
  http://iaeme.com/Home/journal/IJMET   1147 editor@iaeme.com 

International Journal of Mechanical Engineering and Technology (IJMET) 

Volume 8, Issue 5, May 2017, pp. 1147–1159, Article ID: IJMET_08_05_120 
Available online at http://iaeme.com/Home/issue/IJMET?Volume=8&Issue=5 
ISSN Print: 0976-6340 and ISSN Online: 0976-6359 
 

 © IAEME Publication Scopus Indexed 

 

AN IMPROVED TURBOMACHINERY 

CONDITIONMONITORING METHOD USING 

MULTIVARIATE STATISTICAL ANALYSIS 

Harindharan Jeyabalan, Ching Sheng Ooi, Kar Hoou Hui, Meng Hee Lim and  

Mohd Salman Leong 

Institute of Noise and Vibration, Universiti Teknologi Malaysia,  
Kuala Lumpur, Malaysia 

ABSTRACT  

       Industrial practitioners require a well-structured, proactive and precise 

       conditionmonitoring package in order to optimize turbomachinery operation. 
   Typically, conventional condition monitoring uses built-in software to capture faults 

          or degradation processes based on threshold limits recommended by the Original 
       Equipment Manufacturer (OEM). However, because OEM manual concurrent 

   monitoring  involves  abundant information  parameters, it  is  dependent  on human 
intervention, insensitive to the development of machinery faults and tends to generate 

         error-prone outcomes. This study proposes a simplified and advanced health-

monitoring method for turbomachinery using a multivariate statistical analysis (MSA) 
       technique. By exploiting mathematical relationships between OEM recommended 

variables, the significance of input parameter is identified based on weighting factor. 
         With a highly-correlated input subset, the revised condition monitoring method 

delivershigher sensitivity and a more accurate performance in investigating machine 
assessment mode. 
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1. INTRODUCTION 

            Turbomachinery is a type of machinery which transfers energy between rotors and fluids. 
Governed by Newton’s second law and the thermodynamics conversion rule, turbomachinery 

           serves as a common power solution provider  for aircrafts, ships, compressors and power 
         generators [1]. Standardized turbomachinery packages consist of a centrifugal compressor, 

mechanical gearbox transmission system, power-generated turbine, gas generator and various 
   accessories. Consequently, the machine involves 100,000 rotating components that function 

together continuously with high pressure and temperatures, to process liquids to deliver the 
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        desired performance [2].Nevertheless, rigorous operation execution inevitably induces a 
       process of degradation. Typical faults linked to turbomachinery include: gas turbine blades 

delamination; rubbing tips; foreign object damage (FOD); fuel burner erosion; seal wear; gear 
          tooth pitting; bearing rolling contact fatigue; rotor crack; misalignment; imbalance; sensor 

errors; clogging, leakage and lubricant contamination that result in a drop in efficiency for the 
compressor. 

        Current monitoring practice utilizesstandard limits recommended by the original 
        equipment manufacturer (OEM) in observing individual machine parameters. Individual 

parameters are sorted according to assessment modes for every subsystem by referring to an 
                OEM manual [3, 4, 5, 7, 8, 9], empirical studies and industrial consensus [6, 7, 8, 10].In 

simple terms, an assessment mode targets the appearance of unique anomalous situation by 
gathering a set of parameters connected to specific subsystem. For a typical turbomachinery 
package, there can be up to 500operating parameters gathered from built-in instrumentation. 
For instance, thirty three feedback signals are registered and monitored in parallel for a single 
subsystem package, as shown in Figure 1. This method often failed to proactively identify any 
subtle health degradation of the machine if the operating parameters were still within OEM-
specified threshold level since parameter integration and correlation monitoring were absent. 

           Also, excessive data size is beyond the capability of manual interpretation. Moreover, 
      significant parameters will be overlooked in the dataset and will unavoidably contribute to 

false alarms, ineffectiveness, and increase operator workload. Under such circumstances, it is 
impractical to introduce an ad-hoc auxiliary sensor and hardware unit during a mid-operation 
schedule.  

          From the above reasoning, it is obvious that the exquisite system requires a responsive 
conditionmonitoring method to ensure optimum operation and safety in a hostile environment. 

         To overcome the above difficulties faced during real-world turbomachinery condition 
           monitoring, one of the effective yet convenient methods is to simplify the 

       conditionmonitoring process via input selection. Theoretically, identifying relevancy-
redundancy among peers is achievable by studying the qualitative and quantitative measures 
of  turbomachinery  parameters.  From  a  statistical  point  of  view,  the  selection  of  highly-

           correlated parameter subsets and the elimination of irrelevant parameters can be delivered 
together via determining the associated weighting factors. 

