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Abstract. Impotence to locate the forearm subcutaneous vein leads to multiple intravenous (IV) 
attempts causing pain and injuries to patients such as bruise or vein damages. Various 
technologies and techniques were proposed and developed to overcome the multiple IV access 
problems. The standard techniques used in research and hospitals are Transillumination, 
Ultrasound Imaging, and Near-Infrared (NIR). Among those techniques, NIR is the most optimal 
way of locating the subcutaneous vein because of its non-invasive properties, low-cost 
implementation. The device can be assembled in a small size product. Nevertheless, the NIR 
forearm images contain noises that cause difficulties in extracting the vein features. Hence, the 
performance of NIR vein extraction is having the bottleneck of detecting the vein pixel 
accurately. Many research studies have been conducted to work on the NIR forearm 
subcutaneous vein detection due to such a limitation. Artificial intelligence is one of the powerful 
technology that would benefit this study. However, a limited number of articles were found on 
the patentability search, and thus we propose an automatic vein extraction algorithm using Deep 
Residual U-Net architecture. Our algorithm shows 75 percent of the accuracy in extracting the 
NIR vein from the experiments that tested. These results show the evidence that the Deep 
Residual U-Net can be applied to extract the NIR vein. 

1.  Introduction 
In the medical industry, venipuncture is one of the essential procedures. The procedure can either draw 
blood samples (phlebotomy) or intravenous (IV) treatment that infuses intravenous solutions, 
medications, nutrients, supplements, or blood directly into a vein. The fundamental procedure of 
accessing the vein is by applying a tourniquet mentioned in [1]. 

The conventional method is not suitable for all patients due to physiological factors such as infants, 
aged individuals, obese, dark skin, hairy forearm, scar and more. The difficulties of finding the vein 
leading to the multiple trials for IV insertion and high probability causing the patient to suffer from 
internal bleeding, vein damage and infiltration, and extravasation [2],[3]. 

A survey done by [4] finds that the estimation of 150-200 million times of IV is performed annually. 
The survey [4] also mentioned that up to 8-23% of patients experience difficult peripheral IV placement, 
narrowing down to the emergency department. These patients are more likely to require central venous 
access, including significantly higher associated morbidity. Some existing technologies and researches 



 
 
 
 
 
 

developed to solve such problems in locating the forearm vein such as Color Vision, Pressure Sensor, 
Transillumination, Multispectral Imaging, Infrared Thermal Imaging, Ultrasound Imaging, and Near-
Infrared (NIR) Imaging. 

Transillumination is widely used in the industry as it offers a low-cost solution and is small in size 
[5]. Although it provides a low-cost product, it might induce negative consequences to patients, such as 
skin and surrounding cells burning due to the LEDs’ heat. Compared to Transillumination, Ultrasound 
Imaging used to be the safest and accurate technique in the medical industry, but it is costly and bulk in 
size [1]. The ultrasound can penetrate deep underneath the skin and return broad information of the 
imaging. Thus, the procedure requires an expert known as a sonographer to allocate the right blood 
vessel to use during the course. 

The researchers are done in such as [6], [7] widely uses NIR imaging for IV procedure and claims 
that NIR is the best technique that offers non-invasive, low cost, and small in size. The light can penetrate 
up to 3mm depth under the skin, and only the blood vessel that contains the oxygenated blood is visible. 
Even though with the NIR imaging assistant technology, multiple attempts of vein access still occurs. 

The reason is that NIR image enhancement is necessary to extract the vein for the clinician 
references. Some researchers such as [8] and [9] applied some image filter applications to enhance vein 
structure and provide better contrast between the surrounding images. With technology advancement 
[10] especially intelligent system field, researchers begin to use deep learning as a tool for extracting 
the vein automatically. Deep learning is knowingly a powerful tool in the automation industry, and 
automatic object recognition and segmentation are part of the applications [11]. Image segmentation is 
a widespread practice to extract the necessary object in the medical imaging industry because it can skip 
some processes such as image pre-processing and image enhancement. 

In [12], the researchers use deep learning to enhance the NIR images, improving the robustness of 
vein recognition and feature extraction used in biometric identification, using the parameters named 
SparsityProportion, L2WeightRegularisation and SparsityRegularisation. Based on the research [12] 
outcome, the proposed method significantly improves the feature extraction procedure compared with 
the original model. 

A group researchers from [13] uses a recurrent fully convolutional network (Rec-FCN) architecture 
to extract the forearm subcutaneous vein automatically NIR stereo image. The FCN has the advantage 
of feeding the rectangular image to the model. Also, [14] uses U-Net architecture for the vein 
segmentation task, with Frangi vesselness filter applied to the image for vein visibility enhancement. 
The images are going through the training with U-net based architecture. 

