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Abstract. Previous calculations of band-head energy spectra of odd-mass heavy nuclei
in the Hartree-Fock-plus-Bardeen-Cooper-Schrieffer (HF-BCS) framework showed that
the agreement with data is better for odd-neutron as compared to odd-proton nuclei. The
reason for a poorer agreement with data for the latter have been ascribed to the possible
usage of the Slater approximation in calculating the Coulomb-exchange term. In this
work, we report the effect of exact Coulomb-exchange calculations on band-head energy
spectra of two odd-proton nuclei (namely 237Np and 241Am) as compared to the results
obtained using the Slater approximation. We performed self-consistent blocking calcu-
lations while taking the breaking of time-reversal symmetry at the mean-field level into
account due to the unpaired nucleon. The SkM* and SIII parametrizations of the Skyrme
interaction have been employed to approximate the effective nucleon-nucleon interaction
while a seniority force is used for the pairing channel. Contrary to what was expected,
our preliminary results show no improvement on the band-head spectra as compared to
data when the Coulomb-exchange term is calculated exactly.

1 Introduction

Self-consistent blocking calculations of band-head energies of odd-mass nuclei have been recently
performed in Ref. [1] within the Hartree-Fock-plus-Bardeen-Cooper-Schrieffer (HF+BCS) frame-
work. Using two choice of Skyrme parametrizations namely the SIII and SkM*, the authors showed
that the agreement between the calculated results and experimental data for odd-neutron nuclei
(namely 235U and 239Pu) is better than for odd-proton nuclei (namely 237Np and 241Am). A possi-
ble reason for the poorer agreement with data for odd-proton nuclei is attributed to the usage of the
Slater approximation [2] for the Coulomb-exchange term. As a follow-up to the previous work, we
would like to investigate as to what extend the Slater approximation affects the agreement of band-
head energies with data. Conversely, we want to check if exact calculations of the Coulomb-exchange
term would improve the agreement of the quantity of interest with available data.

While exact calculation of the Coulomb-exchange term is possible, majority of mean-field cal-
culations of various nuclear properties resort to using the Slater approximation due to the former
being more cumbersome and requires longer computing time. Some studies on the validity of the
Slater approximation have been performed starting from the work of Ref. [3] and more recently in
the work of Refs. [4] and [5]. The general consensus was that the Slater approximation constitute a
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good approximation for heavy nucleus while it is less good for light nucleus. Furthermore, the Slater
approximation was found to be better in open shell nucleus as compared to nuclei in the vicinity of
magic nucleus [5].

However, previous studies involved only even-even (i.e. even with respect to the proton and
neutron numbers) mass nuclei whereby only the time-even densities contributes to the Hamiltonian
density. In the case of odd-mass nuclei (odd-odd nuclei included), the time-odd densities does not
vanish as is the case in even-even nuclei and resulting in the lifting of the Kramers degeneracy of the
single-particle levels. The inclusion of the time-reversal symmetry breaking at the mean-field level
(due to the time-odd densities) plays an important role in describing for e.g. the quenching of the spin
gyromagnetic ratio (see Refs. [6–8]). This preliminary work is therefore, to the best of our knowlege,
the first in which exact calculations of the Coulomb-exchange term is performed on top of breaking
the time-reversal symmetry at the mean-field level.

2 Details of the approach

This work is based on the HF+BCS framework assuming axial and parity symmetric nuclear shape.
The effective nucleon-nucleon interaction is approximated with the phenomenological Skyrme inter-
action. More specifically, we have make use of the SIII Skyrme parametrization [10]. For the BCS
pairing treatment, the seniority force is used whereby the pairing strengths, Gq entering the pairing
matrix element, gq

gq =
Gq

Nq + 11
(1)

has been fitted to the odd-even mass staggering of some actinide nuclei (refer Ref. [1] for details of
the fitting procedure). The parameter Nq above refers to the number of nucleons for a given charge
q. The retained values are Gn = 17.15 MeV and Gp = 14.00 MeV for the neutron and proton pairing
strengths, respectively. All single-particle states up to 6 MeV above the chemical potential with a
smooth cut-off of µ = 0.2 MeV has been considered for the BCS calculations.

In the case of odd-mass nucleus, the lowest-energy solution for a particular blocked Kπ configura-
tion is obtained by blocking one single-particle state k nearest to the Fermi level. The third component
of the total angular momentum of the blocked state Ωk is assumed to correspond to the nuclear spin
of the whole nucleus (i.e. K = Ωk). The blocking procedure was implemented in the code by setting
the occupation number v2k of the single-particle state k to 1.

A consequence of blocking a single-particle state is that now the time-odd local densities entering
the Hamiltonian densities (defined in terms of the action of the time-reversal symmetry operator) does
not vanish as is the case for the ground-state of even-even nucleus. Discussions on these local densities
as well as the Hartree-Fock equations can be found for e.g. in Appendix A of Ref. [9].

