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Abstract This study attempts to spell out more explicitly than has been done previ-
ously the connection between two types of formal correspondence that arise in the study of
quantum-classical relations: one the one hand, deformation quantization and the associated
continuity between quantum and classical algebras of observables in the limit ~ → 0, and,
on the other, a certain generalization of Ehrenfest’s Theorem and the result that expec-
tation values of position and momentum evolve approximately classically for narrow wave
packet states. While deformation quantization establishes a direct continuity between the
abstract algebras of quantum and classical observables, the latter result makes in-eliminable
reference to the quantum and classical state spaces on which these structures act - specifi-
cally, via restriction to narrow wave packet states. Here, we describe a certain geometrical
re-formulation and extension of the result that expectation values evolve approximately
classically for narrow wave packet states, which relies essentially on the postulates of de-
formation quantization, but describes a relationship between the actions of quantum and
classical algebras and groups over their respective state spaces that is non-trivially distinct
from deformation quantization. The goals of the discussion are partly pedagogical in that it
aims to provide a clear, explicit synthesis of known results; however, the particular synthesis
offered aspires to some novelty in its emphasis on a certain general type of mathematical
and physical relationship between the state spaces of different models that represent the
same physical system, and in the explicitness with which it details the above-mentioned
connection between quantum and classical models.
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1 Introduction

The relationship between quantum and classical mechanics is characterized by many distinct
correspondences: deformation quantization, Ehrenfest’s Theorem, the WKB approximation,
environmental decoherence, consistent histories, various speculative accounts of quantum
measurement, and many others. It remains unclear precisely how these correspondences
are related to one another, or how they might be placed within a more unified picture of
the relationship between quantum and classical theories. The importance of clarifying the
relationships among these disparate results, and their distinct roles within a more unified
understanding of quantum-classical relations, has been emphasized repeatedly by Landsman,
whose own work has furthered the project of providing such a synthesis in many important
ways; see, for example, [8], [9], [10].
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The goal of the present discussion is to clarify more explicitly than we believe has been
done previously the connection between two types of correspondence in this web of disparate
results: between, on the one hand, a certain generalization of the result, which can be derived
from Ehrenfest’s Theorem, that for narrowly peaked wave functions, expectation values of
position and momentum follow approximately Hamiltonian trajectories, and, on the other
hand, the specific continuity between the abstract algebras of quantum and classical observ-
ables, and between the groups of canonical and unitary transformations that these algebras
respectively generate, associated with deformation quantization and the limit ~ → 0. The
goals of the discussion are partly pedagogical insofar as it aims at clarification and synthe-
sis of existing results. However, the investigation aspires to some novelty in the particular
synthesis that it provides - in particular, in its application of a certain simple, general type
of mathematical and physical relationship between the state spaces of different models that
describe the same physical system, whereby one model “reduces to” another in the sense
that the latter furnishes a strictly more accurate and detailed description of the system’s
behavior. This relationship rests on the existence of a certain “bridging” function B from
the state space of the more accurate, more encompassing, “low-level” model to the state
space of the less accurate, less encompassing “high-level” model, which serves to identify
the low-level model’s representation of the state of those physical degrees of freedom of the
system that are approximately represented in the state space of the high-level model. It also
rests on the identification of a privileged subset d of the low-level model’s state space such
that, on timescales over which low-level state remains within this subset, the trajectory that
the low-level state evolution induces over the high-level state space (via the function B)
matches the corresponding solution of the high-level dynamics within a small empirically
determined margin of error.

Adopting this general framing, we show that over the subset d, the function B establishes
an approximate Lie algebra homomorphism from the set of vector field generators of unitary
flows in Hilbert space to the set of vector field generators of canonical flows in phase space,
and an approximate Lie group homomorphism from the set of unitary transformations that
preserve d to the associated set of canonical transformations. Both approximate homomor-
phisms rest on the postulates of deformation quantization and become exact in certain limits
where ~ → 0 and where the position and momentum widths of the quantum state vanish.
This continuity between the state space actions of unitary and canonical transformations,
and of their associated algebras, is clearly distinct from the continuity that arises in the con-
text of deformation quantization, since it depends crucially on restrictions on the quantum
state, while deformation quantization, which directly relates abstract groups and algebras
without reference to their actions over particular spaces, imposes no such restrictions.

Our discussion is outlined as follows. Section 2 briefly describes the basic framework, con-
cerning the relationship between state space formulations of two models describing the same
physical system, that will be used to explore the connection between quantum and classical
models. Section 3 provides a alternative geometrical derivation and interpretation of Ehren-
fest’s Theorem, and its corollary that expectation values evolve approximately classically
when wave packets remain narrow, based on this general framework. Section 4 generalizes
this formulation, which relates the actions of dynamical unitary and canonical transforma-
tions, to a relationship between the actions of general continuous unitary and canonical
transformations. Section 5 shows that the push-forward mapping B∗ from vector fields over
Hilbert space to vector fields over phase space establishes an approximate, restricted Lie
algebra homomorphism from vector field generators of unitary transformations over Hilbert
space to vector field generators of canonical transformations over phase space, which holds
only over the subset d of Hilbert space consisting (roughly speaking) of narrow wave packet
states. On the basis of this result, it further shows that the the function B establishes an
approximate, restricted Lie group homomorphism from the set of unitary transformations
that act within the subset d of narrow wave packets in Hilbert space (which constitute a
neighborhood of the identity transformation) to the set of corresponding canonical transfor-
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mations. It is further shown that these approximate homomorphisms become exact in certain
limits where ~ → 0 and where the position and momentum widths of the quantum state
are concurrently approach zero. We should note that our discussion bears some similarity to
the analysis of group contractions given by Wigner and Inonu, but is clearly distinct in its
essential reliance on the mapping B between state spaces and the restriction to the subset
d of the low-level state space [6].

2 A Template for Reduction between Dynamical Systems Models

In many cases, the behavior of a single system can be accurately represented by distinct
models, often from different theories, where one model offers a strictly more accurate and
more widely applicable description of the system’s behavior than the other. For example, the
motion of a single charged particle can be accurately described by mathematical models from
classical mechanics, 1 quantum mechanics, relativistic quantum mechanics, and quantum
field theory. Each successive model in this sequence offers a purportedly more accurate and
more detailed description of the electron’s behavior than the previous one. It is natural to
ask: for each pair of models in this succession, what sort of mathematical relationship does
the low-level (i.e., purportedly more fundamental) model bear to high-level (i.e., purportedly
less fundamental) model such that it is capable of representing all features of the electron
that are represented by the high-level model at least as accurately as the high-level model
does? That is, by virtue of what mathematical relationship between models does the high-
level model “reduce to” 2 the low-level model?

There is a simple template that applies in many cases where both high- and low-level
models can be formulated as continuous, deterministic dynamical systems, and that can be
extended with slight modification to other kinds of model as well. Let the high-level model
Mh = (Sh, Dh) of the system K be specified by some state space Sh possessing the structure
of a differentiable manifold endowed with a metric (whose primary purpose is to provide
a quantitative notion of proximity between different states) and some deterministic rule
of dynamical evolution Dh : Sh → Sh given by the one-parameter group of differentiable
functions Dh(xh, t). Likewise, let the low-level model Ml = (Sl, Dl) of the same system K
be specified by a different state space Sl also possessing the structure of a differentiable
manifold, and some rule of dynamical evolution Dl : Sl → Sl given by the one-parameter
group of differentiable functions Dl(xl, t). Moreover, assume that the dynamical evolution
in each model satisfies the relations D(x, t1 + t2) = D(D(x, t1), t2) for all t1, t2 ∈ R, with
D(x, 0) = x.

In general, the state spaces Sh and Sl may describe different degrees of freedom of the
system K, with the degrees of freedom represented by Sh depending on the degrees of
freedom represented by Sl in such a way that there can be no difference in the state of the
Sh degrees of freedom without some corresponding difference in the state of the Sl degrees
of freedom (just as, for example, there can be no difference in the center of mass of an
object without a difference in the positions of its constituent particles). In the context of
a direct mathematical relationship between the two models, this dependence relation can
often be represented by a fixed, time-independent function B that maps from the low-level
state space Sl to the high-level state space Sh. The quantity B(xl), where xl ∈ Sl, furnishes

1 Note that the classical Lorentz Force Law, rather than a quantum mechanical equation, is often used to
describe the trajectories of charged particles in an accelerator.

2 There are two conflicting conventions concerning the use of the term “reduce.” According to the con-
vention used here, it is the less encompassing low-level model that “reduces to” the more encompassing
low-level model. Precedent for this usage can be found, for example, in Anderson’s famous article, “More is
Different” [1]. According to the second convention, it is the more encompassing low-level model that reduces
to the less-encompassing high-level model. Precedent for this usage can be found in the often-made claim
that quantum mechanics “reduces to” classical mechanics, or that special relativity “reduces to” Newtonian
mechanics. Here, we employ the first of these conventions, so that it is the classical model of a system that
purportedly reduces to the quantum model of that same system.
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the low-level model’s representation of those features of the system K that are represented
by the high-level state xh ∈ Sh; the time evolution B(xl(t)) of this quantity is determined
by the low-level dynamics, since the evolution xl(t) is determined by the low-level dynamics
and the function B is fixed. If the low-level model is to furnish at least as accurate a
representation of these features of K as the high-level model does, it must be the case that
for each physically realistic 3 solution xh(t) of the high-level model, there exists some solution
xl(t) of the low-level model such that B(xl(t)) tracks the corresponding features of K at
least as accurately as xh(t). In turn, this will require that the induced trajectory B(xl(t))
and the high-level trajectory xh(t) be approximately equal, at least over those timescales τ
for which xh(t) approximates a physically realistic trajectory for K. More formally, for any
physically realistic trajectory Dh(xh, t), there must exist an xl ∈ Sl such that xh = B(xl)
and such that

