ∅ is assigned to ∅ and is removed. If any agents are left unmatched,

move to the next step; otherwise, the algorithm terminates.

The algorithm terminates in a finite number of steps, whereas the outcome of the algorithm is the

union of all assigned pairs at each step.

2.E Proof of Proposition 2.3

Proof. If TTC▷ is stable, then we know that TTC▷ and DA▷ are equivalent. Thus, Corollary 2.1

implies that TTC▷ is cardinality-transparent and identity-transparent.

To prove necessity of both parts of the statement, assume▷ such thatTTC▷ is not▷-stable. Thus,

using the characterization by Ergin (2002), we know that▷ ∈ P̄r is not Ergin-acyclic. I aim to con-

struct a safe deviation that is not cardinality-equivalent (i.e. also not identity-equivalent). First, since

▷ is not Ergin-acyclic, there exist objects x, y ∈ X and agents i, j, k ∈ I such that i▷x j▷x k▷y i.

Note that we either have (C1′) k ▷y j or (C2′) j ▷y k. Thus, in both cases there exist three agents

{l,m, n} ∈ I and two objects {a, b} ∈ X such that l▷a m▷a n and n▷b l,m:

• If condition (C1′) is satisfied, then for agents label i = l, j = m and k = n and for objects

label a = x, b = y.

• If condition (C2′) is satisfied, then for agents label j = l, k = m and i = n and for objects

label a = y, b = x.
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In the following, suppose that either (C1′) or (C2′) are satisfied. Moreover, recall that |X| ≥ 3, and

hence there exists a thirdobject c ∈ X\{a, b}. I first describe a set of relevant types for agents{l,m, n}.

For agent l, let Pl,P′l ∈ Pl satisfy:

• bPl∅ and for all x′ ∈ X \ {b}: ∅ Pl x′.

• for all x′ ∈ X, we have ∅ P′l x′.

For agentm, let Pm ∈ Pm be such that a Pm c and for all x′ ∈ X ∪ {∅} \ {a, c}, c Pm x′.

For agent n the types are Pn,P′n are

• a Pn b and for all x′ ∈ X ∪ {∅} \ {a, b}, let b Pn x′;

• for all x′ ∈ X ∪ {∅} \ {b}, let b P′n x′.

For the remaining agents, denote I′ ≡ I\{l,m, n} and let type profile PI′ ∈ PI′ be such that for each

o ∈ I′ and all x′ ∈ X, we have ∅ Po x′.

I now construct a candidate deviation g̃ that is not cardinality-equivalent. In the following, one

can use a motivation for deviation g̃ as was for instance described in the preface of Example 2.2.14

Specifically, let g̃ be defined as follows: for profile P = (Pl,Pm,Pn,PI′) suppose that g̃(P) yields

g̃l(P) = ∅, g̃m(P) = a, g̃n(P) = b, and for all o ∈ I′, g̃o(P) = ∅. Moreover, be g̃ such that

∀P′ ∈ P \ {P} : g̃(P′) = TTC▷(P′).

It is easily checked that the TTC algorithm yields TTC▷
l (P) = b, TTC▷

m(P) = c, TTC▷
n (P) = a

and for all o ∈ I′, TTC▷
o (P) = ∅. In fact, note that whereas TTC▷(P) is not ▷-stable since agent

m blocks the matching at object a, g̃(P) does indeed satisfy▷-stability. Moreover, note that g̃ is not

14That is, one can imagine an authority conflicted between satisfying participants’ preferences for an efficient
mechanism through announcing aTTCmechanism on the one hand and supporting the long-term stability of
the allocation process by inducing stable matchings on the other hand.
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cardinality-equivalent (and not identity-equivalent) to TTC▷ since

|̃gI(P)| < |TTC▷
I (P)|.

It remains to be shown that each observation possibly made under the deviation g̃ has an innocent

explanation for the observing agent. Except for type profile P, any observation has an innocent ex-

planation for the respective agent, since observations produced by the deviation are identical to those

under the announcement.

To complete the proof, we need for each i′ ∈ I an innocent explanation for her observation

oi′(g̃(P)). Specifically, for agent l consider the types (Pm,P′n,PI′), for agentm consider (Pl,P′n,PI′)

and for agentn consider (P′l,Pm,PI′). Last, for agents in I
′, consider for example the types (Pl,Pm,P′n).

It is easily checked that we obtain

TTC▷(Pl,Pm,P′n,PI′) = TTC▷(P′l,Pm,Pn,PI′) = g̃(P).

from which one can see that for each agent i′ ∈ I, the observation oi′(g̃(P)) has an innocent explana-

tion.

Thus, g̃ is a safe deviation which is not cardinality-equivalent (and thus not identity-equivalent).

Consequently,TTC▷ is not cardinality-transparent and not identity-transparent. This completes the

proof.
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3
Regret-Free Truth-Telling in School Choice

with Consent∗

The Efficiency Adjusted Deferred Acceptance Matching Rule (EDA) is a promising candidate mecha-

nism for public school assignment. A potential drawback of EDA is that it could encourage students

to game the system since it is not strategy-proof. However, to successfully strategize, students typically

need information that is unlikely to be available to them in practice. We model school choice under

∗This chapter is based on Chen andMöller (2021). We thank especially our advisor, Alexander Westkamp.
We are grateful to Christoph Schottmüller, Marcelo Ariel Fernandez, Kevin Breuer and Marius Gramb for
helpful comments. All errors remain our own.
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incomplete information and show that EDA is regret-free truth-telling, which is a weaker incentive

property than strategy-proofness andwas introduced by Fernandez (2020). We also show that there is

no efficientmatching rule that Pareto dominates a stablematching rule and is regret-free truth-telling.

3.1 Introduction

Efficiency and fairness are incompatible in the school choice problem.1 The Efficiency Adjusted De-

ferred Acceptance Rule (EDA) (Kesten, 2010) elegantly circumvents this incompatibility by allowing

students to give their consent to relax the fairness constraint. However, no compromise solution,

including EDA, is strategy-proof (Abdulkadiroğlu et al., 2009).2,3 We study whether EDA satisfies

an incentive criterion by Fernandez (2020) which is weaker than strategy-proofness and is based on

participants’ wish to avoid regret.

We employ the many-to-one school choice model with consent (Kesten, 2010) under incomplete

information. Students can reconsider their admission chances for alternative reports, through an ob-

servational structure that is based on the cutoff terminology. We express schools’ priorities in the form

of scores and for each school, the cutoff is the lowest score among all students that have been admitted

to that school. Once the final matching has been determined, each student observes which student

is assigned to which school and each school’s cutoff. Based on her observation, a student can then

draw inferences about plausible scenarios—pairs of underlying scores of schools and reports of other

students that are consistent with the observation. We motivate our model through features common

in the context of public school assignment. In practice, matching rules often use scores based on prox-

1A student has justified envy at a matching, if there exists a lower prioritized student assigned to a school
and the corresponding school is preferred to her assignment (Abdulkadiroğlu and Sönmez, 2003). Amatching
is fair if no justified envy exists and a matching rule is fair if it only produces matchings which are fair. The
trade-off between efficiency and fairness follows from Balinski and Sönmez (1999).

2Strategy-proofness requires that it is a weakly dominant strategy for students to report their true prefer-
ences.

3For related results, see also Erdil and Ergin (2008) and Alva andManjunath (2019).
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imity, walk-zone areas, sibling-status and other socioeconomic variables. The composition of scores

is usually public information, whereas accurate information on other students’ scores and reported

preferences will generally be covered by privacy protection. Moreover, students typically receive feed-

back on the market outcome and cutoffs.

In this model, we adopt the incentive notion by Fernandez (2020). Specifically, a student regrets a

report through an alternative report, once she finds her submitted report to be dominated by the alter-

native in any plausible scenario. A rule is regret-free truth-telling if no student would regret reporting

her preferences truthfully.

The main finding of this chapter is that EDA is regret-free truth-telling (Theorem 3.1). Moreover,

we show that under EDA, truth-telling is the unique option which never leads to regret (Proposition

3.2). Concretely, we show that for any misreport, there exists an observation such that the student

regrets the misreport through her true preferences. Our last result concerns matching rules which

Pareto dominate a stable matching rule.4 A stable dominating rule always implements a matching

that weakly Pareto dominates a stable matching (Alva and Manjunath, 2019). It is well known that

all stable dominating rules, except the well known Deferred Acceptance Matching Rule (DA) (Gale

and Shapley, 1962), are not strategy-proof (Abdulkadiroğlu et al., 2009).5 We show that among the

efficient stable dominating rules nomatching rule is regret-free truth-telling (Theorem 3.2). Note that

the original formulation of EDA considered in this chapter is not Pareto efficient since EDA respects

improvements on efficiency only with students’ consents for being exposed to justified envy.

All our results extend to the case where the students only observe their own assignment and the

cutoffs. By showing that truth-telling is the unique regret-free strategy, we provide an appropriate

statement for the intuition that truth-telling may be a focal strategy under EDA. Thus, our work

4Amatching rule is stable if it produces outcomes which are fair, individually rational and non-wasteful. A
matching is non-wasteful if there is no object that is unassigned although there is an agent that prefers it over her
assignment. Amatching is individually rational if no agent prefers her outside option over her final assignment.

5See also Erdil and Ergin (2008), Kesten (2010) and Alva andManjunath (2019).
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contributes to the strand of literature that outlines the many desirable features of EDA for practical

implementation.

Related literature

To our knowledge, Fernandez (2020) is the first to introduce regret-based incentives in the matching

literature.6 In marriage markets, Fernandez (2020) shows that truth-telling is the unique regret-free

strategy under DA for both men and women and that DA is the unique regret-free truth-telling rule

among so-called quantile stable rules.7 Fernandez (2020) sheds light on college admissions problems.

He shows that the student-proposing variant of DA is regret-free truth-telling. However, under the

college-proposing variant ofDA, being truthful does not need to be free of regret for colleges. The key

differences of our work to that of Fernandez (2020) is that only the student market side is strategic.

Moreover, whereas in Fernandez (2020) participants only observe the realized matching, students in

our model additionally observe cutoffs.

This chapter mainly contributes to the literature that deepens the understanding of EDA’s incen-

tive properties. Our results complement those of Troyan andMorrill (2020), who show that for cog-

nitively limited participants beneficial misreporting under EDA is not obvious in the following sense:

a profitable misreport is an obvious manipulation if the best-case outcome of the misreport is bet-

ter than the best-case outcome of telling the truth or, if the worst-case outcome of the misreport is

better than the worst-case outcome of telling the truth. The main difference between our work and

that of Troyan andMorrill (2020) concerns the source of uncertainty that students face. A profitable

6Regret-based incentives have a long tradition in economic theory. For instance, in auction theory, regret-
based incentives of bidders in first-price auctions have been studied by Filiz-Ozbay and Ozbay (2007) and
Engelbrecht-Wiggans (1989). For a more detailed discussion we refer to Fernandez (2020). See Gilovich and
Medvec (1995) and Zeelenberg and Pieters (2007) for psychological treatments of regret.

7Given any q ∈ (0, 1], the q-quantile stable rule selects the [qk] best stable school for each student given any
report, where k is the number of stable matchings under this report. For more information on quantile stable
mechanisms, we refer to Teo and Sethuraman (1998), Klaus and Klijn (2006), or Chen et al. (2015).
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misreport is obvious if it is easy to recognize for students whose knowledge on thematching rule is im-

perfect, given that these students have full access to the scores of other students. That is, non-obvious

manipulability is mainly driven by participants’ limited understanding of the matching rule. By con-

trast, students in ourmodel knowhow thematching ruleworks and our results are driven by students’

incomplete access to the scores of other students. Notably, the positive result of Troyan and Morrill

(2020) covers both EDA and stable dominating rules, where we reach a negative result for efficient

stable dominating rules.

Previous results on EDA’s incentive properties are inspired by the theoretical benchmark for low

information environments fromRoth and Rothblum (1999) and Ehlers (2008). Kesten (2010) stud-

ies Bayesian incentives of EDA in a setting where it is common knowledge that students’ preferences

over schools are ordered into shared quality classes and students’ beliefs on how other students or-

der schools within each quality class are symmetrically distributed. Kesten (2010) shows that if other

students submit their true preferences, then truth-telling stochastically dominates any other strategy.

The key difference to our model is that we do not specify any prior probability distribution regarding

the beliefs or distribution on other participants’ preferences and thus do not impose any symmetry

assumptions or correlation of preferences over schools. Thus, in contrast to the approach of Kesten

(2010) our information environment follows the ‘Wilson doctrine’ (Wilson, 1987).

The literature that is concerned with other theoretical properties of EDA is rapidly growing. Tang

and Yu (2014), Ehlers and Morrill (2020), Bando (2014) and Dur et al. (2019) recently developed

tractable alternatives to Kesten’s initial formulation of EDA. Ehlers and Morrill (2020) generalize

EDA to a school choice model where school priorities take the form of more flexible choice functions

and Kwon and Shorrer (2020) propose a version of EDA for organ exchange.

Ourwork also relates to the line of literature that uses the cutoff terminology in school choicemod-

els. Most prominent in this regard isAzevedo andLeshno (2016)who characterize stablematchings in

terms of cutoffs in a continuum school choicemodel. They show that cutoffs take the formofmarket-
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clearing prices that equalize supply and demand and can be used to perform comparative statics with

respect to schools’ incentives to invest in quality. When used to characterize stable matchings, cutoffs

usually take the form of a guarantee for participants to be admitted at schools. In our framework,

final assignments may not correspond to stable matchings. Therefore, the cutoffs do not necessarily

provide a studentwith information aboutwhether shewill be admitted at a desired school. Moreover,

in our model the cutoffs are incorporated into students’ strategic reasoning.

The rest of this chapter is organized as follows. We introduce the basic model and EDA in Section

3.2. We model the informational environment and adopt regret-free truth-telling in Section 3.3. In

Section 3.4, we present our main results. Our analysis regarding efficient stable dominating rules is

provided in Section 3.5. Finally, Section 3.6 gives a short conclusion. The Appendix contains most of

our proofs.

3.2 Model

There is a finite set of students I and a finite set of schools S. Each school s ∈ S has a fixed capacity qs

and we collect the capacities in q = (qs)s∈S. We add a common outside option s∅ for students which

has infinite capacity.

Each school s ∈ S has a set of scores gs = {gsi}i∈I, where gsi ∈ (0, 1) is i’s score at s. We assume that

gsi ̸= gsj for any i, j ∈ I and any s ∈ S, and we say that for each pair of students i, j ∈ I, i has higher

priority at s than j if and only if gsi > gsj. That is, for each school s, the school’s scores induce a strict

priority ranking over I.8 For each i ∈ I, let gi = {gsi}s∈S be the set of scores assigned to student i.

Let a score structure g = (gi)i∈I be a collection of scores for each student and let g−i = (gj)j∈I\{i}

be a collection of scores for students in I \ {i}. Moreover, set GI as the domain of all possible score

8The incomplete information framework we introduce in Section 3.3 allows students to draw inferences
about their admission chances. Our formulation of scores will then ensure that a student typically cannot infer
her exact rank on a school’s priority list just on the basis of her own score.
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structures and G−i as the domain of all score structures for students other than i.

For each student i ∈ I, let≻i be a strict preference relation over S∪{s∅}. The corresponding weak

preference relation of≻i is denoted by⪰i.9 LetP denote the set of all possible strict preference rela-

tions over S∪{s∅}. For any≻i ∈ P , a school s is acceptable to i if s ≻i s∅ and unacceptable if it is not

acceptable. A preference profile≻= (≻i)i∈I is a realization ofP for each i ∈ I and≻−i= (≻j)j∈I\{i}

is a preference profile for students in I \ {i}. We definePI as the domain of all preference profiles and

P−i as the domain of all preference profiles for students in I \ {i}.

Amatching μ : I → S∪{s∅} is a function such that for each s ∈ S, |μ−1(s)| ≤ qs. Given any μ, we

set μi = μ(i) as the assignment of i and μs = μ−1(s) as the set of students assigned to s. Denote the

set of all possible matchings byM.

In the following, fix any≻∈ PI. We say a matching μ weakly Pareto dominates another matching

μ′ if for all i ∈ I, μi ⪰i μ′i. A matching μ Pareto dominates μ′ if μ weakly Pareto dominates μ′ and

for some j ∈ I, μj ≻j μ′j. A matching μ is Pareto efficient if there does not exist another matching μ′

which Pareto dominates μ.

We now introduce two fairness notions, where we start with the well-known notion by Abdulka-

diroğlu and Sönmez (2003). Given a matching μ, student i has justified envy towards student j at

school μj under μ if μj ≻i μi and g
μj
i > g

μj
j . A matching μ is fair if no student has justified envy at

μ. A matching μ is individually rational if for each student the assigned school is acceptable to her.

A matching μ is non-wasteful if there does not exist a student i and a school s, such that s ≻i μi and

|μs| < qs. A matching μ is stable if it is fair, individually rational and non-wasteful.

We also consider a weaker fairness notion that was introduced by Kesten (2010). The notion takes

students’ willingness to consent for being exposed to justified envy into account. For each student i,

the consent is parameterized by a binary variable ci ∈ {0, 1} where ci = 1 means that i consents to

any envy that is justified and otherwise to none. We say a matching μ violates the priority of student

9That is, for all s, s′ ∈ S, s ⪰i s′ if either s ≻i s′ or s = s′.
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i given ci if ci = 0 and if there exists another student j ∈ I such that i has justified envy towards j

at μ. Let c = (ci)i∈I be a consent profile and let CI be the domain of all consent profiles. Denote a

consent profile of students other than i by c−i = (cj)j∈I\{i} and the respective domain by C−i. Given

a matching μ, a profile of preferences ≻ and a consent profile c, we say that a matching is fair with

consent if there exists no student whose priority is violated at μ.

Wecall a collection (I, S, q, g,≻, c) a school choice problemwith consent (or simply a problem). Through-

out the main body of the chapter, we fix a problem (I, S, q, g,≻, c). A report of student i is pair

(≻′
i, c′i) ∈ P × {0, 1}, and a report profile is described by (≻′, c′) ∈ PI × CI. Analogously, let

(≻′
−i, c′−i) ∈ P−i × C−i be a report profile of students except i.

Amatching rule f : GI × PI × CI → M maps any triple of a score structure, preference profile

and consent profile into a matching. Given a report profile (≻, c) and a score structure g, let the

outcome of f be f(g,≻, c) and for each i ∈ I let fi(g,≻, c) denote student i’s respective assignment.

