Utilization of Underlying Semantic
Information in Textual Data

Andras Kicsi

Department of Software Engineering
University of Szeged

Szeged, 2022

Supervisor:

Dr. Laszl6 Vidacs

A THESIS SUBMITTED FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
OF THE UNIVERSITY OF SZEGED

University of Szeged
Ph.D. School in Computer Science

“It’s still magic even if you know how it’s done.”
— Terry Pratchett, A Hat Full of Sky

Preface

Ever since my childhood, I knew that the world is a wonderful place where one can find
magic in nearly everything, only the right viewpoint is needed. This can even apply to
a doctoral thesis. I can promise, however, that whatever viewpoint the reader adopts,
Magic will still be encountered through these pages in one way or another.

I was always fascinated with stories. They make us think, motivate us, and each
of us stars in many little stories of our own every single day. Our stories consist of a
cavalcade of exciting words, and together they form our personality. We are going to
embark on a journey spanning pharmaceutical supply system features, finding targets
for software tests, and even dealing with human spine disorders, but the underlying
theme is always the versatility and usefulness of words. Modern technology enables
us to teach computers to work with these, extract their meaning, or even use them
to construct their own understanding. And this is a wonder by itself, even if we can
explain it.

It is my most sincere conviction that other people are what truly make our life
worth living. I am incredibly grateful that I have the good fortune of knowing so many
great people. I would like to extend an extra special thanks to my family, who have
given me a brain and a heart to face the world, and have continuously supported me
through it. I would also like to thank my love and my wonderful friends, who truly
give merit to my life. Thus, if we assess life in such a way, then mine is truly blessed.

There are so many who helped me along the journey of my studies that I couldn’t
possibly name them all. My utmost gratitude goes out to my supervisor, Laszlé Vidacs,
who, in my opinion, is the best supervisor I could have ever wished for, and not just for
my doctoral studies, but also my work. I will be forever grateful for all the guidance
and care he provided through the years. I do not consider myself easily inspired by
outside sources, and yet, to this day, he can always manage this. I am exceptionally
thankful for my amazing co-authors and my dear colleagues who greatly contributed
to the success of our research. To name a few of them, I would like to thank Viktor
Csuvik, Klaudia Szabé Ledenyi, Péter Pusztai, and Ferenc Horvath without whom I
would have much less to write about now, as their devoted work was indispensable for
my own. [would also like to thank Tibor Gyiméthy for providing me with an offer
for doctoral studies at the Department of Software Engineering, and many interesting
research opportunities ever since. It was a privilege to conduct my studies in such
company.!

Andras Kicsi, 2022

"My work was also supported by the UNKP-21-4-1 and UNKP-22-4-1 New National Excellence
Program of the Ministry for Innovation and Technology from the Source of the National Research,
Development and Innovation Fund.

1ii

Contents

Preface

1

2

I

3

Introduction
1.1 Contributions

Background

Feature-Extraction in 4GL Systems

Feature-Extraction of Magic Applications
3.1 Overview e
3.2 Feature Extraction and Abstraction of Magic Applications
3.2.1 The Structure of a Magic Application
3.2.2 Product Line Adoption in a Clone-and-own Environment
3.2.3 Feature Extraction Approach
3.3 Related Work
3.4 Feature Extraction Experimentso
3.4.1 Overview
3.4.2 Approach
3.4.3 Results and Further Possibilities
3.5 Metrics for 4GL Feature Extraction
3.5.1 Definitions
3.5.2 Experimentso
3.6 Feature Analysis using Call Graph Communities
3.6.1 Overview
3.6.2 Approach
3.6.3 Results.
3.6.4 Matching of communities with 1st level features
3.6.5 Matching of communities with 2nd level features
3.7 Insights Into the Progress of SPL Adoption
3.8 Evaluation
3.8.1 Feature Extraction Outputs
3.8.2 Communities
3.9 Discussion
3.10 Conclusions

iii

II Textual Methods in Aiding Test-to-Code Traceability 51

4 Test-to-Code Traceability
4.1 Overview
4.2 Related Worko
4.3 The Proposed Method
4.3.1 Latent Semantic Indexing
4.32 Doc2Vec
4.3.3 Term Frequency-Inverse Document Frequency
4.3.4 Result Refinement with ensembley Learning
4.3.5 Soft Computed Call Information.
4.3.6 Extended Naming Convention Extraction
4.3.7 Optimal Input Representation
4.3.8 Evaluation Procedure
4.3.9 Sample Projectso
4.3.10 Mining Stack Oveflow for Traceability Links
4.4 Results.
4.4.1 Applicability of Naming Conventions
4.4.2 Ensemble Experiments
4.4.3 NC-based Evaluation
4.4.4 Evaluation on Manual Data
4.4.5 Mining StackOveflow for Traceability Links
4.5 Discussion
4.5.1 Naming Conventions Habits
4.5.2 Traceability Link Recovery Technique Improvements
4.5.3 Performance on Manual Data
4.5.4 Implications oo
4.6 Threats to Validity
4.7 Conclusionso

III Machine Understanding of Radiologic Reports

5 Machine Understanding of Radiologic Reports
5.1 Overview
5.2 Related Work
5.3 Methods
5.3.1 Annotation
5.3.2 Classification
5.3.3 Automatic Correction of the Text
5.3.4 Negations 0oL
5.3.50 Identification
5.3.6 Connectionso
5.4 Results and discussion
5.4.1 Classification and Connections
5.4.2 Spelling Correction
5.4.3 Functional Evaluation
5.5 Conclusions

vi

6 Final Conclusions

Appendices
A Summary in English

B Magyar nyelvii 6sszefoglald

Bibliography

vii

101

103
105

113

121

List of Tables

1.1 Thesis contributions and supporting publications 1
3.1 The recovered number of programs for each feature of the variants with
call-graph (CG) and information retrieval (IR) based extraction 23
3.2 The characteristics of the variants under analysis 24
3.3 Results of our analysis with the five community algorithms for top level
features L 33
4.1 Size and versions of the systems used L. 63
4.2 The applicability of the naming conventions technique using different
approaches 65
4.3 Top-1 results featuring the different text-based models trained on various
source code representations, evaluated using naming conventions. -
highest value in a row - highest value in a column 69
4.4 Top-1 and top-5 results featuring the different text-based models and the
applicability of NC on each project. Models were trained on 5 different
source code representations. - highest value in a row - highest
valueinacolumn L Lo 70
5.1 Annotation statistics in our current version of the 487 report annotations 86
5.2 Size of our various identifier setso 91
5.3 A comparison of our previous BiLSTM-CRF model and our new BERT-
based entity classification00 94
5.4 The results of the understanding scores according the three radiologists 98
A.1 Thesis contributions and supporting publications 111
B.1. A tézispontokhoz kapcsol6dd publikaciok 119

ix

3.1
3.2
3.3

3.4
3.5
3.6
3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

List of Figures

A simple example for different features 12
[llustration on the elements of a Magic application. 14
An illustration of feature extraction and analysis as part of product line

adoption 16
A more detailed view on the feature extraction process 19
The higher level features of the system 19
The process of calculating the call graph 20

The size of our result sets for each feature with each technique. Results
without filtering shown on the left, results with filtering on the right.
(For interpretation of the references to color in the text, the reader is

advised to observe the web version of [68].) 21
Graph visualization of the set of results obtained by the call graph (Left)
and the information retrieval (Right) technique 22
Graph visualization of the set of programs deemed most essential. Re-
sults shown on the left, results with filtering on the right 22
Number of programs for each feature with call-graph (CG) and the in-
formation retrieval (IR) based extraction 24
Coupling Between Features at each variant with call graph and infor-
mation retrieval based feature extraction 27
Program Clarity at each variant with call graph and information retrieval
based feature extraction 28
Sum of Coupling Between Data Objects with CG and IR based feature
extractiono Lo 28
Left: Halstead Value with CG and IR based feature extraction. Right:

Halstead Value with CG and IR, disproportionally large values filtered
out for easier analysiso 29
Left: Halstead Difficulty with CG and IR based feature extraction.
Right: Halstead Difficulty with CG and IR, disproportionally large val-
ues filtered out for easier analysis 30
Henry-Kafura Complexity in proportion to the number of programs at
each variant with CG and IR based feature extraction 31
Number of communities at various parameter settings of the Walktrap
and Leading Figenvector methods 33
The proportions of communities determined in case of each feature at
top level with Walktrap (t=40) detection and a 10% feature coverage
filtering 34

X1

3.19

3.20

3.21
3.22

3.23

3.24
3.25

3.26
3.27
3.28
3.29
3.30

3.31

4.1
4.2

4.3

4.4
4.5
4.6

4.7

4.8
4.9

Three communities with a well distinguishable goal. Each node repre-
sents a program of the system, while its color marks its feature affiliation.
See the node text for cases of more than one features assigned. The edges
are the calls the programs make while the circular groups represent their

assigned communitieso 35
A larger, more general community involving a lot of features and a

medium one with two main features 36
Three communities from the second level feature extraction 38

Matching communities with high-level features. Each node represents a
program of the system, while its color marks its feature affiliation. See
the node text for cases of more than one features assigned. The edges
are the calls the programs make while the circular groups represent their
assigned communities 39
Matching communities with second level features. Each node represents
a program of the system, while its color marks its feature affiliation. See
the node text for cases of more than one features assigned. The edges
are the calls the programs make while the circular groups represent their
assigned communities L Lo 40
The changes made at each transition of feature list versions 41
A summary of feature level transitions in the seven feature list versions,
the green blocks with arrows on the left represent promotions while the

red blocks with arrows on the right represent demotions. 42
The timeline of feature list and system versions currently referenced . . 42
A comparison of the four versions of the system regarding their number
of programs (NP) and their complexity (HD) 43
Evaluation of our feature extraction outputs according to two developers 45
The sum of evaluation answers given by the developers 45
The answers given by domain experts and a comparison of their average
with community-based assessment 47
The possible ways of usage of the results of various feature extraction
techniques in helping product line adoption 48
A high-level overview of the proposed process 57
An example method declaration, from which the AST of Figure 4.3 was
generated Lo 60

An Abstract Syntax Tree, generated from the example of Figure 4.2.
The numbers inside each element indicate the place of the node in the
visiting order. Leaves are denoted with standard rectangles (note that
here the value and the type is also represented), while intermediate nodes

are represented by rectangles with rounded corners 61
Properties of the sample projects used 64
Various possible naming convention criteria components 65
Some of the possible naming convention criteria in descending order of

restrictiveness L Lo Lo 66
Results of the ensembley learning approach measured on the manual

dataset 67
Results of the ensembley learning approach using NC-based evaluation 68
A Venn diagram about our Stack Overflow matches 69

xii

4.10 A trivial naming convention example from Commons Math

5.1
5.2
5.3
5.4
2.5
2.6

5.7
2.8
2.9

The workflow of a radiologic examination
An English language illustration of our annotation system
An illustration of our classification of locations, disorders and properties
A results of the manual correction of the 487 reports.
An medical text example with highlighed suffixes
The proposed automatic method for detection and correction of mis-
spellings
An illustration of our structured visualization of the text seen in Fig. 5.2
Our proposed method for automatic understanding and visualization
Our automatic spelling correction tool for radiologic reports with eval-
uation of the example text compared to a traditionally used text editor

xiil

“Once you learn to read, you will be forever
free.”

— Frederick Douglass

Introduction

If we look at almost any aspect of civilization, we will find textual information indis-
pensable. Written text has always been the primary source of knowledge, but more
importantly, the leading promoter of human organization and cooperation. The more
organized side prevailed in nearly any conflict throughout the entirety of history, and
organization and cooperation led to our current advances, including our modern society
and technology. Never has been more information recorded in textual form than in our
present time.

Parallel to this, there has never been a better time to process the information in
natural language text. Modern information technology has the capacity to process
hundreds of sentences in the blink of an eye and do it with a memory that is vastly
superior to the human mind’s.

The current work delves into the extraction of information from various textual
sources and the possible utilization of such information, often including its combination
with other already established methods.

The thesis discusses three main topics: I. Feature-Eztraction in 4GL Systems, II.
Textual Methods in Aiding Test-to-Code Traceability and III. Machine Understanding
of Radiologic Reports. These topics emphasize the importance of underlying semantic
knowledge in text and aim to extract and utilize this information from various artefacts.
The thesis consists of these three main parts, which correspond to the three thesis
points. The methods, experiments and results of the thesis have also been the subject
to many of the author’s previous publications, of which 16 should be mentioned here.
Their contribution to the specific thesis points of the thesis is summarized in Table 1.1.

Ne [77] [67) [65] [78] [68] [75] [31] [30] [71] [76] [66] [70] [73] [72] [69] [74]

I. *

II. * . * . * .

E . * * * *

Table 1.1: Thesis contributions and supporting publications

1. CHAPTER. INTRODUCTION

The thesis is structured as follows. The next chapter, Chapter 2, briefly lays down
some of the most important concepts spanning multiple parts of this thesis.

The first part, which describes the results of our work in the feature-extraction
of fourth generation language (4GL) product line adoption, consists of a chapter on
this topic, Chapter 3, providing an understanding of what a product line is and why it
is challenging to build one from variants. The chapter’s main contributions include a
feature extraction technique based on call graphs and information retrieval, several new
feature level metrics for fourth-generation languages and a community-based feature
analysis method.

The second part’s only chapter, Chapter 4 investigates textual methods in the
interest of finding the classes under test for unit tests. It provides a glance at the
importance and current state-of-the-art techniques of test-to-code traceability and es-
tablishes that most of them use some forms of textual methods as part of their solution.
The chapter aims to provide a detailed analysis of the most commonly used textual
techniques and their possible improvements.

The third part, dealing with the machine understanding of Hungarian spinal re-
ports, also has only one chapter. Chapter 5 describes how radiologists compose reports
and the motivation behind their analysis. The chapter showcases our experiments in
identifying three entity classes through machine learning means and extracting their
connections via linguistic analysis, eventually constructing a structured representation.
The chapter also elaborates on report composition and the importance of correcting
lexical errors in order to map the gathered entities to an ontology, resulting in proper
identification. It also highlights our solution for the automatic correction of radiologic
reports.

Chapter 6 sums up the thesis, while in appendices A and B, brief summaries of the
thesis are shown in English and in Hungarian, respectively. The appendices, further-
more, contain brief summaries on the thesis points, as well as the author’s contributions
and publications.

1.1 Contributions

The ideas, figures, tables and results included in this thesis were published in scientific
papers (listed at the end of the thesis). In a nutshell, the author is responsible for the
following contributions:

Chapter 2.: The author implemented the information retrieval feature-extraction
solution and took part in the planning and coordination of the experiments, including
the combination possibilities, new metrics, community detection, and evaluation. He
took part in the combination effort between static analysis and information retrieval,
both in implementation and the analysis of the results. The author implemented a
basic feature-extractor with graphical interface based on information retrieval for the
initial approach, and later performed the analysis of the variants, and planned the
validation procedure.

Chapter 3.: The author implemented a Latent Semantic Indexing based solution for
recovering traceability links and the evaluation code relying on naming conventions and
also manual data. He also implemented recovery techniques based on various naming
conventions and conducted experiments with them. The author planned and coordi-

1. CHAPTER. INTRODUCTION

nated the manual annotation of the TestRoutes dataset and also the Stack Overflow
experiments. He also took part in the evaluation and explanation of various other
results and the planning of all of the published experiments.

Chapter 4.: The author laid the groundwork and coordinated the manual annotations,
and took a big part in the later refinement of the data. He took part in the planning of
all aspects of the machine understanding method and coordinated its implementation.
The author planned the functional evaluation and its guidelines. He took a big role in
the evaluation and explanation of the results and their implications.

“Maybe stories are just data with a soul.”

— Brené Brown

Background

The following chapters of the thesis present three distinct topics and the author’s role in
them. Even though the chapters deal with different domains, there are some underlying
concepts that will inevitably come up. Let us address these in a really brief overview
first.

Artificial Intelligence and Machine Learning

For a long time, humanity has been obsessed with thinking machines. Computers
serve us is every second of our daily life with highly advanced capabilities that were
unimaginable just a few years ago. Artificial intelligence (AI) has proven to be able
to outperform the human brain at many tasks. Long before the currently fashionable
artificial neural networks’ debut, there have already been highly advanced heuristic
and machine learning algorithms capable of incredible feats. Even these, however,
were highly reliant on quality data. Heuristic methods have to be constructed along
empirical evidence, and training data is one of the cornerstones of machine learning.
In modern machine learning solutions, data is everything. As of now, there is still
room for human creativity, and there are countless new solutions that are waiting to
be invented. Data is everywhere around us, and it’s up to researchers and industrial
practitioners to extract the information and use it with care.

Natural Language Processing

Natural languages are the languages that are developed naturally in use. All of us use
them on a regular basis which provides our most essential means of communication.
Natural languages differ from formal ones as they tend to have more exceptions, ir-
regularities, and as a consequence, complexity. Our current topics mainly concern two
of such languages, English and Hungarian. These are highly different. Hungarian is
a morphologically rich language with vast amounts of possible suffixes, while this is
much less so for English text. The two also highly differ in their sentence structure.
Thus, invariability between them is unattainable as of now for almost any automated
method aiming to extract information.

2. CHAPTER. BACKGROUND

Natural language processing (NLP) is the process of analysing the natural language
text with various goals. NLP is widely used in several domains, and recent advances
really highlight its capabilities. Al assistants can understand our speech without dif-
ficulty, and chatbots are capable of expressing human-like behaviour near-flawlessly.
Natural language conveys semantic meaning, and thus its processing can bridge some
structural boundaries set by domain-specific restrictions such as source code syntax.
One specific field of NLP is called information retrieval (IR), which deals with the ex-
traction of valuable information from elements of a text. Our current topics all revolve
around information retrieval in one way or another.

Latent Semantic Indexing

LSI [34] is an older technique that has been used as mainstream in many tasks of
semantic analysis. It is often considered one of the base techniques of many software
engineering research approaches that rely on information retrieval. It relies on semantic
information of text handled as vectors and produces a more compact form of vectors
that results in the semantically more similar documents obtaining less distance in their
vectors. LSI uses singular value decomposition to achieve this task.

Doc2Vec

Doc2Vec was introduced by Google’s developers [105] and can be considered an ex-
tension of Word2Vec, a word embedding technique commonly used in various machine
learning approaches in recent years. It operates with vector representations of words
that are transformed to a lower number of dimensions via neural networks. The hidden
layer has fewer neurons than the input and output layers, and the weights of the hid-
den layer provide the word embedding output we need. Thus, similarly to LSI, a more
compact representation is constructed. Doc2Vec differs from Word2Vec only in also
adding a unique identifier for each document to the input layer, thus distinguishing
different documents (like sentences, articles or software code methods), which permits
a word to have a different meaning in different contexts.

Long Short-term Memory

Long short-term memory (LSTM) [54] is an artificial neural network used in artificial
intelligence and deep learning. Unlike standard feedforward neural networks, LSTM
has feedback connections. This makes it possible for the LSTM to process entire data
sequences. BiLLSTM is the bi-directional version of this model. This consists of two
LSTMs: one taking the input in a forward direction and the other in a backwards
direction. BiLSTMs increase the amount of information available to the network,
improving the context available to the algorithm.

Conditional Random Fields

Conditional random fields (CRF) [84] is a model suitable for sequence learning, which
also provides a solution to the label bias problem. CRF estimates the conditional
probability of a sequence.

2. CHAPTER. BACKGROUND

Bidirectional Encoder Representations from Transformers

Bidirectional encoder representations from transformers (BERT) [36] is a transformer-
based model that applies the popular attention mechanism to textual context. The
model takes into account the words that occur before and after the tokens when rep-
resenting them. The model can be fine-tuned by adding a single output layer, thus
achieving state-of-the-art results on several natural language processing tasks. More
specific tasks (downstream tasks) are built into the process, thus resulting in sepa-
rate fine-tuned models. As a result, the big advantage of BERT is that the difference
between the architecture of the pre-trained and the downstream model is minimal. De-
pending on its size, BERT contains different amounts of encoder layers and a bidirec-
tional self-attention head. Simply put, the architecture of BERT is a set of transformer
encoding layers stacked on top of each other.

Static Source Code Analysis

Software code is text structured according to the particular syntax of the language
used. The analysis of source code holds a great number of obvious benefits like quality
assurance, better compilers, and advanced coding practices. It has been practised
and researched for many years. In contrast to dynamic analysis, static analysis does
not require the software to be actually run during its examination. Such analysis
can involve the construction of an abstract syntax tree (AST), or on an even higher
abstraction level, an abstract semantic graph (ASG). By adding function calls as edges,
call graphs (CG) can also be constructed. These artefacts serve as potent tools for
analysis and play at least some part in many of our current topics.

Evaluation Metrics

There are some universal metrics our results will be displayed with. Let us discuss
them here briefly.

Precision is the proportion between correctly detected or retrieved results (rele-
vantResults) and all detected or retrieved results (retrievedResults). It computes as

relevantResults N retrieved Results

Tectsion =
b retrieved Results
It basically describes what proportion of our results (retrieved tests for traceability or
tokens classified as disorders for radiology understanding, for example) was correct.
Recall is the proportion between the correctly detected or retrieved results and all
the results that should have been detected or retrieved. It computes as

relevant Results N retrieved Results
recall =

relevant Results

It basically describes what proportion of the real results (retrieved tests for traceability
or tokens classified as disorders for radiology understanding, for example) was indeed
detected or retrieved.

F1-score (or just F-score in our context) is a measure that combines precision and
recall is the harmonic mean. This is usually a good indicator of how well a method
performs.

2. CHAPTER. BACKGROUND

Accuracy describes how many of the decisions were on point. In a binary decision
case, it factors in true positive (TP), false positive (FP), true negative (TN), and false
negative (FN) decisions and computes as

TP+TN
TP+TN+ FP+ FN

accuracy =

In a multi-label classification case, accuracy is computed as

CorrectClassifications
AllClasst fications

accuracy =

Part 1

Feature-Extraction in 4GL Systems

“Any sufficiently advanced technology is indis-
tinguishable from magic.”

— Arthur C. Clarke

Feature-Extraction of Magic Applications

3.1 Overview

Let us imagine that we have built a software system. Our imaginary system deals
with pharmaceutical wholesaler logistics. We have a client with specific needs and
requirements that the software fulfils and improves the client’s daily business. We get
compensated accordingly, maintain the system, provide regular updates, and address
the client’s arising needs.

There are, however, more businesses with similar needs. Why would we need to
start over and build another system from the basics? Software reuse is a field of software
engineering that is widely used in nearly every industrial setting. The same software
could be sold to different clients. This is popularly called a clone-and-own [41] model.
The parallel versions of the system are called variants.

This seems like an effortless way to make money with little work. Challenges
may arise, however. An oversimplified example is illustrated in Figure 3.1. In our
imaginary example, our first client had the pharmaceutical supplies packaged into
boxes, and warehouse workers managed their storage by manual labour. Our second
client wants something similar, but machines heavily aid its storage. New features have
to be implemented. The clients can require feature models that are vastly different
in some aspects. In a clone-and-own setting, this means that the new features are
just added to the previously existing code. What about our old client? Do we also
enable these features for them as part of an update? They may not want to pay
for it if it does not match their needs, understandably. And what shall we do with
the unused features? Delete it from the second variant? As time passes, the feature
models resemble ever-growing trees that are very hard to consolidate. Soon, various
updates have to be implemented differently for each variant, and we will have created
very resource-intensive maintenance necessities for ourselves. It is easy to imagine
what complications would arise, should we also consider making variants for even more
distinct clients, such as grocery stores. One possible remedy for this predicament is the
adoption of software product lines (SPL). This would result in one large system, the
product line, instead of many variants. Features could be enabled or disabled according

11

3. CHAPTER. FEATURE-EXTRACTION OF MAGIC APPLICATIONS

to each client’s needs, and essential updates could get to every affected client. This
way, the feature model becomes a more sophisticated tool that can enhance further
business with minimizing unnecessary effort.

bad

Figure 3.1: A simple example for different features

Maintaining parallel versions of software satisfying various customer needs is chal-
lenging. Many times, the clone-and-own solution is chosen because of short term time
and effort constraints. As the number of product variants increases, a more viable so-
lution is needed through systematic code reuse. A natural step towards more effective
development is the adoption of product line architecture [26]. Product line adoption is
usually approached from three directions: the proactive approach starts with domain
analysis and applies variability management from scratch. The reactive approach in-
crementally replies to the new customer needs when they arise. When there are already
several systems in production, the extractive approach seems to be the most feasible
choice. During the extractive method, the adoption process benefits from systematic
reuse of existing design and architectural knowledge [81]. An advantage of the extrac-
tive approach, in general, is that several reverse engineering methods exist to support
feature extraction and analysis [60, 11, 38].

In the course of an industrial project, we conducted research in such an environment.
It was a product line adoption project where the new architecture was based upon
an existing variant, and the specific functions of the others were being merged into
the final architecture. In principles, this is closest to the extractive approach. Our
subject was a legacy high market value, wholesaler logistics system adapted to various
domains in the past, using the clone-and-own method. It was developed in a fourth-
generation language (4GL) technology, Magic [97]. The product line architecture was
built based on an existing set of products developed in the Magic XPA language. This
provided some unique challenges. Although there is reverse engineering support for
usual maintenance activities [108, 110], the special structure of Magic programs made it
necessary to experiment with targeted solutions for coping with features. Furthermore,
approaches used in mainstream languages like Java or C++ also needed to be re-
considered for systems developed in 4GLs as they tend to have their unique elements
and structure. For instance, in Magic, there is no coding in the traditional sense. The
developer instead sets up the user interface, and data processing units in a development

12

3. CHAPTER. FEATURE-EXTRACTION OF MAGIC APPLICATIONS

environment and the flow of the program follows a well-defined structure.

The focus of our work was the feature identification and analysis phase of the
project. This is a well-studied topic in the literature for mainstream languages [11],
but this is much less deeply explored for 4GL environments. Our method started from
a set of very high level features provided by domain experts and used information
extracted from the existing program code. The information retrieval (IR) approach
to feature extraction as a single method turned out to be rather noisy in Magic 4GL
system analysis [77]. Hence the extraction was performed by combining and further
processing call graph information on the code with the textual similarity between code
and high level features. Essentially, the method is working simultaneously with struc-
tural (syntactic) and conceptual (text-based) information, similarly to what have been
previously proposed for traditional object-oriented systems [5]. While most related
literature deals with object-oriented systems, our goal was to aid the product line
adoption of an existing 4GL system. This brought not only a distinction from the lan-
guage perspective but also a less general and more industrially motivated viewpoint.
While similar methods could be used in object-oriented environments, these often had
to be modified in our case. IR-based methods have fewer problems dealing with the
different paradigms. With structural information, however, it can be challenging to
achieve the same results as with more simply structured systems. Besides combining
the textual extraction with a structural one, our research produced an effective method
for filtering the data from both of these sources as well. This can result in information
more suitable for performing the SPL adoption for various stakeholders of the project,
including domain experts and architects. In summary, the contributions of this chapter
are the following:

o A method for feature extraction by combining syntactic and textual information
and using filtering results of the two sources.

o Several new metrics for 4GL feature extraction that previously did not exist for
the feature level.

o Feature analysis methods by applying community detection algorithms to match
features with call graph communities.

o A description of the application of the approach in an industrial setting in 4GL
environment during a product line adoption project.

The main goal of our work was to aid our industrial partner in its ongoing product
line adoption task. While our results may have the potential to be used in the case of
other 4GL languages or other feature extraction work, we did not attempt to introduce
a completely foolproof and fully versatile approach for every situation. The chapter
is structured as follows. Section 3.2 introduces our current task and defines our ap-
proach to tackle the problem. We overview the related work in Section 3.3. Section 3.4
provides more detailed information on our methods for feature extraction and presents
our various result sets. Section 3.5 introduces several new metrics and demonstrates
their usability in the analysis of four variants of the same system. Section 3.6 describes
our experiments on call graph communities. Since we aimed to facilitate the adoption
process, an analysis of the project’s progress can be found in Section 3.7. We evalu-
ate our various feature extraction outputs and the community detection’s information
value in Section 3.8 with the help of two research questions that we seek answers to.

13

3. CHAPTER. FEATURE-EXTRACTION OF MAGIC APPLICATIONS

Section 3.8 provides some discussion on the results, while we conclude the chapter in
Section 3.10.

3.2 Feature Extraction and Abstraction of Magic
Applications

3.2.1 The Structure of a Magic Application

1‘ HASTABLE

11 * PROGRAM] TABLE
APPLICATION T
K3 '
Logic UNIT
1.%
1 * PROGRAM MENU
MENU
CAN HAVE A SINGLE

Figure 3.2: Illustration on the elements of a Magic application

1.%

Being a fourth-generation language, Magic does not completely follow the structure
of a traditional programming language. It has a lot of different elements. In this
subsection, we seek to introduce the only ones necessary for the understanding of our
approach. Figure 3.2 presents these elements.

A software written in Magic is called an application. These can be built up from one
or more projects. In turn, each project can have any number of fasks containing the
software’s actual logic. The tasks branching directly from a project are called programs.
These can have their own subtasks and be called anywhere in the project like methods
in a traditional programming environment, but their subtasks can only be called by
the (sub)task containing them. Any task or subtask can access data through tables.

It is also possible for a program to be called through menus, which are controls
designed to provide user intervention and usually start a process by calling programs.
Having sufficient information on menus, we used these as a base for the call graph in
structural feature extraction, deriving calls from menus.

3.2.2 Product Line Adoption in a Clone-and-own Environ-
ment

The decision of migrating to a new product line architecture is hard to make. Usually,
there is a high number of derived specific products, and the adoption process poses
several risks and may take months [27, 25, 23]. The subject system of our analysis
is a leading pharmaceutical wholesaler logistics system that was started more than 30
years ago. Meanwhile, almost twenty derived variants of the system were introduced
at various complexity and maturity levels with independent life cycles and isolated

14

3. CHAPTER. FEATURE-EXTRACTION OF MAGIC APPLICATIONS

maintenance. Our industrial partner is the developer of market-leading solutions in
the region, which are implemented in the Magic XPA fourth-generation language.

Our work was part of an industrial project aiming to create a well-designed prod-
uct line architecture over the isolated variants. The existing set of products provided
an appropriate environment for an extractive SPL adoption approach. Characterizing
features is usually a manual or semi-automated task, where domain experts, product
owners and developers co-operate. Our aim was to aid this process by automatic anal-
ysis of the relation of higher-level features and map program level entities to features.

The 4GL environment used to implement the systems requires different approaches
and analysis tools than today‘s mainstream languages like Java [108, 49]. The develop-
ers work in a fully-fledged development environment by customizing several properties
of programs. Magic program analysis tool support is not comparable to mainstream
languages. Hence this was a research-intensive project.

The feature extraction process was challenging since the 19 product variants were
written in 4 different language versions, Magic V5, Magic V9, UniPaaS 1.9 and XPA
3.x. In the case of the oldest Magic V5 systems, there is a high demand for the migration
to a newer version. UniPaaS 1.9 introduced considerable changes in the language by
using the .NET engine for applications. Most systems are implemented in this version.
The latest Magic XPA 3.x line of the language lies close to the uniPaaS v1.9 systems.
Each variant was between 2,000 and 4,000 Magic programs in size with a high amount
of code in common. Magic is a data-intensive language, which is clearly reflected in
the program code as well, the variants containing a maximum of 822 models and 1,065
data tables.

3.2.3 Feature Extraction Approach

During product line adoption’s feature extraction phase, various artefacts are obtained
to identify features in an application [13]|. This phase is also related to feature location.
The analysis phase targets common and variable properties of features and establishes
the reengineering phase. This last phase migrates the subject system to the product
line architecture.

In this research project, our aim was feature extraction and analysis. Our inputs
were the high-level features of the system and the program code. We applied a semi-
automated process as in the work of Kastner et al. [60]. Domain experts collect high-
level features from the developer company. The actual task is to establish a link between
features and the main elements of the Magic applications. Although there exists a
common analysis infrastructure for reverse engineering 4GL languages [109, 108, 110},
the actual program models differed here.

Figure 3.3 illustrates our current approach to feature extraction. We assigned sev-
eral elements for each high-level feature, and this information was aiding the work of
developers and domain experts working on the new product line architecture. This is
the feature extraction phase, which can be seen at the center of the figure with the
green feature nodes, and the yellow program nodes are organized in graphs with their
connections displayed. During the assignment, we mainly relied on structural infor-
mation attained on call dependency by constructing a call graph of the programs of a
variant. This resulted in a high number of located elements, crucial for the develop-
ment of product line architecture. However, the large amount of data can be hard to
grasp in its entirety. We combined this method with information retrieval, which can

15

3. CHAPTER. FEATURE-EXTRACTION OF MAGIC APPLICATIONS

SET OF STRUCTURAL AND CONCEPTUAL FEATURE S

DEVELOPER
VARIANTS PROGRAMS EXTRACTION WITH COMMUNITY DETECTION W o
[] ‘

-’» 1
‘
o | |
‘ ‘ ‘

S NEW
S PRODUCT LINE
ARCHITECTURE

INFORMATION

N7777777

[]
DOMAIN
EXPERT

HieH LEVEL SET OF
FEATURE LIsST FEATURES

=

Il
o

QUALITY ASSESSMENT

INFORMATION

Figure 3.3: An illustration of feature extraction and analysis as part of product line
adoption

also make it easier to cope with a 4G language by utilizing conceptual connections and
is successfully applied in software development tasks, such as in traceability scenar-
ios for object-oriented languages [99]. A comprehensive overview of NLP techniques
— including latent semantic indexing (LSI), the technique we chose — is provided by
Falessi et al. [40].

To further assist the work of domain experts, we analyzed communities based on
the call graph of the entire system. This can open the way for comparison between the
view of domain expert features with code level communities that reflect their imple-
mentation. Community detection algorithms address large networks and have already
been used for software engineering problems like handling dependencies [48] and sup-
port modularization [106]. However, to our knowledge, they haven’t been used for
product line research previously.

In 2017 [77], we presented our first LSI-based approach for feature extraction. LSI is
already known to be capable of producing good quality results combined with structural
information [5]. Our works also introduced more than forty new metrics [64] in total for
4GL feature extraction, which included properties based on complexity, coupling, size,
and similarity. The advances listed above are elaborated in the following sections.

3.3 Related Work

The literature of reverse engineering 4GL languages is not extensive. By the time the
4GL paradigm has arisen, most papers coped with the role of those languages in soft-
ware development, including discussions demonstrating their viability. The paradigm
is still successful, but only a few works are published about the automatic analysis and
modeling of 4GL or specifically Magic applications. The maintenance of Magic appli-

16

3. CHAPTER. FEATURE-EXTRACTION OF MAGIC APPLICATIONS

cations is supported by cost-estimation and quality analysis methods [153, 158, 109].
Architectural analysis, reverse engineering and optimization are visible topics in the
Magic community [49, 116, 110, 108], and after some years of Magic development,
migration to object-oriented languages [94] as well.

SPL has a widespread literature, and over the last decade, it has gained even more
popularity. Researchers have tackled all three phases of feature analysis (identification,
analysis, and transformation). A mapping study on research works on feature location
can be read in [11].

Software product line adoption is a time-consuming task. Several semi-automatic
approaches have been proposed [150, 10, 50] to accelerate this activity. Reverse en-
gineering is a popular approach that has recently received increased attention from
the research community. With this technique, missing parts can be recovered, feature
models can be extracted a set of features, etc. [150, 88]. Applying these approaches,
companies can migrate their system into a software product line. However, changing
to a new development process is risky and may have unnecessary costs. The work of
Kriiger et al. [82] supports cost estimations for the extractive approaches and provides
a basis for further research.

Efficient community detection algorithms have already been developed which can
cope with extensive graphs with millions of nodes and potentially billions of edges [18].
Originally, community detection was primarily applied on graphs that represent com-
plex networks (e.g. social, biological, technological) [43], and have also been suggested
for software engineering problems [48]. Besides applications in testing and dependency
analysis, software modularization [106] is also addressed by community algorithms.
Although modularization is related to reuse and a natural extension of the approach
is to use them for feature analysis purposes, we were not aware of previous work on
features and community algorithms in the 4GL context. Graph-based methods, in gen-
eral, usually yield good results and scale well to large systems. For example, in [160]
Xue et al. introduced a model differencing technique to detect evolutionary changes
to product features. In our process, they only relied on feature sets, while our work
points out that the relationships with communities can also be valuable information.

Feature models are considered first-class artefacts in variability modelling. Haslinger
et al. [50] presented an algorithm that reversed engineers a feature model for a given
SPL from feature sets that describe the characteristics each product variant provides.
She et al. [135] analyzed Linux kernel (which is a standard subject in variability anal-
ysis) configurations to obtain feature models. LSI has been applied for recovering
traceability links between various software artefacts, even in feature extraction experi-
ments [161, 4, 37]. The work of Marcus and Maletic [99] is an early paper on applying
LSI for this purpose. Eyal-Salman et al. [38, 37] used LSI to recover traceability links
between features and source code with about 80% success rate, but experiments were
done only for a small set of features of a simple Java program. The main contrast
between Eyal-Salman et al.[37] and our methods is that instead of using family models
and test cases to refine LSI results, we utilized the information of call graphs and com-
munities for this purpose. IR-based solution for feature extraction was combined with
structural information in the work of Al-msie’deen et al. [5]. Further research dealt
with constraints in a semi-automatic way [12] both for functional and even nonfunc-
tional [136] feature requirements. For an overview of analysis methods in product line
research, see Thum et al. [146].

