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Abstract.The mathematical model Fuzzy Topographic Topological Mapping (FTTM) was 

developed to solve the neuromagnetic inverse problem during a seizure for determining the 

location of epileptic foci. The aim of  this paper is to investigate various properties for the 

components and mappings of FTTM.  As a result, various kinds of monotonicity have been 

assured for its mappings.  Furthermore, each component of FTTM was demonstrated as                     

a topological group, unicoherent and indecomposable.   

1.   Introduction 

Fuzzy Topographic Topological Mapping (FTTM) is a mathematical model which was introduced in 

1999 to solve the neuromagnetic inverse problem for determining the location of epileptic foci in 

epilepsy disorder patient. Currently, there are three versions of FTTM which are FTTM1 [1], fuzzy 

topographic topological mapping version 2 (FTTM2) [2], and fuzzy topographic topological mapping 

digital (FTTMdig) [3]. All these versions are structured based on mathematical concepts of topology and 

fuzzy set. Furthermore, FTTM1 and FTTM2 were developed to present a 3-dimensional view of 

unbounded single current source and bounded multi current sources, respectively. In addition, the 

sequence of n versions of FTTM is defined by Tahir et al. [4]. 

 On the other hand, mappings have a mainly influence in preserving and invariant various 

properties in topology. One of these mappings is a monotone mapping which is introduced in 1942 by 

G. T. Whyburn  [5] Then, J. Charatonik in 1964 initiated a confluent mapping a as a generalization 

notion of a monotone mapping by [6]. Afterward, as mentioned in [7] Maćkowiak in 1979 used the 

notions of certain types of a monotone mapping that are feebly monotone and almost monotone 

mappings between continua. In 1989, J. Charatonik introduced the concept of feebly monotone when he 

studied the invariant of unicoherence property at subcontinua and he related feebly monotone with 

almost monotone. In addition, he established the invariant of unicoherence and indecomposable 

properties under these types of monotone mappings [7]. For this reason, many authors had been adopted 

many studies on this aspect (see [8], [9], [10], [11]).  

 The aim of this paper is to show that the mappings in FTTM are systematically monotone, almost 

monotone and feebly monotone mappings. In addition, the components of FTTM have various 

properties of spaces. Basic definitions and theorems are recalled in Section 2. While, Section 3 covers 

the previous related works on FTTM. In Section 4, the monotonicity on the sequence of FTTM are 

verified After that, the topological group properties of the components of FTTM are established in 

Section 5. The conclusion is drawn in Section 6. 
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2. Preliminaries 

 In this section, some basic definitions that are necessary in the paper are reviewed. Firstly, the 

notion of a continuum and some properties of spaces are given as follows. 

Definition 2.1. Let X be a space.  Then, X is called:  

(1)  continuum if X is connected and compact [12]. 

(2)  decomposable if it contains two proper continua A and B in X such that X= AB. Otherwise, it is 

indecomposable [13].      

(3)  unicoherent if for every two continua A and B in X with X=AB, that AB is connected [13]. 

(4)  homogeneous if for each x, yX there is a homeomorphism f: X →X such that   f(x) = y [13]. 

  Next, we recall some types of confluent and monotone mappings.  

Definition 2.2 Let X and Y be two spaces. A mapping (continuous function) f: X→Y is called: 

(1) confluent if given a continuum K Y, then every component C of f −1(K) is mapped by    f onto 

K, that is f(C) = K [6]. 

(2) confluent at a point y Y if for each continuum K in Y such that y K, then every component C 

of f −1(K) is mapped to whole K under f, that is f(C) = K [15]. 

(3) confluent relative to a point xX if for each continuum K in Y such that f(x) K, then the 

component C of  f −1(K) containing the point x is satisfied that f(C) = K [15]. 

(4) monotone if for each continuum K Y, then f −1(K) is continuum in X [7]. 

(5) almost monotone if for each continuum K in Y with Ko ≠ , then f −1(K) is connected [13]. 

(6) feebly monotone if for every two proper subcontinua A and B of Y with Y= A B, then      f −1(A) 

and f −1(B) are connected [13]. 

  

       A topological group notion is given as follows: 

Definition 2.3. [14] Let (G,) be a group and G be a space. Then, G is called a topological group (or, a 

group topology) if, the multiplication function m: G  G→ G and the inverse function inv: G→ G are 

continuous, where m(x,y) = xy, for all x, y  G, and inv(x)= x -1, for all x  G.  