 

Figure 1 Shows a turbomachinery subsystem control panel interface 
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2. DEVELOPMENT OF TURBOMACHINERY CONDITION 

MONITORING TECHNIQUES 

Typically, the condition monitoring data-interpretation strategy is categorized into three major 
 groups:  baseline  fault  referencing simulation  modelling  [11];  signal  processing  statistical 

        analysis in frequency, time-domain or time-frequency  function [12]; and machinelearning 
algorithm for self-tuning pattern recognition [13]. Each technique has its own characteristics 

          and advantages; design modelling aims for improving performance efficiency while signal 
processing and machine learning are responsible for fault diagnosis during operating terms. 

          Nonetheless, [14] identified research direction has been focusing on hybrid fault diagnosis 
         design in tackling noise reduction, multiple fault detection, probabilistic function, 

computational ease and accuracy-wise. 

    In turbomachinery practice,  numerous  improvement  efforts  have  been done  in recent 
years. For example, the start-up behaviour of gas turbine signals using Principal Component 

           Analysis (PCA) is analysed by an extracting feature and subsequently integrated into 
     Artificial Neural  Network (ANN)  classifier  [15].  The  classification result shows that  the 

           transient-driven examination managed to pick up an incipient fault which compensated by 
feedback response during steady-state condition. The feature of singular value decomposition 

  matrix is utilized by Kalman filter technique to estimate an engine thrust measurement and 
state parameters [16]. The least square tuned vector proved to be capable of equalling actual 
engine outputs and practical for diagnostic purposes. Adopting a high-pressured turbine as the 

         simulation target, detailed documentation on gas turbine on-line condition monitoring 
           procedures are outlined [17]. The simultaneous verification of a Gas Path Analysis (GPA) 

           variable scatter plot and state of machine successfully gathers information on frequent 
         compressor fouling. [18] displayed matrix pencil decomposition formed unified filter 

generated from initial fault detection model, aiming to decouple turbofan engine output noise. 
The updated triangular matrices are subjected to fault detection and isolation control system 

           design which exceed unknown input observers (UIO’s) and the Kalman Filter. The 
         implementation of cascaded optimization and artificial neural network into mistuned 

identification of assembled bladed disk is presented [19]. The mistuning parameter diagnosis 
 performance is significant, though under the influence of incomplete, low signal-noise-ratio 

(SNR) information.  

          The concept of wireless data acquisition for three-passage serpentine heat transfer 
   evaluation is introduced [20]. Compared to a typical slip-ring method, an integrated control 

            system is able to cater dense measurement and generate sensitive responses with proposed 
       wireless  data transmission. Turbine blade technology  advancement and presented future 

      research  directions  on blade  geometry, heat dissipation and material structure  designare 
         reviewed [21]. A discussion onthe development of turbomachinery designrevealed that 

           optimization can be categorized in three unique case studies [22]. Fluid dynamics, turbine 
 blade layout, air drag and stall margin performance upgrade are achieved by integrating the 

Genetic Algorithm (GA) into a design simulation. On the other hand, a block structure adjunct 
method is rolled out to overcome Computational Fluid Dynamics (CFD) meshing quality in a 

             chained subsystem. Shah et al. demonstrated the noise acquisition of a turbofan engine in 
         detailed resolution using portable microphone set[23]. The novel phase-referencing sound-

filtering method is superior in terms of high-sensitivity noise field mapping with faster data 
processing and limited hardware allocation. The possibility of recognizing the characteristics 
of debris particles ejected from exhaust gas via electrostatic charge is explored by Addabbo et 
al. [24]. In that event, an automated tracking system capable of coordinate component defects 
with state condition setting and particles geometry. Shirazi et al. conducted bearing vibration 
analysis on a twin shaft gas turbine using a hybrid multi-layer perceptron neural network and 
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          cuckoo optimization (MLP-COA) algorithm; the result is more favourable for online 
prediction than Radial Basic Function(RBF) network and Multilayer Perceptron(MLP) [25]. 

       Last  but not least, intuitive  wind  turbine  data  visualization based on  the random forest 
  technique is tabulated using a PCA scatter plot [26]. The simplified distribution framework 

 provides  a  clearer  overall  picture  of  data interaction  and  effectively  decreases  the  input 
dimension. 

