
Ain Shams Engineering Journal 10 (2019) 253–265
Contents lists available at ScienceDirect

Ain Shams Engineering Journal

journal homepage: www.sciencedirect .com
Mechanical Engineering
Observations of changes in acoustic emission parameters for varying
corrosion defect in reciprocating compressor valves
https://doi.org/10.1016/j.asej.2019.01.003
2090-4479/� 2019 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Ain Shams University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail address: salah.obaidi@pioneers-group.com (S.M. Ali).

Peer review under responsibility of Ain Shams University.

Production and hosting by Elsevier
Salah M. Ali a,⇑, K.H. Hui a, L.M. Hee a, M. Salman Leong a, Ahmed M. Abdelrhman b, Mahdi A. Al-Obaidi c

a Institute of Noise and Vibration, University Technology Malaysia, 54100 Kuala Lumpur, Malaysia
b School of Engineering, Bahrain Polytechnic, 33349 Isa Town, Bahrain
cEnergy and Renewable Energies Technology Center, University of Technology, 10001 Baghdad, Iraq

a r t i c l e i n f o a b s t r a c t
Article history:
Received 5 December 2016
Revised 7 January 2018
Accepted 1 January 2019
Available online 14 February 2019

Keywords:
Reciprocating compressor
Valve fault detection
Acoustic emission parameters
MANOVA
Coefficient of variance
Acoustic Emission (AE) technology is probably one of the most recent entries in the field of machinery
condition monitoring. This paper investigates the application of AE parameters for valve faults detection
in reciprocating compressor. The defective valves were designed by emulating the actual valve corrosion
with varying sizes such that defects could be applied onto the reciprocating compressor. A set of exper-
iments was performed to acquire the AE signal. The primary source of AE signal was verified using wave-
form analysis. The AE parameters versus different operational and valve condition were illustrated
individually. In addition, the significance of the change and sensitivity of AE parameters versus different
experimental conditions was verified using MANOVA and coefficient of variance analysis. It is concluded
that the AE signal parameters can be used to detect the valve faults in the reciprocating compressor with
the consideration of the variation in the AE parameters sensitivity.
� 2019 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Ain Shams University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
1. Introduction studied and reviewed by many researchers [4–7]. Acoustic emis-
Reciprocating compressor is the most popular classes of
machine used with wide applications in industry and it is consid-
ered the patriarch of the compressors family [1]. However, the
unpredicted failures in this category of machine often result in dire
consequences. Several industry surveys have cited valve faults as
the most common cause for unplanned shutdown of reciprocating
compressors [2,3]. Many defects have been found in the compres-
sor valve, such as a clogged defect, a broken valve, a crack defect
and corrosion. Therefore, an effective and accurate valve condition
monitoring and fault diagnosis tool is extremely necessary to
ensure maximum productivity and safe compressor operation.

The AE is a rapidly growing technique in the field of machinery
condition monitoring and fault diagnosis due to the unique fea-
tures of the AE which can supply valuable information about the
energy sources inside the machine. The AE technology has been
sion refers to the generation of transient elastic waves produced
by a rapid release of energy from a localized source within and/
or on the surface of a material according to the definition by the
American Society for Testing and Materials (ASTM) [8]. In this
paper, AE is defined as transient elastic waves produced by the
impact of one surface to another in a reciprocating motion. In other
words, AE is the transient elastic waves produced by the impinge-
ment of the reeds inside the valve with the upper and lower valve
housing during the reciprocating compressor operation.

Many methods based on vibration, pressure and current signals
and the AE technique have been investigated for condition moni-
toring of compressors; however, only a less efforts were found
investigating the feasibility of AE signal parameters in valve condi-
tion monitoring. For example, Yih et al. [9] proposed a strategy for
the classification of the faults of reciprocating compressor valves
via the post-processing vibration signal using short-time Fourier
transform and Wigner-Ville distribution. Valve faults were con-
cluded to be difficult to differentiate using the presented strategy.
Ahmed et al. [10] developed a valve fault detection model by using
principal component analysis (PCA) for selecting the vibration fea-
ture in reciprocating compressor valves. Although valve faults
were demonstrated to be detected using this model, the sources
of the faults were not investigated. Another model for valve fault
detection was proposed by Van et al. [11] that implemented a
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new type of learning architecture called deep belief networks
(DBNs) and a Teager-Kaiser energy operator on three acquired sig-
nals: vibration, pressure and current signals. The proposed
approach with DBNs was found to improve the accuracy of valve
fault identification. Elhaj et al. [12] developed a mathematical
model of a two-stage reciprocating compressor based on instanta-
neous angular speed (IAS) and cylinder pressure waveforms for
detection and identification of different valve faults. Indeed, the
pressure measurements revealed a clear detection feature, but it
is an intrusive measurement that is difficult to implement. On
the contrary, the IAS features are not as obviously clear as those
of pressure, but it is of direct relevance in condition monitoring
because it can be obtained non-intrusively. Artificial neural net-
works, support vector machines and information entropy were
used with the noise and vibration signals to classify the reciprocat-
ing compressor condition in other studies [13,14].