 In the following definition, group homomorphism and isomorphism between topological groups 

are recalled. 

Definition 2.4. [16] Let G and H be topological groups and let f: G →H be function. Then, f is called a 

morphism of topological groups, if  f is a group homomorphism. We call f an isomorphism of topological 

groups when it is a topological homeomorphism and a group isomorphism. 

The concept of manifold is given as follows.  

Definition 2.5. [17] A Hausdorff and second countable space is called n-dimensional manifold if it is a 

locally Euclidean space of dimension n, i.e. for each of its points, there is a neighbourhood which is 

homeomorphic to an open ball in the Euclidean space ℝ𝑛.  

3. Fuzzy Topographic Topological Mapping (FTTM) 

 Fuzzy Topographic Topological Mapping Version 1 (FTTM1) is used to solve the inverse 

problem for determining single current source. It consists of four components with three algorithms that 

link between them. These components of FTTM1 are magnetic contour plane (M1), base magnetic plane 

(B1), fuzzy magnetic field (F1), and topographic magnetic field (T1) [2].  

The component M1 is a magnetic field on a plane above a current source with z = 0, whereas the 

plane is lowered down to B1 and it is generated by the single current source, such that 

M1 = {((𝑥,𝑦)0,𝐵𝑍 (𝑥,𝑦)): 𝑥,𝑦 ∈ ℝ, 𝐵𝑍 (𝑥,𝑦) ∈ [𝐵𝑍 𝑚𝑖𝑛,𝐵𝑍 𝑚𝑎𝑥]}                          (1) 
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Where  

 𝐵𝑍 (𝑥,𝑦) =
μoI

2𝜋
 [

(𝑦−𝑦𝑝)

(𝑦−𝑦𝑝)
2

+[h+|𝑥−𝑥𝑝|tan (-90
o
)]

2]                                                                   (2) 

𝐵𝑍 𝑚𝑖𝑛  is the smallest magnetic fields reading, 𝐵𝑍 𝑚𝑎𝑥 is the largest magnetic field reading, μ
o
  is the 

permeability of free space and its value is 410-7 (meter. Tesla/ ampere), I is the magnitude of current 

in ampere, ((𝑥𝑝, 𝑦𝑝)0 , 𝐵𝑍 (𝑥𝑝,𝑦𝑝))  is the element of M1 which is exactly above the current source,  is 

the angle between current source and z-axis, and h is the distance between M1 and the current source in 

meter [2]. 

 Base magnetic plane (B1) is a plane of the current source with z= -h. Then the entire B1  is 

fuzzified into a fuzzy environment (F1) where all the magnetic field readings are fuzzified. Finally, a 

three-dimensional presentation of F1  is plotted on B1 . The final process is defuzzification of the 

fuzzified data to obtain a 3-dimensional view of the current source (T1). The components of FTTM are 

defined as follows:          

  B1   = {((𝑥, 𝑦)-h, 𝐵𝑍 (𝑥,𝑦)): 𝑥, 𝑦 ∈ ℝ, 𝐵𝑍 (𝑥,𝑦) ∈ [𝐵𝑍 𝑚𝑖𝑛, 𝐵𝑍 𝑚𝑎𝑥] }                    (3) 

F1  = {((𝑥, 𝑦)−ℎ , 𝜇  𝐵𝑍 (𝑥,𝑦)
): 𝑥, 𝑦, −ℎ ∈ ℝ, 𝜇  𝐵𝑍 (𝑥,𝑦)

∈ [0,1] }                          (4) 

 

such that:                          𝜇  𝐵𝑍 (𝑥,𝑦)
=

|𝐵𝑍 (𝑥,𝑦)|−𝑀𝐵𝑍 𝑚𝑖𝑛

𝐵𝑍 𝑚𝑎𝑥−𝐵𝑍 𝑚𝑖𝑛
                                                    (5) 

and 𝐵𝑍 (𝑥,𝑦) as in (2). As well,  

 T1 = {(𝑥, 𝑦, 𝑧𝐵  𝑍 (𝑥,𝑦)
): 𝑥, 𝑦 ∈ ℝ, 𝑧𝐵  𝑍 (𝑥,𝑦)

∈ [−ℎ, 0] }                             (6) 

where 

                              𝑧𝐵  𝑍 (𝑥,𝑦)
= ℎ (𝜇  𝐵𝑍 (𝑥,𝑦)