If the matching rule does not take consent decisions into consideration, we write f(g,≻) instead of

f(g,≻, c). Amatching rule f is Pareto efficient if each outcome of the matching rule is Pareto efficient.

Similarly, a matching rule is stable if it produces a stable matching for any problem.

Weproceedwith the description of two incentive notions for students. Amatching rule f is consent-

invariant if fi(g,≻, (ci, c−i)) = fi(g,≻, (c′i, c−i)) for all i and all ci, c′i. That is, each student’s assign-

ment is independent of her own consent decision. Note that thematching rules studied in this chapter

are all consent-invariant. Amatching rule f is strategy-proof if fi(g, (≻i,≻−i), c) ⪰i fi(g, (≻̃i,≻−i), c)

for all i and all ≻̃i ∈ P . That means, for each student, reporting her true preferences is weakly better

than reporting untruthfully regardless of other students’ reports.

3.2.1 EDA

In this subsection, we presentKesten’sEfficiencyAdjustedDeferredAcceptanceRule (EDA) alongwith

our first result. We use theTop-Priority (TP) algorithm (Dur et al., 2019) to calculate the outcomes of
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EDA and start with some basic terminologies needed for its introduction. For the rest of this section,

fix any (≻, c). For any matching μ ∈ M, any student i and any school s, we say that i demands s at μ

if s ≻i μi. Moreover, we say that student i is eligible for s at μ if i demands s at μ and there exists no j

who also demands swith cj = 0 and gsi < gsj. In other words, the set of students eligible for s are those

students who, once assigned to s, would not violate the priority of any other student at matching μ.

Note that there could be more than one student who is eligible for a school and if two students i, i′

are both eligible for s, then gsi > gsi′ implies ci = 1.

Given a matching μ ∈ M, consider the directed graph G(μ) = (I,E(μ)), where E(μ) ⊆ I× I

is the set of (directed) edges such that ij ∈ E(μ) if and only if i is eligible for μj. A set of edges

{i1i2, i2i3, ..., inin+1} in G(μ) is a path if i1, i2, ..., in+1 are distinct and it is a cycle if i1, i2, ..., in are

distinct while i1 = in+1.

A school s has no demand at μ if no student demands s at μ. A school s is underdemanded at μ if

either it has no demand at μ or, there is no path in G(μ) that ends with some i ∈ μs which contains

students who are part of a cycle in G(μ). We say that a student is permanently matched at μ if she is

assigned to an underdemanded school at μ. Furthermore, a student is temporarily matched if she is

not permanently matched.

Given μ ∈ M, we callG∗(μ) = (I,E∗(μ)) the Top-priority graph of μ and its set of edges E∗(μ) is

defined as follows: we have ij ∈ E∗(μ) if and only if among the students who are temporarilymatched

at μ and are eligible for μj, student i has the highest score for μj. That is, for each i ∈ I, E∗(μ) ⊆ E(μ)

contains at most one edge pointing to i. Solving cycle γ = {i1i2, i2i3, ...ini1} in G∗(μ) is defined by

the operation ◦ and yields matching ν = γ ◦ μ, such that νi = μj for each ij ∈ γ, and νi′ = μi′ for

each i′ /∈ {i1, i2, ...., in}.

The TP algorithm iteratively solves cycles based on the top-priority graphs, where one starts with

the graph of the Student Optimal Stable Matching (SOSM). The SOSM Pareto dominates all other

stable matchings and can be calculated via the popular Student-Proposing Deferred Acceptance Algo-
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rithm (DA) (Gale and Shapley, 1962) which is presented in Appendix 3.A. The TP algorithm works

as follows:

Step 0: Calculate the SOSM and denote the matching by μ0.

Step t, t ≥ 1: Given matching μt−1:

t.1 If there is no cycle inG∗(μt−1), then stop and let the final outcome be μt−1.

t.2 Otherwise, select one of the cycles in G∗(μt−1), say γt, and let μt = γt ◦ μt−1. Move to

step t+ 1.

As has been shown in Lemma 6 of Dur et al. (2019), any cycle selection of the algorithm leads to

the outcome of EDA and thus the TP algorithm induces EDA.

We now move to our discussion on EDA’s incentive properties which is known to be consent-

invariant but not strategy-proof (Kesten, 2010). Our first result, Proposition 3.1, states that a certain

class of deviations of a student does not affect her own assignment. For any preference relation≻i∈ P

and school s ∈ S, let the weak lower contour set of≻i with respect to s be L≻i
s = {s′ ∈ S | s ⪰i s′}.

Proposition 3.1. If EDA(g,≻, c) = μ and ≻̃i ∈ P is such that for all s, s′ ∈ L≻i
μi
, s ≻i s′ only if

s ≻̃i s′, then EDAi(g, (≻̃i,≻−i), c) = μi.

Proof. See Appendix 3.B.

In words, Proposition 3.1 shows that if a student’s deviation from her baseline report keeps the

same order of the schools in the lower contour set with respect to the baseline assignment, then it

yields the same outcome for the deviating student. Note that the set of deviations we consider in

Proposition 3.1 is a subset of the monotonic transformations at the student’s baseline assignment.

Formally,≻′
i is amonotonic transformation of≻i at s ∈ S ∪ {s∅} if s′ ≻′

i s implies that s′ ≻i s. Our

main result presented in Theorem 3.1 can be used to illustrate that Proposition 3.1 does not hold for

all monotonic transformations at μi.
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3.3 Regret in school choice

In this section, we introduce the informational environment and regret-based incentives. We first

describe the students’ information and impose an observational structure. Assume that before sub-

mitting the report, each student i knows (I, S, q, gi) and the matching rule f. After assignments have

been determined by f, each student observes the matching and the cutoff at each school, i.e., the low-

est score among all applicants matched to the school. More formally, given a report profile (≻̂, ĉ),

student i observes μ = f(g, ≻̂, ĉ) and for each school s ∈ S ∪ {s∅}, she observes πs(μ, g) = minj∈μs g
s
j

when |μs| = qs and πs(μ, g) = 0 otherwise. Let π(μ, g) = {πs(μ, g)}s∈S∪{s∅} and let an observation

of student i be captured by (μ, π(μ, g)).

Next, define any triple (≻′
−i, c′−i, g′−i) ∈ P−i × C−i × G−i as a scenario for student i. If i submits

(≻̂i, ĉi) andobserves (μ, π(μ, g)), then scenario (≻′
−i, c′−i, g′−i) is plausible ifπ(μ, g) = π(μ, (gi, g′−i))

and f((gi, g′−i), (≻̂i,≻′
−i), (̂ci, c′−i)) = μ. The set of all plausible scenarios for student i is her infer-

ence set I(μ, ≻̂i, ĉi). Moreover, for student i ∈ Iwho reports (≻̂i, ĉi) to f, let

M|(≻̂i ,̂ci) = {μ ∈ M | ∃(≻′
−i, c′−i) ∈ P−i × C−i : f(g, (≻̂i,≻′

−i), (̂ci, c′−i)) = μ}

be the set of matchings that could be observed by student i. Note that g is fixed inM|(≻̂i ,̂ci), since it is

a primitive of the market and independent of the report profile.

Having defined our observational structure, we are ready to introduce the notions of regret and

regret-free truth-telling adopted from Fernandez (2020). Recall that all matching rules we study are

consent-invariant. To simplify our notation, we define regret with a fixed consent decision for the

student under consideration.

Definition 3.1. Fix consent decision ĉi. Student i regrets submitting ≻̂i at μ ∈ M|(≻̂i ,̂ci) through ≻̂
′
i

under f if

1. ∀(≻′
−i, c′−i, g′−i) ∈ I(μ, ≻̂i, ĉi): fi((gi, g′−i), (≻̂

′
i,≻′

−i), (̂ci, c′−i)) ⪰i μi
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2. ∃(≻̃−i, c̃−i, g̃−i) ∈ I(μ, ≻̂i, ĉi): fi((gi, g̃−i), (≻̂′
i, ≻̃−i), (̂ci, c̃−i)) ≻i μi.

In words, a student regrets her report at an observation if there is an alternative report which guar-

antees her a weakly better assignment in all plausible scenarios and realizes a strict improvement in at

least one plausible scenario.

Definition 3.2. Fix consent decision ĉi. A report ≻̂i is regret-free under f if there does not exist a pair

(μ, ≻̂′
i) ∈ M|(≻̂i ,̂ci) × P such that i regrets ≻̂i at μ through ≻̂′

i.

That is, a regret-free report ensures that regardless of the realized observation, the student does not

regret her report.

In this chapter, we only consider matching rules that are invariant in the unacceptable set and de-

fine reports as truth-telling if the report differs from a student’s true preferences only in the order

within the unacceptable set. Formally, letAi(≻i) = {s ∈ S|s ≻i s∅} collect all acceptable schools and

letUi(≻i) = S \ Ai(≻i) collect all unacceptable schools. Furthermore, let

Ti(≻i) = {≻′
i∈ P | Ai(≻′

i) = Ai(≻i) and s ≻′
i s′ ⇔ s ≻i s′, ∀s, s′ ∈ Ai(≻i) ∪ {s∅}}

be the set of preferences which differ from≻i by only allowing for permutations in Ui(≻i). We say

that for any i and her true preferences≻i, a report≻′
i∈ P is truth-telling if≻′

i∈ Ti(≻i).

Definition 3.3. Amatching rule f is regret-free truth-telling if for each problem and for each student,

truth-telling is regret-free under f.

Strategy-proofness is stronger than regret-free truth-telling. That is, once truth-telling is weakly

dominant under a matching rule, it must also be regret-free. However, the converse is not true.

Specifically, strategy-proofness means that truth-telling is the weakly best option under any scenario,

whereas regret-freeness only requires that, given a students’ observation, no alternative report weakly

dominates the truth under all plausible scenarios.
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3.4 Main results

In this section, we present our main result. We show that a student can avoid regret under EDA if

she submits her true preferences (Theorem 3.1) and that there is no other reporting behavior that

provides the same guarantee (Proposition 3.2). As will be apparent from the corresponding proofs,

all our results hold under the assumption that each student can only observe her own assignment and

the cutoffs.

Theorem 3.1. EDA is regret-free truth-telling.

Proof. See Appendix 3.C.

The following exposition provides an overview of the main arguments used in the formal proof.

Fix any student i ∈ I, suppose that she reports her true preferences≻i and she observes (μ, π(μ, g)).

Then, any misreport ≻̃i can be interpreted as a combination of the following types of permutations,

where relative to≻i:

(A1) for all s, s′ ∈ S, s ≻i s′ and s′ ≻̃i s only if s ∈ S \ L≻i
μi
;

(A2) there exists s′ ∈ S such that μi ≻i s′ and s′ ≻̃i μi, or;

(A3) there exists s, s′ ∈ L≻i
μi

such that s, s′ ∈ L≻̃i
μi
, s ≻i s′ and s′ ≻̃i s.

Type (A1) involves all permutations relative to≻i which keep the same ranking of all schools that

are truly less preferred toμi. Type (A2) considers themisreportswhich rank some schools that are truly

less preferred to μi as more preferred and type (A3) considers the misreports which alter the rankings

among the schools that are truly less preferred to μi.

First note that any permutation ≻̃i of type (A1) relates to Proposition 3.1. If (≻̃−i, c̃−i, g̃−i) is

plausible, then we have EDA((gi, g̃−i), (≻i, ≻̃−i), (ci, c̃−i)) = μ and we can apply Proposition 3.1

to obtain EDAi((gi, g̃−i), (≻̃i, ≻̃−i), (ci, c̃−i)) = μi.
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Next, let student i choose a misreport ≻̃i that contains permutations of type (A2) and we write

S̃ = {s′ ∈ S | μi ≻i s′ and s′ ≻̃i μi}. The key arguments in the proof can roughly be divided into two

categories: The submission of ≻̃i either would not have effectively influenced the assignment process

at all, meaning i’s assignment remains μi; or there is at least one plausible scenario in which the stu-

dent is finally assigned to some s∗ ∈ S̃. Here, we discuss the latter and more interesting case. The

starting point of our argument is to construct a plausible scenario (≻̃−i, c̃−i, g̃−i) where i is assigned

to s∗ under DA((gi, g̃−i), (≻̃i, ≻̃−i)). Then, we show that either the potential improvements that

involve i cannot be realized because the consent of a student is missing; or s∗ has no demand under

DA((gi, g̃−i), (≻̃i, ≻̃−i)). If each student could fully observe the consent decisions of other students,

EDA is no longer regret-free truth-telling. Conversely, the uncertainty regarding other students’ con-

sent decisions is necessary for our result to hold.10

Finally, suppose that the misreport ≻̃i contains permutations of type (A3). The key argument for

such amisreport is similar to that for type (A2): By submitting ≻̃i, student i faces the possibility to be

assigned to a less preferred school s∗ whose order is permuted in ≻̃i and which is underdemanded un-

der DA((gi, g̃−i), (≻̃i, ≻̃−i)) for a plausible scenario (≻̃−i, c̃−i, g̃−i). However, different from type

(A2), here the target school s∗ still ranks below μi on ≻̃i. This difference brings an additional challenge

to the proof. While for (A2) it is enough to consider a plausible scenario where under truth-telling,

i was already assigned to μi under DA, for (A3) we need to construct a scenario where under truth-

telling, i is involved in at least one solved cycle to improve her from some school ŝ ∈ L≻i
μi

to μi. Then,

when i submits ≻̃i, she is assigned to the underdemanded s∗ underDA and thus loses the opportunity

to be involved in any cycle.

Our final result in this section shows that truth-telling is the unique regret-free choice under EDA.

Proposition 3.2. For any non-truthful report, there exists an observation at which the student regrets it

through truth-telling.
10See Case 3.2.1 in Lemma 3.3 in Appendix 3.C for details.

59



Proof. See Appendix 3.D.

At first glance, it might appear that Proposition 3.1 and Proposition 3.2 are in conflict with each

other. However, Proposition 3.1 only implies that a certain class of misreports does not change the

student’s assignment when we fixed an observation that follows from her true preferences. In Propo-

sition 3.2, however, the observation is not fixed. Instead, we show that given any non-truthful report,

we can find a corresponding observation, such that truth-telling guarantees weakly better assignments

in all plausible scenarios.

As an intuition for Proposition 3.2 note that for everymisreport theremust exist a pair, say school s

and s̃, which compared to the truth, reverse their rankings. Let student iprefer s to s̃under truth. Now

suppose that upon submission of the misreport, she is assigned to s̃ while a seat at s is vacant. Note

that the vacant seat at s allows i to infer that the truthwould have guaranteed her at worst s. As a result,

she will regret not having been truthful. The key step in the proof is to construct an observation of

the type just described for any misreport.

3.5 Efficient stable dominating rules

In this section, we extend our analysis to efficient stable dominating rules, which are Pareto efficient

and only produce outcomes which weakly Pareto dominate a stable matching. In contrast to EDA,

consent decisions do not play a role under efficient stable dominating rules and from now onwe omit

the corresponding notation.

Definition 3.4. Amatching rule f is efficient stable dominating if for any problem (I, S, q, g,≻) the

matching f(g,≻) is Pareto efficient and weakly Pareto dominates a stable matching.

Efficient stable dominating rules are a natural refinement of stable dominating rules, introduced

by Alva and Manjunath (2019). It is well known that efficient rules which Pareto dominate a stable
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matching rule are not strategy-proof (Abdulkadiroğlu et al., 2009; Kesten, 2010). As we will show

next, among efficient stable dominating rules also the weaker property of regret-free truth-telling can-

not be fulfilled.

Theorem 3.2. No efficient stable dominating rule is regret-free truth-telling.

The proof below is constructive. We provide a problem with |S| = 2 and |I| = 3, and show that

a student regrets submitting her true preferences under any efficient stable dominating rule. We only

need small adaptions in the construction to apply the basic argument to any market with |S| ≥ 2 and

|I| ≥ 3.

Proof. Consider a problem (I, S, q, g,≻)with two schools S = {s1, s2}with capacities qs1 = qs2 = 1

and three students I = {i1, i2, i3}. Suppose that i1’s true preferences≻i1 are

s2 ≻i1 s∅ ≻i1 s1.

Let≻−i ∈ P−i be such that

s1 ≻i2 s2 ≻i2 s∅,

s2 ≻i3 s1 ≻i3 s∅.

and consider the following score structure gwith

gs1i1 > gs1i3 > gs1i2 ,

gs2i2 > gs2i1 > gs2i3 .
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The unique stable matching with respect to≻ is

ν = {(i1, s∅), (i2, s2), (i3, s1)}

and that matching

μ = {(i1, s∅), (i2, s1), (i3, s2)},

is the unique Pareto efficient matching that Pareto dominates ν. Thus, for an arbitrary efficient stable

dominating rule, denoted by fESD, we must have fESD(≻) = μ.

In the following,we construct amisreport ≻̃i1 throughwhich i1 regrets≻i1 at observation (μ, π(μ, g)).

Before we can make this misreport explicit, we need to describe i1’s inference set I(μ,≻i1). To start,

note that

gs1i1 > πs1(μ, g) , g
s2
i1 > πs2(μ, g).

We now show that any g̃s2 must share its ordinal ranking with gs2 for any plausible score structure g̃−i.

First, from the observation (μ, π(μ, g)) student i1 observes that her top choice s2 is assigned to a lower

priority student i3, i.e. g̃s2i1 > g̃s2i3 . Second, if i1 would have top priority at s2 this would imply that

i1 is assigned to s2 under any stable matching ν′ whenever s2 is submitted as her top choice. Thus,

this must also hold true for any Pareto Efficient matching μ′ that improves on ν′ and hence i1 can

infer that student i2 must have top priority at s2. In conclusion, for any plausible (≻̃−i1 , g̃−i1), the

corresponding g̃s2 shares the same ordinal ranking with gs2 .