Substantial research on similar fields already pointed out that features are not

17

3. CHAPTER. FEATURE-EXTRACTION OF MAGIC APPLICATIONS

independent of each other, and the structure of source code resembles the structure
of features [160, 79, 122]. Building on this intuition, metrics can be defined [122]
based on structural similarity and can be used in a feature location method within
an iterative context-aware approach. Besides these metrics, communities also provide
relevant information about the structure of the program code. In further contrast, our
approach considers the internal structure of software for determining the relevance of
the program elements to the features.

Several studies [149, 151, 62, 120] have shown that variability analysis across differ-
ent software levels is able to come up with promising results. For example, in [62] the
authors presented an approach for commonality and variability analysis across multiple
software projects at different levels of granularity. They evaluated their work on 19
C/C++ operating systems, while our approach was tested in the Magic programming
language. Feature levels are also a novelty in variability analysis.

Static methods individually are commonly used for the detection of features [79,
60, 120], but the combination of those is not a common practice in the field. Hybrid
approaches [4] combine two or more types of analysis to use one type of analysis to
compensate for the limitations of another, thus achieving better results. Dynamic
analysis[79, 117, 98] is utilized in some of the related research to analyze execution
scenarios by using methods that collect and analyze information about the execution of
the artefacts. Search-based strategies [93, 149] apply algorithms from the optimization
field, such as genetic algorithms in the localization features.

Measuring the complexity of software at the source code level is approached from
many directions. First, and still popular complexity measures (McCabe [103], Hal-
stead [47], Lines of Code [8]) were surveyed by Navlakha [111]. A survey that sums
up complexity measures was published by Sheng Yu et al. [167]. In the mainstream
programming language context, there are papers available that analyze the correlation
between certain complexity metrics. For instance, Meulen et al. [152] showed that there
are solid connections between LOC and HCM, as well as between LOC and CCM in
C/C++ programs. For other 4GLs, there have been some endeavors to define metrics
to measure the size of a project [153], [158], [96]. There are also some industrial solu-
tions to measure metrics in the 4GL environment. For instance, RainCode Roadmap!
for Informix 4GL provides a set of predefined metrics about code complexity (number
of statements, cyclomatic complexity, nesting level), concerning the structured query
language, and about lines. In the world of Magic, there is a tool for optimization
purposes too called Magic Optimizer? which can be utilized to perform static analysis
of Magic applications. It does not provide metrics, but it can locate potential coding
problems.

As it is visible, product line adoption is a widespread area, and the evaluation of
the research results is often a challenging task. In a traditional programming language
environment, several approaches were introduced to overcome these obstacles. For
example, in a similar work [53] where structural and lexical information were combined,
researchers used the well-known precision and recall metrics to compare their approach
against state-of-the-art techniques. This method is similarly used in several works [155,
6, 161, 101]. Although the evaluation process is qualitative and seems appropriate, it
is not applicable in every case [7, 123, 124] which is even more valid for non-traditional
programming languages like Magic. Applying existing approaches in 4GL presents

"http://www.raincode.com/fglroadmap.html
2http://www.magic-optimizer.com/

18

http://www.raincode.com/fglroadmap.html
http://www.magic-optimizer.com/

3. CHAPTER. FEATURE-EXTRACTION OF MAGIC APPLICATIONS

s STATIC CALL DEPENDENCY WELL SEPARATED
raTLe * CALL * BASED FEATURE FELTERIRE HI6H LEVEL
GRAPH EXTRACTION EXTRACTION

— INFORMATION COMBINED

E— RETRIEVAL EXTRACTION OF
FEATURE — * LSI BASED FEATURE MosST ESSENTIAL
LIST AND =— IR-BASED EXTRACTION CONNECTIONS
MENUS feTHon

Figure 3.4: A more detailed view on the feature extraction process

several obstacles since the entire environment is very different. The structure of these
systems also differs from the conventional projects. Finding an open-source project is
a very hard task. It is clear that the evaluation in these cases should be unique, and
new approaches are needed.

Several existing approaches can be adapted to the 4GL environment, although none
of the papers we encountered cope with Magic product line adoption directly.

3.4 Feature Extraction Experiments

3.4.1 Overview

In this section, we present our feature extraction methods based on call dependency and
textual similarity, as well as the combination and possible filtering options. Figure 3.4
illustrates the processes described in this section. Our static analysis is specific to the
Magic language. One of our subject system variants was selected by domain experts to
be used as a starting point for product line adoption. It was a specific variant involving
4,251 programs, 822 models and 1,065 data tables. The new product line started from
this variant. The capabilities of the other variants were being built into the product
line during the adoption process. A feature list has been provided for us, structured
in a tree format, consisting of three levels which had 10, 42 and 118 unique elements,
respectively. This list was being refined in an iterative manner. From these, the upper
level is used throughout the thesis to display our results. The features of this level are
listed in Figure 3.5. The numbers shown here are in accordance with the numbers in
the labels in our later graph examples.

1 - Manufacturing 6 — Administrator interventions
2 - Interface 7 — Supplier order management
3 — Access management 8 - Invoicing

4 - Quality control 9 - Master file maintenance

5 - Stock control 10 - Customer order reception

Figure 3.5: The higher level features of the system

19

3. CHAPTER. FEATURE-EXTRACTION OF MAGIC APPLICATIONS

3.4.2 Approach

Feature Extraction Using (Task) Call Dependency

This approach relies on the call dependencies between programs and tasks. To construct
a call graph from these dependencies, we used the process illustrated in Figure 3.6. The
figure represents a minimalistic example of a Magic application. Squares mean tasks
and programs, while other program elements like projects, logic units, logic lines, etc.,
are shown as circles. The abstract semantic graph is constructed from the source code
provided by our static source code analysis tool. As the next step, we added the call
edges to the graph by examining Magic elements that operate as calls between tasks
and programs. Finally, in the last two steps of the process, we eliminated some nodes
and edges from the graph, keeping only the necessary ones i.e., call edges, tasks, and
programs. From the CG, we obtained the features by running a customized breadth-
first search algorithm from specific starting points determined by menu entries. The
domain experts assembling the feature list know the menu structure well. Hence we
considered the given feature-menu connections a good starting point for call graph
construction. A graph representation of the CG based results can be seen later on the
left side of Figure 3.8.

ASG Call edges Task filtering CG

Figure 3.6: The process of calculating the call graph

Textual Similarity

By the textual nature of information retrieval techniques, they are less susceptible to
various difficulties some other techniques face. In our case, one of the biggest problems
is that the systems processed use different versions of the Magic language. Thus, IR can
contribute to a more versatile approach. For this purpose, we used the Latent Semantic
Indexing technique [34] to measure textual similarity. A more complete summary of our
feature extraction work with LSI is presented in [77]. Similarly to the CG technique,
we also utilized information retrieval to determine connections between features and
programs of the system. Though the structural information obtained from the call
graph is more thorough, it can be more fitting for the developers rather than domain
experts. With purely structural information, it is hard to separate along features.
Having many programs laying the groundwork for any single feature, it is hard to
grasp the overall aim. This conceptual analysis separates more agreeably according to
the semantics of the feature. Hence, it can be more valuable for domain experts. A
graph representation of textual similarity results can be seen later on the right side of
Figure 3.8.

20

3. CHAPTER. FEATURE-EXTRACTION OF MAGIC APPLICATIONS

3.4.3 Results and Further Possibilities

management

Access
Access
management

Programs
assigned

Programs
assigned
CG(n=12)

N
-t

Figure 3.7: The size of our result sets for each feature with each technique. Results
without filtering shown on the left, results with filtering on the right. (For interpre-
tation of the references to color in the text, the reader is advised to observe the web
version of [68].)

The two methods we used for program assignment to features use fundamentally
different strategies for achieving their results. Consequently, the results themselves
also show a significant difference, overlapping only partially. The set of programs for
the techniques presented are shown on the left side of Figure 3.7. Each slice of the
diagram represents a top-level feature, and its colors indicate the number of programs
detected by each technique. IR represents the result set of the information retrieval
technique, CG represents the pairs attained by call graph, while ESS represents the
set of programs considered most essential, detected by both techniques. The left side
of Figure 3.9 shows the number of programs assigned in each set. The abbreviations
match the ones explained at the previous figure.

The call graph dependency technique provides a high number of programs for each
feature, as displayed on the left side of Figure 3.8. These relations are based on real
calls of the code itself, which can be considered a credible source of information. It is
important to note that we only used static call information, thus at runtime, not every
call occurs inevitably. Developers need to work with programs, hence they are required
to have some readily available information on all of them. The call information, which
this technique uncovers, is likely to benefit their basic understanding of the programs.
Still, it also presents a problem of coping with a large amount of data not really
distinguishable in any manner.

The conceptual method produces fewer programs for each feature, as can be seen
on the right side of Figure 3.8 where we show a graph representation of the IR-based
results. Further examination of random cases revealed that even considering this, a
significant amount of noise presents itself. Textual similarity works with very little
information in these cases. Hence it is likely for similar wording or more general words
like "list" to produce misleading matches, occurring in the text of many features. So
this method can connect radically different parts of a system both in the aspect of
features and the system structure. Thus, we considered this conceptual method less
precise.

21

3. CHAPTER. FEATURE-EXTRACTION OF MAGIC APPLICATIONS

Figure 3.8: Graph visualization of the set of results obtained by the call graph (Left)
and the information retrieval (Right) technique

. B
N
b 1 - Manufacturing
% 2 - Interface
3 - Access management
* :* 4 - Quality control
e 956° &,

o 5 — Stock control
SN k i%; 6 — Administrator interventions

7 — Supplier order management

8 — Invoicing
. 9 - Master file maintenance
RS M= 10 - Customer order reception

Figure 3.9: Graph visualization of the set of programs deemed most essential. Results
shown on the left, results with filtering on the right

Looking at only the intersection of the connections found by these two techniques,
we found that this set of connections considers both the structural and conceptual
information, producing only connections that are indeed present on both levels. This
results in a clearer, more straightforward set of connections, which contains the most
essential findings of the two techniques.

As we could see before, the structural information produces many matches for
each feature, and we observed a considerable overlap between features. We decided to
clear these matches too with a filtering technique applied to the structural information
output, which filters out less specific programs. The filtering technique works with a
number n, which denotes the maximal number of features a program can connect before
it is considered less specific and is filtered out from the program set of features. This
removes the programs with less information value and results in even simpler groups
of programs for each feature. We have to note that less specific programs are often
no less important, but their relations are harder to comprehend, which was our focus
in the current case. On the right side of Figure 3.7 and Figure 3.9, the results of the

22

3. CHAPTER. FEATURE-EXTRACTION OF MAGIC APPLICATIONS

common structural and conceptual connections of this filtered approach can be seen,
featuring only programs with a maximum of two connections. It is apparent from the
graph that features are much better separated, providing a suitable high-level glance
at the background of features without a lot of technical details, ideal for top-level
understanding.

Examining the graphs, several interesting conclusions can be made. For example,
feature number 7 behaves like any other feature considering the purely conceptual or
purely structural viewpoint. Its common graph provides a clearer picture, apparently
connecting through a group of more general features to a large number of other features.
However, in the filtered case, it is nicely separated with a group of unique programs
specific to the feature.

3.5 Metrics for 4GL Feature Extraction

We can consider features as sets of Magic programs that take part in their implemen-
tation. These sets usually have overlaps since programs can be used by more than one
feature. In this section, our results computed on the top-level features are presented,
which involves ten features as previously seen in Figure 3.5 and represent the system’s
primary functions. Their dimensions after extraction can be observed in Table 3.1
and Figure 3.10, the values representing the number of programs implementing each
feature, working with more than 2,000 programs in total. Four variants of the subject
system were considered.

Table 3.1: The recovered number of programs for each feature of the variants with
call-graph (CG) and information retrieval (IR) based extraction

Variant CG-V1 CG-V2 CG-V3 CG-V4 IR-V1 IR-V2 IR-V3 IR-V4
Manufacturing 49 48 47 405 12 13 12 12
Interface 5 > 5 68 36 43 34 22
Access management 13 83 12 421 37 44 36 125
Quality control 152 146 146 441 60 82 60 113
Stock control 348 352 339 769 208 225 209 312

Administrator interventions 198 196 190 647 202 392 205 312
Supplier order management 156 155 156 466 206 235 201 335

Invoicing 272 267 265 602 278 299 274 394
Master file maintenance 70 68 66 467 266 299 259 374
Customer orders 294 290 288 457 193 208 190 276

The four variants under consideration will be mentioned simply as V1, V2, V3 and
V4. These are all real variants of the system that were under use by customers of our
industrial partner. To our knowledge, V4 differs from the other variants significantly,
while the others share a great number of programs and support a very similar set
of functions but still vary somewhat in the specifics. Table 3.2 displays the size and
properties of these four variants. From this data, it is even more clear that V4 is
the largest variant, even though V2 has the most tasks. V1 and V3 are very similar
according to both our experiences and their characteristics.

23

3. CHAPTER. FEATURE-EXTRACTION OF MAGIC APPLICATIONS

900

800

700

600

400

300

2

o
S

1

o
S

Manufacturing Interface Access Quality control Stock control Administrator ~ Supplier order Invoicing Master file Customer orders
management interventions management maintenance

0
BCG-Vl ECG-V2 ECG-V3 @mCG-V4 MIR-V1I HIR-V2 HIR-V3 MIR-V4

Figure 3.10: Number of programs for each feature with call-graph (CG) and the infor-
mation retrieval (IR) based extraction

Table 3.2: The characteristics of the variants under analysis

Variant Logic Lines Tasks Programs Data Objects

V1 366,328 13,365 2,001 699
V2 467,823 25,457 2,719 703
V3 355,604 13,151 2,001 697
V4 518,304 18,291 4,251 1,065

3.5.1 Definitions

In the following, we define several metrics that we deemed suitable for measuring the
properties of features. Some of our proposed feature level metrics are extensions of
already defined metrics on the program level. In many cases, these can be summed
up or averaged to get suitable measurements for feature level too. In other cases, we
define new ways that didn’t exist on the program level. Feature level metrics can also
be utilized to analyze the whole system itself or the progress of feature extraction. The
proposed size and similarity metrics are much simpler than our proposed coupling and
complexity metrics, thus only a short summary is displayed for these.

Size

Since at the feature extraction phase we worked on assigning programs to specific
features, the most straightforward metrics to think of here is the number of programs
assigned to each feature. On the other hand, the number of features assigned to each
program can also be measured. These metrics provide a basic understanding of the
size of features and the importance of the specific programs in their operation. These
can be crucially important since we can get a picture of the complications resulting
from changes implemented in a single program. Since a Magic application can have
more than one project, the number of these is also important on the feature level. In
our case, the applications always had one single project.

Programs also access data objects to gain the data needed to perform their tasks.
Reliance on data objects can also be important. One such metric is the total number of

24

3. CHAPTER. FEATURE-EXTRACTION OF MAGIC APPLICATIONS

data objects used. Since data objects are located in data sources and consist of columns
and can even have indices, the number of these are also measured. In our case, there
are three different data sources, of which most features tend to use all three.

Similarity

Feature similarity can be measured for each pair of features. Computing these metrics
to features of the same variant can also have its uses, for example, if we are contem-
plating merging some features on the lower level. Still, the central importance lies
in computing difference between the same feature of two different variants. Since we
can handle features as program sets, the simplest approach is the number of common
programs or the absolute difference in the number of programs. The average number
of programs or the proportion of the size of the smaller feature relative to the larger
one can also provide a quick and easy glance at their similarity. These metrics are
based on feature size, and while they can indicate similarity, we also introduced some
textual methods. The number of unique words in the features’ programs also tends to
correlate with size but works at a more conceptual level. We can also calculate the
proportion of common words. This, for instance, reveals that V4 differs from the rest of
the variants greatly, which corresponds to our previous knowledge. Textual matching
can also be applied as only partial matching, as when one term appears inside another.
We computed both the number and proportion of these sub matches. For these textual
metrics, textual preprocessing was applied to the natural language segments of the
programs.

Coupling

Coupling metrics for features represent the differences in their internal and external
references. A high number of valid external references can possibly imply a bad modular
design.

Coupling Between Features (CBF): One of the most straightforward coupling met-
rics can be the number of features a feature in question is calling. This number is
computed by inspecting the programs of the features. Since features can be viewed as
sets of programs, there is a call between features if there is at least one call between
the set of programs of both features. Coupling between features measures only the
outgoing calls from each feature. It can be viewed as a metric that lets us know how
many other features a single feature depends on. Being aware of dependence can be
valuable for instance if we decide not to provide a feature for a customer, the other
features that depend on this can potentially be hindered.

Coupling Between Programs Inside Features (CBTIF): While coupling between
features measures the outgoing calls from each feature, knowing the inside structure
of a feature can be just as important. For this, we can count the calls with both
participating programs inside the same feature. This is coupling between programs
inside a feature, which does not represent a number of features but a number of calls.

Sum of Coupling Between Programs and Data Objects (SCTBDO): Feature cou-
pling can also be viewed at the data object level. The number of utilized data objects
is a metric that already exists for each program. It is helpful in measuring the extent
of data used by each program. The total of this number for each feature can give us
the sum of coupling between programs and data objects. This can be interesting in-
formation on the feature level since we can see how much each feature relies on stored

25

3. CHAPTER. FEATURE-EXTRACTION OF MAGIC APPLICATIONS

data, thus getting a more complete picture of the feature itself.

Program Clarity (PC): Another piece of interesting information can be derived
from the number of features a single program is connected to. Suppose a program
is only connected to a sole feature. Then, it can be more easily maintained with less
consideration of the subsequent changes in functionality because the change only affects
one feature. Additionally, if the customer decides not to require a specific feature, the
programs of this feature can be excluded. Program clarity, a number indicating this
condition, represents the percentage of programs that are unique to a single feature.

Complexity

The quantification of software complexity is a basic idea that is widely used throughout
software development. Complexity can be defined in many ways, and this is the same
with feature complexity. Since a feature is handled as a set of programs that aims to
reach a common goal, the complexity of the feature is derived from the complexity of
its programs.

As established in the paper of Nagy et al. [109] in the Magic context, the widely used
McCabe complexity measure is not really suitable for representing the real complexity
of a program. On the other hand, Halstead complexity metics [47] correlated well with
the opinions of the experienced developers involved in the study. To compute Halstead
complexity metrics, we use the following values:

e n; : the number of distinct operators
e ny: the number of distinct operands
e N;: the total number of operators

e N, : the total number of operands

Halstead Volume (HV): It represents the magnitude of information inside a feature,
more precisely the bits required for its code. This can also be interpreted as a measure
describing the amount of information a reader of the code must attain to completely
understand the feature itself. Since a feature can involve many programs, this number
is usually very high. As it can be seen from its formula, this measure involves all
operators and operands in the feature. It computes as follows:

HV = (Nl + N2) * logg(nl + ng)

Halstead Difficulty (HD): It can be used to measure fault sensitivity. The impor-
tant factors in this property are the number of distinct operators inside a feature and
the ratio of all and distinct operands. Both of these properties result in more fault
sensitivity. It computes as follows:

N
=(3)(5)
2 N9y
Other metrics that can accurately measure complexity on feature level include
Halstead Vocabulary, which describes the sum of all distinct operators and distinct

operands in a feature, Halstead Effort (HE), which describes the product of volume
and effort and represents the developer effort of the code. Henry-Kafura Complexity

26

3. CHAPTER. FEATURE-EXTRACTION OF MAGIC APPLICATIONS

(HKC) can also be valuable, which works with the inner and outer calls of the features,
practically building complexity on coupling information. It computes as:

HKC = (N; + Ny) * (fan-in * fan-out)?

During our work we also computed these measures.

3.5.2 Experiments

In the remaining part of the section, we present a number of results and discuss the
meaning of the data retrieved. Experiments were done on all top-level features of all
four variants on both call graph (CG), and information retrieval (IR) based feature
extraction outputs. We present the results in graphic format. Due to space limitations
and for the elimination of monotony, we only display the results found most notable.

We can note that through all variants, the IR technique seems to provide more stable
numbers, while the CG technique usually shows significant differences between variants
and even features of the same variant. This does not mean that the CG technique would
be inferior in any way, and from our previous knowledge, we are aware that the output
of the IR based extraction contains a large amount of noise as a result of short feature
names which have served as queries for LSI. The seemingly more stable results can
even be a consequence of the noise itself. On the other hand, the CG-based extraction
can produce a variable number of programs for each feature and each variant. These
calls found by the call graph technique are present in the system and provide a less
conceptual grouping. It is also important to note that with the call graph technique,
we found a high number of more general programs that are connected to nearly every
feature. Even considering these differences, we can find that the results of the metrics
still move along very similar curves in the case of both extraction techniques.

Coupling Between Features (CBF) with CG and IR Based Feature Extraction

10,00
9,00
8,00
7,00
6,00
5,00
4,00
3,00
2,00
1,00
0,00

I R-V1
R -V2
R - V3

IR-V4
—@=—(CG-V1
=@ CG - V2
- (G -V3

—@— (G - V4
Manufacturing Interface Access Quality control Stock control Administrator Supplier order Invoicing Master file Customer
management interventions management maintenance order
reception

Figure 3.11: Coupling Between Features at each variant with call graph and information
retrieval based feature extraction

The results of the proposed Coupling Between Features metric can be seen in Fig-
ure 3.11. Asin the following figures, the columns represent the results of measurements
done on IR-based extraction, while the lines represent the results of the extraction based
on CG. The maximum of feature coupling is 9 since there are 10 features on the top
level. Hence this is the actual maximum number of features another feature can call.
As it can be seen in the case of IR-based extraction, many features achieve this with a
minimal coupling of 4 overall. With CG-based extraction, on the other hand, only one

27

3. CHAPTER. FEATURE-EXTRACTION OF MAGIC APPLICATIONS

Program Clarity (PC) with CG and IR Based Feature Extraction

100,00

80,00 — R - V1

R - V2

60,00 . R -V3

40,00
== (G-V1
20,00 == (G - V2

- (G -V3

0,00 ——CG-V4

Manufacturing Interface Access Quality control Stock control Administrator Supplier order Invoicing Master file Customer
management interventions management maintenance order
reception

Figure 3.12: Program Clarity at each variant with call graph and information retrieval
based feature extraction

Sum of Coupling Between Data Objects with CG and IR based feature

extraction
Customer order reception I NN
Master file maintenance I mIR-V1
Invoicing N mIR-V2
Supplier order management i I ®IR-V3
Administrator int ti 1 I
ministrator interventions 1l R-Va
Stock control |1
BCG-V1
Quality control |IIEEE—
mCG-V2
Access management I
mCG-V3
Interface 1
HCG-V4

Manufacturing I

0,00 5000,00 10000,00 15000,00 20000,00 25000,00 30000,00 35000,00 40000,00 45000,00

Figure 3.13: Sum of Coupling Between Data Objects with CG and IR based feature
extraction

feature, Administrator interventions of V4, reaches this high level while the minimal
coupling is at the Access management feature of V3, which appears to be calling no
other feature at all. In the IR case, the high values are caused by the already men-
tioned noise as well as other factors like how general the concept of each feature is. It
is apparent that in this case, the features achieving the lower coupling values are also
the same that had the lowest number of programs, but this can also be a consequence
of the more specific text of the feature that the IR based extraction could benefit from.
Access management seems to be the most diverse feature in both cases, with different
values at nearly every variant. This is probably the consequence of varying customer
requests and needs about user permissions. It can also be noted that though V4 is
significantly larger than the other variants, its coupling values are only slightly higher.
It is also visible here that CG and IR seem to move along similar curves.

Figure 3.12 represents our results of Program Clarity. High clarity means that
there are more programs of the feature that only contribute to that single feature.
This metric is somewhat the opposite of CBF since it measures the self-reliance of
features. This can also be seen from the results, CG-V3 achieves the highest clarity,
which also had the lowest coupling, and particularly with IR, we can see that the values

28

3. CHAPTER. FEATURE-EXTRACTION OF MAGIC APPLICATIONS

Halstead Value (HV) with CG and IR based Feature Halstead Value (HV) with CG and IR based Feature
Extraction Extraction - without CG-V4

100000000,00 4500000,00
90000000,00 4000000,00
80000000,00 3500000,00
70000000,00 mCG-V4 3000000,00

60000000,00 350000000 — R - V1

50000000,00 mCG-V3 ’

40000000,00 2000000,00 — R - V2
30000000,00 mCG-V2 1500000,00

20000000,00 I ! G-v1 1000000,00 IR-V3

G-

10000000,00 500000,00

0,00 | | ! || ! R ova 0,00 7. IR-V4

< X > > o 3 N 2 X > > o X 3 Q> -
\»‘\Q% & & & L FE & & S R-V3 &‘(\% & & € LS & & S —e—ce-vt
& @& S SIS IO & R & & & & & & & oL K
& & »db RS & H & & & & & ‘Q\“ & PO NS & =@ CG - V2
S 6@“ o€ &é\ & @ mIR-V2 & @7’0 & o & 6‘7’0 & ¢
< <
« PN & RO = o O RN RO —8—(G-V3
<& 3@ & & mIR-V1 & 3 & SO
RS & & & ¥ & < & &
& @° & € &
& R © R 9

Figure 3.14: Left: Halstead Value with CG and IR based feature extraction. Right:
Halstead Value with CG and IR, disproportionally large values filtered out for easier
analysis

seem to be quite on the opposite side of the scale at each feature. Still, some interesting
exceptions are present, like the values of Quality control in the CG case, which was
at a medium level considering coupling and one of the lowest at clarity. The highest
values are of the Access management feature of V3 and the Interface of V1 and V3.
These features all consist of a low number of programs with only 12 and 5 programs at
CG, which can contribute to high clarity, but this raises questions about the Interface
feature of V2, which contains only five programs but achieves a much lower value.

The Sum of Coupling Between Data Objects results are presented in Figure 3.13.
This metric is meant to measure each feature’s reliance on stored data. Since it sums
the values of programs, it is logical for larger systems to achieve greater values. This
is the exact case that seems to happen, seeing that V4 dominates every single feature.
It is interesting, although this only seems to happen in the CG case. In the case of IR,
the highest values are also usually achieved by V4 but to a significantly less extent.
It is apparent that in most cases, CG achieves higher values than IR. This can stem
from the fact that Magic is a highly data-intensive language, and there are a lot of
programs that manipulate data for a feature. Since the main goal of these programs
can be data object interaction, there may be less text for information retrieval to build
upon. Hence these programs are overlooked. CG, on the other hand, is aware of the
calls themselves, which are made in case of data reliance and discovers these programs
easily.

Considering complexity, we can see similar trends as with SCBDO, CG-V4 domi-
nates the results in every case and seems disproportionally large on the figures. Fig-
ure 3.14 represents the results of Halstead Value, which measures the information value
of features. On the left side, we can see that CG-V4 takes up most of the space, in-
dicating that V4 is the most complex variant of these four, having a large amount of
non-trivial code and can be much harder to understand in its entirety. On the right
side, we filtered out CG-V4 to have a chance to get a better look at the values of the
other cases. As it can be seen, CG usually produces programs with higher complexity.
This can also be a consequence of IR overlooking a number of programs with complex
logic or data manipulation that have less lexical information value and are much more
meaningful on the data or logic side. We can also note here that while IR’s value
remains relatively low for every feature, IR still seems to follow CG’s results, just with
much lesser values.

29

3. CHAPTER. FEATURE-EXTRACTION OF MAGIC APPLICATIONS

Halstead Difficulty (HD) with CG and IR based Feature Halstead Difficulty (HD) with CG and IR based Feature
Extraction Extraction - without CG-V2 and CG-V4
100000,00 3000,00
90000,00
80000,00 2500,00
70000,00 ®mCG-V4 ' 000,00
60000,00
50000,00 mCG-V3 1500,00 R -V1
40000,00
30000,00 mCG-V2 | 1000,00 — R - V2
20000,00
) 500,00
1000000 g B = I ! m eV : IR-V3
0,00 - IR- V4 000 = IR-va
A Y) X & < S 7
RIS OIS PR & .
R N I e P o IR-V3 ——CG-V1
& R < § § & o & &
& & QY &S & @
& & & &F &S & & mIR-V2 & ——CG - V3
« S oy T &S @ L N4
& & & & & mIR-V1
O & (&) 2
Aa &) o &
N\ R
N S
S

Figure 3.15: Left: Halstead Difficulty with CG and IR based feature extraction. Right:
Halstead Difficulty with CG and IR, disproportionally large values filtered out for easier
analysis

Figure 3.15 shows the results of Halstead Difficulty. This metric measures fault
sensitivity. As we have already seen in the case of HV, the CG based extraction of V4
produces a set of programs with very high complexity. This can also be seen here, on
the left side of the figure. Surprisingly, there is also one feature, Invoicing of CG-V2,
that achieved the same magnitude of HD value. This is a fascinating matter since the
number of programs extracted here, 267, is very close to the values of V1 and V3 and
much less than V4’s 602 programs, even if Invoicing is usually one of the most complex
features in each case. One possible explanation for this can come from the number of
tasks of the variants. As we can see from Table 3.2, V2 has a very high number of
tasks, significantly higher than any other variant, while its number of programs falls
somewhere in between. This has to mean that V2’s programs contain more subtasks
than the programs of other variants. Since we could see from our previous metrics that
V2 nearly always achieves lower values than V4, we could wonder how this difference
in program sizes failed to influence any of the metrics. The answer could be that a
major amount of the extra tasks inside V2 contribute to the Invoicing feature providing
more functions upon specific customer requests. Since HV is not exactly high in this
case, this can mean that while the feature did not gain much complexity, it became
much more fault sensitive. Thus this feature could be hard to maintain and deserves
consideration of refactoring. On the right side of the figure, we also filtered out CG-V4
and CG-V2 for an easier glance at the rest of the variants. We can see that these
results usually move along the same curves as HV.

Finally, these metrics are not only capable of revealing meaningful information
about systems, features and outputs of feature extraction methods but can also be
combined in several ways to attain even more understanding. Some metrics are de-
pendent on the number of programs or tasks in a feature, which in some cases can be
beneficial, but in others, it can hide some significant differences. To eliminate this,
we can divide the metric by the number of programs or tasks inside a feature. For
example, we could do this to any complexity metric to get the average complexity of
programs or tasks of each feature or to SCBDO to get average reliance on data. These
can paint a much different picture. For instance, Henry-Kafura Complexity provides
similar data to HV with a difference of some IR values becoming significantly higher.
On the other hand, if we divide it by the number of tasks, we get an average HKC
value of tasks in each feature. This is illustrated in Figure 3.16. From this figure, it

30

3. CHAPTER. FEATURE-EXTRACTION OF MAGIC APPLICATIONS

HKC/Number of Tasks with CG and IR Based Feature Extraction

3000000
2500000
2000000 m—IR-VI
1500000 — R - V2
1000000 IR - V3
500000 R ova
0
——CG - V1
—0—CG-\2
)
& —.—(G - V3
—e—CG-V4

Figure 3.16: Henry-Kafura Complexity in proportion to the number of programs at
each variant with CG and IR based feature extraction

is visible that IR values are usually higher, most probably because of the high number
of external calls we have seen at the CBF metric. Even considering this, it is apparent
that IR and CG values behave similarly, meaning that the features tend to behave the
same way with both feature extraction methods on the task level.

Considering these findings, feature level metrics are likely to be suitable for the
analysis of features in variants of Magic systems. Properly utilizing these, we can come
to realizations that can greatly aid not just product line adoption but also ease the
future maintenance of a system.

3.6 Feature Analysis using Call Graph Communi-
ties

3.6.1 Overview

Community detection provides a grouping of programs with denser inner connections.
As already established, feature detection also results in a grouping of the programs,
just as community detection. This means that we can compare these two sets of results
in a relatively easy way. This comparison can be useful in many ways, enabling us to
reach new information about the feature model and even refine the feature extraction
process’s output. This section presents our experiments with various community de-
tection algorithms and investigates their possibilities in aiding product line adoption
when combined with the previously constructed outputs of feature extraction.

3.6.2 Approach

Communities are groups of nodes located in a graph. They are more densely con-
nected internally than to the rest of the graph. They are highly researched topics in
network science and contribute to scientific and industrial research. Groups of densely
connected nodes exist in almost every network. Since communities are not strictly
defined, several different correct groupings of graph nodes can exist. Many community

31

3. CHAPTER. FEATURE-EXTRACTION OF MAGIC APPLICATIONS

detection algorithms are applied, often even specialized to a specific field, like social
networks.

In our current analysis, we consider the programs of the system to be the nodes
of the graph and apply the community detection to them. The edges of the graph
are the calls the programs make extracted by static analysis. The previously detected
features are not indicated in the graph and play no part in the community detection
process. As the call edges are denser inside the communities, we can expect that
these programs work together more closely and thus perform similar tasks. This is the
exact property that characterizes features also. Therefore we could expect significant
overlaps in communities and detected features.

There is a key value in community detection, modularity, which is a scale value
between -1 and 1 that represents the density of the edges inside communities compared
to the edges outside communities. Theoretically, optimizing this value results in the
best possible groups of nodes. Computing this entirely is complex, thus in practice,
practitioners rely on heuristic algorithms. During our experiments, we considered the
following community detection algorithms provided by the R software environment:

Edge Betweenness: FEdge betweenness scores are the number of shortest paths that
pass through an edge. The algorithm removes the edges in decreasing order of these
scores.

Fast Greedy: Each node starts as an individual community, and they are merged
together in a locally optimal manner, considering the largest potential increase in
modularity.

Leading Eigenvector: In each step, the graph is split into two groups in a way that
maximizes modularity. This is determined by the leading eigenvector of the modularity
matrix computed on the graph.

Louvain: A multi-level algorithm that consists of repetitions of greedily assigning
locally optimized small communities and then considering these assigned groups as
individual nodes.

Walktrap: This method starts random walks from the nodes, and because these tend
to leave communities less often, it decides community merges according to them. It
has a parameter ¢ which represents the number of steps in each random walk.

To quantify the results of these community algorithms, we decided to use some
metrics that can contribute to the understanding of the output. One obvious metric is
the number of communities assigned. Different algorithms produced a varying number
of communities on the same data. We experimented with forcing a previously defined
number of communities. This approach did not do well since it often produced many
tiny and a few oversized communities that separated the graph very badly and provided
no real information value. We computed the following metrics for further investigation:

NoC: Number of communities.

MFC: The maximal coverage of a single feature.

32

3. CHAPTER. FEATURE-EXTRACTION OF MAGIC APPLICATIONS

Number of Communities by Parameter

W walktrap M eigen

Figure 3.17: Number of communities at various parameter settings of the Walktrap
and Leading Eigenvector methods

NoCSC: Number of communities with significant coverage. We consider coverage
significant if the community covers at least 10% of the programs of a feature.

AFC: The average percentage of programs of features covered by communities with
at least 10% coverage

3.6.3 Results

Comparison of Community Algorithms

Table 3.3: Results of our analysis with the five community algorithms for top level
features

Algorithm NoC MFC NoCSC AFC
Edge Betweenness 123 31.81% 6 45.84%
Fast Greedy 44 31.81% 7 57.09%
Leading Eigenvector 29 45.35% 9 61.75%
Louvain 32 36.36% 10 52.91%
Walktrap (t=40) 57 40.91% 6 56.63%

Table 3.3 presents the results of the metric values measured on the top level of
features. Each row represents the results of a different community algorithm. For
Walktrap, we have chosen a t=40 walk length, which according to the results of our
experiments, provided the most suitable number of communities. The Leading Eigen-
vector method also works with a parameter. In this case, we have chosen 29 for similar
reasons. Figure 3.17 shows the number of communities at each value of the param-
eters of these techniques listed from 2 to 250. A large number of communities can
present too much granularity, especially for comparison with the top level of features
since we have only ten features on this level. Having a greater number of features can
make a large number of communities beneficial. The results of the table indicate that
Edge Betweenness detects a significantly larger amount of communities than the other
algorithms. These are usually very small with a few larger communities. The MFC
value represents the broadest coverage of a single feature, meaning that, for example,

33

3. CHAPTER. FEATURE-EXTRACTION OF MAGIC APPLICATIONS

in the Edge Betweenness case, there was a community that covered 31.81% of a single
feature, which was the largest value in this scenario. As it is visible, this number can
vary greatly through different algorithms. This number, however, only describes the
coverage of a single community rather than a representation of all. NoCSC, on the
other hand, provides an exact number on this property, representing the number of
communities that cover at least 10% of a feature. This is not a large value in any case.
The lowest values were achieved by the algorithms with the highest NoC values, which
is not surprising since these qualities can be somewhat opposite. Since there is more
granularity, the smaller groups are bound to cover less from each feature. AFC repre-
sents the total coverage achieved by each feature on average, considering communities
with at least 10% of a feature covered. This number moves around 55%, with Edge
Betweenness differing significantly, most probably also due to the high granularity.
This means that, on average more than half of the programs of a feature are located
in communities containing a significant part of that feature. This can suggest that the
main functionalities of the features are mostly achieved in communities specialized to
that single feature or some larger communities which cover an important part of several
features. Figure 3.18 illustrates the rate of coverage for each feature by communities
that represent at least 10% of the feature’s activity.

[B
B

percentage
iy (2] -]
O O (lD

n
]

0-

feature

Figure 3.18: The proportions of communities determined in case of each feature at top
level with Walktrap (t=40) detection and a 10% feature coverage filtering

Feature Analysis using Communities

Domain experts can play a significant part in the adoption of a new product line
architecture. To their work, complete knowledge of the features is invaluable. Aiding
this, community detection can highlight previously unknown aspects of the systems.
As community detection is based on actual call edges of the call graph, the programs
attached to each other are indeed meant to be interacting during the proper run of
the system. With this knowledge, we can assume that the programs working towards
the same goal should have more calls to each other, which makes communities an ideal
and easy way to form groups of these programs. Possessing knowledge of groups of
programs inside the system can also aid the testing process greatly. Testing the product
line usually tests the functionalities the system provides. In other words, it tests the
features themselves. While the features are identified with proper feature extraction,
testing is still done on the code itself. Consequently, testing a single feature can involve
programs that domain experts do not foresee. Community detection can provide a way

34

3. CHAPTER. FEATURE-EXTRACTION OF MAGIC APPLICATIONS

for domain experts to form realistic expectations of the system’s involved elements,
thus representing an additional valid and not overly complex perspective about the
system.

