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Abstract

Schizophrenia is a severemental illness that affects millions of people worldwide and can have
a drastic impact on a patient’s life. The illness is characterised by symptoms such as hallucina-
tions and delusions. In recent years, a powerful theoretical framework has been developed to
understand better how such symptoms emerge, the predictive coding account of psychosis.
In this thesis, I cast different symptoms of psychosis as instances of hierarchical Bayesian infer-
ence in a series of studies. The first study examined the question of howpersecutory delusions
emerge in early psychosis. Wederived hypotheses based onprevious literature and simulations
and tested them empirically in a sample of 18 first-episode psychosis patients, 19 individuals
at clinical high risk for psychosis (CHR) and 19 matched healthy controls (HC). Our results
suggest that emerging psychosis may be accompanied by an altered perception of environ-
mental volatility. In a second study, this modelling approach was applied to delusions more
broadly in a large dataset including 261 patients with psychotic disorders and 56 HC to ex-
amine the relationship between delusions and reasoning biases that were previously reported
in psychosis. The results of this study suggest that beliefs of patients with psychotic disorders
were characterised by increased belief instability, which explained increased belief updating in
light of disconfirmatory evidence. We also assessed the clinical utility of this approach by test-
ing its ability to predict treatment response to a psychotherapeutic intervention and found
that the parameters of the computational model were able to predict treatment outcome in
individual patients. Lastly, in a final study, we modelled brain activity during an implicit sen-
sory learning task in a third independent sample of 38 CHR, 18 early-illness schizophrenia
patients, and 44 HC to assess the biological plausibility of this approach. Our results suggest
that hierarchical precision-weighted prediction errors derived from the model modulate elec-
troencephalography (EEG) amplitudes. Moreover, we found not only differences in the ex-
pression of precision-weighted prediction errors between schizophrenia patients andHC, but
also between CHR, who later converted to a psychotic disorder, and non-converters. Jointly,
this work demonstrates that this computational approach may not only be conceptually use-
ful to understand the computational mechanisms underlying psychosis, but also clinically
relevant and biologically plausible.
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0
Introduction

Schizophrenia is one of themost debilitating illnesses that affects approximately 20million
people worldwide and accounts for more than 13 million years of life lived with disability of
the global burden of diseases.31 It is associated with severe consequences for those afflicted by
it, for example diminished levels of functioning – both social and vocational25 – and drastic
reductions in life expectancy, with an average of over 14 years.107 Characteristic symptoms
of the illness are hallucinations and delusions, also referred to as positive symptoms as they
go beyond or increase the usual range of experiences. Symptoms that involve a blurring of
the borders of shared reality like delusions are also referred to as psychotic symptoms and can
occur in other disorders as well, for example delusional disorder or bipolar disorder.12

In addition to positive symptoms, patients with schizophrenia also report negative symp-
toms, such as reducedmotivation and diminished emotional expression, and cognitive symp-
toms, for example deficits in working memory and social cognition. However, how different
symptoms of schizophrenia emerge and how they aremaintained is still a subject of debate. In
what follows, I will provide a brief overview of prominent theories of schizophrenia and psy-
chosis. This overviewwill outline the dopamine hypothesis of schizophrenia,50,110,218 the glu-
tamate hypothesis of schizophrenia,119,160,161,162 the dysconnectivity hypothesis,87,90,91,221,222
and the predictive coding account of psychosis.76,227 More accounts on schizophrenia have
been proposed (e.g.,117,172,256), but these are most pertinent to the work presented in this the-
sis.
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0.1 The Dopamine Hypothesis of Schizophrenia

Antipsychotic drugs were discovered in the middle of the past century.52 Subsequent studies
linked the efficacy of these drugs to their affinity for dopamine receptors.43,209,210 Based on
these findings and the observation that amphetamine, which increases synaptic monoamine
levels, can induce psychotic symptoms143, the first version of the dopamine hypothesis of
schizophrenia218 emerged, positing that schizophreniawas causedbyhyperdopaminergia (i.e.,
dopamine excess).110,218 Accounting for new results of animal research, post-mortem studies
in humans and early neuroimaging work, Davis and colleagues later refined this hypothesis.50
They proposed that, rather than by a general increase of dopamine availability, schizophre-
nia is better characterised by hyperdopaminergia in subcortical regions, but hypodopaminer-
gia (i.e., reduced dopamine activity) in prefrontal cortex. Recently, the dopamine hypothesis
was furthermodified based on several strands of new evidence.110 The first line of research in-
cluded a plethora of positron emission tomography (PET) and single photon emission com-
puterised tomography (SPECT) studies, which allowed to infer on dopamine metabolism
based on in-vivo measurements in humans. This lead to a more precise localisation of sub-
cortical dopamine dysregulation to primarily presynaptic dopamine release in the striatum
(see110 for an overview).

Secondly, based on genetic findings,5 research on environmental risk factors,51 and work
examining the interaction between the two,159,247 Howes and colleagues110 proposed that
many different genetic and environmental pathwaysmay converge onto a final commonpath-
way, namely dopamine dysregulation. The authors110 also suggest that dopamine dysregula-
tion may not be specific to the diagnosis of schizophrenia, but rather to psychosis.

Lastly, this new iteration of the dopamine hypothesis attempted to establish a link between
the previously predominantly neurophysiological description and the clinical expression of
psychotic symptoms, bridging two different levels of analysis. This link was based on a body
of research on physiological substrates of reward learning that suggested that dopamine may
mediate incentive salience,20 or signal the difference between actual and predicted reward (i.e.,
a reward prediction error),204,205 which led to the aberrant salience framework.125 Kapur et
al.125 proposed that the dysregulated release of dopamine leads to an assignment of unusu-
ally high importance or aberrant salience to inconspicuous stimuli, which patients may then
experience for example as hallucinations. Delusions, on the other hand, are thought to be a
cognitivemechanism that functions tomake sense of these experiences of aberrant salience.125
In conclusion, the dopamine hypothesis has continuously evolved and provides an increas-

ingly detailed account of psychosis. However, it primarily centres around positive symp-
toms such as hallucinations and delusions. Another theory – the glutamate hypothesis of
schizophrenia119,160,161,162 – has also evolved in the second half of the last century and focuses
more strongly on other symptom domains of schizophrenia, namely cognitive and negative
symptoms.
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0.2 The Glutamate Hypothesis of Schizophrenia

In the late 1950’s, two potent dissociative anaesthetics were synthesised, phencyclidine (PCP)
and ketamine.33 Luby et al.145 and others observed that these drugs caused effects reminis-
cent of schizophrenia. For example, anesthetic doses produced positive symptoms such as
hallucinations and delusions that sometimes persisted for several days (see121 for review). Im-
portantly, sub-anaesthetic doses also elicited schizophrenia-like symptoms in healthy controls
including formal thought disorder, negative symptoms like emotional withdrawal andmotor
retardation, as well as cognitive symptoms.121,145,162 It was later discovered that these drugs
exert their effects by blockingN -methyl-D-aspartate (NMDA) receptors.121
Another line of evidence also suggests that an electrophysiological response to violations

of statistical regularities in the environment – the so called mismatch negativity (MMN) –
is consistently reduced in schizophrenia (see67 for a recent meta-analysis). MMN reductions
can be reproduced by PCP and ketamine administration, both in animal models and in hu-
mans.238 Together, these results suggested that schizophrenia may not only be characterised
by dopamine dysregulation, but also by alterations in the glutamatergic neurotransmitter sys-
tem. In its current form, the glutamatehypothesis of schizophreniapostulates that schizophre-
nia may be characterised by glutamatergic hyperfunction, which is caused by NMDA recep-
tor hypofunction.162 This is based on the observation that PCP and ketamine act as NMDA
receptor antagonists. Blocking NMDA receptors is thought to reduce firing rates of gamma-
aminobutyric acid (GABA)ergic interneurons and – as a result – lead to disinhibition of post-
synaptic targets or increased firing in excitatory neurons and excess activation of α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors.108,162

0.3 The Dysconnectivity Hypothesis

The dysconnectivity hypothesis provides an integrative account of the two previous theories
postulating that schizophreniamaybebest characterised by abnormalmodulationof synaptic
plasticity.87,90,91,221,222 This theory centres around the NMDA receptor and its role in regu-
lating experience-dependent and activity-dependent synaptic plasticity.221 It further argues
that other neuromodulators such as dopamine, but also acetycholine and serotonin, influ-
ence NMDA receptor function, which could thus provide a final common pathway.221 The
dysconnectivity hypothesis therefore provides an integrative account that unifies the two pre-
ceding theories, but shifts the centre of attention to the interaction between these systems, i.e.
abnormal synaptic modulation.90 NMDA receptors play a critical role at mediating the influ-
ence of neuromodulators on glutamatergic neurotransmission as they dynamically regulate
synaptic gain.102
This proposal is in line with recent genetic evidence suggesting that many genes associ-

atedwith schizophrenia are either directly or indirectly involved inNMDA receptor function
and its interaction with other neuromodulatory systems.87,221 Moreover, the dysconnectivity
hypothesis can also account for the heterogeneity observed in patients with schizophrenia,
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as different neuromodulatory systems could be impaired to different extents in individual
patients.221 Importantly, disruptions in NMDA-receptor-neuromodulatory-system interac-
tions can be closely linked to computational theories of brain function in general like the
Bayesian brain hypothesis87,221 and theories of psychosis specifically, for example the predic-
tive coding account of psychosis.76,227

0.4 The Predictive Coding Account of Psychosis

Over the past decades, the perspective on basic functions of the brain, such as perception, has
changed. Traditionally, perception has been viewed as a purely passive and one-directional
process, in which the brain receives sensory information via sensory organs and processes this
information in a bottom-upmanner such that information flows through thalamic nuclei to
early sensory and finally, higher order cortical regions. Today, many neuroscientists do not
conceptualise perception as a purely passive and one-directional process anymore. Instead,
the brain is thought to actively predict the underlying causes of the sensory inputs it receives,
generating predictions about the world and updating its internal model based on incoming
sensory information86,87,88,141,183 – an idea that is also referred to as the Bayesian brain hypoth-
esis60 and can be traced back to observations by Hermann von Helmholtz.249

At the core of this proposal lies Bayes’ theorem, which provides amathematical description
of how to optimally integrate new information with previous expectations to determine the
causes of sensory signals:

Posterior︷ ︸︸ ︷
p(c|u;m) ≡

Likelihood︷ ︸︸ ︷
p(u|c;m)

Prior︷ ︸︸ ︷
p(c;m)

p(u;m)︸ ︷︷ ︸
Model Evidence

, (1)

where c are the causes of sensations, u is the sensory input and m is the model that gener-
ated the data. Bayes theorem proposes a way of inferring the posterior probability p(c|u;m)
for the underlying causes under a model m, by multiplying the likelihood p(u|c;m), which
specifies the probability that a given cause c generated the data, with a prior distribution over
the possible causes p(c|;m). This product is normalised by the marginal likelihood p(u;m)
also referred to as model evidence. The Bayesian perspective provides a compelling account
for many empirical findings, especially those relating to early sensory processing.86,88,141,183
However, how could the brain perform Bayesian inference?

One popular proposal is that the brain performs predictive coding (see220 for a recent re-
view). Predictive coding canbe viewed as a theory atMarr’s computational level of analysis.151
Marr151 proposed three levels of analysis to understand complex systems like the brain: (1) the
computational level specifying a problem that the systems needs to solve, (2) the algorithmic
level describing how this problem can be solved algorithmically, and (3) the implementational
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level characterising the physical substrate and its organisation which performs a specific com-
putation (e.g., neuronal populations, neurotransmitters).
At its core, predictive coding posits that the causes of sensations canbe inferred byminimis-

ing the error between the observed and predicted sensory inputs, referred to as prediction er-
rors (PEs). Predictive coding can bemotivated frommany different perspectives ranging from
signal processing to neurophysiology.183,220 From a signal processing perspective transmitting
these PEs is efficient, because they tend to have a smaller dynamic range and thus require less
bandwidth or can be transmitted with higher accuracy using the same bandwidth.220 Predic-
tive coding is also in accordance with a range of physiological findings, including the counter-
stream architecture of the cortex, comprised of asymmetric forward and backward connec-
tions with distinct physiological profiles,71,150 receptive fields of simple and complex cells in
early visual cortex,183 and other findings.86,88,141 First and foremost, the predictive coding ac-
count is a theory of cortical responses in healthy individuals. However, it has been put forth
as a theoretical framework to understand psychosis.76,227
As outlined in the previous paragraph, most empirical evidence in support of predictive

coding centres around perception. While schizophrenia is associated with changes in percep-
tion such as reduced susceptibility to certain visual illusions130 and perceiving stimuli in the
absence of external stimulation (i.e., hallucinations), a core symptom of psychosis has been
conceptualised in terms of beliefs rather than perceptions.118 Delusions are often defined as
false beliefs that are held with conviction, despite evidence that suggests otherwise and which
are resistant to change.118
Traditionally, cognitive theories have distinguished between a belief and a perceptual sys-

tem.76 Both, abnormal perception as well as abnormal beliefs were proposed as explanations
for symptoms of schizophrenia.76 However, Fletcher and Frith76 argued that perceiving is
in fact the same as believing when conceptualising the brain as Bayesian inference machine
that is hierarchically organised. Under this framework, symptoms of schizophrenia can be
be understood as perturbations of the weighting of incoming sensory information and prior
expectations at different levels of a processing hierarchy.76,227 Perception can be thought of as
the lower levels of this hierarchy, whereas beliefs may be localised at higher levels.76 However,
what type of information is hierarchically organised remains still unclear.260 Higher levels
could, for example, represent a hierarchy of causes76 with an increasingly higher degree of ab-
straction or be structured according to time such that higher levels are associated with more
slowly changing processes128 or both.

Importantly, the predictive coding account of psychosis assigns a critical role to precision-
weighting of both sensory evidence (i.e., the likelihood) and prior information,76,87,227 where
the precision that weights sensory evidence or prior information corresponds to the inverse
of uncertainty. Uncertainty is usually expressed as the variance of a probability distribution,
which quantifies a belief. Increased sensory precision will lead to larger updates of the inter-
nal model in light of new sensory evidence. This can naturally explain phenomena like the
uncanny resistance to the hollow-mask illusion observed in patients with schizophrenia.130
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This illusion has been explained through a strong expectation (or prior) that faces are convex
in healthy individuals thatmay be overruled bymore precise sensory PEs in psychosis.227 Fur-
thermore, this account can explain symptoms such as delusions of control – the belief that
one’s body parts are controlled by alien forces – by reduced precision of predictions about
the consequences of one’s own movements in line with an impaired efference copy of motor
commands, which can lead to an altered attribution of agency.70,94,227,235

Importantly, PEs and associated precisions at different levels of hierarchical Bayesian infer-
ence – the key computational quantities hypothesised to be impacted in psychosis –maymap
onto different neuromodulatory systems, such as the dopaminergic, cholinergic, or seroton-
ergic system,87,221 although this mapping may be complex.113,114,115 Thus, casting different
symptoms of psychosis as instances of hierarchical Bayesian inference may not only be con-
ceptually useful,76,227 butmay enable better understandingof the functional role of these neu-
rotransmitter systems113,115 and possibly even aid efforts to stratify schizophrenia spectrum
patients intomore homogeneous subgroups227 andpredict treatment response.105While pre-
dictive coding as a process theory defined atMarr’s151 computational level of analysis appears
to be promising, multiple algorithmic approaches exist.220 In this thesis, I employ the Hier-
archical Gaussian Filter (HGF)153,154 to cast different symptoms of psychosis as instances of
hierarchical Bayesian inference and test the clinical utility of this approach.

0.5 TheHierarchical Gaussian Filter

Bayes theorem prescribes an optimal way of learning under uncertainty. While a plausible
argument can be made that the human brain should have evolved to implement Bayesian
inference,100 and there is some evidence in support of this notion,15,135,265 Mathys and col-
leagues153 pointed out that there are a at least three serious issues with the notion that the
brain can be understood as an ideal Bayesian learner: (1) Solving Bayes theoremoften requires
time-consuming computations of a complex integral. (2) It is unclear how this computation
would be implemented in the brain, and (3) Bayesian inference constitutes a normative frame-
work describing how information should be integrated, yet there aremany cases inwhich indi-
viduals make sub-optimal decisions and even arrive at different conclusions, when provided
with the sameprior knowledge and sensory evidence, i.e., there is considerable inter-individual
variability (examples of this will follow in Chapters 1 and 2).

To address these limitations, Mathys et al.153,154 introduced a generic hierarchical Bayesian
framework, the HGF. This model assumes a hierarchy of – in principle, infinitely many154
– hidden states that are coupled via their variances. Each state evolves in time as a Gaussian
randomwalk centered on the value of the state at the previous time point, where the step size
of the random walk at each level is determined by the level above. Problem 1 was addressed
by Mathys and colleagues153,154 by deriving efficient closed-form updated rules using a varia-
tional Bayesian inversion scheme, maximising negative free energy, a lower bound to the log
model evidence.93,153The authors assumeGaussiandistributions for the hidden states anduse
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mean-field approximations and a quadratic approximation to the variational energies. This
approximation is similar to the Laplace approximation, but differs from it in that the expan-
sion point was chosen to be the value of the state at the previous time point (see153 for more
details). Under a set ofminimal assumptions, assumingGaussian distributions for the hidden
states adheres to the principle of maximum entropy constituting the least arbitrary choice of
distribution.123,153 These assumptions are (1) that the brain performs some approximation to
Bayesian inference, because exact inference is likely to be too costly and (2) that the posterior
can be efficiently encoded by its first two moments.153 The update equations derived under
these assumptions are of the following form:

Δμ(k)i︸ ︷︷ ︸
Belief Update

∝

Precision Ratio︷︸︸︷
π̂(k)
i−1

π(k)
i

δ(k)i−1︸︷︷︸
Prediction Error

, (2)

where μ(k)i is the expectation or belief at trial k and level i of the hierarchy, π̂(k)
i−1 is the preci-

sion (inverse of the variance) from the level below (the hat symbol denotes that this precision
has not been updated yet and is associated with the prediction before observing a new input),
π(k)
i is the updated precision at the current level, and δ(k)i−1 is a PE expressing the discrepancy

between the expected and the observed outcome. This update equationbares a striking resem-
blance to the update equations of other learning models, such as the Rescorla-Wagner model
(see185 for more details):

ΔV︸︷︷︸
Belief Update

=

Learning Rate︷︸︸︷
α (

Actual Outcome︷︸︸︷
u(k) −

Predicted Outcome︷ ︸︸ ︷
V (k−1) )︸ ︷︷ ︸

Prediction Error

, (3)

whereV is the learned association strength between two stimuli, α is a learning rate, u(k) is the
outcome at trial k, andV (k−1) is the prediction before observing the outcome.

While structurally similar, these models display an important difference with respect to
how they define the learning rate. Whereas the learning rate is constant in the Rescorla-
Wagnermodel, the learning rate of theHGF is dynamically regulated according to a precision
ratio of the precisions at the level below and the precisions at the current level; both are up-
dated on each trial and change over time. Similar comparisons can be made with the update
equations for temporal-difference learning232,233 and Q-learning251,252:

ΔU π(s)︸ ︷︷ ︸
Belief Update

=

Learning Rate︷︸︸︷
α (

Actual Reward︷ ︸︸ ︷
R(s) + γU π(s ′)−

Predicted Reward︷ ︸︸ ︷
U π(s)︸ ︷︷ ︸

Prediction Error

), (4)
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where U π(s) is the utility associated with state s under a policy π, α is a learning rate, R(s) is
the reward associated with state s, γ is a discount factor that down-weighs future rewards, and
s ′ is the next state. Q-learning251,252 is structurally similar, but reformulates reinforcement
learning as learning the values of state-action pairs or so-called Q-values:

ΔQ(s, a)︸ ︷︷ ︸
Belief Update

=

Learning Rate︷︸︸︷
α (

Actual Reward︷ ︸︸ ︷
R(s) + γmax

a′
Q(s ′, a′)−

Predicted Reward︷ ︸︸ ︷
Q(s, a)︸ ︷︷ ︸

Prediction Error

), (5)

whereQ(s, a) is theQ-value associatedwith taking actiona in state s, α is a learning rate,R(s) is
the reward associatedwith state s, γ is a discount factor, andQ(s ′, a′) is theQ-value associated
with taking action a′ in the next state s ′. Again, these models assume a constant learning rate
whereas the HGF has a dynamic learning rate, although other formulations, for example a
decaying learning rate are used in practice as well. A second important difference between the
HGF update equations and these ones is that they also consider actions and future outcomes
in addition to the current outcome.