3. MULTIVARIATE STATISTICAL ANALYSIS (MSA): THEORY AND 

APPLICATION 

3.1. Introduction 

From the previous section, it is evident that a turbomachinery system observation emphasizes 
the degradation process. The deviation from expected performance is typically described by 

           using an acknowledged baseline limit range periodic review, generic curve estimation, or 
multivariate analysis [27], [28]. With reference to OEM standards, the application of expert 

          systems such as TEXMAS and CASE-based Reasoning (CBR) [29] are comparably 
          favourable to supervisory control and data acquisition (SCADA) [30] since  posteriori
             knowledge is acquired without further data collection and model training. Set side by side 

       with the above-mentioned advanced monitoring techniques, OEM’s readily-available 
guideline provides a more direct, fast and compatible approach.  

Other than variable set point stochastic tracking, various advanced yet less sophisticated 
statistical methodsare introduced in an attempt to reduce observational misclassification. For 
instance,  particular  signal  abruption  is  disregard  as  an  outlier  since  it  is  consistent  with 

          Gaussian distribution [31], [32]. Lakshminarasimha et al. opted for Least Squares-Support 
           Vector Regression (LS-SVR) in wind turbine performance response curve estimation as a 

             baseline for residual variance measurement using the central limit theorem in a later stage 
             [33]. As a result,a nonlinear response outline generated by baseline model was free from 

skewed outliers and shed light on multiple output correlation research. Ogden et al. located a 
            novel pressure inlet fault development involving an air compressor using MSA [34], even 

               though previously the failure mode had not been documented in a library or shown to be 
            causing malfunction in the past. Pozo et al. developed a three-dimensional PCA baseline 

mapping system in order to deduce the state of wind turbine actuators and sensors under the 
         effect of unsteady wind-speed behaviour [35]. During the investigation period, eigenvector 

           and eigenvalues extracted from the covariance matrix not only functioned for linear 
transformation, but also served as a score indicator for the principal component selection.  

     Throughout the examples  given,  it can  be concluded  that  merging suitable  statistical 
           analyses into a standard condition monitoring model could provide better fault prediction 

            performance. In this investigation, least squares (LS)was chosen due to its simplicity and 
           efficiency in estimating coefficient parameters which represent the weighting factor for a 

particular input vector in a matrix dataset. Elaboration of the LS technique and generation of 
parameter estimation will be delivered in the next section. 

3.2. Multivariate Statistical Analysis: Least Squares Estimation 

It is acknowledged that the output dataset  = ( ,  , ⋯ , , ) is recorded during period 
 = ( , , ⋯ , , ). Hence,  corresponds to a particular time instance   at interval  

 samples, where . The foundation of regression analysis modelling relies on regression  ∈ 
    equation setting and residual estimation frameworks. In order to achieve the realism stated 

previously in a simple manner, the observation principal is presumed to be linearly correlated 
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to earlier sampling data (1) and contains the serially uncorrelated random measurement error, 
  (2), which refers to Gaussian white noise. 

Auto-covariance function of  ,  () = 


 ∑ ( −  )
 , 

Where0 < () ≤ 
               (1) 

 =  +                                                                                                       (2) 

The coefficient  is an unknown weighting factor defining the mathematical relationship 
           between input and output. By referencing  the coefficient parameter is denoted as ,  =

 ,  ⋯ , ,            . The hat symbol, is used to label estimated variables. By rearranging ∧ 
   equation  (2),  the residual  illustrating  the gap  between actual  value  and  measurement  for 

    discrete time  is described in equation (3). It is noticed that minimal sum square value of k

residual can be acquired by substitute most probable estimated parameter into  . 

 =  −                                                                                                       (3) 

Linear least squares (LS) approach is adopted for searching element  via minimization of 
equation (4) 

() = 


 ∑ [ − ][ − ]
                                                      (4) 

While  ∈ [0,1] is the designated probability measure of confidence [36], LScomputes a 
best fit line with the smallest sum vertical distance from dataset measurement points through 

            the medium of parameter weight assignment. It is worth mentioning that equation  
         resembles cost function minimizers such  as  and   which available in fmincon  fminsearch

Matlab software. 

Further extension into multivariate setup leads to the following equation: 

 = ,  + , ⋯ + , + ⋯ +, +  ,  

 =  +  

             where  and  represent the element index and total number of involving variables i j

respectively;  = [  ⋯  ] is denoted as stacked output vector;  

 = 
,  ⋯ ,

  ⋮ ⋱ ⋮
,  ⋯ ,

 indicates corresponding input matrix and  = [  ⋯ ] is the 

assembled error vector.  

 =  −  

() =
1
2  − 


 


 = − +   = 0 

 = []                                                                                          (5) 

The product of cost function differentiation in equation (5) yields the estimated parameter 
vector, , and the diagonal elements,   located within a unique covariance matrix, [ ] 
which holds a minimum solution which reflects the estimation’s accuracy. 