Of our five chosen community algorithms, Walktrap was chosen because it produced
a manageable number of communities that still seemed relatively unanimous. It has
to be remarked that all community detection algorithms produced similar results, and
we did not see any significant differences that could not be influenced by the num-
ber of communities identified. One important advantage of Walktrap can be that it
can produce a variable number of communities. Changing its parameter, we can get
more, which can improve the situation on lower feature levels where more features
are present, which are better represented with more, smaller communities rather than
a few medium-sized ones. A detailed graph illustrating top-level feature results with
Walktrap communities can be seen in Figure 3.22 (non-printed version recommended)
or the web version of [68]. The current section also provides some analysis on these.
Each node represents a program, and the edges are the calls the programs make ac-
cording to the call graph. The colors of nodes represent the features that they were
assigned to in the CG-based feature extraction. Note that these graphs are generated
automatically from our outputs. This display is not complete since there are programs
with more than one features, and we could only color the nodes according to one of
these. However, the names of all assigned features appear on the nodes, so there is no
information loss. The location of the nodes represents the communities as each com-
munity forms a circle of its programs. We use these same notations in all the following
community examples.

Figure 3.19: Three communities with a well distinguishable goal. Each node represents
a program of the system, while its color marks its feature affiliation. See the node text
for cases of more than one features assigned. The edges are the calls the programs
make while the circular groups represent their assigned communities

Generally, we can say about the whole graph that various communities are present.
As with every community detection method, we can observe some really large commu-
nities that usually involve programs of a lot of different features. On the other hand,
we can see many smaller ones with less variance. For example, the three communi-
ties presented in Figure 3.19 are not particularly large, but each can be considered
as belonging mainly to a single feature. It is apparent that the left community is
part of Administrator interventions, the central community belongs to Supplier order
management, as does the community on the right, but it also takes part in the work
of several other features. Orange nodes tend to be more general in the whole graph,
supporting a lot of features, with only four communities having programs that only

35

3. CHAPTER. FEATURE-EXTRACTION OF MAGIC APPLICATIONS

deal with Access management. This can mean that Access management is usually more
interwoven with other features. The same can be said about Manufacturing to an even
greater extent. Administrator interventions, on the other hand, owns a great number
of communities exclusively. While small differences inside a community can be present,
each community detection algorithm produces a high number of communities that are
very similar to these, centered around different features. At the current level, almost
every top-level feature has at least one community it is very dominant in, except two
of the features, Manufacturing and Master file maintenance. Interface only seems to
appear in communities with a lot of Access management programs which can suggest
its heavy reliance on Access management.

it

§

AN

=

_——

Dy

Figure 3.20: A larger, more general community involving a lot of features and a medium
one with two main features

In Figure 3.20 we can see another example taken from the graph. We can see a
large community that consists of programs of many features and a medium-sized one
with two dominant features, making several calls to programs of the large community:.
The figure only contains the edges that have both endpoints in these communities, but
it is already apparent that there are two programs inside the large community targeted
by a vast amount of program calls. If we take a look at the full picture in Figure 3.22,
we can see that there are still many more call edges to these programs from various
communities. Since these programs represent many features, this suggests that they
are some of the most essential programs that almost every feature relies on. They can
also be the cause for the detection of such a large community since a lot of programs
rely solely on them. It is also interesting that while targeted by a lot of calls, they do
not seem to make any. This implies that they provide some service that is routinely
needed rather than playing a vital controlling part.

We can also see some grey nodes that feature extraction did not assign any features
to. Communities could also extend feature extraction outputs since if we encounter fea-
tureless programs inside a community with a highly dominant feature, we can suspect
that it serves the same feature.

Applying community detection algorithms on the programs of a Magic application,
we have found that the communities overlap with our feature extraction output. Apart
from a few large, more general communities, we can detect several clusters of programs

36

3. CHAPTER. FEATURE-EXTRACTION OF MAGIC APPLICATIONS

that are specialized to achieve a single feature. Our investigation showed that most top-
level features are represented by at least one community of their own. While sometimes
different specialized communities also arise or some disappear, the same conditions can
be observed with all five community detection algorithms involved in the experiment.

Analysis at deeper level of features

The results presented above only involve the top-level features domain experts have
provided us. These features can be further detailed to a second feature level, and the
analysis can be executed here also. This can result in a more comprehensive picture.
A further advantage of community detection on a lower level is that the algorithms
used do not depend on feature level, and they tend to identify more communities than
the number of top-level features at our disposal. Usually, there are a lot of very small
communities. These tend to perform subtasks of the same task and also belong to
the same feature. Since they are small, it would be a fair assumption that they may
represent lower level features working together for the same smaller goal, contributing
to the top-level feature. A comparison of lower-level features and these smaller com-
munities can highlight or disprove this. Additionally, there are larger communities that
are likely to involve more of the lower level features. These can be seen as programs
working more closely together. Thus, community detection can highlight valuable in-
formation at lower feature levels about both lower and top-level features. With this, we
can gain more information about the system’s actual inner working, which is worthy
of examination. Level 2 features can also present more interesting information because
the top level of features is often considered too general for actual work, while second
level features draw a more detailed picture of the actual functions the features provide.
Since there are only 10 features at the top level while there are 49 on the second,
community detection at this level can also lead us to valuable observations.

The results of second feature level community detection are fully available in Fig-
ure 3.23. Three of its communities are presented here in Figure 3.21. The feature
names in these figures were omitted because of the length of their qualified names and
their large quantity. Instead of their names, we have displayed numbers representing
their level 2 features. While a lot of programs still represent only one feature, it is
not rare here for one program to belong to tens of features. At the second level, it is
observable that specialized communities are still present in large numbers. Programs
that only serve one feature tend to occur together, mostly with only a few programs
that also work on some additional features. The communities presented in the example
are actually the same as the ones we have seen in Figure 3.19, now with the second level
of features. Apparently, no significant changes have occurred. From one perspective,
this is not surprising since the call edges themselves did not change, only the feature
classification of programs. This means that the communities are bound to remain the
same, only consist of programs belonging to different features. The programs belong
to the same top-level feature as before, now assigned to a more specific subfeature.
This means that adopting a more specific level of subfeatures did not change the inner
variability of these communities. The same circumstances can be observed in general
as most of the specialized communities retained this quality.

On the other hand, two major differences can be seen from the top level. One of
these is that programs belonging to a large number of top-level features seem to have
gained even more subfeatures in this scenario. This means that these programs take
part in even more features. The interesting aspect of this is that there seems to be no

37

3. CHAPTER. FEATURE-EXTRACTION OF MAGIC APPLICATIONS

®e© _ o o

)
©e o0
D

“9'

Zom~

BRBEsazINZ3
5884888882

sha8

2
&

3

4
44

‘ 4
48 204
49 214
24
2
2

56

Figure 3.21: Three communities from the second level feature extraction

real middle ground. A program either supports just a selected few features or almost
every second level feature. According to this, we could easily divide programs into two
categories, specialised and general programs.

The other difference is that the large communities seem to have gained even more
variance. They contain a significantly higher amount of different features, which means
that their features consist of more subfeatures. Considering their size, this is not
surprising, yet now it is apparent that while these subfeatures rely more on programs
of other subfeatures, the programs of the more specialised communities tend to work
mostly in separation. This can be an important distinction and can provide information
of value in many cases. For example, if we are contemplating a change, we can see
the size of unintended impacts a change can cause for each subfeature. Specialised
communities tend to be more isolated, hence they can be more easily changed or
turned off as a feature. This can be crucial both for product line adoption and for
maintenance reasons.

Adopting a deeper level means that the number of features increases significantly,
potentially dividing specialised communities and producing more general ones. As we
have found, this is rarely the case. These communities seem to retain their good quality
of being largely dominated by a single feature, even on lower levels. As the number
of features rose from 10 to 49, we experienced no significant change in the rate of
specialised versus more general communities. This can even verify the feature model
itself since the programs belonging together according to the feature list seem to also
work more closely together in reality.

3.6.4 Matching of communities with 1st level features

Communities and matching high level features are shown in Figure 3.22.

3.6.5 Matching of communities with 2nd level features

Communities and matching second level features are shown in Figure 3.23.

3.7 Insights Into the Progress of SPL Adoption

In this section, we provide information on how the project progressed through time
and examine the effects of our work. The system and the feature list were constructed
iteratively, hence we can compare their versions. We have multiple versions of both at

38

3. CHAPTER. FEATURE-EXTRACTION OF MAGIC APPLICATIONS

=\ X
\¥%'
K

Figure 3.22: Matching communities with high-level features. Each node represents a
program of the system, while its color marks its feature affiliation. See the node text
for cases of more than one features assigned. The edges are the calls the programs
make while the circular groups represent their assigned communities

39

3. CHAPTER. FEATURE-EXTRACTION OF MAGIC APPLICATIONS

Figure 3.23: Matching communities with second level features. Each node represents
a program of the system, while its color marks its feature affiliation. See the node text
for cases of more than one features assigned. The edges are the calls the programs
make while the circular groups represent their assigned communities

40

3. CHAPTER. FEATURE-EXTRACTION OF MAGIC APPLICATIONS

our disposal, with four separate versions of the system under construction and seven
stages of the feature list. We are going to refer to the system versions now as SV1 to
SV4 and the feature list versions as FV1 to FV7.

Let us look at the changes made on the feature list first. The rates of feature
additions and removals can be seen in Figure 3.24 where the circles correspond to the
transitions between versions. Each circle consists of four tracks that represent the
changes on their specific feature level. The levels are in increasing order from the
center, level 1 represents the broadest categorization of features, while level 4 is the
most detailed view. We depicted the menus here as a fourth level since they were
manageable accordingly through most of our work. As the list was being developed,
features were added to or removed from each list level. Though there is no guarantee
that a new iteration necessarily produced a better feature list, domain expertise is still
the most reliable source of information in these cases. The changes presented here are
the modifications the domain experts deemed necessary.

FV1-FV2 FV2-FV3 FV3-FV4

0o o

FV4-FV5 FV5-FV6

4o

100% g0,

95%
98%

W remained | removed added
Figure 3.24: The changes made at each transition of feature list versions

Let us take a more detailed look at the figure by addressing some of the major
changes. The FV2 to FV3 transition introduced a few new features, the most inter-
esting of which are two new level 1 features. In the FV4 to FV5 transition, a great
number of features were added. Level 2 got 94 new features, level 3 got 223, while 98
new menus were introduced. This represents a major update to the feature model, and
the new additions make up a significant part of the new feature list. Some deletions
also happened, most notably, one first-level feature has been removed. In the FV5 to
FV6 transition, we can see the removal of 20 level 2, 20 level 3 features, and 15 menus

41

3. CHAPTER. FEATURE-EXTRACTION OF MAGIC APPLICATIONS

as well. The number of level 2 features was much more severely decreased in the FV6
to FV7 transition where 72 features, more than half of its total (including many of the
relatively new ones), have been removed.

Level 1 BN Level 2

Figure 3.25: A summary of feature level transitions in the seven feature list versions,
the green blocks with arrows on the left represent promotions while the red blocks with
arrows on the right represent demotions.

Apart from complete additions or removals, a significant rate of these changes
stems from splitting up an original feature or merging two of them. We have also
experienced several more special cases where features got "promoted" or "demoted" to
another feature level, including even the level of menus. We examined these changes
and have detected 9 feature promotions in total, while 2 of the features got demoted.
None of the features transitioned two levels or moved twice. Figure 3.25 illustrates all
of these feature movements that happened during the feature list version transitions
currently referenced.

Initial
Development
Iterations
% [o 2 o o 2 o o 2 >

1) v v v v v v v v
month month month month month month month month

Evaluation } 1 2 3 4 5 6 7 8 Time
Data

Figure 3.26: The timeline of feature list and system versions currently referenced

Let us now address the versions of the system under construction. We had access
to four different versions of the system for our experiments. The versions of the feature
list and the versions of the systems had different milestones. Hence these two sets
of data are not completely synchronized. As the building of the system itself follows
the feature list, the feature list should always be considered more up to date than the
system’s current state. Figure 3.26 illustrates the progress of the project during the
time the feature list and system versions examined in this section were created. We
can also see a variant depicted as a base variant. This is the chosen variant the product
line was being built upon. There is also a feature list version with the name FV0. This
is the feature list we did our experiments on and what we chiefly use in the previous
and future sections. There have been several other versions of both feature lists and
systems, these can be seen in the figure as the initial development iterations. This

42

3. CHAPTER. FEATURE-EXTRACTION OF MAGIC APPLICATIONS

period also introduced considerable changes, even the first level of the feature list was
expanded with three new features. The timeline shows that the feature list milestones
followed each other quite rapidly, while the development generally took up more time.

2000

1800

- Base

- Warehousing

- Manufacturing

- Interface

- Access Management

- Deposits

- Quality Control

- Stock Control

9 - Complaint Management
10 - Administrator Interventions

1600

1400

1200

ONOUAWN R

1000

11 - Supplier Order Management
12 - Invoicing

13 - Master File Manitenance

14 - Customer Order Reception

800

600

400
NP - Number of Programs

HD - Halstead Difficulty
200

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

m \P-SV1 mmmmm NP-SV2 mmmmm NP-SV3 NP-SV4 mmmm HD-SV1

HD-SV2 ~====HD-SV3 =———HD-SV4

Figure 3.27: A comparison of the four versions of the system regarding their number
of programs (NP) and their complexity (HD)

Considering system versions, the properties of each currently referenced milestone
can be seen in Figure 3.27. The columns represent the number of programs of each
feature, thus display information about the size of a feature. At first glance, we can
see that no extraordinary changes were made during this time, but we can detect some
small changes at each version transition of the system at every single feature. The
largest differences present themselves at the latest version change, particularly in the
case of the Customer order management feature and much less prominently at the
Administrator interventions feature, where it experienced a significant rise in the num-
ber of programs. This number tells us a lot about which features have been modified
through time, but it is not complete since the programs themselves can be subjects to
modifications as well. Thus the consequences of the changes do not necessarily show
up in the numbers. That is why we also displayed the complexity of these features
in each version, the lines of the figure represent these. In Section 3.5, we have de-
scribed our complexity measurement techniques regarding these features. The section
presented the Halstead Difficulty metric for features in Magic systems, which is basi-
cally an aggregation of the difficulty metrics of all programs of a feature. This metric
reflects complexity as a measurement of fault sensitivity. From the figure, we can see
that considering the complexity, the most prominent change also happened at the last
version transition of the system and - like we have seen at the feature sizes - also at the
Customer order reception feature, where there is a major decrease in the complexity
of the feature. This means that the then newly added 125 programs are generally less
complex and fault sensitive than the feature’s previous programs. Several other minor
changes and tendencies are also visible. The size of nearly every feature seems to be in
a very small growth, while the complexity seems to show a very slight decrease through
time in the case of most features.

As it is visible from the timeline (Figure 3.26), the system versions follow the feature
list changes much more slowly. At the time of our publications, the development was

43

3. CHAPTER. FEATURE-EXTRACTION OF MAGIC APPLICATIONS

still underway. It is nonetheless apparent that the feature list and system versions
were heading in the same direction. While comparing them, we can see that in the
earlier versions (see Figure 3.5), there are several features (e.g. Feature Complaint
management and Deposits at the top level) that are not even represented in the call
graph of the system (see Figure 3.8) because they do not even make a single call.
Comparing the latest examined versions, however, we can detect much less of these
only nominally existing features. This change is certainly welcome since it indicates
that the system’s progression indeed followed the feature list relatively well.

3.8 Evaluation

In the current section, we aim to evaluate our methods by comparing our results to
ones given by human experts working for our industrial partner. We involved two
developers and two domain experts working on the project and asked them to fill
out our questionnaires based on their expertise. These experiments were conducted
retrospectively on the feature version identified as FV0 and the base variant, both
referenced in previous sections. For the evaluation, we propose the following research
questions:

RQ1: To what extent our structural and conceptual information based feature extrac-
tion methods contribute to the correct mapping of features?

RQ2: What additional, not inherently available feature coupling information do com-
munities reveal?

3.8.1 Feature Extraction Outputs

For RQ1, we have devised the following evaluation process: We have chosen 18 pro-
grams at random from each of our main feature extraction outputs and also outside
all of the outputs. We shuffled these programs into a single list summing up to 72
programs. This process was performed with three different, randomly chosen features.
Thus three lists were assembled with 216 programs overall. The programs were repre-
sented both by their names and their internal identifiers, so the developers could also
look them up from the system itself. We asked two developers familiar with the system
variants to separately judge whether each program is connected to the feature it was
listed under. The developers were only provided the programs listed for each of the
three features and knowledge on the possible choices they could make, with no further
explanation of the size or number of different program sets involved.

The results gathered with this questionnaire are displayed in Figure 3.28. We can
see the developer opinions grouped into four separate diagrams by the three chosen
features and an overall sum. The first developer’s impressions are displayed on the
left side of each diagram, while the opinions of the second developer are presented
on the right. IR depicts the output of our information extraction based approach, CG
represents the output based on the call graph, while ESS depicts the programs extracted
both by the IR and CG processes and are considered most essential for comprehension.
The programs represented by the Unrelated set are chosen from outside of these sets.

The sets contained 18 programs each and are all disjoint from each other. Main-
taining these criteria, the 18 programs were chosen randomly from each set. We have
allowed -1 as an option for the case a developer could not come to a conclusive answer.

44

3. CHAPTER. FEATURE-EXTRACTION OF MAGIC APPLICATIONS

Thus there are several cases where the sum of our three differently colored columns
does not come up to 18. We still have at least 15 evaluated programs for each case.

Master File Maintenance Stock Control

I I

15 I 10 I

1 8 I

10 T 6 |

1 1

4

Il 'i ili i'l" "E
1 2 I

N (=[] ! . "k
ESS cG IR Unrelated ESS IR Unrelated Unrelated ESS Unrelated

Quality Control Overall

I I IEI I I I ‘IEI IEI I;I | “I IEI Iil |E-IEI IEI IEl |E.

IR Unrelated ESS IR Unrelated ESS Unrelated ESS Unrelated

| ® Invalid Feature Connection | Valid Feature Connection | Valid Feature Connection with a Relevan Role I

Figure 3.28: Evaluation of our feature extraction outputs according to two developers

It is visible that in most cases, the developers found our combined results the most
relevant of the sets provided, the ESS set displaying both the highest green and lowest
red columns in the majority of cases. It is also clearly visible that the Unrelated set
containing programs not featured in our outputs scored the worst in every case. The
only divergence from the success of the ESS results comes up at the Quality Control
feature, where their results seem to be highly surpassed by the CG values. There
are significant differences between the answers given by developers. This partly stems
from their own definitions of a program being connected to a feature and being relevant.
For example, it can also be seen that, in general, Developer 1 seems to consider the IR
results significantly more valid and relevant than Developer 2.

Program Sets

BCG MWESS EIR mUnrelated

Invalid Feature Valid Feature
Connection Connection Connection With a Relevant Role

Figure 3.29: The sum of evaluation answers given by the developers

In Figure 3.29, we summarize the answers the developers provided on these program
sets. We can see that the developers generally considered the combined results to be
the best as this set scored the least in invalid connections and scored highest in both

45

3. CHAPTER. FEATURE-EXTRACTION OF MAGIC APPLICATIONS

valid feature connection categories. We can see a similar difference between CG and
IR as well as IR usually performed a little better than CG, though as already noted,
this preference was not equal among the two developers. The Unrelated set scored the
worst in every case, which is not surprising but still demonstrates that our outputs
hold valid information and can be used as a reference.

Answer to RQ1: Based on the evaluation results, our outputs hold valid feature
extraction information in overall at least 60% of matches based on the opinion of
developers. Our output combining structural and conceptual information contains the
more relevant programs of a feature, with more than 70% valid matches with over 45%
also being relevant overall. At least a third of these combined matches were relevant
in every single case.

3.8.2 Communities

Seeking an answer to our second research question, we also performed manual evalu-
ation. Since our community detection based output aims to contribute mainly to the
work of domain experts, we asked two domain experts working on the project to pro-
vide answers regarding the mutual dependency of features. We listed the 10 high-level
features introduced in Section 3.4 and asked the experts to fill out a table in accordance
with their views on how likely it is that a change occurring in either of two features
would lead to a need for the necessity of also changing the other feature. The possible
answers were zero for unlikely, one for uncertain and two for certain.

Figure 3.30 presents the results of the questionnaire, the answers given by the two
domain experts are marked red and blue. The color is darker if the domain experts
have thought the dependency certain and lighter if they found it uncertain. The white
fields represent the choice for considering it unlikely.

To make the community data measurable, we decided to quantify to what extent
two features belong to the same communities. We computed their relative weight inside
each community compared to other features, and we normalized this with the size of
the community. The sum of these results gives our community dependency value which
can be divided into multiple categories. This is explained in the equation below where
C is the set of communities, F is the feature set, wy is the first feature’s weight, and
wo is the second feature’s weight. This resulted in a number between 0 and 3 in each
case.

CommunityDependency = 3 (= 1()M)
el swele Z w;

fer

The Community Connections part of Figure 3.30 shows how this number of each
feature pair compares to the average of the opinions of the two domain experts. The
black fields note the cases where the community-based result showed a lower connection
probability level while matching connectivity levels are represented by green fields. The
yellow and orange fields represent the cases where the communities suspect a higher
chance of connection. Orange is a more significant difference.

While the information possessed by domain experts is invaluable in the adoption
process, there is a difference in their opinions, which is significant in some cases like
the connections of Stock Control and Invoicing or Stock Control and Supplier order
management. Since the domain experts have no ready knowledge of every single pro-
gram, these differences are inevitable. While this assessment only involved the highest

46

3. CHAPTER. FEATURE-EXTRACTION OF MAGIC APPLICATIONS

Domain Expert 1 Domain Expert 2

B Certain
E Likely
[] Unlikely

B Certain
@ Likely 4
[] Unlikely

Community Connections
1 2 3 4 5 6 7 8 9

1 - Manufacturing

2 - Interface

3 - Access management

4 - Quality control

5 - Stock control

6 — Administrator interventions
7 - Supplier order management
8 - Invoicing

9 - Master file maintenance

10 - Customer order reception

[Community Score Significantly Higher
[C] Community Score Higher

[Matches Domain Experts Value

Il Community Score Lower

Figure 3.30: The answers given by domain experts and a comparison of their average
with community-based assessment

level of features, which are very general, we can imagine how much harder this task
could be on a level with tens or even hundreds of features.

Furthermore, it is visible that the green fields are in the majority, which can mean
that the community detection output is similar to the average of domain expert views,
thus holds real and potentially useful information about the dependencies between
features. We note that the average of the votes of domain experts in the figure is based
on the rounded down value of the average. Rounding up, we would get more black
fields but also even more green fields. This indicates that if domain experts take a
more cautious approach, the data of the communities can match even better with their
views. Our results also fall closer to the answers of the domain experts individually
than they do to each other, the absolute difference between them being 24 while the
community dependency shows 20 and 22 absolute difference from them.

Although we can see that the communities can contain similar information to what
the domain experts use, they also build on structural information as they are working on
the call graph of the system. This means that the graph contains additional information
that highlights a more structural level, and while calls inside the system do not occur
necessarily in every case, it is taking them into account, even for a quick inspection.

47

3. CHAPTER. FEATURE-EXTRACTION OF MAGIC APPLICATIONS

Answer to RQ2: According to the evaluation, the call graph communities rep-
resent real feature coupling information that approximates domain expert knowledge
well while relying only on structural information, thus can contribute to the decisions
of a domain expert by providing another informed viewpoint.

3.9 Discussion

In this section, we overview the possible uses of our methods presented. Figure 3.31
highlights how various feature extraction techniques can be used to help in building

the new product line architecture.

= ===

STRUCTURAL AND

o0 STRUCTURAL CONCEPTUAL COMMUNITY
% PRV CONCEPTUAL
1 L S & ASSIGNMENT ASSIGNMENT DETECTION
= . N ASSIGNMENT
= > 1
= 1
1
_____ \/ \\/— /\\/ { &
— = AR =
INFORMATION ON ALL "\\/ / P~/ / '\/\
CALLED PROGRAMS \ e \/\ — \ —
- / SN ~al ,7 \\ /
INFORMATION ON ALL Y \ ~ ‘\\\\

CONCEPTUALLY CONNECTED
PROGRAMS

HieH LEVEL INFORMATION
(:)ON THE MosT ESSENTIAL
PROGRAMS

—7 \\\\\\

-
INFORMATION ON w .
COMMUNITIES
ﬁ CONSTRUCTION
TIIIrIss
DEVELOPER NEw ProDucT LINE DoMATIN
EXPERT

ARCHITECTURE

Figure 3.31: The possible ways of usage of the results of various feature extraction
techniques in helping product line adoption

o Structural Extraction - Provides a detailed, widespread analysis. It is good for

developers since they are required to have knowledge of all of the programs called
by a feature.

Conceptual Extraction - For domain experts, on the other hand, all called pro-
grams can be too much. This approach introduces conceptual dependencies but
may contain too much noise for smooth work.

Combination (ESS) - Grasps the essence of features, more fit for domain experts.
While constructing the new architecture, the domain experts need to judge prop-
erly which parts of the variants should be adopted. In this decision-making
process, the results of this combined extraction highly decrease complexity, and
it can also facilitate test planning in the future.

Community detection - Identifies program communities over the call graph that
work closely together while having less outer relations.

Community matching - Matches program communities with features in the code.
It can be used to find differences between the view of the domain experts and
the actual implementation of features.

48

3. CHAPTER. FEATURE-EXTRACTION OF MAGIC APPLICATIONS

As our evaluation pointed out, the developers found the programs of our result
sets as a source of feature mapping information much more preferable to the other,
unrelated programs.

Besides these, we mention some other possible ways to use the results. Firstly,
connections are not necessarily observable through the calls of the system. Programs
can, for instance, connect by accessing the same data objects. This means that not
every connection will present itself on the call graph. These, however, can be found
via conceptual feature extraction since it is likely that programs using the same data
are conceptually connected to the same feature. This is why the programs detected
by the conceptual extraction and not discovered via structural information can still be
valuable. This seems to be verified by the developers also, since, in our evaluation, we
found that information retrieval based results scored even higher in their regard than
the call graph based results. However noisy, conceptual data still represents a ready
source of the semantically connected programs to each feature. Hence it can also be a
useful information source.

Additionally, both the structural and information retrieval based methods can be
tailored according to our intent by filtering out the more general programs of the call
graph, which provides the possibility to form even better-separated program sets and
by changing semantic similarity thresholds in the conceptual method.

As our evaluation pointed out, communities hold valid information about features,
and similar opinions can be extracted from it as relying on domain expertise while
working on a more structural level. Although community detection and matching can
aid the understanding of features and the current state of the system, they can also be
useful in the future at a maintenance stage. Additional possible uses even involve the
refinement of the feature model and easily comprehensible tracking of the evolution
of programs. Some appropriate setting of communities could also be optimized for a
recommendation system of possible splitting or merging of features.

We made our results available to our industrial partner at the time of the construc-
tion of the new SPL architecture. The work is finished, and the project was concluded
successfully. The results of our experiments were utilized in the process.

Our project required us to remain within the field of 4GL languages, but some of our
methods could also lead to viable approaches in more traditional languages like Java or
C++. Since call graphs can be constructed for these languages also and tend to contain
a lot of natural language text, our method can be adapted to work in more traditional
conditions. Magic and 4GL languages, in general, are more data-intensive, and in our
specific advantageous case, features were readily connected with menu elements making
direct calls inside the software. However, a similar menu to class position can also be
rather easily achieved in a lot of Java or C4++ applications due to the confinements of
many frameworks.

3.10 Conclusions

The thesis point presented an industrial project, which dealt with a software product
line adoption process. We concentrated on the feature extraction and analysis aspects
of the project, which are fundamental parts of the effort because further architecture
redesign and implementation are and will be based on this information. For feature
extraction, we used two approaches: one based on computing structural information
in the form of call-graphs, and the other extracted from the textual representation of

49

3. CHAPTER. FEATURE-EXTRACTION OF MAGIC APPLICATIONS

high-level feature models and the code. The combination of the two pieces of informa-
tion had to be performed and processed in such a way that the resulting models are
most useful for project participants. Experimental results show that the final mod-
els are significantly more comprehensible and hence directly usable (in various forms)
by domain experts, architects and developers. Our work also introduced several new
metrics for the feature level of product line adoption of 4GL systems that provide new
insights on the size, similarity, coupling and complexity of features. The high-level
view of domain experts is not necessarily in line with the actual implementation. We
introduced community detection methods on the call structure of the system to match
communities with feature code originated from domain experts. We evaluated our
results based on the analysis of the system variants and a comparison with human
expertise and shown that our various outputs present knowledge that matches well
with the thinking of experts but can still highlight additional insights. The proposed
method, including the associated toolset, was used by our industrial partner during this
effort, which resulted in a successful project. Although the approach was implemented
in Magic, a 4GL technology, we believe that the fundamental method could be suitable
for other more traditional paradigms as well after the necessary adaptations.

The thesis point provided new solutions for 4GL feature extraction in product
line adoption, including a combination of semantic and structural information, several
adopted or new metrics, and a community-based mapping of features. The methods
were found to be valid by domain experts and were used during the product line
adoption of a real logistical system.

The author considers the followings as his main contributions:

¢ The author implemented the LSI-based solution for mapping features according
to semantic information.

¢ The author took part in planning the combination possibilities of the CG and IR
techniques.

¢ The author devised some of the new metrics, and he took part in the evaluation
of the systems based on the new metrics.

¢ The author took part in the design and evaluation of the community-detection
experiments.

¢ The author maintained contact with the industrial partner during the work, and
took significant part in the project’s documentation.

¢ The author coordinated several steps in the implementation, including the combi-
nation, filtering, evaluation, calculation of new metrics, and community-detection
steps of the work.

¢ The author took part in the evaluation work, the planning of the evaluation
process, and the analysis and explanation of the results.

50

Part 11

Textual Methods in Aiding
Test-to-Code Traceability

““Would you tell me, please, which way I ought
to go from here?’

‘That depends a good deal on where you want
to get to,” said the Cat.

‘I don’t much care where—" said Alice.

“Then it doesn’t matter which way you go,’ said
the Cat.”

— Lewis Carroll, Alice in Wonderland

Test-to-Code Traceability

4.1 Overview

The creation of quality software usually involves a great effort on part of developers
and quality assurance specialists. The detection of various faults is usually achieved
via rigorous testing. In a larger system, even the maintenance of tests can be a rather
resource-intensive endeavor. It is not exceptional for software systems to contain tens
of thousands of test cases each serving a different purpose. While their aims can be self-
evident for their authors at the time of their creation, they bear no formal indicator
of what they are meant to test. This can encumber the maintenance process. The
problem of locating the parts of code a test was meant to assess is known as test-to-
code traceability.

Proper Test-to-Code traceability would facilitate the process of software mainte-
nance. Knowing what a test is supposed to test is obviously crucial. For each failed
test case, the code has to be modified in some way, or there is little point to testing. As
this has to include the identification of the production code under test, finding correct
test-to-code traceability links is an everyday task, automatization would be beneficial.
This could also open new doors for fault localization[80], which is already an extensive
field of research, and even for automatic program repair [159], greatly contributing to
automatic fixes of the faults in the production code.

To the best of our knowledge, there is no perfect solution for recovering the cor-
rect traceability links for every single scenario. Good testing practice suggests that
certain naming conventions should be upheld during the testing, and one test case
should strictly assess only one element of the code. These guidelines, however, are not
always followed, and even systems that normally strive to uphold them contain certain
exceptions. Thus, the reliability of recovery methods that build on these habits can
differ in each case. Nonetheless, the method of considering naming conventions is one
of the easiest and most precise ways to gather the correct links.

In its simplest form, maintaining naming conventions means that the name of the
test case should mirror the name of the production code element it was meant to test,
its name consisting of the name of the class or method under test and the word "test'

53

4. CHAPTER. TEST-TO-CODE TRACEABILITY

for instance. The test should also share the package hierarchy of its target. In a
2009 work of Rompaey and Demeyer [132] the authors found that naming conventions
applied during the development can lead to the detection of traceability links with
complete precision. These, however, are rather hard to enforce and depend mainly on
developer habits. Additionally, method-level conventions have various other compli-
cating circumstances.

Other possible recovery techniques rely on structural or semantic information in
the code that is not as highly dependent on individual working practice. One such
technique is based on information retrieval (IR). This approach relies mainly on tex-
tual information extracted from the source code of the system. Based on the source
code, other, not strictly textual information can also be obtained, such as Abstract
Syntax Trees (AST) or other structural descriptors. Although source code syntax is
rather formal and most of the keywords of the languages are given, the code still usu-
ally contains a large amount of unregulated natural text, such as variable names and
comments. There are endless possibilities in the naming of variables, functions, and
classes. These names are usually quite meaningful. While source code is hard to inter-
pret for humans as natural language text, machine learning (ML) methods commonly
used in natural language processing (NLP) could still function properly.

Compared to a small manual dataset, Rompaey and Demeyer [132] found that
lexical analysis (Latent Semantic Indexing - LSI) applied to this task performed with
3.7%-13% precision while the other methods all achieved better results. Thus, it is
known that IR-based methods most probably do not produce the best results in the
test-to-code traceability field by themselves. However, they are still in constant use in
current state-of-the-art solutions. Using textual methods may not be the single best
way to produce valid traceability links, but modern approaches still employ them in
combination with other techniques. The textual methods used in these systems are
usually less current, most solutions simply rely on matching class names or the latent
semantic indexing (LSI) technique as part of their contextual coupling. Thus, finding
better performing textual methods can improve these possible combinations as well,
having the potential of major contributions to the field. Our findings [30] show that
improved versions of lexical analysis can significantly outshine the previously mentioned
underwhelming results, raising their average precision to over 50%.

To investigate the benefits of ML models in this topic and to point out their dis-
tinction from simple naming conventions, our experiments were organized along the
following research questions:

« RQ1: How generally are naming conventions applied in real systems?

« RQ2: Is there a way to further improve test-to-code traceability results relying
on modern information retrieval methods?

« RQ3: How well do various text-based techniques perform compared to human
data?

Our goal was to recover test-to-code traceability links for tests based on only the
source files, currently focusing on Java systems and JUnit tests. To do so, a suitable
input representation has to be generated. From this, an artificial intelligence model is
to be trained for the search for the most similar test-to-code match. The chapter is
organized as follows. Related work is overviewed in Section 4.2. Section 4.3 presents

54

4. CHAPTER. TEST-TO-CODE TRACEABILITY

diverse background information, including our various approaches to input generation
and traceability link recovery. Our evaluation procedure and the sample projects are
also described in this section. An evaluation on eight systems follows in Section 4.4 with
the discussion of these results in Section 4.5. Some threats to validity are addressed in
Section 4.6, while the chapter concludes in Section 4.7.

4.2 Related Work

Traceability in software engineering research typically refers to the discovery of trace-
ability links from requirements or related natural text documentation towards the
source code [9, 100]. Based on the study of Borg et al. [19], most of the traceability
evaluations have been conducted on small bipartite datasets containing fewer than 500
artifacts, which is too few to real external validity. While data limitations still persist,
the current chapter’s evaluation is conducted on eight software systems, using different
oracles. While test-to-code traceability is not the most widespread topic amongst recov-
ery tasks, several well-known approaches aim to cope with this problem. Still, as yet,
none of them has provided a perfect solution for the problem [61, 132, 75, 126, 31, 30].
The current state-of-the-art techniques [125] rely on a combination of diverse methods
- i.e. techniques based on dynamic slicing and contextual coupling. The use of textual
information is common in these techniques. Our currently discussed work took a closer
look at various textual similarity techniques, and combinations of these resulted in
promising recovery precision.

In a recent work [157], authors presented TCtracer, a tool which combines an
ensemble of new and existing techniques and exploits a synergistic flow of information
between the method and class levels. The tool observes test executions and creates
candidate links between these artifacts and the ones under test. It then assigns scores
(which are used to rank the candidates) to the candidate links. These scores are
calculated using the combination of eight test-to-code traceability techniques including
four string-based techniques, two statistical, call-based techniques, Last Call Before
Assert (LCBA) which relies on the last method call before the assertion statement,
and Naming Conventions (NC). Although this and our work share many common
factors, there are significant differences. First of all, our technique does not rely on
information based on test-execution. Secondly, the two rankings are fundamentally
different: our work relies on IR techniques (and refine these using various approaches,
with an initial static analysis), while White et al. calculate the ranking scores based
on formulas defined in the paper. We also researched different ways of representing the
source code.

The utilization of structural information has also occurred in other works [118, 127,
125]. In their 2015 work, Ghafari et al. [44] also employed structural information.
Here, the main goal was to identify traceability links between test cases and methods
under test, which is still not a mainstream topic in the field, as most methods aim for
production classes. The proposed approach correctly detects focal methods under test
automatically in 85% of the cases. Bouillon et al. leveraged failed test cases to find the
location of errors in source code [20]. To link the tests to the production code, they
built the static call graph of each test method and annotated each test with a list of
methods which may be invoked from the test. The use of structural information also
occurs in other extraction methods, feature extraction for instance, where it was shown
that its combination with LSI is capable of producing good results [39]. In our work,

95

4. CHAPTER. TEST-TO-CODE TRACEABILITY

structural information is used in several source code representations. Call information
was also utilized, even though it was extracted only from the text. Even so, it was
found a valuable addition as a filter.