In short, Mathys and colleagues provide structurally interpretable and, more importantly,
efficient update equations that allow performing approximate Bayesian inference in a time-
efficientmanner providing a solution for Problem1 of Bayesian accounts of the brain, namely
that computing exact Bayesian inference is computationally costly. However, can this belief
updating process be implemented biologically by the brain (Problem 2)? As outlined in the
predictive coding section, there is considerable evidence that the brain may compute quanti-
ties like PEs and precisions, which are at the core of theHGF’s update equations.153,154More-
over, these quantities may map onto different neuromodulatory systems,87,113,114,115,221 and
are hypothesized to be affected in psychosis,227 rendering the HGF an attractive model to in-
vestigate psychosis. Lastly, Mathys et al.153,154 introduce a set of subject-specific parameters,
which govern the dynamics of the hidden states and allow to model inter-individual variabil-
ity (Problem 3). These parameters can be understood as encoding an individual’s approxima-
tion to Bayesian inference154 and enable deriving a computational fingerprint that provides a
concise description of an individual’s learning profile.

0.6 Outlook

In this thesis, Iwill employ theHGF153,154 to cast different symptoms of psychosis as instances
of hierarchical Bayesian inference in three different datasets. Chapter 1will examine the ques-
tion of how persecutory delusions emerge in early schizophrenia. First, I will derive hypothe-
ses based on previous literature and simulations, which are then tested in a sample of indi-
viduals at clinical high risk for psychosis (CHR) and first-episode psychosis patients (FEP).
Chapter 2 will apply this modelling approach to delusions more broadly in a large sample of
patients with psychotic disorders, who have experienced delusions in the past or were expe-
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riencing delusions at the time of the study. In this chapter, I will examine the relationship
between delusions and reasoning biases and assess the clinical utility of this computational
approach by testing its ability to predict treatment response to a psychotherapeutic interven-
tion. In Chapter 3, I will model changes in implicit sensory learning in early schizophrenia
and investigate, whether this approach is not only conceptually useful, but also biologically
plausible. Lastly, I will discuss the implications and limitations of this work in Chapter 4.

9



10



I had to make sense, any sense, out of all these
uncanny coincidences. I did it by radically
changing my conception of reality.

Peter K. Chadwick (1993)30

1
Modelling Paranoid Delusions

Paranoiddelusions are one of the key symptoms in early schizophrenia, but how do they
emerge? This chapter will focus on addressing this question bymodelling paranoid delusions
in emerging psychosis. The introduction section for this chapter outlines our hypotheses that
were derived from the current literature and simulations using theHGF. This work was pub-
lished by Diaconescu, Hauke, and Borgwardt (2019) inMolecular Psychiatry54 and adapted
for this dissertation. Novel empirical results – not included in the published article – will
follow in the methods and results section.

1.1 Introduction

Persecutory delusions, defined as unfounded beliefs that others are deliberately intending to
cause harm, are core symptoms of psychosis and a burden for patients.80 Persecutory ideation
leads to increased incidence of violent behaviour,36 suicidal ideation and relapse.19About half
of FEP with persecutory delusions show psychological well-being levels lower than 2% of the
general population.85

A recent approach to treatment of psychosis focuses on early detection and prevention.
However, a fundamental problem for research on the early phases of psychosis is identify-
ing robust markers for transition to psychosis from the clinical high risk state.96 The clinical
high risk state is defined by the presence of one or more of the following criteria: attenuated
psychotic symptoms (APS), brief and limited intermittent psychotic symptoms (BLIP), trait
vulnerability, as well as a marked decline in psychosocial functioning and unspecific prodro-
mal symptoms. Whereas clinical variables have good prognostic accuracy for ruling out indi-
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viduals who will not develop psychosis, there is a need to improve the prediction accuracy of
future transition to psychosis.96,198

Previous studies have examined the predictive value provided by neuroimaging methods
including structural45,136,137,138 and functional magnetic resonance imaging (fMRI).17,241 In
contrast to clinical and environmental variables, whole-brain examinations of structural mag-
netic resonance imaging (sMRI) data using voxel-based morphometry delivered the largest
prediction accuracy rates, reaching about 80% prediction accuracy in a cross-centre study.138
A recent review of predictive models for psychosis transition indicated that using multiple
variables (biological, environmental, and neurocognitive), and testing them sequentially in
CHR individuals may substantially improve prediction rates.198 This suggests that a multi-
modal, combinatorial approach is needed.

Although current methods link transition risk with particular differences in genetic poly-
morphisms or brain structures, they do not allow for quantifying the probability that a par-
ticular disease mechanism is present. This, however, is the basis for targeted treatment.

One solution for identifying disease mechanisms is to pursue a computational modelling
strategy and employ generative models that focus on core symptoms, such as persecutory
delusions. Generative models describe mechanisms that could have generated the observed
behaviour or neuroimaging data. Individual differences in behaviour – potentially related
to disease mechanisms – can be uncovered by estimating individual model parameters based
on participants’ behavior.226 In addition to pure risk prediction, this approach, because it is
mechanistic, may also prove useful for identifying pathophysiological mechanisms of emerg-
ing psychosis (see Figure 1.1).

One class of generative models, which can be fit to noninvasive measurements (electroen-
cephalography (EEG) or fMRI), is models of effective connectivity such as dynamic causal
modelling (DCM), describing causal (directed) influences between neurons or neuronal pop-
ulations.92 DCMs explain measured brain activity as arising from circuit dynamics that are
a function of (1) intrinsic connectivity, (2) experimentally-induced perturbations, and (3)
modulatory inputs that invoke contextual changes in synaptic strengths (i.e., short-term plas-
ticity during learning or neuromodulatory influences). A complementary approach to neuro-
imaging-based models is afforded by generative models of behaviour. These can be fitted to
trial-by-trial behavioural responses to capture (mal)adaptive aspects of learning and decision-
making.224

Here, we introduce a computational framework that focuses on a central symptom of psy-
chosis, namely persecutory ideation. This framework integrates computationalmodels of be-
haviour with neural circuit models, which describe the neuronal causes of aberrant learning
and can be fit to EEG and fMRI data. It makes specific predictions about pathophysiology
in psychosis, which may be used to predict transition to psychosis in CHR individuals and
treatment response in FEP.
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Figure 1.1: Generative models of behaviour and neuroimaging data. Generative models represent the joint probability of
data and model parameters and allow us to infer on physiological mechanisms from noninvasive measurements. Inference
refers to the application of mathematics to draw conclusions in the presence of uncertainty. This approach is mechanistic
in the sense that it allows to identify causes of learning (e.g., behavioural – prediction error and precision ‐ or neuronal
‐ synaptic plasticity and neuromodulation). In the context of psychosis, parameters capturing key aspects of pathology
(e.g., disruptions of DA‐mediated NMDA‐receptor plasticity) can be used to make clinical predictions such as treatment
response, in order to inform clinical decisions, for example whether a given individual should be administered medication
with a principally dopaminergic action. EEG: Electroencephalography. fMRI: Functional magnetic resonance imaging. DA:
Dopamine. NMDA: N‐methyl‐D‐aspartate. ACh: Acetylcholine. Adapted from Diaconescu, Hauke, and Borgwardt (2019),
Molecular Psychiatry. 54

1.1.1 Computational accounts of persecutory delusions

Delusions in general are conceptualised as false beliefs based on incorrect inference about the
external world, which persist in the face of disconfirmatory evidence. Two major computa-
tional theories exist, which assume specific mechanisms of delusional belief genesis and per-
sistence.
First, a popular notion is that patients with psychosis attribute inappropriately high aber-

rant salience to irrelevant events. This theory posits a key role of the dopamine system inmedi-
ating the misattribution of salience (for a review, see261). It is consistent with well-established
theories of increased phasic dopamine release in psychosis101,110,131,212 and supported by a host
of fMRI studies in FEP.171,197,217Although compelling, this theory does not provide an expla-
nationhowaberrant salience attribution leads to the development of uncorrectable delusional
beliefs.

A second and related theory of delusions focuses on the Bayesian brain hypothesis and
the interplay between prior beliefs and “correction” signals or PEs.76,95 The Bayesian account
of perception proposes that the brain generates predictions about its sensory inputs and ad-
justs those predictions via incoming PEs.86,183 Adopting a hierarchical Bayesian framework,
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beliefs at multiple levels, from discrete sensory events to more abstract aspects of the environ-
ment (e.g., probabilistic associations and volatility), are updated based on precision-weighted
PEs.153,154. Specifically, in hierarchical models, a ratio of precisions (assigned to sensory in-
puts relative to prior beliefs) serves to scale the amplitude of PE signals and thus their impact
on belief updates.153

Recent theories of perceptual abnormalities in psychosis have built onhierarchical Bayesian
frameworks extending the concept of aberrant salience by highlighting the role of uncertainty
(or its inverse, precision).3,38,42,76,221 One specific suggestion from these accounts is that aber-
rantly strong (or precise) incoming PEs indicate that prior predictions are inadequate and be-
liefs or actions must be changed to accurately predict states in the world. Thus, a plethora of
incoming error signals leads to a brittle (or uncertain) model about states in the world, which
ultimately sets the stage for the formation of delusions.41,116High-order beliefs of abnormally
low precision lead to a lack of regularisation, which renders the environment seemingly un-
predictable and volatile, enhancing theweight of incoming PEs.3Abrittlemodel of theworld
may require adoption of extraordinary higher-order beliefs. Notably, these explanations are
not exclusive but could co-exist; specifically, they relate to numerator and denominator of the
precision ratio in Eq. 1 of Figure 1.2.

Fully developed delusions could be understood as implausible beliefs with overly high pre-
cision, which function to attenuate aberrant sensory evidence.3 Recent studies have shown
that strong prior beliefs govern the belief updating process in individuals who reported au-
ditory hallucinations (hearing voices).181 Prior beliefs were also more resistant to change in
psychosis patients with acute delusions.262 Furthermore, the utilisation of prior knowledge
correlated with positive symptom severity in a perceptual discrimination task.195 However,
the study also reported decreased impact of experimentally-induced priors on the behaviour
of psychosis patients195 (also see117). On the other hand, a recent study found that delusion-
prone individuals showed a reduced influence of experimental priors in perceptual but not
cognitive discrimination tasks.229 These somewhat ambiguous results may be reconciled by a
developmental change in prior utilisation and/or distinct impact of belief precision at differ-
ent levels of the processing hierarchy.3,227

In the context of psychosis, the most prominent delusional beliefs pertain to the social
world and result from inference about the mental states of others, specifically that their in-
tentions are of a persecutory nature.81,189 A precise predictive model is particularly impor-
tant for social contexts when interpreting others’ intentions,78,236 because human intentions
are typically concealed or only expressed indirectly, requiring predictions from observations
of ambiguous behaviour. Higher-level prior beliefs, which shape one’s perception of others,
may arise from one’s own psychotic experiences including hearing voices, since individuals
tend to regard their own predictions about states in the world as more reliable than second
person accounts.266

Computational models of persecutory delusions must be based on existing cognitive mod-
els. Key cognitive predispositions for persecutory ideation are in line with the hypothesis of
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an initially uncertain predictive model of others’ intentions (for a review, see6,18,21,81): Indi-
viduals who later develop persecutory delusions report high levels of worry and rumination
about how others perceive them.84,188 These findings relate to the proposal of weak prior be-
liefs leading to causal misattribution.116 The notion that persecutory ideation may be asso-
ciated with abnormal inference and imprecise prior beliefs has been related to the jumping-
to-conclusions (JTC) bias (e.g.,98,178,219; but see170 and1 for alternative interpretations). Indi-
viduals with persecutory delusions may adopt implausible explanations in social contexts262
and overly negative attributions about others (e.g., negative events are attributed to active,
malevolent intentions of another person).182

With regard to pathophysiology, psychosis represents a spectrum of disturbances in the
interaction between NMDA-receptor dependent synaptic plasticity and neuromodulatory
systems like dopamine and acetylcholine (see222 for a review and16,175 for recent empirical
findings). However, the link between impaired social cognition, persecutory delusions, and
disruptions in synaptic plasticity by neuromodulatory systems has not been established. This
is because it requires ecologically valid and deception-free experimental paradigms that have
also been studied neurobiologically.

Here, we propose such a paradigm to test the hypothesised link between social inference
and persecutory ideation. This paradigm was adapted from a previous social learning task15

and probes how one infers on the intentions of another agent (adviser) who provides itera-
tive advice about the outcome of a probabilistic task based on additional information that the
adviser obtains on every trial (Figure 1.2A). Importantly, this task maps onto existing patho-
physiological mechanisms of psychosis.57

1.1.2 Inferring on others’ intentions: A framework for probing persecu-
tory delusions

Tounderstand the genesis andpersistence of persecutory delusions, the computational frame-
work needs to be examined in an experimental context that is sensitive to the process of inter-
est. Therefore, we propose a paradigm that has been developed to specifically address perse-
cutory ideation, as it requires learning about the hidden and possibly changing intentions of
another person. It requires hierarchical processing from non-social to social representations
with increasing levels of abstraction, which can be mapped onto hypothesised pathophysio-
logical mechanisms of psychosis, in particular precision-weighted PE belief-updating.55,57
Participants perform a binary lottery task and are additionally given advice from a more

informed agent (the adviser) about which option to choose. In order to perform well, they
not only have to predict the accuracy of current advice, but also the adviser’s intention and
how it might change over time (volatility; Figure 1.2a, upper panel). To examine the impact
of precision on learning from advice, we manipulated volatility and thereby varied the associ-
ation strength between the advice and the outcome. We assumed that the higher-level belief
precision about the adviser’s fidelity is low, when volatility is high and vice-versa.
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Figure 1.2: Probing persecutory ideation: Inferring on others’ intentions experimental paradigm and computational model.
A Participants took part in a face‐to‐face advice‐taking task for monetary rewards and were randomly assigned to player
and adviser roles. Players had to predict the outcome of a binary lottery draw, whereas advisers gave players suggestions
on which option to choose. Both sets of participants received incentives and the pay‐off structure differed to ensure
the presence of both collaboration and competition between the two participants. Players profited from the adviser’s
recommendations as advisers always received more information about the outcome of the lottery (constant probability
of 80%) whereas advisers gained from the players’ compliance to take the advice into account. The advisers’ motivation
to provide valid or misleading information varied during the game as a function of their own incentive structure. Players
were (truthfully) informed that the adviser had their own (undisclosed) incentive structure and because of it, intentions
could change during the game (volatility). The social learning task was adapted for fMRI or EEG recordings by using 2
s video clips of the advisers recorded during the interactive sessions. B According to the model, agents infer on true
hidden states in the world by continuously updating their predictions (or beliefs) via precision‐weighted prediction errors
(PEs). Assuming Gaussian distributions over beliefs, these can be described by their sufficient statistics, the mean (μ) and
the variance/uncertainty (σ) or its inverse precision/certainty (π). Predictions about hidden states in the world (before
observing an outcome), are denoted with a hat symbol (e.g., π̂). At each hierarchical level i, belief updates (posterior means
μ(k)i ) on each trial k are proportional to precision‐weighted PEs. The belief update is the product of the PE from the
level below δ(k)i−1 weighted by a precision ratio: The ratio is composed of π̂

(k)
i−1 and π

(k)
i , which represent estimates of the

precision of the predicted input from the level below (sensory precision) and precision of the belief at the current level,
respectively. EEG: Electroencephalography. fMRI: Functional magnetic resonance imaging. Adapted from Diaconescu,
Hauke, and Borgwardt (2019),Molecular Psychiatry. 54

The adviser’s intentions andmotivation to provide helpful advice change according to the
incentive structure of the task (Figure 1.2a, lower panel). The task was adapted for testing
along with either EEG or fMRI recordings by replacing face-to-face interactions with videos
of the advisers, taken from trials when advisers truly intended to help or to mislead the play-
ers.55,57 This ensured that all participants received the same input structure and therefore
could be compared in terms of their learning parameters and how they inferred from advice.
Although each participant received the same advice sequence throughout the task, the advis-
ers displayed in the videos varied between participants to ensure that physical appearance and
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sex did not impact on their decisions to take advice into account.
While there are other multiround trust games, which could potentially be used to examine

persecutory ideation (see132,182), there are several features of the current paradigm that make
it particularly useful for probing persecutory ideation. First of all, it is ecologically-valid: the
videos of advice reflected instanceswhen the adviser truly intended tohelpor truly intended to
mislead the participant. Second, it is deception-free: Participants were fully informed that the
adviser had a different incentive structure and thus was motivated to not always offer helpful
advice (see56 for details). Third, in contrast to other theory ofmind tasks (e.g. themind in the
eye task, emotion recognition tasks, or variations of the Sally-Ann task) or decision-making
tasks (a single-shot or short multiround dictator or trust game), this paradigm includes a pro-
longed, iterative interaction, which allows the examination of how beliefs are updated as a
result of contradicting evidence or precision-weighted PEs. Fourth, it provides a context to
test what we hypothesise to be impaired in persecutory ideation, namely the different contri-
butions of sensory compared to belief precision. Finally, the paradigm includes volatility (due
to the incentive structure offered to advisers), which can be used to manipulate the players’
confidence about their estimates of adviser’s fidelity.

1.1.3 Inferring on others’ intentions as precision-weighted prediction er-
ror updates

In the context of learning about intentions, different hypotheses about howparticipants took
decisions (i.e., going with or against the advice) were formalised in terms of a model space,
which comprised different models of learning and belief-to-action mapping, including rein-
forcement learningmodels, that were formally compared.225Themodel, which best captured
behaviour in this social learning task acrossmultiple datasets,55,56,57was theHGF,153,154which
emphasized the role of hierarchical precision-weighted PEs in belief updating (Figure 1.3B).
Irrespective of participant-adviser assignment, but specific to the social task, we observed the
same winningmodel, which assumed hierarchical learning about the advice and the volatility
of the adviser’s intentions as the mechanism for mapping beliefs to decisions.56
In previous studies, the inferred adviser fidelity and volatility of intentions estimated with

the HGF reflected participants’ overtly expressed beliefs about the adviser’s intentions at dif-
ferent times during the task. Furthermore, the learning parameters describing each individ-
ual’s belief updates predicted participants’ ratings of their own perspective-taking tendencies,
suggesting that the model captures key aspects of social cognition.56,57

According to this model, surprising advice outcomes have a greater impact on the agent’s
internal representation (and should have more influence on the belief update) when the sen-
sory precision from the level below (i.e., π̂(k)

i−1) is high. For example, participants may have
regarded unexpected misleading advice as evidence that the adviser has changed the strategy,
thus adapting their beliefs about the adviser’s intentions and decisions to follow the advice.
However, if one has a strong prior belief that the adviser’s intentions are to mislead, then the
belief precision (i.e., π(k)

i ) is high and contrary evidence (i.e., surprising helpful advice) will be
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ignored.
In summary, our proposal suggests that persecutory delusions can be understood as an

imbalance between sensory and belief precision. Increased sensory precision augments the
impact of social PEs on beliefs about fidelity, and likely marks the early stages of psychosis,
whereas increasing belief precision has the opposite effect on belief updates and may reflect
the consolidation of delusions. This is because belief precision refers to the confidence in
one’s model of intentions, which functions to “explain away” instances of incorrect advice.

One could appreciate the distinct impact of sensory compared to belief precision on the
belief updating process with simulations (see Figure 1.1) and by considering the following
intuitive example: Imagine that you buy bread from your local baker every morning. Every
time, they offer you one of the two types of bread that is freshest that day. One day, you
become sick after eating the loaf of bread recommended to you, implying an overly high pre-
cision at the sensory level. The next day, the baker recommends you confidently the same
bread. You conclude they must have no clue about bread, and choose the other option (i.e.,
opposite of their advice). This reflects a process of “explaining away” PEs, by adopting a new
prediction. It turns out that the other bread has an intense, pungent smell (referring to the
aberrant salience of sensory inputs). This leads you to believe that the baker is purposely try-
ing to poison youwith bad bread, and evenwhen they recommend a “good” bread that others
in the store also buy, it further confirms your prediction that it is part of an elaborate plan to
coax you to trust them again. This reflects the adoption of false and precise high-level beliefs,
which can fully explain any instance of aberrant PEs. The aberrantly high precision on the
higher-level beliefs is an adjustment in order to down-weigh the precision with respect to the
sensory input (i.e., unexpected bad bread).