Next, given g̃s2 , it must hold ≻̃i2 =≻i2 . First, i2 must submit s2 as acceptable since otherwise any

stable matching would assign s2 to i1. Therefore, i1 knows s2 ≻̃i2 s∅. Second, note that since i2 has top

priority at s2, fESD would have assigned s2 to i2 if i2 would have submitted s2 as her top choice. Thus,

i1 knows s1 ≻̃i2 s2. Combining the two relations i1 can infer that ≻̃i2 =≻i2 is the unique candidate

contained in any plausible (≻̃−i1 , g̃−i1).
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Now, we describe the candidates for g̃s1 . First, by observing (μ, π(μ, g)), student i1 knows that s1 is

assigned to the lower priority student i2, i.e., g̃s1i1 > g̃s1i2 . Second, we establish that given the information

regarding g̃s2 and ≻̃i2 , we must have g̃s1i3 > g̃s1i2 . Suppose by contradiction that g̃s1i2 > g̃s1i3 . In this

case, in fESD, i1 and i2 must be assigned to their top choices s2 and s1, respectively. However, this is

incompatible with μ. Thus, there are two remaining ordinal rankings

either g̃s1i1 > g̃s1i3 > g̃s1i2 or g̃s1i3 > g̃s1i1 > g̃s1i2

that are compatible with any plausible scenario (≻̃−i1 , g̃−i1).

At last, we show that only ≻̃i3 =≻i3 is compatible with i1’s observation. First, since i3 is assigned

to s2 in μ, student i1 can conclude that s2 ≻̃i3 s∅. If i3 would have submitted s∅ ≻̃i3 s1, then any stable

matching would have assigned both i1 and i2 to their top choices, which is incompatible with the

observation. Thus, itmust be true that s1 ≻̃i3 s∅. Furthermore, suppose by contradiction that s1 ≻̃i3 s2.

Given that s∅ ≻i1 s1 and g̃
s1
i3 > g̃s1i2 , student i3 is assigned to s1 under f

ESD, which is again incompatible

with observing μ. Hence, student i3 can only have submitted ≻̃i3 =≻i3 .

As a result, we can classify i1’s inference set I(μ,≻i1) into two cases that are distinguished by the

remaining candidates of ordinal rankings for scores at s1.

We now show that i1 regrets reporting the truth≻i1 at (μ, π(μ, g)) through

≻̃i1 : s2 ≻̃i1 s1 ≻̃i1 s∅.

We do so by establishing that among the two possible classes from the inference set, in one class i1 is

strictly better off through the misreport and she is not worse off in the remaining class.

Case 1 Suppose that (≻̃−i1 , g̃−i1) ∈ I(μ,≻i1) satisfies g̃
s1
i1 > g̃s1i3 > g̃s1i2 . In this case, we argue

that fESDmust assign i1 to s2 when i1 submits ≻̃i. Hence, student i1 would strictly improve her assign-
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ment from s∅ under truth-telling to her top choice s2. We first establish that there is a unique stable

matching

ν̃ = {(i1, s1), (i2, s2), (i3, s∅)}.

Note that in any stable matching i1 cannot be assigned to s∅, since i1 would have justified envy at s1.

This implies that whenever i1 is not assigned to s2, she must be assigned to s1. Furthermore, if i1 is

matched with s2, then i2 must be assigned to s1, which would mean that i3 has justified envy at s1.

Thus, the unique stable matching corresponds to ν̃. Hence, any efficient stable dominating rule must

select

μ̃ = {(i1, s2), (i2, s1), (i3, s∅)}

since it is the only Pareto efficient matching that dominates ν̃. Thus, we conclude that conditional on

her observation (μ, π(μ, g)), in this scenario, i1 would have been better off if she had reported ≻̃i1 to

fESD.

Case 2 It remains to show that given (≻̃−i1 , g̃−i1) ∈ I(μ,≻i1) with g̃
s1
i3 > g̃s1i1 > g̃s1i2 , student i1

is not assigned to a worse option than under truth-telling (namely s1). Clearly, in this case the unique

stable matching is ν, while the unique matching that Pareto dominates ν is μ. Therefore, i1 will be

assigned to s∅ under fESD, which is the same assignment as under true preferences.

Since the choice of fESD was arbitrary, we have shown that for any efficient stable dominating rule,

student i1 regrets reporting the truth ≻i1 through misreport ≻̃i1 at (μ, π(μ, g)). This completes the

proof.

As mentioned before, this example allows us to illustrate one important feature of Theorem 3.1.

Concretely, the observation (μ, π(μ, g)) at the beginning of the example is reached through EDA if
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one leaves reported preferences unchanged and additionally requires that ci1 = 1. Notice that in Case

1 the improvement of i1’s assignment from s∅ to s2 relies on the consent of student i3. However, based

on i1’s observation, the consent decision of i3 cannot be inferred by i1. Specifically, if ci3 = 0, then i1

would be assigned to s1 in Case 1 which implies that she would not regret that she had told the truth.

Thus, EDA being regret-free truth-telling relies partially on the uncertainty regarding other students’

consent decisions.

All our results extend to the more restrictive case where instead of observing the full matching

μ, each student i observes only her own assignment μi and the cutoffs. For Theorem 3.2 this can

be explained as follows. In the problem constructed above, there is only one additional consistent

matching if i1 observes only μi. For this matching, which switches the assignments for student i2 and

i3 compared to μ, a symmetric argument leads to the same conclusion as for μ.

3.6 Conclusion

Telling the truth is a safe choice under EDA if students wish to avoid regret their submitted reports.

Strengthening this first result, we have also shown that truth-telling is the unique regret-free option

under EDA. Moreover, among the class of efficient stable dominating rules—a class that covers nat-

ural alternatives for EDA in practice—no candidate is regret-free truth-telling. Our results open up

several avenues for future research. For instance, it would be interesting to study whether EDA is the

unique candidate among all non-strategy-proof and constrained Pareto-Efficient rules which is regret-

free truth-telling. It is also an open question whether EDA is still regret-free if schools’ priorities take

the form of more flexible choice functions.11

11Ehlers and Morrill (2020) introduce a generalized version of EDA that might serve as a starting point for
an investigation.
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3.A Deferred acceptance rule

In this section, we first introduce the Student Proposing Deferred Acceptance Algorithm which in-

duces the Student-Proposing Deferred Acceptance Rule (DA) due to Gale and Shapley (1962). There-

after, we present a lemma onDA that is necessary to prove Proposition 3.1 and Theorem 3.1. In the

following, fix a problem (I, S, q, g ≻, c). The DA algorithm works as follows:

Step 1 Each student i ∈ I proposes to her most preferred school in S ∪ {s∅}. Each school s ∈ S

considers all the proposals and tentatively accepts the candidates who apply to s and are among

the qs-highest ranked applicants at that school. The remaining proposals are rejected. If there

are fewer than qs proposals, s accepts all of them. Moreover, all students that propose to the

outside option s∅ are accepted.

Step k, k ≥ 2 Each student who was rejected at step k − 1 applies to her most preferred school not

yet applied to. Each school s ∈ S considers all the new applicants together with those who

are tentatively assigned to it at step k− 1. Each school s now tentatively accepts the qs-highest

ranked applicants and rejects all others. If there are fewer than qs proposals, s accepts all of

them. Moreover, all students that propose to the outside option s∅ are accepted.

The algorithm terminates with the tentative assignments of the first step in which no student is

rejected. For our lemma presented below we define Weak Maskin Monotonicity as in Kojima and

Manea (2010). We call≻′ a monotonic transformation of≻ at matching μ, if for each i′ ∈ I,≻′
i′ is a

monotonic transformation of≻i′ at μi′ .

Definition 3.5. Amatching rule f is weaklyMaskin monotonic if, given any≻ and for any≻′ that is

a monotonic transformation of≻ at f(g,≻, c), f(g,≻′, c)weakly Pareto dominates f(g,≻, c)

66



Kojima andManea (2010) showthatDA isweaklyMaskinmonotonic. Furthermore,DA is strategy-

proof (Dubins and Freedman, 1981;Roth, 1982b) and produces the SOSMfor a given score structure

and preference profile.

Lemma 3.1. Let≻′
i∈ P be a monotonic transformation of≻i at DAi(g,≻), then DA(g, (≻′

i,≻−i))

weaklyPareto dominatesDA(g,≻)and i’s outcomes are identical, i.e.,DAi(g,≻) = DAi(g, (≻′
i,≻−i)).

Proof. The first part follows from weak Maskin monotonicity of DA. The second part is proved by

means of contradiction. Suppose thatDAi(g,≻) ̸= DAi(g, (≻′
i,≻−i)), then byweakMaskinmono-

tonicity of DA,DAi(g, (≻′
i,≻−i)) ≻i DAi(g,≻), which contradicts strategy-proofness of DA.

3.B Proof of Proposition 3.1

For ease of presentation, we use EDA(≻) to refer to EDA(g, (≻i,≻−i), c) and EDA(≻̃) to refer to

EDA(g, (≻̃i,≻−i), c). In a similar way, we useDA(≻) to refer toDA(g, (≻i,≻−i)) andDA(≻̃) to

refer toDA(g, (≻̃i,≻−i)).

We first show that the outcomes of EDA are identical under both profiles given that i consents, i.e.,

we prove that EDA(≻) = EDA(≻̃) when ci = 1. At the end of the proof we extend our arguments

to cover the case where ci = 0.

Let pTP≻ = {γt}Tt=1 be an arbitrary realized process of the TP algorithmwith input (≻, c, g) that

are captured by the series of solved top priority cycles {γt}Tt=1. Specifically, for each t ≤ T, γt is solved

at step t of pTP≻ and we set EDAt(≻) = γt ◦ EDAt−1(≻)with EDA0(≻) = DA(≻).

Since the outcome of the TP algorithm is invariant in the choice of the cycle solved in each round,

it suffices to construct one TP process with input ((≻̃i,≻−i), c, g), denoted by pTP≻̃, that leads to

the same outcome as pTP≻. As a part of our construction, we make use of the algorithm presented

next.
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Initialize: Let t = 1. Also, let ν0(≻̃) = DA(≻̃) and EDA0(≻) = DA(≻).

Round t ≤ T: Let Lt = {l ∈ I | νt−1
l (≻̃) ̸= EDAt−1

l (≻)}.

• If each jk ∈ γt satisfies that j, k ∈ Lt, let νt(≻̃) = νt−1(≻̃). Then, move to Round t + 1 or

terminate the algorithm if t = T.

• If there exists jk ∈ γt such that j /∈ Lt or k /∈ Lt, let νt(≻̃) = γt ◦ νt−1(≻̃). Then, move to

Round t+ 1 or terminate the algorithm if t = T.

Collect in {γ̃t}T̃t=1 the series of cycles solved in the course of running the algorithm and note that, by

construction, we have {γ̃t}T̃t=1 ⊆ {γt}Tt=1. We now show that the generated cycle selection {γ̃t}T̃t=1

allows to fully describe the desired pTP≻̃ which terminates at matching EDA(≻). Our strategy will

be as follows. At the first step, we establish that the algorithm is well defined. At the second step, we

will argue that νT(≻̃) = EDAT(≻) and thatG∗(νT(≻̃)) contains no cycles.

Step 1 We can generate the desired sequence of cycles {γ̃t}T̃t=1 if for each round t ≤ T, the following

three statements are satisfied:

(B1) Either all agents involved in γt belong to Lt, or none of them does.

(B2) γt ∈ G∗(νt−1(≻̃))when γt contains no agent from Lt.

(B3) νt(≻̃)weakly Pareto dominates EDAt(≻), and Lt+1 ⊆ Lt.

For each t, statement (B1) and statement (B2) ensure that we can find and solve the cycle as described

in the algorithm in round t. Then, given that (B1) and (B2) are true, statement (B3), is needed to

ensure that (B1) and (B2) will also be true for the next round t+ 1. To prove these three statements,

we now argue via induction over t.

68



For the initial case we build on the following observations. First, it is immediate from Lemma 3.1,

that DA(≻̃) weakly Pareto dominates DA(≻) and DAi(≻) = DAi(≻̃). Thus, we can infer that

L1 = {l ∈ I | DAl(≻̃) ≻l DAl(≻)} and i /∈ L1. Furthermore, by the definition of ν it is true

that DAl(≻̃) = ν0l (≻̃) for any l ∈ I. Note that these conditions resemble those in condition (B3).

Moreover, let S′ = {s ∈ S | s ≻i μi and μi ≻̃i s}.

We present our arguments in their general form since they are also applicable to the inductive step.

That is, for the initial case we do not explicitly insert t = 1.

Initial case (Let t = 1): Statement (B1): Since γt is a cycle, it suffices to show that jk ∈ γt and

k ∈ Lt imply j ∈ Lt.

Towards this goal, we first establish that for jk ∈ γt, if k ∈ Lt, then j ∈ Lt ∪ {i}. More generally,

we show that for any jk ∈ G∗(EDAt−1(≻)), if k ∈ Lt, then we have j ∈ Lt ∪ {i}. This generality

will turn out to be useful proving other statements later on. By contradiction, let j /∈ Lt, j ̸= i and

k ∈ Lt. We aim at a contradiction towards the stability ofDA(≻̃). First, if k ∈ Lt, then there exists

l ∈ Lt such that νt−1
l (≻̃) = EDAt−1

k (≻). Since l ∈ Lt, it holdsDAl(≻̃) = νt−1
l (≻̃) ≻l EDAt−1

l (≻).

Remarkably, for the initial case this argument is immediate since DAl(≻̃) = ν0l (≻̃) ≻l DAl(≻).

When t > 1, the validity of this argument depends on the results wewill establish later in the inductive

step. Next, the previous observations and jk ∈ G∗(EDAt−1(≻)) imply that gDAl(≻̃)
j > gDAl(≻̃)

l and

EDAt−1
k (≻) ≻j EDAt−1

j (≻). Furthermore, j /∈ Lt implies EDAt−1
j (≻) = νt−1

j (≻̃) ⪰j DAj(≻̃)

while j ̸= i implies≻j= ≻̃j. Combining the relations derived so far, leads to

DAl(≻̃) = νt−1
l (≻̃) = EDAt−1

k (≻) ≻̃j EDAt−1
j (≻) = νt−1

j (≻̃) ⪰̃j DAj(≻̃).

However, this implies that j has justified envy towards l atDA(≻̃). Hence we arrive at a contradiction

to the stability ofDA(≻̃)with respect to ≻̃.
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It remains to show that jk ∈ γt and k ∈ Lt imply j ̸= i. When EDAt−1
k (≻) /∈ S′, the arguments

above ensure ik /∈ G∗(EDAt−1(≻)), and therefore also ik /∈ γt. Consider the remaining case where

EDAt−1
k (≻) ∈ S′. Here, if ik ∈ γt, then it implies that EDAt−1

k (≻) = EDAt
i(≻) ≻i μi. However,

this is a contradiction to μ being the final matching. Thus, we must have j ̸= i.

Now, we can conclude that once there is an edge jk ∈ γt with k ∈ Lt, then j ∈ Lt. Therefore, either

all agents involved in γt belong to Lt, or no such agent does. Statement (B1) is satisfied at round t.

Statement (B2): Given that (B1) is true at round t, we proceed to prove (B2). Suppose that for each

jk ∈ γt, j, k /∈ Lt. Thus, we get EDAt−1
j (≻) = νt−1

j (≻̃) and EDAt−1
k (≻) = νt−1

k (≻̃). This implies

that

νt−1
k (≻̃) ≻̃j νt−1

j (≻̃).

Note that this is also true if j = i, since in this case νt−1
k (≻̃) /∈ S′. Hence, we obtain that student

j must still desire νt−1
k (≻̃) at νt−1(≻̃). Note that the last argument is true for all j such that jk ∈ γt.

Thus, we have that all students involved in γt are temporarilymatched at νt−1(≻̃). Next, since νt−1(≻̃)

weakly Pareto dominates EDAt−1(≻), there are weakly fewer temporarily matched students who de-

sire νt−1
k (≻̃) at νt−1(≻̃) compared to EDAt−1(≻). As a result, j still has the highest score among all

temporarily matched students pointing to k. Hence jk ∈ G∗(νt−1(≻̃)). Since this holds for all edges

in γt, it follows that γt ∈ G∗(νt−1(≻̃)).

Statement (B3): We start with showing that the desired weak Pareto dominance relation holds at

the end of round t. To begin with, note that νt−1(≻̃) weakly Pareto dominates EDAt−1(≻) and that

if any, only students in γt change their assignments in round t of our algorithm (and also in round t

of pTP≻). Thus, to conclude that νt(≻̃) weakly Pareto dominates EDAt(≻), it is sufficient to show

that for each jk ∈ γt:

νtj(≻̃) ⪰j EDAt
j(≻).

Of the two caseswehave to consider, we startwith the simpler one, inwhich for any jk ∈ γt, we have
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j, k /∈ Lt. In this case, γt is solved in both νt−1(≻̃) and EDAt−1(≻). Therefore, νtj(≻̃) = EDAt
j(≻)

and we obtain the desired result.

In the remaining case, any jk ∈ γt satisfies that j, k ∈ Lt. Clearly, we can solve a cycle of this

form only if Lt ̸= ∅. Moreover, note that EDAt(≻) = γt ◦ EDAt−1(≻) and νt(≻̃) = νt−1(≻̃).

We proceed by contradiction and assume that EDAt
j(≻) ≻j νtj(≻̃). We derive a contradiction to the

stability of DA(≻̃) with respect to ≻̃. We make the following observations: First, since k ∈ Lt,

there must exist l ∈ Lt such that we have νt−1
l (≻̃) = EDAt−1

k (≻). Second, l ∈ Lt implies that

DAl(≻̃) = νt−1
l (≻̃) ≻l EDAt−1

l (≻). Therefore, jk ∈ γt also means that gDAl(≻̃)
j > gDAl(≻̃)

l and

EDAt−1
k (≻) = EDAt

j(≻). Third, the algorithm guarantees that νtj(≻̃) ⪰j DAj(≻̃). If we combine

all relations above with≻j= ≻̃j, we obtain

DAl(≻̃) = νt−1
l (≻̃) = EDAt−1

k (≻) = EDAt
j(≻) ≻̃j νtj(≻̃) ⪰̃j DAj(≻̃)

and reach a contradiction, since j has justified envy towards l atDA(≻̃). Thus, νt(≻̃) weakly Pareto

dominates EDAt(≻). Moreover, based on the Pareto dominance result, we can also write Lt+1 as

Lt+1 = {l ∈ I | νtl(≻̃) ≻l EDAt
l(≻)}.