When performing calculations using the Slater approximation, the contribution from the Coulomb-
exchange term to the total binding energy of the nucleus is given by

E(S later)
exch.Coul. = −

3
4

e2
(3
π

)1/3 ∫
d3r ρ4/3

p (r) (2)

The negative sign in the equation (2) reflects the fact that this term provides additional binding energy
to the nucleus. On the other hand, the matrix elements of the Coulomb exchange term can be calcu-
lated exactly. The details of such procedure are rather lengthy and we would rather refer the readers
to the literatures for e.g. Refs. [5, 11, 12]
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The HF+BCS solution serves as an intrinsic state solution 〈ΦαKπ|Ĥe f f |ΦαKπ〉 in the Bohr unified
model description whereby the total energy of the nucleus EKπα is given by [1]

EKπα = 〈ΦαKπ|Ĥe f f |ΦαKπ〉 −
〈Ĵ2

core〉
2J +

�2

2J
[
I(I + 1) − K(K − 1) + δK, 12

a(−1)I+ 1
2

(
I +

1
2

)]
(3)

The Coriolis coupling effect has been neglected except for K = 1/2 which is taken care by the de-
coupling parameter a. The decoupling parameter and the rotational energy 〈Ĵ

2
core〉

2J have been computed
from the microscopic polarized even-even core solution.

Setting the nuclear spin, I, to I = K for band-head, we obtained

EKπα = 〈ΦαKπ|Ĥe f f |ΦαKπ〉 −
〈Ĵ2

core〉
2J +

�2

2J
[
2K + δK, 12

a(−1)I+ 1
2

(
I +

1
2

)]
(4)

Using equation (4), the excitation energy E∗Kπα is calculated with respect to the energy of the ground-
state band. The moment of inertia J has been calculated by using the Inglis-Belyaev formula (see
e.g. Ref. [14]) omitting the blocked single-particle state and its conjugate state.

3 Results

Calculations of band-head energies have been performed for 237Np and 241Am using both the Slater
approximation and exact calculations of the Coulomb-exchange term. The results are plotted in Fig.
1 and Fig. 2 and compared to experimental data. The excitation energies are tabulated in Table 1
together with the calculated values for the moment of inertia. The latter is given in terms of energy
parameter A = �2

2αJ and was obtained after multiplying the moment of inertia by a factor of 1.32 as
proposed by Ref. [13]

From the figures, it appears that spectra obtained from exact Coulomb-exchange calculations and
Slater approximation are almost similar. Only some blocked configurations obtained from exact cal-
culations are pushed further apart, resulting in a less compress spectra. However, the root-mean-
square energy deviations of 562 keV and 521 keV for exact calculations and Slater approximation,
respectively, show that the exact calculations do not improve the agreement with data as was initially
thought.

4 Conclusion

We have performed exact Coulomb-exchange calculations for band-head energies of two odd-proton
nuclei and to compare the results with those obtained using the usual Slater approximation. The
SIII Skyrme parametrization and the seniority force were employed for this study. It was found that
the energy spectra obtained from both sets of calculations to be rather similar with no significant
improvement in the agreement to data when exact calculations were performed. Nevertheless, it
is still premature to conclude that exact Coulomb-exchange calculations has no meaningful impact
when band-head energies are concerned. Further work is needed especially by focusing on regions
whereby more experimental data are available for comparison.
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Figure 1: Comparison of the band-head energy spectra of 237Np obtained using the two different
approaches for the calculations of the Coulomb-exchange term as compared to experimental data
[17]. The results pertaining to Slater approximation and exact calculations are explicitly indicated.
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Figure 2: Similar to Fig. 1 but for 241Am nucleus.
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Figure 2: Similar to Fig. 1 but for 241Am nucleus.

Table 1: Excitation energies of band-head states E∗Kπα and energy parameter (A = �2

2βJ ) obtained from
exact Coulomb-exchange calculations as compared to when Slater approximation is being used. The
constant β = 1.32 of Ref. [13] is to account for the Thouless-Valatin correction term. Experimental
data taken from Ref. [17] are included for comparison.

.

Nucleus Kπ E∗Kπ [MeV] A [keV]
Exact Slater Exp. Exact Slater Exp.

237Np

5/2+ 0 0 0 10.62 10.85 4.7
5/2− -140 -76 59.5 8.56 9.27 6.2
1/2− 652 652 281.35 9.08 9.90 6.9
1/2+ 568 571 332 8.16 8.82 6.2
3/2− 1218 1120 514.2 9.65 10.19 6.3

241Am

5/2− 0 0 0 8.32 9.02 5.9
5/2+ -943 -829 205.9 10.32 10.59 4.2
3/2− 119 28 471.8 8.90 9.52 6.5
1/2+ 437 398 623.1 7.76 8.44 6.0
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