Like LSI, TF-IDF is also a text-based model commonly used in the software engi-
neering domain. This technique was, for instance, used by Yalda et al. [162] to trace
textual requirement elements to related textual defect reports, and by Hayes et al. [51]
in the after-the-fact tracing problem. In requirement traceability, the use of TF-IDF
is so widespread, that it is considered a baseline method [143]. Text-based models
are still very popular in the requirement traceability task also, they are incorporated
in several recent publications [42, 52]. Our experiments covered LSI and TF-IDF as
standalone techniques and also as a refinement for Doc2Vec, which was shown in our
previous work [30] to produce higher quality results.

In our findings, the use of document embeddings resulted in the highest precision
values. Word2Vec [105] gained a lot of attention in recent years and became a very
popular approach in natural language processing. Calculating similarity between text
elements using word embeddings became a mainstream process [102, 148, 156, 46,
163, 113]. Doc2Vec [104] is an extension of the Word2Vec method dealing with whole
documents rather than single words. Although not enjoying the immense popularity
of Word2Vec, its use is still prominent in the scientific community [173, 32, 154, 35].

The use of recommendation systems is widespread in the field of software engineer-
ing [80, 128, 129]. Presenting a prioritized list of most likely solutions seems to be a
more resilient approach even in traceability research [75, 31].

Because of the numerous benefits of tests, developers tend to create a lot of them
even though it is challenging to determine what new tests have to be added to im-
prove the quality of a test suite. Since 100% coverage is often infeasible, several new
approaches have been proposed for interpreting coverage information. For instance,
Huo et al. [55] introduced the concepts of direct coverage and indirect coverage, that
address these limitations. In addition, several other challenges are present in general
software testing [15], like coherent testing, test oracles and compositional testing. The
more challenges are solved, and the more the community understands about testing
in general, the better test-to-code traceability results can become [119]. Our research
also aimed to shed some light on class and method naming habits which can lead to a
better understanding of testing in real-life software systems.

Although natural language based methods are not the most effective standalone
techniques, state-of-the-art test-to-code traceability methods like the method provided
by Qusef et al. [125, 127] incorporate textual analysis for more precise recovery. Jin
et al. in [45] presented a solution that uses deep learning and word embeddings to
incorporate requirements artifact semantics and domain knowledge into the tracing
solution. The authors evaluated their approach against LSI and VSM (Vector Space
Model). They found that their neural network approach only outperforms these when
the tracing network has a large enough training dataset which is hard to obtain. Other
works also explore the use of word embeddings to recover traceability links [45, 46,
172, 165]. Our current approach differs from these in many aspects. To begin with,
we make use of different similarity concepts and further refine these with structural
information. Next, our document embeddings are computed in one step, while in other
approaches this is usually achieved in several steps. Finally, our models were trained
only on source code (or on some representation which was obtained from the source
code), and there was no additional natural language corpus.

56

4. CHAPTER. TEST-TO-CODE TRACEABILITY

4.3 The Proposed Method

The goal of the approach is to investigate textual techniques for the sake of improving
test-to-code traceability. This approach could improve the performance of existing
techniques on this specific problem and also serve as the groundwork for future works
on test-to-code traceability. To achieve this, let us grasp the process in Figure 4.1. The
input is a software system, which consists of Java source files. The output is a ranked
list for each test case with the production classes that are likely to be a target of the
test. The input files are transformed in such a representation, that is more suited to
machine learning than raw source code. Three techniques are trained to measure the
similarity between test and code classes. Class information is also obtained from the
source files like the list of imported packages and the methods defined in a class. Each
model produces a list of similar code classes. These results are susceptible to providing
faulty results because of the probabilistic nature of ML techniques. Thus, these lists
are filtered with the class information which was obtained earlier.

Sourcefiles Input representation Model training

optimization

<> ;
Identifiers | characters

Ranked list of
similar classes

lang3 ionUtilsTest.

Similarity
measurement

1. lang3.Validate
2. lang3.builder.HashCodeBuilder
3. lang3.EnumUtils

4. lang3.NotimplementedException
5. lang3.mutable.MutableObject

HRREE

Error prone
(soft computed)
links

Reliable o A
classinformation

Figure 4.1: A high-level overview of the proposed process

Our research strived to achieve a comprehensive evaluation of three text-based
techniques on the test-to-code traceability problem rather than simply providing a
new method. Thus, our results were evaluated on eight real programs and also using a
variety of source code representations and settings. Our work aimed to show that LSI
itself performs better than it had been previously perceived by the research commu-
nity [75], investigated the question of source code representations in the task, and also
found that Doc2Vec can significantly outperform LSI [31] while a suitable combination
of the textual similarity techniques could provide even better results [30].

Even though our experiments involved systems written in the Java programming
language, the applied IR-based techniques mainly use the natural language part of the

57

4. CHAPTER. TEST-TO-CODE TRACEABILITY

code, making the approach semi-independent from the chosen programming language.
Nevertheless, language invariability cannot be guaranteed. These methods also depend
on the habits of the developers. The naming conventions and the descriptiveness of
the language of the natural text factors in a great deal in textual similarity. This is
why it is also crucial that the developers possess sufficient education and experience to
produce sufficiently clean source code. Furthermore, as it is visible with our current
systems under test, systems with similar properties can produce vastly different results
with the same methods.

Our experiments feature the extraction of program code from the systems under test
using static analysis, obtaining different input representations, distinguishing tests from
production code, textual preprocessing, and determining the conceptual connections
between tests and production code. During our experiments, the Gensim [1] toolkit’s
implementation was used for all three textual methods. The initial static analysis
that provides the text of each method and class of a system in a structured manner is
achieved with the Source Meter [141] static source code analysis tool.

The proposed approach recommends classes for test cases starting from the most
similar and also examine the top 2 and top 5 most similar classes. Looking at the
outputs in such a way makes it a recommendation system, which provides the most
similar parts of production code for each test case. Examining not only the most similar
class but the topy most similar ones has the benefit of highlighting the test and code
relationship more thoroughly.

The proposed approach was evaluated on eight medium-sized open source projects
written in Java, a further overview of these systems is available in Subsection 4.3.9.
In this work, the models are not trained on plain source code, the feasible input rep-
resentations are introduced in the next section. Our most comprehensive and latest
findings on text-based methods in test-to-code traceability can be found in [66]. The
techniques used through our work follow in brief summary. Some of the the discussed
methods like LSI and Doc2Vec have already been defined in Chapter 2, but they are
also briefly included here for completeness’s sake.

4.3.1 Latent Semantic Indexing

LSI is a relatively old algorithm and there are also some previous findings on its uses
on this specific problem. It builds a corpus from a set of documents and computes
the conceptual similarity of these documents with each query presented to it. In our
current experiments, the production code classes of a system were considered as the
documents forming the corpus, while the test cases were considered as queries. The
algorithm uses singular value decomposition to achieve lower dimension matrices which
can approximate the conceptual similarity.

4.3.2 Doc2Vec

Doc2Vec is originated from Word2Vec [104], which is an artificial neural network that
can transform (embed) words into vector space (embedding). The main idea is that the
hidden layer of the network has fewer neurons than the input- and output layers, thus
forcing the model to learn a compact representation. The novelty of Doc2Vec is that
it can encode documents, not just words, into vectors.

58

4. CHAPTER. TEST-TO-CODE TRACEABILITY

4.3.3 Term Frequency-Inverse Document Frequency

TF-IDF is a basic technique in information retrieval. It relies on numerical statistics
reflecting how important a word is for a document in a corpus. The frequency value
is a metric that increases each time a word appears in the document but is offset by
the frequency of the word in the whole corpus, highlighting the most specific words for
each document.

4.3.4 Result Refinement with ensembley Learning

In our early works [31, 30, 75] our experimental analysis led us to the conclusion that
different ML techniques capture different similarity concepts. This means, that each
examined technique can provide useful information, while generally, the desired code
class appears close to the top of every similarity list. Thus, it should be possible to
refine the obtained results a technique provides with another list that comes from a
separate technique. The algorithm is very simple: only those code classes remain which
are present in both similarity lists. Since every code class is ranked in the lists, we
limit the search to the top N most similar ones, this way the algorithm will drop out
the classes from the first list which are not amongst the topy links of the second.

4.3.5 Soft Computed Call Information

Since the listed techniques do not take class information into account, an additional
simple filter can also be added. The following assumptions should be true in most
cases: (1) the package of the class under test should either be the same as the test’s or
it should be imported in the test and (2) a valid target class should have a definition
for at least one method name that is called inside the body of the test case. These
criteria still do not guarantee a valid match.

Methods and imports are obtained from the Java files using regular expressions.
These may differ for different programming languages along their different syntax.

4.3.6 Extended Naming Convention Extraction

The above presented techniques all result in a filtered list of soft computed links -
i.e. there is no guarantee, that those are correct. Naming conventions, however, are
known to produce traceability links with very high precision [132]. If a project lacks
these good naming practices, naming conventions simply cannot be used in finding the
correct matches. In this final approach, the naming convention is observed first. If
it is applicable, it is accepted. Otherwise, the results of an IR-based approach (LSI,
Doc2Vec, etc.) are considered.

4.3.7 Optimal Input Representation

It is evident that the exact contents of the input are of crucial importance. In this sub-
section, we briefly overview the representations of code snippets (classes or methods)
used for the traceability experiments. A code representation is the input of a machine
learning algorithm that computes the similarity between distinct items. Abstract Syn-
tax Trees (AST) were utilized to form a sequence of tokens from the structured source
code. An AST is a tree that represents the syntactic structure of the source code,

59

4. CHAPTER. TEST-TO-CODE TRACEABILITY

boolean contains (Object target) |
for (Object elem: this.elements)
if (elem.equals (target))
return true;

return false;

Figure 4.2: An example method declaration, from which the AST of Figure 4.3 was
generated

without including all details like punctuation and delimiters. For instance, a sample
Abstract Syntax Tree is displayed in Figure 4.3 which was constructed from the source
code of Figure 4.2. To better understand the advantages and best possible methods
of using the AST, we have chosen experimented five different code representations, of
which four relies on AST information. The five representations are described below.
These were constructed according to our previous work and are some of the most widely
used representations in other research experiments [156], constructed along the work
of Tufano et al. [148].

SRC

Let us consider the source code as a structured text file. Textual methods are often
used in the context of natural language processing. These techniques include the
tokenization of sentences into separate words and the application of stemming. With
natural language, the separation of words can be quite simple. In the case of source
code, however, we should consider other factors as well. For instance, compound
words are usually written by the camel case rule, and names can also be separated
by punctuation. The definition of these separators are one of the main design decisions
in this representation. For the current work, words were split by the camel case rule,
by white spaces and by special characters that are specific to Java ("(", '[", "."). The
Porter stemming algorithm was used for stemming. This approach notably does not
use the AST of the files, making it a truly only text-based approach.

TYPE

To extract this representation for a code fragment, an Abstract Syntax Tree has to be
constructed. This process ignores comments, blank lines, punctuation, and delimiters.
Each node of the AST represents an entity occurring in the source code. For instance,
the root node of a class (CompilationUnit) represents the whole source file, while the
leaves are the identifiers in the code. In this particular case, the types of AST nodes
were used for the representation. The sequence of symbols was obtained by pre-order
traversal of the AST. The extracted sequences have a limited number of symbols,
providing a high-level representation.

60

4. CHAPTER. TEST-TO-CODE TRACEABILITY

r 0) MethodDeclaration

1) Parameter 2) BlockStmt
=y

~

= 2

7) ForEachStmt 8) ReturnStmt

¥

9) BlockStmt 10) FieldAccesExpr 11) VariableDeclarationExp

14) ThisEx|
13) IfStmt o 17) VariableDeclarator

18) BlockStmt 19) MethodCallExpr

21) ReturnStmt

Figure 4.3: An Abstract Syntax Tree, generated from the example of Figure 4.2. The
numbers inside each element indicate the place of the node in the visiting order. Leaves
are denoted with standard rectangles (note that here the value and the type is also
represented), while intermediate nodes are represented by rectangles with rounded
corners

IDENT

Every node in the Abstract Syntax Tree has a type and a value. The top nodes of
the AST correspond to a higher level of abstraction (like statements or blocks), their
values typically consist of several lines of code. The values of the leaf nodes are the
keywords used in the code fragment. In this representation, these identifiers are used
by traversing the AST tree and printing out the values of the leaves. The values of
literals (constants) in the source code also might occur here, these are replaced with
placeholders representing their type (e.g. an integer literal is replaced with the <INT>
placeholder, while a string literal with <STRING>). The extracted identifiers contain
variable names. In the current experiments, they were split according to the camel
case rule popularly used in Java.

LEAF

In the previous two representations, distinct parts of the AST were utilized to get the
input. This approach takes both the types and node values into account. Just as
before, a pre-order visit is performed from the root. If the node is an inner node then
its type, otherwise (when it is a leaf) its value is printed. This representation captures
both the abstract structure of the AST and the code-specific identifiers. Considering
the latter, these can be very unique and thus very specific to a class or a method.

SIMPLE

The extraction process is very similar to the previous one, except that in this case
only values with a node type of SimpleName are printed out. These nodes occur very
often, they constituted 46% of an AST on average in our experiments. These values

61

4. CHAPTER. TEST-TO-CODE TRACEABILITY

correspond to the names of the variables used in the source code while other leaf node
types like literal expressions or primitive types hold very specific information. Note that
in the IDENT representation, the replacing of literals eliminated the AST node types
of literal expressions. Only the modifiers, names, and types remained, thus becoming
similar to this representation. With this representation, however, we do not exclude
the inner structure of the AST.

4.3.8 Evaluation Procedure

In their 2009 evaluation, Van Rompaey and Demeyer [132] found that the naming con-
ventions technique produced 100% precision in finding the tested class at each test case
it was applicable to. The authors used a human test oracle consisting of 59 randomly
chosen test cases altogether. These can be considered too few measuring points for
proper generalization, but nevertheless, it is visible that naming conventions can iden-
tify the class under test in the overwhelming majority of the cases. Naming convention
pairs can also be extracted automatically from method, class, and package names.
Thus, one of our evaluation methods relies on the naming conventions technique.

Since naming convention habits may influence this, our approach was also evaluated
on a human test oracle described in [76]. TestRoutes is a manually curated dataset that
contains data on four of our eight subject systems, Commons Lang, Gson, JFreeChart
and Joda-Time. It is a method-level dataset that classifies the traceability links of 220
test cases (70 from JFreeChart, 50 from each of the others). This information is also
suitable for class-level evaluations, as this is a relaxed version of the same problem.
The dataset lists the methods under test as focal methods (there can be multiple focal
methods for a test case), as well as test and production context. Our current focus
is on the classes of these focal methods. For JFreeCart and Joda-Time, the dataset
specifically targeted test cases that were not covered with simple naming conventions,
this will also be evident at our results. For the other systems, the dataset contains
data on randomly chosen test cases.

The TestRoutes data was annotated by a graduate student familiar with software
testing. The tests were not executed during the annotation process. The annotator
worked in an integrated development environment, studied the systems’ structure be-
forehand, and maintained regular communication with the researchers, addressing the
arising concerns. The collected traceability links were inspected and validated by a
researcher, with another researcher also verifying the links of at least ten test cases of
each system.

A relatively simple yet sufficiently strict set of rules was applied in the naming
convention based evaluation. Our NC-based evaluations were based on package hierar-
chy and exact name matching. This is further detailed in Subsection 4.4.1, where this
particular naming convention ruleset is referred to as PC (package + class).

With such an evaluation, it is only possible to find one pair to each test case cor-
rectly. Our methods produce a list of recommendations in order of similarity. Every
class is featured on this list. Thus, with our current evaluation methods, the custom-
ary precision and recall measures always coincide, which necessarily means that the
F-measure metric would also have the same value. This is in accordance with the
evaluation techniques commonly used for recommendation systems in software engi-
neering. Because of this equality, we shall refer to our quantified results in the chapter
as precision only.

62

4. CHAPTER. TEST-TO-CODE TRACEABILITY

4.3.9 Sample Projects

Our results were evaluated on multiple software systems and with multiple settings.
These involved the following open-source systems: ArgoUML is a tool for creating and
editing UML diagrams. It offers a graphic interface and relatively easy usage. Com-
mons Lang is a module of the Apache Commons project. It aims to broaden the func-
tionality provided by Java regarding the manipulation of Java classes. Commons Math
is also a module of Apache Commons, aiming to provide mathematical and statistical
functions missing from the Java language. Gson is a Java library that does conversions
between Java objects and Json format efficiently and comfortably. JFreeChart enables
Java programs to display various diagrams, supporting several diagram types and out-
put formats. Joda-Time simplifies the use of date and time features of Java programs.
The Mondrian Online Analytical Processing (OLAP) server improves the handling of
large applications’ SQL databases. PMD is a tool for program code analysis. It explores
frequent coding mistakes and supports multiple programming languages.

The versions of the systems under evaluation, their total number of classes and
methods, and the number of their test methods are shown in Table 4.1, while Figure 4.4
visually reflects these numbers. It has to be noted that several methods of the test
packages of the projects have been filtered out as helpers since they did not contain
any assertions.

Table 4.1: Size and versions of the systems used

System ‘ Version Classes All Methods Test methods
ArgoUML 0.35.1 2,404 17,948 554
C. Lang 3.4 596 6,523 2,473
C. Math 3.4.1 2,033 14,837 3,493
Gson 2.8.0 757 2,467 924
JFreeChart 1.0.19 953 11,594 2 239
Joda-Time 2.9.6 522 9,934 3,779
Mondrian | 3.0.4.11371 1,626 12,186 1,546
PMD 5.6.0 1,608 9,242 825

4.3.10 Mining Stack Oveflow for Traceability Links

Another notable experiment on our part was the employment of information retrieval
in attempting to link test and production code snippets on the well-known Stack Over-
flow [2] site. Our experiments used the data provided by Baltes et al. [14].

The goal of our experiment was to see how information retrieval methods perform in
cases where vast amounts of data are present and to see whether they can still provide
valid results. LSI and Doc2Vec were featured in these experiments.

During the experiments, we filtered out the posts that were old versions or did not
deal with the Java language and only extracted the questions and accepted answers
for each post. The resulting 1.5 million posts were submitted to textual preprocessing,
consisting of the extraction of methods via regular expressions, separating test and
code methods, and filtering out extremely short methods. Thus, 33,115 test methods
and 608,067 production methods were extracted from the whole dataset. The methods

63

4. CHAPTER. TEST-TO-CODE TRACEABILITY

ArgoUML —

Commons Lang 8, ——
Commons Math [.\

Gson % .

TPt Ot e —

Joda-Time s\
Mondrian e —— M Classes
Test Methods
PMD R — M Production M.
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Figure 4.4: Properties of the sample projects used

underwent lower casing, camel case splitting, and stopword filtering also. As this
was found to exceed our computation capacity, our experiments with Doc2Vec were
performed with the snippets of 100,000 randomly chosen posts, while LSI used all
available methods.

4.4 Results

The current section evaluates the various approaches described in the previous sec-
tion, featuring the results obtained from different representations and learning settings.
Various naming convention possibilities are overviewed with their applicability values
determined via automatic extraction. Next, our experiments with the ensembley ap-
proach are presented, where the best N value has been sought on NC-based and manual
traceability links. The traceability approaches are also compared to each other based
on both NC and manual evaluation.

We note that production methods containing less than three tokens in their method
bodies were filtered out since trivial and abstract production methods are not likely to
be the real focus of a test.

4.4.1 Applicability of Naming Conventions

Naming conventions for tests are a vague term that can mean a multitude of various
practices. The conventions are usually agreed upon by the developers and written
guidelines rarely even exist. They can also be only considered a mere good practice,
and their use varies by teams or even individuals. As there can be various conventions,
and their use is different in most systems, relatively vague criteria are needed to detect
them in a versatile manner. Let us consider a few general criteria for our examination.
These are presented in Figure 4.5. There are, of course, other possible criteria, including
abbreviations or some other distinction for tests except the word "Test". Still, these
seem to be the most intuitive and most popular naming considerations.

64

4. CHAPTER. TEST-TO-CODE TRACEABILITY

Let us consider some of the possible combinations of the listed criteria components.
Figure 4.6 presents these. Some other viable combinations can also exist, which did not
seem suitable for the unique distinction of test-code pairs. The criteria are ordered by
strictness in a descending manner. While the stricter criteria produce more distinction
between pairs, they are less versatile and are harder to uphold. Table 4.2 presents the
extent to which the naming conventions were found to be applicable to the evaluated
systems.

The package hierarchy must
match either completely or after
the "test" or "tests" package.

a.b.c.SomeClass «—» test.a.b.c.TestSomeClass

package a.b.c.SomeClass <> a.b.TestSomeClass

The name of the test class must

match completely with the SomeClass <«—>» SomeClassTest

~class

~method

production class, the word "Test"
appended to the beginning or
the end.

The name of the class must
contain the whole name of the
production class.

The name of the test method

must match completely with the
production method, except for the
word "Test" appended to the
beginning or the end.

The name of the method must
contain the whole name of the
production method.

SomeClass <«>» AnotherSomeClassTest
SomeClass <«>9» OtherTest

SomeClass <««—» SomeClassTest
SomeClass <««—» AnotherSomeClassTest
SomeClass <9 OtherTest

someMethod <«—» someMethodTest
someMethod << anotherSomeMethodTest
someMethod <> otherTest

someMethod <«—» someMethodTest
someMethod <«—» anotherSomeMethodTest
someMethod <«<» otherTest

Figure 4.5: Various possible naming convention criteria components

Table 4.2: The applicability of the naming conventions technique using different ap-

proaches
Naming Criteria ‘ ArgoUML Commons Lang Commons Math Gson JFreeChart Joda-Time Mondrian — PMD
PCM 14.91% 17.04% 12.50% 1.74% 32.60% 3.60% 6.57% 7.93%
PM 20.73% 19.80% 16.85% 2.18% 38.95% 10.09% 9.04% 8.43%
PCWM 19.82% 56.67% 32.19% 9.59% 49.53% 23.78% 11.51% 15.86%
PWCWM 21.27% 66.73% 37.52% 9.59% 50.92% 59.65% 12.09% 16.48%
PWM 33.45% 70.79% 45.42% 15.47% 58.64% 74.42% 31.01% 25.53%
M 28.91% 19.96% 21.16% 3.05% 40.15% 11.38% 12.22% 11.90%
pPC 60.18% 84.58% 75.07% 26.14% 96.47% 36.80% 17.82% 58.36%
C 64.00% 84.58% 75.07% 27.89% 96.47% 37.30% 20.81% 66.91%
WM 74.00% 80.00% 81.53% 60.24% 61.28% 78.55% 73.34% 58.36%
PWC 75.09% 99.11% 88.06% 28.87% 97.05% 98.04% 21.52% 61.09%
WwC 80.55% 99.11% 91.42% 44.77% 97.41% 98.04% 35.96% 72.12%

As it is visible from the results of the table, there is a significant jump in the
applicability at the PC naming convention variant, which considers package hierarchy
and an exact match to the name of the class. While the extent of the increase of
applicability varies between systems, it is apparent that most of them produce only
very few traceability links when method names are also considered. As our experiments
featured class level test-to-code traceability, our further results are going to use PC as
the default naming convention.

65

4. CHAPTER. TEST-TO-CODE TRACEABILITY

PCM = ackage
Package, Class and Method P g + - + -
PM package
Package and Method + -
PCWM — package - - 4+ ~method

Package, Class and Wildcard Method

PWCWM = package -|— ~class + ~method

Package, Wildcard Class and Wildcard Method

PWM = package -} ~method

Package and Wildcard Method

Y

Method

PC = package -+ -

Package and Class

¢ = g

Class

WM — ~method
Wildcard Method
PWC = package - ~class
Package and Wildcard Class
WC = ~class

Wildcard Class

Figure 4.6: Some of the possible naming convention criteria in descending order of
restrictiveness

4.4.2 Ensemble Experiments

Figure 4.7 and Figure 4.8 show the results of our ensembley learning approach. As
one can see in the figures, the experiments were carried out using different N values:
50, 100, 200, and 400. These values only influence the size of each similarity list. If N
is relatively big, then the filtering on the original similarity list (which originates from
Doc2Vec) will not drop out many entries since many of the elements are present in the
other two lists. In contrast, if N is a small number, the filtering is stricter since every
similarity list contains only a limited number of entries. The previous argument can
be further elaborated: if N is big, the resulting similarity list is going to rely mostly on
the original one, while if it is small, the approach makes better use of the information
from the other two approaches.

First, let us consider Figure 4.8, which visualizes the results from the sample
projects measured via automatic naming convention extraction. The small flags on
the top of the bars indicate the highest values for each system in their category (top;,
tops, tops). The flag’s color is the same as its bar; a white flag means that the high-
est values are equal. Remarkably, no case was encountered where there were two or
three highest values. In this experiment, the different source code representations are
also considered. Looking at the figure, it is apparent that most of the flags appear at
the IDENT representation. It is also worth mentioning that at the top; results, the

66

4. CHAPTER. TEST-TO-CODE TRACEABILITY

ensemblesg approach seems to produce the highest values. Considering multiple rec-
ommendations (topy and tops), the situation is less obvious: ensemblejg also seems to
provide good results. Ensembleyy seems to be less precise. It was prevalent only in the
case of Mondrian using the SIMPLE representation. The results on the manual dataset
also reinforce this finding. In Figure 4.7, almost every flag belongs to the ensembles
approach, except in two cases, when it produced the same value as the others.

M Ensemble-50 M Ensemble-100 ™ Ensemble-200 Ensemble-400

50

-~
45
40
35 -
30
-~
: | 3
20 [o
0
10 !
: | .
o N , PR
oo oo oo oo oo
c £ o c £ o c £ o c £ o c £ o
COEECOEECOEECOEECOEE
8 2o £Ef a2 £8% a2 £ % a2 £ 8 o 2 £
g O g 2099200 R 209 R20g9R
g @ 8 ¢ @ 8 ¢ ¢ B8 9 ¢ B8 9 o B
& 8 E & 9 E & S E £ 9 £ o]
£ - £ - £ - € - £ -
o o o (o} (o}
o (] (] (] (]

60
50
40
30
20
10

Gson T T
JFreeChart [T
Gson N
JFreeChart [T
Gson N
JFreeChart [Tammm
Gson [

JFreeChart T &

Gson 1

Joda-Time
Commonslang. T—
Joda-Time
CommonsLang. —
Joda-Time

CommonslLang —

Joda-Time E—
¢-dOlL

CommonsLang. I
JFreeChart ==
Joda-Time [

o
Commonslang T §

70
60
50
40
30
20
10

Gson W
JFreeChart e

Gson
JFreeChart Hammr

JFreeChart e

Joda-Time

o
Commonslang T B
[|
JFreeChart e
Joda-Time N
Commonslang S
Gson .
Joda-Time T——
Commonslang T
Gson R
Joda-Time N
Commonslang T——
Gson TN
JFreeChart T—— 1
| |
Joda-Time T
5-doL

Commonslang b

IDENT LEAF SIMPLE SRC TYPE

Figure 4.7: Results of the ensembley learning approach measured on the manual
dataset

4.4.3 NC-based Evaluation

Table 4.3 shows the top; results of different machine learning approaches, evaluated
via naming conventions. Cells of color teal indicate the highest values for each system
within a method, while cells of color wviolet indicate the overall top values. For the
Ensembley, only those cases are listed where N = 50, since this setting seemed to be
the most beneficial (for further discussion see Subsection 4.4.2). The listed approaches

67

4. CHAPTER. TEST-TO-CODE TRACEABILITY

H Ensemble-50 M Ensemble-100 ® Ensemble-200 Ensemble-400

ArgoUML
Gson
Joda-Time
Mondrian
PMD
Mondrian §
Gson
Mondrian B
PMD
ArgoumL B
Gson
Mondrian ®
ArgoUML
Commonslang ™8
JFreeChart |
Joda-Time m
Mondrian
PMD

Commonslang

60 - -
50 -
40]- - -~
30
L]
20
I| TOP-1
2 I ik)
0 w = = h. = " -
S ff 55 rEo YL S EEEes PS5 EEes P eseses58¢ese
® o = ® © 2 ® o =2 ® © = ® o =2
3338532833585 52833585c528338¢88c5283388¢8¢F¢%2
252 g £ 8 52 g £ 5 252 g &8 252 g &5 252 g £ 8
“Eg £8= <gg &£s5= “Egg &£8= <gg £53= <Eg &g-=
£ € £ E £ € - £ E
© 8 © 8 © 8 © 8 © 8
70 L]
60 i~ - | 3
50 ‘-
40
30 -
20
I TOP-2
. | |
0 [} | w] [.,n_.,
o - o o o o
S L §EEEesEPEEEEESSEEEEEESEEEEEEESEEEEEEESS
3 2=886R3sa&3F=65KcsE3FI=>85KFsa3IFs8685§KcEZIFT=ESHETE
25 2 3 5§ ® g 2 3 £ 5 25 2 3 8§ 25 2 3 £ 5 25 2 3 £ 8§
g8 £8s <g§ £8: <gg £8:2 <g& £%¥83 <28 L83
E £ £ E E £ £ £ E £
© 8 © 38 © 8 © 8 © 8
80 -
70
60 = - |
50
L
30
20
10| m' II TOP-5
0
2 £ & s ¢ 5§ E g g's £ E g £ 58 g 1
3385 3385 F35833386¢ 3285k 58 3
2 2 [} S € D @ =3] v © g 2 [Y
S § o 25 o 3 2 5 g 3 S § © 3
E 2 & < £ & 9 < g L S £ g & 9
£ - £ - = £ &
s S 5 s &
© O © s} © o

CommonsMath
CommonsMath }

IDENT

,_
m
>
n

SIMPLE

w
Pod
(a)
3
°
m

Figure 4.8: Results of the ensembley learning approach using NC-based evaluation

correspond to the ones introduced in Section 4.3. [approach/+CG refers to filtering
with our soft computed call information described in Section 4.3.5.

4.4.4 Evaluation on Manual Data

The results measured on the manual dataset are shown in Table 4.4. Similarly to
the previous table, teal indicates the highest values within a method, while wviolet
highlights the overall highest value. The left part of the table shows precision values
of top-1 matches, while on the right side of the table, the top-5 results are listed.
The top-5 results are always equal or higher than the top-1 numbers since there are
more than one similar matches considered during the evaluation. Here, the results
of different approaches are compared to the dataset’s data, which contains manually
curated traceability links on four of our subject systems. In this table, two additional
rows are introduced. The first row shows the applicability of the naming convention
(that was denoted PC previously). These numbers depict the conventions’ applicability
to the specific test cases in the dataset, rather than the whole system. If naming
conventions should be considered accurate, this value would intuitively correspond to
the precision that could be achieved without any additional IR-based approach, only
relying on the names. The last line’s title contains the NC' addition. Our method here
first attempts to detect the link using naming conventions, and if it fails, the suggestion
of Doc2Vec is considered. If the resulting precision values would be lower than before,

68

4. CHAPTER. TEST-TO-CODE TRACEABILITY

Table 4.3: Top-1 results featuring the different text-based models trained on various

source code representations, evaluated using naming conventions. - highest value
in a row - highest value in a column
Method ‘ Representation H ArgoUML ‘ C. Lang ‘ C. Math ‘ Gson ‘ JFreeChart ‘ Joda-Time ‘ Mondrian ‘ PMD
IDENT 19.63% | 82.16% | 50.00% | 45.83% | 49.22% 41.43% | 66.42% | 37.15%
LEAF 18.43% | 61.00% | 33.01% |47.92% | 25.10% 20.79% | 65.33% 42.04%
Doc2Vec SIMPLE 24.77% | 67.91% | 33.78% | 47.50% | 30.69% 26.26% | 65.33% | 34.82%
SRC 7.85% | 31.32% | 15.46% | 16.67% | 22.64% 22.30% | 21.53% | 15.92%
TYPE 0.60% | 4.36% | 0.78% | 2.92% | 2.36% 5.18% 0.00% | 0.00%
IDENT 32.93% | 66.08% | 19.42% |30.83% | 33.29% 35.04% | 22.99% | 19.96%
LEAF 14.80% | 23.11% | 3.63% | 7.08% | 9.63% 16.12% | 11.31% | 7.80%
LSI SIMPLE 15.71% | 21.48% | 3.47% | 437% | 13.15% 6.69% 4.38% | 11.46%
SRC 19.64% | 54.64% | 24.36% | 14.17% | 21.48% 28.20% | 31.02% 22.290%
TYPE 0.00% | 048% | 0.65% | 4.58% | 0.00% 0.50% 0.00% | 0.00%
IDENT 35.95% | 73.62% | 35.18% | 35.00% | 45.65% 4871% | T3.72% 24.63%
LEAF 32.63% | 70.94% | 37.33% |38.33% | 48.93% 47.77% | 66.79% | 23.99%
TF-IDF SIMPLE 28.70% | 69.49% | 33.08% |30.00% | 44.30% ATTT% | 72.26% | 23.57%
SRC 27.79% | 51.51% | 28.68% | 18.75% | 25.19% 31.08% | 50.73% | 22.290%
TYPE 0.00% | 048% | 0.65% | 4.58% | 0.00% 0.50% 0.00% | 0.00%
IDENT 13.89% | 48.00% | 28.27% | 27.92% | 50.00% 30.22% 4.75% | 33.97%
LEAF 11.18% | 31.61% | 19.29% | 33.75% | 33.56% 24.89% 1.45% 35.03%
Ensemble-50 | SIMPLE 15.41% | 28.54% | 18.93% |38.75% | 34.01% 22.73% 1.01% | 25.48%
SRC 6.04% | 20.00% | 11.02% |13.33% | 23.24% 16.33% 1.46% | 16.35%
TYPE 0.00% | 3.79% | 0.12% | 0.00% | 1.11% 0.00% 0.00% | 0.00%
IDENT 45.01% | 83.14% | 61.04% |85.83% | 62.82% 43.02% | 68.61% | 54.14%
LEAF 42.29% | T2.66% | 45.65% |44.17% | 56.48% 34.10% | 73.72% | 52.23%
Doc2Vec+CG | SIMPLE 41.69% | T1.89% | 51.41% | 52.92% | 58.06% 24.32% | T4.09% | 51.80%
SRC 32.33% | 54.48% | 29.62% |35.42% | 37.36% 23.38% | 47.08% | 36.31%
TYPE 3.63% | 17.61% | 13.22% |42.08% | 10.46% 16.04% | 41.24% | 15.92%

that would either mean that the dataset is incorrect, or the naming conventions were
misleading. It is also clear that if the results of this approach and the plain NC
approach were equal, then the IR-based addition would be unnecessary. Eventually,
none of these concerns were found to be reflected in Table 4.4. In fact, this approach
produced the best results in almost every single case.

4.4.5 Mining StackOveflow for Traceability Links

LSI Similarity Doc2Vec Similarity

same user method name same user, method name

80 42 540 18

4 same post pair post

80 17

same post

327

pair post

80

Figure 4.9: A Venn diagram about our Stack Overflow matches

We also briefly mention the results of the Stack Overflow experiment. As there are
no real systems to speak of when only looking at code snippets, an accurate evaluation
cannot be achieved due to the lack of information. There are, however, some indicators

69

4. CHAPTER. TEST-TO-CODE TRACEABILITY

Table 4.4: Top-1 and top-5 results featuring the different text-based models and the
applicability of NC on each project. Models were trained on 5 different source code

representations. - highest value in a row - highest value in a column
. Top-1 Top-5
Method Representation C. Lang ‘ Gson ‘ JFreeChart ‘ Joda-Time H C. Lang ‘ Gson ‘ JFreeChart ‘ Joda-Time
NC | - | 76.00% | 26.00% | 0.00% | 0.00% | 76.00% |26.00% | 0.00% | 0.00%
IDENT 58.00% | 15.69% | 15.49% 32.00% | 62.00% | 25.49% | 15.49% 48.00%
LEAF 30.00% | 13.73% | 11.27% 20.00% | 52.00% | 2L.57% | 15.49% 52.00%
Doc2Vec SIMPLE 15.69% | 17.65% | 14.08% 16.00% | 48.00% | 21.57% | 16.90% 52.00%
SRC 16.00% | 9.80% | 12.68% 32.00% | 42.00% 29.41% 30.99% 54.00%
TYPE 4.00% | 1.96% | 11.27% 400% || 22.00% | 3.92% | 11.27% 10.00%
IDENT 34.00% | 17.65% | 4.23% 10.00% || 68.00% | 5.64% | 5.63% 44.00%
LEAF 12.00% | 7.84% | 4.23% 2.00% | 34.00% |23.53% | 5.63% 28.00%
LSI SIMPLE 1.00% | 5.88% | 4.23% 2.00% | 30.00% |23.53% | 5.63% 24.00%
SRC 34.00% | 17.65% | 12.68% 20.00% | 70.00% 37.25% 23.94% 58.00%
TYPE 4.00% | 0.00% | 0.00% 0.00% 8.00% |64.71% | 0.00% 14.00%
IDENT 30.00% | 19.61% | 4.23% 46.00% | 76.00% |31.37% | 5.63% 70.00%
LEAF 30.00% | 19.61% | 4.23% 44.00% || 76.00% | 33.33% | 5.63% 70.00%
TF-IDF SIMPLE 28.00% | 21.57% | 4.23% 44.00% | 72.00% |33.33% | 5.63% 72.00%
SRC 38.00% | 19.61% | 23.94% 12.00% | 78.00% 43.14% 25.35% 68.00%
TYPE 4.00% | 0.00% | 0.00% 0.00% 8.00% | 64.71% | 0.00% 14.00%
IDENT 44.00% | 13.73% | 4.23% 6.00% | 52.00% 23.53% | 4.23% 10.00%
LEAF 13.73% | 13.73% | 4.23% 10.00% || 38.00% | 19.61% | 4.23% 14.00%
Ensemble-50 SIMPLE 14.00% | 15.69% | 4.23% 2.00% | 40.00% | 19.61% | 4.23% 8.00%
SRC 7.84% | 11.76% | 11.27% 12.00% | 36.00% |17.65% 28.17% 22.00%
TYPE 2.00% | 1.96% | 0.00% 2.00% 8.00% | 1.96% | 0.00% 2.00%
IDENT 58.00% | 64.71% | 16.90% 24.00% || 76.00% | 80.39% | 23.94% 64.00%
LEAF 54.00% | 54.90% | 18.31% 20.00% || 72.00% | 78.43% | 33.80% 66.00%
Doc2Vec+CG SIMPLE 50.00% | 56.86% | 25.35% 26.00% | 76.00% | 78.43% | 45.07% 64.00%
SRC 50.00% | 56.86% | 36.62% 32.00% | 78.00% 82.35% 66.19% 74.00%
TYPE 42.00% | 47.05% | 11.27% 6.00% || 62.00% | 74.51% | 28.17% 24.00%
IDENT 76.00% | 64.71% | 16.90% 24.00% | 86.00% | 72.55% | 23.94% 64.00%
LEAF 78.00% | 64.71% | 18.31% 20.00% | 84.00% | 70.59% | 33.80% 66.00%
Doc2Vec+CG+NC | SIMPLE 78.00% | 66.71% | 25.35% 26.00% | 84.00% | 76.47% | 45.07% 64.00%
SRC 80.00% | 66.67% | 36.62% 32.00% | 88.00% 78.43% 66.19% 74.00%
TYPE 74.00% | 64.71% | 11.27% 6.00% | 78.00% |76.47% | 28.17% 24.00%

that can imply connection and were not used by the textual methods. For example,
test and production snippets submitted by the same user or even belonging to the same
post are more probable to be indeed connected. A manual inspection showed that even
though a high amount of faulty matches were produced, both LSI and Doc2Vec can
produce traceability links that seem highly accurate even for human observers, and
even if they could not be easily recovered by other indicators. Figure 4.9 showcases
some of our results in a Venn diagram. The areas show our various indicatives of
success. Same user means the two methods were submitted by the same user. Same
post means that they were featured in the same post, while pair post means that one
of the methods was submitted in a question while the other in the accepted answer.
Method name means that the test method shares the name of the production method,
with an added Test token to either the start or the end. It is visible that Doc2Vec
seems to have found much more of the results that seem relevant. Note that LSI worked
with significantly more data. Thus, we also performed the experiment with the same
subset for LSI, receiving even worse matches with the indicators.