1.1.4 Functional anatomy of social inference

The computational quantities entering the belief updating process have been associated with
neuromodulatory systems specifically implied in the pathophysiology of psychosis (for re-
views, see3,148,222).
In the context of social learning, we demonstrated a dichotomy between low- and high-

level precision-weighted PEs as they were related to dopaminergic and cholinergic systems.
Whereas low-level precision-weighted PEs about advice were represented in the dopaminer-
gic midbrain and dopaminoceptive regions such as the anterior cingulate cortex, medial, and
dorsolateral prefrontal cortex, high-level precision-weighted PEs about the adviser’s inten-
tions were represented in the cholinergic septum and one specific targeted projection, the
dorsal anterior cingulate cortex. Consistent results reproduced in two fMRI studies reflect
fundamental neural computational architectures underlying social inference (Figure 1.3).

Not surprisingly, since social inference is particularly impaired in individuals at risk for psy-
chosis,28 the regionswhich encode theseparticular computational quantities includedopamin-
ergic nuclei and dopaminoceptive areas, such as the striatum, shown to be affected in those at
risk of developing psychosis63,111 and in those who later transitioned to schizophrenia.109
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Figure 1.3: Functional anatomy of social inference. This schematic is an approximation of a neural process model of social
inference. The neural signatures of the computational quantities are based on the previous, reproduced fMRI results.57 A
The hidden states that the agent infers on are arranged in a hierarchy as proposed by the HGF. In this graphical notation,
diamonds represent quantities that change in time (i.e., that carry a time/trial index k). Hexagons, like diamonds, represent
quantities which change in time, but additionally depend on the previous state in aMarkovian fashion. From top to bottom,
x3 represents the volatility of the adviser’s intentions, x2 the adviser’s fidelity or tendency to give helpful advice, and x1
represents the accuracy of the current observation (advice or cue). B The inferred states are represented by circles. Thus,
based on the empirical findings, we propose the following theoretical neural model of social inference: Cue‐related PEs
update predictions about the visual outcome and are conveyed via projections from lingual gyrus to posterior parietal cortex
whereas advice PEs, which update the advice accuracy, are passed from low level regions (including the VTA) to higher level
“theory ofmind” regions, i.e., dorsomedial PFC.High‐level volatility PEs are further transmitted via the cholinergic septum to
cingulate regions. The precisions (advice and volatility) modulate the impact of PEs on medial PFC activity. PE: Prediction
error. PFC: Prefrontal cortex. VTA: Ventral tegemental area. Adapted from Diaconescu, Hauke, and Borgwardt (2019),
Molecular Psychiatry. 54

1.1.5 Clinical predictions afforded by the computational model

As persecutory delusions predominate in major psychotic disorders and contribute to symp-
tom severity, computational models that explain their formation and persistence may shed
light onto the neural mechanisms that mark the different stages of psychosis.
In the context of social learning, we predict that the high risk state is defined by an imbal-

ance between the precision of beliefs at low compared to high levels of the processing hierar-
chy, as suggested by recent studies of perceptual inference in relation to delusions.194,196Thus,
the precision associated with advice PEs will likely be larger compared to the precision of the
prediction about intentions, leading to a high learning rate and a reduced ability to form a co-
hesive model of the adviser’s intentions, which could be predicted using simulations (Figure
1.4A).

Based onneuroimaging results in the healthy population55,57 and recent studies of aberrant
salience in the at-risk population,197,217,250 several hypotheses about pathophysiology can be
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put forward, which could be falsified in future studies: First, the early prodromal stage of psy-
chosis may bemarked by an increased low-level (sensory) precision. Consistent with previous
connectivity studies,199,200,201 thiswould be translated into enhanced bottom-up connectivity
from dopaminergic regions to key brain regions involved in the representation of social (ad-
vice) PEs, including the temporal-parietal junction and dorsomedial prefrontal cortices.15,57
Thus, parameters which will likely predict transition to frank psychosis include learning pa-
rameters that determine the dynamics of precision-weighted PEs (see56) as well as the con-
nectivity strengths of bottom-up connections from dopaminergic to parietal and prefrontal
cortices (Figure 1.4A).
In the later stages of psychosis, the presence of delusions might reflect a compensatory re-

sponse to the aforementioned deficiencies of hierarchical inference. Thus, in individuals who
exhibit persecutory delusions, we predict an increased representation of high-level belief pre-
cision about the other’s intentions (Figure 1.4B). This notion of rigid high-level priors leads
to several experimentally testable predictions: At the behavioural level, this will likely be re-
flected as a reduced estimate of volatility. At the neural level, this will be expressed as either
(1) a reduction in bottom-up connectivity from dopaminergic regions to parietal and medial
prefrontal cortices reflecting the suppression of incoming PE signals, or (2) enhancement of
top-down connectivity from cingulate to medial prefrontal and to parietal regions, reflecting
an enhancement of the precision of predictions about intentions, or (3) a combination of
both (Figure 1.4B). While reduction in functional connectivity has featured prominently in
the literature, in particular between temporal and prefrontal regions,147,243 enhanced connec-
tivity was also reported.11,77
An alternative hypothesis is that the pathophysiology underlying persecutory delusions is

unrelated to precision, but instead to social PEs. Accordingly, individuals with persecutory
delusions regard the adviser as purposely misleading, and therefore place greater weight on
negative advice PEs. At the neural level, this would be expressed as biased predictions and
enhanced PE signals for misleading advice.

1.1.6 Testable Designs

We propose two experimental designs to test our hypotheses: (1) Individuals with high risk of
developing psychosis and patients with persecutory delusions could be compared in a cross-
sectional design. However, while generative modelling approaches may be useful for iden-
tifying inference and neurobiological processes leading to psychosis, validation studies are
needed to determine their clinical utility. Regardless of how well a model may capture a pu-
tative pathophysiology, it needs to support differential diagnosis or prognosis, for example by
predicting transition to psychosis or treatment response with sufficient accuracy and in indi-
vidual patients. (2) This can only be tested in prospective studies whereCHR individuals and
FEP patients who receive first-line treatment are assessed at multiple time points and model
parameters are used to predict transition to psychosis or treatment response, respectively.
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Figure 1.4: Model predictions: Beliefs and neural responses. Considering the psychosis spectrum timeline, one can make
specific hypothesis about the parameters that could mark each stage by referring to Eq. 2 and the functional anatomy of
social inference (Figures 1.2 and 1.3) using simulations. A In the early, prodromal stage of increased aberrant salience, we
predict an increased representation of sensory precision (π̂(k)i−1) with a decrease in the belief precision (π

(k)
i ) during the social

learning task. Behaviourally, the prodromal stage of increased aberrant salience is equivalent to an increased representation
of sensory precision (π̂(k)i−1) with a decrease in the belief precision (π

(k)
i ) during the social learning task. Neurally, this may

be expressed as enhanced low‐level PEs and thus enhanced connectivity between dopaminergic and sensory to parietal
and frontal regions. B In the later stages, when persecutory delusions are present, we expect an enhancement of the belief
precision (π(k)i ) during the social learning task; at the level of the hierarchical Bayesian model, this would be associated
with reduced estimated volatility, tonic learning rate, and prior estimate about the adviser’s fidelity. Neurally, this may be
expressed as increased high‐level precision and PEs and thus increased connectivity strength between cingulate andmedial
prefrontal regions. Adapted from Diaconescu, Hauke, and Borgwardt (2019),Molecular Psychiatry. 54

From previous studies of aberrant learning in psychosis, it is unclear whether alterations
in social inference are specifically required to explain persecutory delusions. In fact, alter-
ations in higher-level inferential processes that are not necessarily specific to social contexts
may affect processing of socially relevant information and produce delusions. To address this
question, a control task which removes the aspect of intentionality may be needed. We have
previously included such a control task56 with blindfolded advisers who selected their advice
from pre-defined card decks, thus eliminating the effect of intentionality, and demonstrated
that the computational model proposed here, which assumes hierarchical learning about the
advice and volatility of the adviser’s intentions as the mechanism for mapping beliefs to de-
cisions specifically captured the intentionality behind the advice.56 In terms of more broadly
distinguishing between mechanisms of abnormal plasticity linked to psychosis, additional
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perceptual learning tasks that tap into different mechanisms, including intact NMDA recep-
tor signalling, such as for example the auditory MMN task238 may also be needed.

1.1.7 Conclusion and Future Directions

Mechanistically interpretable generative models like the ones outlined here allow for model
comparison and testing of competinghypotheses aswell as inference ondiseasemechanisms in
individual patients at different stages of psychosis. Furthermore, the computational quanti-
ties derived from themodel – such as the low- and high-level, precision-weighted PEs – could
be associated with distinct neuromodulatory systems, dopaminergic and cholinergic,57 re-
spectively, which are ultimately the targets of pharmacological treatment in psychosis. Future
studies in subclinical and clinical populations will examine the usefulness of this approach for
predicting transition to psychosis or treatment response in individual patients.

1.1.8 Empirical evidence

In the remainder of this chapter, I will present empirical evidence from a new cross-sectional
study, in which we investigated the computational mechanisms underlying emerging psy-
chosis and tested the predictions afforded by the model outlined in Figure 1.4.

1.2 Methods

1.2.1 Participants

We included 19 CHR, 19 healthy controls (HC) that were matched to CHR with respect
to age, gender, handedness, and cannabis consumption and 18 minimally-medicated (≤ 10
days) FEP resulting in a total sample ofN = 56 participants. FEP were recruited from both
inpatient care and the outpatient departments of the University Psychiatric Hospital (UPK)
Basel, CHRwere recruited from the Basel Early Treatment Service (BEATS) andHC via on-
line advertisements and advertisements in public places. All participants provided informed
written consent. The study was approved by the local ethics committee (Ethikkommission
Nordwest- und Zentralschweiz, no. 2017-01149) and conducted in accordance with the lat-
est version of the Declaration of Helsinki.

1.2.2 In- and exclusion criteria

All participants were required to be at least 15 years old. Specific inclusion criteria for FEP
were a first diagnosis of an acute psychotic disorder, which was assessed by the treating clin-
icians, and a treatment recommendation to begin neuroleptic medication issued indepen-
dently of the study.
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We included CHR who fulfilled either ultra-high risk for psychosis criteria, i.e. one or
more of the following (1) APS, (2) BLIP, (3) a trait vulnerability in addition to a marked de-
cline in psychosocial functioning also referred to as genetic risk and deterioration syndrome
(GRD), assessed with the Structured Interview for Prodromal Symptoms (SIPS)157, or basic
symptom criteria,133,206 i.e., cognitive-perceptive basic symptoms (COPER) or cognitive dis-
turbances (COGIDS) assessed with the Schizophrenia Proneness Instrument, adult version
(SPI-A)207 or the Schizophrenia Proneness Instrument, child and youth version (SPI-CY)208
by experienced clinical raters.

Important exclusion criteria were history of previous psychotic disorders, psychotic symp-
tomatology secondary to an organic disorder, any neurological disorder (past or present), pre-
morbid IQ < 70 (assessed with the Mehrfachwahl-Wortschatz-Test, Version A142), colour
blindness, substance-abuse diagnoses according to ICD-10 criteria (except cannabis), alco-
hol or cannabis consumption within 24 hours prior to measurements, and regular drug con-
sumption (except alcohol, nicotine, and cannabis), which was assessed during the admission
interview and confirmedwith a drug screening before the initialmeasurement (measurements
were postponed following a positive test until a negative test result was obtained).

FEPswhose psychotic symptomswere associatedwith an affective psychosis or a borderline
personality disorder at the time of the measurement were excluded. Since the data presented
below was collected as part of a larger study that included neuroimaging assessments, addi-
tional exclusion criteria for CHR and HC were contraindications for fMRI and contraindi-
cations for EEGmeasurements for all three groups. However, I only present the behavioural
results in this chapter.

1.2.3 Task

All participants were asked to perform a deception-free and ecologically valid social learning
task (Figure 1.5A),56,57 which required them to learn about the intentions of an adviser that
changed over time. The task comprised two phases. In the first phase participants received
stable helpful advice, whereas advisers intentions were changingmore rapidly during a second
phase, the volatile phase (see volatility schedule in Figure 1.5B). Participants were asked to
predict the outcome of a binary lottery on each trial. To this end, they received information
from two sources, a non-social cue displaying the true winning probabilities of the lottery,
and a recommendation of an adviser (social cue) presented in form of prerecorded videos that
were extracted from trials in which a human adviser either tried to help or deceive a player in
a previous human-human interaction (see56,57 for more details).

Participants were truthfully informed that the adviser received privileged – but not com-
plete – information about the upcoming outcome and that inaccurate advice could be due
to mistakes or that the adviser could pursuit a different agenda than the player and that the
adviser’s intentions could change during the course of the experiment.
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Figure 1.5: Social learning task and volatility schedule. A Social learning task. B Volatility schedule.

1.2.4 Computational modelling

Hierarchical Gaussian Filter

Wemodelled participants’ behaviour during the social learning taskwith a 3-levelHGF.153,154
Themodel comprises a perceptualmodel and a responsemodel, whichwill be detailed below.

Perceptual model The standard 3-level HGF assumes that participants infer on a hier-
archy of hidden states in theworld x1, x2, and x3 that cause the sensory inputs that participants
perceive.153,154 Participants’ inference on the true hidden states of the world x(k)i at level i of
the hierarchy on trial k are denoted μ(k)i . In the context of this task, the states that participants’
need to infer on based on the experimental inputs on each trial (non-social cue and advice)
are structured as follows: The lowest level state corresponds to the advice accuracy. On each
trial k an advice can either be accurate (x(k)1 = 1) or inaccurate (x(k)1 = 0). This state can be
described by a Bernoulli distribution that is linked to the state at the second level x(k)2 through
the unit sigmoid transformation:

p(x(k)1 |x(k)2 ) = s(x(k)2 )x
(k)
1 (1− s(x(k)2 ))1−x(k)1 ∼ Bernoulli(x(k)1 ; s(x(k)2 )), (1.1)

with

s(z) =
1

1+ e−z . (1.2)
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x(k)2 represents the unbounded tendency towards helpful advice (−∞,+∞) or the ad-
viser’s fidelity and is specified by a normal distribution:

p(x(k)2 |x(k−1)
2 , x(k)3 , κ2, ω2) ∼ N (x(k)2 ; x(k−1)

2 , exp(κ2x(k)3 + ω2)) (1.3)

The state at the third level x(k)3 expresses the (log) volatility of the adviser’s intentions over
time and is also specified by a normal distribution:

p(x(k)x |x(k−1)
3 , θ) ∼ N (x(k)3 ; x(k−1)

3 , θ) (1.4)

The dynamics of these states are governed by a number of subject-specific parameters, i.e.,
the evolution rate at the second level ω2, the coupling strength between the second and third
level κ2, which determines the impact of the volatility of the adviser’s intentions on the belief
update at the level below, and the evolution rate at the third level or the meta-volatility θ,
which we fixed to a value of 0.5 to reduce the number of free parameters. Additional subject-
specific, free parameters were the prior expectations before seeing any input about the adviser’s
fidelity μ(0)2 and the volatility of the adviser’s intentions μ(0)3 (see Table 1.1 for priors on all
free parameters). These parameters can be understood as an individual’s approximation to
Bayesian inference and provide a concise summary of a participant’s learning profile. Using a
variational approximation, efficient one step update equations can be derived (see Section 0.5
The Hierarchical Gaussian Filter and153,154 for more details), which take the following form:

Δμ(k)i ∝
π̂(k)
i−1

π(k)
i

δ(k)i−1, (1.5)

where μ(k)i is the expectation or belief at trial k and level i of the hierarchy, π̂(k)
i−1 is the precision

(inverse of the variance) from the level below (the hat symbol denotes that this precision has
not been updated yet and is associated with the prediction before observing a new input),
π(k)
i is the updated precision at the current level, and δ(k)i−1 is a PE expressing the discrepancy

between the expected and the observed outcome.
We also employed a second, modified version of the HGF37 that assumed that learning

about an adviser’s intentionswasnot onlydrivenbyhierarchical PEupdates, but also included
a mean-reverting process at the third level formalising the idea that an altered perception of
volatility may underlie learning about others’ intentions. In this mean-reverting HGF, the
third level can again be described by a normal distribution:

p(x(k)x |x(k−1)
3 , θ, φ3,m3) ∼ N (x(k)3 ; x(k−1)

3 + φ3(m3 − x(k−1)
3 ), θ), (1.6)

where φ3 represents a drift rate andm3 the equilibrium point towards which the state moves
over time.
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In this model, we fixed the drift rate φ3 to a value of 0.1 and estimated the equilibrium
pointm3 as a subject-specific, free parameter. Note, that changingm3 to values that are lower
than the prior about the volatility of the adviser’s intentions μ(0)3 translates into reduced belief
updates at all three levels of the hierarchy corresponding to perceiving the environment as
increasingly stable over time (Figure 1.6). Conversely, ifm3 > μ(0)3 , the magnitude of belief
updates increases in line with a perception that the environment is increasingly volatile over
time and beliefs should thus be adjusted more rapidly. Lastly, if m3 = μ(0)3 , agents would
revert back to their prior beliefs about environmental volatility over time (i.e., ”forget” about
the observed inputs). For this reason, we refer to themodel asmean-revertingHGFanalogous
to an Ornstein-Uhlenbeck process in discrete time.240

Responsemodel The responsemodel specifies howparticipants’ inference on the hidden
states translates into decisions, i.e., to go with our against the advice. In our case the response
model assumes that participants’ integrate the non-social cue c(k) (the outcome probability
indicated by the pie chart) and their belief that the adviser is providing accurate advice μ̂(k)1
before seeing the outcome on the current trial k:

b(k) = ζμ̂(k)1 + (1− ζ)c(k), (1.7)

where ζ is a weight associated with the advice that expresses how much participants rely on
the social information compared to the non-social cue.

The probability that a participant follows the advice (y = 1) can then be described by a
sigmoid transformation of the integrated belief b:

p(y = 1|b) = bβ

bβ + (1− b)β
, (1.8)

with

β = exp(−μ̂(k)3 + ν). (1.9)

This relationship can be understood as a noisy mapping from the integrated beliefs to
participants’ decisions, where the noise level is determined by the current prediction of the
volatility of the advisers’ intentions μ̂(k)3 , such that decisions become more deterministic (i.e.,
exploitative), if the environment is currently perceived as stable or more stochastic (i.e., ex-
ploratory), if the environment is perceived as volatile. Modelling the exploration-exploitation
trade-off as a function of participants’ perception of volatility was favoured in previousmodel
selection results using the same task.56,57 ν is another subject-specific parameters that captures
decision noise that is independent of the perception of volatility (lower values indicate larger
decision noise).
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Figure 1.6: Simulating an altered perception of environmental volatility. Simulations showing the effect of changing the
equilibrium point m3. Increasing m3 (colder colours) results in larger precision‐weighted prediction errors leading to
stronger belief updates across all levels of the hierarchy. Note, that high values ofm3 also increase susceptibility to noisy
inputs (e.g., trials 120‐136). For the simulations, all other parameter values were fixed to the values of an ideal observer
given the input.

The models were implemented in Matlab (version: 2017a; https://mathworks.com)
using the HGF toolbox (version: 3.0), which is made available as open-source code as part
of the TAPAS79 software collection (https://github.com/translationalneuromodeling/
tapas/releases/tag/v3.0.0). The perceptual models were implemented using the
’tapas_hgf_binary’ function for the standard 3-level HGF and the ’tapas_hgf_ar1_binary’
function for the mean-reverting HGF.

Equilibrium point Coupling strength Evolution rate Prior expectations Advice weight Decision noise

Hypothesis I κ2(logit(0.5), 1), 1 ω2(−2, 4) μ(0)2 (0, 1) μ(0)3 (1, 1) ζ(logit(0.5), 1), 1 ν(log(48), 1)
Hypothesis II m3(1, 1) κ2(logit(0.5), 1), 1 ω2(−2, 4) μ(0)2 (0, 1) μ(0)3 (1, 1) ζ(logit(0.5), 1), 1 ν(log(48), 1)

Table 1.1: Priors on free model parameters. Prior means and their respective variances are denoted in brackets, followed
by upper bounds for parameters that were estimated in logit space: (Mean, Variance), upper bound.