B(Dl(xl, t)) ≈ Dh(B(xl), t) (1)

for 0 ≤ t ≤ τ , where τ is the timescale over which Dh(B(xl), t) approximates a physically
realistic trajectory of K (see Figure 1). 4

In many cases, the trajectories D(x, t) in both high- and low-level models are integral
curves of some dynamical vector field V over S. That is, they are solutions of a first-order
differential equation of the form dx

dt = V |x. In such cases, one can show that (1) holds by
showing that, by virtue of the low-level dynamics, the quantity B(xl) approximately satisfies
the high-level equations of motion for all xl in some subset d of Sl - i.e., that

dB(xl(t))

dt
≈ Vh|B(xl) (2)

for xl ∈ d ⊂ Sl. As we show in Appendix B, by integrating both sides of this relation, one
can then recover (1) for timescales T over which the low-level state xl remains in d. The
quantity B(xl) will succeed at tracking the relevant features of K over timescales where xh
does if T ≥ τ - that is, if the timescale over which the low-level state remains in the subset d
of the low-level state space is greater than or equal to the timescale over which the high-level
trajectory tracks the relevant features of the system. 5

3 To further clarify what is meant by “physically realistic” here, note that a solution of a classical model
according to which the system achieves speeds greater than that of light would not be physically realistic.
By contrast, virtually any low-momentum solution with velocity substantially less than that of light would
be counted as physically realistic, in that it provides a reasonably accurate approximation to the system’s
behavior. Of course, since every model represents the system that it describes only up to some margin of
error, the precise boundaries of what counts as physically realistic will depend on somewhat abitrary error
thresholds.

4 More precisely, the requirement B(Dl(xl, t)) ≈ Dh(B(xl), t) should be understood as the requirement
that |B(Dl(xl, t))−Dh(B(xl), t)| < δ, where δ is the allowable margin of error associated with the require-
ment of approximate equality. The choice of δ is constrained by how accurately the high-level model is known
to represent the behavior of the relevant degrees of freedom of the system K in question, since we would
like the low-level model’s representation of these features to be at least as accurate as the high-level model’s
representation.

5 To give an example of (2) not discussed further in this article, consider the case of a slow-moving electron,
which can be accurately described both by non-relativistic Pauli and relativistic Dirac models of a spin-1/2
particle. In such a case, we expect the Dirac model to furnish a strictly more accurate description of the
system than the Pauli model, although the Pauli model works quite well. The function B connecting the
state spaces of the two models here will be the function from the low-level space of Dirac 4-spinors to the
high-level space of Pauli 2-spinors that projects a 4-spinor onto its upper two components. The relevant
subset d of the low-level space will be the set of 4-spinors with non-relativistic momentum. The vector field
components Vh and Vl of the high- and low-level models in this case can be read directly off of the equations
of motion of the two models (the Pauli and Dirac equations, respectively), which are both first-order in time.

To give another example of (2), consider the relationship between the quantum mechanical model of
N non-relativistic free particles and the quantum field theoretic model of a free Klein-Gordon field. The
function B in this case maps the QFT state |Ψ〉 into the quantum mechanical state with wave function

ψ(x1, ..., xn) ≡ 〈0|φ̂(x1)...φ̂(xn)|Ψ〉.The relevant subset d of the low-level state space in this case is given
by the set of N -particle states of the field which include only non-relativistic momenta. The vector field
components Vh and Vl of the high- and low-level models in this case can be read directly off of the equations
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The relation (2), in turn, will be satisfied if the high-level vector field Vh evaluated at
B(xl) is approximately equal to the push-forward under B of the low-level vector field Vl
evaluated at xl - that is, if

Vh|B(xl) ≈ B
∗(Vl|xl) (3)

or, in component form,

V µh
∣∣
B(xl)

≈ ∂Bµ

∂xνl
V νl
∣∣
xl

(4)

- for all xl in d (See Figure 2). This can be seen by applying the Chain Rule dBµ

dt = ∂Bµ

∂xνl

dxνl
dt

to the left-hand side of (2), and employing the substitution V νl =
dxνl
dt , which is based on the

low-level equation of motion.
Thus, if we take d to be defined as the subset of Sl for which the push-forward condition

(4) holds (for an appropriate margin of approximate equality), then condition (1) will hold
for all xl ∈ d and for all t over the (xl-dependent) timescale T over which Dl(xl, t) remains
in d. 6 Since Dh(xh, t) = exp(Vht)x

′
h|xh and Dl(xl, t) = exp(Vlt)x

′
l|xl , relation (1) can we

written in terms of the vector fields Vh and Vl as

B ((exp(Vlt)x
′
l) |xl) ≈ (exp(Vht)x

′
h) |B(xl). (5)

Reduction requires that the timescale T on which the induced trajectory (LHS) approximates
the high-level trajectory (RHS) be greater than or equal to the timescale τ over which the
high-level trajectory approximates a physically realistic trajectory for the system K - i.e.,
that T ≥ τ .

To summarize, in many cases where two dynamical systems models describe the same
physical system K, the quantity B(xl), whose time evolution is determined by the low-level
dynamics, represents the same features of K that the high-level state xh does, and so func-
tions in a sense as the low-level model’s surrogate for xh. If for states in some subset d of Sl
the high-level dynamical vector field Vh evaluated at B(xl) approximates the push-forward
under B of the low-level dynamical vector field evaluated at xl, then the high-level trajec-
tory B(Dl(xl, t)) induced on Sh through B by the low-level dynamics will approximate the
corresponding high-level trajectory Dh(B(xl), t) over the timescale where Dl(xl, t) remains
in d. For Ml to furnish at least as accurate representation of the system K as Mh, this
timescale should be at least as long as the timescale over which the high-level trajectory
Dh(B(xl), t) approximates a physically realistic trajectory for K itself.

3 Ehrenfest’s Theorem: A Geometrical View

Let us now consider a system K that can be described both classically and quantum mechan-
ically - say, a heavy charged particle with a localized wave packet propagating in a fixed
electrostatic field. Let the high-level model in this case be a classical model whose state
space is N -particle phase space Γ and whose dynamics are given by Hamilton’s equations

with Hamiltonian H = p2

2m +V (x). Let the low-level model be a quantum mechanical model
whose state space is the Hilbert space H of N spinless particles and whose dynamics are

of motion of the two models (the Schrodinger equations for free N -particle quantum mechanics and free
Klein-Gordon quantum field theory, respectively), which are both first-order in time. In both of the examples
discussed here, the pair of models in question satisfies the relation (2), or equivalently (4). We will discuss
yet another example of these general relations, connecting classical and quantum models, in the next section
on Ehrenfest’s Theorem.

6 If the relation (4) holds within margin of error ε for all xl ∈ d, then the approximate equality (1) will
hold within margin of error εT for all 0 ≤ t < T , where T is the timescale on which the low-level state
remains in d.
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Fig. 1 Reduction between the high-level model Mh = (Sh, Dh) and the low-level model Ml = (Sl, Dl)
requires that for every physically realistic high-level trajectory Dh(xh, t), there exist a low-level trajectory
Dl(xl, t) such that xh is the image under B of some xl ∈ Sl and such that the induced high-level trajectory
B(Dl(xl, t)) approximates Dh(xh, t) over those timescales where Dh(xh, t) continues to approximate a re-
alistic trajectory for the system. In many cases, the approximate equality of the two trajectories will hold
exclusively for xl in some restricted subset d of Sl.

Fig. 2 If the high-level dynamical vector field Vh evaluated at B(xl) is approximately equal to the push-
forward of the low-level vector field Vl (dotted arrows in upper state space) evaluated at xl, for all xl ∈ d,
then the trajectory induced on Sh through B by the integral curves of Vl in d will approximate the integral
curves of Vh in the image domain B(d) ⊂ Sh.
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given by Schrodinger’s equation with Hamiltonian Ĥ = p̂2

2m + V (x̂). In the classical model,
the vector field that generates the dynamical evolution on Γ is

Vh =
∂H

∂pµ
∂

∂qµ
− ∂H

∂qµ
∂

∂pµ
=
pµ

m

∂

∂qµ
− ∂V

∂qµ
∂

∂pµ
, (6)

with summation over repeated indices. The high-level dynamical equations
dxµh
dt = Vh|xh are

given by Hamilton’s equations dqµ

dt = pµ

m , dp
µ

dt = − ∂V
∂qµ . The vector field over H that generates

the unitary quantum evolution is

Vl =
1

i~
Ĥ|ψ〉 ∂

∂|ψ〉
− 1

i~
〈ψ|Ĥ ∂

∂〈ψ|

≡ 1

i~
Habwb

∂

∂wa
− 1

i~
w̄aHab ∂

∂w̄b
, (7)

where wa ≡ 〈ea|ψ〉 for a given orthonormal basis {|ea〉} of H, and |φ〉 ∂
∂|ψ〉 ≡ 〈e

a|φ〉 ∂
∂〈ea|ψ〉 ,

〈φ| ∂
∂〈ψ| ≡ 〈φ|e

a〉 ∂
∂〈ψ|ea〉 for any |φ〉 ∈ H (one can think of ∂

∂|ψ〉 as the gradient operator

whose components are ∂
∂wa , and likewise for ∂

∂〈ψ| with respect to the ∂
∂w̄a ).