70

4. CHAPTER. TEST-TO-CODE TRACEABILITY

4.5 Discussion

4.5.1 Naming Conventions Habits

The previous section displayed some of the most common naming convention techniques
and some data on how frequently they seem to have been utilized in the systems
currently under our investigation.

Let us consider an example of how a perfect match would look like viewing all three
of package hierarchy, class name, and method name. One such example for Commons
Math is illustrated in Figure 4.10, which shows a test case (T) and the production
method it is meant to test (P). If every single test case related to its method under test
with such simplicity, test-to-code traceability would be a trivial task. Unfortunately,
as it is visible from our applicability results, this is very far from reality.

org.apache.com mons.math4.ode.events-eventOccurred

org.a pache.commons.math4.ode.events-event0ccurred

package hierarchy @B class method

Figure 4.10: A trivial naming convention example from Commons Math

According to our results, the names of test methods are much less likely to mirror the
names of their production pairs correctly. Although our experiments only dealt with
eight open-source systems, it is highly probable that the developers of other systems
also tend to behave similarly in focusing more on class-level naming conventions. WM
(wildcard method) is obviously full of noise and accidental matches and cannot be
considered seriously. PM (package+method) is a much more precise option but as
it is visible it was found to be used in about every fifth case. One obvious reason
for this can be that it is significantly harder to convey all the necessary information in
method names. Production method names should be descriptive and lead to an easy to
understand and quick comprehension of what the method does. This is also true about
the names of test cases, they should also refer to what functionality they are aiming
to assess. Consequently, the names of the test cases would become rather long if they
always aimed to contain both the name of the method or methods under test and also
provide additional meaningful information about the test itself. It can also be tough
to properly reference the method under test on method level by naming conventions
only. Polymorphism enables the creation of several methods with identical names
that perform similar functionalities with different parameters. These should be tested
individually, and test names can have a hard time distinguishing these. The inclusion
of parameter types can be a possible solution as performed in Commons Lang for
example, at the test case test toBooleanObject String String String String, testing
the production method toBooleanObject that gets four String parameters. Our manual
investigation shows that test methods are indeed more likely to be named after the
functionality they mean to test rather than after single methods even if they only test
one method. One method can also be tested by multiple test cases. Thus this is not a

71

4. CHAPTER. TEST-TO-CODE TRACEABILITY

very surprising circumstance. It is apparent that naming conventions on the method
level have to be more complicated, and their maintenance necessitates more work on
the part of the developers. Thus, method-level naming solutions are likely to be a less
valuable option in method-level test-to-code traceability. On the other hand, method-
level traceability still requires proper class-level traceability. Thus, names should still
be helpful.

Talking about classes, production class names seem to be mirrored more often in
their test classes’ names. This, however, still can be a highly unsteady habit depending
on the system. While in Mondrian, production class names are only present in test
names once in every fifth case, the same applies to 2160 of the 2239 test cases of
JFreeChart. Thus, not surprisingly, it is evident that naming conventions depend on
developer habits. The remaining test cases of JFreeChart were also examined, these are
overwhelmingly cases where a specific type of charts or other higher-level functionalities
are tested, and the test classes are named after these. These cases often depend on
multiple production classes providing lower-level functionality.

Mirroring the package-hierarchy of the production code while composing tests is also
a good practice. The little difference between the C (class) and PC (package+class)
values in Table 4.2 shows that developers are very likely to uphold this. This convention
is likely to be even more popular than naming matches. Package hierarchy matches
are easier to maintain than names and are more convenient as they do not really
require additional work from the developers. Even if multiple methods or classes are
under tests, their packages only rarely differ. It could also be seen as another level of
abstraction. Package hierarchy can only provide very vague clues about traceability
links but can be suitable for the elimination of some of the false matches or at least
presenting a warning sign about some matches. From the difference of matches found
with C-PC (class versus package + class) and WC-PWC (wildcard class versus package
+ wildcard class), our manual investigation provided less conclusive results.

On the one hand, many systems contain some seemingly arbitrary exceptions to
this rule that were most probably due to some design decision or modification in the
production code that the structure of the tests has not followed yet. Gson, for example,
has a "gson" package in its test structure that contains similarly named test classes to
the "internal" package of the production code. Another example can be given from
PMD, where there is an extra "lang" package in the hierarchy of the production code,
that is not found at the test structure, even though all prior packages match. These
are far from system-wide decisions as seen from the NC applicability percentages, but
can be hard to detect by automatic means. On the other hand, some faulty matches do
exist when not considering the package hierarchy. This can be seen at ArgoUML for
instance, the "Setting" class of the production code can match with a lot of test classes
if only names are taken into account, many of these would be faulty matches as the
tests refer to different settings. Thus, matching packages is also far from universal in
real-live systems. Like any other convention, developers make exceptions even if they
visibly strive to uphold them at different parts of the code.

Without the insights from the developers of a system, our analysis had to judge
their choice and usage of naming conventions based solely on the names themselves.
This, of course, can be sufficiently accurate but presents the danger of not managing
to grasp the whole system of conventions they used, which can vary. Still, our findings
should provide a relatively accurate picture of how naming conventions are used in
real-life testing solutions.

72

4. CHAPTER. TEST-TO-CODE TRACEABILITY

Answer to RQ1: Although serious differences can be observed between systems,
method-level naming conventions are either complicated or entirely abandoned in most
cases, which means that their usefulness is negligible in a general extraction algorithm.
Class-level naming conventions seem to be better regarded by developers, and there
is a visible effort to uphold them. Our findings show them to be suitable for general
use in automatic extraction algorithms. Matching package hierarchies do not provide
precise results but seem to be at least as commonly used as class-level conventions.
They are likely to be suitable for filtering out false-positive results in algorithms.

4.5.2 Traceability Link Recovery Technique Improvements

It is apparent at first sight that the teal cells are overwhelmingly located in the first
rows in Table 4.3. Indeed, the IDENT source code representation seems to be prevalent:
it reaches the highest values in 37 cases out of 48 (which is 77%). The violet cells
appear only in the last vertical segment of the table, at the Doc2Vec+CG approach.

On the one hand, the Ensemblesq approach produced better results than standalone
techniques (Doc2Vec, LSI, TF-IDF) and the soft-computed call graph information even
improved upon this. On the other hand, Doc2Vec supplemented with this call infor-
mation resulted in the highest precision values. How is this even possible? The most
probable explanation is that Ensembley is a filter technique: the resulting similarity
list is a reduced one compared to the original (especially when N is a relatively small
number). Thus it can happen, that even before applying CG, the Ensemblesq already
dropped out some of the correct links.

According to the results of the table, IDENT seems the most precise approach. The
only exception is the Mondrian project, where the SIMPLE representation appeared to
perform best. The difference between IDENT and SIMPLE, however, is not remark-
able. It is also worth mentioning that where IDENT is not predominant, SIMPLE
was found best in 5 cases out of 11. Subsection 4.3.7 already stated that IDENT and
SIMPLE are quite similar. This is also reflected in the results. In contrast, TYPE
seems to produce weaker results with every single approach. LEAF is also less precise,
probably because its inner structure shares a significant part with TYPE (LEAF is
essentially the combination of IDENT and TYPE). From this, a conclusion can be
made that the TYPE information of an AST holds less important information for the
text-based test-to-code traceability task.

Answer to RQ2: Our inspections concluded that Doc2Vec seems to be the best-
performing standalone technique in the field. Although combinations of different tech-
niques can also boost the results, the textually extracted soft-computed call information
is likely to boost IR-based approaches even more. In a scenario of combined techniques,
call graphs can be a valid filter even for textual connections.

4.5.3 Performance on Manual Data

Compared to the NC-based evaluation, the results captured on the manual dataset
are less easy to interpret. As it is visible in Table 4.4, not every violet cell appears
in the last row, only most of them. Let us first analyze the top-1 results which are
shown on the left side of the table. At 3 out of 4 systems, the highest precision
values are reached using Doc2Vec combined with the call information and naming
conventions. The only exception is Joda-Time, where TF-IDF seems to be prevalent.

73

4. CHAPTER. TEST-TO-CODE TRACEABILITY

In our earlier work [30], a similar case has already been noted, where TF-IDF also
provided the highest precision values. Even in these experiments, however, TF-IDF
results are found to be much more variable than others, and this individual case is
most probably a result of chance. It is visible, however, that Doc2vec+CG still seems
to have produced high precision values, and that applying naming conventions can
further boost the approach. In the case of JFreeChart and Joda-Time, the results did
not improve despite the added naming convention pairs. This is not surprising since
as it is visible, the naming conventions were not applicable for any methods of these
systems (as the dataset contained specifically such links by intention). It can, therefore,
be stated that IR-based approaches can successfully supplement naming conventions
while still maintaining their useful properties.

Looking at the right side of Table 4.4, the precision values are higher than before. It
is quite self-evident since here the text-based models have a broader range to guess for
the correct matches. While observing top-1 results, the best performing technique was
not unanimous. Here, the highest precision values are all located in the last segments.
While top-1 results varied in their precision, JFreeChart and Joda-Time having lower
results than the other two systems, even a small number of additional candidate links
has significantly contributed to the correctness of the matches. By further experiments,
it was found that when considering top-10 or even top-20 results, a 100% match would
not be uncommon either, though searching through a list of 10 artifacts is not a likely
behavior of real-life developers. Thus, their everyday use of these would not be viable.
Five results, however, could still make a simple recommendation system.

By studying the manual database, it can be observed that in the cases of projects
where proper naming conventions were used, the traceability links can be extracted
relying only on this information. However, for those projects which lack these good
programming practices, IR-based techniques can find the correct links in a significant
part of the cases. Comparing the results of the final Doc2Vec approach and NC itself,
the precision values are higher by 28% on average. Even in the cases where some
more complex, system-specific naming conventions were utilized, IR-based methods
can provide great assistance. While there are likely to be some special cases in the
practical use of every naming convention, the use of good programming practices can
also improve the performance of text-based techniques which still rely on names in a
more versatile manner.

From these results, the choice of an ideal input representation is a more elusive
question than in the previous case. While at the NC-based comparison, the IDENT
representation seemed prevalent against others, here the SRC representation seems
to have produced the highest precision values. It is worth mentioning that among
the representations that rely on AST information, SIMPLE performed best. At the
Topb values, it is also clear that the SRC representation won. The good results of
SRC are also advantageous since SRC is a purely text-based representation. Since the
Doc2Vec+CG+NC method features call information extracted via regular expressions,
this is a viable option even without static analyzer tools. While both IDENT and SRC
are shown to contribute valuable data, this difference between their relative perfor-
mance on thousands of test cases of eight systems and the manual data on 220 test
cases of four systems makes it harder to believe in a single best simple representation.
Since the possible mistakes in the automatically gathered NC data and the less than
ideal size of the manual dataset can both contribute to less than precise results in this
respect, further research is still necessary for the question of best representation.

74

4. CHAPTER. TEST-TO-CODE TRACEABILITY

Answer to RQ3: According to the manual data, Doc2Vec achieves the best results
in most cases. In exceptional cases, however, other text-based techniques can still
outperform it. The use of naming conventions and call information also tends to
improve the results further. Naming conventions, if existing, are highly precise and
can be supplemented with other IR-based techniques to achieve a more versatile text-
based approach.

4.5.4 Implications

Our experiments show some simple implications for those who research and aim to
build new test-to-code traceability solutions.

While naming conventions are reliable tools and are very precise if applied, they are
harder to implement on the method level, and the source code generally contains fewer
such connections that could be extracted via simple rules. However, packages and class
names can imply the connections rather well, even for this level, even if method names
are not as informative. Thus, naming conventions can be extremely useful on every
level of traceability link extraction, and new extraction methods would most probably
benefit from considering them.

Doc2Vec seems an important upgrade to the more mainstream semantic similarity
techniques. While it is still somewhat more resource-intensive than LSI, the difference is
not prominent, and just like the other techniques, Doc2Vec is also capable of providing
real-time results of most similar parts of code for a test case. Thus, if a single textual
technique should be considered, Doc2Vec seems to be the right choice.

The combination of Doc2Vec and other techniques can produce even better results.
However, as it was seen that applied as filters, other textual techniques can drop out
some of the valuable data, and even if they performed better together in separation,
this combination could negatively impact the overall cooperation with other, non-
semantic techniques. Call information, even if just gathered via regular expressions,
tends to boost these techniques greatly. Combination with call graphs obtained via
static or dynamic analysis could undoubtedly result in even better precision, as seen in
current state-of-the-art solutions where the LCBA (last call before assert) technique is
considered one of the most reliable methods.

Source code representations are less conclusive at the current time. IDENT seemed
best in our previous and current NC-based evaluations, but manual data shows that
SRC contributes most to the correct extraction. Thus, additional experiments are still
required to announce a clear best representation. Nevertheless, these two are the most
likely options.

4.6 Threats to Validity

Although our experiments were conducted with the intention of providing a large-
scale evaluation and a relatively deep comprehension of current textual methods, some
threats to the validity of the derived conclusions still have to be mentioned. While
naming conventions are considered a very precise source of information, they have
clear limitations. Thus, our automatically-collected evaluation data may contain some
errors and is likely to miss at least some valid links. Although manual data is usually
considered best, naming conventions enabled us to assess hundreds of tests for each
system and even thousands for most. On the other hand, our manual dataset used for

75

4. CHAPTER. TEST-TO-CODE TRACEABILITY

the evaluation is limited in size. Thus, noise in the data could cause discrepancies in
the results. This could be tackled by the inclusion of additional manual data, which
will hopefully be more widely available in the future.

Our experiments only covered systems written in the Java language. This is a
significant limitation as Java differs greatly from several other popular programming
languages. Even the structure of the code can show severe differences. Popular nam-
ing conventions can vary in these circumstances, new viable combinations could be
constructed, and others could become less relevant. This also reflects a great amount
on the source code representations. Even the text and even variable names could be
susceptible to such a difference. On the other hand, textual methods, building on se-
mantic information rather than program structure, are still the most likely to retain
their properties this way.

The experiments were conducted on JUnit tests. The JUnit framework is one of
the trail-blazers of current software testing and is extremely popular among developers.
Still, it is easy to see that other tests could perform differently when subjected to the
experiments. Even in this, however, semantic information should be the least affected
as it does not rely on a specific structure or specific forms of assertion statements.

Similarly to the difference in programming languages, the size of the systems could
also influence the results. Our systems under evaluation are all medium-sized open-
source systems. There is no guarantee that small or large systems would perform the
same way, even though the question of proper traceability is probably easier for small
systems. The same questions can arise about the domains of the systems, which could
also affect traceability. It is visible that systems vary significantly in their properties.
An average value of precision is thus hard to pinpoint, it is easier to compare techniques
to each other. Our experiments covered more than 1.25 million code lines to provide a
large-scale investigation.

Our experiments with naming conventions and even the source code representa-
tions represent the options we found most viable. There might be many more naming
conventions that could be applied to some systems with great success, even with auto-
mated extraction. As there are usually no descriptions about naming conventions for
software systems, finding these and judging their usefulness is highly complex. Our
experiments considered some of the most simple and widely used conventions. There
seems to be a balance between complete precision and easy usage in naming conven-
tions. Our experiments also attempted to investigate this, building our subsequent
experiments on a middle way that seemed widely applicable but still precise for our
current level.

4.7 Conclusions

The current chapter showcased our experiments with the textual aspect of aiding test-
to-code traceability. Two mainstream techniques, reliance on naming conventions and
information retrieval were investigated, new ideas, experiments and observations were
given on their possible improvements and combination opportunities. The chapter
presented an in-depth investigation of the naming convention habits of developers via
experiments with eight open-source systems and nine possible combinations of gen-
eralizable and simple rules. This experiment revealed that package and class level
conventions are generally followed with at least a moderate effort, but method level
conventions, although present in every system, are less generally upheld. Besides our

76

4. CHAPTER. TEST-TO-CODE TRACEABILITY

evaluation on manual data, an automatic extraction was also used for further evalua-
tion, relying on package and class level conventions. The six investigated traceability
link extraction methods were evaluated with five different source code representations.
From these, the identifier-centric (IDENT) representation that utilizes abstract syntax
trees came out on top in the overwhelming majority of the cases during the naming
convention based evaluation but the text-centric (SRC) representation proved more
precise when compared to the limited amount of manual data. Call information re-
trieved via regular expressions was found to contribute significantly to the results when
used as a filtering technique for Doc2Vec. Although the use of LSI and TF-IDF also
seems a good candidate for the same purpose, the combination of Doc2Vec and the call
information was found to produce the best results. While properly defined and upheld
naming conventions can yield extremely precise traceability links, their use is still lim-
ited. Automatic recovery of naming conventions, however, can very easily benefit from
the addition of other text-based techniques, together constituting a versatile semantic
technique that can still be used in combination with other mainstream methods.

The thesis point investigated textual methods in aiding test-to-code traceability
and provided solutions to extracting the tested production classes for test cases. The
results were evaluated with the naming conventions of eight real systems and manual
data on four systems. Naming conventions were shown to reflect package and class
information consistently, which is not true for methods. Our of Doc2Vec, LSI and
TF-IDF, Doc2Vec was shown to be the best standalone textual method in recovering
traceability links and that it could provide a viable method in combination with call
information and naming conventions.

The author considers the followings as his main contributions:

¢ The author implemented an LSI-based solution for recovering traceability links.

¢ The author implemented the evaluation code for multiple published experiments,
relying on naming conventions. He took part in the evaluation and the planning
of new configurations.

¢ The author coordinated the composition of the TestRoutes dataset, maintained
contact with the annotator and provided insights into his work, also manually
confirming the results and correcting some of the faulty annotations.

¢ The author implemented the recovery techniques based on various naming con-
ventions and conducted experiments with them.

¢ The author took part in the planning of the experiments and coordinated most
of them.

7

Part 111

Machine Understanding of
Radiologic Reports

“Declare the past, diagnose the present, foretell
the future.”

— Hippocrates

Machine Understanding of Radiologic
Reports

5.1 Overview

Computer-based aiding methods are an extremely important aspect of modern health-
care [91] [90] [59]. It is hard to find any specific procedure that is entirely independent
of information technology. State-of-the-art software products support surgical model-
ing, the search for anomalies in image data, and even the creation of clinical reports.
In the field of radiology, for instance, doctors regularly utilize dictation software that
is often already integrated into their adopted information systems.

An examination involving computer imagery like magnetic resonance imaging (MRI)
scans usually involves considerably more than the simple scanning procedure. The
scans have to be interpreted by specialists, radiologists in our case, who can under-
stand the images, and look for various malformations and pathological disorders. Even
as computer-backed solutions are increasingly helpful in assisting this task, human
specialists are still needed to overrule the machine learning algorithms. Moreover, the
output of the whole process is still natural language text often written in the native
language of the radiologist.

It is easy to see that any subsequent interpretation of the reports has to deal with
natural language text, even though the images themselves can also be accessible. The
human observations that are backed by medical knowledge and experience are still
contained only in textual form. Thus, machine understanding of this text is still a
crucial task [86].

The process of creating radiologic reports is illustrated in Figure 5.1. The completed
scans get transferred to the radiologists, who, according to their domain knowledge,
judge the various negative and positive facts seen in the image. Radiologists either
dictate or write down their observations, composing the report itself, and also write an
opinion based on this, which usually overlaps with the text of the report. In many cases,
the specialist has a choice of using a dictation software or typing the text manually
either themselves or by dictating to a radiographist assistant. In either case, the

81

5. CHAPTER. MACHINE UNDERSTANDING OF RADIOLOGIC REPORTS

Report

Manual Typing

Rereading

Spinal MRl Image Radiologist

Dictation (pinion

Figure 5.1: The workflow of a radiologic examination

report has to be reread and corrected to remedy the faults committed by the recording
medium.

Precise machine understanding could contribute to this process considerably. In
real-time, it could automatically check the consistency of the report and the opinion,
a graphic visualization could provide a quick glance of what the radiologist might have
missed, compare the current report with the results of the previous examinations and
even warn the radiologist if the meaning of a sentence is unusual. Valuable statistics
could be generated, even from archive data, aiding financial administration of hospi-
tals. Further possibilities lie in the standardization of reports that could enable easier
subsequent processing and bring the reports from different institutions to a common
ground, contributing to patient-oriented health system improvements [131, 130]. While
these are potentially beneficial uses, machine understanding of these texts could pro-
vide a pathway for automatic report generation, which is an even worthier goal that
would open new doors for more precise and objective reports.

Modern deep learning methods can analyze medical images with high precision.
The major setback of such an approach is that these methods tend to require immense
amounts of data to work correctly. As the creation of such data requires medical
expertise, its gathering presents vast time and resource costs. Traditionally, such data
is gathered by radiologists manually annotating tens of thousands of MRI images,
precisely pointing out the problems and their locations. Reports are similarly composed
by radiologists and represent a very similar, if less graphic source of information. The
expert opinion is already contained within. Thus its proper extraction can contribute
valid training data even for such an image-based automatic diagnostic tool, saving
resources. The current chapter deals with the extraction of such useful information
from the text of the reports.

The chapter presents our efforts to extract various entities and their connections
from Hungarian radiologic reports. This process involves the classification of various
anatomical locations, disorders, and properties via machine learning trained on 487
manually annotated reports. The connections are determined based on language mod-
els, and the data is visualized in an easy-to-comprehend manner. The chapter also
describes a method that is used for the spelling correction of the reports and shows
how it contributes to the overall end results. Section 5.2 presents some of the relevant
related work, while Section 5.3 describes our methods briefly. Section 5.4 displays some
of our results and also provides discussion. Section 5.5 concludes the chapter.

82

5. CHAPTER. MACHINE UNDERSTANDING OF RADIOLOGIC REPORTS

5.2 Related Work

Words in sentences follow distinct patterns. Sequence tagging is a task where the class
type of an individual element can depend on the class type of neighboring elements.
BiLSTM-CRF models are widely used architectures in these types of tasks [95]. In
the medical domain, BiLSTM-CRF and its derivative architectures are very popular
in drug name recognition (DNR), clinical concept extraction (CCE) and adverse drug
event recognition (ADER) tasks [92, 56, 24, 170]. In recent years, these networks
have been widely used and further improved for named entity recognition tasks from
Chinese medical reports [58, 57]. Yin et al. used features extracted by convolutional
neural networks to enrich the semantic information of the characters and applied a
self-attention mechanism to capture the dependencies between characters [166]. Li
at al. implemented attention mechanism into their BILSTM-CRF architecture, which
enabled their model to capture more useful context information and alleviated the
problem of missing information caused by long distances between related elements in
the sequence [87]. Cai et al. suggested that named entity recognition on Chinese med-
ical reports can be improved by making entity boundary detection more accurate [22].
They proposed the utilization of part-of-speech (POS) tags using a BILSTM-CRF ar-
chitecture with a self-matching attention layer. Zhao et al. used a lattice LSTM-CRF
system with adversarial training [171].

BERT [36] (Bidirectional Encoder Representations from Transformers) is a language
representation model presented by Google in 2018, which performs various pre-training
tasks on unlabeled data. The model takes into account the words that occur before
and after the tokens when representing them. The model can be fine-tuned by adding
a single output layer, thus achieving state-of-the-art results on several natural lan-
guage processing tasks. BERT was shown to outperform previous models in several
tasks [145], even from the medical field. Bressem et al. [21] compared BERT-based
solutions on 3.8 million radiologic reports of the chest region. Syed et al. [144] used
BERT for classification in a limited domain, in combination with part-of-speech tags
and character embeddings. Soares et al. [140] used BERT for learning relations between
entities, which is also a possible future goal for our solutions. Cohan et al. [28] used
a BERT-based model for sequential sentence classification to promote document-wide
understanding. huBERT [112] is the first publicly available BERT model in Hungarian.
huBERT is able to achieve better results on several language processing tasks than the
multilingual BERT model when dealing with the Hungarian language.

In an overview study concerning textual error correction [83], Kukich classified the
breachable difficulties into tree categories, nonword error detection, isolated word error
correction, and context-dependent error correction. Nonword detection can be achieved
by n-gram analysis looking for unusual character patterns or by a dictionary-based
method that looks for each occurring word in an extensive dictionary. The majority of
the isolated word correction algorithms consider edit distance as the primary indicator
of correctness. According to a study [33], 80% of misspellings are covered with these
four common mistakes: a letter added to a word, a letter missing from the word, a single
wrong letter or two adjacent letters of the word becoming transposed. These all contain
a single mistake that usually results in a nonword. In the case of context-dependent
errors, a word is exchanged with another, that does not fit the context. The filtering
of these mistakes is usually achieved by statistic language models. Methods aiming
to detect misspellings are not new in scientific literature even in the medical field,

83

5. CHAPTER. MACHINE UNDERSTANDING OF RADIOLOGIC REPORTS

covering vaccine safety reports [147], queries on medical portals [29], mammographic
reports [107] and other various medical artifacts [85] of specific fields. Medical nonword
detection and correction methods tend to use specific dictionaries and often rely on
bigram [107], trigram [121], or n-gram [164] models, they also tend to use edit distance
as a way to achieve possible corrections. There have also been other approaches like
machine translation [114] [115] or noisy channel methods [63]. Significant advancements
have also been made already in non-English report corrections like French [134] and
Persian [164] reports, as well as some efforts for the correction of Hungarian language
reports [137] [138] [139] [72].

An accurate and automatic NER model on clinical texts opens the way to many
possibilities. Such exciting applications could be automatic opinion generation, smart
statistics generation or visual summarization of the medical records. Our goal is to
develop a system that can automatically understand free-text radiologic reports and
visualize them in real-time. In our work, BiLSTM-CRF and BERT-based classifi-
cation methods were used to extract medical named entities effectively, while other
components of our system grouped the corresponding entities. A framework for a vi-
sualization system was also constructed to visualize entities and their relations in a
tree-like structure. This kind of machine learning based, real-time visualization sys-
tems are relatively scarce in the literature [133] and to the best of our knowledge they
are entirely non-existent for the Hungarian language. An earlier version of our training
solution was published previously in Hungarian [70] as well as various supplementing
solutions [69, 72, 73] that contributed to the progress of the process.

5.3 Methods

The current section describes the methods used in our experiments. 487 anonymized
reports have been manually annotated by a radiologist according to our classification
system, this serves as our training data. Our artificial intelligence methods rely on
linguistic analysis conducted via the Magyarldnc [174] tool, which provides syntactic,
morphologic, constituent, and dependency analysis for general Hungarian texts with
high accuracy. Let us overview the steps in our process these in the current section.

5.3.1 Annotation

Our annotation system incorporates a few simple entities that need to be classified.
These are the anatomical locations, disorders, and properties. These three classes
tend to cover most of the meaningful words found in typical radiologic reports. An
example of our system, converted to English for better understanding, can be seen in
Fig. 5.2. Note that the reports are at no point translated to English in our process. An
entity can consist of multiple words. A term was considered an anatomical location if it
describes a specific part of the human body such as "L2" or "disc", or even as a part of a
disorder itself like "disci" in "hernia disci". These entities are relatively typical and have
a smaller vocabulary than the others. Disorders are the various pathologies observed
by the radiologist like "hernia" or "dehydration'. Positive or neutral statements also
belong here such as "intact" or "status idem". The aspects under observation like liquid
content or height are also considered parts of our system’s disorders, as these specify
the disorder. Disorders can be easily confused with properties such as in the case of
"deforming" in our example. Properties are usually describing the stage or degree of a

84

5. CHAPTER. MACHINE UNDERSTANDING OF RADIOLOGIC REPORTS

disorder, or in some cases, specify its precise location. Some examples include "3 mm",
'right", and "significantly". Properties clearly have the largest vocabulary since they
are much less reliant on the medical terminology than the other elements.

The annotation itself was conducted in the Brat [142] annotation tool by a radi-
ologist and covered 487 Hungarian reports at the current phase. Brat is a tool that
facilitates annotation by an easy-to-use web-based user interface, it is highly config-
urable, and annotation results can be downloaded in a relatively simple, tab-separated
format. Note that it is a platform for the annotation, all the annotations were con-
ducted manually. Our annotation system is the result of several meetings between
the radiologist, linguists and computer scientists. A thorough set of guidelines was
available for the radiologist during the annotation. Since the initial annotation, we
have made several attempts to increase the quality of the data. A second radiologist
annotator has also performed the annotation, these results were consolidated, and the
rules were specified further according to the new interesting cases. A helper solution
was also developed [69] to help in improving the consistency of the data during a later
inspection by the initial radiologist.

—

The L2 L3 drsk is preserved Enhancrng peridural fibrosis
—

noted at L2 L3 level m|IdIy deformmg the thecal sac with

[Property] [Property]]Drsorder] m -

dominant extrinsic |mpressron on the rlght lateral thecal
- m m Property

sac. Non enhancrng cystrc foci noted along the posterror

Property’

eIements representing smaII pseudomeningoceles.

—~ — P N

Postoperatlve fusron and Iamlnectomy noted at L4-L5
[Property] [Dlsorder] [Property] [Property] [Location]

level with osseous fu5|on anterlorly Multilevel endplate,

dISk and facet degeneratlve changes noted.

Figure 5.2: An English language illustration of our annotation system

The most basic information of our current annotated dataset can be observed in
Table 5.1. Begin tags were used to distinguish the tokens at the start of entities, while
Inside tokens note every subsequent tokens that are still parts of the entity. As it is
visible, only roughly about every fourth token was found to be an inside token. Note
that our later steps in the process still merge some of these entities, as for example
the text "L.V disc" was annotated as two separate entities according to our annotation
system.

5.3.2 Classification

Our classification model is essentially a named entity recognition (NER) model. In
its first iterations it was based on a BiLSTM-CRF (bi-directional long short-term
memory [54], conditional random fields [84]) architecture similar to the one published

85

5. CHAPTER. MACHINE UNDERSTANDING OF RADIOLOGIC REPORTS

Table 5.1: Annotation statistics in our current version of the 487 report annotations

Locations Disorders Properties

Begin- 9,047 7,944 3,487
Inside- 3,952 1,954 1,321
Total 12,999 9,898 4,808

by Ma et al. [95]. Since Hungarian is a morphologically rich language, character level
embedding was also utilized in our solution, as suggested by Ling et al. [89]. Apart from
word and character embeddings, additional predictive features such as lemmas, part-
of-speech (POS) tags and part-of-sentence tags were also utilized in the model. The
first layers of our NER model were embedding layers, mostly initialized with random
weights. For the textual inputs, the corresponding embedding matrix is initialized
with pre-trained word vectors (trained on the Hungarian Wikipedia). In a regular
forward-pass, the integer encoded feature sequences were first passed through their
corresponding embedding layers where each feature (word, lemma, POS tag, part-of-
sentence tag) was mapped to a dense vector representation. The character level vector
representations of words were generated by an additional BiLSTM network. The main
BIiLSTM layer took the concatenated vector representations of all the features (word,
lemma, POS tag, part-of-sentence tag, character) as input. The BiLSTM layer’s output
was passed through a densely-connected feed-forward layer, on top of which a CRF layer
performed the final sequence tagging. See [74] for further details. This model is still
referenced in the current for the current thesis, as much of our data was obtained using
this version of the classification.

In our newer experiments, BERT [36] was found to perform significantly better than
our previous model. We used the BertForTokenClassification model implementation
to obtain our classification. During this, the weights of a pre-trained BERT model are
loaded, which in our case was the huBERT [112] model, a pretrained model for the
Hungarian language specifically. Even though the reports tend to use a lot of Latin
language and the jargon is highly medical, which is not in the scope of huBERT, the
Hungarian model still performed better in our experiments. The model was trained
on the data of 487 annotated reports mentioned previously, also used by the BiLSTM-
CRF model. In our experiments, a linear layer was added to the hidden output (hidden
state output) of the last layer of BERT, which is responsible for assigning the tokens
to the classes. The current classification process is visualized in Figure 5.3.

Our classification also utilizes a list of regular expressions, which are used to override
some more typical cases of classification. This is added to the output of the machine
learning model. Vertebra levels ("L.V"), for example, should always be classified as
anatomical locations, and they can be reliably found by regular expressions.

5.3.3 Automatic Correction of the Text

Regardless of the best intentions of the medical experts, some faults still remain in
the reports. A text riddled with minor errors is bound to create a problem or at
least a nuisance for anyone aiming for automatic understanding. These mistakes can
impair the training phase of machine learning, resulting in faulty models and making

86

5. CHAPTER. MACHINE UNDERSTANDING OF RADIOLOGIC REPORTS

Classification
Location, Disorder and Property Regular Expressions
Detection from a List

Figure 5.3: An illustration of our classification of locations, disorders and properties

the proper identification of words or their linguistic analysis a futile task. Manual
correction of these errors in finished reports is troublesome, and it is not feasible for a
real live system. During our experiments on finalized real reports, a manual analysis
of the text of 487 reports with combined length of almost 48 thousand words revealed
that such mistakes are present in the majority of cases. Of the 487 reports, 295 (60.57%
of the reports) included at least one error. These, of course, can be of various natures.
A display of the results of our analysis can be seen in Figure 5.4. Mistakes concerning
punctuation can impede the work of tokenizers and constituent analyzers. In the case
of medical reports, these usually take the form of missing or unnecessary commas
and full stops. Words that are correct by dictionary but appear out of the semantic
context of their sentence or without the matching conjugation or suffixes are also
typical, these are referenced as "context' in the figure. But as it is visible, the great
majority of these errors are misspellings or wrong accentuation marks that result in
unrecognizable words. These can be found in 166 (34%) of the 487 reports analyzed.
From a certain viewpoint, this particular sort of error is less unfortunate as these
mistakes stand out properly and thus can be detected with a degree certainty. We
focus on the correction of these cases. These cases are often called nonwords [83] and
also have typical characteristics [33]. The high number of misspells in radiologic reports
is also already established internationally [168].

Morphologically rich languages, such as Hungarian, present new obstacles when
aiming to correct mistakes automatically. Let us consider a short example of a sentence
from the field of spinal MRI reports shown in Figure 5.5. The first line presents an
English sentence, the second line is its Hungarian translation with identical meaning.
Suffixes are much more intricate in the Hungarian language, their occurrence and
variability are extremely high compared to the English conventions and they change the
base of the word much more often. Latin words occur regularly in both Hungarian and
English medical texts, and these also get the appropriate suffixes dictated by the rules
of the language of the report. These are highlighted with red in the example, while non-
Latin word suffixes are highlighted with green. These hybrid words present significant

87

5. CHAPTER. MACHINE UNDERSTANDING OF RADIOLOGIC REPORTS

600

517

500 Faultless

Reports

Faulty o
400 Reports 39.43%

60.57%

300

Misspelling

200

100 81 86

el Context
0 Error

Figure 5.4: A results of the manual correction of the 487 reports.

112

obstacles for a spellchecking method as they cannot be found in any Hungarian or
Latin dictionary, they are basically new words that could be correct according to the
rules of the language and sometimes even come from some inner conventions of the
medical field like in the case of "sacroliliacalis", which does not conform completely to
any known Hungarian suffix. Even Hungarian lemmatizers that are extremely reliable
under normal circumstances can not cope well with medical texts. The third line
of the figure shows the result of a lemmatization with the Magyarlanc[174] linguistic
analysis tool. As it is visible, it does not know the Latin words and leaves their suffixes
untouched. Some not especially uncommon words even produce bad lemmas like the
shortening of the word "myelon" to "myel'. While it is visible that English suffixes
for Latin words are also present in medical context, these are relatively easily handled
as there are just a few possible combinations. In Hungarian, tens of words could be
constructed for each Latin word that can be seen as having an appropriate suffix in its
context.