The viability of AE as a diagnostic and prognostic tool has
reported in many studies [15–17]. For instance, the seed defect
sizes on a rolling bearing have been estimated by establishing a
relationship between the AE signal parameters and the defect size
[18–20]. Seal and blade rubbing has been detected via on line mon-
itoring using AE technology in power turbines [21,22]. El-Ghamry
et al. [23] developed a statistical feature isolation technique for
the diagnosis of faults in reciprocating machines using the AE sig-
nal. The technique was used to a selected time window for the AE
signal to identify machine faults. It was concluded that this
methodology could be applied to the monitoring of many types
of reciprocating machines and deferent faults using a variety of
sensor data. Valve leakage was detected during reciprocating com-
pressor operation [24], and the valve leakage amount was esti-
mated using AE signal [25]. Detection of valve clearance using AE
technology was investigated by Elamin et al. [26], who found that
AE is a powerful and reliable method of detection and diagnosis of
diesel engines valve faults. Recently Yuefei et al. [3] presented a
methodology for reciprocating compressor valve fault detection
by integrating the AE signal with the simulated valve motion.
However, limited operational conditions were used in the study.

The aim of this paper is to ascertain the applicability of AE main
parameters (rise time, duration, counts to peak, count, maximum
Fig. 1. The AE sign
amplitude, ASL, energy and RMS) for detecting the corrosion
defects of reciprocating compressor valves under different opera-
tional conditions, particularly as the former has been reported to
be fraught with many challenges. The paper structure presented
as follows. Section 1 reviews the state of the art the techniques
used in valve fault detection and the shortcomings of the existing
AE analysis methods. Section 2 briefly describes the AE parameters.
Section 3 illustrates the test rig and the instrumentation that have
been used in the experiments. Section 4 explains the experimental
procedure. Section 5 illustrates the experiments results and discus-
sion. Section 6 concludes the paper.

2. AE signal parameters

The AE signal can be classified as a transient signal (Hit), con-
tinuous signal, or mixed mode signal. An AE transient signal has
definite starting and ending points and can easily stray from
the background noise, whereas an AE continuous signal has vari-
ous amplitudes and frequencies over time [27]. A mixed mode
signal contains both transient and continuous signals. An
acquired AE signal has special parameters that can describe the
AE event. These parameters can be related to the machine condi-
tion; thus, the interpretations of the AE parameters are consid-
ered to be a good indicator of condition monitoring and fault
diagnoses [28]. See Fig. 1. The main AE signal parameters are
defined as below:

a. AE Hit: A signal that exceeds the threshold and causes a sys-
tem to accumulate data.

b. Amplitude: The highest measured voltage in a waveform,
which is directly related to the AE energy. The units of deci-
bels (dB) or millivolts (mV) are often used to express the AE
amplitude.

c. Duration: The period of time between the first and last
threshold crossings by the AE signal. The duration is gener-
ally expressed in microseconds (lsec).

d. Rise Time: The time interval between the triggering time of
the AE signal and the AE signal peak. Similar to the duration,
the rise time is generally expressed in microseconds (lsec).
al parameters.



Table 1
Test configuration.

Speed (RPM) Flow rate (%)

S1 200 F1 0%
S2 400 F2 50%
S3 600 F3 100%
S4 800
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e. AE Counts: The number of times where the signal exceeds a
present threshold. The number of counts is also used to
quantify the hits strength and the AE activity.

f. Counts to Peak: The number of counts between the trigger-
ing time over the threshold and the peak amplitude.

g. RMS: A statistical measure defined as the square root of the
mean of the squares of the AE hits amplitude. The RMS of the
AE hits amplitude is usually used because it is both unam-
biguous and has physical significance. RMS is usually mea-
sured on a linear scale and reported in volts, similar to the
amplitude units.

h. ASL: A statistical measure defined as the average of the AE
signal amplitude. Because the ASL considers the AE ampli-
tude in a logarithmic scale, it must be reported in dB units.

i. Energy: The measured area under the rectified signal envel-
ope (MARSE), with units that usually rely on the AE data
acquisition method. In this paper, the energy is proportional
to voltage and the duration of a signal (energy counts). How-
ever, energy is regularly used in the measurements of acous-
tic emissions due to its sensitivity to the amplitude as well
as the duration.

3. Test rig and data acquisition system

A single stage, 2 cylinder, air-cooled industrial reciprocating air
compressor (model: SWAN SVP-202) with a 1.5 kW/2 hp motor
that can provide a maximum speed of 820 rpm was selected as a
test rig in this study. A digital laser tachometer is configured and
fixed near the test rig to receive a pulse from a piece of reflective
tape attached to the flywheel to show the compressor cycle and
to record the compressor speed. An AE sensor (model: PKWDI)
with operating frequency range of 200–850 kHz was used to
acquire the signal in this research. The sensor was placed at the
valve/cylinder cover and fixed firmly to the surface by using super
glue. A single-channel AE data acquisition system (model: USB AE
Node) with AEwinTM software provides the full AE hit and time
based features, including waveforms, was used to record AE signal
and extract the AE parameters. The experiment setup is shown in
Fig. 2.
Fig. 2. Experimental test rig an
Many threshold levels have been examined before acquiring the
AE signal. The minimum values of thresholds were tested until the
sensor began to detect the valve AE signals. Once the signal
exceeded the setting threshold, the AE waveform was drafted ver-
sus the compressor cycle to ensure it represented the valve func-
tion (open-close). The signal was recognized perfectly at a
threshold level of 55 db. A total of 2048 samples were recorded
per acquisition (data file) at a sampling rates of 500 kHz.
4. Experimental procedure