One might initially expect the low-level dynamical vector field over H to be given by

Vl =
1

i~
Ĥ|ψ〉 ∂

∂|ψ〉

≡ 1

i~
Habwb

∂

∂wa
, (8)

since the corresponding low-level dynamical equations
dxµl
dt = Vl|xl then take the form of

Schrodinger’s equation, d|ψ〉
dt = 1

i~Ĥ|ψ〉. However, because H is a complex manifold, its full

tangent space is spanned by the vectors { ∂
∂wa ,

∂
∂w̄a }. The set { ∂

∂wa } does not span the full set
of derivations operating on differentiable functions over H, but only the set of derivations
operating on functions that are complex differentiable and so do not depend on the w̄a.
However, many functions of physical interest in quantum theory, including expectation values
of Hermitian observables, are differentiable but not complex differentiable and therefore
depend on both the wa and the w̄a: note that 〈ψ|Â|ψ〉 = w̄aAabwb. For this reason, if we
wish to differentiate such a function along the unitary flow associated with a Hermitian
observable such as Ĥ, it is necessary to include both holomorphic and anti-holomorphic
basis elements of the tangent space, ∂

∂wa and
∂
∂w̄a , in the vector field that generates this flow.

We can see this more concretely by differentiating the expectation value 〈ψ|Â|ψ〉 of

a Hermitian operator Â along the unitary flow |ψ(s)〉 = e−
i
~ Ĉs|ψ〉 associated with the

Hermitian operator Ĉ. A simple application of the Chain Rule gives,

d

ds
〈ψ(s)|Â|ψ(s)〉 =

(
d|ψ〉
ds

∂

∂|ψ〉
+
d〈ψ|
ds

∂

∂〈ψ|

)
〈ψ(s)|Â|ψ(s)〉

=

(
−
i

~
Ĉ|ψ〉

∂

∂|ψ〉
+
i

~
〈ψ|Ĉ

∂

∂〈ψ|

)
〈ψ(s)|Â|ψ(s)〉

= 〈ψ(s)|
1

i~
[Â, Ĉ]|ψ(s)〉. (9)

The second line shows explicitly that both the holomorphic and anti-holomorphic basis
elements ∂

∂|ψ〉 and ∂
∂〈ψ| of T|ψ〉H are needed to differentiate expectation values, and non-

holomorphic functions generally, along a unitary flow in H. In the case where Ĉ = Ĥ and
s = t, the vector field that diffierentiates arbitrary differentiable functions along the flow
generated by Ĉ is given by the expression (7).
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Employing the framework for inter-model reduction described in the previous section,
the “bridge function” B that we consider here carries a quantum state into the classical
phase space point associated with expectation values of position and momentum:

B : H −→ Γ

B : |ψ〉 7−→ (〈ψ|q̂|ψ〉, 〈ψ|p̂|ψ〉) . (10)

As we will see, the relevant subset d of the low-level state space, over which we can expect
the quantity B to approximately satisfy the high-level dynamical equations (i.e., Hamilton’s
equations), and over which the push-forward condition (3) holds between the vector fields
(7) and (6), is

d = {|ψ〉 ∈ H| σq < lV }, (11)

where lV depends on the characteristic scale of spatial variation of the potential V and σq
is the spatial width of the quantum state. 7

Let us now confirm that the condition (3) holds between the vector fields (7) and (6),
with B given by (10) and d given by (11). We begin by calculating the push-forward of Vl
under B:

B∗(Vl) =
∂Bµ

∂xνl
V νl

∂

∂xµh

=

[
∂Bq

µ

∂wa
(− i

~
Habwb) +

∂Bq
µ

∂w̄a
(
i

~
w̄bHba)

]
∂

∂qµ

+

[
∂Bp

µ

∂wa
(− i

~
Habwb) +

∂Bp
µ

∂w̄a
(
i

~
w̄bHba)

]
∂

∂pµ

=
1

i~
[
w̄c(qµ)caHabwb − w̄bHba(qµ)acwc

] ∂

∂qµ

+
1

i~
[
w̄c(pµ)caHabwb − w̄bHba(pµ)acwc

] ∂

∂pµ

=
1

i~
〈ψ|[q̂µ, Ĥ]|ψ〉 ∂

∂qµ
+

1

i~
〈ψ|[p̂µ, Ĥ]|ψ〉 ∂

∂pµ

= 〈ψ|
ˆ∂H

∂pµ
|ψ〉 ∂

∂qµ
− 〈ψ|

ˆ∂H

∂qµ
|ψ〉 ∂

∂pµ

= 〈ψ| p̂
µ

m
|ψ〉 ∂

∂qµ
− 〈ψ| ∂̂V

∂qµ
|ψ〉 ∂

∂pµ
. (12)

Since dBµ(xl(t))
dt = ∂Bµ

∂xνl

dxνl
dt = ∂Bµ

∂xνl
V νl , it follows from this last line that

d〈q̂µ〉
dt

=
〈p̂µ〉
m

(13)

d〈p̂µ〉
dt

= −〈 ∂̂V
∂q
〉, (14)

7 The length scale lV can be quantified precisely in terms of the potential V and its derivatives, by requiring

that 〈 ∂̂V
∂q
〉 ≈ ∂V

∂q

∣∣
〈q̂〉. Assuming that the state |ψ〉, whose|ψ(x)|2 distribution has standard deviation σq , can

be approximated by a Gaussian of width σq , one can then expand the expectation value 〈 ∂̂V
∂q
〉 in powers of

σq . The zeroth-order term in this expansion is ∂V
∂q

∣∣
〈q̂〉. Requiring higher-order terms to be vanishingly small

at each order imposes a set of constraints requiring σq to be smaller than some set of length scales (one for
each order) defined in terms of V and its spatial derivatives. The value of lV may be defined as the smallest
of these length scales.



Ehrenfest Theorems, Deformation Quantization, and the Geometry of Inter-Model Reduction 9

where the second of these relations is none other than Ehrenfest’s Theorem. In fact , these
relations follow more directly as a special case of (9), with s = t, Â = (x̂, p̂), and Ĉ = Ĥ.
However, it is important for the purposes of our discussion below to highlight the role of
the push-forward relation B∗ between high- and low-level dynamical vector fields, since this
same push-forward mapping will turn out to provide an approximate homomorphism from
the vector field Lie algebra associated with the unitary group action over Hilbert space to
the vector field Lie algebra associated with the canonical group action over phase space. 8

Evaluated over the domain d of wave packets narrowly peaked in position, we have that

〈ψ| ∂̂V∂qµ |ψ〉 = ∂V
∂qµ

∣∣
〈q̂〉 +O(σq) ≈ ∂V

∂qµ

∣∣
〈q̂〉 = ∂H

∂qµ

∣∣
〈q̂〉,〈p̂〉. Because the operator p̂µ is linear in p̂,

we also have 〈p
µ〉
m = 〈 ∂H∂pµ 〉 = ∂H

∂pµ

∣∣∣∣
〈q̂〉,〈p̂〉

. The final two expressions in (12) then yield

B∗(Vl) =
∂H

∂pµ

∣∣∣∣
〈q̂〉,〈p̂〉

∂

∂qµ
− ∂H

∂qµ

∣∣∣∣
〈q̂〉,〈p̂〉

∂

∂pµ
+O(σq)

=
〈pµ〉
m

∂

∂qµ
− ∂V

∂qµ
(〈q̂〉) ∂

∂pµ
+O(σq)

≈ 〈p
µ〉
m

∂

∂qµ
− ∂V

∂qµ
(〈q̂〉) ∂

∂pµ

= Vh
∣∣
B(xl)

. (15)

From this we see that relation (3) is satisfied with respect to the domain d and bridge
function B in this case. As we saw in the previous section, the relation B∗(Vl) ≈ Vh

∣∣
B(xl)

entails that the low-level model’s surrogate for xh, B(xl), approximately satisfies the high-

level model’s equations of motion, so that dB(xl)
dt ≈ Vh

∣∣
B(xl)

. In the present context, this

relationship entails that expectation values of position and momentum approximately satisfy
the equations for the integral curves of Vh - i.e., Hamilton’s equations:

d〈q̂µ〉
dt

=
〈p̂µ〉
m

(16)

d〈p̂µ〉
dt

≈ −∂V
∂q

∣∣∣∣
〈q̂〉
. (17)

If V is of quadratic or lower order, the second, approximate equality will hold exactly and
for all states. However, if V is higher than quadratic order, this approximate equality will
only hold only on timescales over which the spatial width σq of the time-evolved quantum

state e−iĤt|ψ〉 remains less than lV .

The above relations entail that on the timescale T where the quantum state remains
in the subset d, the evolution induced on classical phase space via the function B by the
Schrodinger evolution approximates the phase space evolution prescribed by Hamilton’s
equations - that is, that the relation (1) will be satisfied over timescale T . Formally, this
reads

e{H,·}t(q, p)
∣∣
〈q̂〉,〈p̂〉 ≈

(
〈ψ|e

i
~ Ĥt q̂ e−

i
~ Ĥt|ψ〉, 〈ψ|e

i
~ Ĥt p̂ e−

i
~ Ĥt|ψ〉

)
(18)

8 More conventional derivations of Ehrenfest’s Theorem can be found in most graduate and undergraduate
texts on quantum mechanics. A discussion of its application to the case of narrow wave packets can be found
in [3].
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for 0 ≤ t ≤ T , where T is the timescale over which e−
i
~ Ĥt|ψ〉 ∈ d. 9 Reduction in this case

requires that T ≥ τ , where τ is timescale over which the classical model provides a good
approximation to the behavior of the system K. 10

In this section, we have re-cast results associated with Ehrenfest’s Theorem within the
more general geometrical framework for reduction described in the previous section. In the
next section, we will see how this type of relationship can be extended from the case of
quantum and classical time evolution to include relations between continuous unitary and
canonical transformations more generally.

