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ABSTRACT 

The Magnetic Levitation System (MLS) is a challenging nonlinear 

mechatronic system in which an electromagnetic force required to suspend an object 

(metal sphere) in the air. The electromagnetic force is very sensitive to the noise, which 

can create acceleration forces on the metal sphere, causing the sphere to move into the 

unbalanced region. Maglev’s benefits the industry, and the system has reduced power 

consumption, has increased power efficiency, and reduced maintenance cost. The 

typical applications for Maglev’s Power Generation, for example, wind turbine, 

Maglev’s trains, and Medical Device (magnetically suspended Artificial Heart Pump). 

This project presents a comparative assessment of controllers for the magnetic 

levitation system and the way of optimally tune of the PID parameter. The magnetic 

levitation system divided into two types, attractive and repulsive, in this project 

attractive type has been chosen. The analysis will be performed after finding the state 

space model of magnetic levitation system, and simulation will be performed using 

MATLAB Simulink. The optimal tuning based PID controller will offer a transient 

response with better overshoot and rise time than the standard optimization methods. 

For the trained networks, metamodel radial basis function networks perform more 

robustly and tolerantly than the gradient descent method even when dealing with 

noised input data set. The simulation output using the radial basis based metamodel 

approach showed an overshoot of 9.34% and rise time 9.84ms, which is better than the 

gradient descent and conventional PID methods.  

  



 

vii 

ABSTRAK 

Magnetic Levitation System (MLS) adalah sistem mekatronik nonlinier yang 

mencabar di mana daya elektromagnetik yang diperlukan untuk menggantung objek 

(sfera logam) di udara. Daya elektromagnetik sangat sensitif terhadap kebisingan, yang 

dapat membuat daya pecutan pada sfera logam, menyebabkan sfera bergerak ke 

wilayah yang tidak seimbang. Maglev memberi keuntungan kepada industri, dan 

sistemnya telah mengurangkan penggunaan kuasa, meningkatkan kecekapan kuasa, 

dan mengurangkan kos penyelenggaraan. Aplikasi khas untuk Penjanaan Kuasa 

Maglev, misalnya, turbin angin, kereta api Maglev, dan Peranti Perubatan (Pam 

Jantung Buatan yang digantung secara magnetis). Projek ini menyajikan penilaian 

perbandingan pengawal untuk sistem levitasi magnetik dan cara penyesuaian 

parameter PID secara optimum. Sistem levitasi magnetik terbahagi kepada dua jenis, 

menarik dan menjijikkan, dalam projek ini jenis menarik telah dipilih. Analisis akan 

dilakukan setelah mencari model ruang sistem sistem levitasi magnetik, dan simulasi 

akan dilakukan menggunakan MATLAB Simulink. Pengawal PID berasaskan 

penalaan yang optimum akan menawarkan tindak balas sementara dengan lebihan 

masa dan masa kenaikan yang lebih baik daripada kaedah pengoptimuman standard. 

Untuk rangkaian terlatih, rangkaian fungsi asas radial metamodel berkinerja lebih 

mantap dan bertoleransi daripada kaedah penurunan gradien walaupun berhadapan 

dengan set data input berisik. Output simulasi menggunakan pendekatan metamodel 

berasaskan radial menunjukkan kelebihan 9.34% dan masa kenaikan 9.84ms, yang 

lebih baik daripada kaedah kecerunan dan kaedah PID konvensional. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background Study  

Magnetic levitation systems have described for a decade as a revolutionary 

means of travel in science fiction. In (1726), Jonathan Swift has described the magnetic 

levitation system for the first time. Also, in (1842) an English clergyman called Samuel 

Earnshaw described the importance of Maglev and its limitation, he shows that the 

system of Maglev has instability issues where the force between the static magnets and 

the contactless levitated part was impossible to be stable. The free levitated part has 

unstable displacement in at least one direction. [1]  

Not just engineering and industry fields are concerned with the magnetic 

levitation system., but also the medical and natural fields have used Maglev in many 

applications. In 2010 a group of researchers from the university of and Rice University 

had developed a three-dimensional tumour model related to magnetic levitation. They 

have had injected the cancer cells with magnetic iron oxide and gold nanoparticles. 