®= There are sclerotic changes with anterior effusion of the sacroiliac joints bilaterally.

A sacroliliacalis izliletekben bilateralisan scleroticus elvaltozasok lathaték anterior dmlennyel.

Figure 5.5: An medical text example with highlighed suffixes

Our solution was implemented with the Hunspell ! spellchecking software which is
also used by many popular information technology systems, such as Firefox, Chrome,
Libre Office, Photoshop and Eclipse. It is also widely applied in the academic en-
vironment, it has been adapted for a great variety of languages like English [16] [3],
Arabic [169] or Esperanto [17]. The system works with a built-in dictionary with
conjugations and other rules. It finds misspelled words in general texts with high ac-
curacy. Analysing radiologic reports with Hunspell, however, marked an exceptionally
large number of errors due to the reports containing a lot of Latin words and medical
nomenclature. These are, not surprisingly, not part of the original Hunspell dictionary.
Naturally, this does not qualify the system itself, these faulty alerts stem from the
non-conventional, and in many cases, not even really proper use of the language, which
is nonetheless frequently used and well-understood by radiologists. A human reader’s

"Hunspell’s repository: http://hunspell.github.io

88

5. CHAPTER. MACHINE UNDERSTANDING OF RADIOLOGIC REPORTS

perception is not affected by these words as doctors use these rather consistently and
regularly.

Is it still correct
Is the word N .
Correct word! if we merge it

correct? .
P) with the next?
o) (o) O P EIS
L Ifitis, |
| we merge |
fo) —_—/ O Hunspell
Reports
iali Edit
SD Specialized m : o
Dictionary m Distances
Tokens
AR, [NO N
U e Q.M O Mm.
| In case of \‘))
| multiple alternatives, ‘
| prioritize by
(commonness /‘)
Correct Word Occurence ~ — T T Did we find a Do we get
Words Statistics max. 1 edit dist. correct words
alternative? if we split it2

Figure 5.6: The proposed automatic method for detection and correction of misspellings

Thus, additional dictionaries and prioritization rules are needed to correctly handle
the text of medical reports besides the Hunspell system. A complete overview of our
method is shown in Figure 5.6. Besides the 487 reports mentioned earlier, additional
reports were also manually spellchecked to improve the evaluations. Thus, a total
number of 882 reports have been used for optimization purposes. Let us consider the
yellow lines of the figure first. In its original form, Hunspell suffers heavy difficulties in
coping with Latin words and medical terminology. From 5649 reports on our disposal,
all the tokens were selected which were classified as an anatomical location, disorder or
property by a BILSTM-CRF classifier (that can also label unknown words based on the
context) introduced in the previous subsection. The tokens of the entities recognized by
the BILSTM-CRF system were manually analyzed one by one in lexicographic order,
the incorrect tokens were removed. The BiLSTM-CRF classification is only needed
here to filter out some of the generic words that are not specialized to the field. If no
such reliable classifier would be present, another viable solution could have been the
listing of all tokens without the ones already present in Hunspell’s built-in dictionary.
The suspicious but not obviously faulty tokens were collected in a temporary set. These
dilemmas were solved by a radiologist’s manual judgment. The resulting specialized
dictionary currently contains 6,150 tokens of which 914 can also be found in Hunspell’s
original dictionary. This dictionary is not only used as a supplement of Hunspell’s own
dictionary, but also in prioritizing the corrections. This is achieved by ordering the list
of the words of the dictionary by the frequency of token occurrence in the considered
reports. The usage of this list is showcased later. The specialized dictionary is given to
Hunspell, which uses the data to judge the correctness of a word. If the token is correct,

89

5. CHAPTER. MACHINE UNDERSTANDING OF RADIOLOGIC REPORTS

there is nothing much to do. In this case, an attempt is made to merge the word with
its consecutive to counter redundant whitespaces between words. For example, the
spelling of the correct word "csigolyatest" (vertebral body) can be split into "csigolya'
(vertebra) and "test" (body) which are both acceptable, but the radiologist probably
meant to write them together. Thus, for each correct or corrected word, it is checked
once whether it can still form a meaningful word with its neighbor, and merged with
it if deemed necessary.

If the token is incorrect, that is to say, it can be found in neither Hunspell’s dictio-
nary or the specialized medical dictionary, an attempt is made for its correction. By
default, Hunspell provides an edit distance based prioritized list of the possible fixes.
This list has been less than suitable in numerous cases, mainly due to the specific
medical terminology. The prioritization has been redesigned to consider accent defects
first, for example, the word "eléboltosulas" has higher precedence than "elboltosulas" if
the original word was misspelled as "eloboltosulas". If no such alternative is found, the
correction is based on edit distance. Terms in the specialized dictionary receive higher
precedence than the ones in Hunspell’s built-in general dictionary. If the edit distance
does not indicate a single best correction, the token frequency list is considered, which
was constructed earlier. This case is relevant for situations where there are multiple
meaningful choices, that could otherwise only be solved by manual consideration. For
instance, the word "arthrotis" can be corrected to both "arthritis" and "arthrosis". In
this case, the more common "arthrosis" is preferred, which is much more viable in a
spinal report.

After producing a viable correction, it is checked whether it is exactly one edit
distance apart from the original word. These are the most common misspellings as only
one letter was missed or mixed up. In the cases where the algorithm finds at least one
such word, it goes straight to the prioritization list, and from these, the most likely one
will be the recommended automatic fix. If such a correction is not possible, then instead
of suggesting something very different, the algorithm first tries to split the word into
two, or in case it was still unsuccessful, into three parts. This way, "el6boltosulédiscus"
can be divided into "eloboltosulé" and "discus" which are two correct words. If after
such a split all the resulting words are meaningful, this is automatically considered the
right correction. In the cases where a valid split cannot be found, the prioritized list
based on the edit distances is considered again, as constructed earlier with Hunspell.
In almost every case, a prioritized list is produced as the output of our whole process,
suitable even to use as a recommendation system.

5.3.4 Negations

The detection of negations is based on the use of the information provided by the
Magyarlanc analyzer and custom rulesets. It relies on the constituent analysis feature,
as the clauses of a sentence can be extracted from this information. A clause of a
sentence usually deal with naming a single disorder, or in most cases of negation, the
absence of it. With some exceptions, our negation-handling module deems a disorder
to be negated if a negation (such as no, nor, neither in English) is found to be in the
same clause.

90

5. CHAPTER. MACHINE UNDERSTANDING OF RADIOLOGIC REPORTS

5.3.5 Identification

To have a good grasp on the meaning of a report, it is not enough to just label the
tokens. The basis of the identification is our primitive ontology, which is written by our
sets of identifiers. Size information of these sets is displayed in Table 5.2. Of course,
many other names can be associated with an entity, and we can also process them
through the handling of synonyms, these are not calculated into the data of the table.

Table 5.2: Size of our various identifier sets

ID scope summary Specific ID types Number of identifiers
Locations 87 (about 786 total)
Vertebra levels 29
Vertebra suffixes 26
Not assigned to verterbrae 32
Disorders 274
Pathologies 233
Normal conditions 16
Aspects 25

Most of the anatomical locations (discs, for example) also specify the vertebra levels
as they can be encountered at all or almost all levels. This implies a hierarchy which
also appears in our identifiers. The vertebra level of the anatomical location is the base
of the identifier, while the more precise notation is separated by an underline character.
For example, the disc at the fifth lumbar vertebra’s level gets the LO5_ D identifier. As
the table shows, 29 vertebra levels and 26 suffixes are present in the ontology at the
current time. This means that these identifiers can represent 754 different anatomic
locations. Note that not every single one of these is valid as, for example, there is no
disc at the L.I. level, but this information is not built into our method.

Disorders do not conform to such easily extractable hierarchies. By our notation,
three separate groups exist. Firstly, there are disorders which indeed name harmful
conditions, referred to as pathologies in the table. These are the most simple and
numerous. While synonyms can cause complications, their handling is quite straight-
forward. Their identifiers start with the E_ prefix. The P__ prefix notes those disorders
that refer to normal conditions, such as the discus being intact or the height of the
vertebra being normal. The third notable prefix, ASP_ | is used to distinguish disor-
ders that only provide meaning when accompanied by either an E_ or a P__ disorder.
These are various aspects of the anatomical locations, for example, their height or wa-
ter content. While these aspects are not disorders by themselves, they are crucial in
the understanding of their accompanying disorder.

5.3.6 Connections

The automatic extraction of connections utilizes the constituent parser of the linguistic
analyzer and our classification’s output. Almost all of the properties can be attributed
to a disorder rather than an anatomical location. Many cases like in "compressed L5
disc", where this presumption seems faulty, are the result of flawed classification (as

91

5. CHAPTER. MACHINE UNDERSTANDING OF RADIOLOGIC REPORTS

"compressed" should be a disorder itself here). Thus, only two kinds of connections are
determined among different classes, one between disorders and locations and the other
between properties and disorders. Our system also attempts to merge the locations
and the disorders that belong together (like in the case of "L2-L3 level mildly deforming
the thecal sac" where the proper location would be "L2-L3 thecal sac", these can also
be viewed as connections.

Our method uses several predefined rules to cope with the task of these automatic
assignments. Our method relies heavily on sentence parsing and the clauses of the
sentences as the entities that belong to the same clause are extremely likely to be
connected semantically. The following rules were constructed:

o Disorder-Location: The system first considers only the clause of a location. The
preceding disorders are prioritized first; if more than one exists, they always
receive the same treatment. If none exists, the system looks for rightmost ones.
If no such disorder is found, the system broadens the search to the whole sentence,
but only considers the words on the left of the location. Coordinations are also
considered, the locations that are coordinated with "és" ("and"), "vagy" ("or"), or
a comma always receive the same connections.

o Property-Disorder: If a disorder is proceeded by any properties inside its clause,
they gain connections. Otherwise, the whole left side of the sentence is considered.

» Location-Location: Some of the locations like "disc" or "endplate" are not entirely
specific, they need a vertebra or at least a region to achieve precision. A set of
such locations was assembled manually, in their cases, a suitable vertebra or
vertebrae are attempted to be found inside their sentence.

e Disorder-Disorder: Similarly to the previous problem, aspects like "height" do not
convey meaningful disorders but lend specificity to others. Since they are also
very typically worded with little variety, in the same manner, a list of these was
gathered, and potentially suitable other disorders are found inside their sentence.

Some of the semantic connections inside the text are referenced implicitly. For
example, the sentence might not repeat the vertebra level that was mentioned in the
previous sentence. Various typical terms can allude to this, such as "at the same level".
These terms can have a variety of meanings, some directed to the previous sentence or
clause, some to the next sentence. These terms are detected, and their directions are
determined according to a custom ruleset constructed along the examples found in real
reports. These are factoring into how our heuristic approach determines connections,
and factor into our later evaluation of connections.

We note that the Hungarian sentence structure differs significantly from that in
English. Furthermore, the sentences of radiologic reports tend to have relatively simple
structures. Thus, such rules can be correct in the overwhelming majority of the cases.

The detected entities are then displayed in a structured manner, their connections
highlighted by grouping via frames. The result always forms a tree structure. An il-
lustration of our visualization system adapted to English can be seen in Fig. 5.7. This
is a visualization of the report seen previously in Fig. 5.2. Note that this example
was explicitly constructed as an illustration. Our system is not suitable for processing
English reports which vary significantly from Hungarian reports in both terminology
and sentence structure. The detected and identified anatomical locations could also be

92

5. CHAPTER. MACHINE UNDERSTANDING OF RADIOLOGIC REPORTS

L2-L3 disk
peridural

L2-L3 thecal sac

thecal sac

L4-L5

endplate
disk
facet

Figure 5.7: An illustration of our structured visualization of the text seen in Fig. 5.2

linked to regions of the human spine. At the current time, this is performed with a rule-
set assigning anatomical locations to regions of a rather simple schematic illustration
of the human spine.

Our current method is displayed in Fig. 5.8 with a Hungarian example. The 487
reports were manually annotated, and were used for the fine-tuning of the BERT identi-
fication model. When the system receives a new report, its text and linguistic features
are given to the model for prediction. The model performs the classification of the
locations, disorders and properties. The resulting entities are then submitted to our
connection extraction, which use sentence and constituent parsing of Magyarlanc and
predefined rules to determine the probable connections. This results in a tree visual-
ization where the different entities are color-coded and displayed in a visual format in
which the connected entities are grouped together. The process is performed automat-
ically and runs extremely quickly, making it suitable for real-time display of reports
during typing. Misspell correction is also present at the input channels. Negations are
not featured in the example.

5.4 Results and discussion

5.4.1 Classification and Connections

Our classification is currently performed using BERT, but our earlier method that
most of our work is based on was established with BiLSTM-CRF. We compared the
two models, the results of which are shown in Table 5.3. The BERT model using

93

5. CHAPTER. MACHINE UNDERSTANDING OF RADIOLOGIC REPORTS

Misspell
Carrection
Linguistic
Analysis via
Magyarlanc

v

Q Radiologist

Constituents

r T e !
A P S M =
[T I P N R (S S

i R S 7 S 5

Structured

Annotation Fine-tuning
Visualization
IBTLEIPEISTIL

wwwwwwwwwww

487 Annotated
Reports

Connections

Figure 5.8: Our proposed method for automatic understanding and visualization

only word representations, trained on the same training data, was able to achieve
almost 2% better accuracy and F-score results than the BiLSTM-CRF model. During
the evaluation, 70% of the data of the 487 reports was used for training (or fine-
tuning), 10% used as a validation set, and 20% as the test set. The comparison
does not feature the previously mentioned overrides that were performed with regular
expressions. The results, however, already feature the corrections that are discussed in
the next subsection.

Table 5.3: A comparison of our previous BiLSTM-CRF model and our new BERT-
based entity classification

Accuracy F-score
BertForTokenClassification 96.98 96.85
BiLSTM-CRF 95.10 95.09

It can be noted that locations tend to offer the best results while properties seem
to lag behind in both cases. This can be partly due to the visible difference in sample
size, but an even more likely cause is the size of the classes’ vocabulary. Properties can
take up a wide variety of forms while locations use a fairly limited set of terms.

In the 487 reports, the model detected 7,794 disorders, 6,358 locations, and 3,442
properties. Our system assigned 11,016 connections, of which 6,924 were Disorder-

94

5. CHAPTER. MACHINE UNDERSTANDING OF RADIOLOGIC REPORTS

Location, 3,382 were Property-Disorder, 425 mergings of locations, and 285 mergings
of disorders. During the manual evaluation the connections were found to be precise.
Some mistakes were detected where the classification itself was faulty or in cases of
rare, exceptionally complex sentences.

5.4.2 Spelling Correction

The current evaluation features the BILSTM-CRF model. Linguistic features were also
utilized, extracted by the Magyarldnc [174] analysis tool. Upon detection, the entities
are identified and their semantic connections are also revealed using our rule-based
method that also works with Magyarlanc data.

Summing up our detection results with a micro-average, the model’s F1l-score in-
creased by 0.35%. The results were obtained through tenfold cross-validation measured
three times with different random seeds, the numbers represent the average of these.
The corrected data performed better in each of the three runs. In the case of the identi-
fication, the quality indicator can be the number of anatomical locations and disorders
that our process could not identify at all. In the original data of 487 reports, 505
of 6,358 anatomical locations and 521 of 7,794 disorders were left unidentified. After
corrections, these numbers decreased to 488 anatomical locations and 332 disorders.
Thus, it is visible that the automatic misspell correction had a big impact on the suc-
cess of the identification task. No negative effect was observed here. Thus, according to
our results, machine learning classification methods are likely to be positively affected
(although to a little extent in our case) by the automatic misspell correction, while
rule-based methods are likely to benefit even more (more than 20% less unidentified
entities in our system).

Comparing the results to the manual dataset, the dataset contained 36 corrections
that were not marked by our system, most of these were missing dots or dashes which
on the token level cannot be detected. During the inspection of the results, 5 cases were
found that were real misspellings and were not detected by the system. In 17 cases,
the same word was corrected differently by the manual correction and our system.
Of these, there were 7 inconsistencies that we found to be genuinely faulty automatic
corrections. The correction method detected 328 errors that the manual check did
not. Our analysis found that a total of 4 corrections of the detected elements were
unjustified, which in themselves are unusual but probably intentionally spelled the
way they appeared ("VA', "VB', "radici", "gerinccsatorna- és"). Further 3 faulty words
were correctly detected but were given bad corrections. Thus, of the 328 detected
errors, 324 can also be considered a valid fault detection result by human observers.
The original human annotator also agreed with these results.

As a motivating example, a well-known text editor’s Hungarian spellchecker was
tried out on the same example displayed in Figure 5.9, which detected all misspelled
words in the text but was able to correct only two of them, and also marked six other
words as faulty which are very common in the radiologic terminology. This or very
similar text editors are widely used during clinical reporting. The bottom part of the
figure displays an easily comparable summary of the corrections the tools made.

Thus, we determided that the automatic correction method can surpass the human
observer in the detection of valid errors (more than 30% higher number of real errors
in our case). While the fault detection and correction results are significantly worse in
case of an unknown text, extensions to the dictionaries can produce corrections that

95

5. CHAPTER. MACHINE UNDERSTANDING OF RADIOLOGIC REPORTS

Edit Correction

A lumbalis lordosis ive kiegyenesedett. A csioglyak szerkezete ép,
kiterjedéstik normalis. A L.V. discsus széles alapu, bal oldali I6boltosulasa
lathatd. Az emlitett el6boltosulas a durat nem komprimélja. A
szakaszon enyhe kopas figyheté meg, az eloboltosul6 discusokon hernia
képzddés jelei latszanak.

A lumbalis lordosis ive kiegyenesedett. A csigolyak szerkezete ép,
kiterjedésiik normalis. A L.V. discus széles alapu, bal oldali el6boltosulas
lathatd. Az emlitett el6boltosulas a durat nem komprimélja. A
szakaszon enyhe kopas figyelheté meg, az el6boltosuld discusokon
hernia képzodés jelei latszanak.

Previous v X Next

A A

cercicalis =~)

cervicalis

cervicalis

cerebralis

Text riddled with errors : Suggested corrections Corrected text

Successful automatic corrections:

Best corrections given:

Successful detections:

Faulty detections:

Successful automatic corrections:

2/7

(Inthe unranked options)

Successful detections:

Faulty detections: Best corrections given:

ive - jve ive = jve
6 csioglydk =» csigolydk 0 csioglydk =» csigolydk
discsus =p dicsi discsus =» discus
lumbalis lordosis |8boltosuldsa = NONE I18boltosuldsa = cléboltosuldsa
durét discusokon cercilalis =» NONE cercilalis => cervilalis
el8boltosuldas figyhetd => figyeld figyhetd => figyelhetd
hernia eloboltosulé =» NONE eloboltosuld = el&boltosulo

Figure 5.9: Our automatic spelling correction tool for radiologic reports with evaluation
of the example text compared to a traditionally used text editor

are overwhelmingly correct (more than 97% valid in our case) without the need of
additional adjustments.

It is important to note that our system has been optimized only for the correction of
Hungarian radiologic spinal reports. It cannot be declared that in other domains similar
results could be guaranteed. Our present system works with medical terminology of a
rather small vocabulary. Similar results might easily be produced on other restricted
medical fields, adding new dictionaries to the same process.

5.4.3 Functional Evaluation

Since most of the process is hard to measure objectively, we present a complex func-
tional evaluation of how accurate radiologists found our system. This distinguishes
three layers of the machine understanding workflow for better differentiation of various
errors. Each category had a set of rules for determining the number of possible points
as well as the achieved result. Since the evaluation also concerns the integration of
these layers, and each category builds upon the results of the previous one, the so
inherited errors were handled as correct inputs in the next layer. Thus, the evaluation
investigates how the next layer handles them according to the rules, regardless of their
correctness. This decision was necessary because this provides a better picture of the

96

5. CHAPTER. MACHINE UNDERSTANDING OF RADIOLOGIC REPORTS

performance of layers in themselves rather than every score being dependent on each
of its predecessors. We note that this does not usually improve but also can worsen
the scores, as, for example, "L.V." could not possibly get a good disorder identifier and
stays without an identifier in the cases it was classified as such. The three categories
are as follows:

Classification - The distinction between the various entities marked with different
text colors (corresponding to their classification, similarly to the example of Figure 5.2)
in the text of the report. The maximum and the obtained score is determined on a
conceptual level rather than on a token level. Thus "L.V. discus' can receive two points,
one for the proper purple color of "L.V." and one for "discus", even though simple text
colouring does not grant such an obvious separation.

Connection - The results of the classification contain the entities that are con-
nected on a conceptual level, such as "L.V.", "discus", or "hernia". At this point, the
tree structure is constructed, in which the connected entities are assigned to each other.
Thus from the simple sentence segment, "L.V. discus hernia lathaté.", the connected
"L.V." and "discus" location entities should be assigned together as "L.V. discus" in
a purple node, and the disorder "hernia" should be in a separate, green node of the
tree, assigned to this node. The maximum score is determined by how many nodes the
annotator deemed to be necessary. The actual score is the number of nodes that are
both correct in their content, and in case of disorders and properties, were assigned to
the correct location or disorder, respectively.

Identification - The location and disorder nodes contain entities that should be
assigned at least one identifier from our ontology. Since this is a textual matching
process, mistakes are usually due to faults in the ontology itself or to faults in our
matching rules. Negations also factor in this layer. The maximum score is determined
as the number of location and disorder nodes. The actual score is determined as the
number of location and disorder nodes that got their proper identifiers, as well as their
proper negation state. Thus "L.V. discus" should receive the identifier for the L.V. disc,
while "L.II.-L.IV." should receive the identifiers for L.II., L.III., L.IV., and L.V. Also,
if "hernia" was properly identified as herniation but got no negation when it should
have, the node does not receive the score.

The evaluation was conducted by three separate radiologists (R1, R2, and R3) on
the sane 20 reports, according to detailed evaluation guidelines. We note that at this
point, none of the three evaluating radiologists took part in the annotation or the
construction of the system or its learning data. We also note that this evaluation used
the BERT-based implementation of classification. The results are visible in Table 5.4.
The average and overall results of the table represent the average of all the scores the
radiologists determined as maximum and as achieved scores during evaluation. Thus,
for example, the connection category has a smaller impact on the overall results as there
were substantially fewer points to earn with them in total than the other categories.
The maximum achievable scores determined by R1, R2 and R3 were 2,021, 2,040, and
1,939, respectively, while the achieved scores were 1,972, 1,994, and 1,861, respectively.
As also visible from the scores, the radiologists deemed our process good in visualizing
Hungarian spinal MRI reports.

97

5. CHAPTER. MACHINE UNDERSTANDING OF RADIOLOGIC REPORTS

Table 5.4: The results of the understanding scores according the three radiologists

Task R1 R2 R3 Average
Classification 97.61% 97.23% 98.47% 97.75%
Connection 96.22% 98.29% 91.37% 95.32%
Identification 98.48% 97.92% 96.75% 97.72%
Overall 97.57% 97.74% 95.97% 97.12%

5.5 Conclusions

The chapter described our efforts in creating an automatic framework for the machine
understanding of Hungarian spinal region reports. Our initial goals were the classi-
fication of anatomical locations, disorders and their properties in the free-form text
of the reports. This was achieved via BiLSTM-CRF, and later via BERT, trained
on 487 manually annotated reports. The classification produced an Fl-score value
of 96.85. The detected entities are connected to each other based on sentence and
constituent parsing and pre-defined rules specific to the Hungarian reports’ sentence
structure. Identification was performed through a simple ontology involving hundreds
of identifiers for anatomical locations and disorders.

Our automatic misspell correction can facilitate this machine understanding pro-
cess, contributing to both our classification based on machine learning (improved by
0.35%) and identification based on language models (correct identifiers for more than
20% of the previously unidentifiable phrases). The automatic method detected 38%
more misspells than a human annotator, and while the success of the process is highly
dependent on the quality and size of the dictionaries used, the process itself performed
with great precision.

Our process provides a representation of the meaning of the reports, displaying the
mentioned anatomical locations, disorders and properties, highlighting their seman-
tic connections. In a functional evaluation, three radiologists evaluated our machine
understanding and visualization process and found that it provided correct results in
95.97% to 97.74% of the cases.

Our future plans concern the refinement of our current data, including more novel
solutions in the labelling and connection-determining process and their connection to
the original MRI images themselves. While this is still ongoing research, some new
applications have already arisen. An automatic understanding of the reports could
facilitate the generation of training data for automatic analyzer tools aiming to detect
disorders on MRI images. As part of a current project, our solution is used for such
a task. Another evident use of our work is the facilitation of patient comprehension.
Interactive electronic reports could provide much more information for patients and
lead to better healthcare service, and our project also includes this endeavor.

The thesis point provided a method for automatic understanding of spinal MRI
reports, including an annotation system, a correction solution for misspellings, a
BiLSTM-CRF and BERT-based classification, an identification based on a primitive
ontology, and a visualization of the understanding. The results show that the system
performs well in understanding and visualizing Hungarian reports.

The author considers the followings as his main contributions:

98

5. CHAPTER. MACHINE UNDERSTANDING OF RADIOLOGIC REPORTS

The author took a vital part in the creation of the annotation system, contributed
to these meetings, and devised plans to deal with exceptions and mistakes in the
system.

The author maintained contact with and provided guidelines to the radiologists
working on the annotations during the work.

The author took part and coordinated the correction of radiologic annotations of
the 487 reports, also taking part in the manual resolving of the arising conflicts
between annotations of two different radiologists.

The author devised the groundwork of the rule-based connection-detection system
and provided continuous insights during its implementation.

The author took part in the design of the misspell-correction method, as well as
doing manual annotations and classifications of a significant part of the results.

The author determined the basic rules for handling negations in the radiologic
reports.

The author devised the structure of the final tree-structure display and took part
in its creation.

The author coordinated the implementation of the machine understanding sys-
tem.

The author planned the functional evaluation, including the composition of the
evaluation guide and providing assistance during the evaluation to the radiolo-
gists.

The author took part in the evaluation work throughout the work.

99

“Writing means sharing. It’s part of the human condi-
tion to want to share things — thoughts, ideas, opinions.”

— Paulo Coelho

Final Conclusions

The thesis discusses three main topics. The first part provides insight into a project
conducted with an industrial partner whose 4GL system has undergone software prod-
uct line adoption. The thesis elaborates on how our work contributed to the project
and showcases our solutions on the analysis of the variants of their system. While
product line adoption is a well-researched topic, 4GL solutions are still rare, with little
literature. Our work contributed with novel solutions on feature extraction based on
static analysis and information retrieval and investigated their combinations. This part
of the thesis also showcases several new metrics suitable for the analysis of the features
of 4GL systems and a community-based method that groups parts of the software
according to their mutual connections.

The second part describes the importance of textual methods in test-to-code trace-
ability and how improving them could lead to the improvement of the whole process.
The thesis analyzes some of the commonly used techniques, such as naming conventions
and LSI, and provides a new alternative in Doc2Vec and several combinations of these,
including various source code representations. It has been established that methods
for this field work best in combination, and the textual aspect is likely to remain an
important part of future solutions.

The third part describes how radiologic reports are made in today’s medicinal prac-
tice and how their automatic understanding could contribute to better healthcare and
future work in the field of machine learning. It establishes our work in the classification
of various entities via BILSTM-CRF and BERT models in the non-structured text of the
reports and their connection through linguistic analysis. These elements are connected
to a simple ontology as means of proper identification, and a tree-structured represen-
tation is constructed of them. Misspellings can hinder this identification, therefore the
thesis point also described a solution for their automatic correction.

The future still holds many more interesting directions for these topics. Software
reuse is flourishing in the industrial setting and is unlikely to ever lose its importance as
it is often more cost-effective to build upon earlier achievements. Even as new solutions
for test-to-code traceability tend to produce great results, there is still ample room for
improvement. One such improvement can be to upgrade parts of our current methods

101

6. CHAPTER. FINAL CONCLUSIONS

as our research has proposed. Our work on radiologic reports is merely the beginning
of an effort aiming to provide smarter, more optimised, and less resource-intensive
healthcare. The automatic understanding can be extended to different parts of the
body or different languages, and the vast amount of knowledge already in the reports
can be extracted to enable new methods for more ambitious goals.

Table ?? provides an overview of the author’s publications related to each thesis
point.

102

Appendices

103

Summary in English

Humanity’s primary channel of information is verbal or written natural language.
Throughout history, written words have aided scientific endeavors, contributed to the
education of the masses, have made and broken regimes and led to our current soci-
ety. Even though the information is primarily stored as binary data nowadays, it still
has to be transformed to natural language interpretable for human readers. The thesis
deals with the extraction of the information within natural language text of various do-
mains. Two of the thesis points are strongly connected to software development, where
the source code still has a great amount of natural language with discernable semantic
information, while the third thesis point deals with the automatic understanding of
radiologic reports. Text is omnipresent in our everyday lives, and its proper automatic
processing has immense potential.

I. Feature-Extraction in 4GL Systems

The contributions of this thesis point are detailed in Chapter 3. Software product
line adoption over several existing variants can be extremely resource-intensive.
The adoption process requires developers and domain experts to work strongly
together on the new architecture, as knowledge of the system’s features can be
invaluable. The features are implemented through parts of the software code.
Feature extraction attempts to extract these for each feature for easier modifi-
cation or merging with the architecture. Working with an industrial partner to
aid this extraction on 19 variants of a pharmaceutical logistics system presented
a couple of challenges. The software was written in a fourth generation language
(4GL), Magic XPA. The code of the variants was assembled through a develop-
ment environment without actual coding, and the structure of the language is
also significantly different from mainstream programming languages that have
ready solutions for aiding feature extraction. Magic applications consist of pro-
grams and their subtasks calling each other, and also logical and data units. We
have introduced several new approaches to the feature extraction topic through
our work, aiming to provide more useful information for developers and domain
experts alike.

105

APPENDIX A. SUMMARY IN ENGLISH

Our feature extraction experiments produced various outputs suitable for differ-
ent stages of the work. Call graphs through static analysis highlight the structural
connections within the software’s programs and can produce an output fit for de-
velopers. Another method, information retrieval (IR) through latent semantic
indexing (LSI), can also highlight program and feature connections by examining
the similarities between the parts of the programs written in natural language
and the features. This is closer to the view of the domain experts, who typically
do not delve deep into the programs but see the conceptual connections. The two
extraction methods build on different sources of information. Their outputs could
be combined to produce a more strict filtering of programs that contain the most
essential programs for each feature.

Domain experts could further benefit from overseeing the connections between
features. The call graph contains most of these connections and, while it is hard
to comprehend, provides valid structural information. The call graph could ben-
efit from methods commonly used in graph theory, namely community detection
in our case. Communities could provide a good mapping of features and their
interconnections within the system. Our evaluation has shown that a community
mapping can highlight connections between features that may not be apparent
to the domain experts, while in general, still providing a picture close to their
estimations.

Many aspects of the features could potentially be useful to investigate during the
feature extraction process and maintenance. While mainstream languages have
the benefit of several well-established metrics, 4GL environments suffer from a
lack of these. Our work contributed several new metrics that are adaptations
of already established metrics but also some original metrics suitable for the
abstraction level of features.

The methods and results of our work had been used during the work of our
industrial partner, and the adoption process was concluded successfully.

The Author’s Contributions

The author implemented the information retrieval feature-extraction solution and
took part in the planning and coordination of the experiments, including the com-
bination possibilities, new metrics, community detection, and evaluation. He took
part in the combination effort between static analysis and information retrieval,
both in implementation and the analysis of the results. The author implemented
a basic feature-extractor with graphical interface based on information retrieval
for the initial approach, and later performed the analysis of the variants, and
planned the validation procedure.

The publications related to this thesis points are:

Journal publications

¢ Andras Kicsi, Viktor Csuvik, Ldsz1é Vidécs, Ferenc Horvath, Arpad Beszédes,
Tibor Gyiméthy, and Ferenc Kocsis. Feature Analysis using Information Re-

trieval, Community Detection and Structural Analysis Methods in Product
Line Adoption. Journal of Systems and Software, 155:70-90, sep 2019.

Full papers in Scopus-indexed conference proceedings

106

APPENDIX A. SUMMARY IN ENGLISH

1I1.

¢ Andras Kicsi, Laszlé Vidacs, Arpad Beszédes, Ferenc Kocsis, and Istvan
Kovacs. Information retrieval based feature analysis for product line adop-
tion in 4gl systems. In Proceedins of the 17th International Conference
on Computational Science and Its Applications — ICCSA 2017, pages 1-6.
IEEE, 2017.

¢ Andras Kicsi, Viktor Csuvik, Laszlé Viddcs, Arpad Beszédes, and Tibor
Gyimoéthy. Feature level complexity and coupling analysis in 4GL systems.
In Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), volume 10964
LNCS, pages 438-453. Springer Verlag, may 2018.

¢ Andras Kicsi, Laszl6 Vidacs, Viktor Csuvik, Ferenc Horvath, Arpad Beszédes,

and Ferenc Kocsis. Supporting product line adoption by combining syntac-
tic and textual feature extraction. In International Conference on Software
Reuse, ICSR 2018. Springer International Publishing, 2018.

Other full paper publications

¢ Andras Kicsi and Viktor Csuvik. Feature Level Metrics Based on Size and
Similarity in Software Product Line Adoption. In 11th Conference of PhD
Students in Computer Science (CSCS 2018), pages 2528, 2018.

Textual Methods in Aiding Test-to-Code Traceability

The contributions of this thesis point are detailed in Chapter 4. Test-to-Code
traceability is the identification of each test case’s focus, finding out which parts
of the software they are meant to assess. While their research is less popular
than, for instance, requirement traceability, there is substantial literature on the
matter, and it is not an easy problem considering that larger systems can have
tens of thousands of test cases. Proper test-to-code traceability can facilitate the
localization of faults, aid test prioritization, and could even serve as a foundation
for good automatic program repair. While the current state-of-the-art solutions
tend to employ multiple approaches to the task, our focus was on the lexical
techniques. Our research examined eight medium-sized open-source systems with
more than 1.25 million lines of code.

Relying on naming conventions (NC) is an exceptionally precise way to identify
the tested code elements, but this technique is highly dependent on developer
habits and can be complicated in a variety of cases. Our work provided an in-
depth investigation about the automatic extraction of naming convention links,
the possible combinations of various rules, and their perceived usage in the sys-
tems. The results show that on the method level, naming conventions are com-
plicated, and developers rarely strive to uphold perfect traceability. On the class
level, they are used quite often, which can greatly contribute to class-level test-
to-code traceability. Mirroring the package hierarchy of the production code is
also popular, and even if this can only lead to general directions in the code, this
can still be extremely useful as filtering information.

Since textual approaches are often used in state-of-the-art solutions, optimizing
them could lead to better traceability overall. Thus, our experiments also searched
for the best textual method. We introduced several new possible combinations

107

APPENDIX A. SUMMARY IN ENGLISH

and examined their usefulness in finding correct traceability links, measured both
on a large set of traceability links automatically extracted according to naming
conventions and a manual dataset on 220 test cases of four systems. Call infor-
mation obtained via regular expressions was also factored into our results and
found to contribute greatly to good results, reinforcing that a combination of
techniques is indeed likely to produce even better results.

Our search for the best code representation provided less conclusive results, the
identifier-centric (IDENT) representation that utilizes abstract syntax trees came
out on top in the overwhelming majority of the cases during the NC-based evalu-
ation, but the text-centric (SRC) representation proved more precise when com-
pared to the limited amount of manual data.

Out of the main methods of latent semantic indexing, TF-IDF and Doc2Vec,
Doc2Vec was found to be most precise both as a singular technique and in com-
bination with call information or naming conventions. The combination of these
three techniques could also warrant some attention, but our filtering solution
based on a consensus of all three of them provided marginally worse results than
Doc2Vec in itself.

Finally, our findings show that the combination of naming conventions and
Doc2Vec could lead to a good alloy of the precision of naming conventions and
the versatility of other textual techniques.

Our work also contributed a manual dataset called TestRoutes, and traceabil-
ity extraction experiments on Stack Overflow code snippets featuring LSI an
Doc2Vec, in which Doc2Vec performed better.

The Author’s Contributions

The author implemented a Latent Semantic Indexing based solution for recover-
ing traceability links, the evaluation code relying on naming conventions and also
manual data. He also implemented recovery techniques based on various naming
conventions and conducted experiments with them. The author planned and co-
ordinated the manual annotation of the TestRoutes dataset, and also the Stack
Overflow experiments. He also took part in the evaluation and explanation of
various other results and the planning of all of the published experiments.

Journal publications

¢ Andras Kicsi, Viktor Csuvik, and Laszlo Vidacs. Large Scale Evaluation
of NLP-based Test-to-Code Traceability Approaches. IEEE Access, 2021.

Full papers in Scopus-indexed conference proceedings

¢ Andras Kicsi, Laszlo Toth, and Laszlo Vidacs. Exploring the benefits of
utilizing conceptual information in test-to-code traceability. Proceedings of
the 6th International Workshop on Realizing Artificial Intelligence Synergies
in Software Engineering, pages 8-14, 2018.

¢ Viktor Csuvik, Andras Kicsi, and Laszlé Vidacs. Source code level word
embeddings in aiding semantic test-to-code traceability. In 10th Interna-
tional Workshop at the 41st International Conference on Software Engi-
neering (ICSE) — SST 2019. IEEE, 2019.