Bayesian model selection

Based on our simulation analysis outlined in the introduction of this chapter54 and previ-
ous findings,37,56,58,184we formulated competinghypotheses about the computationalmecha-
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nisms that could underlie emerging paranoid behaviour (Figure 1.7). A standard 3-levelHGF
(Hypothesis I) was compared to the mean-reverting HGF that assumed that learning about
an adviser’s intentions was not only driven by hierarchical PE updates, but also included a
drift process at the third level formalising the idea, that an altered perception of volatility un-
derlies learning about others’ intentions in emerging psychosis (Hypothesis II; see also Figure
1.6). To arbitrate between the two hypotheses we performed random-effects Bayesian model
selection.186,225 Two additional control models were included, in which all parameters of the
perceptualmodelwere fixed to parameter values of an ideal Bayesian observer optimised based
on the inputs alone using the ’tapas_bayes_optimal_binary’ function to assess whether per-
ceptual model parameters needed to be estimated for either of the two main models. We re-
port protected exceedance probabilitiesφ, whichmeasure the probability that amodel ismore
likely than any other model in the model space,225 protected against the risk that differences
betweenmodels arise due to chance alone.186Wealso computed relativemodel frequencies f as
a measure of effect size, which can be understood as the probability that a randomly sampled
participant would be best explained by a givenmodel. Themodel selection was implemented
using the VBA toolbox46 (https://mbb-team.github.io/VBA-toolbox/).

Figure 1.7: Model space. Left: Standard 3‐level Hierarchical Gaussian Filter (HGF).153,154 Right: Mean‐reverting HGF with
a drift at the third level, which captures learning about the volatility of the adviser’s intentions. This model expresses the
notion that early psychosis may be characterised by an altered perception of environmental volatility.

Model recovery

To assess whether models were recoverable, we conducted a series of simulations as done pre-
viously.105 In brief, our model recovery analysis comprised simulating 20 synthetic datasets
based on the empirical parameter estimates obtained from fitting all models to the empirical
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data of every participant. The sample size of each synthetic dataset was chosen to be equiva-
lent to the empirical sample size (N = 56). The noise level was set based on the empirically
estimated decision noise νest. Each simulation was initialised using different random seeds to
account for the stochasticity of the simulation. This led to a total of 4 (models) x 56 (par-
ticipants) x 20 (simulation seeds) = 4,480 simulations. Subsequently, we re-inverted each of
the proposed models on the synthetic data to determine, whether we could recover the true
model under which synthetic data was generated. To assess model recovery, we then per-
formed random-effects Bayesian model selection on each of the datasets with a sample size of
N = 56 as in the empirical data and averaged the resulting protected exceedance probabilities
across the 20 simulation seeds to obtain a model confusion matrix.

Parameter recovery

In line with our previous work,105 we also performed a parameter recovery analysis to de-
termine whether model parameter estimates were reliable. Using the simulation and model
inversion results from the model recovery analysis (see preceding section), we assessed how
accurately the parameters generating the data (’simulated’) corresponded to the parameters
that were estimated when re-inverting the same model on that data (’recovered’). We report
Pearson correlations and their associated p-values to quantify our ability to recover the model
parameters. Since, the significance of these correlations is influenced by sample size, we also
computed Cohen’s f 2, where an f 2 ≥ 0.35 can be considered a large effect size35 and was
interpreted as evidence for good parameter recovery.

1.2.5 Statistical analysis

We tested for differences in behaviour using a linear mixed-effects model with advice tak-
ing as the dependent variable and fixed effects for group and task phase (stable vs volatile),
as well as a group-by-task-phase interaction as predictors of interest and age, working mem-
ory performance, antipsychotic, and antidepressant medication as covariates of no interest.
Additionally, the model included a random intercept per participant. Differences in model
parameters were assessed using non-parametric Kruskal-Wallis tests. All statistical analyses
were conducted in R (version: 4.04; https://www.r-project.org/) using R-Studio (ver-
sion: 1.4.1106; https://www.rstudio.com/). We report both uncorrected p-values (puncorr)
and Bonferroni-corrected p-values adjusted for the number of free parameters (n = 7). Based
on previous literature and the simulations outlined in the introduction, we hypothesised that
groups would differ with respect to coupling strength between the second and third level
κ2,56,184 the evolution rate ω2,58,184 or parameters that are associated with the perception of
volatility, i.e., the prior expectation about environmental volatility μ(k)3

184 or the equilibrium
point of the drift at the third levelm3.37,54

29

https://www.r-project.org/
https://www.rstudio.com/


1.3 Results

1.3.1 Sociodemographic and clinical characteristics

Sociodemographic and clinical characteristics are presented in Table 1.2.

1.3.2 Behavioural results

We identified a significant group-by-task-phase interaction (F = 5.275, p = 0.008; Figure
1.8A) suggesting that FEP showed reduced flexibility to take environmental volatility into ac-
count as the difference between stable and volatile phase was reduced. None of the covariates
significantly impacted advice taking.

1.3.3 Modelling results

Bayesian model selection and model recovery

The model recovery analysis (Figure 1.10) indicated that the control models (CI and CII)
could not be well-distinguished. This was likely due to the fact that the equilibrium point
m3 in CII was optimised based on the input alone, which resulted in a value form3 that was
close to the prior, rendering the predictions of the two control models very similar. Most
importantly, however, the two main models associated with Hypothesis I and II could be
well-distinguished.

After confirming that the twohypotheseswere distinguishable, wefirst performedBayesian
model selection including participants from all groups. The results were inconclusive (φ =
74.37%, f = 53.80% in favour of Hypothesis II) possibly suggesting that different groups
were best explained by different models (i.e., different computational mechanisms). To as-
sess this possibility, we repeated the model selection for each group separately (Figure 1.9A).
In HC, the winning model was the standard 3-level HGF (Hypothesis I; φ = 96.63%,
f = 95.93%). Conversely, in FEP the mean-reverting HGF that included a drift at the third
level was selected (Hypothesis II; φ = 99.95%, f = 95.92%). For CHR, we observed a
more heterogeneous results: While the mean-reverting model was favoured (Hypothesis II;
φ = 84.57%, f = 60.24%), there was also evidence for the standard HGF, albeit to a much
lesser extent (Hypothesis I; φ = 14.35%, f = 37.19%). Further inspection of the model at-
tributions for all individual participants revealed an interesting pattern (Figure 1.9B). All HC
were attributed to the standardHGFwith over 97% probability, whereas FEPwere attributed
to the mean-reverting model with over 99%. Interestingly, model attributions for CHRwere
more heterogeneous ranging from 0 to 100% probability, suggesting that some individuals
were better explained by the standard HGF, but others by the mean-reverting model.
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HC CHR FEP Test Post hoc
n = 19 n = 19 n = 18 statistic contrasts

Age 21.37 21.05 33.44 F = 18.182 FEP >HC
mean [SD] [2.52] [3.52] [11.70] p < 0.001 FEP > CHR
IQ 108.11 105.95 112.29 F = 1.015
mean [SD] [9.85] [12.28] [16.25] p = 0.370
Working memorya 6.42 6.74 5.83 F = 1.011
mean [SD] [1.71] [2.16] [1.98] p = 0.371
Sex 11/8 11/8 7/11 χ2 = 1.767
f/m p = 0.413
Cannabis 7/12 8/11 5/13 χ2 = 0.842
y/n p = 0.656

High risk typeb
APS 15
BLIP 1
GRD 0
COGDIS 4
COOPER 2
Psychotic disorder diagnosis
F20 Schizophrenia 3
F22 Delusional disorder 6
F23 Brief psychotic disorder 9
Antipsychotics 19/0 3/16 16/2 χ2 = 36.800 FEP > CHR
y/n p < 0.001 FEP >HC
Antidepressants 19/0 9/10 1/17 χ2 = 17.268 CHR > FEP
y/n p < 0.001 CHR >HC
PANSS Positive 8n=19 11n=19 16n=16 η2 = 0.514 FEP > CHR >HC
median [25th , 75th] [7, 8] [10, 14] [11, 23] p < 0.001
PANSS Negative 7n=19 9n=19 12n=16 η2 = 0.364 FEP > CHR >HC
median [25th , 75th] [7, 8] [8, 10] [9, 15] p < 0.001
PANSS General 18n=19 29n=19 34n=16 η2 = 0.674 FEP > CHR >HC
median [25th , 75th] [16, 19] [22, 32] [32, 40] p < 0.001
PCL Frequency 23n=19 30n=19 36n=17 η2 = 0.202 FEP >HC
median [25th , 75th] [19, 25] [24, 33] [23, 44] p = 0.004 CHR >HC
PCL Conviction 26n=19 33n=19 30n=17 η2 = 0.086
median [25th , 75th] [22, 31] [28, 39] [22, 55] p = 0.099
PCL Distress 26n=19 29n=19 30n=17 η2 = 0.008
median [25th , 75th] [20, 37] [23, 38] [21, 46] p = 0.799

Table 1.2: Demographic and clinical characteristics. All p‐values are uncorrected. HC: Healthy controls. CHR: Individuals
at clinical high risk for psychosis. FEP: First‐episode psychosis patients. APS: Attenuated psychotic symptoms. BLIP:
Brief and limited intermittent psychotic symptoms. GRD: Genetic risk and deterioration syndrome. COGDIS: Cognitive
disturbances. COPER: Cognitive‐perceptive basic symptoms. PANSS: Positive and Negative Syndrome Scale. 126 PCL:
Paranoia Checklist. 83 Bold print highlights p‐values significant at: p < 0.05, uncorrected. a Assessed with the digit span
backwards task from the Wechsler Adult Intelligence Scale–Revised.255 bHigh risk types are not mutually exclusive.
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Figure 1.8: Behavioural results and parameter group effects. A Behavioural results (ground truth). B Model prediction.
C Parameter effect for drift equilibrium point m3. D Parameter effect for coupling strength κ2. E Correlation between
model parameters and either Positive and Negative Syndrome Scale126 (PANSS) or Paranoia Checklist 83 (PCL). Note, that
raw scores are displayed for illustration purposes only. Statistical analyses were conducted using nonparametric Kendall
rank correlations. Displayed regression lines were computed using a linear model based on the raw scores. Note, that
one outlier (κ2 = 0.006) was removed for displaying the effect on κ2 in D and E. This outlier was outside of 7× the
interquartile range. Excluding this participant did not affect the significance of the results. P: Positive symptoms. N:
Negative symptoms. G: General symptoms. F‐ and p‐values indicate results of ANCOVAs corrected for working memory
performance, antipsychotic medication, antidepressant medication, and age. Boxes span the 25th to 75th quartiles and
whiskers extend from hinges to the largest and smallest value that lies within 1.5× interquartile range. Asterisks indicate
significance of non‐parametric Kruskal‐Wallis tests at: * p < 0.05, using Bonferroni correction.

Posterior predictive checks and parameter recovery

To assess whether the mean-reverting model (Hypothesis II) captured the behavioural effects
of interest, we conducted posterior predictive checks by repeating the behavioural analysis
on this model’s predictions. This analysis confirmed that the mean-reverting model recapit-
ulated the group-by-task-phase interaction effect (Figure 1.8B). Our parameter analysis indi-
cated good recovery (i.e., Cohen’s f 2 ≥ 0.35) for four out of the seven model parameters
including the drift equilibrium pointm3 (Figure 1.10). However, recovery for μ(0)3 , μ(0)2 , and
κ2 fulfilled this criterion only in 55%, 65%, and 55% of the simulations respectively.

Parameter group effects

Since themodel selection indicated that themean-revertingmodelwas a better explanation for
behaviour of FEP, we were interested in assessing whether the perception of volatility in FEP
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increased or decreased over time (see also simulations illustrating these two possibilities in Fig-
ure 1.6). To distinguish between these possibilities, we compared the drift equilibrium point
m3 across the three groups and found that m3 was significantly different across the groups
(η2 = 0.142, puncorr = 0.020). Post hoc tests revealed thatm3 was significantly increased in
FEP compared to HC suggesting that FEP perceived the intentions of the adviser as increas-
ingly more volatile over time (η2 = 0.139, p = 0.017, Bonferroni-corrected for the number
of comparisons across groups, i.e., n = 3; Figure 1.8C). We also performed an exploratory
analysis including all other free model parameters. This analysis revealed an additional effect
on coupling strength κ2 (η2 = 0.138, puncorr = 0.022), which was driven by reduced cou-
pling strength in FEP compared to HC (η2 = 0.142, p = 0.016, Bonferroni-corrected for
the number of comparisons across groups, i.e., n = 3; Figure 1.8D). However, neither the
effect onm3 nor κ2 survived Bonferroni correction for the number of parameters, i.e. n = 7
(p = 0.140 and p = 0.157, respectively), possibly due to a lack of power.

Figure 1.9: Bayesian model selection results. A Protected exceedance probabilities for within‐group random‐effects
Bayesian model selection 225,186 to arbitrate between Hypothesis I (HI; standard 3‐level HGF) and Hypothesis II (HII; mean‐
reverting HGFwith drift at 3rd level in line with an altered perception of volatility). Two corresponding control models were
included (CI and CII), for which the perceptual model parameters were fixed. Model selection was performed separately
in healthy controls (HC), individuals at clinical high risk for psychosis (CHR), or first‐episode psychosis patients (FEP). The
dashed line indicates 95% exceedance probability. BModel attributions for each participant.
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Figure 1.10: Model and parameter recovery analyses. A‐G Parameter recovery result for one random seed for the mean‐
reverting HGF with drift at the 3rd level (Hypothesis II; Figure 1.7). H Model recovery analysis. The grey scale indicates
protected exceedance probability averaged across all 20 random seeds.

Symptom-parameter correlations

Some authors68 have argued that psychosis may be better conceptualised as a continuum
rather than categorically based on evidence that a significant percentage of the general popula-
tions reports somepsychosis symptoms.127,237 In linewith this proposal, we assumed a contin-
uum perspective and investigated whether the equilibrium point m3 and coupling strength
κ2 were correlated with specific symptom subscales of the Positive and Negative Syndrome
Scale (PANSS)126 across all three groups with non-parametric Kendall rank correlations (see
Figure 1.8E). We found a positive correlation between m3 and PANSS positive symptoms
(τ = 0.203, puncorr = 0.038) and negative correlations between κ2 and PANSS negative
and general symptoms (τ = −0.253, puncorr = 0.011 and τ = −0.219, puncorr = 0.022
respectively). These correlations, however, did not survive Bonferroni correction, possibly
due to a lack of power (p = 0.228, p = 0.068, and p = 0.132 respectively, adjusted for 2
(#parameters) x 3 (#PANSS subscales) = 6 comparisons). Since the PANSS126 was specifically
designed to assess symptom expression in clinical populations, we also calculated correlations
with the Paranoia Checklist (PCL),83 an instrument more sensitive to expressions of para-
noia in healthy or subclinical populations. We found a correlation betweenm3 and the PCL
frequency subscale (τ = 0.201, puncorr = 0.034). Again, this correlation did not survive
Bonferroni correction (p = 0.204, adjusted for 2 (#parameters) x 3 (#PCL subscales) = 6
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comparisons).

1.4 Discussion

In this study, we investigated the computational mechanisms underlying emerging psychosis.
Our model selection results suggest that FEP may operate under a different computational
mechanism compared to HC that is characterised by perceiving the environment as increas-
ingly volatile. A strength of our study is that this effect is unlikely due to medication effects
as FEP were only minimally medicated. Furthermore, we observed more heterogeneity in
CHR, possibly indicating that this modelling approach may be useful to stratify the CHR
population and identify individuals that are more likely to transition to psychosis. Assum-
ing a psychosis continuum perspective, we also found tentative evidence suggesting that the
drift equilibrium point m3 and the coupling strength between hierarchical levels κ2 may be
affected in emerging psychosis and that these parameters provide a clinically relevant descrip-
tion of individuals’ learning profiles. However, due to the small sample size, these results
should be interpreted with caution.

1.4.1 Related modellingwork

The predictive coding account of psychosis227 and the aberrant salience hypothesis125 pro-
pose that psychosismaybe characterised by aberrant PEs that provide the breeding ground for
delusions to form. Our results are in linewith these proposals and the prediction for early psy-
chosis derived in the introduction of this chapter through simulations54 (Figure 1.4A).More-
over, our results enable amore nuanced characterisation and point towards an altered percep-
tion of environmental volatility as a possible computational mechanisms underlying aberrant
PEs. Specifically, perceiving the intentions of another person as increasingly volatile over time
leads to reduced precision of beliefs about environmental volatility. This, in turn, results in
larger precision-weighted PEs through decreasing the denominator of the precision ratio that
weighs PEs (see Equation 2). However, we note that thismodel was only conclusively selected
in the FEP group and not already in theCHRgroup, although themean-revertingmodel was
favoured in the model attributions for some CHR individuals (Figure 1.9B). In contrast to
our a priori hypothesis (Figure 1.4B), we did not find evidence for a compensatory increase
in the precision of high-level priors. This was proposed as a cognitive mechanism to make
sense of aberrant PEs by Kapur and colleagues125 and observed empirically by others,14,58,257
although Baker et al.14 used a non-social probabilistic reasoning task.

Reed and colleagues184 employed the HGF to investigate the computational mechanisms
underlying paranoia in a subclinical population and schizophrenia patients using a non-social
reversal learning task. They found increased expected volatility (μ(0)3 ) in participants with
higher levels of paranoia using the standard 3-level HGF. Our model selection suggested that
thismodel explains behaviour better inHC,whereas FEPwere better characterised by amean-
reverting HGF that included a drift at the third level. It should be noted that increasing μ(0)3
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and including a drift at the third level, which increases over time, can both be interpreted
as expecting the environment to be more volatile, but the drift provides a more nuanced de-
scription of changes that occur during the learning session. Our results are thus in line with
previous results, but possibly provide a perspective that takes within-task dynamics more ex-
plicitly into account. Moreover and in contrast to our results, Reed et al.184 found increased
and not reduced coupling strength κ2. This discrepancy may be related to differences in the
tasks employed (non-social three-option reversal learning task vs our social learning task), but
we also note that κ2 was not always well-recoverable in our simulation analysis. Therefore, we
do not wish to draw strong conclusions based on the κ2 effect our study, although we found
trend-level effects suggesting that κ2 may be related to negative and general symptoms.

1.4.2 Is the perceptionof environmental volatility altered specifically in
social contexts?

Here, we employed an ecologically valid social learning task56,57 to study changes in learning
about other’s intentions. Some authors184,231 have raised the question of whether changes
in learning like the ones observed in this study are reflective of a specifically social or rather a
domain-general learning deficit. Here, we did not assess whether differences with respect to
the perception of environmental volatility were specific to a social context since we did not
include a non-social control task. However, this will be an interesting question to address in
future studies.

Interestingly, a recent study by Cole and colleagues37 also identified an HGF with a drift
at the third level as the winning model in a sample of CHR participants who were asked to
perform a non-social, two-option reversal learning task. Others184,231 found changes inmodel
parameters related to the perception of environmental volatility in healthy, subclinical, and
schizophrenia patient populations. Suthaharan et al.184 also included a social control task,
which did not affect the parameter effects. Therefore, this mechanismmay not be specifically
tied to social contexts, but instead may be related to a more general deficit in learning under
uncertainty.184,231 However, we do note that the social control task employed by Suthaharan
and colleagues231 was not as ecologically valid as other tasks that were used to study paranoia
such as thedictator game182 orour taskwhichwas adapted fromempirically-observedhuman-
human interactions in aprevious study.56 Finally, it is alsopossible that there are bothdomain-
general and domain-specific changes, but that these can only be studied at the neuronal level
and converge on the same behavioural model parameters.

1.4.3 What causes an altered perception of volatility?

Interestingly, there may be at least two different pathways that can lead to an altered per-
ception of environmental volatility. First, abnormalities in monoamine systems may lead to
aberrant PEs that are unpredictable and lead to the expectation that the environment is very
volatile.54,125 In line with this pathway, Reed et al.184 found that methamphetamine admin-
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istration induced changes in model parameters that impacted learning about environmental
volatility in rats. Moreover, Diaconescu et al.57 found activation in dopaminoceptive regions
such as the dopaminergic midbrain during the same social learning task, which was also used
in this study. Secondly, external shifts in the volatility of the environment, for example a
global health crisis like the COVID-19 pandemic, may also result in an altered perception of
volatility and emergence of paranoid thoughts or endorsement of conspiracy theories.231This
second (environmental) pathway may also be relevant for understanding increased incidence
of schizophrenia in individuals that experience migration211 and those living in urban envi-
ronments248 as individuals exposed to both of these risk factors may be confronted with –
in some cases drastically – changing environments. In summary, there may be at least two
(possibly interacting) pathways that could give rise to an altered perception of environmental
volatility.