Moreover, by installing a coin size magnet near the infected area, they have 

successfully lifted the cells.[2]  

Recently, magnetic levitation systems have been appreciated for removing 

mechanical contact friction, reduce maintenance costs and achieve high-precision 

positioning. MLS system is also commonly used in various applications, such as high-

speed trains, magnetic bearing systems, vibration insulation systems, wind tunnel 

lifting and photolithographic measures. Reduce operating costs and achieve high 

precision performance. They are therefore widely used in a variety of fields, such as 

high-speed trains, vibration insulation systems, magnetic bearings, stepper 

photolithography, and wind turbine.[3] 
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Magnet levitation techniques can be classified into two types: Electro Dynamic 

Suspension (EDS) and Electro Magnetic Suspension (EMS). EDS systems are often 

known as "repulsive levitation." Superconductivity magnets [4] or permanent magnets 

[5] provide corresponding levitation sources. Nevertheless, it is difficult to activate the 

repulsive magnet poles at the law speed of superconductivity magnets, so they are 

usually used in a high-speed passenger train. The EDS magnetic levitation force is 

partly stable and allows a high clearance. Nevertheless, the magnetic materials 

manufacturing process is more complicated and expensive compared to the EMS 

system. Attractive levitation refers to the EMS system; inherently, the magnetic 

levitation force is unstable, thus controlling the system is much harder than the EDS 

system. The process and cost of manufacturing of EMS are lower than EDS, but 

additional electricity is required to maintain levitation height.   

1.2 Problem Statement 

Maglev system (MLS) referred to electromechanical systems and used 

electromagnetic field to levitate an object in a space with no human assistance. Over 

the years, engineers and researchers have been paying great attention to stabilize the 

magnetic levitation system. The characteristics maglev system is extremely nonlinear. 

It is unstable and considerable uncertainty. For the magnetic levitation system has a 

high nonlinear open-loop instability, due to the relationship between the magnetic 

force and ferromagnetic material. 

“Proportional Integral and Derivative” (PID). for so many years it has been 

used in industry field. PID controllers has been utilized since 1890s for controller 

design.[6] until today the industrial field still uses PID controllers with other different 

optimization techniques. The PID controller will stabilize the system, although the 

control performance of the system is limited due to the fixed controller parameters.   

1.3 Project Objectives  

The project aims to achieve the best results and overcome the limitation of the 

review papers, the specific objectives are as follows:   
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• To obtain a mathematical model of a maglev system in state space and transfer 

function form.   

• To design a PID controller and stabilize the system performance.  

• To develop a PID optimal tuning approach using metamodel based radial basis 

function neural network. 

• To verify the effectiveness of the tuning approach for maglev system with 

SIMSCAPE multibody. 

 

1.4 Scope of the Project  

The following describe the scope of the project: 

1. The mathematical model respect to Transfer function and state-space forms 

are used to describe the system model. 

2. The controllers are to be designed based on PID and optimal tuning using 

neural network (metamodel radial base function). 

3. MATLAB software will be used to implement the controllers to test their 

performance. 

4. Solid works will be used to design the 3D diagram of magnetic levitation 

system and simulated using MATLAB and SIMSCAPE Multibody 

plugin. 

5. The Metamodeling approach will be used to optimize the system 

parameters.  

 

1.5 Organization of The Report  

The project report prearranged as follows. Chapter two discusses and assesses 

the efficiency of the previous design controllers used for the maglev system and 

describes the basis of the study. Chapter three discuss the modeling of the magnetic 

levitation system and methodology used to design the Radial Basis Function based 

PID with metamodel approach. While chapter four and five presents the project results 

and conclusion. 
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