− 1).                                                                 (7) 

 The components of FTTM1 were proven spaces in 2001 by Yun [1] and  homeomorphics in 2005 

by Ahmad et al. [18] as given in the following:  

Theorem 3.1. [18] In FTTM1, M1  B1  F1  T1  by the following homeomorphisms: 

(1) b1: M1 →B1 such that: 

       b1((𝑥, 𝑦)0, 𝐵𝑍 (𝑥,𝑦)) = ((𝑥, 𝑦)-h, 𝐵𝑍 (𝑥,𝑦)), ((x,y)0,BZ (x,y))∈M1                          (8) 

(2) f
1
: B1→ F1  such that:  

        f
1((𝑥, 𝑦)−ℎ , 𝐵𝑍 (𝑥,𝑦)) = ((𝑥, 𝑦)−ℎ , 𝜇𝐵𝑍 (𝑥,𝑦)

), ((x,y)-h,BZ (x,y))∈B1                     (9) 

(3) t1: F1→ T1  such that:  

       t1 ((𝑥, 𝑦)−ℎ , 𝜇𝐵𝑍 (𝑥,𝑦)
) = (𝑥, 𝑦, 𝑧), ((x,y)-h,𝜇𝐵𝑍 (𝑥,𝑦)

) ∈ F1                                  (10) 

with -h0 is a constant, and Bz B ℝ. 

 Next, the algebraic structures and some properties for the components of FTTM1 are recalled. 

Theorem 3.2. In FTTM1, we have: 

(1)  M1, B1, F1, and T1are abelian groups [2]. 

(2)  M1, B1, F1, and T1 are Lie groups [19]. 

(3)  M1 is Hausdorff and second countable [19]. 

(4)  M1 is path connected and closed [20]. 

(5)  Each component in FTTM1 is continuum and satisfied the separation axioms To, T1, T2, regular, 

T3, normal and T4 [20]. 

         On the other hand, FTTM2 is the extended version of FTTM1 which is specifically designed to 

solve the inverse problem of multi-current source. Similar to FTTM1, the model is comprised of four 
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components. They are Magnetic Image Plane (M2 ), Base Magnetic Image Plane ( B2 ), Fuzzy 

Magnetic Image Field (F2) and Topographic Magnetic Image Field (T2) [2]. 

As mentioned in [2] that the magnetic fields data which is laid on the component M1 of FTTM1 

are at once analyzed and transformed into image processing data in order to carry out the process in 

FTTM2. Therefore, the first component in FTTM2 is the component M2 which has the grey scale image 

for readings [0,255] of magnetic field. It lies on a plane above a current source with z = 0. When the 

plane is lowered down to the current source with z = -h, the component B2 is obtained. The field of the 

component F2  is the fuzzified B2  plane, i.e., all the grey scale readings are fuzzified into a fuzzy 

environment. Finally, a three-dimensional presentation of F2  field is plotted on T2  field. This final 

process is the defuzzification of the fuzzified data to obtain a 3-dimensional view of the current source.  

FTTM2 is an improvement of FTTM1 because it presents the three-dimensional view of current 

source in four angles of observation (upper, left, right and back part of a head model). On the contrary, 

FTTM1 only presents the three-dimensional view of current source in one angle of observation (upper 

part of a head model). Furthermore, FTTM2 can be applied on single and multiple, bounded and 

unbounded current source in contrast to FTTM1 which can only be applied to single and unbounded 

current source.  

In addition, Yun [2] verified that the components of FTTM2 are spaces and she confirmed that 

FTTM2 is also designed to have equivalent topological structures between its components, as follow: 

Theorem 3.3. [2] In FTTM2, M2   B2  F2  T2  by following homeomorphisms: 

(1) b2: M2 → B2  such that: 

       b2((𝑥, 𝑦)0, 𝑀𝐼 (𝑥,𝑦)) = ((𝑥, 𝑦)-h, 𝑀𝐼 (𝑥,𝑦)), ((x,y)0,𝑀𝐼 (𝑥,𝑦))∈M2                       (11) 

(2) f
2
: B2→ F2  such that:  

       f
2((𝑥, 𝑦)−ℎ , 𝑀𝐼 (𝑥,𝑦)) = ((𝑥, 𝑦)−ℎ , 𝜇𝑀𝐼(𝑥,𝑦)