The AE baseline signal (defect-free) was recorded for 12 running
conditions: four speeds (200, 400, 600 and 800 rpm) and three flow
rate conditions (0%, 50% and 100%). The speeds were controlled by
the speed controller, while the flow rate was controlled by adjust-
ing the amount of flow from the compressor outlet. The test config-
uration is described in Table 1.

Next, four valve conditions of varying corrosion severities were
simulated on the discharge valve of the compressor. In an attempt
to understand how the corrosion ratio influenced the AE parame-
ters, an incremental procedure for simulating increasing corrosion
ratio was established. Thus, the simulation of the corrosion ratio
involved starting a sequence on a valve with simulation of a small
corrosion with an oval shape and then increasing the area along
the central direction of the valve reed until the maximum width
was achieved in a similar manner as the actual defect of the corro-
sion. All the corrosion defects on the valve reed were simulated by
removing from the reed material using a drilling machine. The cor-
rosion defect severities are illustrated in Table 2 and Fig. 3.
d data acquisition setup.



Table 3
The actual speeds with the corresponding 1 cycle time.

Experiments No Speed (rpm) Speed (rps) Time of 1 Cycle (Sec)

1 200 3.33 0.30
2 400 6.67 0.15
3 600 10.00 0.10
4 800 13.33 0.075

a c d e b 

Fig. 3. The actual samples of valve’s reed corrosion defect (a) SC, (b) MC, (c) LC, (d)
VC and (e) NC.

Table 2
Valve defects severities.

Valve condition Defect type Defect severity Defect symbol Defect size

Healthy Condition No Defect No Corrosion NC No defect
Faulty Condition Corrosion Defect Small Corrosion SC 56.57 mm2

Medium Corrosion MC 79.63 mm2

Large Corrosion LC 106.27 mm2

Very Large Corrosion VC 136.48 mm2
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For accuracy reasons, three sets of signal were acquired for each
condition; the average values were calculated and taken as the
final result (the average values of all AE parameters are detailed
in Tables A1–A8 in Appendix A). A total of 180 experiments were
performed for averaging the 12 conditions in this study, where
each experiment was performed for 30 sec to acquire the AE signal.
Experimental tests were performed by first producing the defects
of the appropriate size and geometrical shape. After installing the
faulty reeds inside the compressor discharge valve, the test rig
was run at the first speed and flow rate condition. The test was
repeated for 3 times, with the AE signal acquired for 30 sec in each
condition. Next, the test rig was shutdown, and then the reed was
replaced with another level of fault severity. Thus, the procedure
for speed and flow rate was repeated, and then AE signal was again
acquired. The AE parameters were extracted and collected for fur-
ther analysis.

5. Results and discussion

5.1. Verification of the primary source of the AE signal

In particular, the suction and discharge process are the main
two events for any reciprocating compressor in one operational
cycle. In another word, when piston completed one cycle 360� from
the cylinder top dead center coming back to the top dead center
again, the valve plats will open and close respectively to allow
the suction and discharge process. Consequently, as the valve
plates bending up and down by the force of the piston pressure,
the plate surface will impact the valve upper and lower part which
made a rapid release of energy that generates strong transient elas-
tic AE waves can detect by the AE sensor mounted on the valve/-
cylinder cover. See Fig. 2.
Therefore, to verify the acquired AE signal is a consequence of
the impact of the plates with the valve housing during the recipro-
cating compressor operation, the AE signal was recorded and plot-
ted simultaneously with the compressor cycle in two conditions.
First AE waveform was obtained from the acquired baseline signals
which refer to the valve in healthy condition. The second wave-
form was acquired later after removing the discharge and suction
valve’s reeds. As stated before, both cases have been recorded with
four speeds (200 rpm, 400 rpm, 600 rpm and 800 rpm) and one
flow rate (100%).

In addition, if the reed’s impacts were to produce the AE tran-
sient bursts, it was hypothesized that the AE hits would be
detected at a rate equivalent to the valve movement frequency
per cycle. Hence, the compressor valve must be open and closed
within one cycle; two AE hits should appear per one compressor
cycle representing the open and closed process. Moreover, it was
hypothesized that the time between AE hits would be equivalent
to the valve open-close timing, which can be obtained from the
compressor speed. One operational cycle time can be calculated
from the compressor speed as shown in Eq. (1) below:

OneCycleTime ðSecÞ ¼ 1
CrankShaftSpeedðRPMÞ� ð1Þ

Table 3 illustrates the actual speeds with the corresponding one
cycle time calculated by the above equation. Thus, a plot includes
both the tachometer signal and both AE waveforms have been
plotted for every speed to verify the synchronization of the AE hits
with the valve open and close events. Both tachometer signal and
AE signal was drawn using FAMOS software. In all the four speeds,
one second of the signal was segregated and analyzed. Figs. 4–7
illustrates two AE waveforms versus tachometer signal for each
speed.