To finish the proof for statement (B3) we need to show that Lt+1 ⊆ Lt for which we again have

two cases to consider. If any jk ∈ γt satisfies j, k /∈ Lt, then it is immediate that Lt+1 = Lt. On the

contrary, if any jk ∈ γt satisfies j, k ∈ Lt, then we make the following two observations. First, for

each such j, as j ∈ Lt, we have νt−1
j (≻̃) ≻j EDAt−1

j (≻) and νtj(≻̃) ⪰j EDAt
j(≻). This implies that

while j is contained in Lt, she might not be in Lt+1. Second, for each j′ ∈ I not involved in γt, we have

νtj′(≻̃) = νt−1
j′ (≻̃) and EDAt

j′(≻) = EDAt−1
j′ (≻), which implies that j′ ∈ Lt if and only if j′ ∈ Lt+1.

In conclusion, we can infer that Lt+1 ⊆ Lt. Hence statement (B3) is satisfied.
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Inductive step: Let t > 1 and assume that for all t′ < t, (B1) - (B3) are satisfied. By assump-

tion of the inductive step and from (B3), we have that Lt′+1 ⊆ Lt′ for any t′ < t, which implies

Lt ⊆ Lt′ . Second, through the description of the algorithm, we know that given any t′ < t, assign-

ments at νt′(≻̃) and νt′−1(≻̃) are identical for each student in Lt′ . Therefore, since Lt ⊆ Lt′ , we can

infer that for each l ∈ Lt, DAl(≻̃) = νt−1
l (≻̃). Together with the observations above, the argu-

ments we already presented for (B1) in the initial case also apply to the inductive step. Furthermore,

the same holds for (B2). Finally, given we established (B1) and (B2), also (B3) follows again from the

same arguments as in the initial case. This completes the induction.

Step 2: We show that EDAT(≻) = νT(≻̃). Let ti ≤ T be the first step in pTP≻ where i is perma-

nently matched and consider round ti of our algorithm.

If EDAti−1(≻) = νti−1(≻̃), we have that Lt = ∅ and that γt is solved in each round t > ti of the

algorithm. Consequently, it is true that EDAT(≻) = νT(≻̃).

If EDAti−1(≻) ̸= νti−1(≻̃), then Lti is non-empty. In this case, we show that there exists t̂ > ti

such that EDAt̂(≻) = νt̂(≻̃). As shown above, this leads to EDAT(≻) = νT(≻̃).

We show that there must be a cycle in G∗(EDAti−1(≻)) that solely consists of elements in Lti .

We begin with showing that for any k ∈ Lti , there exists an edge jk ∈ G∗(EDAti−1(≻)) for some

j ∈ I. Since k ∈ Lti , there exists l ∈ Lti such that EDAti−1
k (≻) = νti−1

l (≻̃) ≻l EDAti−1
l (≻).

That is, at EDAti−1(≻), for each student in Lti , her assignment is desired by at least one student in Lti

whose assignment is further desired by some other student in Lti . Now, recall that we assume c1 = 1.

Since i is permanently matched at step ti and i consents, then even if i prefers EDAti−1
k (≻) to μi, she

cannot prevent any agent from being eligible forEDAti−1
k (≻). In other words, at least one edge that is

pointing to k, namely lk, is contained inG(EDAti−1(≻)). Therefore, we can infer that k is temporarily

matched in EDAti−1(≻) and thus there must be jk ∈ G∗(EDAti−1(≻)) for some j ∈ I.

Next, for any such jk, our arguments from (B1) will be sufficient to conclude that j ∈ Lti . First, we
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have already shown j ∈ Lti ∪{i}. Second, we know that j ̸= i, since i is permanently matched. Thus,

we can infer that each student inLti is pointed by another student inLti inG∗(EDAti−1(≻)). SinceLti

is finite, the existence of the desired cycle is guaranteed. Notably, according to (B3) and by iteratively

applying the same argument, we can eventually reach a round t̂ > ti where EDAt̂(≻) = νt̂(≻̃).

We next claim that no cycles can be found in G∗(νT(≻̃)). Notably, if G∗(νT(≻̃)) has a cycle, by

similar arguments in (B2), we can infer that G∗(EDAT(≻)) must also have a cycle. However, this

contradicts the fact that exactly T cycles are solved in pTP≻.

Based on the statements provided so far, we can construct the desired pTP≻̃ as pTP≻̃ = {γ̃t}T̃t=1.

This leads to

EDA(≻) = EDA(≻̃)

which completes the proof for ci = 1.

Finally, it remains to prove that our results extend to the case where ci = 0. Note that since EDA

is consent-invariant, the following two relations are true: EDAi(≻) = EDAi(g, (≻i,≻−i), (̃ci, c−i))

andEDAi(≻̃) = EDAi(g, (≻̃i,≻−i), (̃ci, c−i)) for c̃i = 1. Sincewe just showedwhen i consents, sub-

mitting ≻̃i will not alter the outcome: EDA(g, (≻i,≻−i), (̃ci, c−i)) = EDA(g, (≻̃i,≻−i), (̃ci, c−i)).

This allows us to conclude EDAi(≻) = EDAi(≻̃), which completes the proof.

3.C Proof of Theorem 3.1

Fix an arbitrary problem (I, S, q, g,≻, c) and consider an arbitrary student i ∈ I. Since EDA only

takes acceptable schools into account, for any tuple (g,≻−i, c) and any ≻′
i∈ Ti, we can claim that

EDA(g, (≻′
i,≻−i), c) = EDA(g, (≻i,≻−i), c). Hence, if student i does not regret reporting her

true preferences≻i, she does not regret to report any≻′
i∈ Ti. Thus, we show that i does not regret to

report≻i.
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Lemma 3.2, 3.3 and 3.7 each consider a distinct class of misreports of student i and jointly imply

that i cannot regrets submitting her true preferences. In the following exposition, take an arbitrary ob-

servation (μ, π(μ, g))where μ ∈ M|(≻i,ci). We fix i’s scores gi and i’s consent decision ci throughout

the proof. From now on, we use g̃ to refer to (gi, g̃−i) and c̃ to refer to (ci, c̃−i).

We first show that a misreport is not profitable for i, if it shares the same relative ranking of schools

weakly below her own assignment under truth-telling.

Lemma 3.2. Consider ≻̃i ∈ P such that for all s, s′ ∈ L≻i
μi
, s ≻̃i s′ if and only if s ≻i s′. For any

(≻̃−i, c̃−i, g̃−i) ∈ I(μ,≻i, ci), it is true EDAi(g̃, (≻̃i, ≻̃−i), c̃) = μi.

Proof. Select any (≻̃−i, c̃−i, g̃−i) ∈ I(μ,≻i, ci). By definition, EDA(g̃, (≻i, ≻̃−i), c̃) = μ and using

Proposition 3.1, we know EDAi(g̃, (≻̃i, ≻̃−i), c̃) = μi.

We proceed with misreports in which some schools ranked below μi under truth permute their

order with μi. Our next Lemma shows that the student can either infer that she would have possibly

beenworse off, or that themisreport would not have affected her assignment in any plausible scenario.

Lemma 3.3. Consider ≻̃i ∈ P such that μi ≻i s and s ≻̃i μi for some s ∈ S. Then,

(1) either there exists (≻̃−i, c̃−i, g̃−i) ∈ I(μ,≻i, ci) such that μi ≻i EDAi(g̃, (≻̃i, ≻̃−i), c̃);

(2) or for any (≻̃−i, c̃−i, g̃−i) ∈ I(μ,≻i, ci): EDAi(g̃, (≻̃i, ≻̃−i), c̃) = μi.

Proof. Let S̃ = {s′ ∈ S | μi ≻i s′ and s′ ≻̃i μi}. We start by considering the case where S̃ = {s∗} is a

singleton. We will explain how to generalize the arguments to cases where S̃ contains more elements

at the end of the proof. Given that S̃ is a singleton, we distinguish the following exhaustive cases based

on i’s observation (μ, π(μ, g)):

Case 1: πs∗(μ, g) = 0. If πs∗(μ, g) = 0, then s∗ has not exhausted its capacity at the observed

matching. We use the following argument repeatedly throughout the proof: Note that students
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assigned to a school that has not exhausted its capacity under the observed matching cannot be in-

volved in a cycle in any corresponding TP process for any plausible scenario. This implies that at this

school also under DA the same set of students must have been assigned there. Furthermore, since

DA is non-wasteful, we can conclude that at any plausible scenario the school has no demand un-

der the DA matching. Concretely, since for any (≻̃−i, c̃−i, g̃−i) ∈ I(μ,≻i, ci), s∗ has vacant seat

at EDA(g̃, (≻i, ≻̃−i), c̃) = μ, then s∗ must also have vacant seat at DA(g̃, (≻i, ≻̃−i)) and that for

any i′ ∈ I, i′ weakly prefers DAi′(g̃, (≻i, ≻̃−i)) to s∗ given preference profile ≻. That is, s∗ has no

demand.

Next, if i submits ≻̃i then we obtain DAi(g̃, (≻̃i, ≻̃−i)) = s∗. Now notice that before being

matched to the final assignment, the set of applications i sends to reachDAi(g̃, (≻̃i, ≻̃−i)) is a subset

of those sent to reach DAi(g̃, (≻i, ≻̃−i)). Therefore, DAi′(g̃, (≻̃i, ≻̃−i)) ⪰i′ DAi′(g̃, (≻i, ≻̃−i))

holds for all i′ ̸= i. Accordingly, each agent i′ ∈ I still weakly prefers DAi′(g̃, (≻̃i, ≻̃−i)) to s∗

given preference profile ≻̃. Hence s∗ has again no demand atDA(g̃, (≻̃i, ≻̃−i)) and thus no agent is

pointing to i in G∗(DA(g̃, (≻̃i, ≻̃−i))). As a result, i cannot be involved in any solved cycle during

the TP process and thus EDAi(g̃, (≻̃i, ≻̃−i), c̃) = DAi(g̃, (≻̃i, ≻̃−i)) = s∗. Statement (1) holds.

Case 2: πs∗(μ, g) ≠ 0, πμi(μ, g) = 0 and gs∗i < πs∗(μ, g). Under this condition, we show

that statement (2) is satisfied. Take an arbitrary (≻̃−i, c̃−i, g̃−i) ∈ I(μ,≻i, ci). To start, note that

whenever a student j improves her assignment from one school to another at one step of the TP al-

gorithm, another student with lower priority is assigned to the school that j left at that step. Since

gs∗i < πs∗(μ, g), this implies that student imust have a lower score than any student assigned to s∗ at

DAi(g̃, (≻i, ≻̃−i)). Thus, compared to the DA procedure of i submitting≻i, i’s additional applica-

tion to s∗ by submitting ≻̃i has no influence on the outcome and we reach

DA(g̃, (≻i, ≻̃−i)) = DA(g̃, (≻̃i, ≻̃−i)). Moreover, since πμi(μ, g) = 0 and as argued in Case 1,

μi must have vacant seat at DA(g̃, (≻i, ≻̃−i)), thus also at DA(g̃, (≻̃i, ≻̃−i)). As a result, μi has no
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demand atDA(g̃, (≻̃i.≻̃−i)) and this implies thatEDAi(g̃, (≻̃i, ≻̃−i), c̃) = DAi(g̃, (≻̃i.≻̃−i)) = μi.

Hence, statement (2) holds.

Case 3: πs∗(μ, g) ̸= 0andeither (C1) gs∗i > πs∗(μ, g); or (C2) πμi(μ, g) ̸= 0and gs∗i < πs∗(μ, g).

Throughout the discussion, we will make it explicit whenever (C1) and (C2) are in need to be distin-

guished.12 Furthermore, except for the last subcase (Case 3.2.2.2), statement (1) will apply in Case

3 and our approach for each subcase except this last subcase will be standardized going through the

following steps:

Step 1: We construct a candidate scenario (≻̃−i, c̃−i, g̃−i).

Step 2: We show that (≻̃−i, c̃−i, g̃−i) ∈ I(μ,≻i, ci).

Step 3: We argue that EDAi(g̃, (≻̃i, ≻̃−i), c̃) = s∗.

Let j ∈ I be such that μj = s∗ and gs∗j = πs∗(μ, g). Let Ŝ = {s1, . . . , sT} be the set of schools for

which i has justified envy at μ and assume without loss of generality s1 ≻i s2 ≻i . . . ≻i sT. Note that

our constructions of the candidate scenarios (≻̃−i, c̃−i, g̃−i) below varies for different cardinalities of

Ŝ.

In the following, for any ≻′
i∈ P and any s ∈ S, we denote the strict lower contour set of ≻′

i at s

by SL≻′
is = {s′ ∈ S | s ≻′

i s′} and the strict upper contour set of≻′
i at s by SU

≻′
is = {s′ ∈ S | s′ ≻′

i s}.

Notably, the following observations on Ŝwill be helpful:

• Ŝ = ∅whenever ci = 0, since EDA does not allow for any priority violations for i.

• If Ŝ ̸= ∅, non-wastefulness of EDA implies that for each s′ ∈ Ŝ, πs′(μ, g) ̸= 0.

• Since Ŝ ⊆ SU≻i
μi

and s∗ ∈ SL≻i
μi
, s∗ /∈ Ŝ.

12Note that since we assume that gsi ̸= gsj for any i, j ∈ I and any s ∈ S, it cannot be true that πs∗(μ, g) = gs
∗

i ,
when i /∈ μs∗ .
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Next, for each t ∈ {1, . . . ,T}, let it ∈ μst be such that gstit = πst(μ, g). Collect all such students in

Î = {i1, . . . , iT}. For each it ∈ Î, in any TP process corresponding to a plausible scenario, there must

exist a solved cycle γ such that itk ∈ γ for some k ∈ I and it is assigned to stwhen γ is solved. Moreover,

solving γmust be the last step in that TP process in which it is improved.

Case 3.1: |Ŝ| ̸= 1. For now, assume that (C2) is satisfied. At the end of this subcase, we present

a slight modification needed in the construction for (C1).

Step 1: We start with the candidate score structure g̃−i:

• let g̃μii ≥ πμi(μ, g) > g̃μij and;

• for any s′ ∈ S \ {Ŝ ∪ μi} let g̃
s′ = gs′ .

Let i0 = iT and sT+1 = s1. In case that Ŝ ̸= ∅:

• for each st ∈ Ŝ, let g̃st be such that g̃stit−1
> g̃sti > g̃stit and for all l ∈ μst with l ̸= it, let g̃stl > g̃stit−1

.

Next, select an arbitrary c̃−i and consider the following preferences ≻̃−i:

μi ≻̃j s∗ ≻̃j s∅ ≻̃j . . . ,

st ≻̃it st+1 ≻̃it s∅ ≻̃it . . . ∀t ∈ {1, . . . ,T},

μk ≻̃k s∅ ≻̃k . . . ∀k ∈ I\(̂I ∪ {i, j}),

Step 2: As one can easily see, we have π(μ, (gi, g̃−i)) = π(μ, g). We now show that the constructed

scenario (≻̃−i, c̃−i, g̃−i) yields μ under the TP algorithm. We have two cases to consider: First, if

Ŝ = ∅, we getDA(g̃, (≻i, ≻̃−i)) = μ and the TP process terminates with μ since there are no cycles

G∗(μ). Second, suppose that Ŝ ̸= ∅. We describe how we arrive at the corresponding DA outcome:

DAk(g̃, (≻i, ≻̃−i)) = μk for all k ∈ I \ Î and DAit(g̃, (≻i, ≻̃−i)) = st+1 for all it ∈ Î. Note that
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every student k ∈ I \ {i, j} considers her assigned school (μk) as the top choice in ≻̃−i and each such

student k gets accepted by her top choice at the first step of the correspondingDAprocess. Moreover,

at some step, student i applies to s1 and gets tentatively accepted. This triggers a series of rejections.

Specifically, for each t ∈ {1, . . . ,T}, it gets rejected by st and applies to st+1 in the next step, causing

it+1 being rejected by st+1 and so forth. This rejection chain ends with iT applying to s1 which leads

i to be rejected by s1. Thereafter, i applies to all schools in SU≻i
μi

\ SU≻i
s1 and is rejected until finally

being accepted by μi. At last, j is rejected by μi and applies to s
∗ to which she is finally assigned in DA.

There is a unique cycle γ = {iTiT−1, . . . , i2i1, i1iT} inG∗(DA(g̃, (≻i, ≻̃−i)))which, once solved,

produces μ. According to (≻i, ≻̃−i), i and j are the only students who do not receive their top choice

in μ and therefore the TP algorithm terminates with μ.

Step 3: First, be aware that the outcomeDA(g̃, (≻̃i, ≻̃−i))may vary in the position of s∗ on ≻̃i:

• If s∗ ≻̃i s1, thenDAi(g̃, (≻̃i, ≻̃−i)) = s∗,DAj(g̃, (≻̃i, ≻̃−i)) = μi,DAk(g̃, (≻̃i, ≻̃−i)) = μk

for any k ∈ I\{i, j}.

• If s1 ≻̃i s∗, thenDAi(g̃, (≻̃i, ≻̃−i)) = s∗,DAj(g̃, (≻̃i, ≻̃−i)) = μi,DAit(g̃, (≻̃i, ≻̃−i)) = st+1

for any it ∈ Î andDAk(g̃, (≻̃i, ≻̃−i)) = μk for any k ∈ I \ ({i, j} ∪ Ŝ).

In both instances above s∗ has no demand at DA(g̃, (≻̃i, ≻̃−i)). As a result, we have that

EDAi(g̃, (≻̃i, ≻̃−i), c̃) = s∗ and thus the argument for (C2) is complete.

Now suppose that (C1) holds. The construction above does not work here generally, since when

πμi(μ, g) = 0, both i and j get finally assigned to μi in EDA(g̃, (≻i, ≻̃−i), c̃). We make the following

adjustments in the construction:

Step 1: Modify the preferences of j to be

s∗ ≻̃j s∅ ≻̃j . . . ,
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and keep all other details of our construction the same as in instance (C2) above.

Step 2 and Step 3: The arguments resemble those in instance (C2) above.

Case 3.2: |Ŝ| = 1. The construction in Case 3.1 does not work here. Specifically, we cannot

construct a cycle that consists of students in Î when |̂I| = |Ŝ| = 1. Cycles will therefore contain

students not in Î and moreover, from (C1) to (C2), we need to alter the identity of students involved

in the cycle:

Case 3.2.1: gs∗i > πs∗(μ, g). That is, (C1) holds and we have gs∗i > gs∗j .

Step 1: Let g̃−i be such that

• g̃s1j > g̃s1i > g̃s1i1 ;

• g̃s∗i > g̃s∗i1 > g̃s∗j ;

• g̃s′ = gs′ for any s′ ∈ S \ {s∗, s1}.