1.4.4 Clinical implications

We identified trend-correlations between the drift equilibrium point m3 and PANSS posi-
tive symptoms and the frequency of paranoid thoughts and between the coupling strength
κ2 and PANSS negative and general symptoms. While the evidence was not conclusive in this
study since these correlations were not significant after multiple testing correction, we note
that the effects were in the expected direction, such that perceiving the environment as in-
creasingly volatile (higherm3) was associatedwith higher frequency of paranoid thoughts and
more severe positive symptoms in general. Future well-powered studies are needed to assess
whether these effects can be confirmed in larger samples. Interestingly, we observed heteroge-
neous model attributions specifically in CHR, whereas the model selection clearly favoured
the standard 3-level HGF inHC and the mean-reverting model in FEP. This finding suggests
that this model may be helpful to identify CHR patients that will more likely transition to a
psychotic disorder.

1.4.5 Limitations

Several limitations of this study merit attention. First, the sample size of this study was small
due to very selective inclusion criteria with respect to medication, which, however, enabled
us to minimise the impact of medication effects. Larger studies are needed to replicate our
results and increase statistical power to identify correlations between model parameters and
symptoms. Secondly, we cannot assess the specificity of our results with respect to the social
domain since we did not include a non-social control task. Lastly, we also cannot speak to
the specificity with respect to other diagnoses, because we did not include a clinical control
group, which is an important avenue for future research.
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1.4.6 Future directions

While we found evidence for increased uncertainty associated with higher-level beliefs about
the volatility of others’ intentions, future studies will have to examine whether a compen-
satory increase in the precision of higher-level beliefs occurs during later stages of schizophre-
nia, possibly also fluctuatingwith the severity of psychosis, orwhether othermodels are better
suited to capture the conviction associated with delusory beliefs during acute psychotic states
(see for example14,66). Furthermore, the neural correlates of belief updating in emerging psy-
chosis during social learning should be examined to identify neural pathways thatmay under-
lie the changes in perception that were suggested by the model. Lastly, longitudinal studies
are needed to assess, whether model parameters can be leveraged as predictors for transition
to psychosis or treatment response in individual patients with psychosis.

1.4.7 Conclusions

In conclusion, our results suggest that emerging psychosis is characterised by an altered per-
ception of environmental volatility. Furthermore, we observed heterogeneity in model attri-
butions in individuals at high risk for psychosis suggesting that this computational approach
may be useful to stratify the high risk state and for predicting transition to psychosis in clinical
high risk populations.
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All models are wrong, but some are useful.
Georg E. P. Box (1976)26

2
Modelling Reasoning Biases

This chapterwill extend the approachoutlined inChapter 1 and focuses onmodelling reason-
ing biases associated with psychotic disorders and delusions. It also assesses the clinical util-
ity of using this computational approach by testing its ability to predict treatment response
to a psychotherapeutic intervention. This work was published by Hauke et al. (2022) in
Schizophrenia Bulletin54 and adapted for this dissertation.

2.1 Introduction

Delusions occur in various forms: Prominently featuring among others are persecutory
delusions – the belief that others deliberately intend to cause harm82 – as outlined in the pre-
vious chapter. However, a plethora of other delusional themes exist, for example grandiose
delusions, believing that one has superior power, knowledge or a special identity.134 While
delusions are key symptoms of schizophrenia, they also occur in other disorders with psy-
chotic symptoms, such as delusional disorder, and psychoaffective disorders, including bipo-
lar disorder.12 It is therefore important to assume a transdiagnostic perspective and under-
stand the mechanisms underlying delusion formation and persistence across psychotic disor-
ders.

A substantial body ofwork61,156,187 has examined the relationship between reasoning biases
and delusions. For example, patients with psychotic disorders change their beliefs more than
HC, when faced with evidence that contradicts their current beliefs (i.e., disconfirmatory ev-
idence).69,97,178,267 Another extensively studied bias is JTC, the tendency to draw conclusions
based on limited evidence. JTC was found to be more prevalent in patients with psychotic
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disorders, especially in those with delusions.61,156 Traditionally, JTC was assessed with the
beads task, a probabilistic learning task, in which participants are asked to decide fromwhich
of twourns an experimenter is drawing a sequence of coloured beads.112,179 In another version
of the task, the fish task,166,219,263 participants are shownfish that a fisherman caught fromone
of two lakes with different ratios of coloured fish and are asked to determine fromwhich lake
the fisherman was fishing.

While relationships between reasoning biases such as JTC, delusions, and psychotic disor-
ders have been found across different tasks,61,156,187 as of yet, it is unclear, whether JTC is con-
tributing to delusion formation by increasing premature acceptance of implausible ideas,61,81
or, whether it is merely an epiphenomenon of psychotic disorders246 (see156 for discussion
of other biases). A third possibility is that JTC – and increased updating to disconfirmatory
evidence – both reflect a noisy and unstable cognitive system that is more vulnerable to af-
fective or habitual biases, thus enabling delusions without directly causing them.4 Although
answering this question may ultimately require longitudinal data, computational modelling
allows us to study the computational mechanisms underlying behavioural differences across
individuals. Computational models describe how changes in information processing give rise
to observable differences in behaviour. This approach is useful, because there is often amany-
to-many mapping between computational parameters and behavioural effects. For example,
JTC could be caused by greater initial uncertainty, faster belief-updating, or noisier respond-
ing. Modelling allows the investigator to distinguish between these possibilities in each indi-
vidual. This is potentially important, because specific computational mechanisms may relate
to specific treatment effects (e.g., blocking dopamine D2 receptors might reduce noisy re-
sponding, but not affect belief-updating).

Here, we employed a computational modelling approach to understand the relationship
between JTC, psychotic disorders, and delusions. The research objective of this study was to
dissect this relationship based on the computational mechanisms underlying belief updating
in the fish task. To this end, we formulated three research questions (RQ):

• RQ1: What are the computational mechanisms underlying differences in probabilistic
reasoning between HC and patients with psychotic disorders?

• RQ2: What are the computational mechanisms underlying differences in probabilistic
reasoning between individuals with and without JTC?

• RQ3: What are the computational mechanisms underlying differences in probabilistic
reasoning between patients with low and high current delusions?

While computational analyses may provide relevant theoretical insight, the ultimate goal
of understanding computational mechanisms is to improve patients’ well-being. To examine
the clinical utility of this approach, we investigated whether computational parameters pre-
dicted treatment response to Metacognitive Training (MCT),167 an intervention that specif-
ically targets reasoning biases. Based on previous results,1 we expected that belief instability
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and decision noise would predict treatment response. This hypothesis was also based on the
observation that several modules of Metacognitive Training are designed to make cognition
more robust. In which case, those with greatest belief instability or decision noise may stand
to benefit most from a cognition-focused intervention.

2.2 Methods

2.2.1 Participants

Our sample consisted of N = 333 participants of three different studies.9,10,165 All studies
were approved by the local ethics committee and conducted in accordance with the most
recent version of the Declaration of Helsinki. Participants provided written informed con-
sent and were reimbursed for clinical assessments. We excluded 13 participants for which
raters had indicated miscomprehension of task instructions and three participants due to in-
complete probability ratings. The final sample (N = 317) consisted of 56 HC and 261 pa-
tientswith psychotic disorders. Wewill briefly highlight important differences and similarities
across the parent studies below.

Aims

Two of the three parent studies were designed as clinical trials to assess the efficacy of
MCT.10,165 The third study’s original aim was to identify neuroimaging correlates that un-
derlie JTC and the effects of MCT.9

Recruitment

Clinical trials10,165 included patients and the third study9 compared patients and healthy con-
trols. Patients were recruited through theDepartment of Psychiatry, UniversityMedical Cen-
ter Hamburg-Eppendorf (UKE) and postings in online psychosis forums. Healthy controls
were recruited through postings on university recruitment sites and local media.

In- and exclusion criteria

All studies included patients between 18 and 65 years old, who met criteria for a diagnosis of
schizophrenia spectrum disorder confirmed with the Mini-International Neuropsychiatric
Interview (M.I.N.I.),213 and experienced delusions currently or in the past. Exclusion criteria
were a history of cranio-cerebral trauma or serious medical or neurological conditions that
might affect cognitive performance, and premorbid IQ ≤ 70. In group therapy trials, par-
ticipants with scores on PANSS126 item P6: Suspiciousness/Persecution > 6 or PANSS item
P7: Hostility > 5 were excluded. Healthy participants with any past or current psychiatric
disorder (including substance use disorders), and history of schizophrenia or bipolar disorder
in a first degree relative were excluded (for further details, consult:9,10,165).
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Metacognitive Training intervention

In clinical trials10,165, MCT was administered as a group training to groups of 4-10 patients
at a time. It consisted of eight modules that targeted relevant cognitive biases, such as dys-
functional attributions, JTC, belief inflexibility, deficits in social cognition, overconfidence
in errors, and deficits in emotional processing. The goal of this psychotherapeutic interven-
tion is to convey knowledge about cognitive distortions that can occur in psychotic disorders
and to raise awareness of the dysfunctionality of such biases through exercises. The exercises
are meant to provide corrective experiences and to teach alternative coping and information-
processing strategies. MCTcanbe considered a hybrid therapywith elements from two estab-
lished cognitive therapy approaches, i.e., cognitive-behavioural therapy (CBT) and cognitive
remediation therapy (CRT). As CBT,MCT employs a “back-door approach” since it focuses
on cognitive processes first and only then proceeds to core psychiatric symptomatology. Con-
versely, the presentation of the material is structured analogous to CRT, centering around
exercises and error feedback (see165,168,169 for more details).

Protocols

Both clinical trials10,165 compared patients that were randomly allocated to either MCT
or a control intervention that consisted of a computerised cognitive treatment program
(CogPack®; http://www.markersoftware.com/) using a fixed, pseudo-randomisation sched-
ule. Additionally, all participants continued treatment as usual. Clinical assessments were
conducted by raters that were blind to the treatment allocation. In contrast to Moritz et al.
(2013)165, Andreou et al. (2017)10 expanded the conventional MCT program (4 weeks) to
not only include predominantly non-delusional scenarios, but also additional applications of
the learned material to challenge the content of individual delusional beliefs referred to as in-
dividualised MCT (6 weeks). In all studies, probabilistic reasoning was assessed at baseline
using the fish task,166,219,263 and clinical symptoms were assessed at baseline and follow-up.
Analyses presented here were restricted to the baseline and post-intervention assessment (af-
ter 4165 or 610 weeks).

2.2.2 Task

To assess probabilistic reasoning at baseline, we employed a graded estimates version267 of the
fish task.166,219,263 Participants were instructed that a fisherman was fishing from one – and
only one – of two lakes with different ratios of coloured fish (80:20 in lake A and reversed
in lake B; Figure 2.1). They were also instructed that these ratios did not change as the fish-
erman always threw the fish back into the water (sampling with replacement). Participants
were presented with a sequence of ten fish. After each fish in the sequence they were asked
(1) to estimate the probability that the fish were drawn from lake A (0-100%) and (2) if they
were certain enough to decide fromwhich lake the fisherman was fishing and if so, what their
conclusion was (i.e., lake A or B).
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Figure 2.1: Fish task. Adapted from Hauke et al. (2022), Schizophrenia Bulletin. 105

2.2.3 Computational modelling

Hierarchical Gaussian Filter

We modelled behaviour with the HGF.153,154 This model was employed previously to un-
derstand probabilistic reasoning during the beads task in schizophrenia patients1 and other
symptoms of schizophrenia (e.g., hallucinations181 or paranoid delusions54,184,231). TheHGF
assumes that learning is driven by precision-weighted PE updates and that learners integrate
prior and new information in a Bayes-optimal manner given their individual learning param-
eters, which are estimated fromparticipants’ behaviour. These parameters can be understood
as encoding an individual’s approximation to Bayesian inference154 and provide a concise
summary of individual learning profiles. Differences in model parameters or architectures
across participants can then be leveraged to understand the computational mechanisms un-
derlying different populations. We closely followed the approach of Adams and colleagues,1
briefly summarise below.

We modelled participants’ behaviour with a 2-level, nonvolatile version of the HGF (see
Figure 2.2A). The third level of the HGF expresses learning about the volatility of the en-
vironment. As Adams et al.,1 who employed this model to model probabilistic reasoning
during the beads task in a more homogeneous sample of schizophrenia patients, we decided
to employ a 2-level version of this model, because the environment was stable throughout
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the experiment (the fisherman was always fishing from the same lake). This also helped to re-
duce the number of model parameters to be estimated, which was important given the small
number of experimental trials that were available per participant.

The generative model assumes that a fish u(k) is drawn from the probability x(k)1 that the
fisherman is fishing in one of the lakes (e.g., lake A) on trial k (see Figure 2.1). The state at
the level above is the unbounded tendency (−∞,+∞) that the fishermanwas fishing in lake
A x(k)2 , which can be transformed to the probability x(k)1 using the sigmoid transformation
s(x(k)2 ), where s(x(k)2 ) is the unit square sigmoid transformation: s(z) = 1

1+e−z .
However, x(k)2 is not known to the participant and needs to be inferred when observing a

sequence of fish. The participant’s posterior estimate of x(k)2 on trial k is denoted μ(k)2 . Again,
this unbounded tendency can be transformed into the participant’s posterior estimate of the
probability of the sequence of fish being fished from that lakewith range [0, 1]using a sigmoid
transformation as before μ̂(k)1 = s(κ1μ(k)2 ), which is equivalent to the participant’s prediction
for the next trial (denoted with ^). However, here, κ1 represents a subject-specific parameter
that captures the degree of belief instability.

Using this model, we assume that participants start with a prior mean for μ(0)2 = 0. After
the sigmoid transformation, this corresponds to the expectation that both lakes are equally
probable or that the probability for each lake is 50%, i.e. μ̂(0)1 = 0.5. Before participants ob-
serve a new input on each trial k, their prediction μ̂(k)2 and μ̂(k)1 and precisions thereof (inverse
of the variances) π̂(k)

2 and π̂(k)
1 are given by the following equations:

μ̂(k)2 ≡ μ(k−1)
2 (2.1)

μ̂(k)1 ≡ s(κ1μ̂(k)2 ) (2.2)

π̂(k)
1 ≡ 1

μ̂(k)1 (1− μ̂(k)1 )
(2.3)

π̂(k)
2 ≡ 1

σ(k−1)
2 + exp(ω)

. (2.4)

When participants observe a new fish, a PE δ1, expressing the discrepancy between what
participants observe u(k) and what they expected μ̂(k)1 , is generated and used to adjust the par-
ticipant’s expectations:

δ(k)1 ≡ u(k) − μ̂(k)1 , (2.5)
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where u(k) is a new input observed at trial k, which can be either 0 (grey fish) or 1 (orange fish).
The posterior expectations after observing the new evidence is computed as follows:

π(k)
2 = π̂(k)

2 +
κ21
π̂(k)
1

(2.6)

μ(k)2 = μ(k−1)
2 +

κ1
π(k)
2

δ(k)1 . (2.7)

Note, that κ1 affects the size of the updates, such that increased belief instability κ1 leads to
stronger updates and thus more unstable beliefs over time, when observing new evidence.

The posterior expectation translates into a new prediction for the next trial again using the
sigmoid transformation:

μ̂(k+1)
1 ≡ s(κ1μ(k)2 ). (2.8)

The response model that maps participants’ expectation onto their responses takes the
form of a beta distribution described by its mean μresp and variance ν. These statistics are
related to the conventional shape parameters a and b of a beta distribution as follows:

μresp :=
a

a+ b
(2.9)

ν := a+ b. (2.10)

We implemented this model, using the tapas toolbox (version: 4.0.0; https:
//github.com/translationalneuromodeling/tapas/releases/tag/v4.0.0)79 in Matlab
(version: 2017a; https://mathworks.com) and the functions ’tapas_hgf_ar1_binary’ and
’beta_obs’ for the perceptual and response model, respectively.

Bayesian model selection

We formulated two competing hypotheses describing different learning mechanisms, includ-
ingHypothesis I: Standard Bayesian belief updating andHypothesis II: Bayesian belief up-
dating subject to belief instability (controlled by parameter κ1). Note, that equation (2) is re-
duced to a simple sigmoid transformation of μ(k)2 , if κ1 = 1. In this caseModel 2 is reduced
toModel 1. However, if κ1 ≥ 1, a simulated participant will show increased belief instability
that leads them toquickly change theirmindwhen confrontedwith disconfirmatory evidence
(see Figure 2.2B), but also leads to smaller updates when presented with consistent evidence
(e.g., fishes 5-8). Model 2, estimates κ1 fromparticipants’ behaviour and therefore tests the hy-
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pothesis that participants’ learning can be better described byBayesian belief updating subject
to belief instability.

For both models, we estimated participants’ prior uncertainty or σ(0)2 at the beginning of
the experiment, participants’ evolution rate or ω2, and the response stochasticity or decision
noise ν. InModel 2, we additionally estimated belief instability κ1. All other parameters of the
HGF were fixed (see Table 2.1 for overview over model priors).
We compared these competing hypotheses with random-effects Bayesian model selec-

tion186,225 and computed protected exceedance probabilities for the two models. Protected
exceedance probabilities measure the probability that a model is more likely than any other
model in the model space,222 protected against the risk that differences between models arise
due to chance alone.186 We also computed relative model frequencies as a measure of effect
size, which can be understood as the probability that a randomly sampled participant would
be best explained by this model. The model selection was implemented using the VBA tool-
box46 (https://mbb-team.github.io/VBA-toolbox/).

Figure 2.2: Winning model. A Graphical representation of the generative model adapted from Adams et al.1 Observed
quantities are denoted with grey circles. White circles represent hidden states and blue circles subject‐specific parameters.
Black lines indicate probabilistic network at trial k and grey lines at trial k+ 1. Solid lines indicate generative model in the
world, which participants infer on, 48,47 whereas dotted lines represent participants’ inference on these states. B Simulation
showing the impact of changing belief instability κ1 and prior uncertainty σ

(0)
2 . Displayed is the inferred probability that

the fisherman is fishing from lake A s(κ1μ
(k)
2 ) for very low (upper panel) or low to high levels of belief instability (middle

panel), and changing prior uncertainty (lower panel). All other parameters were fixed to the posterior medians. Increasing
log(κ1) above approximately ‐0.9 leads to higher belief instability, as simulated agents are changing their beliefs more
rapidly when faced with disconfirmatory evidence. Increasing κ1 in the very low range leads to larger belief updates early
in the experiment. Note, however, that the exact value of κ1 at which the model’s behaviour undergoes this qualitative
change depends on the other parameter values. Increasing σ(0)2 consistently leads to larger belief updates early in the
experiment. Adapted from Hauke et al. (2022), Schizophrenia Bulletin. 105
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Model recovery

To assess whether models were recoverable, we conducted a series of simulations. We simu-
lated 20 synthetic datasets based on the empirical parameter estimates obtained from fitting
all models to the empirical data of every participant. The sample size of each synthetic dataset
was chosen to be equivalent to the empirical sample size (N = 317). The noise level was
set based on the empirically estimated decision noise νest. Each simulation was initialised us-
ing different random seeds to account for the stochasticity of the simulation. This led to a
total of 2 (models) x 317 (participants) x 20 (simulation seeds) = 12,680 simulations. Sub-
sequently, we re-inverted each of the proposed models on the synthetic data to determine,
whether we could recover the true model under which synthetic data was generated. To as-
sess model recovery, we then performed random-effects Bayesian model selection186,225 on
each of the datasets with a sample size ofN = 317 as in the empirical data and averaged the
resulting protected exceedance probabilities across the 20 simulation seeds to obtain a model
confusion matrix.

Parameter recovery

To determine whether model parameter estimates were reliable, we also performed a param-
eter recovery analysis. Using the simulation and model inversion results from the model re-
covery analysis (see preceding section), we assessed how accurately the parameters generating
the data (’simulated’) corresponded to the parameters that were estimated when re-inverting
the same model on that data (’recovered’). We report Pearson correlations and their associ-
ated p-values to quantify our ability to recover the model parameters. Since, the significance
of these correlations is influenced by sample size, we also computed Cohen’s f 2, where an
f 2 ≥ 0.35 can be considered a large effect size35 and was interpreted as evidence for good
parameter recovery.