As it was perceived, AE waveform is directly associated with the
valve function (open-close) as it clearly appears in all conditions.
Transient type of AE waveform is dominant among the acquired
AE signal in a sequence of bursts whose amplitude exceeds the
underlying continuous wave whilst the hits find to be disappeared
when the plates were removed from the valve. The frequency of
the periodicity of the AE hits represented the valve movements
(open-close) respectively within one cycle. This is similar to obser-
vations of AE waveforms associated with actual and simulated
valve movement in reciprocating compressor which transient type
forms of AE signal were apparently associated with the valve
movement [3].

On the other hand, the time period between every (close-close)
or (open-open) found to be the same time of one compressor cycle
which found to be: 0.3 sec when the speed was 200 rpm, 0.15 sec



Fig. 4. AE waveforms versus compressor cycles at 200 rpm.

Fig. 5. AE waveforms versus compressor cycles at 400 rpm.

S.M. Ali et al. / Ain Shams Engineering Journal 10 (2019) 253–265 257
when the speed was 400 rpm, 0.09 sec when the speed was
600 rpm and 0.07 sec when the speed was 800 rpm. See Figs. 4–7
respectively. The time considers another indicator to prove that
the hit signal was produced from the reed’s impact with the valve
housing.

5.2. Observation of AE parameters

5.2.1. AE rise time and duration
Rise time and duration are the time measurements used for the

AE hits; both quantities represent the time period for one single
hit, as mentioned previously. The rise time and duration values
were compared under different valve corrosion defect ratios at
varying speed and flow rate conditions. Note that the rise time val-
ues increase with the increase in the flow rate and speed for all
conditions. The rise time values exhibit incremental decreases with
the increase in the corrosion ratio for all speed and flow rate con-
ditions (see Fig. 8). However, the rise time was found to be more
sensitive for high speed rather than low speed for all corrosion
ratios. For example, the rise time at SC, MC and VC conditions
exhibited very small increases (3500–5000 lsec) with the increase
in flow rate at the first speed (200 rpm), while the change was
noted to be much greater, ranging from 60,000 lsec to
25,000 lSec) at higher speeds (600 rpm and 800 rpm) with the
change in flow rate, such as for the NC, LC and VC conditions.

Similar to the rise time, the line graph clearly exhibits a dra-
matic increase in the AE hits duration when the flow rate and
speed increase for each condition. However, the duration is
observed to decline when the corrosion defects expand until it
exhibits the lowest values for the very large corrosion condition
VC. The decrease in the duration value is a result of the material
removal from the valve reeds, which reduce the reed stiffness as
well as the area of impact between the reeds and the valve hous-
ing, resulting in small values of the durations compared to the



Fig. 6. AE waveforms versus compressor cycles at 600 rpm.

Fig. 7. AE waveforms versus compressor cycles at 800 rpm.

Fig. 8. AE rise time of different corrosion ratios at increasing speed and fix flow rate.
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duration values when the valve is in the healthy condition. Never-
theless, the duration values show only small changes at the low
speeds (12,000–14,000 lsec), while they show a huge difference
when the speed increases (15,000 lsec up to 50,000 lsec). In addi-
tion, the duration noted was affected by the flow rate for nearly all
conditions (except in the SC and VC) when the compressor ran at a
low speed (see Fig. 9). The variation of the rise time and the dura-
tion values at increasing flow rate and fixed speed are detailed in
Figs. B1 and B2 in Appendix B.

5.2.2. AE count to peak and counts
Counts and the count to peak are usually used to quantify the

hits strength; they are proportional to each other because both
represent the same hits. As the AE signal was recorded, the count
and count to peak were calculated and obtained automatically
via AEwin software for each single hit. Figs. 10 and 11 illustrate
the counts and count to peak, respectively, for all test conditions.
The line graphs in both figures show clear changes in both param-
eter values as the test conditions change. The values of counts to
peak and counts were observed to be high at the healthy condition,
followed by a decrease as the corrosion severity increases. The rea-
son for this decrease is the volume of the material that was
removed from the valve reeds, which lead to a decrease in the stiff-



Fig. 9. AE duration of different corrosion ratios at increasing speed and fix flow rate.

Fig. 10. AE count to peak of different corrosion ratios at increasing speed and fix
flow rate.

Fig. 11. AE count of different corrosion ratios at increasing speed and fix flow rate.

Fig. 12. AE amplitude of different corrosion ratios at increasing speed and fix flow
rate.
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ness as well as in the impact area, which then lead to a reduction in
the hits strength and result in a small number of counts and count
to peak. For example, the AE count to peak for hits in the healthy
condition was found to range from 500 counts up to 1700 counts
and vary with the speed and the flow rate. As the speed increased
from 200 rpm to 800 rpm, the count to peak increased accordingly.
Moreover, the count-to-peak values were found to increase when
the flow rate increased due to the decrease of the pressure inside
the compressor (see Fig. 10).