Now, let c̃−i be such that c̃i1 = 013 and consider the following profile ≻̃−i:

s∗ ≻̃j s1 ≻̃j s∅ . . . ,

s1 ≻̃i1 s∗ ≻̃i1 s∅ . . . ,

μk ≻̃k s∅ ≻̃k . . . ∀k ∈ I\{i, j, i1}.

Step 2: First, it is easily checked π(μ, (gi, g̃−i)) = π(μ, g). Following a similar application proce-

dure as in Case 3.1, the DA algorithm leads to DAj(g̃, (≻i, ≻̃−i)) = s1, DAi1(g̃, (≻i, ≻̃−i)) = s∗

and DAk(g̃, (≻i, ≻̃−i)) = μk for all k ∈ I \ {j, i1}. There is a unique cycle γ = {i1j, ji1} in

13It is worth mentioning that this is the only place in the proof of Theorem 3.1, where we need a scenario
where a student does not consent.
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G∗(DA(g̃, (≻i, ≻̃−i))) and once this cycle is solved we obtain μ. In this instance, all students except

i receive their top choice in μ. The TP algorithm thus terminates and EDA(g̃, (≻i, ≻̃−i), c̃) = μ.

Step 3: Note that the DA algorithm arrives at DAi(g̃, (≻̃i, ≻̃−i)) = s∗, DAj(g̃, (≻̃i, ≻̃−i)) = s1,

DAi1(g̃, (≻̃i, ≻̃−i)) = s∅ and DAk(g̃, (≻̃i, ≻̃−i)) = μk for all k ∈ I\{i, j, i1}. Also, j is not el-

igible for s∗ since c̃i1 = 0. Therefore, we cannot add ji to the graph and thus there is no cycle in

G∗(DA(g̃, (≻̃i, ≻̃−i))). In conclusion, EDAi(g̃, (≻̃i, ≻̃−i), c̃) = s∗.

Case 3.2.2: πμi(μ, g) ̸= 0 and gs∗i < πs∗(μ, g) That is, (C2) holds and we thus have gs∗i < gs∗j .

Case 3.2.2.1: There exists s′ ∈ S \ {s1, μi, s
∗} such that πs′(μ, g) ̸= 0. Pick an arbitrary such s′ and

denote with j′ the student who has the lowest score among all students being assigned to s′ under μ.

Step 1: Let g̃−i be such that

• g̃s1j′ > g̃s1i > g̃s1i1 ;

• g̃s′i1 > g̃s′j′ ;

• g̃μii > gμij ;

• g̃s′′ = gs′′ for any s′′ ∈ S \ {s1, μi, s
′}.

Next, fix an arbitrary c̃−i and consider the following profile ≻̃−i:

μi ≻̃j s∗ ≻̃j s∅ ≻̃j . . . ,

s1 ≻̃i1 s′ ≻̃i1 s∅ ≻̃i1 . . . ,

s′ ≻̃j′ s1 ≻̃j′ s∅ ≻̃j′ . . . ,

μk ≻̃k s∅ ≻̃k . . . ∀k ∈ I\{i, i1, j, j′}.
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Step 2 and Step 3: We omit the arguments for Step 2 and Step 3, since they are similar to those in

Case 3.1.

Case 3.2.2.2: There does not exist s′ ∈ S \ {s1, μi, s
∗} such that πs′(μ, g) ̸= 0. Since πs∗(μ, g) ̸= 0

and πμi(μ, g) ̸= 0, there are only three schools, namely s1, μi, s
∗, which exhaust their capacity under

μ. In this last subcase, we show that statement (2) is satisfied.

We first argue that in any plausible scenario, there is only one top priority cycle and it consists of

i1 and one student assigned to s∗. To start, since i has justified envy for s1 at μ, there exists a cycle

containing i1 that is solved in the EDAprocess. Second, by non-wastefulness of EDA, we know that if

a school is contained in one solved cycle, it exhausts its capacity under the final matching. Recall that

only s1, μi, s
∗ exhaust their capacity at μ. Thus, the candidate student for forming a cycle can only be

assigned to s∗. Therefore, we can construct exactly one cycle with i1 and some l ∈ μs∗ .

Now select any (≻̃−i, c̃−i, g̃−i) ∈ I(μ,≻i, ci). Since gs∗i < πs∗(μ, g) and by our arguments

made above, it must be true g̃s∗i1 > g̃s∗l > gs∗i and DAi1(g̃, (≻i, ≻̃−i)) = s∗. However, this im-

plies that i will be rejected by s∗ under DA when she reports ≻̃i. As a result, we can claim that

DAi(g̃, (≻̃i, ≻̃−i)) = EDAi(g̃, (≻̃i, ≻̃−i), c̃) = μi and statement (2) thus holds.

This completes the proof for the case in which S̃ is a singleton. To finish the proof, suppose now

that S̃ contains multiple elements.

We denote the top ranked school on ≻̃i among all schools in S̃ by s1. Specifically, let ≻1
i be such

that s1 ≻1
i μi and s ≻1

i s′ if s ≻i s′ for all S \ {s1}. Since s1 is the only permuted school on ≻1
i

compared to≻i, we can apply the arguments above (for singleton S̃) to≻1
i . Here, we distinguish two

cases. In the first case, suppose that the observation (μ, π(μ, g)) is such that statement (1) holds for

≻1
i . That is, we find (≻1

−i, c1−i, g1−i) ∈ I(μ,≻1
i , ci) such that EDAi(g1, (≻1

i ,≻1
−i), c1) = s1. Note

that all our constructions above satisfy that DAi(g1, (≻1
i ,≻1

−i)) = EDAi(g1, (≻1
i ,≻1

−i), c1) = s1.
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Since SU≻̃i
s1 = SU≻1

is1 , we obtainDAi(g1, (≻̃i,≻1
−i)) = EDAi(g1, (≻̃i,≻1

−i), c1) = s1. Thus, we can

conclude that statement (1) also holds for misreport ≻̃i for the first case. In the second case, suppose

that the observation (μ, π(μ, g)) falls into the case where statement (2) holds for≻1
i . Then, we need

further consider the second ranked school among S̃ on ≻̃, denoted by s2.

Specifically, we construct≻2
i such that s1 ≻2

i s2 ≻2
i μi and s ≻

2
i s′ if s ≻i s′ for all s, s′ ∈ S\{s1, s2}.

Since we assume that ≻1
i has no influence on the result at all, we can again apply the arguments for

the singleton case to≻2
i . That is, we consider whether statement (1) or statement (2) applies to≻2

i .

If statement (1) holds for ≻2
i , then as explained above we can conclude that statement (1) holds for

≻̃i. Otherwise, we further consider the third ranked school among S̃ on ≻̃. In the following, we

iteratively apply the above arguments by adding a new school from S̃ through each iteration. Once

we arrive at a step where statement (1) holds, we stop and conclude that statement (1) holds for ≻̃i.

On the contrary, if for all schools in S̃ the observation (2) holds, then we conclude that statement (2)

holds for the misreport ≻̃i.

We move to the final class of misreports in which all schools that are truly less preferred to μi still

rank lower than μi. That is, in the rest of the proof, we consider ≻̃i ∈ P such that SU≻̃i
μi

⊆ SU≻i
μi

and

for which there exists s, s′ ∈ SL≻i
μi

such that s ≻i s′ and s′ ≻̃i s. Our strategy is to show that if a student

could have been improved upon truth through such a misreport ≻̃i in a plausible scenario, then the

misreport could also have made the misreporting student worse off in another plausible scenario.

Before we formally show the above argument, we provide three auxiliary results. The first result

states that a student can improve upon μi via reporting ≻̃i only if μi is not her SOSM assignment un-

der true preferences. Throughout the remaining discussion, we fix some (≻′
−i, c′−i, g′−i) ∈ I(μ,≻i

, ci). Also, for any ≻′
i∈ P and any s ∈ S, we denote the weak upper contour set of ≻′

i at s by

U≻′
is = {s′ ∈ S | s′ ⪰′

i s}.

Lemma 3.4. If EDAi(g′, (≻̃i,≻′
−i), c′) ≻i μi, then μi ≻i DAi(g′, (≻i,≻′

−i)).
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Proof. EDA guarantees that μi ⪰i DAi(g′, (≻i,≻′
−i)). We now prove the contrapositive statement:

IfDAi(g′, (≻i,≻′
−i)) = μi, thenEDAi(g′, (≻̃i,≻′

−i), c′) = μi. Towards this goal, construct ≻̂i ∈ P

such that

(D1) for each s1, s2 ∈ L≻i
μi
, s1 ≻̂i s2 if and only if s1 ≻i s2;

(D2) for each s3, s4 ∈ U≻̃i
μi
, s3 ≻̂i s4 if and only if s3 ≻̃i s4 and;

(D3) for all s ∈ SU≻i
μi

\ SU≻̃i
μi
, s ∈ SL≻̂i

μi
.

Since SU≻̃i
μi

⊆ SU≻i
μi

and SU≻i
μi

∩ SL≻i
μi

= ∅, one obtains L≻i
μi

∩ U≻̃i
μi

= {μi}. Therefore, (D1) and

(D2) consider distinct sets of schools, and more concretely, (D1) - (D3) defines the full order of ≻̂i.

With (D1) we can immediately apply Proposition 3.1 such that we reach EDAi(g′, (≻̂i,≻′
−i), c′) =

EDAi(g′, (≻i,≻′
−i), c′) = μi. Clearly, (D1)means that ≻̂i is amonotonic transformation of≻i at μi.

Thus, according to Lemma 3.1 we haveDAi(g′, (≻̂i,≻′
−i)) = DAi(g′, (≻i,≻′

−i)). Thus, we obtain

EDAi(g′, (≻̂i,≻′
−i), c′) = DAi(g′, (≻̂i,≻′

−i)) = μi. Moreover, (D2) and (D3) jointly ensure that

DA(g′−i, (≻̃i,≻′
−i)) = DA(g′−i, (≻̂i,≻′

−i)).

Now, note that DAi(g′, (≻̂i,≻′
−i)) = EDAi(g′, (≻̂i,≻′

−i), c′), which implies that i cannot be

improved to any school more preferred than μi on ≻̂i by EDA. Since by (D2) and (D3) we know

that ≻̃i and ≻̂i share the same ranking for schools more preferred than μi. Thus, it follows that

DAi(g′, (≻̃i,≻′
−i)) = EDAi(g′, (≻̃i,≻′

−i), c′). Thus, weobtainEDAi(g′, (≻̃i,≻′
−i), c′) = μi. This

completes the proof.

Next, we show that if a student could improve upon μi via a misreport ≻̃i, then at least one school

satisfies the following three conditions: First, the student prefers her assignment to this school. Sec-

ond, the relative ranking of this school is lowered under the misreport compared to truth-telling.

Third, the student’s score at this school is higher than this school’s cutoff.
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Let S′ = {s ∈ SL≻i
μi
| ∃ s̃ ∈ SL≻i

μi
: s ≻i s̃ and s̃ ≻̃i s}. Recall that we now consider misreport ≻̃i of

the last class where SU≻̃i
μi

⊆ SU≻i
μi
. According to Proposition 3.1, we know that S′must be non-empty

since EDAi(g′, (≻̃i,≻′
−i), c′) ̸= EDAi(g′, (≻i,≻′

−i), c′).

Lemma 3.5. If EDAi(g′, (≻̃i,≻′
−i), c′) ≻i μi, then there exists s′ ∈ S′ such that

gs′i > πs′(μ, g) > 0.

Proof. Weprove bymeans of contradiction. That is, givenEDAi(g′, (≻̃i,≻′
−i), c′) ≻i μi, we suppose

that for each ŝ ∈ S′ either πŝ(μ, g) > ĝsi or πŝ(μ, g) = 0. We aim at a contradiction by showing that

we arrive at EDAi(g′, (≻̃i,≻′
−i), c′) = μi.

Select any TP process with input (g′, (≻i,≻′
−i), c′) and denote it by pTP≻. Let EDAt(≻) be the

outcome of the tth step in pTP≻. Since EDAi(g′, (≻̃i,≻′
−i), c′) ≻i μi, by Lemma 3.4 we have that

μi ≻i DAi(g′, (≻i,≻′
−i)). Then, we collect the set of schools to which i is (temporarily) assigned

during pTP≻ in Si = {̂s ∈ S | ∃t ∈ N : EDAt
i(≻) = ŝ}. As mentioned before, during the process

of the TP algorithm, scores of assigned students are weakly decreasing at each school from step to

step. Thus, for any s′′ ∈ Si we have gs
′′
i ≥ πs′′(μ, g). Also, schools in Si must have positive cutoffs.

Therefore, by assumption of S′, we have S′ ∩ Si = ∅. Hence, we can use the following two features:

1. for any s′ ∈ Si, SU≻̃i
s′ ⊆ SU≻i

s′ ; and

2. for any s′, s′′ ∈ Si, s′ ≻̃ s′′ if and only if s′ ≻i s′′.

In the following, we first assume that ci = 1. Under this assumption, we claim that with the

above two features of ≻i and ≻̃i, we can implement the algorithm in proof of Proposition 3.1 with

profiles (g′, (≻̃i,≻′
−i), c′) to construct a process pTP≻̃ that yields the same outcome as pTP≻ does.

Concretely, compared to the misreports studied in Proposition 3.1, the misreport ≻̃i considered here

allows for additional permutations which move some s ∈ L≻i
μi

from above some s′′ ∈ Si to below.

Note that the first feature above ensures that all cycles solved in pTP≻ which do not involve i are no
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different from those already covered by the algorithm in Proposition 3.1. Concretely, although agent

i demands some additional schools in S′, since i consents and i has a lower score than the cutoff at each

of these schools, the additional demand of student i does not change the formation of cycles at each

step of the algorithm. Next, note that for cycles solved in pTP≻ which contain i, the second feature

above guarantees that such a cycle can still be solved at the corresponding step. Therefore, we arrive at

EDAi(g′, (≻̃i,≻′
−i), c′) = EDAi(g′, (≻i,≻′

−i), c′) = μi, which contradicts our initial assumption.

Next, assume ci = 0. Recall that in Proposition 3.1, we extend the conclusions to the case where

ci = 0. Here, we can also concludeEDAi(g′, (≻̃i,≻′
−i), c′) = EDAi(g′, (≻i,≻′

−i), c′)with the same

line of reasoning. Again, we reach the desired contradiction.

From now on, assume that μi ≻i DAi(g′−i, (≻i,≻′
−i)). The reason for this assumption is that,

as shown in Lemma 3.5, misreporting ≻̃i could potentially be profitable only if this assumption is

satisfied. If reporting ≻̃i is notprofitable at all, then the agentwill never regret telling the truth through

such a misreport. Notably, this assumption also implies that we have πμi(μ, g) ̸= 0 in the rest of the

proofs. Moreover, Lemma 3.5 shows that there exists a maximal and non-empty set S1 ⊆ S′ such that

s′ ∈ S1 if and only if gs
′
i > πs′(μ, g) > 0. For the rest of the proof, let s∗ ∈ S1 be such that s∗ ⪰i s′ for

any s′ ∈ S1. Furthermore, we collect in S2 = {r′ ∈ L≻i
μi

| s∗ ≻i r′, r′ ≻̃i s∗} and denote with r∗ ∈ S2

the school such that r∗ ⪰̃i r′ for any r′ ∈ S2. For our construction for the last class of misreports, we

rely on the following property of r∗.

Lemma 3.6. If EDAi(g′, (≻̃i,≻′
−i), c′) ≻i μi, then πr∗(μ, g) ̸= 0.

Proof. We aim to show the contrapositive statement. That is, given πr∗(μ, g) = 0, we prove that

μi ⪰i EDAi(g′, (≻̃i, ,≻′
−i), c′). Let DA(g′, (≻i,≻′

−i)) = νi. Since we assume πμi(μ, g) ̸= 0, it

follows immediately πνi(μ, g) ̸= 0. That is, νi ̸= r∗. In the following, we consider two cases that are

distinguished by the relative ranking of r∗ and νi on ≻̃i.
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In the first case, suppose νi ≻̃i r∗. We claim EDAi(g′, (≻̃i,≻′
−i), c′) = μi here and will use similar

arguments as in the proof of Lemma 3.5. Recall that we have SU≻̃i
μi

⊆ SU≻i
μi
. Together with the

assumption νi ≻̃i r∗ and the fact μi ⪰i νi, we can infer μi ≻̃i r∗. Now, select an arbitrary TP process

with input (g′, (≻i,≻′
−i), c′), denoted by pTP≻′ and let EDAt(≻′) be the outcome of the tth step

in pTP≻′ . Also, let S′i = {s′ ∈ S | ∃t ∈ N : EDAt
i(≻′) = s′} be the set of schools to which i is

(temporarily) assigned during pTP≻′ . As argued before, for each s′ ∈ S′i, it is true gs
′
i > πs′(μ, g) > 0.

Note that νi ∈ S′i and by assumption νi ≻̃i r∗, the selection of r∗ ensures that:

1. for any s′ ∈ S′i, SU
≻̃i
s′ ⊆ SU≻i

s′ ; and

2. for any s′, s′′ ∈ S′i, s′ ≻̃ s′′ if and only if s′ ≻i s′′.

Notably, as argued in Lemma 3.5, this leads to EDAi(g′, (≻̃i,≻′
−i), c′) = μi.

In the second case, suppose r∗ ≻̃i νi. We show μi ≻i EDAi(g′, (≻̃i,≻′
−i), c′) here. Towards this

goal, we first argue SU≻̃i
r∗ ⊆ SU≻i

νi . By contradiction, suppose that there exists s′ ∈ S such that

r′ ∈ SU≻̃i
r∗ and r′ /∈ SU≻i

νi . Then, we know that (1) νi ≻i r′, (2) r′ ≻̃i νi and (3) r′ ≻̃i r∗. Since

gνii > πνi(μ, g) > 0, by (1) and (2) we can infer νi ∈ S1. Thus, the selection of s∗ ensures that s∗ ⪰i νi,

which combined with (1) shows s∗ ≻i r′. Moreover, from (3) and the construction of S2 we have

r′ ≻̃i r∗ ≻̃i s∗. Note that s∗ ⪰i νi and r′ ≻̃i r∗ ≻̃i s∗, we reach a contradiction to how r∗ is selected.