), ((x,y)-h,𝑀𝐼 (𝑥,𝑦))∈B2                   (12) 

(3) t2: F2→ T2    such that:  

       t2 ((𝑥, 𝑦)−ℎ , 𝜇𝑀𝐼(𝑥,𝑦)
) = (𝑥, 𝑦, 𝑧𝑀𝐼 (𝑥,𝑦)

), ((x,y)-h,𝜇𝑀𝐼(𝑥,𝑦)
)∈F2                          (13) 

      with -h0 is a constant, 𝜇𝑀𝐼(𝑥,𝑦)
[0,1] and 𝑧𝑀𝐼 (𝑥,𝑦)

[-h,0]. 

In the following theorem, the homeomorphism between each component of FTTM1 and its 

corresponding components of FTTM2 are given. 

Theorem 3.4. [2] Between FTTM2 and FTTM2, M1   M2 , B1   B2 , F1  F2  and  T1 T2  by  the 

following homeomorphisms: 

(1) m1,2: M1  → M2 such that: 

       m1,2((𝑥, 𝑦)0, 𝐵𝑍 (𝑥,𝑦)) = ((𝑥, 𝑦)0, 𝑀𝐼 (𝑥,𝑦)), ((x,y)0,𝐵𝑍 (𝑥,𝑦))∈M1       (14)    

(2) b1,2: B1→ B2  such that:  

       b1,2((𝑥, 𝑦)−ℎ, 𝐵𝑍 (𝑥,𝑦)) = ((𝑥, 𝑦)−ℎ , 𝑀𝐼 (𝑥,𝑦)), ((x,y)-h,𝐵𝑍 (𝑥,𝑦))∈B1        (15)    

(3) f
1,2

: F1→ F2 such that:  

        f
1,2

((𝑥, 𝑦)−ℎ , 𝜇𝐵𝑍 (𝑥,𝑦)
) = ((𝑥, 𝑦)−ℎ, 𝜇𝑀𝐼(𝑥,𝑦)

), ((𝑥, 𝑦)−ℎ , 𝜇𝐵𝑍 (𝑥,𝑦)
)∈F1         (16)    

(4) t1,2: T1→ T2  such that:  

       t1,2 (𝑥, 𝑦, 𝑧𝐵𝑍 (𝑥,𝑦)
) = (𝑥, 𝑦, 𝑧𝑀𝐼 (𝑥,𝑦)

),(𝑥, 𝑦, 𝑧𝐵 𝑍 (𝑥,𝑦)
) ∈T1       (17)        

 The algebraic structures and some facts for the components of FTTM1 are given as follows:  

Theorem 3.5. [2] In FTTM2 we have: 

(1) M2, B2, F2, and T2are abelian groups [2]. 

(2) M2, B2, F2, and T2 are Lie groups [19]. 
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(3) Each component in FTTM2 is continuum and satisfied the separation axioms To, T1, T2, regular, 

T3, normal and T4 [20]. 

         In 2010, Tahir et al. [4] introduced a sequence of n versions of FTTM which is defined as FTTM1, 

FTTM2, FTTM3,…, FTTMn where n ℤ+. The relations between the components in that sequence and 

the properties of these components are given in the following theorem. 

Theorem 3.6. [4].  In the sequence of n versions of FTTM that: 

(1)  In any  version v of FTTM,  M𝑣   B𝑣   F𝑣 T𝑣  , where v=1, 2, ..., nℤ+. 

(2) Between any consecutive versions v and (v+1), that:  M𝑣 M𝑣+1, B𝑣 B𝑣+1, F𝑣 F𝑣+1, T𝑣 T𝑣+1, 

where v=1, 2, ..., (n-1)ℤ+. 

(3) Each component in the sequence of n versions of FTTM is continuum and satisfied the separation 

axioms To, T1, T2, regular, T3, normal and T4 [19].  

4.  The Monotonicity on the sequence of FTTM  

 In this section, new results on the sequence of FTTM are established. Firstly, the confluence is 

proven as follows: 

Theorem 4.1. Each mapping in the sequence of FTTM is confluent. 

Proof. This theorem can be established by a mathematical induction. Each mapping in any version v of 

FTTM symbolically as FTTMv is confluent for v=1, 2, 3, …, n ℤ+ and can be proven as follows:   

(1) The mappings b1, f
1
 and t1between the components of FTTM1 are homeomorphisms by Theorem 

3.1.  