The AE count number was found to have a similar behavior as
the value of the count to peak, but with higher values. Thus, the
count number values start to decline dramatically as the corrosion
severity grows at the valve reeds. The count number ranged from
750 to 4500 counts at NC and then decreased from 300 to 750
counts at the VC, as shown in Fig. 11. This decline is again due to
the removal of the material from the valve reed, which leads to a
smaller number of counts because the stiffness and the area of con-
tact become smaller. Comparable to the count to peak, the count
number has identical behavior in terms of sensitivity to the flow
rate and speed. Although the count number was found to be more
sensitive to speed than flow rate, it still showed noticeable changes
when the flow rate was changed at high speeds. However, the
count number was difficult to differentiate in some conditions,
especially at low speed, such as in the LC and VC conditions. The
variation of the count and the count to peak values at increasing
flow rate and fixed speed are detailed in Figs. B3 and B4 in Appen-
dix B.

5.2.3. AE amplitude and ASL
The AE amplitude and AE average signal level were recorded

and analyzed for all test conditions. Figs. 12 and 13 illustrate the
results comparison of the AE amplitude and AE average signal
levels, respectively. Both line graphs show a dramatic decrease in
AE amplitude and ASL values with the increase in the corrosion
severity. Because the reed material is removed gradually to simu-
late the corrosion defect, the stiffness as well as the contact area
between the reeds and the valve housing were reduced, which
influenced the AE hits strength; therefore, the AE amplitude and
ASL were observed to decline with the increase in the corrosion
severity. In addition, the AE amplitude and ASL were found to be
more sensitive to the change in speed than the change in the flow
rate. For example, the line graph clearly shows a spectacular
increase in AE amplitude and ASL values with increasing speed in
all test conditions. The maximum observation for amplitude was
found to be (97 dB) at the first condition NC, while the lowest value
was (86 dB) at the last condition, VC. The ASL value was observed
to be maximum at the first condition (78 dB) and minimum (46 dB)
at the LC condition. However, both AE amplitude and ASL values do
not show a clear change with the increase in the flow rate. Both
parameters showed comparable values with the change of flow
rate. The variation of the AE amplitude and ASL values at increasing
flow rate and fixed speed are detailed in Figs. B5 and B6 in Appen-
dix B.

5.2.4. AE energy
AE energy is regularly used in the AE measurements to specify

the overall cumulative AE event; therefore, AE energy was selected
to compare different corrosion ratios at varying speed and flow
rate conditions. In general, the energy values were found to
decrease with the improvement of the corrosion in the valve reeds.
The reason for this negative relation is related to the corrosion fault
that was simulated into the valve reed as well as the nature of the



Fig. 15. AE RMS of different corrosion ratios at increasing speed and fix flow rate.

Table 4
MANOVA of the AE parameters values at overall valve corrosion ratios.

AE Parameters MS F P value

Rise Time 2.87E+08 30.989* <0.01
Duration 4.97E+08 36.044* <0.01
Count to Peak 9.48E+05 50.624* <0.01
Count 2.26E+06 15.685* <0.01
ASL 2.41E+02 67.216* <0.01
Amplitude 2.66E+01 61.545* <0.01

Fig. 13. AE ASL of different corrosion ratios at increasing speed and fix flow rate.
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AE. As the main source of the AE events is correlated with the
impact of the reeds with the valve housing, the strength of the
AE event relies on the area of contact and the reed stiffness. There-
fore, when the corrosion was gradually simulated into the valve
reeds, the AE energy values decreased due to the removal of the
material from the valve reed. Thus, the maximum energy was
found to occur when the valve was in the healthy condition, NC,
while the energy incrementally decreased until it reached the min-
imum value at the VC condition. However, the energy was
observed to change with the change of flow rate and speed with
a positive relationship, i.e., the energy values were found to
increase with the increase in the flow rate and speed, as illustrated
in Fig. 14. The variation of the energy values at increasing flow rate
and fixed speed are detailed in Fig. B7 in Appendix B.

5.2.5. AE RMS
In general, the average power transmitted by an acoustic signal

is proportional to the square of the root mean square of the AE hits
amplitude. Therefore, the RMS of the AE hits amplitude was calcu-
lated, recorded and compared for all test conditions. Fig. 15 illus-
trates the changes of the RMS values by the change of the test
conditions. As clearly shown in the line graph, the RMS values
are found to decrease as the corrosion ratios increase. Among the
five test conditions, the NC corresponds to the highest value of
RMS (0.45 V), while the RMS was found to have the lowest values
(0.02 V) at the VC condition. The reason for the decrease is the
removal of the reed material, which resulted in reduction of the
reed stiffness as well as the contact area between the reed and
the valve housing, which negatively affects the AE amplitudes.
Similar to the previous parameters, the RMS values were observed
to increase with increasing flow rate for nearly all conditions,
except at lower speeds, where the RMS values show small changes
with the change of flow rate. Likewise, the RMS values were found
Fig. 14. AE energy of different corrosion ratios at increasing speed and fix flow rate.
to increase with the increase in the speed in all conditions. The
RMS values were observed to be sensitive enough to detect the cor-
rosion at high speeds (600 rpm and 800 rpm). The variation of the
RMS values at increasing flow rate and fixed speed are detailed in
Fig. B8 in Appendix B.
5.3. Multivariate analysis of variance (MANOVA)