108

APPENDIX A. SUMMARY IN ENGLISH

¢ Viktor Csuvik, Andras Kicsi, and Laszl6 Vidacs. Evaluation of Textual
Similarity Techniques in Code Level Traceability. In Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), volume 11622 LNCS, pages 529-543.
Springer Verlag, 2019.

¢ Andras Kicsi, Mark Rakéczi, and Léaszlé Vidacs. Exploration and mining
of source code level traceability links on stack overflow. In ICSOFT 2019 -
Proceedings of the 14th International Conference on Software Technologies,
pages 339-346, 2019.

¢ Andras Kicsi, Lasz16 Vidéacs, and Tibor Gyimothy. Testroutes: A manually
curated method level dataset for test-to-code traceability. In Proceedings of
the 17th International Conference on Mining Software Repositories, MSR
2020, pages 593-597. IEEE, IEEE, jun 2020.

III. Machine Understanding of Radiologic Reports

The contributions of this thesis point are detailed in Chapter 5. Radiologic ex-
aminations produce image data, but their main output that incorporates the
expertise of radiologists is still manifested in textual form. Reports and opinions
written by the radiologists contain significant information which could be utilized
in various services such as quality assurance and automatic report generation.

The thesis point describes a process for the automatic understanding of radio-
logic reports of the spinal region. This process involves multiple levels, which are
elaborated below.

Radiologic reports tend to contain a high number of misspellings. While these are
relatively easy to overlook by the human eye, they can inhibit the work of machine
learning classifiers, as well as rule-based methods. Correcting these automatically
is a hard task not only because of the morphologic richness of the Hungarian
language but also because radiologic reports tend to use Latin words according
to the rules of other Hungarian terms, attaching Hungarian suffixes. Our work
introduced a method based on the HunSpell spelling correction tool as well as its
considerable extension with a specialized dictionary and new prioritization rules
to accommodate the specific use of the language in the reports. Our results are
shown to improve the results of both machine learning based classification (0.35
F-score improvement) and ontology-based identification (more than 20% of the
unknown terms correctly identified).

The corrected natural language text goes through automatic labelling via a
BiLSTM-CRF, or in the more current version, a BERT classifier. It distinguishes
anatomical locations, disorders and properties according to an annotation per-
formed by radiologists on 487 real reports. The classification produced an F1-
score value of 96.85, determining locations, disorders and properties with high
accuracy.

Negations are determined through linguistic analysis via the Magyarlanc ana-
lyzer. Constituent parsing is used to link negating words to specific disorders in
the text, detected by our previous step.

Our identification relies on a simple ontology built for the task. The ontology lists
identifiers for various locations with a simple hierarchy, providing the vertebra

109

APPENDIX A. SUMMARY IN ENGLISH

level of anatomical locations if they are applicable (for example, the disc at the
L5 level is denoted as L5 D). The identifiers of disorders also carry additional
information as they are grouped in harmful pathologies, describing a normal or
intact state and aspects that are needed to specify another accompanying disorder
but are meaningless without it.

Our process also maps the elements according to their semantic connections. Dis-
orders are usually connected with one or more locations, and properties usually
belong to one or more disorders. Our system uses a rule-based method to de-
termine these, also heavily relying on the clauses of the sentences, extracted via
constituents.

The output of our process is visualized in an easy to comprehend tree-structure
that showcases the detected elements and their connections.

In a functional evaluation, three radiologists evaluated our machine understand-
ing concerning classifications, the determination of connections, and the identi-
fication of locations and disorders and found that it provided correct results in
95.97% to 97.74% of the cases.

While this is still ongoing research, some applications have already arisen. An
automatic understanding of the reports could facilitate the generation of training
data for automatic analyzer tools aiming to detect disorders on MRI images. As
part of a current project, our solution is used for such a task. Another evident
use of our work is the facilitation of patient comprehension. Interactive electronic
reports could provide much more information for patients and lead to better
healthcare service, and our project also includes this endeavor.

The Author’s Contributions

The author laid the groundwork and coordinated the manual annotations, and
took a big part in the later refinement of the data. He took part in the planning of
all aspects of the machine understanding method and coordinated its implemen-
tation. The author planned the functional evaluation and its guidelines. He took
a big role in the evaluation and explanation of the results and their implications.

The publications related to this thesis point are:

Full papers in Scopus-indexed conference proceedings

¢ Andras Kicsi, Klaudia Szabé Ledenyi, Péter Pusztai, and Laszlé Vidacs.
Automatic classification and entity relation detection in hungarian spinal
MRI reports. In 3rd ICSE Workshop on Software Engineering for Health-
care, 2021.

Other full paper publications

¢ Andras Kicsi, Péter Pusztai, Klaudia Szab6 Ledenyi, Endre Szabd, Gabor
Berend, Veronika Vincze, and Léaszl6 Vidacs. Informécidkinyerés magyar

nyelvii gerinc mr leletekbdl. In XV. Magyar Szamitoégépes Nyelvészeti Kon-
ferencia (MSZNY 2019), page 177-186, Szeged, 2019. (In Hungarian)

¢ Andras Kicsi, Klaudia Szabd Ledenyi, Péter Pusztai, Péter Németh, and
Laszl6 Vidacs. Entitasok azonositdsa és szemantikai kapcsolatok feltarasa

radiologiai leletekben. In XVI. Magyar Szamitogépes Nyelvészeti Konferen-
cia (MSZNY 2020), page 1528, Szeged, 2020. (In Hungarian)

110

APPENDIX A. SUMMARY IN ENGLISH

¢ Andras Kicsi, Klaudia Szab6 Ledenyi, Péter Németh, Péter Pusztai, Laszld
Vidécs, and Tibor Gyiméthy. Elirdsok automatikus detektalasa és javitasa
radiologiai leletek szovegében. In XVI. Magyar Szamitogépes Nyelvészeti
Konferencia (MSZNY 2020), page 191-204, Szeged, 2020. (In Hungarian)

¢ Andras Kicsi, Péter Pusztai, Endre Szabd, and Laszl6 Vidacs. Szaknyelvi
annotaciok javitasanak statisztikai alapi tdamogatésa. In XVI. Magyar
Szamitogépes Nyelvészeti Konferencia (MSZNY 2020), page 115-128, Szeged,
2020. (In Hungarian)

Table A.1 summarizes the main publications and how they relate to our thesis points.

Ne [77] [67] [65] [78] [68] [75] (31 [30] [71] [76] [66] [70] [73] [72] [69] [74]

I. 3

II. * . * . . .

E * * * * *

Table A.1: Thesis contributions and supporting publications

111

Magyar nyelvii osszefoglald

Az emberiség legfébb informacidéatviteli modja az irott vagy beszélt nyelv. Torténel-
miink soran az irott sz6 hozzajarult a tudomény fejlodéséhez, az altaldanos iskolazott-
saghoz, birodalmakat emelt fel vagy buktatott meg, és vezetett a jelenlegi tarsadal-
munkhoz. Habéar az informdacié napjainkban mar leggyakrabban binaris adatként kertil
tarolasra, ezt mégis az ember szamara értelmezhet6 forméaba kell 6nteni. Az értekezés
a természetesnyelvii szévegben rejlo informacié kinyerésével foglalkozik. Két tézispont
szorosan kapcsolodik a szoftverfejlesztés témakoréhez, ahol a programkdédban szintén
6ridsi mennyiségli kiaknazhato szemantikus informéacié van, mig a harmadik tézispont
radiologiai leletek automatizalt értelmezésével foglalkozik. A széveg mindenhol ott van
életiinkben, megfelel6 feldolgozasa pedig hatalmas lehetoségekkel kecsegtet.

I. Feature-kinyerés 4. generacids nyelvi rendszerekben

A tézispont kontribiicidit a 3. fejezet részletezi. Szamos varians felett a szoftver-
termékesaladok bevezetése felettébb eroforras-igényes feladat lehet. Mivel a rend-
szer altal szolgaltatott funkcidk (feature-ok) ismerete elengedhetetlen, a beveze-
tés folyamata a fejleszték és teriileti szakértok szoros egyiittmiikodését koveteli
meg. A feature-Oket szolgalja ki a szoftver, és ezek a koédon belil valtozato-
san vannak megvalésitva. A feature-kinyerés ezeket igyekszik kinyerni a kdéd
konnyebb valtoztatésa, és a varidnsok megfeleld egyesitése érdekében. Szamos
kihivassal keriiltiink szembe egy gyogyszeripari logisztikai rendszer 19 varian-
sa feletti feature-kinyerés soran, amelyet egy ipari partnerrel egyiitt dolgozva
végeztiink. A szoftver egy negyedik generdciés nyelven (4GL), a Magic XPA
nyelven kertilt implementalasra. A programkodot egy fejleszt6i kornyezeten ke-
resztil készitették valédi programozas nélkil, és a nyelv struktirdja jelentésen
kiilénbozik a hagyomanyos programozasi nyelvekétol, amelyekre mar vannak kész
kinyerési megoldasok. A Magic szoftverek tin. programokbodl és ezek alatti tun.
subtask-jaikbdl allnak, amelyek egymast hivjak meg, de gyakoriak a logikai és
adat egységek is. Arra torekedve, hogy minél tobb hasznos informéaciot adjunk
a fejlesztoknek és tertileti szakértoknek egyarant, szamos 1j megkozelitést vezet-
tiink be a feature-kinyerés témakorében.

113

B. FUGGELEK. MAGYAR NYELVU OSSZEFOGLALO

A feature-kinyerési kisérleteink tobbféle kiillonb6z6 kimenetet produkéltak, ame-
lyek a munka kiillonbo6z6 fazisait hivatottak segiteni. A statikus elemzéssel kinyert
hivasi grafok megmutatjak a szoftver programjai kozti kapcsolatokat, amely rend-
kiviil fontos lehet a fejlesztoknek. FEgy mésik mddszer, az informécié kinyerés
(IR), amelyet mi a latent semantic indexing (LSI) technika segitségével valdsitot-
tunk meg, szintén a programok és feature-6k kapcsolatara mutat ra a szemantikai
hasonlésagot felhasznalva. Ez a teriileti szakértok latasmodjahoz kozelebbi nézet,
hiszen 6k altalaban nem mélyednek el a programokban, a szemantikai kapcso-
latokat viszont ismerik. A két kinyerési médszer kiillonb6zé informaciéforrasra
épit. A két kimenet ezért kombinalhato, ezzel egy szigoribb sziirést biztositva,
kiemelve a legfontosabb programokat minden feature-nél.

A teriileti szakértoknek tovabbi segitség lehet, ha informaciot kapnak a feature-
ok kozotti kapcsolatokrdl. A hivasi graf ezen kapcsolatok majdnem mindegyikét
tartalmazza, és bar megérése nehéz, valdédi szerkezeti informaciét nyujt. A grafel-
méletben szamos megoldas kinalkozik grafokra, amelyeket akar a hivasi grafokon
is alkalmazhatunk. Esetiinkben ilyenek a graf-kozosségek kinyerésére késziilt al-
goritmusok. A kozosségek egy kivald leképezését nyujtjak a feature-oknek és
kapcsolataiknak a rendszeren belil. Kiértékelésiink azt allapitotta meg, hogy a
kozosségek leképezése olyan kapcsolatokat is felfedhet a teriileti szakértoknek,
amelyekkel egyébként nem lennének tisztaban, altalanossagban mégis jol kozelit-
ve szakértoi véleményiiket.

A feature-6k szamos tulajdonsdga hasznos informaciéval szolgalhat a kinyerési
folyamat és késobbi karbantartds soran is. A hagyomaéanyos nyelveken mar ren-
geteg jol megalapozott méroszam létezik ezek lefrasara, 4GL kornyezetben ezek
azonban nem feltétlentil alkalmasak. Munkank meglévo, szamos jol megalapo-

absztrakcids szintjén.

Az altalunk kifejlesztett modszerek és kapott eredmények felhasznalasra keriiltek
ipari partneriink sikeres termékcsalad-bevezetése soran.

A szerzd kontribucioi

A szerz6 megvaldsitotta az informéacié kinyerésen alapul6 feature-kinyerési meg-
oldast, és részt vett a kisérletek tervezésében és koordinaldsdban, beleértve az
1j mérdszamokat, a kozosség-detektalast és az értékelést. Részt vett a stati-
kus elemzés és az informacidkeresés kombinalasaban, mind a megvalésitasban,
mind az eredmények elemzésében. A szerz6 egy informécio kinyerésen alapuld,
grafikus feltiilettel rendelkez6 feature-kinyer6 alkalmazast valositott meg a kezde-
ti kisérletekhez, végezte a variansok feletti elemzést a metrikdk alapjan, illetve
megtervezte a validalasi eljarast.

Folyéirat publikacidok
¢ Andras Kicsi, Viktor Csuvik, Laszlo Vidacs, Ferenc Horvath, Arpéd Be-
szédes, Tibor Gyiméthy, and Ferenc Kocsis. Feature Analysis using Infor-
mation Retrieval, Community Detection and Structural Analysis Methods

in Product Line Adoption. Journal of Systems and Software, 155:70-90, sep
2019.

Scopus altal indexelt konferenciakotetben megjelent publikaciok

114

B. FUGGELEK. MAGYAR NYELVU OSSZEFOGLALO

1I1.

¢ Andras Kicsi, Laszlé Vidacs, Arpad Beszédes, Ferenc Kocsis, and Istvan
Kovacs. Information retrieval based feature analysis for product line adopt-
ion in 4gl systems. In Proceedins of the 17th International Conference
on Computational Science and Its Applications — ICCSA 2017, pages 1-6.
IEEE, 2017.

¢ Andras Kicsi, Viktor Csuvik, Lészl6 Viddcs, Arpad Beszédes, and Tibor
Gyimothy. Feature level complexity and coupling analysis in 4GL systems.
In Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), volume 10964
LNCS, pages 438-453. Springer Verlag, may 2018.

¢ Andras Kicsi, Laszl6 Vidacs, Viktor Csuvik, Ferenc Horvath, Arpad Be-
szédes, and Ferenc Kocsis. Supporting product line adoption by combining
syntactic and textual feature extraction. In International Conference on
Software Reuse, ICSR 2018. Springer International Publishing, 2018.

Egyéb publikaciék

¢ Andras Kicsi and Viktor Csuvik. Feature Level Metrics Based on Size
and Similarity in Software Product Line Adoption. In 11th Conference of
PhD Students in Computer Science (CSCS 2018), pages 25-28, 2018.

Szoveges modszerek a teszt-kdéd nyomonkovethetdség elGsegitésére

A tézispont kontribuciéit a 4. fejezet részletezi. A teszt-kéd nyomonkovethetdség
annak azonositasa, hogy mi a tesztesetek fokusza, a szoftver mely kddrészletét
igyekeznek tesztelni. Habar ezen nyomonkovezhetdségi probléma kutatasa ke-
vésbé népszerii, mint példaul a kévetelmény-nyomonkovethetoség teriilete, mégis
jelentos tudomanyos irodalom all a téma mogott, és a probléma maga egyalta-
lan nem konnyti azt tekintve, hogy a nagyobb szoftverrendszerekben tobb tizezer
teszt is lehet. A megfelel teszt-kéd nyomonkévethetéség hozzajarulhat a hibak
lokalizacidjahoz, segithet a tesztek priorizalasaban, és jo alapot nytjthat az au-
tomatikus program javitas szamara is. Bar a jelenlegi legkorszertibb megoldasok
nikak vizsgalata volt. Nyolc kozepes méretii, nyilt forrasi rendszeren végeztiink
méréseket, amelyek Gsszesen tobb mint 1,25 millié kédsort oleltek fel.

A névkonvencidk (NC) kivételesen j6 nyomot szolgaltatnak a tesztelt kodrészletek
megtalalasdhoz, de ez a technika nagyban fiigg a fejlesztok szokasaitél és sok eset-
ben igen komplikdlt lehet automatikus hasznalata. Munkénk sordn mélyrehatd
elemzést végeztiink a névkonvenciok automatikus kinyerésének, mas modszerek-
teriiletein. Eredményeink azt mutatjak, hogy a metdédusok szintjén a névkon-
venciok fenntartasa igen komplikalt, a fejlesztok ritkan tartjak fenn a tokéletes
egyezést. Osztalyok szintjén a névkonvenciokat mar sokkal gyakrabban alkalmaz-
zak, amely nagyban hozzajarulhat egy automatizalt nyomonkovetési modszerhez
is. A tesztelt kdd csomag-hierarchiajanak tikrozése szintén népszert, és bar ez
csak altaldanos utbaigazitast nyujt, ezek hasznalata mégis nagyon jol hasznalhato
lehet az eredmények sziirésében.

115

B. FUGGELEK. MAGYAR NYELVU OSSZEFOGLALO

Mivel a legjobban teljesité modszerek is alkalmaznak széveges hasonldsdgot mas
technikakkal kombindlva, ezen médszerek optimalizalasa 6sszességében jobb nyo-
monkovethetdséget eredményezhet. Ezért kisérleteinkkel a legjobb széveges mod-
szert is igyekeztiink felkutatni. Bemutattunk tobb 1j lehetséges kombinaciot a
meglévo lexikalis modszerek folott, és megvizsgaltuk ezek pontossagat mind egy
nagy, névkonvenciok alapjan automatizaltan kinyert, mind egy 220 tesztesetbol
all6 kézi adathalmazon. Hivasi informaciokat szintén felhasznéltunk, amelyeket a
rendszerekbol regularis kifejezések segitségével nyertiink, ezek nagyban noévelték
a modszerek pontossagat, alatamasztva azt, hogy a kombinéaciok valéban jobb
eredményeket mutatnak ezen a tertiileten.

A programkdod legmegfelelobb reprezentacidéja utani kutatasunk kevésbé egyér-
telmi eredményeket produkalt, az azonosit6-kozponti (IDENT) reprezentécio,
amely absztrakt szintaxis fakat (AST) is felhasznél, mutatott legnagyobb pontos-
sagot a névkonvencié-alapu kiértékelésnél, am a limitalt mennyiségii kézi adattal
szemben egy masik reprezentacié bizonyult jobbnak, amely egyszertibb modon
szovegként kezeli a forraskédot (SRC).

Az osszehasonlitott f6bb technikdk, a latent semantic indexing (LSI), a TF-IDF,
és a Doc2Vec koziil a Doc2Vec modszer végzett legjobbként mind 6nallé techni-
kaként, mind hivasi informaciéval vagy a névkonvenciokkal kombinalva. A harom
technika kombinacidja szintén elképzelheto lehet, a harom modszer konszenzu-
san alapuld szilirési megoldasunk azonban a Doc2Vec-nél minimélisan rosszabb
eredményeket adott.

Kisérleteink alapjan a névkonvenciok és a Doc2Vec hasonlésag kombinacidja jol
0tvozi a névkonvenciok magas pontossagat a szoveges technikak rugalmassagaval.

Munkank soran létrejott a TestRoutes nevii manudlis adatkészlet, valamint Stack
Overflow kédrészletek teszt-kdd nyomonkovethetoségével is kisérleteztiink, ame-
lyekben LSI és Doc2Vec osszehasonlitasa szerepel, itt a Doc2Vec jobban teljesi-
tett.

A szerzd kontribucioi

A szerz6 Latent Semantic Indexing technilan alapulé megoldast implementélt a
teszt-kod nyomonkovethetoség segitésére, illetve kiértékelé kodot névkonvenci-
6kra és manualis adatokra is tamaszkodva. Kiilonféle névkonvencidkon alapuld
helyreallitasi technikdkat is megvaldsitott, és végezte a veliik folytatott kisér-
leteket. A szerzo megtervezte és koordinalta a TestRoutes adatbazis manualis

« /ey

egyéb eredmények értékelésében, magyarazataban és az osszes publikdlt kisérlet
tervezésében.

Folyéirat publikacidok

¢ Andras Kicsi, Viktor Csuvik, and Laszlé Vidacs. Large Scale Evaluation
of NLP-based Test-to-Code Traceability Approaches. IEEE Access, 2021.

Scopus altal indexelt konferenciakotetben megjelent publikacidok

¢ Andras Kicsi, Laszlo Toth, and Laszlé Vidacs. Exploring the benefits of
utilizing conceptual information in test-to-code traceability. Proceedings of

116

B. FUGGELEK. MAGYAR NYELVU OSSZEFOGLALO

the 6th International Workshop on Realizing Artificial Intelligence Synergies
in Software Engineering, pages 8-14, 2018.

¢ Viktor Csuvik, Andras Kicsi, and Laszl6 Vidacs. Source code level word
embeddings in aiding semantic test-to-code traceability. In 10th Internatio-
nal Workshop at the 41st International Conference on Software Engineering
(ICSE) — SST 2019. IEEE, 2019.

¢ Viktor Csuvik, Andras Kicsi, and Lészl6 Vidacs. Evaluation of Textual
Similarity Techniques in Code Level Traceability. In Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), volume 11622 LNCS, pages 529-543.
Springer Verlag, 2019.

¢ Andras Kicsi, Mark Rékoczi, and Laszl6 Vidacs. Exploration and mining
of source code level traceability links on stack overflow. In ICSOFT 2019 -
Proceedings of the 14th International Conference on Software Technologies,
pages 339-346, 2019.

¢ Andras Kicsi, Laszlé Vidacs, and Tibor Gyimothy. Testroutes: A manu-
ally curated method level dataset for test-to-code traceability. In Procee-

dings of the 17th International Conference on Mining Software Repositories,
MSR 2020, pages 593-597. IEEE, IEEE, jun 2020.

ITI. Radiol6giai leletek gépi értelmezése

A tézispont kontribtcidit az 5. fejezet részletezi. A radiolégiai vizsgalatokbol ké-
pi adat készil, de f6 kimenetiik mégis a radiolégusok szakértelmét is tartalmazo
szovegben, azaz leletben és véleményben nyilvanul meg. Ezek jelentés mennyisé-
gli relevans informéciét tartalmaznak, amelyek felhasznalhaték lennének szamos
szolgaltatasban, mint a mindség biztositasa, vagy az automatikus lelet-generalas.

A tézispont a radiolégiai gerincleletek automatizalt értelmezésére mutat be egy
modszert. Folyamatunk tobb 1épéshol all, amelyek a kdvetkezokben kertilnek
kifejtésre.

A radiolégiai leletek gyakran nagy mennyiségi elirast tartalmaznak. Habar eze-
ket az emberi szem konnyedén figyelmen kiviil hagyja, a gépi tanuldson alapuld
cimkézo, és szabaly-alapi megoldasok miikodését jelentésen ronthatjak. Automa-
tikus javitasuk nem csupan azért nehéz feladat, mert a magyar nyelv morfologiai-
lag igen gazdag, hanem azért is, mert a leletekben igen gyakran eléfordulnak latin
szavak, amelyeket a magyar helyesiras szabalyai szerint kezelnek, magyar rago-
kat kapva. Munkank a HunSpell automatikus helyesiras-javité eszkoz képességeit
egy szakszotarral, valamint szamos priorizalasi szaballyal kiegészitve igyekezett
megfelel6 automatizalt javitasokat adni a gerincleletek sziik teriiletére. FEred-
ményeink alapjdn mind a gépi tanuldson alapulé cimkézésiink (0.35 F-mérték
javulds), mind az ontoldgia-alapi azonositdsunk (az ismeretlen kifejezések tobb
mint 20%-a helyesen felismerve) esetében javulas lathato.

A kijavitott természetesnyelvii szoveg egy automatizalt cimkézésen esik at, ame-
lyet egy BiLSTM-CREF, illetve fejlesztéseink utdn mar egy BERT cimkéz6 hajt
végre, megkiilonboztetve testrészeket, elvaltozasokat és tulajdonsagokat radio-
légusok altal annotalt 487 valés leleten tanulva. Az osztélyozas 96,85-0s F1-
mértéket produkalt, nagy pontossaggal meghatarozva a testrészeket, elvaltozaso-
kat és tulajdonsagokat.

117

B. FUGGELEK. MAGYAR NYELVU OSSZEFOGLALO

A tagadasokat nyelvi elemzés segitségével kezeli a rendszer, melynek soran a
Magyarlanc nyelvi elemz6t hasznélja fel. Ennek soran a tagmondatok mentén
rendeli hozza a tagaddszavakat elvaltozasokhoz, amelyeket az el6z6 cimkézd 1épés
szolgéltatott.

Azonositasunk egy egyszerli ontolégian alapul, amelyet a feladathoz készitettiink.
Az ontolégiaban azonositokat talalunk a kiillonbozo testészeknek egy egyszert hi-
erarchiaval, amely csigolya-szintet rendel a testrészekhez, amennyiben a testrész
erre alkalmas (az L5 szintben 1évé porckorong — azaz discus példaul az L5 D
azonositot kapja). Az elvaltozasok azonositéi szintén hordoznak relevans infor-
maciot, az elvaltozasokat besoroljak a rossz allapotot jelzd patoldgidk, a jo vagy
normalis allapotot leird elvaltozasok, vagy az onmagukban elvaltozast nem meg-
add, de mas elvaltozasokat pontositoé aspektusok csoportjaba.

Médszerink ezen elemeket szemantikai kapcsolataik alapjan is feltérképezi. Az
elvaltozasok altalaban kapcsolodnak egy vagy tobb testrészhez, mig a tulajdon-
sagok egy vagy tobb elvaltozashoz. Rendszeriinkben egy szabaly-alapti megoldas
allapitja meg ezeket, amely szintén nagyban épit a mondatok tagmondataira.

Médszeriink kimenete egy konnyen értelmezheto fa-struktiraként kertil vizuali-
zaciora, amely bemutatja a detektalt és felismert elemeket, és kapcsolataikat.

Egy funkcionalis kiértékelés soran harom radiologus értékelte gépi megérté mod-
szeriiket az osztalyozas, a kapcsolatok meghatarozasa, valamint a testrészek
és elvaltozasok azonositasa terén, és ugy értékelték, hogy a modszer az esetek
95,97-97,74%-4aban helyes eredményeket adott.

Ugyan ez a kutatas még folyamatban van, maris szamos felhasznélasi lehetoség-
gel kecsegtet. Az leletek automatizalt értelmezése segithet tanitdadat gyors és
pontos generalasaban olyan modellek szaméra, amelyek MRI-felvételeken keres-
nek elvaltozasokat. Egy folyamatban 1év6 projekt részeként megoldasunkat fel
is hasznéljuk ilyen célokra. Munkank egy masik nyilvanvalo felhasznalési lehe-
tOsége a paciensek lelet-értelmezésének javitasa. Interaktiv elektronikus leletek
sokkal tobb informaciot szolgaltathatnak a paciensek szamara, amely javithat az
egészségiigyi szolgaltatasok mindségén. Ez szintén része jelenlegi projektiinknek.

A szerzd kontribucioi

A szerz6 megalapozta és koordinalta a kézi annotacidkat, és nagy szerepet vallalt
az adatok késobbi finomitasaban. Részt vett a gépi megértési médszer minden
aspektusanak tervezésében, koordinalta annak megvaldsitasat. A szerz6 megter-
vezte a funkciondlis kiértékelést, és annak iranyelveit. Nagy szerepet véllalt az
eredmények és kovetkezményeik értékelésében, magyarazataban.

Scopus altal indexelt konferenciakotetben megjelent publikaciék

¢ Andras Kicsi, Klaudia Szabé Ledenyi, Péter Pusztai, and Laszlé Vidacs.
Automatic classification and entity relation detection in hungarian spinal
MRI reports. In 3rd ICSE Workshop on Software Engineering for Health-
care, 2021.

Egyéb publikéciék

118

B. FUGGELEK. MAGYAR NYELVU OSSZEFOGLALO

Andras Kicsi, Péter Pusztai, Klaudia Szabd Ledenyi, Endre Szab6, Gabor
Berend, Veronika Vincze, and Léaszl6 Vidacs. Informaciokinyerés magyar
nyelvii gerinc mr leletekbdl. In XV. Magyar Szamitégépes Nyelvészeti Kon-
ferencia (MSZNY 2019), page 177186, Szeged, 2019. (Magyar nyelven)

Andras Kicsi, Klaudia Szab6 Ledenyi, Péter Pusztai, Péter Németh, and
Laszl6 Vidacs. Entitasok azonositdasa és szemantikai kapcsolatok feltarasa
radiologiai leletekben. In XVI. Magyar Szamitogépes Nyelvészeti Konferen-
cia (MSZNY 2020), page 1528, Szeged, 2020. (Magyar nyelven)

Andras Kicsi, Klaudia Szab6 Ledenyi, Péter Németh, Péter Pusztai, Laszlo
Vidécs, and Tibor Gyimo6thy. Elirdsok automatikus detektalasa és javitasa
radiologiai leletek szovegében. In XVI. Magyar Szamitdgépes Nyelvészeti
Konferencia (MSZNY 2020), page 191-204, Szeged, 2020. (Magyar nyelven)

Andras Kicsi, Péter Pusztai, Endre Szabo, and Léaszl6 Vidacs. Szaknyelvi
annotaciok javitasanak statisztikai alapt tamogatasa. In XVI. Magyar Sza-
mitégépes Nyelvészeti Konferencia (MSZNY 2020), page 115-128, Szeged,
2020. (Magyar nyelven)

A tézispontokat és a kapcsolédo publikaciokat a B.1. tablazat osszegzi.

Ne
I.

IL.
IT1.

[77]

[67] [65] [78] [68] [75] ([31] [30] ([71] [76] [66] ([70] [73] [72] [69] [74]

*

* * * *

B.1. tablazat. A tézispontokhoz kapcsolodd publikaciok

119

1]
2]

3]

[10]

Bibliography

Gensim’s webpage. https://radimrehurek.com/gensim/. Accessed: 2019.

The Stack Oveflow platform. https://stackoverflow.com/, Accessed: August
2022.

Leena Al-Hussaini. Experience: Insights into the benchmarking data of hunspell
and aspell spell checkers. Journal on Data and Information Quality, 8:13:1-13:10,
jun 2017.

R Al-msie, a Djamel Seriai, M Huchard, and C Urtado. An approach to recover
feature models from object-oriented source code. In Actes de la Journee Lignes
de Produits 2012, pages 1-12, 2012.

R. Al-msie’deen, A.-D. Seriai, M. Huchard, C. Urtado, and S. Vauttier. Mining
features from the object-oriented source code of software variants by combining
lexical and structural similarity. In 2013 IEEFE 14th International Conference on
Information Reuse & Integration (IRI), pages 586-593. IEEE, aug 2013.

R. Al-Msie’Deen, A. D. Seriai, M. Huchard, C. Urtado, and S. Vauttier. Mining
features from the object-oriented source code of software variants by combining
lexical and structural similarity. In Proceedings of the 2013 IEEE 14th Interna-

tional Conference on Information Reuse and Integration, IEEE IRI 2013, number
January, pages 586-593. IEEE, aug 2013.

Ra’Fat Al-Msie’Deen, Abdelhak Seriai, Marianne Huchard, Christelle Urtado,
Sylvain Vauttier, and Hamzeh Eyal Salman. Feature location in a collection
of software product variants using formal concept analysis. In Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), volume 7925 LNCS, pages 302-307. Springer,
Berlin, Heidelberg, 2013.

A. J. Albrecht and J. E. Gaffney. Software function, source lines of code, and
development effort prediction: A software science validation. IEFE Transaction
on Software Engineering, 9:639-648, November 1983.

G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo. Recover-
ing traceability links between code and documentation. IEEFE Transactions on
Software Engineering, 28(10):970-983, oct 2002.

Wesley K. G. Assuncao, Roberto E. Lopez-Herrejon, Lukas Linsbauer, Silvia R.
Vergilio, and Alexander Egyed. Multi-objective reverse engineering of variability-
safe feature models based on code dependencies of system variants. Empirical
Software Engineering, 22(4):1763-1794, aug 2017.

121

https://radimrehurek.com/gensim/

Bibliography

[11]

[14]

[18]

[19]

[20]

[21]

Wesley Klewerton Guez Assuncao and Silvia Regina Vergilio. Feature location for
software product line migration. In Proceedings of the 18th International Software
Product Line Conference on Companion Volume for Workshops, Demonstrations
and Tools - SPLC 14, pages 52-59, New York, New York, USA, 2014. ACM
Press.

Ebrahim Bagheri, Faezeh Ensan, and Dragan Gasevic. Decision support for the
software product line domain engineering lifecycle. Automated Software Engi-
neering, 19(3):335-377, 2012.

Manuel Ballarin, Rail Lapena, and Carlos Cetina. Leveraging Feature Location
to Extract the Clone-and-Own Relationships of a Family of Software Products.
In Proceedings of the 15th International Conference on Software Reuse: Bridging
with Social-Awareness - Volume 9679, pages 215-230. Springer-Verlag New York,
Inc., 2016.

Sebastian Baltes, Christoph Treude, and Stephan Diehl. SOTorrent: Studying
the origin, evolution, and usage of stack overflow code snippets. IEEE Interna-

tional Working Conference on Mining Software Repositories, pages 191-194, sep
2019.

Antonia Bertolino. Software testing research: Achievements, challenges, dreams.
In 2007 Future of Software Engineering, pages 85-103. IEEE Computer Society,
2007.

N. Bettenburg, B. Adams, A. E. Hassan, and M. Smidt. A lightweight approach to
uncover technical artifacts in unstructured data. In 2011 IEEE 19th International
Conference on Program Comprehension, pages 185—188, June 2011.

Marek Blahus. Morphology-aware spell-checking dictionary for esperanto. In Pro-
ceedings of Recent Advances in Slavonic Natural Language Processing, RASLAN
2009, pages 3-8, Brno, 2009.

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. Fast unfolding of communities in large networks. Journal of statistical me-
chanics: theory and experiment, 2008(10):P1000, 2008.

Markus Borg, Per Runeson, and Anders Ardo. Recovering from a decade: a
systematic mapping of information retrieval approaches to software traceability.
Empirical Software Engineering, 19(6):1565-1616, dec 2014.

Philipp Bouillon, Jens Klinke, Nils Meyer, and Friedrich Steimann. EZUNIT: A
framework for associating failed unit tests with potential programming errors. In
Lecture Notes in Computer Science (including subseries Lecture Notes in Artifi-

cial Intelligence and Lecture Notes in Bioinformatics), volume 4536 LNCS, pages
101-104. Springer Verlag, 2007.

Keno K. Bressem, Lisa C. Adams, Robert A. Gaudin, Daniel Troltzsch, Bernd
Hamm, Marcus R. Makowski, Chan Yong Schiile, Janis L. Vahldiek, and Ste-
fan M. Niehues. Highly accurate classification of chest radiographic reports using

a deep learning natural language model pre-trained on 3.8 million text reports.
Bioinformatics, 36(21):5255-5261, nov 2020.

122

Bibliography

22]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

33]

[34]

Xiaoling Cai, Shoubin Dong, and Jinlong Hu. A deep learning model incorpo-
rating part of speech and self-matching attention for named entity recognition

of Chinese electronic medical records. BMC Medical Informatics and Decision
Making, 19(S2), apr 2019.

Cagatay Catal and Cagatay. Barriers to the adoption of software product line
engineering. ACM SIGSOFT Software Engineering Notes, 34(6):1, dec 20009.

Yao Chen, Changjiang Zhou, Tianxin Li, Hong Wu, Xia Zhao, Kai Ye, and
Jun Liao. Named entity recognition from Chinese adverse drug event reports
with lexical feature based BILSTM-CRF and tri-training. Journal of Biomedical
Informatics, 96, aug 2019.

P. Clements and C. Krueger. Eliminating the adoption barrier. IEEFE Software,
19:29-31, jul 2002.

Paul Clements and Linda Northrop. Software Product Lines: Practices and Pat-
terns. Addison-Wesley Professional, 2001.

Paul C. Clements, Lawrence G. Jones, John D. McGregor, and Linda M.
Northrop. Getting there from here: a roadmap for software product line adoption.
Communications of the ACM, 49(12):33, dec 2006.

Arman Cohan, Iz Beltagy, Daniel King, Bhavana Dalvi, and Daniel S. Weld.
Pretrained language models for sequential sentence classification. In FMNLP-
IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language
Processing and 9th International Joint Conference on Natural Language Process-
ing, Proceedings of the Conference, pages 3693-3699, 2019.

Jonathan Crowell, Qing Zeng-Treitler, Long Ngo, and Eve-Marie Lacroix. A
frequency-based technique to improve the spelling suggestion rank in medical
queries. Journal of the American Medical Informatics Association : JAMIA,
11:179-85, 05 2004.

Viktor Csuvik, Andras Kicsi, and Laszl6 Vidacs. Evaluation of Textual Similarity
Techniques in Code Level Traceability. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), volume 11622 LNCS, pages 529-543. Springer Verlag, 2019.

Viktor Csuvik, Andras Kicsi, and Laszlé Vidacs. Source code level word embed-
dings in aiding semantic test-to-code traceability. In 10th International Work-
shop at the 41st International Conference on Software Engineering (ICSE) — SST
2019. IEEE, 2019.

Andrew M. Dai, Christopher Olah, and Quoc V. Le. Document Embedding with
Paragraph Vectors. jul 2015.

Fred Damerau. A technique for computer detection and correction of spelling
errors. Communications of the ACM, 7:171-176, 03 1964.

S C Deerwester, S T Dumais, T K Landauer, G W Furnas, and R A Harsh-
man. Indexing by Latent Semantic Analysis. Journal of the American Society of
Information Science, 41(6):391-407, 1990.

123

Bibliography

[35]

[36]

[37]

[40]

[41]

[43]

[44]

Ralph A. DeFronzo, Andrew Lewin, Sanjay Patel, Dacheng Liu, Renee Kaste,
Hans J. Woerle, and Uli C. Broedl. Combination of empagliflozin and linagliptin
as second-line therapy in subjects with type 2 diabetes inadequately controlled
on metformin. Diabetes Care, 38(3):384-393, jul 2015.