       Therefore, 𝑏  1
−1 , 𝑓  1

−1 , and 𝑡  1
−1are homeomorphisms, hence b1 , f

1
, t1 , 𝑏  1

−1 , 𝑓  1
−1 , and 𝑡  1

−1  are 

confluent mappings [21]. Since the composition of confluent mappings is confluent [6], (t1 ◦ f
1
 ◦ 

b1) and (𝑏  1
−1◦ 𝑓  1

−1◦ 𝑡  1
−1) are confluent mappings. Consequently, all the mappings between the 

components of FTTM1 are confluent.   

(2) Suppose that each mapping in FTTMn is confluent. 

(3) Observe that in FTTMn+1, we have M𝑛+1 B𝑛+1 F𝑛+1 T𝑛+1 by Theorem 3.6 part (1) which imply 

that these homeomorphisms are confluent mappings [21].       

     From parts (i), (ii), and (iii), the mappings in FTTMv are confluent for v=1, 2, …, n ℤ+.  

 The following results are an immediate consequence of the fact that any confluent is confluent at 

each point in its range and confluent relative to each point in its domain [22] and Theorem 4.1, is the 

following:       

Corollary 4.1. Each mapping in the sequence of FTTM is confluent at each point in its range. 

Corollary 4.2. Each mapping in the sequence of FTTM is confluent relative to each point in its domain.  

Example 4.1: In FTTM1, the mapping b1: M1 →B1, which is defined as in equation (8), is confluent 

due to Theorem 4.1. To apply Corollary 4.1 on b1, pick yB1and K be any continuum in B1 such that 

y K. Define, ( 𝑏  1
−1 K ): K → ( 𝑏  1

−1 K )(K), such that (𝑏  1
−1  𝐾 )((𝑥, 𝑦)-h, 𝐵𝑍 (𝑥,𝑦)) =

((𝑥, 𝑦)0, 𝐵𝑍 (𝑥,𝑦)),((𝑥, 𝑦)-h, 𝐵𝑍 (𝑥,𝑦))∈K.            

The function (𝑏  1
−1 K) is homeomorphism since b1  is homeomorphism. Therefore, (𝑏  1

−1 K)(K) is 

continuum. That is, (bm-1K)(K) is connected due to Definition 2.1 part (1). Since the connected set is a 

component for each of its points [14], (𝑏  1
−1 K) (K) is the unique component in it. Thus, (𝑏  1

−1 K) -

1((𝑏  1
−1K) (K)) = (b1K)( (𝑏  1

−1K )(K)) = K. 

Since K is an arbitrary continuum in B1, it is therefore true for every continuum containing y in B1. Thus, 

b1 is a confluent mapping at y. Similarly, for each point in B1. Hence, b1 is a confluent mapping relative 

to each point in B1.  
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 The strongly connectedness is required for establishing the monotonicity for all the mappings 

in FTTM, as follows:  

Theorem 4.2. Each component in the sequence of FTTM is strongly connected. 

Proof. Initially, the component M1 of FTTM1 is a Hausdorff space by Theorem 3.2 part (3) and it is a 

continuum by Theorem 3.2 part (5). Thusly, M1 will be strongly connected due to it is continum and 

Hausdorff [23]. Follows in the same manner as M1, the other components in FTTM will be also strongly 

connected by Theorem 3.6 part (3).  

 Next, FTTM and feebly monotone mapping are intimately linked. 

Theorem 4.3: Each mapping in the sequence of FTTM is feebly monotone. 

Proof. This theorem can be established by a mathematical induction. 

(1) The mappings between the components of FTTM1 are b1, f
1
, t1, 𝑏  1

−1, 𝑓  1
−1, 𝑡  1

−1, (t1 ◦ f
1
 ◦ b1) and 

(𝑏  1
−1◦ 𝑓  1

−1  ◦ 𝑡  1
−1) which are homeomorphisms by Theorem 3.1. The mapping b1 : M1  →B1  is 

confluent by Theorem 4.1. Since any confluent mapping of a strongly connected compact space 

onto a T1-space is a monotone mapping [21], b1  is monotone due to M1 is a strongly connected 

space by Theorem 4.2 and B1  is a T1-space by part (5) of Theorem 3.2. Then, b1   is almost 

monotone because any monotone mapping is almost monotone [13]. Moreover, every almost 

monotone mapping is feebly monotone [13] which imply b1is feebly monotone. By applying the 

similar argument used to b1, the mappings f
1
, t1, 𝑏  1

−1, 𝑓  1
−1, and 𝑡  1

−1  are feebly monotone. The 

other mappings in FTTM1 which are (t1 ◦ f
1
 ◦ b1) and (𝑏  1

−1◦ 𝑓  1
−1 ◦ 𝑡  1

−1) are feebly monotone 

mappings as feebly monotone mapping has the composition property [13]. Therefore, all the 

mappings between the components of FTTM1 are feebly monotone.  