Considering  as the fractional contribution share of each input equally demonstrates the 
proportional significance level to the dynamic response of output. Observed engagement of  
or covariance matrix as benchmark for the relevancy-redundancy ratio amongst independent 

          input variables is practical. Hence, the establishment of an LS-based input-selection 
          mechanism for a multiple input single output (MISO) conditionmonitoring model with the 

           intention to identify the usefulness of parameters and enhance observation performance is 
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justified. In addition, input subset selection criteria are defined by coefficient threshold range 
limits; input associated with minimum values will be discarded. 

        By  applying least squares technique into turbomachinery case study specifically,  it  is 
   expected  a  defined input  subset from  prior  OEM  guidelines  is  delivered  to  an intended 

            intelligent Unit Condition Analyser (iUCA) software package. Later on, the fitness of the 
newly-estimated parameter vector for modelling purpose will be examined in connection with 

       the OEM limit range. The implementation flow of feature filtering will be tabulated in the 
following section. 

3.3. Methodology 

Relating to Figure 2, the development sequence of an MSA integrated desktop application is 
          discussed. The monitoring process emphasizes on using a specialized desktop application, 

   namely an iUCA. Initially, the iUCA employs and processes the entire input dataset as per 
          OEM instructions. The input dataset refers to measured parameters concerning fluid 

dynamics, tribological and excitation responses, while output suggests three types of machine 
subsystem state conditions including ‘Acceptable’, ‘Alert’ and ‘Unacceptable’. Notably, the 
condition list is arranged according to damage severity in ascending order. 

         Multivariate statistical analysis, in particular the linear LStechnique, is appointed  to 
        perform a turbomachinery system conditionmonitoring evaluation according to defined 

assessment modes. The purpose of assembling MSA into a software implementation sequence 
is to analyse and identify the mathematical relationship between variables. Specifically, it is 
employed to indicate and utilize individual parameters that are highly correlated to or heavily 
influenced by engineered assessment modes, as input subsets instead. The goal of the research 
is to supply quantitative and qualitative measures for input and output.  

            Field data were collected by performing an offshore site visit. The data were captured 
through historical data stored in the package hard drive or distributed control system (DCS).  

          Parameters measured include flow, pressure, temperature, speed, vibration, level and non-
dimensional parameters. The raw data stored were required to be converted into a workable 
format for detailed analysis. Figure 3 illustrates data acquisition and analysis flow chart. 

During analysis stage, the pre-filtered OEM standard limit will be examined by MSA for 
the purpose of baseline model creation. The process includes discovering multivariate inter-
correlation and parameter coefficients which represent the respective weighting factors. The 
baseline model will select highly correlated parameters as newly filtered input subset to serve 

            as modified baseline standard for further input data in determining variation from normal 
range by referring to pre-set threshold limit. Because every significant parameter in the MSA 

           display is bounded with individually adjusted limits, the deviation directly reflects the 
severity of a particular subsystem or component and is critical in defining the acceptable level 
of condition output. Later on, the newly captured data subset will be observed as a dynamic 

     model and  compared  to the baseline  model.  The results  of  condition  monitoring will  be 
determined into three types of health condition descriptions based on the discrepancy between 

            the two models. The overall conclusion will be tabulated with descriptions and graphical 
representation via the iUCA interface.  
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Figure 2 shows MSA Estimation Model Development Flow Chart 
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4. RESULTS AND DISCUSSION 

In order to fulfil the research target, software was developed with the objective of assessing 
            and determining the health condition of the turbomachinery package according to the last 

measurement data received by the software, which is described asa dynamic model. For three 
    assessment  modes,  the MSA  equations were  embedded  in the  software to  determine  the 

fitness of the dynamic model by comparing the range of the created baseline model and the 
original OEM standard. If the measurements exceed the range of the baseline model created, 

        this will be highlighted  according  to  the defined  health category  and an  alarm will be 
prompted. The output of the iUCA for condition monitoring of the turbomachinery package 
was tested and is explained in this section. 

4.1. Case Study 1: Acceptable 

In this case study, the compressor drive end journal bearings were evaluated. To determine 
            the condition of the compressor drive end journal bearings, six parameters were assessed, 

namely compressor drive end “Y” vibration, compressor drive end “X” vibration, compressor 
            drive end bearing temperature 1, compressor drive end bearing temperature 2 and power 

         turbine speed 1.  Five out of six  parameters were determined  to be  significant  via MSA 
             analysis. Figure 4 explains the assessment result by comparing the baseline model to the 
            dynamic model. Obviously, the MSA result is consistent in comparison with OEM limits, 

 where  all  readings  were  also  within  the  OEM limits.  Therefore,  the  final  output  of  the 
dynamic model is considered to be “Acceptable”. From this case study, it can be concluded 
that the baseline model generated by MSA obtains similar observation criteria as the OEM 
limit, even with a lesser parameter subset. 