2.  Methodology 
The methodology of automatically extract the forearm subcutaneous vein using Deep Residual U-Net 
are as follows. This section is discussing the project platform, image preparation, and the most important 
is the model structure. The architecture of the model is consists of three neural networks; deep residual 
block, common convolutional neural network block and U-Net as a whole.  

2.1.  Project Platform 
This project builds the deep learning model using Keras API and TensorFlow 2 as the machine learning 
tools and coded in Python. The model selected in this project is Deep Residual U-Net, and it is a 
combination of Residual block and U-Net architecture. The elaboration of the model is described in the 
next section. 

2.2.  Image Preparation 
The input data is the most crucial part of a successful neural network model to work as the model will 
be learning based on the given dataset. This project is different from other segmentation projects because 
the input training images don’t have any class to differentiate the image objects but only depending on 
extracting the vein. The extracted vein image from the original image is called the ground truth image. 



 
 
 
 
 
 

The images (original images and ground truth images, respectively) have been through some 
processes, such as cropped, resized, flipped and rotated because the medical image is known very limited 
sources and quantity. The purpose of images being resized to the fixed size of training images; 224x224 
pixels and 128x128 pixels is to have a result comparison. 

 

 
Figure 1. Image preparation flow diagram. 

Referring to Figure 1, there are two groups of images. The first group is the original image while the 
second group is the respective ground truth image. Both groups of images going through the crop and 
resize process. It is because the model architecture built is accepting the square image only. The images 
being resized into two sizes, 128x128 and 224x224. The resized images are then required to go through 
another five processes; flip vertically, flip horizontally, rotate, flip vertically and rotate, flip horizontally 
and rotate. From Figure 1, the images in the bullet number 1 to 3 are the original images, while the 
images in the bullet number 4 and 5 are the flipped images. Even though the images are the same, but 
the processes (flip and rotate) make the image numbers different with each other. Thus, the neural 
network model views them as different images. 

2.3.  Network Architecture: Deep Residual U-Net 
The model selected is the Deep Residual U-Net model, inspired by the research from [15] that combines 
residual neural networks and U-Net architecture, and Figure 2 showed the model structure used in this 
project. There are five main blocks in the model architecture as shown in Figure 2: Input, Encoder, 
Bridge, Decoder and Output. The Encoder and Decoder blocks contain residual blocks, while the bridge 
consists of the Convolution Neural Network (CNN) blocks. The residual block and CNN block are built 
from the combinations of the Convolutional layer (conv2D), Batch Normalization (BN) and Rectified 
Linear Unit (ReLU).  

The automated forearm subcutaneous vein algorithm begins with feeding the dataset as the Input to 
the Encoder. The images are being shuffled before going to each process (training, validation and test). 
The Encoder block is a down-sampling feature map where the number of feature channel is doubled, 
and the image been resized in half. For example, in Figure 2, in the beginning of the architecture, the 
image size (I) is 224x224 and the feature channel (C) is 64, thus, the minimum I is 14 and the maximum 
C is 1024. The Encoder block consists of four residual blocks with the iteration of two BN, ReLU and 
3x3 Convolutional layers with stride 2. The residual block illustration is showed in figure 3. 

 



 
 
 
 
 
 

 
Figure 2. The architecture of the deep Residual U-Net algorithm. 

The Encoder’s output is fed to the bridge block, and the Decoder block organized in parallel. The 
output from each of the Bridge block also being fed to the Decoder block, respectively. The Decoder 
block works contradict the Encoder block. It is an up-sampling feature map where the number of feature 
channels is halved, and the image size is doubled, thus, the layers are connected with the same values. 
The decoder block’s output going through the convolution with sigmoid activation, and the desired 
segmentation is mapped from the process. The blocks that being assembled is symmetrical and forming 
a “U” shape. Thus, this architecture is called U-Net architecture. 

 

 

 
(a)                                     (b) 

Figure 3. A residual architecture used in the project. (a) is the down-sampling residual architecture 
within the Encoder. (b) is the up-sampling residual architecture within the Decoder. 



 
 
 
 
 
 

Figure 3 showed the architecture of the residual block that being used within the Encoder and 
Decoder blocks. By referring to Figure 2, the residual architecture in Figure 3(a) is the representative of 
each Residual Block 1 to 5 while the residual architecture in Figure 3(b) is the representative of each 
Residual Block 6 to 7. The Encoder and Decoder blocks have interconnected each other thru the ADD 
layer (down-sampling architecture in Figure 3(a)) and the CONCATENATE layer (up-sampling 
architecture in Figure 3(b)).  

2.4.  Residual Block 
The traditional neural networks work by feeding each layer into the next layer. While for the network 
with residual blocks, each layer into the next layer and their output is added to the next jumped layer 
[15]. Thus, this method could solve the degradation problem, which causes saturated accuracy [15]. 
According to [16], the residual network is easy to optimize and the accuracy gained from considerably 
increased depth. 