(2) Suppose that each mapping in FTTMn is feebly monotone, where n ℤ+.  

(3) Observe that in FTTMn+1 the components are  M𝑛+1 , B𝑛+1 , F𝑛+1 , and T𝑛+1such that M𝑛+1 

B𝑛+1 F𝑛+1 T𝑛+1by Theorem 3.6 part (1). These homeomorphisms are confluent mappings by 

Theorem 4.1. Since each component in the sequence of FTTM is strongly connected and  T1-space 

by Theorem 4.2 and Theorem 3.6 part (3), respectively. Then, these mappings are monotone. 

Consequently, they are almost monotone and then feebly monotone. 

From parts (1), (2), and (3), the mappings in in FTTMv are monotone for v=1, 2, 3,…, n ℤ+ .   

 As a direct consequence of using similar arguments as in Theorem 4.3, the following results are 

established: 

Corollary 4.3. Each mapping in the sequence of FTTM is almost monotone. 

Corollary 4.4. Each mapping in the sequence of FTTM is monotone. 

5.  Topological group properties of the components of FTTM  

In this section, the components of FTTM will have many properties that utilize by the previous 

properties for them, as they will be topological groups in the following theorem: 

Theorem 5.1. Each component in the sequence of FTTM is a topological group. 

Proof. First, the component M1 is a Lie group by Theorem 3.2 part (2). This implies M1 is a topological 

group [24]. The other components in the sequence of FTTM will be        a topological group by applying 

the similar argument used on the component M1. 

Corollary 5.1: Every component in the sequence of FTTM is a homogeneous space. 

Proof.  Starting with the component M1 of FTTM1, which is a topological group by Theorem 5.1.  Since 

every topological group is a homogeneous space [16], M1 is homogeneous. The other components in 

the sequence of FTTM will be also homogeneous by applying the similar argument used on the 

component M1. 
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 The properties locally compact, paracompact and Lindelöf are held for all the components in 

the sequence of FTTM as follows: 

Theorem 5.2. Each component in the sequence of FTTM is locally compact, para compact, and 

Lindelöf. 

Proof. Initial, the component M1 of FTTM1 is continuum by Theorem 3.2 part(5). Consequently, M1 is 

compact from Definition 2.1 part (1). Note that every compact space is locally compact [14], 

paracompact and Lindelöf [24]. Therefore,  M1  has these properties. The other components in the 

sequence of FTTM will have these properties by Theorem 3.6 part (3) with using the same reason and 

applying the similar argument used on the component M1.   

Next, certain types of connectedness for FTTM are explored as follows:  

Theorem 5.3. Each component in the sequence of FTTM is path connected. 

Proof. This theorem can be proven by mathematical induction to show that each component in FTTMv 

is path connected, for v=1, 2, 3,…, n ℤ+as follows: 

(1) The components of FTTM1 are M1 , 𝐵1 , F1 , and T1 . The functions b1 , f
1

 and t1  are 

homeomorphisms by Theorem 3.1 which implies at once b1 is a mapping from M1 onto 𝐵1. From 

Theorem 3.2 part (4), M1 is path connected. Based on the fact that path connectedness is invariant 

under mapping [14], 𝐵1  is path connected. Using the same reasoning,  𝐹1  and 𝑇1  is also path 

connected.  Thus, each FTTM1 component is path connected.  

(2) Suppose that each component in FTTMn is path connected, namely M𝑛, B𝑛, F𝑛, and T𝑛, for n 

ℤ+.  