 

Figure 4 Shows compressor drive end journal bearing condition monitoring using MSA 

4.2. Case Study 2: Alert 

In this case study, the compressor was evaluated. Thirteen parameters were assessed, namely 
ASC1 discharge temperature, ASC1 suction flow, ASC1 discharge pressure, ASC2 discharge 
temperature, ASC1 suction pressure, ASC1 discharge flow, ASC1 suction temperature, ASC2 

    suction flow, ASC2 discharge pressure, ASC2 suction temperature, ASC2 suction pressure, 
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       ASC2  discharge  flow  and power  turbine speed 1.  Eight  out of thirteen parameters were 
     determined to be significant. It was also found that five out of eight significant parameters 

were not within the acceptable range. Figure 5 explains the assessment result by comparing 
      the baseline  model to the  dynamic  model. Based  on this  case  study, the  MSA  result  is 

consistent with OEM, as five readings are out of bounds. Therefore, the final output of the 
           condition monitoring is illustrated as “Alert”. The baseline model developed by MSA 

generates identically stringent criteria compared to the OEM limit. Hence, it can be concluded 
      that  the  degradation process  is  less  likely to be  overlooked  when employing an optimal 

parameter subset. 

 

Figure 5 Shows compressor condition monitoring using MSA 

4.3. Case Study 3: Unacceptable 

In this case study, the gas generator was evaluated. To analyse the condition of gas generator, 
          sixteen  parameters were observed: ambient air temperature, combustion filter differential 

      pressure, gas generator 05 module temperature A, gas generator 05 module temperature B, 
gas generator bearing cooling air pressure, gas generator HP compressor discharge pressure, 
gas generator inlet flare atmospheric differential pressure, gas generator IP inlet pressure, gas 

    generator IP discharge pressure, gas generator NL speed 1, gas generator NH speed 1, gas 
generator NL speed 2, gas generator NH speed 2, gas generator enclosure temperature 1, gas 

          generator enclosure temperature 2 and ventilation filter differential pressure. Sevenout of 
sixteen parameters were determined to be significant by using the MSA equation. It was also 
found that three out of the seven significant parameters were not within the acceptable range. 
Figure 3 portrays the assessment result obtained by the comparing the baseline model with the 
dynamic model. The dynamic model reading contradicts OEM limits, where all readings were 
well within the OEM limits.  

Further investigation on the gas generator showed that it encountered a piping blockage 
problem, which caused the decrement of pressure and temperature due to low fluid viscosity. 
Therefore, the final output of the condition monitoring was confirmed to be “Unacceptable”. 
This case study illustrated that the baseline model created by MSA is capable of recognizing 

  fault  development  at  an early  stage with  a  significant  parameter  subset.  Thus,  it  can  be 
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   concluded that MSA parameter optimization could improve sensitivity and accuracy due to 
the absence of data complexity and reduced dependence onOEM guidelines. 

 

Figure 6 Shows Gas Generator Condition Monitoring using MSA 

5. CONCLUSION AND DISCUSSION 

Table 1 Case Study Result Overview 

 No. Case Study 
Verdict Input Parameter 

  OEM Standard MSA-iUCA Reduction Percentage 

1 
Compressor Drive End 
Journal Bearing 

  Acceptable Acceptable 17% 

  2 Compressor Alert  Alert  38% 

    3 Gas Generator Acceptable Unacceptable 56% 

      Referring to Table 1, it is evident that the efficacy of the MSA-iUCA model condition 
monitoring process was at least as high as that of OEM limit practice (Case Study 1 and 2). 

         Nonetheless, by adopting statistical analysis, the newly-revised observation model was 
capable  of  providing  better  sensitivity  and  accuracy  compared  to  the  OEM  standard,  as 

             exemplified in the case study involving the gas generator. The discrimination of a precise 
          fault developing phase is informative in estimating effective maintenance activity and 

          avoiding unscheduled planning. The statistical reassessment of the OEM multivariable list 
         also produced a more straightforward model which emphasizes parameter optimization, 

simplicity and reduced dependence on human intervention. It provides insight in the direction 
            of cost-saving and compact turbomachinery design. Hence, it can be claimed that this 

turbomachinery conditionmonitoring method, upgraded with MSA-iUCA model software, is 
         more efficient, reliable and simple compared to the existing conditionmonitoring 

methodology used for industry purposes. 
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