4 Beyond Ehrenfest’s Theorem: Approximately Canonical Phase Space Flow
Induced by Continuous Unitary Transformations

The relations (15) and (18) illustrate a particular type of relationship between a one-
parameter group of unitary transformations and the corresponding one-parameter group
of canonical transformations, associated respectively with quantum and classical time evo-
lutions. The relation (15) connects the vector fields that generate these groups, while the
relation (18) connects the group transformations themselves. In both cases, the relation-
ship is mediated by the function B from the quantum to the classical state space, and
depends on a restriction to the subset d of Hilbert space. In this section, we will see that
with slight modifications, this type of correspondence can be extended to relations between
arbitrary one-parameter unitary group actions over Hilbert space and the corresponding
one-parameter canonical group actions over phase space. Like the previous section’s discus-
sion of Ehrenfest’s Theorem, this more general correspondence is mediated by the function
B from Hilbert space to phase space specified in (10), and rests on a restriction to a certain
subset d of Hilbert space. However, by contrast with the subset defined in (11), the relevant
subset of Hilbert space is now defined by the requirement that wave packets be narrowly
peaked in both position and momentum. Because the uncertainty principle σqσp ≥ ~

2 re-
stricts the degree to which a quantum state can be simultaneously localized in both of these
variables, the formal limit ~→ 0 - in which such simultaneous localization becomes possible
to an arbitrary degree of precision (if only in a mathematical, rather than a physical, sense)
- will figure centrally into our discussion.

Just as one can associate to the function H the dynamical Hamiltonian vector field (6),
more generally one can associate to each classical observable f ∈ C∞(Γ ) the Hamiltonian
vector field

Uh =
∂f

∂pµ
∂

∂qµ
− ∂f

∂qµ
∂

∂pµ
(21)

over Γ . The vector field Uh generates a one-parameter group of canonical transformations
Gh(xh, s) ≡ exp(Uhs)x

′
h

∣∣
xh

= e{f,·}s(q, p)
∣∣
q0,p0

. Likewise, to each quantum observable, asso-

9 The exponentiated Poisson bracket is defined by(
e{f,·}su

) ∣∣
q0,p0

≡ u
∣∣
q0,p0

+ s{f, u}
∣∣
q0,p0

+
1

2!
s2{f, {f, u}}

∣∣
q0,p0

(19)

+
1

3!
s3{f, {f, {f, u}}}

∣∣
q0,p0

... (20)

where f, u ∈ C∞(Γ ), s ∈ R. The notation e{H,·}t(q, p)
∣∣
〈q̂〉,〈p̂〉 indicates that the exponential is being applied

component-wise to the functions q and p in C∞(Γ ), and that the resulting expression is then evaluated at
(〈q̂〉, 〈p̂〉).
10 A more precise account of the relationship between quantum and classical models of a system like a

baseball or a charged particle would take into account the interaction between the system and its environment
in the context of the quantum model, where effects of entanglement with external degrees of freedom can
make a dramatic difference to the system’s evolution. The extensive field of decoherence theory has shown
how such effects can be modeled; see, for example, [17], [7], [14], and references therein. For a general
conceptual discussion of the role of decoherence in quantum mechanics, see [2].
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ciated with some Hermitian operator f̂ on H, is associated a one-parameter group of unitary
transformations generated by the vector field

Ul ≡ −
i

~
f̂ |ψ〉 ∂

∂|ψ〉
+
i

~
〈ψ|f̂ ∂

∂〈ψ|
(22)

over H. The vector field Ul generates a one-parameter group of unitary transformations

Gl(xl, s) ≡ exp(Uls)x
′
l

∣∣
xl

= e−
i
~ f̂s|ψ0〉.

The process of quantization maps a given classical observable f into a unique Hermitian
operator f̂ on Hilbert space. Different types of quantization, such as deformation quanti-
zation and geometric quantizaiton, impose different constraints on this mapping. Here we
will focus on deformation quantization. Studies of deformation quantization tend to rely
on one of two equivalent mathematical formalisms. The first treats quantum observables as
elements of a C∗ algebra, often associated with operators acting on some complex Hilbert
space. The second formalism, which is employed more frequently in the literature on de-
formation quantization, relies on so-called phase space formulations of quantum mechanics,
which treat quantum observables as functions over classical phase space (and, therefore, in
a manner that more closely resembles the conventional treatment of classical observables).
In the C∗ algebraic formalism, the algebra of quantum observables possesses two sorts of
product: for two elements f̂ and ĝ of the C∗ algebra, the first product corresponds to simple

multiplication of operators, f̂ ĝ = f̂g+O(~), while the second corresponds to the usual com-

mutator, 1
i~ [f̂ , ĝ] = {̂f, g}+O(~). In the formalism of phase space quantum mechanics, the

simple product of operators in the C∗ algebraic formalism corresponds to a so-called star
product f ?~ g = fg+O(~) between functions over classical phase space, which converges to
classical pointwise multiplication in the limit ~→ 0. Likewise, the operator commutator in
the C∗ algebraic approach corresponds in the formalism of phase space quantum mechanics
to a so-called star bracket {f, g}~ ≡ f ? g − g ? f = {f, g} + O(~), which converges to
the classical Poisson bracket {f, g} in the limit ~ → 0. Our discussion here will focus on
operator-based formulations of deformation quantization. Within this setting, we assume a
quantization map that carries a classical observable f , given by a smooth function on phase
space, to the quantum observable f̂ associated with the formal power series expansion that
is obtained given by replacing monomial terms qnpm in the Taylor expansion of f with
“Hermitized” operators Herm(q̂np̂m):

f̂ ≡
∞∑
k=1

∑
n+m=k

1

n!m!

∂n+mf

∂qn∂pm

∣∣∣∣
0,0

Herm(q̂np̂m), (23)

where Herm(q̂np̂m) is a re-ordering of the non-Hermitian operator q̂np̂m that renders it
Hermitian. 11 For example, in the Weyl quantization scheme, we have Herm(q̂np̂m) =

1
(n+m)!

∑
σ∈Sn+m

σ(q̂, ×n....., q̂, p̂, ×m....., p̂) where for any operators F̂1, ..., F̂n and any σ ∈ Sn,

σ(F̂1, ..., F̂n) = F̂σ1
...F̂σn . 12 Other prescriptions, such as Herm(q̂np̂m) = 1

2 (q̂np̂m + p̂mq̂n),
are also possible. However, inequivalent prescriptions differ only atO(~) - that is, Herm1(q̂np̂m) =
Herm2(q̂np̂m) +O(~) = q̂np̂m +O(~). The quantization map of the form (23) satisfies

f̂ ĝ = f̂g +O(~) (24)

[f̂ , ĝ] = i~{̂f, g}+O(~2), (25)

11 See, for example, [11] for more detailed discussion of this quantization strategy.
12 See [15] for extended discussion of Weyl quantization of general smooth functions f using formal power

series.
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as required by the axioms of deformation quantization. 13 14

This section highlights two central claims, the first pertaining to relations between vector
field generators of continuous unitary and canonical transformations on H and Γ , respec-
tively, and the second pertaining to relations between the corresponding one-parameter
group actions on these spaces. Both claims make heavy use of the function B invoked in our
discussion of Ehrenfest’s Theorem, given by (10), and of the set d ⊂ H of quantum states
that are narrowly peaked in both position and momentum (instead of just in position, as
before):

d = {|ψ〉 ∈ H|σq < lq, σp < lp} (26)

where σq and σp are the position- and momentum-space widths 15 of the quantum state |ψ〉
and lq and lp are the upper limits on the position and momentum widths of states in d, with
lqlp >

~
2 .

The first claim, concerning relations between vector field generators of continuous unitary
and canonical transformations, is that

B∗(Ul
∣∣
xl

) = Uh
∣∣
B(xl)

+O(σq) +O(σp) +O(~). (27)

or, in component form,

∂Bµ

∂xνl
Uνl
∣∣
xl

= Uµh
∣∣
B(xl)

+O(σq) +O(σp) +O(~), (28)

for xl ∈ d as defined in (26). Henceforth, the reader should take d to refer to the subset of

Hilbert space defined by (26) rather than (11). In terms of the observables f̂ and f , (27)
reads,

〈ψ|
∂̂f

∂pµ
|ψ〉

∂

∂qµ
− 〈ψ|

∂̂f

∂qµ
|ψ〉

∂

∂pµ

=
∂f

∂pµ

∣∣∣∣
〈q̂〉,〈p̂〉

∂

∂qµ
−

∂f

∂qµ

∣∣∣∣
〈q̂〉,〈p̂〉

∂

∂pµ
+O(σq) +O(σp) +O(~). (29)

For states in d, the values of σq and σq will be “small” in the sense that they are bounded
from above, respectively, by lq and lp. If the terms O(σq) + O(σp) + O(~) are collectively
small enough in magnitude to be neglected, we recover the approximate equality,

Uh
∣∣
B(xl)

≈ B∗(Ul
∣∣
xl

)

Uµh
∣∣
B(xl)

≈
∂Bµ

∂xνl
Uνl
∣∣
xl

(30)

13 For a detailed formulation of the axioms of deformation quantization in the setting of operator algebras,
see, for example, [8] or [12].
14 It is worth noting here that early efforts at quantization sought a mapping from quantum to classical

observables that satisfied the more restrictive requirement [f̂ , ĝ] = i~{̂f, g}. However, the Groenewold-van
Hove no-go Theorem entails that this is not generally possible for classical observables outside of the sub-
algebra of polynomials of order two. More precisely, it states there is no map f 7→ f̂ from functions on R2

(the phase space of a single spatial degree of freedom) to self-adjoint operators on L2(R) satisfying both

the requirement that 1) [f̂ , ĝ] = i~{̂f, g} and 2) that q̂ and p̂, defined as the images of q and p under the
mapping, coincide with the usual Schrodinger position and momentum operators, for any Lie subalgebra of
the functions on R2 larger than the subalgebra of polynomials of degree less than or equal to two. See, for
example, [4], Ch. 5 and [16], Ch. 17 for further discussion of this result.
15 Here, we define the position width of a quantum state to be the standard deviation of position with

respect to the distribution |ψ(q)|2 and likewise for the momentum width with respect to the distribution
|ψ̃(p)|2. However, it should be noted here that other definitions of the state width are also possible, and give
rise to alternate statements of the uncertainty principle, as Hilgevoord and Uffink show in [5].
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for x ∈ d. If ~ is treated as a formal parameter that can be varied, rather than as a fixed
constant, the terms O(σq)+O(σp)+O(~) can be made to vanish in the collective limit where
~→ 0, σq → 0, and σp → 0, where the constraint σqσp ≥ ~

2 is respected as the limit is taken.
16 However, for real physical systems, the value of ~ is fixed at its measured value, and there
is therefore a lower bound on the collective magnitude of the terms O(σq) +O(σp) +O(~).
The interpretation of the limit (~, σq, σp) → 0 taken subject to the constraint σqσp ≥ ~

2 ,
and the conditions under which these error terms can be neglected for ~ fixed at its physical
value, are discussed further in Section ??.