2.5.  U-Net Architecture 
U-Net is a combination of convolutional neural network architecture; developed by Olaf 

Ronneberger et al. [17]; that is most suitable for biomedical image segmentation due to the low quantity 
of dataset. According to [16], U-Net architecture consists of two paths: contracting path (Encoder) and 
expansive path (Decoder), has been explained previously and shown in Figure 2. As the architecture is 
symmetry and resulting a U-shape architecture, thus, the model is being call U-Net. 

2.6.  Metrics Accuracy 
In this work, the Dice coefficient metric is used to calculate the similarity between two images and 

widely used in medical image segmentation [18]. The Dice coefficient will measure the similarity of 
two samples as measured in Equation (1). 

 

D = 
∗| ∩ |

| | | |
 

 

(1) 

A and B represent the pixel value of ground truth and predicted image, respectively. In the numerator, 
if the pixel value of A and B is the same, it will become 1; otherwise, it is 0. The total value of the 
intersection is then amplified up twice. The denominator is the total pixel value of both predicted and 
ground truth images. The value for the Dice; D is between 0 and 1. Consequently, the closer the number 
to 1, the higher the accuracy. 

 

2.7.  Other Parameters 
In this architecture, there are 29 convolutional operations in total. By referring to Figure 1, there are 
three big blocks; Encoding, Bridge and Decoding. The Residual Block is used during the Encoding and 
Decoding stages with strides of 2 and resulting in the dimension of the input image is doubled. 

The ordinary convolution convolutional operations with BN, ReLU activation, kernel size [3, 3], 
“same” padding and stride (1, 1) applied to the Bridge block. The Bridge block acted as the bridge that 
connects the Encoding and Decoding block, making the architecture symmetric as a U-shape. 

At the end of the architecture, 1 X 1 convolution and a sigmoid activation layer are used to project 
the multi-channel feature maps into the desired segmentation. 

3.  Preliminary Results and Discussion 
Some hyperparameters of gradient descent are being tuned during the training and validation process. 
Eight sets of training were done repeatedly, and the experiment results are summarized in Table 1. The 
batch size divided the training samples into the batches to run in parallel and updating the model’s 
internal parameters. The optimum epoch value are selected to manage the number of complete passes 



 
 
 
 
 
 

through the training dataset and balanced with the learning rate value to manage the size of the weights 
that are updated during training in response to the estimated error without disrupting the training process.  

The experiments begin with the smallest value of batch size, epoch and learning rate. The numbers 
for each variable (image size, batch size, epoch and learning rate) are selected and matched randomly. 
The test for image size 224x224 also begins at the best hyperparameters for image size 124x124 
resolution. The reason is because it took high time, average between two to three days, depending on 
the computer and dataset, to train the model. According to [19], the best training stability and 
generalization performance could be achieve using small size of batch size. To date, there is no findings 
on analytically measure the optimal hyperparameters value on a given dataset for a given model. 
Therefore, the trial and error are the only way to found out the best learning rate. 

Table 1. The hyperparameters used during model training and results, respectively. 

Image Size Batch Size Epoch Learning Rate Dice Score 

128x128 5 10 1e-5 0.4868 

128x128 5 20 1e-5 0.6227 

128x128 5 30 1e-5 0.6512 

128x128 5 40 1e-5 0.6628 

128x128 5 50 1e-5 0.6675 

128x128 5 50 1e-6 0.1537 

128x128 3 50 1e-5 0.7008 

224x224 3 50 1e-5 0.7145 

224x224 5 50 1e-5 0.7599 

From the results shown in the table 1, the model trained with the hyperparameters with the batch size 
sets to 5, epoch at 50 and learning rate at 1e-5 gives the highest dice score value. This is shown that the 
higher the image resolution, the more the dice score resulted. The hyperparameters for the model 
optimization also depending onto the image’s resolution.  

Some of the images being presented in Figure 4. Images in Figure 4(a) column are the input images 
fed to the model, images in Figure 4(b) column are the ground truth of the images, while images in 
Figure 3(c) are the predicted images results from the model trained respectively. 

 
Figure 4. The result of the vein extraction in (c) from the input image in (a) using the last two parameters 
in Table 1. Image (b) is the corresponding ground truth image to the input image. 



 
 
 
 
 
 

As mentioned in section 2.3 before, the images are being shuffled before the process, thus, the output 
also return different images. Based on the vision, the results have equivalency image drawn with the 
ground truth image. 

4.  Conclusions 
This project implements a Deep Residual U-Net, which combines residual block and convolutional 
neural network (CNN) in a U-Net architecture to extract the forearm subcutaneous vein automatically. 
The models trained in this research have a significant performance from the results achieved and show 
a promising result that motivates the further development for subcutaneous vein extraction using deep 
learning, specifically on deep residual U-Net architecture. 

The project should be further developed with more experiments to set the value for the variables in 
hyperparameters of the neural network optimization to validate the best metric accuracy score of the 
system. 
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