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ABSTRACT 

Ever since the dawn of agriculture, the devastating consequences of plant 

disease inevitably impacted the crop cultivation quantitatively and qualitatively. One 

of the plant disease incidents happened in 2007 in Georgia which lead to a $539.74 

million loss in the total revenue. Intuitively, it is essential to tackle the disease 

outbreaks as early as possible to diagnose the underlying cause. The detection and 

classification of diseases carried out by the plant pathologists are subjected to cognitive 

error. To alleviate direct human intervention, machine learning is undoubtedly the key 

to avert this downfall. Over the years, numerous neural networks have been proposed 

to improve the existing state-of-art. Nevertheless, minimal works have been done on 

segmenting the region of the disease from the leaf. On the other hand, one of the 

inherent issues in machine learning is “What is the optimal configuration for the 

network to gain the highest performance?”. Many researchers are probing, but no 

single solution can cater to all the models built for different purposes. The concept of 

fine-tuning is a critical step which generally left out of discussion due to divergence in 

solution. Hence, the first objective is to build a semantic segmentation network that 

create a salient map image tracking the boundary of the disease. The second objective 

is to regularize and optimize the built network to identify the optimal configuration. 

SegNet’s fully convolutional architecture with transfer learning is chosen as the 

semantic segmentation network. A total of 1000 early and late blights of potato and 

tomato samples from PlantVillage are fed to the model. To capture the best network, 

optimizers such as SGD, RMSProp and Adam are benchmarked with regularization 

techniques such as adaptive learning rate, dropout layer and weight & bias rates re-

initialization. Afterwards, hyperparameters such as mini-batch, initial learning rate, 

momentum, gradient, L2 regularization, number of samples and number of epochs are 

tuned progressively. Throughout the tweaking process, the global accuracy and mean 

IoU have increased from 86.96% and 50.72% to 93.86% and 60.24% respectively. In 

addition, the comparison between SegNet and FCN has proven that the former 

architecture is lightweight and powerful in delineating the boundary of plant lesion. 

With the delineated lesion’s boundary, the manifestation along the leaf surface can be 

traced and appraised for pathological anatomy.  
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ABSTRAK 

Sejak zaman pertanian awal, akibat buruk daripada penyakit tanaman telah 

mempengaruhi penanaman tanaman secara kuantitatif dan kualitatif. Salah satu 

insiden penyakit tanaman berlaku pada tahun 2007 di Georgia yang mengakibatkan 

kerugian keseluruhan $539.74 juta. Secara intuitif, mencegah wabak secepat mungkin 

adalah penting untuk mendiagnosis masalahnya. Pengesanan dan klasifikasi penyakit 

yang dilakukan oleh ahli patologi tumbuhan dipengaruhi oleh kesalahan kognitif.  

Untuk mengurangkan kesilapan manusia, pembelajaran mesin merupakan kunci 

mengelakkan kelemahan ini. Selama bertahun, banyak rangkaian neural telah 

dicadangkan untuk memperbaiki kaedah sedia ada. Walaubagaimanapun, hanya 

sedikit kerja yang telah dilakukan untuk mengsegmentasikan kawasan penyakit dari 

daun. Selain itu, salah satu masalah yang wujud dalam pembelajaran mesin adalah 

“Apakah konfigurasi optimum untuk sesuatu rangkaian memperoleh prestasi 

tertinggi?”. Banyak penyelidikan telah dijalankan tetapi tiada satu penyelesaikan boleh 

memenuhi setiap model yang dibina untuk tujuan berbeza. Konsep talaan-halus adalah 

langkah kritikal yang biasanya diabaikan kerana perbezaan dalam penyelesaian. Oleh 

itu, objektif pertama adalah untuk membina rangkaian segmentasi semantik untuk 

membina imej peta kecerunan. Objektif kedua adalah “regularize” dan “optimize” 

rangkaian untuk mendapatkan konfigurasi yang optimum. Rangkaian Neural 

Konvolusi (CNN) dengan kaedah pembelajaran di SegNet telah dibina dengan 1000 

imej penyakit “early blight” dan “late blight” kentang dan tomato daripada set data 

PlantVillage. Untuk memdapatkan rangkaian yang terbaik, optimizers seperti SGD, 

RMSProp dan Adam telah dilaksanakan teknik “regularization” seperti “adaptive 

learning rate”, “dropout layer” dan “weight & bias rates re-initialization”. Selepas itu, 

hiperparameters seperti “mini-batch”, “initial learning rate”, “momentum”, “gradient”, 

“L2 regularization”, “number of samples” dan “number of epochs” telah disuaikan. 