Thus, we have SU≻̃i
r∗ ⊆ SU≻i

νi . Next, since by assumption r∗ has vacant seat atEDA(g′, (≻i,≻′
−i), c′),

it also has vacant seat atDA(g′, (≻i,≻′
−i)). With the two findings above, we can implement the argu-

ments inCase 2 of Lemma 3.3 and conclude thatDAi(g′, (≻̃i,≻′
−i)) = r∗ is underdemanded. Thus,

student i cannot improve her assignment above r∗ and we reach EDAi(g′, (≻̃i,≻′
−i), c′) = r∗. Since

μi ≻i r∗, this completes the proof.

We now show the formal arguments for the last class ofmisreports. Concretely, we show that when

i reports ≻̃i, she could have been worse off by being assigned to r∗.
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Lemma 3.7. If EDAi(g′, (≻̃i,≻′
−i), c′) ≻i μi, there exists (≻̃−i, c̃−i, g̃−i) ∈ I(μ,≻i, ci) such that

μi ≻i EDAi(g̃, (≻̃i, ≻̃−i), c̃) = r∗.

Proof. Note that by Lemma 3.6, we only need to construct such a scenario for case πr∗(μ, g) > 0.

Similar as in the proof of Lemma 3.3, we go through a series of steps to show the desired result:

Step 1: We construct a candidate scenario (≻̃−i, c̃−i, g̃−i).

Step 2: We show that (≻̃−i, c̃−i, g̃−i) ∈ I(μ,≻i, ci).

Step 3: We argue that EDAi(g̃, (≻̃i, ≻̃−i), c̃) = r∗.

Recall that s∗ ∈ S1 is the school that ranks highest on ≻i among all schools in S1. Let j ∈ I be

such that μj = r∗, and let l ∈ I be such that μl = s∗ and gs∗l = πs∗(μ, g). Moreover, consider the set

S̄ = {s′ ∈ SU≻i
s∗ | gs′i > πs′(μ, g)} and denote S̄ = {s1, s2, . . . , sT}. Without loss of generality, let

s1 ≻i s2 ≻i . . . ≻i sT. Since r∗ ∈ SL≻i
s∗ , we know that r∗ /∈ S̄. For each t ∈ {1, ...,T}, denote the

student with the lowest score assigned to st in μ by it and collect all such students in Ī = {i1, . . . , iT}.

Similar to Lemma 3.3, we make a case distinction based on different observations. However, since we

already know that πμi(μ, g) ̸= 0 and πr∗(μ, g) ̸= 0, it suffices to consider different cardinalities of S̄.

Case 1: |S̄| ̸= 1. Step 1: We start with the candidate score structure. Let g̃−i be such that

• g̃μil > g̃μij > g̃μii ; and for any k ∈ μμi \ {i}, g
μi
k > gμil ;

• gs∗i > gs∗l ; and for any k ∈ μs∗ \ {l}, g̃
s∗
k > g̃s∗i ;

• g̃s′ = gs′ for any s′ ∈ S \ {s1, . . . , sT, μi, s
∗}.

Let i0 = iT and sT+1 = s1. In case that S̄ ̸= ∅, for any st ∈ S̄:

• g̃stit−1
> g̃sti > g̃stit ; and for any k ∈ μst \ {it}, g̃

st
k > g̃stit−1

.
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Next, we specify c̃−i such that for all i′ ∈ I\{i} it holds that c̃i′ = 1 and consider preference profile

≻̃−i ∈ P−i:

st ≻̃it st+1 ≻̃it s∅ ≻̃it . . . ∀t ∈ {1, . . . ,T},

s∗ ≻̃l μi ≻̃l s∅ ≻̃l . . . ,

μi ≻̃j r∗ ≻̃j s∅ ≻̃j . . . ,

μk ≻̃k s∅ ≻̃k . . . ∀k ∈ I\(̄I ∪ {i, j, l}).

Step 2: It is easily checked that π(μ, (gi, g̃−i)) = π(μ, g). Next, we show that DA leads to

DAi(g̃, (≻i, ≻̃−i)) = s∗,DAj(g̃, (≻i, ≻̃−i)) = r∗,DAl(g̃, (≻i, ≻̃−i)) = μi,DAit(g̃, (≻i, ≻̃−i)) = st+1

for each t ∈ {1, . . . ,T} andDAk(g̃, (≻i, ≻̃−i)) = μk for k ∈ I\(̄I ∪ {i, j, l}).

Consider the corresponding application process of DA under the constructed scenario. For each

student k ∈ I \ (̄I ∪ {i, j, l}), either μk is inU
≻i
s∗ and k is among the top qμk scored students at μk; or

μk is in SL
≻i
s∗ and at most qμk students apply to μk according to (≻i, ≻̃−i). Therefore, at the first step

of the DA process, each such k applies to μk and is finally assigned to μk. Furthermore, the following

students will be tentatively accepted at the first step:

• student j applies to μi,

• student l applies to s∗,

• for all t ∈ {1, . . . ,T}, student it applies to st.

At the first step of the application process, also i applies to her top choice. If i’s top choice is not s1,

let t1 ∈ N be the step in the application process, inwhich i applies to s1. In all the previous steps t < t1,

student i is rejected at each school she proposes to. However, at step t1 student i is tentatively accepted

at s1 and student i1 is rejected. In fact, being initial for student i1 being rejected at s1, student i induces
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a sequence of rejections. This sequence ends in student i being rejected at s1 and for all t ∈ {2, ...,T}

student it is rejected from school st in favor of student it−1 at step t1+ t. Finally at step t1+T, student

iT applies to s1 such that student i gets rejected. In the following steps, only student i makes new

applications until she gets accepted. Precisely, student i proposes to each remaining school in SU≻i
s∗

that she has not yet proposed to and gets immediately rejected at each of these schools. Finally, student

i applies to s∗ and gets accepted in favor of student l. Student l being rejected at s∗ applies now to μi

such that student j gets rejected. Next, j applies to r∗ and gets accepted. Notice that at this step no

student is rejected, the application process ends and the algorithm terminates.

Starting with the final outcome DAi(g̃, (≻i, ≻̃−i)) of the just described process, we now show

that the cycle selection under a TP process ends in the observed matching μ. Since j is permanently

matched in DA(g̃, (≻i, ≻̃−i)) and c̃j = 1, we know that G∗(DA(g̃, (≻i, ≻̃−i))) contains the cycle

γ1 = {il, li} and solving it yields EDA1(g̃, (≻i, ≻̃−i), c̃) = γ1 ◦ DA(g̃, (≻i, ≻̃−i)), where compared

to inDA(g̃, (≻i, ≻̃−i)), only i and l switch their assignments.

Next, since ci = 1 and i is permanently matched to μi in EDA1(g̃, (≻i, ≻̃−i), c̃), whenever S̄ is

non-empty,G∗(EDA1(g̃, (≻i, ≻̃−i), c̃)) contains a unique cycle

γ2 = {iTiT−1, iT−1iT−2, ..., it+1it, ...i2i1, i1iT}

which once solved yields matching μ. Since all students except i and j get their top-choice, and both

i, j are permanently matched, there is no cycle inG∗(μ). Therefore, EDA(g̃, (≻i, ≻̃−i), c̃) = μ.

Step 3: Reviewing the application process above, we getDAi(g̃, (≻̃i, ≻̃−i)) = r∗. Moreover, note

that apart from the students who are matched with school r∗ at DA(g̃, (≻̃i, ≻̃−i)), student j is the

only one who ranks r∗ above s∅ in ≻̃−i. However, notice thatDAj(g̃, (≻̃i, ≻̃−i)) = μi ≻̃j r∗ and thus

school r∗ is underdemanded in DA(g̃, (≻̃i, ≻̃−i)). As a result, i is permanently matched with r∗ at

DA(g̃, (≻̃i, ≻̃−i)), which implies EDAi(g̃, (≻̃i, ≻̃−i), c̃) = r∗. This completes the proof for Case 1.
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Case 2: |S̄| = 1. Step 1: Let g̃−i be such that

• g̃s1l > g̃s1i > g̃s1i1 ; and for all k ∈ μs1 \ {i1}, g̃
s1
k > g̃s1l ;

• g̃μii1 > g̃μij > g̃μii ; and for all k ∈ μμi \ {i}, g̃
μi
k > g̃μii1 ;

• g̃s∗i > g̃s∗i1 > g̃s∗l ; and for all k ∈ μs \ {l}, g̃
s∗
k > g̃s∗i ;

• g̃s′ = gs′ for any s′ ∈ S \ {s1, μi, s
∗}.

Also, let c̃−i be such that for all i′ ∈ I \ {i} it holds that c̃i′ = 1 and consider preference profile

≻̃−i ∈ P−i:

s1 ≻̃i1 s ≻̃i1 μi ≻̃i1 s∅ ≻̃i1 . . . ,

s∗ ≻̃l s1 ≻̃l s∅ ≻̃l . . . ,

μi ≻̃j r∗ ≻̃j s∅ ≻̃j . . . ,

μk ≻̃k s∅ ≻̃k . . . ∀k ∈ I\{i, j, l, i1}.

Step 2 and Step 3: We can resemble the arguments in Step 2 and Step 3 for Case 1 to conclude that

i is worse off by being finally assigned to r∗ in this constructed scenario.

Since the conclusion holds for any observation, any student and any problem, we conclude that

EDA is regret-free truth-telling.

3.D Proof of Proposition 3.2

With a similar technique as in the proof of Proposition 1 in Fernandez (2020), we now show that

any non-truthful report is regretted through the truth at some observation. Throughout the discus-

sion, fix an arbitrary problem (I, S, q, g,≻, c) and fix an arbitrary i ∈ I. We divide the set of possible
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misreports into three exhaustive cases. In each case, we consider an arbitrary misreport≻′
i. We then

construct an observation following ≻′
i such that the truth ≻i would have granted i a weakly better

assignment in any plausible scenario. Moreover, there exists at least one plausible scenario in which

the improvement is strict.

Case 1 Suppose that for≻′
i there exists s ∈ S such that s∅ ≻i s and s ≻′

i s∅. Let i submit≻′
i and

consider the pair (μ, π(μ, g)) such that μi = s and gs′i < πs′(μ, g) for all s′ ∈ SU≻′
is . At first, we show

that μ ∈ M|(≻′
i ,ci) by constructing (≻̃−i, c̃−i, g̃−i) that leads to (μ, π(μ, g)): That is, we show that

(μ, π(μ, g)) is an observation under EDA. Let g̃−i be such that, for each s′ ∈ SU≻′
iμi , each student in μs′

is among the top qs′ ’s scored students at school s′. Let i rank highest on g̃s and suppose that the remain-

ing scores are arbitrary. Let ≻̃−i be such that for each j ∈ I \ {i}, ≻̃j only ranks μj as acceptable and

suppose that c̃ = c. Apparently, we have π(μ, (gi, g̃−i)) = π(μ, g) and EDA(g̃, (≻′
i, ≻̃−i), c̃) = μ.

Thus, μ ∈ M|(≻′
i ,ci).

It remains to be shown that student i regrets ≻′
i through the truth ≻i. Note that since EDA is

individually rational, it holds thatEDAi(g̃, (≻i, ≻̃−i), c̃) ⪰i s∅ for any (≻̃−i, c̃−i, g̃−i) ∈ I(μ,≻i, ci).

Since s∅ ≻i s, student i thus regrets≻′
i through the truth at (μ, π(μ, g)).

Case 2 Let for ≻′
i exist s ∈ S such that s∅ ≻′

i s and s ≻i s∅. Suppose i submits ≻′
i and consider

(μ, π(μ, g)) such that μi = s∅, πs(μ, g) = 0 and gs′i < πs′(μ, g) for all s′ ∈ SU≻′
is∅ . Notably, by doing

the same construction (≻̃−i, c̃−i, g̃−i) as in Case 1, we can infer μ ∈ M|(≻′
i ,ci).

It remains to be shown that student i regrets≻′
i through the truth≻i. To see this, note that since

EDA is non-wasteful, it holds that EDAi(g̃, (≻i, ≻̃−i), c̃) = s for any (≻̃−i, c̃−i, g̃−i) ∈ I(μ,≻i, ci).

Since s ≻i s∅, student i thus regrets≻′
i through the truth at (μ, π(μ, g)).

Case 3 In this last case consider≻′
i which only contains permutations in the acceptable and unac-

ceptable set, i.e., Ai(≻′
i) = Ai(≻i) andUi(≻′

i) = Ui(≻i).
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The following labeling for any≻′′
i ∈ P in the acceptable set Ai(≻′′

i ) ensures that a school’s index

corresponds to its position in≻′′
i . Precisely, we denote s′′1 as the≻′′

i -maximal element on Ai,1(≻′′
i ) =

Ai(≻′′
i ) and s′′2 as the≻′′

i -maximal element on Ai,2(≻′′
i ) = Ai,1(≻′′

i ) \ {s′′1 }, and so forth.

Now suppose that |Ai(≻i)| = N ∈ N is the number of acceptable schools under true preferences

of student i and consider a permutation≻′
i as described above. Since≻′

i is a permutation, there exists

n∗ = argmin
n

{n ≤ N | s′n ̸= sn}.

Next, let student i observe (μ, π(μ, g)) such that μi = s′n∗ , πsn∗ (μ, g) = 0 and gs′i < πs′(μ, g)

for all s′ ∈ UC≻′
i

s′n∗
. Again, by doing the same construction (≻̃−i, c̃−i, g̃−i) as in Case 1, we can infer

μ ∈ M|(≻′
i ,ci).

It remains to be shown that student i regrets≻′
i through the truth≻i. Since sn∗ has capacity left,

this allows us to conclude that if iwouldhave reported≻i then, for any (≻̃−i, c̃−i, g̃−i) ∈ I(μ,≻i, ci),

student iwould have beenmatched to sn∗ . Since sn∗ ≻i s′n∗ , we conclude that i regrets≻′
i through≻i

at (μ, π(μ, g)). This completes the proof. □
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4
Envy and Strategic Choice in Matching

Markets∗

4.1 Introduction

The reduction of envy among participants inmatchingmarkets usually addresses fairness or legal con-

cerns. A goal that is primarily achieved by enforcing normative notions of envy minimization on the

∗This chapter is based onMöller (2021b). I am grateful to my advisor Alexander Westkamp for his contin-
uous advice and support. Thanks also to Yiqiu Chen andMarius Gramb for helpful comments. All remaining
errors are of course my own.
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market outcome.1 However, as a psychological phenomenon, the occurrence and dislike of envy has

a strong idiosyncratic component and also guides human decision making and incentives to envy-

avoiding behavior. For instance, it has been shown in different economic settings that agents are will-

ing to incur personal costs to avoid envy.2 This paper examines the conditions under whichmatching

mechanisms render strategic considerations by market participants aimed at avoiding envy obsolete.

I study a one-to-one priority-basedmatchingmodel between agents and objects, where agents may

experience envy towards each other. To account for the evidence that humans only envy those to

which they have a sufficient degree of self-reference (Salovey and Rodin, 1984), the set of agents an-

other agent can potentially envy is expressed as an (arbitrary) subset of other agents in the market,

called her base. Given any two agents i and j and amatching, agent i has envy towards agent j if agent j

is in her base and is assigned to an object agent i likes more than the object assigned to herself. In this

framework, I develop the notion of inevitable envy. Concretely, given a mechanism, agent i’s envy

towards an agent j that is matched to object x is inevitable, if keeping the reports of agents other than

i fixed, agent i has no report where she does not envy j at object x.

I introduce an incentive concept named envy-proofness, which accounts for agents’ aversion to ex-

periencing envy. Envy-proofness requires that for each agent, any instance of envy she experiences

upon reporting her true preference ranking is inevitable. In other words, given the reports of other

1In fact, the focus lies on the envy that occurs subject to the violation of priority criteria set by central au-
thorities or by law. The standard fairness-based envy-notion used in the matching context is justified envy (Ab-
dulkadiroğlu and Sönmez, 2003). This notion takes an object-specific priority ranking over agents as given, and
an agent has justified envy at a matching, only if there exists another agent assigned to an object preferred to her
own and that agent is ranked lower at that object than herself. Amatching is fair if there is no justified envy. For
other envy-based fairness notions inmatching see, for instance,Morrill (2015) Troyan et al. (2020), Alcalde and
Romero-Medina (2015), Ehlers andMorrill (2020) or Nesterov (2017) and Kondratev and Nesterov (2022).

2For reference, see Zizzo andOswald (2001) in the context of money burning, Bolton (1991) in bargaining,
or Mui (1995) in retailing. More generally, the influence of envy on human behavior is well documented, both
experimentally and empirically, across various domains in economics, sociology and psychology. For reference,
see for example, Grund and Sliwka (2005) and Eisenkopf and Teyssier (2013) in tournaments, Kirchsteiger
(1994) in ultimatum games orWenninger et al. (2019) in social networking. For a comprehensive review on the
psychological literature on envy, see Smith and Kim (2007) andCrusius et al. (2020) and the references therein.
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agents, the instances of envy an agent experiences while being truthful is a weak subset of the instances

of envy the agent experiences under any other report she can submit. I show that envy-proofness is

stronger than strategy-proofness and thus ensures that agents’ incentives with regard to receiving their

most preferred objects and those to avoid envy are aligned.3

This paper focuses on twoprominent strategy-proofmatchingmechanisms, theTopTradingCycle

(TTC) mechanism (Shapley and Scarf, 1974) and the (agent-proposing) Deferred Acceptance (DA)

mechanism (Gale and Shapley, 1962). DA is the unique strategy-proof mechanism that satisfies the

normativenotionof justified envy-freeness knownalso as stability (Alcalde andBarberà, 1994),whereas

TTC is strategy-proof and efficient (Roth, 1982b) but does not satisfy stability.4 The main results of

this paper are the following. I show that TTC is envy-proof, while DA is not. In addition, I offer a

characterization of envy-proof mechanisms as strategy-proof mechanisms, where given any agent and

given the reports of other agents, the agent can only affect the assignments of those agents that match

objects that the agent herself can obtain with one of her reports.

In the second part of the paper, I develop an envy-based incentive criterion which is weaker than

strategy-proofness. Specifically, a matching mechanism is weakly envy-invariant if in any of its Nash-

equilibria, each agent’s envy is inevitable. Thus, following the spirit of envy-proofness, weak envy-

invariance implies that in equilibrium, an agent’s instances of envy are a weak subset of instances

she could be confronted with when changing her report. The results for this weaker criterion are

as follows. I establish that the well-known and non strategy-proof Boston mechanism is weakly envy-

invariant, whereas no stable mechanism satisfies this weaker criterion.