Relation (29) can be shown to hold in largely the same manner as relation (15) of the
previous section. Begin by calculating the pushforward under B of the vector field Ul defined
in (22):

B∗(Ul) = − i
~
〈ψ|[q̂µ, f̂ ]|ψ〉 ∂

∂qµ
− i

~
〈ψ|[p̂µ, f̂ ]|ψ〉 ∂

∂pµ

= 〈ψ|

(
∂̂f

∂pµ
+O(~)

)
|ψ〉 ∂

∂qµ
− 〈ψ|

(
∂̂f

∂qµ
+O(~)

)
|ψ〉 ∂

∂pµ

= 〈ψ| ∂̂f
∂pµ
|ψ〉 ∂

∂qµ
− 〈ψ| ∂̂f

∂qµ
|ψ〉 ∂

∂pµ
+O(~), (31)

where in going from the first to the second line we have made use of the fact that [q̂, f̂(q̂, p̂)] =

i~ ∂̂A∂p +O(~2) and [p̂, f̂(q̂, p̂)] = −i~ ∂̂f∂q +O(~2). For states in the domain d defined by (26),

a given Hermitian observable ĥ is related to its classical counterpart h not only by the
quantization map (23), but also in terms of expectation values by

〈ψ|ĥ|ψ〉 = h (〈q̂〉, 〈p̂〉) +O(σq) +O(σp) +O(~), (32)

as shown in Appendix A. Since σq and σp will be small for states in d, the terms O(σq) and
O(σp) will also tend to be small, inasmuch as they vanish with σq and σp, respectively. 17

From (32) and (31), it follows that

B∗(Ul) =
∂f

∂pµ

∣∣∣∣
〈q̂〉,〈p̂〉

∂

∂qµ
− ∂f

∂qµ

∣∣∣∣
〈q̂〉,〈p̂〉

∂

∂pµ

+O(σq) +O(σp) +O(~)

= Uh
∣∣
B(xl)

+O(σq) +O(σp) +O(~). (33)

For ~, σq, and σq sufficiently small, this yields,

B∗(Ul) ≈ Uh
∣∣
B(xl)

(34)

or in component form,

16 Strictly speaking, the vanishing of the terms O(σq) +O(σp) +O(~) in this limit also requires that the

series expansions defining the operators ∂̂f
∂pµ

and ∂̂f
∂qµ

converge. Proofs given here are formal rather than

rigorous; where necessary, the reader may assume that the classical and quantum observables in question
are restricted to those for which (23) converges for a given choice of Hermitization prescription. However, in
keeping with common practice, we do not address the detailed requirements for convergence of formal power
series such as (23).
17 A similar result is proven by Landsman for the specific case of minimum uncertainty wave packets [8],

[9]. Here, we do not assume that the quantum states in d are necessarily minimum uncertainty wave packets;
it is possible that σqσp >

~
2

for states in d. We only require that states in d satisfy the constraint that
σq < lq and σp < lp. Since σq and σp can be varied independently of each other and of ~ (apart from the

constraint σqσp ≥ ~
2

) these three variables are treated here as independent parameters.
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〈ψ| ∂̂f
∂pµ
|ψ〉 ∂

∂qµ
− 〈ψ| ∂̂f

∂qµ
|ψ〉 ∂

∂pµ

≈ ∂f

∂pµ

∣∣∣∣
〈q̂〉,〈p̂〉

∂

∂qµ
− ∂f

∂qµ

∣∣∣∣
〈q̂〉,〈p̂〉

∂

∂pµ
. (35)

In short, when evaluated over the domain d ⊂ H, the push-forward under B of the quantum-
mechanical vector field over H associated with the Hermitian operator f̂ approximates the
classical Hamiltonian vector field over Γ associated with the corresponding phase space
function f . Thus, the push-forward transformation B∗ approximately maps an element of
the Lie algebra of vector fields that generate unitary group actions over Hilbert space into
the unique corresponding element of the Lie algebra of vector fields that generate canonical
transformations over phase space.

In the limit (~, σq, σp) → 0 taken subject to the constraint σqσp ≥ ~
2 , the error terms

O(σq)+O(σp)+O(~) vanish and the approximate equality (35) becomes exact. It should be
noted that for fixed (~, σq, σp), the error terms O(σq)+O(σp)+O(~) may fall beneath one’s
fixed margin of approximate equality for some choices of f but not others. In particular,
these higher-order terms may be non-negligible in size if the function f varies rapidly on
the scale of σq, σp, or ~. However, as (~, σq, σp) → 0 subject to the constraint σqσp ≥ ~

2 ,
σq, σp, and ~ will at some point become small by comparison with the scale of variation of
the function f . Heuristically, the terms O(σq) +O(σp) +O(~) become negligible for an ever-
expanding subset of the corresponding low-level algebra of vector fields over H, expanding
to encompass the full algebra in this limit.

As we will see in the next section, the push-forward mapping is also an approximate Lie
algebra homomorphism over the domain d in that it approximately preserves the composition
structure of vector fields in these algebras. This homomorphism, which is clearly distinct
from (although closely related to) the approximate Lie algebra homomorphism furnished by
a given deformation quantization, likewise becomes exact in the limit (~, σq, σp)→ 0, taken
subject to the constraint σqσp ≥ ~

2 .
We now review several consequences of the relations (27) and (34), which are derived in

Appendix (B). If s ∈ R parameterizes the continuous transformations generated by both Ul
and Uh, it follows from (28) that dB(xl)

ds ≈ Uh|B(xl) for xl ∈ d up to terms O(σq) +O(σp) +
O(~) - i.e., that

d〈q̂〉
ds

=
∂f

∂p

∣∣∣∣
〈q̂〉,〈p̂〉

+O(σq) +O(σp) +O(~) (36)

d〈p̂〉
ds

= −∂f
∂q

∣∣∣∣
〈q̂〉,〈p̂〉

+O(σq) +O(σp) +O(~). (37)

for |ψ〉 ∈ d. For ~, σq, and σq sufficiently small, this gives

d〈q̂〉
ds
≈ ∂f

∂p

∣∣∣∣
〈q̂〉,〈p̂〉

d〈p̂〉
ds
≈ −∂f

∂q

∣∣∣∣
〈q̂〉,〈p̂〉

. (38)

That is, under the low-level unitary transformation generated by f̂ , the quantity (〈ψ(s)|q̂|ψ(s)〉, 〈ψ(s)|p̂|ψ(s)〉)
approximately satisfies the first-order equations for integral curves of the high-level vector
field Uh.

At the level of finite group transformations, the relation (35), or alternatively (38), implies
a relation analogous to (1). When acting within d ⊂ H, the unitary transformation generated
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by Ul induces via B a transformation on Γ that approximates the canonical transformation
generated by Uh. More formally, defining

Gh(xh, s) ≡ e{f,·}s(q, p)
∣∣
q0,p0

(39)

Gl(xl, s) ≡ e−
i
~ f̂s|ψ0〉, (40)

with f and f̂ related by (23), it follows from (30) that

B(Gl(xl, s)) = Gh(B(xl), s) + ε (41)

for s such that Gl(xl, s
′) ∈ d for all 0 ≤ s′ ≤ s, where the error ε→ 0 as ~→ 0, and lq → 0,

lp → 0 concurrently, subject to the constraint lqlp >
~
2 . In Section 5.3, we will see that for

fixed s, ε vanishes in a certain carefully defined limit in which ~, lq, lp, and the initial state
widths σq and σp associated with xl all approach zero. For the moment, let us assume that
the values of ~, lq, and lp are set at some small but fixed values (where ~, again, is regarded
as a formal parameter). In this case, we may write,

B(Gl(xl, s)) ≈ Gh(B(xl), s), (42)

if Gl(xl, s
′) ∈ d for all 0 ≤ s′ ≤ s. This result extends (1) to general continuous unitary and

canonical transformations. In terms of the quantum and classical observables f̂ and f , this
reads

e{f,·}s(q, p)
∣∣
〈q̂〉,〈p̂〉 ≈

(
〈ψ|e

i
~ f̂sq̂e−

i
~ f̂s|ψ〉, 〈ψ|e

i
~ f̂sp̂e−

i
~ f̂s|ψ〉

)
. (43)

Note that, for a given xl = |ψ0〉 ∈ d, the approximate equality between the phase space
trajectory B(Gl(xl, s)) induced by a unitary transformation and the phase space trajectory
associated with the action of the corresponding canonical transformation Gh(B(xl), s) does
not hold for arbitrarily large values of the parameter s, but only for unitary transformations
in some neighborhood of the identity (namely, those that keep the initial state xl in d).
However, we will see in 5.3 that in a certain limit, this approximate equality of induced and
high-level trajectories becomes exact and holds for all transformations that are continuously
connected to the identity.

It is also worth highlighting here that rotations, spatial translations, and Galiliean boosts
are included in both the canonical and unitary groups of transformations. One can easily
check that the relations (30) and (43) hold with exact rather than approximate equality for
all states in H and for all values of the associated continuous transformation parameters.
However, for more general unitary transformations and their associated canoncial transfor-
mations, these relations hold only approximately, only over the restricted domain d, and
only for transformations in a restricted neighborhood of the identity.