(3) Observe thatM𝑣  M𝑣+1, B𝑣  B𝑣+1, F𝑣  F𝑣+1, and T𝑣  T𝑣+1 by Theorem 3.6 part (2), for all 

𝑣=1,2,3, …,  (n-1) and n ℤ+.. This entails that M𝑛  M𝑛+1, B𝑛  B𝑛+1, F𝑛  F𝑛+1, and T𝑛  

T𝑛+1. By the homeomorphisms between the corresponding components, the components M𝑛+1, 

B𝑛+1, F𝑛+1, and   T𝑛+1 are path connected.  

From parts (1), (2), and (3), each component in the sequence of FTTM is path connected.  

Theorem 5.4. Each component in the sequence of FTTM is locally connected. 

Proof. At once, the component M1 of FTTM1 is strongly connected by Theorem 4.2 which imply that 

it is locally connected [23]. The other components in the sequence of FTTM will be locally connected 

by applying the similar argument used on the component M1.        

 Next, another property for the components of FTTM is realized. 

Theorem 5.5. Each component in the sequence of FTTM is clopen. 

Proof. The component M1 is connected by Theorem 3.2 part (5) and Definition 2.1 part (1).  Therefore, 

it is a component for each of its points [14]. Moreover, M1 is locally connected by Theorem 5.4 which 

imply that M1 is open caused by every connected component in a locally connected space is open [14]. 

In addition, M1 is closed by Theorem 3.2 part (4). Thus, M1 is clopen. The other components in the 

sequence of FTTM are clopen by using the same argument as in Theorem 5.3.   

 Other properties will be established as follows: 

Theorem 5.6. Each component in the sequence of FTTM has the separation properties T2,T
2

1

2

 , Uryshon, 

completely regular, T
3

1

2

 , completely normal, T5, perfectly normal, T6, metrizable and first countable. 

Proof. The component M1 of FTTM1 is T3 -space by Theorem 3.2 part (5). Thus, M1 is a T
2

1

2

 - space 

[25].  In addition, since M1 is a T4 - space by Theorem 3.2 part (5), it is a T
3

1

2

 - space.  The component 

M1 is completely regular [14] and then it is satisfying the property of a Uryshon space [25] owing to its 

normality from Theorem 3.2 part (5). The normality and second countablility for M1  implies its 
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metrizability [25]. Consequently, it is a perfectly normal [14] that entails first with its satisfying the 

property of T1- space by Theorem 3.2 part (5) to establish the axiom of T6 - space for it and after that it 

is a T5-space [25]. Secondly, M1 is completely normal based on its perfectly normal property [26]. 

Furthermore, first countability property for M1is due to its holding second countability property by 

Theorem 3.2 part (3) [26]. The other components in the sequence of FTTM will have these properties 

based on their invariant under a homeomorphism and by applying the same argument used to satisfy the 

path connectedness in Theorem 5. 3.  

 Next, the unicoherent property is established for the components of FTTM. 

Theorem 5.7. Each component in the sequence of FTTM is unicoherent. 

Proof. Initially, pick A and B as arbitrary proper continua in M1 . Hence, A and B are compact by 

Definition 2.1 which implies that they are closed in M1 [14] because M1is Hausdorff by Theorem 3.2 

part (3).  Therefore, AB is closed in M1 [14]. Note that M1is strongly connected by Theorem 4.2, AB 

is connected because of every closed set in a strongly connected space is connected [23]. Since A and B 

are arbitrary proper subcontinua of M1, then M1 is unicoherent by Definition 2.1 part (3). The other 

components are unicoherent by following the same manner of M1. 

 Another property of continua holds for all the components in the sequence of FTTM, as follows: 

Theorem 5.8. Each component in the sequence of FTTM is indecomposable. 

Proof. Firstly, the component M1 is related with other components of FTTM1 by the mappings bm,       

bm-1, (tm ◦ fm ◦ bm) and (bm-1◦ fm-1 ◦ tm-1) which are feebly monotone mappings by Theorem 4.3. 

Therefore, each mapping from a continuum onto M1  is feebly monotone which implies that M1  is 

indecomposable [13]. By the homeomorphisms among all the components in the sequence of FTTM 

and by applying the similar argument used to prove Theorem 5. 3, the other components in that sequence 

are indecomposable. 

6. Conclusion 

To recapitulate, several properties are satisfied for the components of FTTM as well as for the 

mappings in FTTM. Certain types of compactness, connectedness, separation properties countability, 

unicoherent, indecomposable, topological group and homogeneity hold for the components of FTTM. 

In addition, confluences with certain types of monotonicity are established for the mappings in FTTM.  
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