2.2.4 Statistical analyses

We tested the three research questions with linear mixed effects models with individual prob-
ability estimates as dependent variable. Eachmodel was comprised of a random intercept per
participant, a fixed effect of trial, a fixed group effect for either diagnosis (RQ1), presence of

Belief instability Learning rate Prior uncertainty Decision noise

Hypothesis I ω2(−2, 16) σ(0)2 (log(0.8), 0.5) ν(log(128), 1)
Hypothesis II κ1(log(1), 1) ω2(−2, 16) σ(0)2 (log(0.8), 0.5) ν(log(128), 1)

Table 2.1: Priors on free model parameters. Prior means and their respective variances are denoted in brackets: (Mean,
Variance). Adapted from Hauke et al. (2022), Schizophrenia Bulletin. 105
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JTC (RQ2), or delusions (RQ3) as well as a trial-by-group interaction as predictors of inter-
est and education, medication, sex, and study as covariates of no interest. JTC was defined
as reaching a decision after ≤ 2 fish as done previously.29 Low and high current delusions
were defined based on a median split of the Psychotic Symptom Rating Scales (PSYRATS):
Delusion subscale.103 Four patients were excluded from the delusion analysis (RQ3), due to
incomplete PSYRATSdata. We also performed a supplementary analysis forRQ3 to examine
the effect of absence or presence of current clinically-relevant delusions, which was defined as
PANSS126 itemP1: Delusions≥ 3. This analyseswasmotivatedby comparingpatients that ei-
ther experiencedor didnot experienceany clinically relevant delusions at baseline, as ratings of
1 indicate the absence of symptoms, and ratings of 2 indicate extremes in the healthy popula-
tionor only suspected symptoms,while ratings of 3 or higher are indicative of presence of clin-
ically relevant delusions (regardless of the delusional theme). In all analyses,missing education
values (n = 3) were imputed using group-wise median imputation. As the distributions of
probabilistic judgements across participants were heavily skewed, we also conducted pairwise
comparisons of trial-by-trial behaviour across groups with non-parametric Kruskal-Wallis
tests. Similarly, model parameters were compared using Kruskal-Wallis tests. We corrected for
multiple testing using Bonferroni correction for the number of trials (n = 10) or the number
of parameters (n = 4) in the behavioural and parameter analyses, respectively. Please, note,
that Bonferroni-correction is likely to be too conservative as responses were correlated across
trials. Statistical analyseswere conducted inR (version: 4.04; https://www.r-project.org/)
using R-Studio (version: 1.4.1106; https://www.rstudio.com/).

2.2.5 IQ-matched analysis

We repeated the behavioural and parameter analyses on an IQ-matched subsample of patients
to assesswhether group differences could be explained by differences in IQ. Premorbid IQwas
assessed in N = 229 of the participants using either the ’Mehrfachwahlwortschatztest’142
(used in165) or the ’Wortschatztest’202 (used in9,10). A non-parametric Kruskal-Wallis tests
indicated that patients with psychotic disorders (mean: 104.19, median: 104) showed signif-
icantly lower premorbid IQ than HC (mean: 109.12, median: 107; η2 = 0.024, puncorr =
0.005). To obtain IQ-matched subsamples, we excluded patients whose IQ fell below the
range observed in HC (i.e., ≤ 85). Additionally, we only included a random subset of pa-
tients with IQs ranging from 90 to 95 to remove skewness of the IQ distribution in patients,
that was not observed in HC resulting in a subsample of N = 202. After this matching,
patients with psychotic disorders (n = 146, mean: 107.58, median: 107) and HC (n = 56,
mean: 109.12, median: 107) did no longer significantly differ with respect to IQ (η2 = 0.005,
puncorr = 0.321). Similarly, IQ between individuals with (mean: 103.28, median: 101)
and without JTC (mean: 106.98, median: 107) significantly differed before the matching
(η2 = 0.017, puncorr = 0.022), but not afterwards (n = 82 with JTC: mean: 107.13, median:
107; n = 120 without JTC: mean: 108.60, median: 107; η2 = 0.003, puncorr = 0.301). Since
the delusion subgroups included only patients and did not differ in terms of IQ (n = 83
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patients with low current delusions: mean: 104.81, median: 104; n = 96 patients with high
current delusions: mean: 103.48, median: 101; η2 = 0.001, puncorr = 0.628), we only report
IQ-matched analysis for RQ1 and RQ2.

2.2.6 Treatment response prediction

We compared three prognostic models that were trained on three different feature sets. The
first model was trained to predict treatment response from the model-derived computational
fingerprint of the participants, i.e., the four model parameters of the winning model (κ1, σ(0)2 ,
ω, and ν). The second (behavioural) model was trained on participants raw behavioural data
(i.e., probability estimates and decisions) as well as a binary variable indicating presence of
JTC (reaching a decision after seeing ≤ 2 fish). The third (clinical) model was trained on
clinical baseline data (all individual PANSS items measured at baseline). We trained ran-
dom forest classifiers27 to predict treatment response from the three feature sets. Our pre-
processing pipeline consisted of (1) imputing missing values using median imputation, (2)
covariate correction for sex, medication and education (see for example136). Preprocessing
steps were embedded in a stratified, repeated k-fold cross-validation with 10 folds and 10
permutations to prevent information leakage into the test data. We used default parame-
ter settings for the random forest algorithm without further parameter optimization (i.e.,
500 trees, for more details, please, consult the package documentation). This classification
pipeline was implemented in R (version: 4.04; https://www.r-project.org/) using the mlr
package (version: 2.19.0; https://mlr.mlr-org.com/) and the randomForest package (ver-
sion: 4.6-14; https://www.rdocumentation.org/packages/randomForest/versions/4.6-
14/topics/randomForest). To assess model performances, we computed balanced accuracy
(BAC), area under the curve (AUC), sensitivity (SE), specificity (SP), positive predictive value
(PPV), and negative predictive value (NPV), where responders were defined as the positive
class. To test whether classifiers’ performances were significantly greater than chance, per-
mutation tests with 1000 label permutations were employed. Lastly, we report feature im-
portance using the decrease in accuracy averaged across cross-validation folds. Higher values
indicate greater performance degradation of the algorithmwhen removing a given feature and
thus imply that this feature is more important.

2.3 Results

Clinical and demographic characteristics are reported in Table 2.2. Since, there was no
conclusive evidence for increased JTC in patients with psychotic disorders (χ2 = 3.435,
puncorr = 0.064), we analysed HC and patients together in all subsequent analyses investi-
gating JTC.
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2.3.1 Behavioural results

RQ1: Group differences betweenHCand patientswith psychotic disorders

We found a significant group-by-trial interactionwhen comparingHC and patients with psy-
chotic disorders (F = 4.420, p < 0.001; Figure 2.3), which held in IQ-matched subsamples
(Figure 2.6A). This effect was driven by a stronger decrease in probability for the more likely
lake A in patients with psychotic disorders in trial 9 with one of the two rare (i.e., disconfir-
matory) fish (η2 = 0.028, p = 0.031). We also observed trend-effects in trials 4 and 8, which
did not survive Bonferroni correction, however (η2 = 0.015, puncorr = 0.028, p = 0.281 and
η2 = 0.020, puncorr = 0.012, p = 0.123, respectively). None of the covariates was significant.

RQ2: Group differences between individuals with andwithout JTC

Comparing individuals with and without JTC, we found a significant JTC-by-trial interac-
tion (F = 11.598, p < 0.001; Figure 2.4), which held when comparing IQ-matched sub-
samples (Figure 2.6B). This effect was driven by increased probability estimates for lake A in
individuals with JTC within the first three trials of the fish sequence (trial 1: η2 = 0.043,
p = 0.002, trial 2: η2 = 0.077, p < 0.001, and trial 3: η2 = 0.056, p < 0.001). Further-
more, we observed a significant main effect of medication as medicated individuals estimated
lower probabilities overall (F = 7.138, p = 0.008), but none of the other covariates.

Figure 2.3: Behavioural effects versusmodel predictions for RQ1: Psychosis. Comparing behaviour in the fish‐task between
healthy controls (HC) and patients with psychotic disorder (PSY). F‐ and p‐values indicate results of ANCOVAs corrected
for education, medication, sex, and study. Y‐axis: Participants’ estimates of the probability that the fisherman was fishing
from lake A (see question (1) in Figure 2.1). Left panels: Behavioural effects. Right panels: Model prediction of the winning
model. RQ: Research question. Horizontal lines and squares in boxplots represent median and mean, respectively. Boxes
span the 25th to 75th quartiles and whiskers extend from hinges to the largest and smallest value that lies within 1.5×
interquartile range. Asterisks indicate significance of non‐parametric Kruskal‐Wallis tests at: * p < 0.05, using Bonferroni
correction, or at + p < 0.05 uncorrected. Note, that Bonferroni correction is likely to be too conservative as responses
were correlated across trials. Adapted from Hauke et al. (2022), Schizophrenia Bulletin. 105
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RQ3: Group differences between patients with low and high current delu-
sions

There was no evidence for differences in probabilistic reasoning between patients with low or
high current delusions (delusion-by-trial interaction: F = 0.503, p = 0.873; Figure 2.5A).
We observed a trend-effect of delusions in trial 10 that did not survive Bonferroni correction
(η2 = 0.017, puncorr = 0.019, p = 0.194). Among the covariates, we only found a signif-
icant main effect of education suggesting that longer education was associated with higher
probability estimates overall (F = 4.016, p = 0.046).

This result remained unchanged when investigating the alternative definition of delusions
(i.e., PANSS P1: Delusions ≥ 3). There was no significant difference between patients with
and without any current delusions (delusion-by-trial interaction: F = 0.712, p = 0.698;
Figure 2.5B). However, there was a significant main effect of education as before (F = 4.463,
p = 0.036) and a trend-level effect of study (F = 2.429, p = 0.090).

Figure 2.4: Behavioural effects versus model predictions for RQ2: JTC. Comparing behaviour between individuals without
(JTC‐) and with (JTC+) jumping‐to‐conclusion bias (decision after≤ 2 fish). F‐ and p‐values indicate results of ANCOVAs
corrected for education, medication, sex, and study. Y‐axis: Participants’ estimates of the probability that the fishermanwas
fishing from lake A (see question (1) in Figure 2.1). Left panels: Behavioural effects. Right panels: Model prediction of the
winning model. RQ: Research question. Horizontal lines and squares in boxplots represent median and mean, respectively.
Boxes span the 25th to 75th quartiles and whiskers extend from hinges to the largest and smallest value that lies within
1.5× interquartile range. Asterisks indicate significance of non‐parametric Kruskal‐Wallis tests at: *** p < 0.001, **
p < 0.01, and * p < 0.05, using Bonferroni correction. Note, that Bonferroni correction is likely to be too conservative
as responses were correlated across trials. Adapted from Hauke et al. (2022), Schizophrenia Bulletin. 105

2.3.2 Modelling results

Bayesian model selection and model recovery

Model selection strongly suggested thatHypothesis II: Bayesian belief updating subject to be-
lief instability was the most likely mechanism explaining behaviour across all groups (φ =
100.00%, f = 98.94%; Figure 2.7). The model recovery analysis indicated that the two hy-
potheses were distinguishable.
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Figure 2.5: Behavioural effects versus model predictions for RQ3: Delusions. A Comparing behaviour between patients
with low (D‐) and high (D+) current delusions (split half based onmedian of Psychotic SymptomRating Scales103 (PSYRATS):
Delusion subscale). B Behavioural effects based on an alternative definition of delusions: Comparing behaviour between
patients without (D‐) and with (D+) any current clinically relevant delusions, i.e., Positive and Negative Syndrome Scale126

(PANSS) item P1: Delusions≥ 3. F‐ and p‐values indicate results of ANCOVAs corrected for education, medication, sex,
and study. Y‐axis: Participants’ estimates of the probability that the fisherman was fishing from lake A (see question (1) in
Figure 2.1). Left panels: Behavioural effects. Right panels: Model prediction of the winning model. RQ: Research question.
Horizontal lines and squares in boxplots represent median and mean, respectively. Boxes span the 25th to 75th quartiles
and whiskers extend from hinges to the largest and smallest value that lies within 1.5× interquartile range. Asterisks
indicate significance of non‐parametric Kruskal‐Wallis tests at: + p < 0.05 uncorrected. Note, that Bonferroni correction
is likely to be too conservative as responses were correlated across trials. Adapted from Hauke et al. (2022), Schizophrenia
Bulletin. 105

Posterior predictive checks and parameter recovery

To confirm that thewinningmodel captured the behavioural effects of interest, we conducted
posterior predictive checks. Repeating the behavioural analysis on the winning model’s pre-
dictions confirmed that this model recapitulated the interaction effects observed in patients
with psychotic disorders (RQ1) and individuals with JTC (RQ2), as well as the absence of a
delusion effect (RQ3) in accordance with the behavioural analysis (see Figures 2.3, 2.4, and
2.5). Our parameter recovery analysis indicated good recovery for all parameters in all simula-
tions (i.e., Cohen’s f 2 > 0.35; Figure 2.7D). Next, we tested for group differences in model
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parameters.

2.3.3 Parameter group effects

RQ1: Parameter effects betweenHC and patientswith psychotic disorders

First, we found that patientswere characterised by significantly larger belief instability κ1 com-
pared to HC (η2 = 0.033, p = 0.005; Figure 2.8A and Table 2.3), which was reproduced
in IQ-matched subsamples (Figure 2.9A). Increased belief instability κ1 likely explained the
increased updating in response to disconfirmatory evidence that was observed behaviourally
(Figure 2.2B). None of the other parameters showed a significant effect.

RQ2: Parameter effects between individuals with andwithout JTC

Second, individuals with JTC displayed significantly larger belief instability κ1 (η2 = 0.038,
p = 0.002; Figure 2.8B and Table 2.3), but also increased prior uncertainty σ(0)2 (η2 =
0.0208, p < 0.050 (p = 0.0499); Figure 2.8C), which likely accounted for the initial in-
crease in belief updating found in individuals with JTC (Figure 2.2B). Both effects remained
significant, when comparing IQ-matched subsamples (Figure 2.9B andC).None of the other
parameters significantly differed across JTC groups.

RQ3: Parameter effects between patients with low and high current delu-
sions

Lastly, we found no significant effect of current delusions on any model parameters (Table
2.3). Based on the alternative definition of delusions, we identified a trend-effect of increased
decision noise ν in patients with any current clinically-relevant delusions (i.e., PANSS P1:
Delusions≥ 3; η2 = 0.0126, puncorr = 0.046, p = 0.186; Figure 2.8D). To assess the relation-
ship with other symptoms, we computed Kendall rank correlations between all four model
parameters and the five PANSS factors,244 or the PSYRATS103 delusion and hallucination
subscales. We found only a trend-effect suggesting that increased decision noise ν was associ-
ated with higher PSYRATS hallucination scores (τ = −0.114, puncorr = 0.016, p = 0.130).

Research Question 1 Research Question 3 Research Question 3
Psychosis Jumping-to-conclusions Delusions

Parameter η2 puncorr pfdr pbf η2 puncorr pfdr pbf η2 puncorr pfdr pbf
belief instability κ1 0.033 0.001 0.005 0.005 0.038 <0.001 0.002 0.002 <0.001 0.816 0.816 1.000
evolution rate ω2 <0.001 0.882 0.882 1.000 0.006 0.174 0.232 0.697 0.007 0.128 0.256 0.512

prior uncertainty σ(0)2 0.010 0.073 0.145 0.291 0.020 0.012 0.025 <0.050a 0.009 0.097 0.256 0.388
decision noise ν 0.005 0.189 0.252 0.755 0.004 0.284 0.284 1.000 0.005 0.216 0.288 0.863

Table 2.3: Overview of parameter effects. Displayed are results of Krushkal‐Wallis tests to test for group differences in
model parameters. We report p‐values adjusted for multiple comparisons across the four model parameters using FDR
correction (pfdr), Bonferroni correction (pbf), as well as uncorrected p‐values (puncorr). a pbf = 0.0499.
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Figure 2.6: Behavioural effects versus model predictions for IQ‐matched subsamples. We repeated the behavioural anal‐
ysis with an IQ‐matched subsample of patients. A Behavioural effects for RQ1: Psychosis. Comparing behaviour in the
fish‐task between healthy controls (HC) and patients with psychotic disorder (PSY). B Behavioural effects for RQ2: JTC.
Comparing behaviour between individuals without (JTC‐) and with (JTC+) jumping‐to‐conclusion bias (decision after seeing
≤ 2 fish). F‐ and p‐values indicate results of ANCOVAs corrected for education, medication, gender, and study. Y‐axis:
Participants’ estimates of the probability that the fisherman was fishing from lake A (see question (1) in Figure 2.1). Left
panels: Behavioural effects. Right panels: Model prediction of the winning model. RQ: Research question. Horizontal lines
and squares in boxplots represent median and mean, respectively. Boxes span the 25th to 75th quartiles and whiskers ex‐
tend from hinges to the largest and smallest value that lies within 1.5× interquartile range. Asterisks indicate significance
of non‐parametric Kruskal‐Wallis tests at: *** p < 0.001, and ** p < 0.01, using Bonferroni correction, or at + p < 0.05
uncorrected. Note, that Bonferroni correction is likely to be too conservative as responses were correlated across trials.
Adapted from Hauke et al. (2022), Schizophrenia Bulletin. 105

2.3.4 Treatment response prediction

Increased belief instability κ1 was significantly associated with better treatment response at
the group level (η2 = 0.074, p = 0.021, Figure 2.8E). Subsequently, we also investigated
whether treatment response could be predicted at the individual level.

The classifier trained on model parameters predicted treatment response with 64% BAC,
which was significantly greater than chance, indicated by a permutation test (p = 0.001,
Figure 2.8F;AUC:0.67, SE: 0.53, SP: 0.76, PPV: 0.60,NPV: 0.71). Thismodel’s performance
was mainly driven by belief instability κ1, followed by decision noise ν (Figure 2.8G).
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To evaluate whether themodelling step was necessary for this performance, we also trained
a classifier directly on the raw behavioural data. This model could not predict treatment re-
sponse above chance (BAC: 0.55, p = 0.127, Figure 2.8F; AUC: 0.63, SE: 0.38, SP: 0.71,
PPV: 0.49, NPV: 0.63).

Lastly, to investigate whether treatment response could be equally well or even better pre-
dicted using clinicalmeasures that aremore readily available in clinical practice, we trained the
third model on clinical baseline information. Despite differences in symptom expression at
baseline, this model did not predict treatment response above chance (BAC: 0.55, p = 0.139,
Figure 2.8F; AUC: 0.58, SE: 0.41, SP: 0.68, PPV: 0.47, NPV: 0.63) suggesting that themodel-
based analysis indeed uncovered additional clinically-relevant information.

2.4 Discussion

We employed a computational modelling approach to understand belief updating dynam-
ics during the fish task and their relationship with psychotic disorder diagnosis (RQ1),
JTC (RQ2), and current delusions (RQ3). Comparing two competing mechanisms, we
found that belief updating subject to belief instability best explained participants’ behaviour
in our study. This model was well-recoverable and could reproduce differences in probabilis-
tic reasoning associated with psychotic disorders and a propensity to jump to conclusions.
Analysing parameters of the winning model, we obtained two major results: First, we found
that probabilistic reasoning in patients with psychotic disorders was explained by the model
through increased belief instability. Second, our results suggest that belief instability differen-
tiated patients who responded from those who did not respond to a Metacognitive Training
intervention, both at the group level and the individual level.

2.4.1 Learning mechanisms underlying psychotic disorders and jumping-
to-conclusions

Despite analysing a different task in a more heterogeneous patient population, we replicated
previous findings byAdams et al.,1which suggested that abnormal belief updating in patients
with schizophrenia performing the beads task may be explained by increased belief instabil-
ity κ1. Our results also offer a possible explanation for JTC as a general cognitive trait across
HC and patients as we found an increase in prior uncertainty σ(0)2 associated with JTC that
explained this effect. Importantly, both associations held in a subsample, which was matched
for IQ (Figure 2.9) and were not accounted for by differences in education, or medication.
Additionally, we found a significant increase in belief instability in participants with JTC,
which remains challenging to interpret. Based on simulations (Figure 2.2B), the most likely
explanation is that this increase in belief instability explained differences in belief updating
whenparticipantswere facedwith disconfirmatory evidence (fish 9) that the behavioural anal-
ysis did not identify due to a lack of power. However, we cannot rule out that κ1 also partially
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explained increased initial updating for those participants, where the parameter assumed very
low values.