5 Approximate, Restricted Lie Algebra and Lie Group Homomorphisms

In this section, we will see that in the collective limit where ~→ 0, σq → 0, σp → 0 subject
to the constraint σqσp ≥ ~

2 , the push forward mapping B∗ furnishes a homomorphism from
the Lie algebra of vector fields of the form (22) over d ⊂ H to the algebra of Hamiltonian
vector fields over Γ . 18 Likewise, we will see that in a similar limit, the function B furnishes
a homomorphism from the group of finite unitary transformations of the form (40) acting
within d to the group of finite canonical transformations of the form (39) acting over Γ .

18 Note that B(d) = Γ - that is, the image of the domain d under B is the whole phase space Γ .
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5.1 An Approximate Lie Algebra Homomorphism

Let us first discuss the claim concerning vector field Lie algebras over H and Γ , from which
the corresponding claim regarding associated finite Lie group transformations will follow.
Define

Uh ≡
∂f

∂pµ
∂

∂qµ
− ∂f

∂qµ
∂

∂pµ
(44)

Vh ≡
∂g

∂pµ
∂

∂qµ
− ∂g

∂qµ
∂

∂pµ
(45)

Ul ≡ −
i

~
f̂ |ψ〉 ∂

∂|ψ〉
+
i

~
〈ψ|f̂ ∂

∂〈ψ|
(46)

Vl ≡ −
i

~
ĝ|ψ〉 ∂

∂|ψ〉
+
i

~
〈ψ|ĝ ∂

∂〈ψ|
, (47)

with f, g ∈ C∞(Γ ), and where both the pairs f and f̂ , and g and ĝ, are related by a
deformation quantization mapping of the form (23).

The first core claim of this section, then, is that the push-forward under B of the Lie
product of the low-level vector fields Ul and Vl (here, given by the low-level vector field
commutator) evaluated at xl ∈ d is approximately equal to the Lie product of the high-level
vector fields Uh and Vh (given by the high-level vector field commutator) evaluated at B(xl),
up to terms O(σq) +O(σp) +O(~). Formally, this reads,

[Uh, Vh]|B(xl) = B∗([Ul, Vl]|xl) +O(σq) +O(σp) +O(~), (48)

or in component form,

(V µh ∂µU
ν
h − U

µ
h ∂µV

ν
h )

∣∣∣∣
B(xl)

(49)

=
∂Bν

∂xηl

∣∣∣∣
xl

(V κl ∂κU
η
l − U

κ
l ∂κV

η
l )

∣∣∣∣
xl

(50)

+O(σq) +O(σp) +O(~) (51)

for xl ∈ d for all pairs of vector fields of the form (Ul, Vl). For ~, σq, and σq sufficiently
small,, the push-forward map B∗ is an approximate Lie algebra homomorphism over the
domain d:

[Uh, Vh]|B(xl) ≈ B
∗([Ul, Vl]|xl) (52)

or, in component form,

(
V µh ∂µU

ν
h − U

µ
h ∂µV

ν
h

) ∣∣∣∣
B(xl)

(53)

≈
∂Bν

∂xηl

∣∣∣∣
xl

(
V κl ∂κU

η
l − U

κ
l ∂κV

η
l

) ∣∣∣∣
xl

(54)

for xl ∈ d (see Figure 3). As above, it should be noted that for fixed (~, σq, σp), the error
terms O(σq) + O(σp) + O(~) may fall beneath one’s fixed margin of approximate equality
for some choices of Ul and Vl but not others. In particular, these higher-order terms may be
non-negligible in size if the functions f , g vary rapidly on the scale of σq, σp, or ~. However,
as (~, σq, σp)→ 0 subject to the constraint σqσp ≥ ~

2 , the terms O(σq) +O(σp) +O(~) will
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Fig. 3 Over the domain d specified in (26), the push-forward of the Lie product of two low-level quantum-
mechanical vector fields Ul and Vl evaluated at xl approximates the Lie product of the corresponding
high-level classical vector fields Uh and Vh evaluated at B(xl).

become negligible for an ever-expanding subset of the full low-level algebra of vector fields
over H, expanding to encompass the full algebra in this limit.

We can see that relation (48) holds as follows. The high- and low-level vector field
commutators [Uh, Vh]|B(xl) and [Ul, Vl]|xl , respectively, are

[Uh, Vh]|B(xl)
=
∂{f, g}
∂qµ

∣∣∣∣
〈x̂〉,〈p̂〉

∂

∂pµ
−
∂{f, g}
∂pµ

∣∣∣∣
〈x̂〉,〈p̂〉

∂

∂qµ
(55)

[Ul, Vl]|xl =

(
−
i

~

)2

[f̂ , ĝ]|ψ〉
∂

∂|ψ〉
+

(
i

~

)2

〈ψ|[ĝ, f̂ ]
∂

∂〈ψ|
. (56)

The push forward of [Ul, Vl]|xl under B is

B∗([Ul, Vl]|xl )

=

(
1

i~

)2

〈ψ|[q̂µ, [f̂ , ĝ]]|ψ〉
∂

∂qµ
+

(
1

i~

)2

〈ψ|[p̂µ, [f̂ , ĝ]]|ψ〉
∂

∂pµ
. (57)

The commutator 1
i~ [f̂ , ĝ] satisfies

1

i~
[f̂ , ĝ] = {̂f, g}+O(~) (58)

in accordance with the axioms of deformation quantization, as can readily be confirmed
using the definition (23). Substitution into (57) yields

B∗([Ul, Vl]|xl )

=
1

i~
〈ψ|[q̂µ, {̂f, g}]|ψ〉

∂

∂qµ
+

1

i~
〈ψ|[p̂µ, {̂f, g}]|ψ〉

∂

∂pµ
+O(~)

= 〈ψ|
∂̂{f, g}
∂pµ

|ψ〉
∂

∂qµ
− 〈ψ|

∂̂{f, g}
∂qµ

|ψ〉
∂

∂pµ
+O(~). (59)
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For xl = |ψ〉 in the domain d, we have

B∗([Ul, Vl]|xl )

=
∂{f, g}
∂pµ

∣∣∣∣
〈q̂〉,〈p̂〉

∂

∂qµ
−
∂{f, g}
∂qµ

∣∣∣∣
〈q̂〉,〈p̂〉

∂

∂pµ
+O(σq) +O(σp) +O(~)

= [Uh, Vh]|B(xl)
+O(σq) +O(σp) +O(~), (60)

yielding the desired result (48). Again, for (~, σq, σp) sufficiently small, this yields the ap-
proximate equality (52), and exact equality in the limit where ~ → 0, σq → 0, σp → 0 in
keeping with the constraint σxσp ≥ ~

2 .

5.2 An Approximate Lie Group Homomorphism

As we have seen, to each of the classical observables f and g corresponds a one-parameter
group of canonical transformations on Γ :

G1
h(xh, u) = exp(Uhu)x′h

∣∣
xh

= e{f,·}u(q, p)
∣∣
q0,p0

(61)

G2
h(xh, v) = exp(Vhv)x′h

∣∣
xh

= e{g,·}v(q, p)
∣∣
q0,p0

(62)

where xh = (q0, p0) and u, v ∈ R. Likewise, to each of the quantum observables f̂ and ĝ
corresponds a one-parameter group of unitary transformations on H:

G1
l (xl, u) = exp(Ulu)x′l

∣∣
xl

= e−
i
~ f̂u|ψ0〉 (63)

G2
l (xl, v) = exp(Vlv)x′l

∣∣
xl

= e−
i
~ ĝv|ψ0〉, (64)

where xl = |ψ0〉, and u, v are the same real parameters as in (61) and (62).
The second core claim of this section, then, is that if G2

l (G
1
l (xl, u

′), v′) ∈ d for all 0 ≤
u′ ≤ u and 0 ≤ v′ ≤ v,

G2
h(G1

h(B(xl), u), v) = B(G2
l (G

1
l (xl, u), v)) + ε (65)

where the error ε will be small if ~, lq, and lp are. As already mentioned, we will see in
Section 5.3 that for fixed (u, v), ε vanishes in a certain limit in which ~, lq, lp, and the initial
state widths σq and σp associated with xl all approach zero. Assuming that the values of ~,
lq, lp are set at some small but fixed values, we may write,

G2
h(G1

h(B(xl), u), v) ≈ B(G2
l (G

1
l (xl, u), v)) (66)

if G2
l (G

1
l (xl, u

′), v′) ∈ d for all 0 ≤ u′ ≤ u and 0 ≤ v′ ≤ v. Note that for a given xl and for
fixed (~, lq, lp), (66) holds only for parameter values (u, v) in some restricted neighborhood
of (0, 0) (which corresponds to the identity transformation). However, we will see that in the
special limit just described, this neighborhood grows to enompass all real values of (u, v).

Insofar as B maps the action over Hilbert space associated with the product of two
unitary transformations into a transformation on phase space that approximates the product
of the corresponding two canonical transformations, it functions as a partial, approximate
homomorphism from unitary group actions over the subset d of Hilbert space to canonical
group actions over phase space. One sense in which the homomorphism is only partial is
that it holds only for transformations in some restricted neighborhood of the identity, since
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continuous unitary transformations do not generally preserve the set d for arbitrarily large
parameter values. However, we will see that in a certain limit, this neighborhood expands to
include the full set of unitary transformations continuously connected to the identity. Only
in this limit does the approximate homomorphism furnished by B become exact and extend
to cover the full group of continuous unitary transformations.

The relation (65), which connects unitary group actions over Hilbert space and canonical
group actions over phase space, can be shown to hold by virtue of the corresponding relation
(48) relating the actions of these groups’ Lie algebras. Re-rewritten in terms of vector field
generators and the exponential map, the relation (65) that we wish to derive is,

B(exp(Vlv) exp(Ulu)x′l
∣∣
xl

) = exp(Vhv) exp(Uhu)xh
∣∣
B(xl)

+ ε (67)

for all (u, v) such that exp(Vlv
′) exp(Ulu

′)x′l
∣∣
xl
∈ d for all 0 ≤ u′ ≤ u and 0 ≤ v′ ≤ v.