Jacob Devlin, Ming Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of deep bidirectional transformers for language understanding. In
NAACL HLT 2019 - 2019 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies - Pro-
ceedings of the Conference, pages 4171-4186, 2019.

Hamzeh Eyal-Salman, Abdelhak Djamel Seriai, and Christophe Dony. Feature-to-
code traceability in a collection of software variants: Combining formal concept
analysis and information retrieval. Proceedings of the 2013 IEEFE 14th Interna-
tional Conference on Information Reuse and Integration, IEEE IRI 2013, pages
209-216, 2013.

Hamzeh Eyal-Salman, Abdelhak-Djamel Seriai, Christophe Dony, and Ra’fat Al-
msie’deen. Recovering traceability links between feature models and source code
of product variants. In Proceedings of the VARiability for You Workshop on
Variability Modeling Made Useful for Everyone - VARY 12, pages 21-25, New
York, New York, USA, 2012. ACM Press.

Hamzeh Eyal-Salman, Abdelhak-Djamel Seriai, Christophe Dony, and Ra’fat Al-
msie’deen. Recovering traceability links between feature models and source code
of product variants. In VARiability for You Workshop on Variability Modeling
Made Useful for Everyone - VARY 12, pages 21-25. ACM Press, 2012.

Davide Falessi, Giovanni Cantone, and Gerardo Canfora. A comprehensive char-
acterization of NLP techniques for identifying equivalent requirements. In Pro-
ceedings of the 2010 ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement - ESEM 10, page 1, New York, New York, USA,
2010. ACM Press.

Stefan Fischer, Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander
Egyed. Enhancing Clone-and-Own with Systematic Reuse for Developing Soft-
ware Variants. In 2014 IEEE International Conference on Software Maintenance
and Evolution, pages 391-400. IEEE, sep 2014.

J. M. Florez. Automated fine-grained requirements-to-code traceability link re-
covery. In 2019 IEEE/ACM 41st International Conference on Software Engi-
neering: Companion Proceedings (ICSE-Companion), pages 222-225, 2019.

Santo Fortunato. Community detection in graphs. Physics reports, 486(3):75—
174, 2010.

Mohammad Ghafari, Carlo Ghezzi, and Konstantin Rubinov. Automatically
identifying focal methods under test in unit test cases. In 2015 IEEE 15th
International Working Conference on Source Code Analysis and Manipulation
(SCAM), pages 61-70. IEEE, sep 2015.

124

Bibliography

[45]

[46]

[51]

[52]

[54]

[55]

J. Guo, J. Cheng, and J. Cleland-Huang. Semantically enhanced software trace-
ability using deep learning techniques. In 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE), pages 3—14, 2017.

Jin Guo, Jinghui Cheng, and Jane Cleland-Huang. Semantically Enhanced
Software Traceability Using Deep Learning Techniques. In Proceedings - 2017
IEEE/ACM 39th International Conference on Software Engineering, ICSE 2017,
pages 3-14. IEEE, may 2017.

Maurice H. Halstead. Elements of Software Science (Operating and programming
systems series). Elsevier Science Inc., New York, NY, USA, 1977.

James Hamilton and Sebastian Danicic. Dependence communities in source code.
In Software Maintenance (ICSM), 2012 28th IEEE International Conference on,
pages 579-582. IEEE, 2012.

John V. Harrison and Wie Ming Lim. Automated Reverse Engineering of Legacy
4GL Information System Applications Using the ITOC Workbench. In 10th
International Conference on Advanced Information Systems Engineering, pages
41-57. Springer-Verlag, 1998.

Evelyn Nicole Haslinger, Roberto E. Lopez-Herrejon, and Alexander Egyed. Re-
verse Engineering Feature Models from Programs’ Feature Sets. In 18th Working
Conference on Reverse Engineering, pages 308-312. IEEE, oct 2011.

Jane Huffman Hayes, Alex Dekhtyar, and Senthil Karthikeyan Sundaram. Im-
proving after-the-fact tracing and mapping: Supporting software quality predic-
tions. IEEE Software, 22(6):30-37, nov 2005.

T. Hey. Indirect: Intent-driven requirements-to-code traceability. In 2019
IEEE/ACM 41st International Conference on Software Engineering: Compan-
ion Proceedings (ICSE-Companion), pages 190-191, 2019.

Emily Hill, Lori Pollock, and K. Vijay-Shanker. Exploring the neighborhood
with dora to expedite software maintenance. In Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineering - ASE
07, page 14, New York, New York, USA, 2007. ACM Press.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735-1780, November 1997.

Chen Huo and James Clause. Interpreting Coverage Information Using Direct and
Indirect Coverage. In 2016 IEEE International Conference on Software Testing,
Verification and Validation (ICST), pages 234-243. IEEE, apr 2016.

Inigo Jauregi Unanue, Ehsan Zare Borzeshi, and Massimo Piccardi. Recurrent
neural networks with specialized word embeddings for health-domain named-
entity recognition. Journal of Biomedical Informatics, 76:102-109, dec 2017.

Bin Ji, Rui Liu, Shasha Li, Jie Yu, Qingbo Wu, Yusong Tan, and Jiaju Wu.
A hybrid approach for named entity recognition in Chinese electronic medical
record. BMC Medical Informatics and Decision Making, 19(S2):64, apr 2019.

125

Bibliography

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Bin Ji, Rui Liu, Wei Sang Xu, Sha Sha Li, Jin Tao Tang, Jie Yu, and Qian
Li. A BILSTM-CRF method to Chinese electronic medical record named entity
recognition. In ACM International Conference Proceeding Series. Association for
Computing Machinery, dec 2018.

Azadeh Kamel Ghalibaf, Elham Nazari, Mahdi Gholian-Aval, and Mahmood
Tara. Comprehensive overview of computer-based health information tailoring:
A systematic scoping review. BM.J Open, 9, jan 2019.

Christian Késtner, Alexander Dreiling, and Klaus Ostermann. Variability Min-
ing: Consistent Semi-automatic Detection of Product-Line Features. IFEE
Transactions on Software Engineering, 40(1):67-82, 2014.

Nilam Kaushik, Ladan Tahvildari, and Mark Moore. Reconstructing Traceability
between Bugs and Test Cases: An Experimental Study. In 2011 18th Working
Conference on Reverse Engineering, pages 411-414. IEEE, oct 2011.

Matthew B Kelly, Jason S Alexander, Bram Adams, and Ahmed E Hassan.
Recovering a Balanced Overview of Topics in a Software Domain. 2011.

Mark Kernighan, Kenneth Church, and William Gale. A spelling correction pro-
gram based on a noisy channel model. In COLING 90: Computational Linguistics
in 1990, pages 205-210, 01 1990.

A. Kicsi, V. Csuvik, L. Vid4cs, A. Beszédes, and T. Gyiméthy. Feature level
complexity and coupling analysis in 4GL systems. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), volume 10964 LNCS, pages 438-453. Springer, Cham,
may 2018.

Andréas Kicsi and Viktor Csuvik. Feature Level Metrics Based on Size and Sim-
ilarity in Software Product Line Adoption. In 11th Conference of PhD Students
in Computer Science (CSCS 2018), pages 25-28, 2018.

Andréas Kicsi, Viktor Csuvik, and Laszlé Vidéacs. Large Scale Evaluation of NLP-
based Test-to-Code Traceability Approaches. IEEE Access, 2021.

Andrés Kicsi, Viktor Csuvik, Laszlé Vidacs, Arpad Beszédes, and Tibor Gy-
imothy. Feature level complexity and coupling analysis in 4GL systems. In
Lecture Notes in Computer Science (including subseries Lecture Notes in Arti-
ficial Intelligence and Lecture Notes in Bioinformatics), volume 10964 LNCS,
pages 438-453. Springer Verlag, may 2018.

Andrés Kicsi, Viktor Csuvik, Laszlé Vidacs, Ferenc Horvéath, Arpad Beszédes,
Tibor Gyiméthy, and Ferenc Kocsis. Feature Analysis using Information Re-
trieval, Community Detection and Structural Analysis Methods in Product Line
Adoption. Journal of Systems and Software, 155:70-90, sep 2019.

Andras Kicsi, Péter Pusztai, Endre Szabd, and Laszlé Vidacs. Szaknyelvi annota-

ciok javitasanak statisztikai alapu tamogatasa. In XVI. Magyar Szdmitogépes
Nyelvészeti Konferencia (MSZNY 2020), page 115-128, Szeged, 2020.

126

Bibliography

[70]

[71]

73]

[74]

[75]

[77]

78]

Andrés Kicsi, Péter Pusztai, Klaudia Szabdé Ledenyi, Endre Szabd, Gabor
Berend, Veronika Vincze, and Laszl6 Vidéacs. Informacidkinyerés magyar nyelvii
gerinc mr leletekbdl. In XV. Magyar Szamitogépes Nyelvészeti Konferencia

(MSZNY 2019), page 177-186, Szeged, 2019.

Andrés Kicsi, Mark Rakéczi, and Laszlo Vidacs. Exploration and mining of
source code level traceability links on stack overflow. In ICSOFT 2019 - Pro-
ceedings of the 14th International Conference on Software Technologies, pages
339-346, 2019.

Andréas Kicsi, Klaudia Szab6é Ledenyi, Péter Németh, Péter Pusztai, Laszlé
Vidacs, and Tibor Gyimoéthy. Elirdsok automatikus detektalasa és javitasa radi-

ologiai leletek szovegében. In X VI. Magyar Szamitogépes Nyelvészeti Konferencia
(MSZNY 2020), page 191-204, Szeged, 2020.

Andrés Kicsi, Klaudia Szab6 Ledenyi, Péter Pusztai, Péter Németh, and Las-
zl6 Vidacs. Entitasok azonositasa és szemantikai kapcsolatok feltarasa radiolo-
giai leletekben. In XVI. Magyar Szamitogépes Nyelvészeti Konferencia (MSZNY
2020), page 15-28, Szeged, 2020.

Andrés Kicsi, Klaudia Szab6 Ledenyi, Péter Pusztai, and Laszld Vidacs. Auto-
matic classification and entity relation detection in hungarian spinal mri reports.
In 3rd ICSE Workshop on Software Engineering for Healthcare, 2021.

Andras Kicsi, Laszlo Toth, and Laszlo Vidacs. Exploring the benefits of utiliz-
ing conceptual information in test-to-code traceability. Proceedings of the 6th
International Workshop on Realizing Artificial Intelligence Synergies in Software
Engineering, pages 8-14, 2018.

Andras Kicsi, Laszlé Vidacs, and Tibor Gyimothy. Testroutes: A manually cu-
rated method level dataset for test-to-code traceability. In Proceedings of the 17th
International Conference on Mining Software Repositories, MSR 2020, pages
593-597. IEEE, IEEE, jun 2020.

Andras Kicsi, Laszl6 Vidacs, Arpad Beszédes, Ferenc Kocsis, and Istvan Kovacs.
Information retrieval based feature analysis for product line adoption in 4gl sys-
tems. In Proceedins of the 17th International Conference on Computational Sci-
ence and Its Applications — ICCSA 2017, pages 1-6. IEEE, 2017.

Andras Kicsi, Laszlé Vidacs, Viktor Csuvik, Ferenc Horvath, Arpad Beszédes,
and Ferenc Kocsis. Supporting product line adoption by combining syntactic and
textual feature extraction. In International Conference on Software Reuse, ICSR
2018. Springer International Publishing, 2018.

Benjamin Klatt and Martin Kiister. A Graph-Based Analysis Concept to Derive
a Variation Point Design from Product Copies. In 1st International workshop on
Reverse Variability Engineering (REVE’13), volume 13, pages 1—-8, 2013.

Pavneet Singh Kochhar, Xin Xia, David Lo, and Shanping Li. Practitioners’
expectations on automated fault localization. In Proceedings of the 25th In-
ternational Symposium on Software Testing and Analysis - ISSTA 2016, pages
165-176, New York, New York, USA, 2016. ACM Press.

127

Bibliography

[81]

[82]

[85]

[86]

[87]

[33]

[89]

[90]

[91]

CharlesW. Krueger. Fasing the Transition to Software Mass Customization,
pages 282-293. Springer Berlin Heidelberg, Berlin, Heidelberg, 2002.

Jacob Kriiger, Wolfram Fenske, Jens Meinicke, Thomas Leich, and Gunter Saake.
Extracting software product lines: a cost estimation perspective. In Proceedings
of the 20th International Systems and Software Product Line Conference on -
SPLC ’16, pages 354-361, New York, New York, USA, 2016. ACM Press.

Karen Kukich. Techniques for automatically correcting words in text. ACM
Computing Surveys, 24:377-439, 12 1992.

John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional
Random Fields: Probabilistic Models for Segmenting and Labeling Sequence

Data. In Proceedings of the Eighteenth International Conference on Machine
Learning, ICML '01, pages 282-289, San Francisco, CA, USA, 2001.

Kenneth Lai, Maxim Topaz, Foster Goss, and Li Zhou. Automated misspelling
detection and correction in clinical free-text records. Journal of Biomedical In-
formatics, 55, 04 2015.

Scott J. Lee, Brent D. Weinberg, Ashwani Gore, and Imon Banerjee. A Scal-
able Natural Language Processing for Inferring BT-RADS Categorization from
Unstructured Brain Magnetic Resonance Reports. Journal of Digital Imaging,
pages 1-8, jun 2020.

Luqi Li, Jie Zhao, Li Hou, Yunkai Zhai, Jinming Shi, and Fangfang Cui. An
attention-based deep learning model for clinical named entity recognition of Chi-
nese electronic medical records. BMC' Medical Informatics and Decision Making,
19(5):1-11, dec 2019.

Crescencio Lima, Christina Chavez, and Eduardo Santana de Almeida. Inves-
tigating the Recovery of Product Line Architectures: An Approach Proposal.
pages 201-207. Springer, Cham, may 2017.

Wang Ling, Tiago Luis, Luis Marujo, Ramoén Fernandez Astudillo, Silvio Amir,
Chris Dyer, Alan W. Black, and Isabel Trancoso. Finding function in form:
Compositional character models for open vocabulary word representation. In
Conference Proceedings - EMNLP 2015: Conference on Empirical Methods in
Natural Language Processing, pages 1520-1530, 2015.

Xiaoxuan Liu, Livia Faes, Aditya U. Kale, Siegfried K. Wagner, Dun Jack Fu,
Alice Bruynseels, Thushika Mahendiran, Gabriella Moraes, Mohith Shamdas,
Christoph Kern, Joseph R. Ledsam, Martin K. Schmid, Konstantinos Balaskas,
Eric J. Topol, Lucas M. Bachmann, Pearse A. Keane, and Alastair K. Denniston.
A comparison of deep learning performance against health-care professionals in
detecting diseases from medical imaging: a systematic review and meta-analysis.
The Lancet Digital Health, (6):271-297, oct 2019.

Yun Liu, Po-Hsuan Cameron Clen, Jonathan Krause, and Lily Peng. How to
read articles that use machine learning: Users’ guides to the medical literature.
JAMA - Journal of the American Medical Association, 322(18):1806-1816, 11
2019.

128

Bibliography

[92]

[93]

[99]

[100]

[101]

[102]

[103]

[104]

Zengjian Liu, Ming Yang, Xiaolong Wang, Qingcai Chen, Buzhou Tang, Zhe
Wang, and Hua Xu. Entity recognition from clinical texts via recurrent neural
network. BMC' Medical Informatics and Decision Making, 17(52):67, jul 2017.

Sugandha Lohar, Sorawit Amornborvornwong, Andrea Zisman, and Jane
Cleland-Huang. Improving trace accuracy through data-driven configuration and
composition of tracing features. In Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering - ESEC/FSE 2013, page 378, New York,
New York, USA, 2013. ACM Press.

M2J Software LLC. Homepage of M2J. http://www.magic2java.com, Accessed:
May 2017.

Xuezhe Ma and Eduard Hovy. End-to-end sequence labeling via bi-directional
LSTM-CNNs-CRF. In 5/th Annual Meeting of the Association for Computational
Linguistics, ACL 2016 - Long Papers, volume 2, pages 1064-1074, 2016.

Stephen MacDonell. Metrics for Database Systems: An Empirical Study. IEEFFE
International Symposium on Software Metrics, pages 99-107, 1997.

Magic Software Enterprises Ltd. Magic Software Enterprises.
http://www.magicsoftware.com, Accessed: May 2017.

M A Maia, Victor Sobreira, K Paixao, S A Amo, and I R Silva. Using a sequence
alignment algorithm to identify commonalities and variabilities from execution
traces. In International Workshop on Program Comprehension through Dynamic

Analysis, pages 6-10, 2008.

A. Marcus and J.I. Maletic. Recovering documentation-to-source-code traceabil-
ity links using latent semantic indexing. In 25th International Conference on
Software Engineering, 2003. Proceedings., pages 125-135. IEEE, 2003.

Andrian Marcus, Jonathan I Maletic, and Andrey Sergeyev. Recovery of Trace-
ability Links between Software Documentation and Source Code. International
Journal of Software Engineering and Knowledge FEngineering, pages 811-836,
2005.

Andrian Marcus, Andrey Sergeyev, Vaclav Rajlieh, and Jonathan I. Maletic. An
information retrieval approach to concept location in source code. In Proceedings
- Working Conference on Reverse Engineering, WCRE, pages 214-223. IEEE
Comput. Soc, 2004.

Nayrolles Mathieu and Abdelwahab Hamou-Lhadj. Word embeddings for the
software engineering domain. Proceedings of the 15th International Conference
on Mining Software Repositories - MSR 18, pages 3841, 2018.

T.J. McCabe. A complexity measure. I[EEE Transaction on Software Engineer-
ing, SE-2(4), dec 1976.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean.
Distributed Representations of Words and Phrases and their Compositionality.
In Advances in Neural Information Processing Systems 26 (NIPS 2013), 2013.

129

Bibliography

[105]

[106]

107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

Tomas Mikolov, Ilya Sutskever, Kan Chen, Greg Corrado, and Jeffrey Dean.
Distributed representations of words and phrases and their compositionality.
NIPS’13 Proceedings of the 26th International Conference on Neural Informa-
tion Processing Systems, 2:3111-3119, dec 2013.

Brian S Mitchell and Spiros Mancoridis. On the automatic modularization of soft-
ware systems using the bunch tool. IEEE Transactions on Software Engineering,
32(3):193-208, 2006.

Agnieszka Mykowiecka and Malgorzata Marciniak. Domain—driven automatic
spelling correction for mammography reports. In Proceedings of the International
IIS (ITPWM’06), volume 35, pages 521-530, 04 2007.

Csaba Nagy, Laszl6é Vidacs, Rudolf Ferenc, Tibor Gyimo6thy, Ferenc Kocsis, and
Istvan Kovacs. MAGISTER: Quality Assurance of Magic Applications for Soft-
ware Developers and End Users. In 26th IEEE International Conference on
Software Maintenance, pages 1-6. IEEE Computer Society, September 2010.

Csaba Nagy, Laszl6é Vidacs, Rudolf Ferenc, Tibor Gyimothy, Ferenc Kocsis, and
Istvan Kovacs. Complexity measures in 4gl environment. In Computational
Science and Its Applications - ICCSA 2011, Lecture Notes in Computer Science,
volume 6786 of Lecture Notes in Computer Science, pages 293-309. Springer
Berlin / Heidelberg, 2011.

Csaba Nagy, Laszl6é Vidacs, Rudolf Ferenc, Tibor Gyimothy, Ferenc Kocsis, and
Istvan Kovacs. Solutions for reverse engineering 4gl applications, recovering the
design of a logistical wholesale system. In Proceedings of CSMR 2011 (15th
European Conference on Software Maintenance and Reengineering), pages 343—
346. IEEE Computer Society, March 2011.

J. K. Navlakha. A survey of system complexity metrics. The Computer Journal,
30:233-238, June 1987.

David Mark Nemeskey. Introducing huBERT. In XVII. Magyar Szimitogépes
Nyelvészeti Konferencia, pages 3—14, 2019.

Trong Duc Nguyen, Anh Tuan Nguyen, Hung Dang Phan, and Tien N. Nguyen.
Exploring API embedding for API usages and applications. In Proceedings - 2017
IEEE/ACM 39th International Conference on Software Engineering, ICSE 2017,
pages 438-449. IEEE, may 2017.

Attila Novak and Borbala Siklési. Automatic diacritics restoration for hungarian.
In Conference Proceedings - EMNLP 2015: Conference on Empirical Methods in
Natural Language Processing, page 2286-2291, 2015.

Attila Novék and Borbsla Siklési. Ekezetek automatikus helyreallitdsa mag-
yar nyelvii szovegekben. In XII. Magyar Szimitogépes Nyelvészeti Konferencia
(MSZNY 2016), page 49-58, 2016.

Ocean Software Solutions. Homepage of Magic Optimizer. http://www.magic-
optimizer.com, Accessed: May 2017.

130

Bibliography

117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127)

Andrzej Olszak and Bo Ngrregaard Jgrgensen. Remodularizing Java programs
for comprehension of features. Proceedings of the First International Workshop
on Feature Oriented Software Development FOSD 09, pages 19-26, 2009.

A. Panichella, C. McMillan, E. Moritz, D. Palmieri, R. Oliveto, D. Poshyvanyk,
and A. De Lucia. When and How Using Structural Information to Improve IR-
Based Traceability Recovery. In 2013 17th European Conference on Software
Maintenance and Reengineering, pages 199-208. IEEE, mar 2013.

Reza Meimandi Parizi, Sai Peck Lee, and Mohammad Dabbagh. Achievements
and Challenges in State-of-the-Art Software Traceability Between Test and Code
Artifacts. IEEFE Transactions on Reliability, 63:913-926, 2014.

Paulius Paskevicius, Robertas Damasevicius, Eimutis Karciauskas, and Romas
Marcinkevicius. Automatic extraction of features and generation of feature mod-
els from java programs. Information Technology and Control, 41(4):376-384,
2012.

Jon Patrick, Mojtaba Sabbagh, Suvir Jain, and Haifeng Zheng. Spelling correc-
tion in clinical notes with emphasis on first suggestion accuracy. In 2nd Workshop
on Building and Fvaluating Resources for Biomedical Text Mining, pages 1-8,
2010.

Xin Peng, Zhenchang Xing, Xi Tan, Yijun Yu, and Wenyun Zhao. The Journal
of Systems and Software Improving feature location using structural similarity
and iterative graph mapping. The Journal of Systems & Software, 86:664—676,
2013.

Denys Poshyvanyk, Yann Gaél Guéhéneuc, Andrian Marcus, Giuliano Antoniol,
and Vaclav Rajlich. Combining probabilistic ranking and latent semantic in-
dexing for feature identification. In IEEE International Conference on Program
Comprehension, pages 137-146. IEEE, 2006.

Denys Poshyvanyk and Andrian Marcus. Combining formal concept analysis with
information retrieval for concept location in source code. In IEEE International
Conference on Program Comprehension, pages 37-46. IEEE, jun 2007.

Abdallah Qusef, Gabriele Bavota, Rocco Oliveto, Andrea De Lucia, and Dave
Binkley. Recovering test-to-code traceability using slicing and textual analysis.
Journal of Systems and Software, 88:147-168, 2014.

Abdallah Qusef, Gabriele Bavota, Rocco Oliveto, Andrea De Lucia, and David
Binkley. SCOTCH: Test-to-code traceability using slicing and conceptual cou-

pling. In IEEFE International Conference on Software Maintenance, ICSM, pages
63-72. IEEE, 2011.

Abdallah Qusef, Gabriele Bavota, Rocco Oliveto, Andrea De Lucia, and David
Binkley. Evaluating test-to-code traceability recovery methods through controlled
experiments. Journal of Software: Evolution and Process, 25(11):1167-1191, nov
2013.

131

Bibliography

128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

138

Martin Robillard, Robert Walker, and Thomas Zimmermann. Recommendation
Systems for Software Engineering. IEEE Software, 27(4):80-86, jul 2010.

Martin P. Robillard, Walid Maalej, Robert J. Walker, and Thomas Zimmer-
mann. Recommendation Systems in Software Engineering. Springer Publishing
Company, Incorporated, 2014.

Alex Roehrs, Cristiano André da Costa, and Rodrigo da Rosa Righi. OmniPHR:
A distributed architecture model to integrate personal health records. Journal
of Biomedical Informatics, 71:70-81, jul 2017.

Javier Rojo, Juan Hernandez, and Juan M. Murillo. A personal health trajec-
tory API: Addressing problems in health institution-oriented systems. In Lec-
ture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), volume 12128 LNCS, pages
519-524. Springer, jun 2020.

Bart Van Rompaey and Serge Demeyer. Establishing traceability links between
unit test cases and units under test. In Furopean Conference on Software Main-
tenance and Reengineering, CSMR, pages 209-218. IEEE, 2009.

Wei Ruan, Naveenkumar Appasani, Katherine Kim, Joseph Vincelli, Hyun Kim,
and Won Sook Lee. Pictorial visualization of EMR summary interface and med-
ical information extraction of clinical notes. In CIVEMSA 2018 - 2018 IEEE In-
ternational Conference on Computational Intelligence and Virtual Environments
for Measurement Systems and Applications, Proceedings. Institute of Electrical
and Electronics Engineers Inc., aug 2018.

Patrick Ruch, Robert Baud, and Antoine Geissbiihler. Using lexical disambigua-
tion and named-entity recognition to improve spelling correction in the electronic
patient record. Artificial intelligence in medicine, 29:169-84, 09 2003.

Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wasowski, and Krzysztof
Czarnecki. Reverse engineering feature models. In Proceeding of the 33rd inter-
national conference on Software engineering - ICSE 11, page 461, New York,
New York, USA, 2011. ACM Press.

Norbert Siegmund, Marko Rosenmiiller, Martin Kuhlemann, Christian Késtner,
Sven Apel, and Gunter Saake. SPL Conqueror: Toward optimization of non-
functional properties in software product lines. Software Quality Journal, 20(3-
4):487-517, 2012.

Borbala Siklési, Attila Novak, and Gabor Prészéky. Context-Aware Correction
of Spelling Errors in Hungarian Medical Documents, page 248-259. Number
Lecture Notes in Computer Science 7978. 2013.

Borbala Siklési, Attila Novak, and Gabor Proészéky. Helyesirasi hibdk au-
tomatikus javitasa orvosi szovegekben a szovegkornyezet figyelembevételével. In
IX. Magyar Szamitogépes Nyelvészeti Konferencia, page 148-158, Szeged, 2013.

132

Bibliography

[139]

[140]

141]

142]

[143]

[144]

[145]

[146]

[147]

148

[149]

[150]

Borbéala Siklési, Gyorgy Orosz, Attila Novak, and Gabor Prészéky. Automatic
structuring and correction suggestion system for hungarian clinical records. In

Sth SaLTMiL Workshop on Creation and Use of Basic Lexical Resources for Less-
resourced Languages, page 29-34, 2012.

Livio Baldini Soares, Nicholas FitzGerald, Jeffrey Ling, and Tom Kwiatkowski.
Matching the blanks: Distributional similarity for relation learning. In ACL
2019 - 57th Annual Meeting of the Association for Computational Linguistics,
Proceedings of the Conference, pages 2895-2905. Association for Computational
Linguistics (ACL), 2020.

SourceMeter webpage. https://www.sourcemeter.com/, 2019.

Pontus Stenetorp, Sampo Pyysalo, Goran Topi¢, Tomoko Ohta, Sophia Ana-
niadou, and Jun’ichi Tsujii. brat: A Web-based Tool for NLP-Assisted Text
Annotation. In Proceedings of the Demonstrations at the 15th Conference of
the Furopean Chapter of the Association for Computational Linguistics, pages
102-107, Avignon, France, April 2012.

Senthil Karthikeyan Sundaram, Jane Huffman Hayes, and Alexander Dekht-
yar. Baselines in requirements tracing. In ACM SIGSOFT Software Engineering
Notes, volume 30, page 1, New York, New York, USA, 2005. ACM Press.

Muzamil Hussain Syed and Sun Tae Chung. Menuner: Domain-adapted bert
based ner approach for a domain with limited dataset and its application to food
menu domain. Applied Sciences (Switzerland), 11(13):6007, jun 2021,

[an Tenney, Dipanjan Das, and Ellie Pavlick. BERT rediscovers the classical NLP
pipeline. ACL 2019 - 57th Annual Meeting of the Association for Computational
Linguistics, Proceedings of the Conference, pages 4593-4601, may 2020.

Thomas Thim, Sven Apel, Christian Késtner, Ina Schaefer, and Gunter Saake.

A Classification and Survey of Analysis Strategies for Software Product Lines.
ACM Computing Surveys, 47(1):1-45, jun 2014.

Herman Tolentino, Michael Matters, Wikke Walop, Barbara Law, Wesley Tong,
Fang Liu, Paul Fontelo, Katrin Kohl, and Daniel Payne. A umls-based spell
checker for natural language processing in vaccine safety. BMC medical infor-
matics and decision making, 7, 02 2007.

Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin
White, and Denys Poshyvanyk. Deep learning similarities from different repre-
sentations of source code. Proceedings of the 15th International Conference on
Mining Software Repositories - MSR 18, 18:542-553, 2018.

Muhammad Irfan Ullah, Giinther Ruhe, and Vahid Garousi. Decision support for
moving from a single product to a product portfolio in evolving software systems.
The Journal of Systems € Software, 83:2496-2512, 2010.

Marco Tulio Valente, Virgilio Borges, and Leonardo Passos. A Semi-Automatic
Approach for Extracting Software Product Lines. IEEE Transactions on Software
Engineering, 38(4):737-754, jul 2012.

133

https://www.sourcemeter.com/

Bibliography

[151]

[152]

[153]

[154]

[155]

[156]

[157]

158

[159]

[160]

[161]

[162]

Kestutis Valincius, Vytautas Stuikys, and Robertas Damasevicius. Understand-
ing of e-commerce is through feature models and their metrics. Proceedings of the
IADIS International Conference Information Systems 2013, IS 2013, 8(1):55-62,
2013.

M.J.P. van der Meulen and M.A. Revilla. Correlations between internal software
metrics and software dependability in a large population of small C/C++ pro-
grams. In Proceedings of ISSRE 2007, The 18th IEEE International Symposium
on Software Reliability, pages 203-208, November 2007.

June Verner and Graham Tate. Estimating Size and Effort in Fourth-Generation
Development. IEEE Software, 5:15-22, 1988.

Suhang Wang, Jiliang Tang, Charu Aggarwal, and Huan Liu. Linked Document
Embedding for Classification. In Proceedings of the 25th ACM International on
Conference on Information and Knowledge Management - CIKM ’16, pages 115—
124, New York, New York, USA, 2016. ACM Press.

Wei Zhao, Lu Zhang, Yin Liu, Jiasu Sun, and Fuqing Yang. SNIAFL: towards a
static non-interactive approach to feature location. In Proceedings. 26th Interna-

tional Conference on Software Engineering, pages 293-303. IEEE Comput. Soc,
2004.

Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk.
Deep learning code fragments for code clone detection. Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering - ASE
2016, pages 87-98, 2016.

Robert White, Jens Krinke, and Raymond Tan. Establishing multilevel test-
to-code traceability links. In Proceedings of the ACM/IEEE /2nd International
Conference on Software Engineering, ICSE 20, page 861-872, New York, NY,
USA, 2020. Association for Computing Machinery.

G.E. Witting and G.R Finnie. Using Artificial Neural Networks and Function
Points to Estimate 4GL Software Development Effort. Australasian Journal of
Information Systems, 1(2):87-94, 1994.

Yingfei Xiong, Xinyuan Liu, Muhan Zeng, Lu Zhang, and Gang Huang. Identify-
ing patch correctness in test-based program repair. In Proceedings - International
Conference on Software Engineering, volume 11, pages 789-799, may 2018.

Yinxing Xue, Zhenchang Xing, and Stan Jarzabek. Understanding feature evo-
lution in a family of product variants. Proceedings - Working Conference on
Reverse Engineering, WCRE, pages 109-118, 2010.

Yinxing Xue, Zhenchang Xing, and Stan Jarzabek. Feature location in a col-
lection of product variants. Proceedings - Working Conference on Reverse Engi-
neering, WCRE, pages 145-154, 2012.

Suresh Yadla, Jane Huffman Hayes, and Alex Dekhtyar. Tracing requirements to
defect reports: An application of information retrieval techniques. Innovations
in Systems and Software Engineering, 1(2):116-124, sep 2005.

134

Bibliography

[163]

[164]

[165]

[166]

[167]

168

[169]

[170]

[171]

[172]

[173]
[174]

Xinli Yang, David Lo, Xin Xia, Lingfeng Bao, and Jianling Sun. Combining Word
Embedding with Information Retrieval to Recommend Similar Bug Reports. In

Proceedings - International Symposium on Software Reliability Engineering, 1S-
SRE, pages 127-137. IEEE, oct 2016.

Azita Yazdani, Marjan Ghazisaeedi, Nasrin Ahmadinejad, Masoumeh Giti,
Habibe Amjadi, and Azin Nahvijou. Automated Misspelling Detection and Cor-
rection in Persian Clinical Text. Journal of Digital Imaging, 33(3):555-562, jun
2020.

Xin Ye, Hui Shen, Xiao Ma, Razvan Bunescu, and Chang Liu. From word em-
beddings to document similarities for improved information retrieval in software
engineering. In Proceedings of the 38th International Conference on Software
Engineering - ICSE 16, pages 404-415, New York, New York, USA, 2016. ACM
Press.

Mingwang Yin, Chengjie Mou, Kaineng Xiong, and Jiangtao Ren. Chinese clin-
ical named entity recognition with radical-level feature and self-attention mech-
anism. Journal of Biomedical Informatics, 98, oct 2019.

Sheng Yu and Shijie Zhou. A survey on metric of software complexity. In Pro-
ceedings of ICIME 2010, The 2nd IEEFE International Conference on Information
Management and Engineering, pages 352-356, April 2010.

John Zech, Jessica Forde, Joseph J. Titano, Deepak Kaji, Anthony Costa, and
Eric Karl Oermann. Detecting insertion, substitution, and deletion errors in radi-

ology reports using neural sequence-to-sequence models. Annals of Translational
Medicine, 7(11):233-233, jun 2019.

Taha Zerrouki and Amar Balla. Implementation of infixes and circumfixes in the
spellcheckers. In Proceedings of the Second International Conference on Arabic
Language Resources and Tools, pages 61-65, 2009.

Yu Zhang, Li Guo, Degen Huang, Kaiyu Huang, Jiuyi Li, and Zhang Pan. En-
glish Drug Name Entity Recognition Method Based on Attention Mechanism
BiLSTM-CREF. In Proceedings of IEEE 14th International Conference on Intel-
ligent Systems and Knowledge Engineering, ISKE 2019, pages 831-836. Institute
of Electrical and Electronics Engineers Inc., nov 2019.

Shan Zhao, Zhiping Cai, Haiwen Chen, Ye Wang, Fang Liu, and Anfeng Liu.
Adversarial training based lattice LSTM for Chinese clinical named entity recog-
nition. Journal of Biomedical Informatics, 99, nov 2019.

Teng Zhao, Qinghua Cao, and Qing Sun. An Improved Approach to Traceability
Recovery Based on Word Embeddings. In Proceedings - Asia-Pacific Software
Engineering Conference, APSEC, volume 2017-Decem, pages 81-89. IEEE, dec
2018.

Zhaocheng Zhu and Junfeng Hu. Context Aware Document Embedding. jul 2017.

Janos Zsibrita, Veronika Vincze, and Richard Farkas. Magyarlanc: A toolkit for
morphological and dependency parsing of Hungarian. In International Conference
Recent Advances in Natural Language Processing, RANLP, pages 763-771, 2013.

135

	Preface
	Introduction
	Contributions

	Background
	I Feature-Extraction in 4GL Systems
	Feature-Extraction of Magic Applications
	Overview
	Feature Extraction and Abstraction of Magic Applications
	The Structure of a Magic Application
	Product Line Adoption in a Clone-and-own Environment
	Feature Extraction Approach

	Related Work
	Feature Extraction Experiments
	Overview
	Approach
	Results and Further Possibilities

	Metrics for 4GL Feature Extraction
	Definitions
	Experiments

	Feature Analysis using Call Graph Communities
	Overview
	Approach
	Results
	Matching of communities with 1st level features
	Matching of communities with 2nd level features

	Insights Into the Progress of SPL Adoption
	Evaluation
	Feature Extraction Outputs
	Communities

	Discussion
	Conclusions

	II Textual Methods in Aiding Test-to-Code Traceability
	Test-to-Code Traceability
	Overview
	Related Work
	The Proposed Method
	Latent Semantic Indexing
	Doc2Vec
	Term Frequency-Inverse Document Frequency
	Result Refinement with ensembleN Learning
	Soft Computed Call Information
	Extended Naming Convention Extraction
	Optimal Input Representation
	Evaluation Procedure
	Sample Projects
	Mining Stack Oveflow for Traceability Links

	Results
	Applicability of Naming Conventions
	Ensemble Experiments
	NC-based Evaluation
	Evaluation on Manual Data
	Mining StackOveflow for Traceability Links

	Discussion
	Naming Conventions Habits
	Traceability Link Recovery Technique Improvements
	Performance on Manual Data
	Implications

	Threats to Validity
	Conclusions

	III Machine Understanding of Radiologic Reports
	Machine Understanding of Radiologic Reports
	Overview
	Related Work
	Methods
	Annotation
	Classification
	Automatic Correction of the Text
	Negations
	Identification
	Connections

	Results and discussion
	Classification and Connections
	Spelling Correction
	Functional Evaluation

	Conclusions

	Final Conclusions

	Appendices
	Summary in English
	Magyar nyelvű összefoglaló

	Bibliography