The AE parameters were undertaken as a function of speed, flow
rate and corrosion ratios (the averages of all AE parameters results
are detailed in Tables A1–A8 in Appendix A). It was hypothesized
that there is a significance difference in the variance of all AE
parameters when the speed, flow rate and corrosion ratios are
changed. In order to verify that, Multivariate Analysis of Variance
(MANOVA) was used to obtain the probability value (P value) at
a significance level equal to 0.05 as well as to evaluate the change
in AE parameters versus the change in the test conditions, which
are the corrosion ratio, the speeds and flow rate. Tables 4–6 show
the MANOVA results for all AE parameters in all test conditions.

The evaluation of the AE parameters changes under different
valve corrosion ratios using MANOVA showed that all AE parame-
ters significantly changed with the change in the corrosion sever-
ity, as all the P values are less than 0.05, see Table 4. Likewise,
Energy 3.95E+06 15.129* <0.01
RMS 6.70E�02 41.757* <0.01

* Significant at 0.05 level.

Table 5
MANOVA of the AE parameters values at different speeds.

Variable MS F P value

Rise Time 4.10E+08 44.149* <0.01
Duration 8.57E+08 62.087* <0.01
Count to Peak 1.02E+06 54.217* <0.01
Count 3.55E+06 24.61* <0.01
ASL 6.27E+02 174.675* <0.01
Amplitude 3.17E+01 73.311* <0.01
Energy 2.67E+07 102.103* <0.01
RMS 9.10E�02 56.272* <0.01

* Significant at 0.05 level.



Table 6
MANOVA of the AE parameters values at different flow rates.

Variable MS F P value

Rise Time 7.44E+08 8.021* 0.001
Duration 2.95E+08 21.397* <0.01
Count to Peak 2.64E+05 14.08* <0.01
Count 5.53E+05 3.835* 0.028
ASL 1.67E+01 4.658* 0.014
Amplitude 6.51E+00 15.075* <0.01
Energy 4.93E+06 18.859* <0.01
RMS 2.00E�03 1.321* <0.01

* Significant at 0.05 level.

Table A1
The mean values of the AE rise time for all test conditions.

Valve condition F1 F2 F3

NC S1 3406.851 4657.925 5315.836
S2 14938.85 20639.68 22602.56
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MANOVA was used to evaluate the change in AE parameters under
different flow ratios and speeds. Note that all AE parameters are
significantly changed, as stated in Table 5. Similar findings were
achieved for the change in the AE parameters under different flow
ratios, see Table 6. As the P values are smaller than the significance
level of 0.05. Therefore, there is a significance difference in the
variance of all AE parameters when the speed, flow rate and corro-
sion ratios are changed.

5.4. Coefficient of variance analysis

The Coefficient of Variance (CV) is a standard measure of disper-
sion of values, which aims to describe the dispersion of the variable
in a way that does not depend on the variable’s measurement unit.
The CV can be calculated by dividing the standard deviation (SD)
by the mean (r) multiplied by 100 for each of the AE parameters.
In this paper, the CV was used to determine the most sensitive AE
parameters corresponding to main test variables: valve condition,
speed and flow rate. The AE parameter with a high CV value means
the parameter values are more useful in fault detection, as it has
greater dispersion when the conditions change. In contrast, a
parameter with a lower CV value corresponds to smaller dispersion
when the conditions change. Then the parameter is less useful in
fault detection. See Fig. 16. The CV values of all AE parameters
are presented in Table C1 Appendix C.

The bar chart compares the percentage of CV for the AE eight
parameters for all the experiments. Significant differences in the
percentage of CV are clearly observed among the AE parameters.
The RMS has the largest percentage of CV, with a value of 71%,
while the rise time and count to peak have the second largest per-
centages of CV of 66% and 60%, respectively. The value decreased to
54% for count and 44% for duration. The energy, ASL and amplitude
have the lowest percentage of CV, with values of 29%, 11% and 2%,
respectively. However, the CV percentage of energy remained sig-
nificantly higher than ASL and amplitude over this ratio frame.
Fig. 16. The coefficient of variance for all the AE parameter.
Consequently, the RMS is considered as the most sensitive param-
eter to the change of the main variables because it has the greater
dispersion when the conditions change, while the amplitude was
the least sensitive of all eight parameters to the change in the main
test variable.
6. Conclusion

The primary source of the AE signal in the reciprocating com-
pressor was verified using waveform analysis. It was demon-
strated that the primary source of the acquired AE signal
resulted from the movement of the valve reeds. In addition, all
AE parameters values showed a significance changes versus the
change in the test conditions (P value is <0.01) as verified using
MANOVA. There is a direct relationship between the size of corro-
sion and the AE parameters; this relationship will be the subject of
future investigation. Furthermore, the coefficient of variance
results indicates that the RMS with CV = 71% is the best parameter
for valve fault detection among all the AE parameters while the
ASL and amplitude with values of 11% and 2% respectively have
the lowest percentage of CV. It is concluded that the AE signal
parameters can be used to detect the valve faults in the reciprocat-
ing compressor with the consideration of the variation in the AE
parameters sensitivity.
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Appendix A