Defining

Wh =
1

w
log(exp(Vhv) exp(Uhu)) (68)

Wl =
1

w
log(exp(Vlv) exp(Ulu)) (69)

so that exp(Whw) = exp(Vhv) exp(uhu) and exp(Wlw) = exp(Vlv) exp(Ulu), with w ∈ R,
we wish to show that

B(exp(Wlw)x′l
∣∣
xl

) = exp(Whw)x′h
∣∣
B(xl)

+ ε (70)

if exp(Wlw
′)x′l
∣∣
xl
∈ d for all 0 ≤ w′ ≤ w. As we have seen, to show this, it suffices to show

that

Wh

∣∣
B(xl)

= B∗(Wl

∣∣
xl

) +O(σq) +O(σp) +O(~) (71)

for all xl ∈ d. To show this, in turn, we may invoke the Baker-Campbell-Hausdorff Lemma,
which provides an expansion the vector fields W in terms of the vector fields U and V :

wWh ≡ log(exp(Vhv) exp(Uhu))

=
∑
n>0

(−1)n−1

n

∑
ri+si>0
1≤i≤n

(∑n
i=1 (ri + si)

)−1

r1!s1!...rn!sn!

vr1us1 ...vrnusn
[
V r1h Us1h ...V rnh Usnh

]
, (72)

wWl = log(exp(Vlv) exp(Ulu))

=
∑
n>0

(−1)n−1

n

∑
ri+si>0
1≤i≤n

(∑n
i=1 (ri + si)

)−1

r1!s1!...rn!sn!

vr1us1 ...vrnusn
[
V r1l Us1l ....V rnl Usnl

]
. (73)

The multi-bracket [V r1Us1 ...V rnUsn ] in these expressions is defined by
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[V r1Us1 ...V rnUsn ] ≡ (74)

[V, [V, ...[V︸ ︷︷ ︸
r1

, [U, [U, ...[U︸ ︷︷ ︸
s1

, ... [V, [V, ...[V︸ ︷︷ ︸
rn

, [U, [U, ...[U,U︸ ︷︷ ︸
sn

]]...]], (75)

where, in the present context, the commutator on the right-hand side is the vector field
commutator, and where this term is zero if sn > 1, or if sn = 0 and rn > 1 [13]. By linearity
of the push-forward map, the condition (71) will follow if we can show that

[V r1h Us1h ...V
rn
h Usnh ]

∣∣
B(xl)

= B∗
(

[V r1l Us1l ...V
rn
l Usnl ]

∣∣
xl

)
+O(σq) +O(σp) +O(~) (76)

for all xl ∈ d. Note that

[
V r1h Us1h ...V rnh Usnh

]
= (77)

∂

∂pµ
({gr1fs1 ...grnfsn})

∂

∂qµ
−

∂

∂qµ
({gr1fs1 ...grnfsn})

∂

∂pµ
(78)

where the multibracket {gr1fs1 ...grnfsn} on the right-hand side is defined analogously to
(74) using the Poisson bracket rather than the vector field commutator. Similarly,

[
V r1l Us1l ...V rnl Usnl

]
=

(
−
i

~

)∑n
i (ri+si) [

ĝr1 f̂s1 ...ĝrn f̂sn
]
|ψ〉

∂

∂|ψ〉

+

(
i

~

)∑n
i (ri+si)

〈ψ|
[
f̂sn ĝrn ...f̂s1 ĝr1

] ∂

∂〈ψ|
(79)

where the multibracket
[
ĝr1 f̂s1 ...ĝrn f̂sn

]
on the right-hand side is defined analogously to (74)

using the commutator of Hilbert space operators rather than the vector field commutator.
To show (76), we begin by taking the pushforward of (79):

B
∗
(
[
V
r1
l
U
s1
l
...V

rn
l

U
sn
l

]
)

= 〈ψ|
[
q̂
µ
,
[
ĝ
r1 f̂

s1 ...ĝ
rn f̂

sn
]]
|ψ〉

∂

∂qµ
+ 〈ψ|

[
p̂
µ
,
[
ĝ
r1 f̂

s1 ...ĝ
rn f̂

sn
]]
|ψ〉

∂

∂pµ

+ O(~)

= 〈ψ|
̂∂

{
gr1fs1 ...grnfsn

}
∂pµ

|ψ〉
∂

∂qµ
− 〈ψ|

̂∂
{
gr1fs1 ...grnfsn

}
∂qµ

|ψ〉
∂

∂pµ

+ O(~). (80)

In going from the second to the third line, we have made use of the fact that

[
ĝr1 f̂s1 ...ĝrn f̂sn

]
= i~ ̂{gr1fs1 ...grnfsn}+O(~2), (81)

which follows from iterated application of (58). Evaluating B∗([V r1l Us1l ...V
rn
l Usnl ]) over the

domain d, we then have

B
∗
(
[
V
r1
l
U
s1
l
...V

rn
l

U
sn
l

]
)

=
∂

∂qµ

({
g
r1f

s1 ...g
rnf

sn
}) ∣∣∣∣
〈q̂〉,〈p̂〉

∂

∂pµ
−

∂

∂pµ

({
g
r1f

s1 ...g
rnf

sn
}) ∣∣∣∣
〈q̂〉,〈p̂〉

∂

∂qµ

+ O(~) + O(σq) + O(σp)

=
[
V
r1
h
U
s1
h
...V

rn
h

U
sn
h

] ∣∣∣∣
B(xl)

+ O(~) + O(σq) + O(σp), (82)
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thus ensuring that (76) holds. Recall that by linearity of the pushforward map and the
expansions (72) and (73), this relation entails (71), which in turn entails (67), the result
that we initially sought to derive. Note that the error ε in (70) and (67) will be small if the
values of ~, lq, and lp are. As we now discuss, for given parameter values (u, v), ε vanishes
in a certain limit where ~, lq, lp, and the initial state widths σq and σp associated with xl
all approach zero.

5.3 Wave Packet Spreading Under General Unitary Transformations

We have seen that for fixed non-zero values of (~, lq, lp), the group of continuous unitary
transformations on H will preserve the domain d only for transformations in some neighbor-
hood of the identity map. That is, for a given initial state |ψ0〉 in d and a given generator

f̂ , the set of states e−
i
~ f̂u|ψ0〉 will remain continuously in d for values of u between zero

and some finite upper bound, since unitary transformations generally may alter the position
and momentum widths of quantum states, carrying them beyond one or both of the limits
lq and lp that define d. However, we will see in this section that in a certain limit, this up-
per bound can be increased arbitrarily, so that the approximate homomorphism B between
quantum and classical group actions expands to encompass the full set of continuous unitary
transformations.

To see this, let us first calculate the rates of wave packet spreading in position and
momentum under the evolution associated with an arbitrary one-parameter group of unitary
transformations generated by the quantization f̂ of some classical observable f . First, let
us calculate the rate of change with respect to u of the variance in position under the one-

parameter group of transformations e−
i
~ f̂u, where u ∈ R and we assume without loss of

generality that the quantum state |ψ0〉 at u = 0 is initially centered about the spatial origin,
so that 〈q̂〉 = 0 19 :

d

du
V ar(q̂) =

d

du

[
〈ψ0|e

i
~ f̂u q̂

2
e
− i~ f̂u|ψ0〉 −

(
〈ψ0|e

i
~ f̂u q̂ e

− i~ f̂u|ψ0〉
)2]

=
d

du
〈ψ0|e

i
~ f̂u q̂

2
e
− i~ f̂u|ψ0〉

=
1

i~
〈ψ0|[q̂2, f̂ ]|ψ0〉

= 〈ψ0|
(
q̂
∂̂f

∂p
+
∂̂f

∂p
q̂

)
|ψ0〉

= 2〈q̂
∂̂f

∂p
〉+O(~)

= 2〈q̂〉〈
∂̂f

∂p
〉+O(~) +O(σq) +O(σp)

= O(~) +O(σq) +O(σp) (83)

In going from the first to the second line, we have made use of the assumption that 〈q̂〉 = 0;
in going from the second to the third line, the relation (9); in going from the third to the

fourth, the relation [q̂, f̂ ] = i~ ∂̂f∂p , from which it follows that [q̂2, f̂ ] = i~
(
q̂ ∂̂f∂p + ∂̂f

∂p q̂
)

; in

going from the fourth to the fifth, the relation q̂ ∂̂f∂p = ∂̂f
∂p q̂+O(~); in going from the fifth to

the sixth, the relation 〈q̂ ∂̂f∂p 〉 = 〈q̂〉〈 ∂̂f∂p 〉+O(σq) +O(σp).
20 By taking (~, σq, σp) sufficiently

small, it is possible to ensure that the initial rate of spreading in position under the unitary
transformation generated by f̂ is arbitrarily close to zero.