The results of this paper suggest a trade-off between achieving certain forms of normative envy-

3Strategy-proofnessmeans that it is a weakly dominant strategy for each agent to report her true preferences
over individual objects, given the agent cares only about her own assignment.

4A matching mechanism is stable if it produces matchings which are fair, individually rational and non-
wasteful. A matching is non-wasteful if there is no object that is unassigned although there is an agent that
prefers it over her assignment. A matching is individually rational if no agent prefers her outside option over
her final assignment.
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freeness, such as stability, and susceptibility to envy-driven strategic behavior. In fact, under stable

mechanisms, avoiding envy and obtaining the best possible individual objectmay be conflicting strate-

gic goals for participants. However, unstable mechanisms like TTC and the Boston mechanism turn

out to be strategically robust to envy-avoiding behavior.

Related Literature

Tomyknowledge, this paper is the first in thematching context to incorporate envy into agents’ incen-

tives. Yet, envy has been extensively studied in matching frameworks through the lens of normative

envy-freeness and envy-minimization. This includes some recent and related work that has explored

in more detail the relationship between envy-minimization and the incentives that a mechanism pro-

vides to agents. Specifically, using various comparative methods, Abdulkadiroğlu et al. (2020), Kwon

and Shorrer (2020), and Dogan and Ehlers (2021) show that TTC minimize justified envy among

strategy-proof and Pareto efficient mechanisms.5 Despite the different focus and the differences in

the definition of envy, the present work can be seen as complementing these positive findings onTTC

in the sense that it additionally ascribes strategic resilience to TTCwith regard to envy-avoidance.6

In addition to the literature dealing with (justified) envy-freeness and envy-minimization in the

spirit of Abdulkadiroğlu and Sönmez (2003), there is also a literature examining envy-freeness in ran-

domassignmentproblems followingHylland andZeckhauser (1979), Zhou (1990), andBogomolnaia

andMoulin (2001). Recent work in the latter tradition byNesterov (2017) shows that envy is usually

a concomitant of achieving efficiency and good incentives. However, as for the case of deterministic

matching, the literature that allows for random mechanisms does not consider the influence of envy

avoidance on agents’ behavior.

Next, since envy-proofness is stronger than strategy-proofness, this paper also contributes to re-

5Roth (1982a) has shown that efficiency and no justified envy are incompatible.
6Note that the positive findings about the inevitability of envy under TTC also apply to any justified envy

experienced under TTC.
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search that has developed incentive notionswhich are stronger than strategy-proofness. A promiment

such property is group strategy-proofness which requires that no group of agents can jointly misrepre-

sent their preferences, such that each agent in the group isweakly better off and at least one agent in the

group is strictly better off. That is, different fromenvy-proofness, group strategy-proofness focuses on

group deviations rather than unilateral deviations. Pápai (2000) shows that group strategy-proofness

is characterized by strategy-proofness and non-bossiness defined by Satterthwaite and Sonnenschein

(1981). Specifically, non-bossiness means that agents cannot change other agents’ assignments by

changing their own report, without thereby changing also their own assignment. Envy-proofness, on

the other hand, constrains the influence of an agent to assignments of other agents that canbematched

with objects that are obtainable by herself, and extends the constraint to situations in which the agent

is allowed to change her own assignment. In this sense, envy-proofness and group strategy-proofness

impose conceptually similar invariance properties on mechanisms.7

To the incentive notions that are stronger than strategy-proofness counts also Li (2017)’s work on

obvious-strategy-proofness (OSP). A mechanism is OSP if each agent has an obviously dominant strat-

egy which requires that the worst possible outcome resulting from following the truth is better than

the best outcome resulting from any possible untruthful report. Envy-proofness and OSP are not di-

rectly related. While themain objective ofOSP is to account for cognitive limitations in agents’ strate-

gic reasoning, envy-proofness is about addressing agents’ concerns about other agents’ outcomes. The

two approaches also differ in terms of results. Li (2017) finds that TTC is not OSP-implementable in

some situations and following his work, Troyan (2019) shows thatTTC is OSP-implementable only if

objects’ priorities over agents satisfy an acyclicity condition. Ashlagi andGonczarowski (2018) shows

that also DA is not always OSP-implementable, while Thomas (2020) characterizes the priorities un-

der which this is the case.
7Note that also the results on envy-proofness and group strategy-proofness are similar: it is well-known

that TTC is group strategy-proof, andDA is not. It is an interesting open question how closely group strategy-
proofness and envy-proofness are related.
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Finally, this work is also part of a growing literature that integrates nonstandard preferences that

account for behavioral biases into the matching context. Fernandez (2020) introduces an incentive

concept called regret-free truth-telling that is weaker than strategy-proofness which is based on partic-

ipants’ desire to avoid regret. Meisner and vonWangenheim (2021) andDreyfuss et al. (2019) examine

the behavior of loss averse parents in the context of school choice. Pan (2019) studies the role of agents’

overconfidence in a school choice framework. Apart from the differences in the addressed behavioral

biases, a main departure is that the agents in the present work are not only concerned about their own

assignment, but also about the assignments of other agents.

The rest of this paper is organized as follows. Section 4.2 describes the basic model and Section 4.3

introduces the incentive criterion envy-proofness. Section 4.4 contains the main results. Section 4.5

considers weak envy-invariance and the corresponding results. Section 4.6 concludes.

4.2 BasicModel

4.2.1 Primitives

Let I be a set of agents and X be a set of objects. There is a common outside option ∅ with infinite

capacity. Equip each object x ∈ Xwith a strict priority ranking▷x over the set I. A priority structure

▷ ≡ (▷x)x∈X is a profile of priority rankings and the domain of such structures is denoted with P̄r.

For each i ∈ I, letPi be a strict preference relation over objectsX∪{∅}. LetRi be the corresponding

weak preference relation of Pi.8 Let Pi denote the set of all possible strict preference relations over

X ∪ {∅}. For any Pi ∈ Pi, an object x ∈ X is acceptable to i if xPi∅ and unacceptable if it is not

acceptable. Refer to the collection P = (Pi)i∈I as a preference profile of agents I and letP be the full

domain of preference profiles. For any J ⊂ I, PJ = (Pj)j∈J is a preference profile for agents J, where

PJ = ×j∈JPj is the corresponding domain of such profiles. Denote with −i, the set of all agents

8That is, for all x, x′ ∈ X, xRix′, if either xPix′ or x = x′.
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except i.

A matching is a function μ : I → X ∪ {∅} where each object x ∈ X is assigned to at most one

agent and each agent i ∈ I who does not receive an object x ∈ X is assigned to the outside option ∅.

Let μi denote the object that is assigned to agent i ∈ I under μ and collect inM the set of all possible

matchings.

In the following, fix some matching μ ∈ M and a preference profile P ∈ P . Say that μ is non-

wasteful if there exists no i ∈ I and no object x ∈ X such that x Pi μi and x is unassigned under μ. A

matching μ is individually rational if, for each i ∈ I, μi Ri ∅. Given any i ∈ I, agent i has justified

envy towards an agent j ∈ I at μj ∈ X under μ if μj Pi μi and i ▷μj j. A matching μ is fair if no agent

has justified envy. A matching μ is stable, if it is individually rational, fair and non-wasteful.

Another matching ν ∈ M weakly Pareto dominates matching μ if, for each i ∈ I, νi Ri μi. A

matching ν strictly Pareto dominates μ, if ν weakly Pareto dominates μ and there exists an agent j ∈ I

with νj Pj μj. Amatching μ is Pareto efficient if there exists nomatching that strictly Pareto dominates

it.

Amechanism ψ : P → Mmaps any reported preference profile (hereafter referred to as the report

profile) into amatching. Let the result ofψ given a report profileP be denotedwithψ(P), and for each

i ∈ I, let ψi(P) denote the respective assignment of i under ψ(P). Consider the following desirable

properties of mechanisms. First, a mechanism ψ is Pareto efficient if each outcome of the mechanism

is Pareto efficient with respect to the report profile. Second, a mechanism is stable if it produces only

matchings that are stable with respect to the report profile. Third, a mechanism ψ is non-wasteful

(individually rational) if for each reported preference profile, the matching induced is non-wasteful

(individually rational). In the remainder of this paper, I restrict attention tomechanisms that are both

non-wasteful and individually rational. Denote with G the full domain of such mechanisms.

Consider the following incentive criterion known as strategy-proofness. It requires that an agent

interested only in obtaining her best possible match according to her preference ranking should never
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lie about her preferences. Formally, a mechanism ψ ∈ G is strategy-proof if, given any preference

profile P ∈ P , there is no agent i ∈ I and P̃i ∈ Pi such that ψi(P̃i,P−i) Pi ψi(P).

4.2.2 Envy

As described in Parrott and Smith (1993) ”envy occurs when a person lacks another’s superior quality,

achievement, or possession and either desires it or wishes that the other lacked it”. Moreover, the oc-

currence and strength of a person’s envy towards another typically relies on the degree of self-reference

(e.g., a personal relationship, belonging to a reference group, competition) towards the envied person

(Salovey and Rodin, 1984). Following these principles, I define the set of other agents an agent can

envy in an idiosyncratic manner. Concretely, for any agent i ∈ I, let τi ⊆ −i describe a base of agent

i and say that i tracks agent j ∈ I if and only if j ∈ τi. Let Ti be the domain of i’s bases. Then,

(Pi, τi) ∈ Pi ×Ti is a type of agent i. Let τ = (τi)i∈I be a base profile and let T be the corresponding

domain. A type profile for agents is a pair (P, τ) ∈ P × T that contains a type for each agent.

To define envy, fix a type profile (P, τ) ∈ P × T and a matching μ ∈ M. An agent i ∈ I envies

another agent j ∈ I at μj under μ if i tracks j and μj Pi μi. That is, an agent’s envy is always evaluated

with respect to the agent’s true preferences and an agent envies only agentswhich are in her base. Refer

to a quintuple (I,X,▷,P, τ) as an (envy) problem. Fix a triple (I,X,▷) and amechanism ψ ∈ G from

now on.

4.3 Envy-Proofness

In this section, I introduce the incentive concept envy-proofness that promotes truthful disclosure of

preferences when agents wish to avoid the experience of envy.

I start with some necessary and helpful terminology. Take any type profile (P, τ) and any agent

i ∈ I. Given a report profile P̂ ∈ P , let agent i envy some agent j ∈ I at ψj(P̂) under matching ψ(P̂).
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I say that agent i’s envy towards j at ψ(P̂) is inevitable if for each report P̃i ∈ Pi, i envies j at ψj(P̂)

under ψ(P̃i, P̂−i). In words, given the reports of other agents, i envies j at the same object for any

of her own submitted reports. A report P̂i ∈ Pi is envy-neutral for i, if for any P̃−i ∈ P−i and for

each agent-object pair (j, ψj(P̂i, P̃−i)) for which i envies j at ψj(P̂i, P̃−i) under ψ(P̂i, P̃−i), the envy is

inevitable for i.

Definition 4.1. Amechanism ψ ∈ G is envy-proof if, given any type profile (P, τ) ∈ P × T and for

any agent i ∈ I, being truthful is envy-neutral.

In otherwords, envy-proofness ensures that agentswho lie about their preferences experience every

instance of envy that they would experience if they were truthful, and possibly additional instances.

Envy-proofness thus implies that agents with the goal to avoid envy, cannot do better than reporting

their true preferences. This holds irrespective of whether agents would be willing to sacrifice a better

match to avoid envy or not. In fact, the only requirement on agents’ attitude towards envy that is

needed for the application of envy-proofness is that agents perceive fewer instances of envy as weakly

more desirable than more instances of envy in terms of set-inclusion. That is, no additional assump-

tions are required about how an agent’s dislike of envying another agent differs across objects, or how

dislike of envy differs across tracked agents.9

As shown next, envy-proofness is a stronger incentive requirement than strategy-proofness.

Lemma 4.1. If ψ ∈ G is envy-proof, then it is strategy-proof.

Proof. Consider mechanism ψ that is not strategy-proof. Thus, there exists a preference profile P and

an agent i ∈ Iwith a report P̃i ∈ Pi such that

ψi(P̃i,P−i) Pi ψi(P).

9For instance, a weaker version of inevitability could require that an agent’s envy towards another agent
persists at some weakly less desirable object instead of persisting at the same object. In this case, all negative
results in this paper would also extend to the corresponding weaker version of envy-proofness.
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Since ψ is non-wasteful, there must exist some agent j ∈ I with ψj(P) = ψi(P̃i,P−i) and ψj(P) ̸= ∅.

Take the type profile (P, τ̃) with j ∈ τ̃i and note that i being truthful implies that i envies j at ψj(P)

under ψ(P). Now, if i reports P̃i, then ψi(P̃i,P−i) = ψj(P) and thus ψj(P̃i,P−i) ̸= ψj(P). Hence i’s

envy towards j at ψj(P) is not inevitable. We conclude that ψ is not envy-proof.

The essence of mechanisms being envy-proof, thus, is that truthfulness is the weakly dominant

action for agents who want their best possible match while avoiding envy. So there is no strategic

trade-off for agents between envy-avoidance and getting the best possible match.

In the remainder of this section, I provide a straightforward characterization of envy-proof mecha-

nisms. To do so, some additional terminology is needed. Take any agent i ∈ I and a preference profile

for other agents P−i ∈ P−i. Let

X̄i(ψ,P−i) ≡ {x ∈ X |∄P̃i ∈ Pi with ψi(P̃i,P−i) = x}

be the set of i’s unattainable objects. Moreover, let

Īi(ψ,P−i) ≡ {j ∈ I |∃P̃i ∈ Pi and x ∈ X̄i(ψ,P−i)with ψj(P̃i,P−i) = x}

be the set of agents (other than i) that can be matched to an object unattainable for agent i.

Definition 4.2. A mechanism ψ ∈ G is fenced, if for each i ∈ I, each preference profile P ∈ P ,

P̃i ∈ Pi and for each j ∈ Īi(ψ,P−i), we obtain ψj(P) = ψj(P̃i,P−i).

In other words, under a fenced mechanism, an agent cannot influence the assignments of agents

that can be assigned to an object that, given the reports of others, is unattainable for herself. We reach

the following characterization of envy-proof mechanisms.

Proposition 4.1. Amechanism ψ ∈ G is envy-proof if and only if it is strategy-proof and fenced.
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Proof. See Appendix 4.B.

4.4 Main Results

In this section, I present the main results of this paper. I show that the Top Trading Cycles (TTC)

mechanism (Shapley andScarf, 1974) is envy-proof and that theDeferredAcceptance (DA)Mechanism

(Gale and Shapley, 1962) is not.

4.4.1 TTC

Denote the TTC mechanism that is induced with the TTC algorithm operating on ▷ ∈ P̄r with

TTC▷. The description of the algorithm to induceTTC▷ can be found in Appendix 2.D of Chapter

2.

Before I present the result, consider the following helpful properties of TTC▷. First, it is well

known that TTC▷ is strategy-proof and Pareto efficient (Roth, 1982b). Furthermore, TTC▷ satis-

fies non-bossiness (Satterthwaite and Sonnenschein, 1981) which requires that there is no agent who

can change other agents’ assignments bymisreporting her preferences, without thereby also changing

her own assignment (Pycia and Ünver, 2017). Formally, a mechanism ψ ∈ G is non-bossy, if for all

P ∈ P , there is no i ∈ I, and P̃i ∈ Pi, such that ψi(P) = ψi(P̃i,P−i), but ψ(P) ̸= ψ(P̃i,P−i). A

mechanism ψ ∈ G is bossy if it is not non-bossy. For each report profile P ∈ P , let TTCA▷(P) de-

note the corresponding process under TTC algorithm. The TTC algorithm has the following helpful

property.

Lemma 4.2 (Roth (1982b)). Take an agent i ∈ I and a preference profile P ∈ P . If, given any

P̃i ∈ Pi, agent i is unmatched at the beginning of step t of TTCA▷(P) and TTCA▷(P̃i,P−i), then the

same cycles are solved in each step t′ < t in TTCA▷(P) and TTCA▷(P̃i,P−i).
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In words, under the TTC algorithm there is no agent who can affect cycles that have been solved

before that agent is involved in a cycle herself.

We are ready for the main result of this paper.

Theorem 4.1. TTC▷ is envy-proof.

As an intuition for the proof, first note that non-bossiness of TTC▷ implies that an agent who

would be envious under truth and wishes to avoid it by influencing others assignment, must choose

a non-truthful report that grants her an object, that is worse than the one she receives under truth.

Lemma 4.2 then implies that if under the non-truthful report the agent is involved in a cycle, given all

the objects for which she had envy have already been assigned, then those objects must be matched in

the same cycles as if the agent had been truthful. Now consider worse objects with which the agent

can achieve to be in a cycle earlier than the step in which she is involved in a cycle under truth. In this

case, strategy-proofness of TTC ensures that an agent can delay to be assigned such a worse object,

at least until the step where all objects she could be envious at have already been assigned.10 This

works, for instance, with a report where relative to the true ranking the worse object in consideration

exchanges positions with the object the agent is assigned to under truth. By Lemma 4.2, under the

delayed scenario all envied agents are involved in the same cycles as under truth. Finally, using the

non-bossiness of TTC▷ whether or not to delay the match to the worse object does not affect other

agents’ assignments. Thus, if the agent matches a worse object, then all instances of envy the agent

experiences under truth are still present.

4.4.2 DA

Denote theDAmechanism that is induced with theDA algorithm operating on▷ ∈ P̄r withDA▷.

The algorithm can be found in Appendix 2.D of Chapter 2. Note thatDA▷ is the unique stable and
10Afeature of theTTCalgorithm is that if thepointingof anobject to an agent began, thepointing continues

until the agent leaves with her match.
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strategy-proofmechanism (Alcalde and Barberà, 1994) and that by stability, agents cannot experience

justified envy under DA▷. However, envy as introduced in subsection 4.2.2 is also present under

DA▷. As will be demonstrated below, this envy is not always inevitable if agents are truthful.

Theorem 4.2. If |X| ≥ 3 and |I| ≥ 3, then there exists▷ such that DA▷ is not envy-proof.

Proof. Let |X| ≥ 3 and |I| ≥ 3. We first specify a type profile (P, τ) and describe the priorities▷. To

start, for agents i, j, k ∈ I and objects x, y, z ∈ X let the relevant preferences and priorities be depicted

in the following tables:

Pi P̃i Pj Pk ▷x ▷y ▷z
y z y x j k i
z y x y k i j
x x z z i j k
∅ ∅ ∅ ∅ ...