Pada akhir talaan-halus, ketepatan dan mean IoU meningkat daripada 86.96% dan 

50.72% kepada 93.86% dan 60.24%. Selain itu, perbandingan antara SegNet dan FCN 

menunjukkan bahawa SegNet yang lebih ringan dan berkuasa dalam sempadan 

segmentasi. Dengan peta kecerunan, corak setiap manifestasi penyakit di permukaan 

daun dijejaki untuk pemahanan yang lebih baik berdasarkan anatomi pathologi. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Problem Background 

For decades, the agricultural sector plays a critical role in the national economy 

in developed countries, the US and China. In the US, it is estimated to produce around 

$330 billion per year, accounting both agricultural and livestock [1]. For developing 

countries such as Nigerian, a comparative analysis was conducted to realize that the 

contribution of agriculture outweighed both petroleum and manufacturing sectors [2, 

3]. A study in the US [4] claimed that there is a need to raise food production by almost 

70% by 2050 to cater for 9 billion population. Nevertheless, [5] demonstrated that the 

food supply decreases on an average of 40% annually despite the enforced protection 

against infectious diseases. In a small farm, the farmer can easily yield 80% to 100% 

loss due to pests and diseases. In 2007, a statistic report in Georgia [6] showed that the 

plant disease has contributed to $539.74 million losses which were 11.03% of the total 

revenue. 

Phytophthora infestans is a microorganism that brings early and late blights to 

the essential horticulture commodities such as potato and tomato. One of the infamous 

late blight disease of potato incident occurred in 1845-1849 [7], the main crop potatoes 

were destroyed due to the outbreak of plant disease in Ireland. The resulted from Great 

Famine leads to a million of deceases and another million of emigrations. 

Phytophthora infestans rapidly became pandemic and remains as one of the most 

intractable plant diseases today. In consequence, it is crucial to prevent history from 

repeating itself. To enable the early treatment of early and late blights, early detection 

of such diseases is important so that the root of causes can be removed before wide-

spreading.     
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1.2 Problem Statement 

The obsolete technique practiced for early detection was through naked eye 

observation. [8] criticized this manual method to identify leaf spot diseases is highly 

stochastic, time-consuming and insensible in a large farm. A paper summarized the 

traditional techniques in capturing the plant disease up to 2015 [9]: Direct detection 

method utilizes the serological to analyze the pathogens; Indirect detection method 

identifies the external parameters of infected plants; Portable sensors to detect the 

analytes electrically or chemically. The work in [10] outlined the advantage of deep 

learning against the traditional technique such as the image-based samples, low-cost 

real-time application and surrounding-adaptive. As the classification networks have 

hit the bottleneck due to the inability to identify the location, size, shape and color of 

the disease region, segmentation of disease symptom from leaf becomes one of the key 

focus. A few studies [11, 12] in plant science claimed that the leaf area and color are 

the potential parameters to reflect the plant health and physiological process. Rather 

than the whole region of disease, the boundary of the disease does impart essential 

information for the pathologist to study. [13] facilitated the segmentation process by 

converting RGB into HSV, this effectively eliminates the issue of different 

illuminations.   

The existing segmentation networks are computational exhaustive due to the 

massive memory consumption during the up-sampling stage in the decoder. The 

consequence is a redundant network training phase and subpar adaptivity in a portable 

device. In this work, the input image will be segmented into disease boundary and non-

disease boundary through the lightweight deep learning to provide more constructive 

information and ease the diseases’ classification process. Moreover, an exhausting 

endeavour exists in deep learning is to find the optimum configuration for a network 

designed for a specific purpose. [14, 15] claimed that the efficiency could be further 

improved by fine-tuning CNN for plant identification. Therefore, regularization and 

optimization techniques (tweaking mechanism) will be applied to the designed deep 

neural network to identify the best configuration to achieve the highest accuracy with 

a limited number of samples.  
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1.3 Research Objectives 

The objectives of this project are: 

 To build a lightweight semantic segmentation network using deep learning 

architecture to detect early and late blights on potato and tomato. 

 To output a salient map image which outlined the size and shape of the disease 

boundary. 

 To study the effect of network’s accuracy using regularization and optimization 

techniques. 

1.4 Scopes of the Study 

The scopes of this project are: 

 To segment the leaf image into 2 classes: ‘foreground’ and ‘background’ to 

extract the salient area. 

 To prepare the dataset for segmentation using the leaf image from PlantVillage 

online database. 

 To design the network using SegNet architecture through transfer learning 

using MATLAB R2019a. 

 To implement the training model using a personal laptop with Intel Core I7 8th 

Gen and a NVIDIA GeFORCE GTX 1060. 

1.5 Outline of Project Report 

This project report is broken down into 5 chapters: Introduction; Literature 

Review; Research Methodology; Results and Discussion; Conclusion and 

Recommendations. 
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