Figure 2.7: Bayesian model selection and recovery analyses. Results of random‐effects Bayesian model selection.225,186 A:
Protected exceedance probabilities. The dashed line indicates 95% exceedance probability. B: Expected model frequencies
as a measure of effect size. The dashed line indicates chancemodel frequencies (i.e., 1/#models = 50%with twomodels).
CModel recovery analysis. The grey scale indicates protected exceedance probability averaged across all random seeds. D
Parameter recovery analysis for the winning model. This figure displays the recovery results for one of the random seeds,
but all other seeds were comparable. In all simulations recovery was good for all parameters (i.e., Cohen’s f 2 ≥ 0.35).
Adapted from Hauke et al. (2022), Schizophrenia Bulletin. 105

2.4.2 Related modellingwork

Althoughwe replicatedAdams and colleagues’ findings1 of a relative increase inbelief instabil-
ity in patients with psychotic disorders, we note that absolute belief instability in our sample
was smaller. Furthermore, unlike others,1,170 we only found trend-effects linking increased
decision noise with symptom severity, although feature importance measures indicated that
decision noise was relevant for treatment response prediction. This divergence may be ex-
plained by differences between clinical populations (schizophrenia vs psychotic disorders) or
different tasks that were used (beads vs fish task), and possibly ensuing differences in task
comprehension.

In contrast to other results,61,156,187 Baker et al.14 found that delusion severity corre-
lated with more conservative behaviour, primarily, in a condition with high uncertainty
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(60:40 beads ratio), which their model explained through increased reliance on priors. In-
tuitively, this agrees with belief rigidity — by definition a hallmark of delusions. The au-
thors used a performance-contingent monetised beads task with endowment. The impact of
performance-contingent versus flat payments (as in our case) is not entirely clear. Some au-
thors argued that the payment modemay affect cognitive strategies employed, for example by
settingnewgoals or spending cognitive resources on strategydevelopment.23,144 Furthermore,
it is possible that endowments led to more loss-averse (conservative) instead of risk-seeking
(liberal) behaviour. Due to differences in environmental uncertainty and payment structure,
a direct comparison is difficult. However, our model appears to capture a mechanism under-
lying psychotic disorders in general and not specifically related to current delusions.

Other computational approaches were employed to characterise belief updating in
schizophrenia.116,117 Using a task related to ours, but without any sequential updating, Jardri
et al.117 suggested that schizophrenia is likely characterised by an overcounting of sensory in-
formation. Increased prior uncertainty has a comparable effect in early trials, because it in-
creases the magnitude of belief updates, leading to stronger weighing of sensory information
early on (Figure 2.2B). However, we found that belief instability, rather than prior uncer-
tainty, differentiated patients with psychotic disorders from HC. Increasing belief instabil-
ity primarily results in exaggerated belief updates, when faced with disconfirmatory evidence
specifically, not an overcounting of any evidence.

2.4.3 Can belief instability be leveraged to predict treatment response?

At the group level, we found that belief instability significantly differed in patients who re-
sponded to an intervention targeting cognitive biases. Intriguingly, greater belief instability
(i.e., more extreme pathology) related to better treatment response. One speculative expla-
nation for this is that increased belief instability may indicate a vulnerable cognitive system,
which places individuals at higher risk of being susceptible to delusional ideas,4 but alsomore
amenable to a therapy designed to make cognition more robust.

Subsequent analyses suggested that model parameters also predicted individual treatment
response with 64% accuracy. Bearing in mind that treatment response prediction constitutes
one of the most challenging problems in psychiatry and that MCT was merely an add-on
treatment in patients already treatedwith antipsychotics, we believe this to be an encouraging
result. Given previous evidence,140 it is interesting to note that neither JTC nor clinical base-
line measures predicted individual treatment response above chance. This finding may sug-
gest that the model-derived computational fingerprint contains additional clinically-relevant
information about inferencemechanisms. This prognosticmodelmay be a valuable screening
instrument for clinical trials, or help reduce the therapy load on patients with motivational
deficits. However, the accuracy based onmodel parameters alone is likely not sufficient to jus-
tify clinical implementation. Nonetheless, this model can provide a valuable component of a
sequential prognostic test battery, together with other clinical or neurophysiological predic-
tors, as proposed previously for transition-to-psychosis34 or negative symptomprediction.106
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Figure 2.8: Parameter group effects and treatment response prediction. A Belief instability κ1 across healthy controls (HC)
and patients with psychotic disorders (PSY). B Belief instability κ1 and C prior uncertainty σ

(0)
2 across individuals without

(JTC‐) andwith (JTC+) jumping‐to‐conclusions bias (decision after≤ 2 fish). DDecision noise ν across patients without (D‐)
and with (D+) any current delusions (Positive and Negative Syndrome Scale126 (PANSS) item P1: Delusions≥ 3). E Belief
instability κ1 across patients, who showed either no response (R‐) or a response (R+) to Metacognitive Training defined
as 20% decrease compared to baseline in the PANSS126 positive factor according to factor.244 RQ: Research question.
Horizontal lines and squares in boxplots represent median and mean, respectively. Boxes span the 25th to 75th quartiles
and whiskers extend from hinges to the largest and smallest value that lies within 1.5× interquartile range. Asterisks
indicate significance of non‐parametric Kruskal‐Wallis tests at: ** p < 0.01, and * p < 0.05, using Bonferroni correction,
or at + p < 0.05 uncorrected. F Classification performance of random forest trained on either the winning models’
parameters (Model), raw behavioural data (probability estimates and choices) and a jumping‐to‐conclusion bias indicator
(Behaviour), or on PANSS baseline items (Clinical) to predict treatment response. Asterisks indicate significant permutation
test with 1000 label permutations at: ** p < 0.01. n.s.: not significant. G Feature importance for the random forest trained
on winning models’ parameters. Bar size corresponds to mean and error bars to standard deviation across cross‐validation
folds. Adapted from Hauke et al. (2022), Schizophrenia Bulletin. 105

To summarise, two notable benefits of this approach are (1) the interpretability of the pre-
dictors and (2) the simplicity of the assessment, since the model relies on very little data per
participant. Task and model fitting can be performed fast rendering it attractive for clinical
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applications, but the results still need to be replicated in different research sites.
A striking aspect of our results is that despite evident relationships between psychotic dis-

orders and both behavioural and computational measures – and the potential for computa-
tional parameters to predict treatment outcome – we did not find any relationship between
these measures and current delusions, even though these tasks were designed to assess reason-
ing biases thought to contribute to delusions themselves. Our findings add to a growing lit-
erature including meta-analyses,13 large case-control,239 and population-based studies44 that
find weak or absent correlations between delusion and beads task measures.

Figure 2.9: Parameter effects for IQ‐matched subsamples. We repeated the parameter analysis with an IQ‐matched sub‐
sample of patients. A Belief instability κ1 across healthy controls (HC) and patients with psychotic disorders (PSY). B Belief
instability κ1 and C prior uncertainty σ

(0)
2 across individuals without (JTC‐) and with (JTC+) jumping‐to‐conclusions bias

(decision after seeing ≤ 2 fish). RQ: Research question. Horizontal lines and squares in boxplots represent median and
mean, respectively. Boxes span the 25th to 75th quartiles and whiskers extend from hinges to the largest and smallest
value that lies within 1.5× interquartile range. Asterisks indicate significance of non‐parametric Kruskal‐Wallis tests at: *
p < 0.05, using Bonferroni correction.

2.4.4 Limitations

Certain limitations merit attention: First, we only modelled ten trials per subject. While this
increases clinical applicability, obtaining precise parameter estimates from such sparse data is
challenging. Surprisingly, we could still recover parameters and were able to pinpoint com-
putational mechanisms. Second, although we carefully controlled several confounders (ed-
ucation, medication, premorbid IQ), other confounders cannot be ruled out (e.g., socioeco-
nomic status). More fine-grainedmeasures of socioeconomic status should be included in fu-
ture studies.14 Thirdly, participants were not incentivised to respond quickly. Fast decisions
could reflect patients’ desire to end the experiment soon. However, participantswere required
to complete all trials rendering this unlikely. Furthermore, it is unclear, howmonetisation af-
fects the cognitive processes involved. Fourth, even though we defined treatment response
as change scores and despite our finding that baseline symptoms did not predict treatment
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response above chance, we cannot exclude influence of regression-to-the-mean effects on the
treatment response prediction analysis presently. Lastly, without a clinical control group, we
could not assess the specificity of increased belief instability, which is an important avenue for
future research.

2.4.5 Future directions

Future studies are required to examine the physiological basis of belief instability. A candi-
date mechanism is NMDA receptor hypofunction122,162 as a recent pharmacological study
suggests that NMDA receptor functioning is linked to probabilistic reasoning during the
beads task.228 If this relationship can be confirmed, treatment response prediction to phar-
macological interventions targeting glutamate metabolism (e.g., d-serine or glycine), may be
a promising avenue of research. Furthermore, future research is required to assess, whether
model parameters allow stratifying patients for clinical trials using MCT or similar interven-
tions. Lastly, this model-based approach can also inform the design of new interventions that
target belief instability specifically to assess whether such interventions can improve patients’
well-being.

2.4.6 Conclusions

In conclusion, our results suggest that increased belief instability may be a key computational
mechanism underlying probabilistic reasoning in patients with psychotic disorders. Further-
more, we provide a proof-of-concept that this computational parameter can potentially be
leveraged to predict clinically-relevant outcomes.
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Formy part I knownothingwith any certainty,
but the sight of the stars makes me dream.

Vincent van Gogh (1888)245

3
Modelling Sensory Learning

The previous chapters investigated the computational mechanisms underlying different
symptoms of psychotic disorders, such as paranoid delusions (Chapter 1) and reasoning bi-
ases (Chapter 2). Moreover, Chapter 2 provided a test of the clinical utility of casting different
symptoms of psychosis as instances of hierarchical Bayesian inference. This last experimental
chapter will examine whether this approach is not only conceptually useful, but also biologi-
cally plausible.

3.1 Introduction

Oftenwithout our awareness, our brain continuously learns about the environment that sur-
rounds us. The MMN is a biological index of such implicit learning. It refers to a brain
response that occurs when a sensory stimulus violates a statistical regularity in the environ-
ment,174 for example when a sequence of low tones is unexpectedly interrupted by a high
tone (see Figure 3.1A). The MMN can be measured with EEG – a cost efficient diagnostic
tool with high temporal resolution that is readily available in clinical practice. Formally, the
MMN is defined as the difference waveform obtained when subtracting the electrophysio-
logical response to a predictable stimulus (standard) from the response to an unpredictable
stimulus (deviant, see Figure 3.1B).

Consistent reductions inMMN amplitude have been replicated in numerous studies with
patients suffering from psychosis, rendering it one of the most reliable biomarkers of psy-
chosis.67 A number of pharmacological studies investigating the neuronal basis of theMMN
were able to reproduce the effects found in patients with NMDA receptor antagonists (e.g.,
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phencyclidine or ketamine), in different animals such asmonkeys,120 and rodents,65 as well as
in humans (see238 for an overview). Together, these results support the notion that psychosis
reflects anNMDAreceptor dysfunction leading to reductions in theMMNand characteristic
symptoms.40,39,87,221,227,162,145

The MMN has gained increasing interest in recent years as an early warning sign for psy-
chosis. MMNreductions are already present inCHR individuals, likely reflecting vulnerabil-
ity for progressionof the disease as opposed to genetic risk.67The abnormalities increasewhen
individuals progress towards a psychotic disorder, but saturate during chronification of the
disease.67 Importantly, MMN amplitude reductions were found to be more pronounced in
those high risk individuals that later converted to a psychotic disorder.67 Other studies high-
lighted the MMN’s role in early stages of psychosis further, showing that it was predictive of
the transition froma clinical high risk state to a first episode of psychosis.22,177Despite its great
clinical potential, themechanisms that account for theseMMNalterations in the clinical high
risk population remain poorly understood.

One of the biggest challenges in early detection and intervention research lies in determin-
ing the most effective medication to delay or even prevent a psychotic episode in a given pa-
tient.49 This difficulty has been attributed to a lack of mechanistic models of pathophysio-
logical processes, especially in the CHR population.49 Here, we adopt a computational ap-
proach253 to understand how information processing is altered in early psychosis and develop
a mechanistic model of MMN reductions in the clinical high risk state.

Figure 3.1: Mismatch negativity. A Example stimulus sequence to elicit auditory mismatch negativity (MMN). Violation of
statistical regularity (established through repetition of low tones) elicitsMMN.BMMNwaveform is obtained by subtracting
response to the predictable tone (standard) from the response to the unpredicted tone (deviant). C Research question.
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3.2 Methods

To understand the computational mechanism underlying theMMN,wemodelled EEG data
fromN = 101 participants, previously published by Perez et al.177 For convenience, we will
briefly recapitulate the most important information about the study.

3.2.1 Participants

A total of 19 early-illness schizophrenia patients (SCZ;≤ 5 years since initial hospitalisation
or initiationof antipsychoticmedication), 38CHR, and44HCwere included in the study.177
Out of the 38CHR, 15CHR later converted to psychosis. In a second analysis, we compared
these 15 individuals to 16CHRthat didnot transition to a psychotic disorder during a follow-
up period of at least 12 months (n = 7 CHR dropped out of the study before the 12 month
follow-up and were excluded from the second analysis). SCZ were referred by community
physicians. CHRwere recruited from the Yale Psychosis Prodrome Research Clinic and HC
through advertisements and word-of-mouth. The study was approved by the Institutional
ReviewBoardofYaleUniversity and all adult participants provided informedwritten consent.
For minor participants, parents provided informed written consent and minor participants
written assent.

3.2.2 In- and exclusion criteria

Schizophrenia diagnoses were assessed with the Structured Clinical Interview for DSM-IV73

and CHR criteria based on the SIPS.157,158 Participants of all groups were excluded from the
study, if they fulfilled the following criteria: substance dependence or abuse within the past
year, a history of significant medical or neurological illness or a head injury resulting in loss
of consciousness, and abnormal audiometric testing (see177). Additionally, HC, who met
criteria for any past or current DSM-IV Axis I disorder or had a first-degree relative with a
psychotic disorder were excluded.

3.2.3 Task

Participants performed an unrelated primary task (silently reading a book) while undergoing
three different auditoryMMNparadigms presented in fixed order. Each paradigm comprised
two runs with 875 tones each (1750 tones in total) including 90% standard tones (50 ms,
633 Hz) and either (1) 10% duration (100 ms), (2) 10% frequency (1000 Hz), or (3) 10%
duration + frequency double deviants (100 ms and 1000 Hz). All tones were presented at
78 dB in fixed pseudorandomized order with 5 ms rise/fall times and 510 ms stimulus onset
asynchrony through Etymotic ER3-A insert earphones (Etymotic Research, Inc., Elk Grove
Village, Illinois).
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3.2.4 EEG data processing

EEG was recorded using a 20-channel electrode cap with a standard 10-20 montage (Phys-
iometrix, Inc., North Billerica, Massachusetts) and additional mastoid and nose electrodes
with linked-ear reference and an FPz ground. Signals were digitised at 1000 Hz with a
Neuroscan Synamps amplifier (Neuroscan, Herndon, Virginia). Electro-oculograms were
recorded from electrodes located above and below the left eye and at the outer canthi of both
eyes.
EEG preprocessing consisted of downsampling (256 Hz), bandpass filtering between 0.5

and 30 Hz using a Butterworth filter, epoching into 500 ms segments around tone onsets (-
100 to 400 ms), baseline correction (-100 to 0 ms), and eyeblink correction using principal
component analysis with 1 component. Eyeblink components of all participants were manu-
ally inspected and eyeblink detection thresholds adjusted if necessary, followed by rejection of
remaining artefactual trials (using a ±100 μV amplitude threshold). Preprocessing and statis-
tical analyses were implemented in Matlab (version: 2020b; https://mathworks.com) using
the SPM12 toolbox (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/).

3.2.5 Computational modelling

Perceptual model

We modelled implicit sensory learning about the tone sequences using a 3-level binary
HGF.153,154 This model assumes that participants infer on a number of hidden states of the
environment (Figure 3.2, left). In the context of the MMN paradigm, the states that partic-
ipants’ need to infer on based on the experimental input on each trial (standard or deviant
tones) are structured as follows: The lowest level state corresponds to the tone probability.
On each trial k a tone can either be deviant (x(k)1 = 1) or a standard tone (x(k)1 = 0). This state
can be described by a Bernoulli distribution that is linked to the state at the second level x(k)2
through the unit sigmoid transformation:

p(x(k)1 |x(k)2 ) = s(x(k)2 )x
(k)
1 (1− s(x(k)2 ))1−x(k)1 ∼ Bernoulli(x(k)1 ; s(x(k)2 )), (3.1)

with

s(z) =
1

1+ e−z . (3.2)

x(k)2 represents the unbounded tendency towards standard or deviant tones (−∞,+∞) or
the tone tendency and is specified by a normal distribution:

p(x(k)2 |x(k−1)
2 , x(k)3 , κ2, ω2) ∼ N (x(k)2 ; x(k−1)

2 , exp(κ2x(k)3 + ω2)). (3.3)

66

https://mathworks.com
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/


The state at the third level x(k)3 expresses the (log) volatility of the environment over time
and is also specified by a normal distribution:

p(x(k)x |x(k−1)
3 , θ) ∼ N (x(k)3 ; x(k−1)

3 , θ). (3.4)

Participants’ beliefs about these hidden states at level i of the hierarchy and on trial k are
denoted with μ(k)i and updated after each new tone according to the following update equa-
tion:

Δμ(k)i︸ ︷︷ ︸
Belief Update

∝

Precision-Weight︷︸︸︷
π̂(k)
i−1

π(k)
i

δ(k)i−1︸︷︷︸
Prediction Error

, (3.5)

where μ(k)i is the expectation or belief at trial k and level i of the hierarchy, π̂(k)
i−1 is the precision

(inverse of the variance) from the level below (the hat symbol denotes that this precision has
not been updated yet and is associated with the prediction before hearing a new tone), π(k)

i is
the updated precision at the current level, and δ(k)i−1 is a PE expressing the discrepancy between
the expected and the experienced outcome.

In line with a previous study examining the effects of ketamine on sensory learning in a
roving paradigm,253 we focused our analysis on low-level precision-weighted PEs about the
tone tendency (ε2) and high-level precision-weighted PEs about the volatility of the environ-
ment (ε3), where the precision-weighted PE ε(k)i on each trial k and at level i of the hierarchy
is defined as (cf. Eq. 3.5):

ε(k)i =
π̂(k)
i−1

π(k)
i

δ(k)i−1. (3.6)

We implemented this model using the ’tapas_ehgf_binary’ function from the HGF tool-
box (version 6.0), which is made available as open-source code as part of the TAPAS79

software collection (version: 5.1.0; https://github.com/translationalneuromodeling/
tapas/releases/tag/v5.1.0) in Matlab (version: 2020b; https://mathworks.com). We
used this recently developed enhanced version of the HGF to improve sensitivity to learn-
ing about environmental volatility. The main distinction with respect to earlier versions of
theHGF is that the posterior means μ(k)i are updated before the precisions π(k)

i at level i of the
hierarchy. For more details on the update equations, see153,154 for the original HGF and the
’tapas_ehgf_binary’ function for the eHGF.

Since the MMN paradigm is a passive task that does not require participants to make re-
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sponses, we optimised the parameters of the perceptual model assuming an ideal Bayesian
observer that minimises the cumulative Shannon surprise for a given input sequence using
the ’tapas_bayes_optimal_binary’ function. The prior settings (mean, variance) for this opti-
misation were (−3, 4) for the evolution rate ω2 and (2, 4) formeta-volatility θ. The coupling
strength κ2 was fixed to log(1). Posterior parameter estimates are summarised in Table 3.1.

HC CHR SCZ CHR-C CHR-NC
n = 44 n = 38 n = 19 n = 15 n = 16

evolution rate ω2 -0.20 -0.19 -0.36 -0.16 -0.22
mean [SD] [0.78] [0.77] [0.85] [0.82] [0.78]
meta-volatility θ 4.80 4.86 4.80 4.76 4.83
mean [SD] [0.30] [0.29] [0.31] [0.29] [0.31]

Table 3.1: Summary of posterior parameter estimates. HC: Healthy controls. CHR: Individuals at clinical high risk for
psychosis. SCZ: Early illness schizophrenia patients (≤ 5 years since initial hospitalisation or initiation of antipsychotic
medication). CHR‐C: Converters. CHR‐NC: Non‐converters.