19 It is always possible to translate one’s coordinate system so that the origin lies at the wave packet’s
centroid.

20 This last relation follows from the fact that both 〈q̂ ∂̂f
∂p
〉 and 〈q̂〉〈 ∂̂f

∂p
〉 are equal to q ∂f

∂p

∣∣
〈q̂〉,〈p̂〉 up to

O(σq) +O(σp), as shown in Appendix A, and therefore can only differ by terms of O(σq) +O(σp).
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Higher derivatives of the position variance with respect to u also take the form O(~) +
O(σq) +O(σp), and therefore also vanish with (~, σq, σp). To see this, note that

dn

dun
V ar(q̂) =

1

(i~)n
〈ψ0|[...[[q̂2, f̂ ], f̂ ], ..., f̂ ]︸ ︷︷ ︸

n times

|ψ0〉, (84)

which follows from iterated application of (9). Each term in the expansion of this commutator

consists of a product of two powers of q̂ and n powers of f̂ . The expectation value of each
such term is equal to 〈q̂〉2〈f̂〉n + O(~) + O(σq) + O(σp), with different terms differing at
O(~) +O(σq) +O(σp). Since 〈q̂〉 = 0 by assumption, it follows that

dn

dun
V ar(q̂) = O(~) +O(σq) +O(σp). (85)

for all postive integers n. By making (~, σq, σp) sufficiently small, all derivatives at t = 0 of
the position-space variance can be taken arbitrarily close to zero. Since

σ2
q (u) = e

u d
du′ σ2

q (u′)
∣∣
u′=0

(86)

= σ2
q (0) + u

dσ2
q

du′

∣∣
0

+
1

2!
u2
d2σ2

q

du′2

∣∣
0

+ ...., (87)

the size of σ2
q (u) for fixed u can be made arbitrarily small by making all of the derivatives

dnσq
dun arbitrarily small. As the derivatives of σ2

q (u) with respect to u at u = 0 become smaller,
the value of u for which σ2

q (u) first reaches or exceeds l2q (assuming σq(0) < lq) grows without
bound. By a similar sequence of steps, one can derive analogous results for the momentum
variance V ar(p̂) = σ2

p(u) with respect to the bound lp that defines d.
Thus, for a given choice of (lq, lp), in the limit (~, σq(0), σp(0)) → 0 constrained by

σq(0)σp(0) ≥ ~
2 , the set of parameter values u for which e−

i
~ f̂u|ψ0〉 ∈ d (assuming |ψ0〉 ∈ d)

extends to include the whole real line. Since this applies to arbitrary generators f̂ in the
algebra of quantum observables, the neighborhood of unitary transformations around the
identity that map a given initial state |ψ0〉 ∈ d continuously to other states in d expands
to include the full group of unitary transformations on H continuously connected to the
identity. It is worth emphasizing once again that this applies for fixed non-zero (lq, lp) in the
constrained limit (~, σq(0), σp(0))→ 0.

However, even in this constrained limit, the margins of error within which the relations
(30) and (52) hold do not vanish since lq and lp are assumed to be finite and non-zero.
However, by taking the limit (lq, lp) → 0 after the constrained limit (~, σq(0), σp(0)) → 0,
it is possible to ensure that the relations (30), (42), (52), and (66) all hold simultaneously
and with exact equality, and that (42) and (66) hold exactly for the full group of continuous
unitary transformations on H, since the low-level state will be guaranteed to remain in d for
all such transformations in this limit.

6 Conclusion

This investigation has attempted to show how a certain general template for “reduction”
between two models of the same physical system serves to clarify the relationship between
deformation quantization and a certain geometrical extension of the well-known result that
expectation values of position and momentum traverse approximately classical trajectories
when the quantum state is narrowly peaked in position. Whereas the specific sort of conti-
nuity between quantum and classical formalisms associated with deformation quantization
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concerns only the abstract algebras of observables that generate unitary and canonical trans-
formations, the correspondence described here relies essentially on the structure of quantum
and classical state spaces over which specific actions of these abstract algebras and their
associated groups are defined. In particular, while deformation quantization rests only on
the formal limit ~ → 0, the continuity associated with the correspondence described here
rests both on this limit and on certain limits where the position and momentum widths of
the quantum state vanish along with ~. This latter feature provides one respect in which
the correspondence described here is non-trivially distinct from that associated with defor-
mation quantization. Moreover, this correspondence provides a unified frame within which
to understand the distinct-but-related roles played by deformation quantization on the one
hand and results associated with Ehrenfest’s Theorem and the restriction to narrow wave
packet states on the other.

A Proof of (32)

In this section, we prove that the expectation value of a Hermitian operator ĥ of the form (23) evaluated on
a state |ψ〉 ∈ d with position space width σq and momentum space width σp takes the form

〈ψ|ĥ|ψ〉 = h (〈q̂〉, 〈p̂〉) +O(~) +O(σq) +O(σp), (88)

where h is the unique real-valued function over classical phase space corresponding to the operator ĥ. From
the expression (23), we can see that to show this it suffices to show that

〈ψ|Herm(q̂np̂m)|ψ〉 = 〈q̂〉n〈p̂〉m +O(~) +O(σq) +O(σp). (89)

First, note that

Herm(q̂np̂m) = q̂np̂m +O(~). (90)

Second, for our purposes it is reasonable to approximate the momentum space expansion of the state |ψ〉
localized to width σp in momentum by a Gaussian of width σp (for example, through a truncated expan-
sion of the momentum-space wave function in terms of Hermite polynomials). In the momentum basis, we
approximate |ψ〉 as,

|ψ〉 =
1

(2π)1/4σ
1/2
p

∫
dp e

− (p−p0)2

4σ2p eipq0 |p〉. (91)

Acting on |ψ〉 with p̂, we have

p̂|ψ〉 =
1

(2π)1/4σ
1/2
p

∫
dp p e

− (p−p0)2

4σ2p eipq0 |p〉 (92)

= p0|ψ〉+ σ2
p

(
eip0q0

(2π)1/4σ
1/2
p

∫
dp′ p′ e−

p′2
4 eiσpp

′q0 |σpp′ + p0〉
)

(93)

= p0|ψ〉+O(σp), (94)

where in the second line, we have employed the change of variables p′ = p−p0
σp

, and the integral in the second

line is a vector of magnitude proportional to 1

σ
1/2
p

. As a whole, the error term therefore vanishes as σp.

Iterating this result m times, we have to first order in σp,

p̂m|ψ〉 = pm0 |ψ〉+O(σp). (95)

Through a similar calculation, we find that q̂|ψ〉 = q0|ψ〉+O(σq) and to first order in σq , q̂n|ψ〉 = qn0 |ψ〉+
O(σq). It then follows that

q̂np̂m|ψ〉 = qn0 p
m
0 |ψ〉+O(σq) +O(σp). (96)

From (90), we then have that

Herm(q̂np̂m) = qn0 p
m
0 |ψ〉+O(σq) +O(σp) +O(~) (97)
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Noting that q0 = 〈q̂〉 and p0 = 〈p̂〉, we then have

〈ψ|Herm(q̂np̂m)|ψ〉 = 〈q̂〉n〈p̂〉m +O(σq) +O(σp) +O(~) (98)

Inserting into relation (23), it follows that

〈ĥ〉 = h(〈q̂〉, 〈p̂〉) +O(σq) +O(σp) +O(~), (99)

as we aimed to show.

B Proof of (41)

Assume that

Uµh
∣∣
B(xl)

=
∂Bµ

∂xνl
Uνl
∣∣
xl

+ δ(xl) (100)

for all xl ∈ d, where δ(xl) is some xl-dependent error term. In the example studied here, δ(xl) will consist
of terms O(σq) +O(σp) +O(~), where σq and σp are the widths of the state xl = |ψ〉. We wish to show that

Gh(B(xl), s) = B(Gl(xl, s)) + ε (101)

if Gl(xl, s
′) ∈ d for all 0 ≤ s′ ≤ s, where the error ε vanishes as δ(xl) vanishes uniformly within d. Since

δ(xl) consists of terms O(σq) +O(σp) +O(~), ε will be negligible for sufficiently small values of ~, lq , and

lp (where lqlp >
~
2

).
If xl(s) ≡ Gl(xl, s) is an integral curve of the low-level vector field Ul, then from (100) it follows that

dB(xl(s))

ds
= Uh|B(xl(s))

+ δ(xl), (102)

for all xl ∈ d. This can be seen through the sequence of steps:
dB(xl)
ds

= ∂B
∂xl

dxl
ds

= ∂B
∂xl

Ul|xl = Uµh
∣∣
B(xl)

+

δ(xl), where the first equality follows from the Chain Rule, the second from the fact that dxl
ds

= Ul|xl , and

the third from (100). We can approximate Uh|B(xl(s))
≈ d

ds′
∣∣
s′=sDh(B(xl), s

′) for s such that Uh does not

vary substantially on the scale
∣∣Dh(B(xl), s)− B(Dl(xl, s))

∣∣
h

. 21 The relation can then be rewritten (102)
in terms of the transformations Gl(xl, s) and Gh(B(xl), s) as follows:

d

ds′
B(Gl(xl, s

′)) ≈
d

ds′
Gh(B(xl), s

′) + δ(xl(s
′)), (103)

Integrating both sides from 0 to s, we then have

B(Gl(xl, s))−B(Gl(xl, 0)) ≈ Gh(B(xl), s)−Gh(B(xl), 0) (104)

+

∫ s

0
ds′ δ(xl(s

′)). (105)

Since B(Gl(xl, 0)) = Gh(B(xl), 0) = B(xl), this gives

B(Gl(xl, s)) ≈ Gh(B(xl), s) + ε, (106)

where ε ≡
∫ s
0 ds

′ δ(xl(s
′)), and vanishes as δ(xl)→ 0 uniformly in d.

21 Here we are ignoring a certain second-order effect. Differences between Dh(B(xl), s) and B(Dl(xl, s)) for
increasing s accumulate not only as a result of the slight difference δ(xl) between the generating vector fields

Uµh
∣∣
B(xl)

and ∂Bµ

∂xν
l
Uνl
∣∣
xl

, but also as a result of the fact that the points in Sh at which the high-level vector

field and the push-forward vector field are integrated are slightly different for s > 0: Uh is integrated along
Dh(B(xl), s), while the push-forward vector field ∂Bµ

∂xν
l
Uνl is integrated B(Dl(xl, s)); in general, these points

only coincide at s = 0. This additional error is proportional to the derivative ∂Uh
∂xl

. As long as Dh(B(xl), s)

and B(Dl(xl, s)) do not differ by more than the scale over which Uh changes substantially, we may ignore
this error, which also vanishes as δ(xl)→ 0 uniformly in d.
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