The AE parameters values of all test conditions, emphasizing the
sensitivity of AE to corrosion defect progression in varying flow
rate and speed conditions is shown in Tables A1–A8 as below:
S3 17766.66 22966.16 26,381
S4 23559.16 24489.26 27502.66

SC S1 4758.509 4901.211 5692.356
S2 6532 9557.02 15420.85
S3 15,716 17859.33 18948.66
S4 19822.23 21934.26 22358.91

MC S1 4248.575 4801.315 4968.095
S2 5005.897 6827.387 7447.692
S3 6129.664 8565.011 9785.103
S4 14506.82 15305.44 17339.61

LC S1 2979.379 3285.803 4507.49
S2 3648.636 4004.842 8871.116
S3 6691.042 7522.667 10862.35
S4 8171.938 9912.697 14528.64

VC S1 3292.188 3711.347 4332
S2 3589.769 4112.605 5349.36
S3 5180.218 7858.936 8495.697
S4 6341.162 10822.66 12721.56



Table A3
The mean values of the AE count to peak for all test conditions.

F1 F2 F3

NC S1 505.1409 555.0381 629.9041
S2 568.5128 691.358 884.1923
S3 832.925 1101.633 1319.941
S4 1211.858 1437.061 1719.255

SC S1 316.3818 363.8222 425.9211
S2 330.6296 435.8776 540.6547
S3 546.0482 705.94 918.43
S4 971.9577 1069.726 1263.846

MC S1 241.1277 333.9057 510.5738
S2 719.3441 851.0578 891.7089
S3 896.2524 1093.329 1161.917
S4 1002.528 1059.379 1206.854

LC S1 219.5625 249.4082 270.9211
S2 284.7579 351.9804 383.2316
S3 313.8571 408.6742 554.8065
S4 390.3273 509.9335 650.8478

VC S1 111.6724 127.3934 129.8636
S2 212.6154 243.615 301.0909
S3 248.7042 261.7431 446.8103
S4 333.1094 556.4404 636.62

Table A4
The mean values of the AE count for all test conditions.

F1 F2 F3

NC S1 785.2625 910.0733 941.6476
S2 946.7739 1093.74 1390.923
S3 1409.174 1732.693 2344.2
S4 2392.176 3583.701 4209.875

SC S1 883.7213 910.6604 1042.277
S2 1498.468 1594.333 1760.939
S3 1745.406 1816.378 1922
S4 1816.319 1930.144 1977.831

MC S1 785.9818 862.5333 897.5263
S2 826.6296 943.2449 1160.748
S3 1171.843 1280.16 1438.29
S4 1630.439 1710.097 1843.141

LC S1 598.3469 667.5938 795.2895
S2 1041.579 1143.294 1148.116
S3 1008.491 1181.174 1476.8
S4 1238.519 1415.06 1527.82

VC S1 218.7759 249.303 253.1639
S2 660.1927 700.155 784.7656
S3 765.0759 844.3028 952.0423
S4 856.1923 919.0909 1064.76

Table A5
The mean values of the AE ASL for all test conditions.

F1 F2 F3

NC S1 58.65 60.24658 61.28571
S2 72.9396 74.28409 76.64103
S3 74.56177 75.19333 78.11892
S4 75.44595 76.29592 79.01442

SC S1 53.93878 55.54688 56.78947
S2 63.5625 64.42202 65.635
S3 65.21379 67.22535 68.74312
S4 68.42308 69.63636 70.42

MC S1 55 56.62295 57.03774
S2 63.58537 63.89855 63.86893
S3 65.8481 65.47556 67.15756
S4 66.1 67.25 68.00484

LC S1 47.24138 48.63636 47.67213
S2 59.89474 60.13684 60.88235
S3 63.4 64.64783 65.55303
S4 67.5619 68.54032 69.38671

VC S1 55.78182 56.05263 55.44444
S2 60.25926 62.30935 60.45918
S3 64.51282 64.84194 65.43915
S4 65.56627 65.67633 66.472

Table A6
The mean values of the AE amplitude for all test conditions.

F1 F2 F3

NC S1 89.00952 89.50685 90.025
S2 92.74667 93.12821 94.25
S3 93.72973 94.59796 95.43624
S4 95.10481 95.54432 95.94755

SC S1 89 89.79688 90.98684
S2 91.07 91.69063 92.0367
S3 91.53846 91.74545 91.9635
S4 92.0507 92.36697 93.03103

MC S1 88.95745 89.39344 89.5283
S2 89.47561 90.86473 91.24757
S3 90.51139 91.36667 91.66656
S4 90.93056 91.5977 92.05085

LC S1 88.16364 88.63934 89.09474
S2 88.71579 89.56897 90.15686
S3 90.30909 90.76957 91.32576
S4 91.04286 91.27151 91.69486

VC S1 87.20909 87.64444 88.01579
S2 88.14815 88.4964 89.93878
S3 89.73077 90.63548 90.6956
S4 90.03614 90.92319 91.20106

Table A2
The mean values of the AE Duration for all test conditions.