...
...

...
...

...
...

...
...

...

Let τi = {k} and for all other agents i′ ∈ I \ {i} let τi′ be arbitrary. Let the priorities▷x′ for each

remaining object x′ ∈ X \ {x, y, z} be arbitrary and assume that for each l ∈ I \ {i, j, k} that Pl ranks

the outside option ∅ first and the ranking below ∅ is arbitrary. Taking as an input the true preferences

of each agent, one reaches DA▷
i (P) = z, DA▷

j (P) = x, DA▷
k (P) = y and for all l ∈ I \ {i, j, k},

DA▷
l (P) = ∅. Since τi = {k}, agent i envies agent k at y underDA▷(P). To see that i’s envy towards

k at y is not inevitable, let agent i instead report P̃i as displayed in the table above. In this case, one

reaches DA▷
i (P̃i,P−i) = z, DA▷

j (P̃i,P−i) = y, DA▷
k (P̃i,P−i) = x and for all l ∈ I \ {i, j, k},

DA▷
l (P̃i,P−i) = ∅. Thus, i does not envy k since k is now assigned to x, whereas i’s assignment

remains unchanged. That is, being truthful is not envy-neutral for agent i and hence DA▷ is not

envy-proof. This completes the proof.
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In the example above, note that through i’s choice to avoid envy actually a Pareto improvement

for the other agents is generated and that i’s assignment is not affected by her choice to be untruthful.

This is not generally true. In fact, one can construct similar examples where thewelfare effect on other

agents goes in the opposite direction, the effect on other agents is ambiguous or where the envying

agent has to change her assignment to avoid envy. Such an example is presented in the next section, in

which I introduce an envy-based incentive concept that is also applicable to non-strategymechanisms.

4.5 Weak Envy-Invariance

In this section, I extend the analysis to non strategy-proof mechanisms. The key difference compared

to the analysis of strategy-proof mechanisms is the following. Under non strategy-proof candidates

theremaybe agentswhocan avoid instances of envy they experiencewhile being truthful by improving

their own match through lying about their preferences. A straightforward way to accommodate for

these differences, is to focus on instances of envy that remain subject to an equilibrium condition.

Following these ideas, I nowdelineate an incentive criterion calledweak envy-invariance, whichwill

be weaker than strategy-proofness and takes care of instances of envy present in the Nash-equilibria

of a mechanism. Take any type profile (P, τ). For an agent i ∈ I, the report P̂i ∈ Pi is a best response

to other agents’ reports P̂−i ∈ P−i if ψi(P̂) Ri ψi(P̃i, P̂−i) for all P̃i ∈ Pi. A report profile P̂ ∈ P

constitutes aNash-equilibrium under ψ, if for each i ∈ I, P̂i is a best response to other agents’ reports

P̂−i. Now consider the following incentive criterion. Amechanism ψ ∈ G is weakly envy-invariant, if

for each type profile (P, τ), for each i ∈ I, under any associatedNash-equilibrium P̂ ∈ P and for each

agent-object pair (j, ψj(P̂)) for which i envies j at ψj(P̂) under ψ(P̂), the envy is inevitable for agent i.
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4.5.1 StableMechanisms

SinceDA is not envy-proof (Theorem4.2), onemay askwhether there exist stablemechanisms that are

weakly envy-invariant irrespective of what the underlying priorities are. As shown below, the answer

is no.

Proposition 4.2. If |X| ≥ 3 and |I| ≥ 4, then there exists ▷ such that there is no stable and weakly

envy-invariant mechanism.

Proof. Let |X| ≥ 3 and |I| ≥ 4. We first specify a type profile (P, τ) and priorities ▷. To start, for

agents i, j, k, l ∈ I and objects x, y, z ∈ X let the relevant preferences and priorities be depicted in the

following tables:

Pi P̃i Pj Pk Pl
y z y z x
x y x y ∅
z ∅ ∅ ∅ y
∅ x z x z
...

...
...

...
...

▷x ▷y ▷z
i k i
l j k
j i j
k l l
...

...
...

Suppose that i only tracks j, i.e. τi = {j} and for all other agents i′ ∈ I \ {i} let τi′ be arbitrary.

Assume that for eachm ∈ I\{i, j, k, l} thatPm ranks the outside option ∅ first and the ranking below

∅ is arbitrary. Let the priorities▷x′ for each remaining object x′ ∈ X \ {x, y, z} be arbitrary. I now
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claim that given input P any stable mechanism ψ must produce ψi(P) = x, ψj(P) = y, ψk(P) = z,

ψl(P) = ∅ and for allm ∈ I \ {i, j, k, l}, ψm(P) = ∅.

To start, note that for all m ∈ I \ {i, j, k, l}, ψm(P) = ∅, by individual rationality of ψ. Next,

observe that i cannot be assigned to her top choice y in any stablematching since jwould have justified

envy towards i at y. This implies that i must get her second choice x where she has highest priority.

Once her top choice is gone with agent i, by individual rationality of stable matchings, lmust receive

the outside option which is her second choice. Moreover, once i is assigned to x, k is assured to get

z, since no agent but i has higher priority than her at z and z is k’s top choice. Hence j is left with y,

which is also her top choice. Note that it is clear then, that the report profile P constitutes a Nash-

equilibrium under ψ. In fact, one can see that agents who are not matched to their top choices and

unilaterally deviate cannot be made better off, without at the same time inducing justified envy at the

resulting candidate matchings. However, this would contradict stability of the mechanism.

As a next step, note that i envies j at y under ψ(P) since y Pi x and j ∈ τi. We now establish

that the envy towards j at y is not inevitable for i. Concretely, suppose that i reports preferences P̃i

as displayed in the table above. Then, given report profile (P̃i,P−i) any stable mechanism ψ must

produce ψi(P̃i,P−i) = z, ψj(P̃i,P−i) = ∅, ψk(P̃i,P−i) = y, ψl(P̃i,P−i) = x and for all m ∈

I \ {i, j, k, l}, ψm(P̃i,P−i) = ∅. This can be seen using the following arguments. First, by individual

rationality of ψ for allm ∈ I \ {i, j, k, l}, ψm(P̃i,P−i) = ∅. Next, under any stable matching with

respect to (P̃i,P−i), i must be assigned to z since it is her top choice and she is the highest priority

agent at z. However, then k must be assigned to y, for which she has highest priority priority and

which is her best choice remaining once i left with z. In this case, any stable matching must assign l to

x since j has lower priority at x than l. Hence jmust remain with the outside option.

Finally, note that i has no envy under ψ(P̃i,P−i) and thus the envy towards j at y is not inevitable.

Thus, ψ is not weakly envy-invariant. This completes the proof.
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4.5.2 Immediate Acceptance

Another interesting and well-known candidate mechanism in practice is the Immediate Acceptance

(IA) mechanism, also known as the Boston mechanism. Denote the IAmechanism that operates on

▷with IA▷. The algorithm to calculate the matchings under IA can be found in Appendix 4.A. The

efficient and non-bossy IAmechanism is not strategy-proof and also not stable. In fact, the IAmech-

anism was criticized as being vulnerable to manipulation of preferences and was therefore replaced

by the Boston School Choice Committee in 2005 with the strategy-proof and stableDA (Pathak and

Sönmez, 2008). However, as will be shown below, unlike stable mechanisms, the IAmechanism sat-

isfies the weak envy-invariance criterion.

Proposition 4.3. IA▷ is weakly envy-invariant.

Proof. Fix an agent i ∈ I and a type profile (P, τ) with some agent j ∈ τi. Let report profile P̂ ∈ P

constitute a Nash-equilibrium under IA▷ and let i envy agent j ∈ I at IA▷
j (P̂) under IA▷(P̂). We

show that i’s envy towards j at IA▷
j (P̂) is inevitable for i.

To start, since P̂i is a best response to P̂−i and IA▷ is non-bossy11, for any other best response

P∗i ∈ Pi of i to P̂−i, we reach IA▷(P∗i , P̂−i) = IA▷(P̂). Thus, for all other best responses, i still

envies j at IA▷
j (P̂).

Next, let P̃i ∈ P be an arbitrary report of i which is not a best response to P̂−i. Thus, we have

IA▷
i (P̃i, P̂−i) ̸= IA▷

i (P̂). To show that j’s match will not be affected, first note that j must rank

IA▷
j (P̂) as her top choice in P̂j. Otherwise, P̂i cannot be a best response to P̂−i, since i could submit

a report where IA▷
j (P̂) is ranked first, which would imply that imust receive IA▷

j (P̂). However, note

that by reporting P̃i, agent i can not lead a new agent k ∈ I \ {i, j} to apply to IA▷
j (P̂) at the first step

of the IA algorithmwith input (P̃i, P̂−i). This implies that jmust receive IA▷
j (P̂) and as such i’s envy

towards j at IA▷
j (P̂) is inevitable.

11The proof for non-bossiness of IA▷ can be found in Harless (2014) (Proposition 4).
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Since all choices made were arbitrary, we conclude that any instance of envy under a best response

in an associated Nash equilibrium is inevitable. Hence IA▷ is weakly envy-invariant. This completes

the proof.

4.6 Conclusion

In this paper, I introduced a new incentive concept called envy-proofness that takes into account

agents’ aversion to envy and which is stronger than strategy-proofness. The candidates an agent pos-

sibly envies are specified idiosyncratically and are incorporated into the agent’s type. Envy-proofness

requires that agents cannot avoid instances of envy they are exposed towhile being truthful about their

preferences. I applied the concept toTTC andDA and established that the former is envy-proof, while

the latter is not.

It is an open question how envy-proofness relates to group strategy-proofness. Related to this,

future research could explore more general frameworks for finding envy-proof mechanisms, such

as when group strategy-proofness is difficult to achieve or infeasible. For example, group strategy-

proofness is incompatible with Pareto efficiency on the preference domain with indifferences (Ehlers,

2002) and it would be interesting to see whether the positive findings of this paper also apply to

strategy-proof versions of TTC in these more general settings (Jaramillo and Manjunath, 2012). An-

other example is the class ofComponent-Wise IndividuallyRationalMechanismsproposedbyManju-

nath andWestkamp (2021) suitable in particular for the context of shift-exchange. Thesemechanisms

are strategy-proof, individually rational and Pareto efficient, but it is unclear whether the stronger in-

centive requirement of envy-proofness can be satisfied for some members of this class.12

12InManjunath andWestkamp (2021) agents preferences are trichotomous. Specifically, agents with trichoto-
mous preferences divide the set of available objects into those they find desirable, those they are endowed with
but are undesirable and those they find undesirable but they are not endowed with.
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4.A The Immediate Acceptance Algorithm

The outcome of IA▷ given any preference profile P ∈ P is calculated as follows:

Step 1 Each agent i ∈ Iproposes tohermost preferredobject inX∪{∅}. Eachobject x ∈ X considers

all the proposals and accepts the candidate who applies to x and has the highest ranking on▷x.

The remaining proposals are rejected. Moreover, all agents that propose to the outside option

∅ are accepted.

Step k, k ≥ 2 Each agent who was rejected at step k − 1 applies to her most preferred object not

yet applied to. Each object x ∈ X considers all the new applicants and accepts the highest

ranked applicant according to▷x in case no agent has applied to the object in some previous

round. Otherwise, all proposals are rejected. All agents that propose to the outside option ∅

are accepted.

The algorithm terminates with the assignments of the first step in which no agent is rejected.

4.B Proofs

4.B.1 Proof of Proposition 4.1

(⇒) By Lemma 4.1, strategy-proofness is necessary for envy-proofness. Hence it remains to show

that each envy-proof mechanism is fenced. Take any ψ ∈ G that is strategy-proof and not fenced.

Thus, there exists report profile P ∈ P , i ∈ I and P̃i ∈ Pi such that there exists j ∈ Īi(ψ,P−i) with

ψj(P) ∈ X̄i(ψ,P−i) and ψj(P) ̸= ψj(P̃i,P−i). I show that there exists a type profile, for which being

truthful is not envy-neutral for agent i.

Consider type profiles (P, τ) and ((P̃i,P−i), τ), where τi = I\{i}. We distinguish two basic cases.
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Case 1: ψj(P) Pi ψi(P) or ψj(P̃i,P−i) P̃i ψi(P̃i,P−i). If ψj(P) Pi ψi(P), then i envies j at ψj(P)

under ψ(P) for type profile (P, τ). Now, since ψj(P) ̸= ψj(P̃i,P−i), i’s envy towards j at ψj(P) is not

inevitable and thus ψ is not envy-proof. If ψj(P̃i,P−i) P̃i ψi(P̃i,P−i), then ψj(P̃i,P−i) ̸= ∅ by non-

wastefulness ofψ. Then, a symmetric argumentworkswith i envying j atψj(P̃i,P−i)underψ(P̃i,P−i)

for type profile ((P̃i,P−i), τ).

Case 2: ψi(P)Pi ψj(P)and ψi(P̃i,P−i) P̃i ψj(P̃i,P−i). Consider a type profile ((P∗i ,P−i), τ)with

P∗i such that ψj(P) P
∗
i ψi(P) and ψi(P)R

∗
i x′ for all x′ ∈ X ∪ {∅} \ {ψj(P)}.

By strategy-proofness of ψ and ψj(P) ∈ X̄i(ψ,P−i), we have ψi(P
∗
i ,P−i) = ψi(P). Moreover, by

non-wastefulness of ψ, there exists k ∈ I such that ψk(P
∗
i ,P−i) = ψj(P). Hence by definition of

X̄i(ψ,P−i), k ∈ Īi(ψ,P−i) and since k ∈ τi, i envies k at ψk(P
∗
i ,P−i) under ψ(P∗i ,P−i). If k ̸= j,

then i’s envy towards k at ψk(P
∗
i ,P−i) is not inevitable since ψk(P

∗
i ,P−i) ̸= ψk(P). If k = j, then

i′s envy towards j is not inevitable, since ψj(P
∗
i ,P−i) ̸= ψj(P̃i,P−i). Thus, ψ is not envy-proof. This

completes the first part of the proof.

(⇐) Suppose that ψ ∈ G is strategy-proof and fenced. Consider an arbitrary type profile (P, τ),

where there exists an agent i ∈ I who envies another agent j ∈ τi at ψj(P) under ψ(P). Since ψ is

strategy-proof, it holds that, for each P̃i ∈ Pi, ψi(P) Ri ψi(P̃i,P−i). Hence ψj(P) ∈ X̄i(ψ,P−i).

Now, since ψ is fenced, for all P̃i ∈ Pi, it holds that ψj(P) = ψj(P̃i,P−i). However, then i’s envy

towards j at ψj(P) is inevitable. Since the instance of envy was selected arbitrarily, we conclude that

reporting the truth Pi is an envy-neutral report for i. Next, note that also the type profile and agent

iwere selected arbitrarily and thus being truthful is envy-neutral for each agent and each type profile

under ψ. We conclude that ψ is envy-proof. This completes the proof.
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4.B.2 Proof of Theorem 4.1

Fix an agent i ∈ I and a type profile (P, τ). Let agents report their true preferences P to TTC▷ and

suppose that i envies an agent j ∈ τi at TTC▷
j (P) under TTC▷(P), where we denote TTC▷

j (P) = x.

Next, select an arbitrary P̃i ∈ P . We have to show that i’s envy towards j at xunderTTC▷(P̃i,P−i)

is inevitable. Since TTC▷ is strategy-proof, we have TTC▷
i (P) Ri TTC▷

i (P̃i,P−i). We thus can dis-

tinguish the following cases:

Case1: TTC▷
i (P) = TTC▷

i (P̃i,P−i). Non-bossiness ofTTC▷ impliesTTC▷(P) = TTC▷(P̃i,P−i)

and hence TTC▷
j (P) = TTC▷

j (P̃i,P−i). Thus, i still envies j at x under TTC▷(P̃i,P−i).

Case 2: TTC▷
i (P)Pi TTC▷

i (P̃i,P−i). Under processTTCA▷(P), let i be removed at step ti and let

j be removedwith x at step tx. Since x Pi TTC▷
i (P), i does not point toTTC▷

i (P), before x is removed.

Thus, tx < ti.

Next, under TTCA▷(P̃i,P−i) let i be removed at step t̃i. Let tmin
i = min{ti, t̃i}. We have two

more subcases.

Case 2.1. t̃i > tx. Since ti > tx and t̃i > tx, we have tmin
i > tx. By Lemma 4.2, for each

t < tmin
i the cycles removed are identical in TTCA▷(P) and TTCA▷(P̃i,P−i). Hence tmin

i > tx

implies that TTC▷
j (P̃i,P−i) = x. Thus, since TTC▷

i (P) Pi TTC▷
i (P̃i,P−i), i still envies j at x under

TTC▷(P̃i,P−i).

Case 2.2. t̃i ≤ tx. In this case, we first construct an auxiliary process, where i receives assign-

ment TTC▷
i (P̃i,P−i) and envies j at x and then use the non-bossiness of TTC▷ to conclude that i

envies j at x also underTTC▷(P̃i,P−i). Concretely, let i report P∗i such that x P∗i TTC▷
i (P̃i,P−i) and

TTC▷
i (P̃i,P−i) R∗

i x′ for all x′ ∈ X ∪ {∅} \ {x}. Now note that under TTCA▷(P∗i ,P−i), agent i
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again does not point to TTC▷
i (P̃i,P−i) before x is removed. Thus, using Lemma 4.2, for each step

t ≤ tx, the cycles removed are identical in TTCA▷(P) and TTCA▷(P∗i ,P−i). Hence j receives x un-

derTTC▷(P∗i ,P−i). Moreover, by strategy-proofness ofTTC▷,TTC▷
i (P∗i ,P−i) = TTC▷

i (P̃i,P−i).

SinceTTC▷
i (P)Pi TTC▷

i (P̃i,P−i), we obtain that i envies j at x underTTC▷(P∗i ,P−i). Finally, given

TTC▷
i (P∗i ,P−i) = TTC▷

i (P̃i,P−i), we haveTTC▷(P̃i,P−i) = TTC▷(P∗i ,P−i) by non-bossiness of

TTC▷ and therefore, imust also envy j at x under TTC▷(P̃i,P−i).

Note that all choices made were arbitrary. That is, being truthful is envy-neutral for each agent

under each type profile. Hence TTC▷ is envy-proof. This completes the proof.
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