F1 F2 F3

NC S1 13317.56 14951.12 16413.86
S2 16171.3 25903.5 35286.76
S3 27936.01 31740.44 39088.4
S4 35920.49 42121.99 52617.17

SC S1 14674.18 15150.11 16176.31
S2 23823.1 26489.49 29709.15
S3 31586.85 35037.61 37000.44
S4 33749.01 36,183 39342.02

MC S1 13294.47 16219.85 19772.1
S2 16281.19 20083.67 25582.78
S3 18349.42 26915.35 28512.18
S4 22404.59 31484.68 33616.84

LC S1 8906.844 10515.45 10999.02
S2 16102.73 19553.69 25293.85
S3 19088.92 21929.39 28969.45
S4 20046.46 27520.66 30804.85

VC S1 7427 8287.377 9726.818
S2 11702.15 12144.82 13360.12
S3 13028.14 14304.79 16500.61
S4 15189.98 16658.38 23902.99

Table A7
The mean values of the AE energy for all test conditions.

F1 F2 F3

NC S1 3064.419 3446.438 4130.55
S2 4130.66 4601.12 5310.692
S3 5817.57 6251.341 7320.908
S4 6996.033 8083.48 8935.256

SC S1 3609.016 3971.434 4329.319
S2 4354.476 4844.667 5488.61
S3 5374.329 5574.213 5825.595
S4 5658.644 6228.083 6833.622

MC S1 2860.375 3273.658 3697.918
S2 3293.516 3417.074 3968.157
S3 4159.527 4935.439 5404.191
S4 4689.933 6140.205 6611.661

LC S1 2641.564 2661.947 2520.311
S2 2891.407 4174.619 4597.776
S3 5063.487 5200.826 5507.376
S4 5496.675 5634.3 5878.24

VC S1 2502.793 2574.885 2758.394
S2 4129.813 5018.459 5539.07
S3 4818.169 5404.422 5823.807
S4 5078.538 5617.545 5992.07
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Table A8
The mean values of the AE RMS for all test conditions.

F1 F2 F3

NC S1 0.076315 0.073156 0.065625
S2 0.198315 0.243127 0.331615
S3 0.318529 0.367927 0.411182
S4 0.380859 0.408319 0.439415

SC S1 0.043078 0.0498 0.03538
S2 0.109191 0.120598 0.137259
S3 0.169093 0.177295 0.204208
S4 0.216469 0.214973 0.241060

MC S1 0.044338 0.045284 0.043827
S2 0.069981 0.072133 0.07868
S3 0.119284 0.124403 0.133912
S4 0.169466 0.186659 0.190092

LC S1 0.048698 0.050736 0.039868
S2 0.108059 0.11115 0.109566
S3 0.140752 0.133812 0.160609
S4 0.162967 0.150548 0.177271

VC S1 0.016259 0.019518 0.017184
S2 0.076319 0.092793 0.074959
S3 0.119613 0.124276 0.132193
S4 0.136022 0.137415 0.148733

Fig. B3. Count to peak of different corrosion ratios at increasing flow rate and fix
speed.
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Appendix B

The variation of all the AE parameters at increasing flow rate
and fix speed are illustrate in Figs. B1–B.8.
Fig. B1. Rise time of different corrosion ratios at increasing flow rate and fix speed.

Fig. B2. Duration of different corrosion ratios at increasing flow rate and fix speed.

Fig. B4. Counts of different corrosion ratios at increasing flow rate and fix speed.

Fig. B5. Amplitude of different corrosion ratios at increasing flow rate and fix
speed.

Fig. B6. ASL of different corrosion ratios at increasing flow rate and fix speed.



Fig. B7. Energy of different corrosion ratios at increasing flow rate and fix speed.

Fig. B8. RMS of different corrosion ratios at increasing flow rate and fix speed.
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Appendix C

The mean, standard deviation and coefficient of variance per-
centage for each AE parameter for all test conditions shown in
Table C1.
Table C1
Total of means, stander deviation and coefficient of variation for each AE parameter for al

Rise Time Duration Count to Peak

NC r 17852.22 29289.05 954.73
Sd 8777.00 12441.40 398.17
CV 49% 42% 42%

SC r 13625.11 28243.44 657.44
Sd 6889.41 8926.42 322.66
CV 51% 32% 49%

MC r 8744.22 22709.76 830.66
Sd 4547.09 6482.83 319.05
CV 52% 29% 38%

LC r 7082.22 19977.61 382.36
Sd 3588.11 7359.29 131.63
CV 51% 37% 34%

VC r 6317.29 13519.43 300.81
Sd 3057.76 4413.83 168.10
CV 48% 33% 56%

Total r 10724.21 22747.86 625.20
Sd 7120.45 9950.26 375.14
CV 66% 44% 60%
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