3.2.6 Statistical analysis

Demographic and clinical variables were analysed in R (version: 4.04; https://www.r-
project.org/) using R-Studio (version: 1.4.1106; https://www.rstudio.com/). We report
uncorrected p-values for either ANOVAs or χ2-tests where appropriate. Post hoc tests were
Bonferroni-corrected.

First level analysis

We extracted the trajectories of low-level precision-weighted PEs about the tone tendency ε2
and high-level precision-weightedPEs about the volatility of the environment ε3. Trial-by trial
magnitude estimates of the absolute value of low-level precision-weighted PEs |ε2| or high-
level precision-weighted PEs ε3 were included as parametric regressors to explain trial-by-trial
variation in EEG amplitude (see Figure 3.2) as done previously.253 The absolute value of ε2
was chosen, because it expresses Bayesian surprise independent of the physical characteristics
of a tone such as a specific frequency. The general linearmodel at the first level consisted of an
intercept term and either (z-standardised) low or high-level precision-weighted PE trajectories
as predictors andEEGamplitude across sensors andperistimulus time as the response variable.
For each precision-weighted PE, we tested the null hypothesis that the parameter estimatewas
zero at each sensor and time point using an F-test. Statistical analyses were restricted to 100
ms to 400 ms post-stimulus time.
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Second level analysis

First-level statistics were converted into images and smoothed using a Gaussian kernel
(FWHM: 16 mm x 16 mm) to ensure that the assumptions of Gaussian random field the-
ory were met.129,264 Smoothed images were carried to the second level to compare groups us-
ing different factorial designs for each precision-weighted PE to obtain statistical parametric
maps over 2D sensor space and peristimulus time (see Figure 3.2). Each factorial design in-
cluded group as between- and MMN paradigm as within-subject factor, as well as age as a
covariate. To ensure that the equal slope assumption for age was met, we masked out voxels
that showed a significant group-by-age interaction. Multiple testing correction was imple-
mented using Gaussian random field theory129,264 and we report p-values corrected for peak-
(ppFWE) or cluster-level (pcFWE) family-wise error rates using a cluster defining threshold of
p < 0.001.75

Figure 3.2: Computational analysis pipeline. Trial‐by trial trajectories of low‐ and high‐level precision‐weighted were com‐
puted using the Hierarchical Gaussian Filter153,154 (left). In a first level analysis, precision‐weighted prediction errors were
used as parametric regressors to explain EEG amplitude variations at each point in sensor space and peristimulus time
(PST) across trials within each participant (middle). First level statistics were carried to the second level to obtain statistical
parametric maps over 2D sensor space and peristimulus time (right). EEG: Electroencephalography.

3.3 Results

3.3.1 Sociodemographic and clinical characteristics

Demographic and clinical characteristics are displayed in Table 3.2 (see also177 formore infor-
mation).

3.3.2 Group differences in the expression of low-level precision-weighted
prediction errors

We observed a significant group effect on the expression of low-level precision-weighted PEs
about the tone tendency ε2 peaking at 105msover left, central channels (F = 20.795, pcFWE <
0.001) and at 109 ms over frontal channels (F = 15.656, ppFWE < 0.001). Closer inspection
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of the first effect revealed that low-level precision-weighted PEs correlated with more positive
EEG amplitudes in central channels in SCZ compared to CHR (peak: 152 ms, t = 4.923,
pcFWE = 0.001; Figure 3.3) and SCZ vsHC (peak: 105ms, t = 6.427, pcFWE < 0.001; Figure
3.3). The second effect suggested that increased low-level precision-weighted PEs correlated
with more negative EEG amplitudes over frontal channels in SCZ vs HC (peak: 109 ms, t =
5.594, ppFWE < 0.001; Figure 3.3).

HC CHR SCZ Test Post hoc CHR-C CHR-NC Test
n = 44 n = 38 n = 19 statistic contrasts n = 15 n = 16 statistic

Age 19.97 17.40 23.91 F = 10.838 SCZ >HC 17.47 15.88 F = 2.475
mean [SD] [5.50] [3.50] [6.17] p < 0.001 SCZ > CHR [2.18] [3.27] p = 0.127
Sex 17/27 15/23 4/15 χ2 = 2.178 6/9 7/9 χ2 = 0.045
f/m p = 0.337 p = 0.833
Handednessa 37/5/2 31/3/4 16/1/2 χ2 = 1.765 13/1/1 12/1/3 χ2 = 1.009
r/l/a p = 0.779 p = 0.604
High risk typeb
APS 38 15 16
BLIP 1 1 0
GRD 1 1 0
Diagnostic type
Paranoid 11
Disorganised 1
Undifferentiated 2
Catatonic 1
Residual 1
Schizoaffective 3
Antipsychotic type
Atypical only 10 13 5 3
Typical only 0 0 0 0
Atypical and typical 1 3 0 0
None 27 2 10 13
Unknown 0 1 0 0
PANSS Positive 18.71
mean [SD] [5.78]
PANSS Negative 17.14
mean [SD] [6.11]
SOPS Positive 11.03 12.47 9.00 F = 3.739
mean [SD] [4.96] [5.07] [4.91] p = 0.063
SOPS Negative 10.74 14.40 6.69 F = 15.767
mean [SD] [6.35] [5.05] [5.71] p < 0.001

Table 3.2: Demographic and clinical characteristics. All p‐values are uncorrected. HC: Healthy controls. CHR: Individuals at
clinical high risk for psychosis. SCZ: Early illness schizophrenia patients (≤ 5 years since initial hospitalisation or initiation
of antipsychotic medication). CHR‐C: Converters. CHR‐NC: Non‐converters. APS: Attenuated psychotic symptoms. BLIP:
Brief and limited intermittent psychotic symptoms. GRD: Genetic risk and deterioration syndrome. PANSS: Positive and
Negative Syndrome Scale. 126 SOPS: Scale of Prodromal Symptoms.157,158 Bold print highlights p‐values significant at: p <
0.05, uncorrected. aCrovitz‐Zener questionnaire for handedness (right, left, or ambidextrous). bHigh risk types are not
mutually exclusive.
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3.3.3 Groupdifferences inthe expressionofhigh-level precision-weighted
prediction errors

The expression of high-level precision-weighted PEs about the volatility of the environment
ε3 also showed a significant effect of group peaking at 125 ms over right, central channels
(F = 17.277, pcFWE = 0.005). Pairwise comparisons revealed that larger high-level precision-
weighted PEs correlated with more positive EEG amplitudes in HC compared to SCZ over
frontal channels (peak: 125 ms, t = 3.931, ppFWE = 0.027) and during a later time window
over posterior central channels (peak: 344 ms, t = 3.821, pcFWE = 0.018; Figure 3.4), which
was also significantwhen comparingCHR to SCZ (peak: 340ms, t = 3.621, pcFWE = 0.046;
Figure 3.4). Furthermore, we found that stronger precision-weighted PEs correlated with
more negative amplitudes during an early time window in SCZ vs CHR (peak: 129 ms, t =
5.014, pcFWE = 0.008; Figure 3.4) and in SCZ vs HC (peak: 125 ms, t = 5.728, pcFWE =
0.002; Figure 3.4).

3.3.4 Group differences between converters and non-converters

Lastly, when comparing CHR converters to non-converters, we found a significant group
effect on the expression of low-level precision-weighted PEs ε2 peaking at 137 ms over left,
central channels (F = 12.722, pcFWE = 0.040; small-volume corrected for the group effect
on ε2 between HC and SCZ). In CHR individuals that later transitioned to psychosis, larger
low-level precision-weighted PEs were correlated with more positive EEG amplitudes (peak:
137ms, t = 3.567, pcFWE = 0.022; small-volume corrected for the group effect on ε2 between
HC and SCZ; Figure 3.3).

3.4 Discussion

The objective of this study was to understand how information processing is altered in early
psychosis and test a mechanistic model of the MMN, one of the most reliable biomarkers of
psychosis.67 We obtained three major findings: First, we observed altered expression of low-
level precision-weighted PEs about the tone tendency between HC and SCZ and in CHR
compared to SCZ. Second, we also identified changes in the expression of high-level precision-
weightedPEs about the volatility of the environment in SCZcompared tobothHCandCHR
during an early timewindow (at about 100–175msperistimulus time), aswell as during a later
timewindow (∼320–380ms). Third, the expression of low-level precision-weighted PEs was
significantly altered in those CHR that later converted to a psychotic disorder compared to
non-converters suggesting that this computational model appears to capture relevant patho-
physiological mechanisms and may constitute a useful tool to predict transition to psychosis
in individual patients.
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Figure 3.3: Expression of low‐level precision‐weighted prediction errors in early psychosis. A‐D: Displayed are maximum
intensity projections highlighting significant voxels of t‐contrasts testing for pairwise group differences in the expression
of low‐level prediction errors ε2 about the tone tendency in emerging psychosis. Times displayed on y‐axis indicate earliest
and latest significant voxel. p‐values were corrected for peak‐ (ppFWE; black dashed‐line) or cluster‐level (pcFWE) family‐
wise error rates (FWE) using a cluster defining threshold of p < 0.001 (highlighted by coloured area). Note, that p‐values
in D are small‐volume corrected for the group effect on ε2 between HC and SCZ. For illustration, difference waveforms
(10% highest ‐ 10% lowest ε2 trials) are shown across groups for a channel close to the peak effect. HC: Healthy con‐
trols. CHR: Individuals at clinical high risk for psychosis. CHR‐C: Converters. CHR‐NC: Non‐converters. SCZ: Early‐illness
schizophrenia patients (illness duration≤ 5 years).
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3.4.1 Theoretical implications for the predictive coding account of psy-
chosis

Our results are in line with the predictive coding account of psychosis that postulates that
disturbances in hierarchical PE processing may contribute to psychotic symptoms.76,227 Our
finding of alterations in the expression of precision-weighted PEs in central channels in pa-
tients with schizophrenia may suggest that patients experience aberrantly salient PEs125 in re-
sponse to familiar stimuli (standard tones). Furthermore, changed expression of hierarchical
PEs in frontal channels could signal a decrease in prior precision in frontal regions as proposed
in the predictive coding account.227

3.4.2 Possible cortical generators of aberrant PEs in early psychosis

Thenetworkof cortical regions involved in generating theMMNresponse iswell-understood.
It includes bilateral primary auditory cortex (A1), superior temporal gyrus (STG) and inferior
frontal gyrus (IFG).59,99,149,176 It is possible that the different spatiotemporal clusters thatwere
identified in our study may be caused by different cortical generators, for example the corre-
lation between precision-weighted PEs and more positive EEG amplitudes in SCZ expressed
in central channels may originate in A1 or STG, while the second cluster, which was iden-
tified over frontal regions, possibly suggests involvement of IFG. However, due to volume-
conduction effects, we will have to formally test this hypothesis using source modelling in the
future.

Adams and colleagues2 recently investigated the neuralmechanisms of schizophrenia using
dynamic causal modelling and found remarkably consistent findings across a wide range of
paradigms pointing at a loss of synaptic gain of pyramidal cells in schizophrenia. Notably, this
study also included anMMNparadigm, inwhich the authors identified loss of pyramidal gain
in IFG specifically. This finding suggests that the expression of hierarchical PEs over frontal
channels may be altered due to a reduction of the precision-weight rather than changes in the
PE component of the precision-weighted PEs.

3.4.3 Areaberrant precision-weightedpredictionerrorsrelatedtoalter-
ations in neurotransmission?

The dysconnectivity hypothesis87,90,91,221,222 postulates thatNMDA receptor-mediatedmod-
ulation of synaptic gain is altered in psychosis. In linewith this account,Weber et al.253 found
that ketamine administration led to a reduced expression of high-level precision-weighted PEs
about the volatility of the environment in central channels similar to our results. However,
their results suggest that low-level precision-weighted PEs are unaffected by ketamine.

Several neurotransmitters interact with NMDA receptors to dynamically control synaptic
gain and neuroplasticity. Altered expression of precision-weighted PEs in SCZ as identified in
our study over early auditory regions could reflect changes in cholinergic neurotransmission.
Two recent studies implicate acetylcholine in regulating synaptic gain or – according to the
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predictive coding account and the dysconnectivity hypothesis – regulating sensory precision
in early auditory regions.163,203Thefirst study employed aKalmanfilter (i.e., a 2-levelHGF) to
model changes in participants that were administered galantamine, which enhances choliner-
gic neurotransmission.163 The authors argued that galantaminemay increase the precision of
sensory PEs. The second study modelled changes in between- and within-region connectiv-
ity including synaptic gain during a pharmacologicalmanipulation usingmuscarinic receptor
antagonist scopolamine ormuscaranic receptor agonist pilocarpine in rats.203 Schöbi and col-
leagues203 found dose-dependent changes in synaptic gain, but also changes in inter-regional
connectivity betweenA1 and secondary auditory cortex. Moreover, changes inmuscarinic re-
ceptor density among schizophrenia patients have even been frequently reported51,191,192,193

and Scarr et al.191 proposed that there may be a subgroup of schizophrenia patients specifi-
cally characterised by decreased cortical muscarine receptor expression. These results support
a potential role of cholinergic neurotransmission in precision-weightedPE signalling. Beyond
cholinergic processes, glutamatergic neurotransmission at AMPA receptors may be involved,
but its precise role still needs to be clarified.

3.4.4 Clinical implications

Interestingly, our results suggest that the expression of low-level PEs aggregated across three
differentMMNdesigns is significantly altered inCHR that later converted to a psychotic dis-
order compared to CHR that did not convert. This finding highlights potential applications
of this computational approach to transition-to-psychosis prediction. Furthermore, if the
neurotransmitter systems that are involved in computing precision-weighted PEs during the
MMN paradigm can be identified, this approach may be useful for predicting treatment re-
sponse to pharmacological interventions that target either glutamatergic neurotransmission
like d-serine, which has shown promising results in a recent clinical trial,124 or cholinergic
neurotransmission such as clozapine or olanzapine.

3.4.5 Limitations

A few limitations of this studymerit attention. First, theMMNparadigms in this study were
not well-suited to separate low- and high-level PEs, because environmental volatility was not
manipulated explicitly throughout the task. Future studies should include explicit manip-
ulations of volatility to better distinguish between different levels of hierarchical inference.
Secondly, we were not able to fit individual responses to determine subject-specific parame-
ters. This is an inherent limitation of the MMN paradigm, which is usually administered as
a passive task. Without estimating subject-specific parameters, our results are more challeng-
ing to interpret. Group differences could arise because different groups are better explained
by different models as highlighted in Chapter 1 or by different parameter values as was the
case in Chapter 2. While the MMN is one of the most reliable biomarkers for psychosis,67
future studies should also investigate the representation of precision-weighted PEs using odd-
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ball paradigms that require an explicit response of participants, such as the paradigm used in a
recent study,104 which found that P3b amplitudes were predictive of conversion to psychosis.

Figure 3.4: Expression of high‐level precision‐weighted prediction errors in early psychosis. A‐D: Displayed are maximum
intensity projections highlighting significant voxels of t‐contrasts testing for pairwise group differences in the expression
of high‐level prediction errors ε3 about environmental volatility in emerging psychosis. Times displayed on y‐axis indicate
earliest and latest significant voxel. p‐values were corrected for peak‐ (ppFWE; black dashed‐line) or cluster‐level (pcFWE)
family‐wise error rates (FWE) using a cluster defining threshold ofp < 0.001 (highlighted by coloured area). For illustration,
difference waveforms (10% highest ‐ 10% lowest ε3 trials) are shown across groups for a channel close to the peak effect.
HC: Healthy controls. CHR: Individuals at clinical high risk for psychosis. SCZ: Early‐illness schizophrenia patients (illness
duration≤ 5 years).
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3.4.6 Future directions

Future studies should determine the cortical generators of changes in the expression of hierar-
chical precision-weighted PEs in early psychosis. Moreover, the biological implementation of
these computations needs to be clarified further, for example through the use of models that
include greater physiological detail to bridge the algorithmic description that our modelling
approach offers andMarr’s implementational level of analysis.151 Dynamic causal models for
electrophysiological data in general and conductance-based dynamic causal models specifi-
cally have been highlighted as computational assays thatmay allow inference on receptor den-
sities of neuronal populations.221,224 These models have been validated in studies investigat-
ingNMDA receptor antibody encephalitis,234 dopaminergic action onNMDA receptors,164
and manipulations of cholinergic neurotransmission203 and thus constitute a promising way
forward. Additionally, there is a need for more pharmacological studies in both animals and
humans to map the relationship between hierarchical precision-weighted PEs and different
neurotransmitter systems that are targeted by antipsychotic medication.

3.4.7 Conclusions

In this study, we examined the computational mechanisms underlying MMN reductions in
emerging psychosis and found evidence for aberrant expression of precision-weighted PEs
at different levels of hierarchical inference. Our results suggest that the expression of low-
level precision-weighted PEs is significantly altered in individuals at clinical high risk for psy-
chosis that will later transition to psychosis highlighting that this computational modelling
approach captures relevant pathophysiological mechanisms andmay prove useful for predict-
ing transition to psychosis in individual patients.
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4
Conclusions

The goal of this thesis was to understand symptoms of psychosis through the computational
lens of Bayesian inference and assess the clinical utility and biological plausibility of this ap-
proach. Chapter 1 investigated the emergence of paranoid delusions. Our results suggest that
emerging psychosis may be accompanied by an altered perception of environmental volatil-
ity. Chapter 2 applied this modelling approach to delusions more broadly and examined
their relationship with reasoning biases. We found that beliefs of patients with psychotic
disorders were more unstable, which explained increased belief updating in light of discon-
firmatory evidence. Furthermore, the parameters of the computational model could predict
treatment response to a psychotherapeutic intervention, providing support for the clinical
utility of this computational framework. Chapter 3 assessed the biological plausibility of this
approach. Analysing EEG data during a sensory learning task, we identified signatures of
precision-weighted PEs derived from the model in EEG recordings. This result highlights
the possibility that this approach may not only be conceptually or clinically useful, but also
biologically plausible, although further investigation is warranted.

4.1 Theoretical implications

4.1.1 Implications for the dopamine hypothesis

It has been hypothesised that chaotic firing of dopamine neurons may lead to assigning aber-
rant salience to otherwise irrelevant stimuli.125 In linewith this proposal, we found inChapter
1 that early psychosis was accompanied by changes in parameters that govern learning about
environmental volatility. Specifically, changing these parameters results in higher learning
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rates or increased belief updating at lower levels of an inferential hierarchy during a social
learning task (Figure 1.6). Importantly, aberrant salience could be captured either by an in-
crease in the precision associated with low-level beliefs, i.e., through increasing the numer-
ator in the HGF update equation, or through a decrease in the precision associated with
higher level beliefs, i.e., decreasing the denominator (cf., Eq. 1.5 and Figure 1.4). Our re-
sults and other recent findings184,231,53 suggest the latter mechanism. A possible involvement
of dopamine is further supported by indirect evidence from two pharmacological studies in
healthy controls, which found drug-induced changes in activation of dopaminergicmidbrain
regions during the same task.57
Increased belief instability as identified in Chapter 2 has also been discussed in relation

to dopaminergic processing previously,1 although recent pharmacological studies, which ad-
ministered dopamine antagonist haloperidol and dopamine precursor levodopa to healthy
participants, did not report an impact of dopamine on jumping-to-conclusions.7,8 However,
the authors did not examine other reasoning biases like increased updating in light of discon-
firmatory evidence, which is primarily reflected in the belief instability parameter. Moreover,
previous biophysical modelling work suggested that shifts in the D1:D2 receptor ratio can
lead to a more stable D1-dominated regime, in which switching between different attractor
states (i.e., states that a dynamic system approaches over time) becomes less likely, or a less sta-
ble D2-dominated state, in which switching between attractor states becomes more likely.62
This may be captured by the belief instability parameter introduced in Chapter 2 and would
imply that differential receptor binding affinities for D1 vs D2 receptors should be taken into
account in future pharmacological studies. Future studies should examine the impact of sub-
stances such as asenapine, olanzapine, zotepine, or chlorpromazine, whichhave higher affinity
for D1 receptors, specifically.216

Lastly, it is unlikely that dopamine mediates precision-weighted PEs during the oddball
paradigm (Chapter 3) as most studies did not find an association between dopamine and
MMN amplitudes238 (but also see215,268).

4.1.2 Implications for the glutamate hypothesis

The glutamate hypothesis of schizophrenia postulates that alterations in glutamatergic neu-
rotransmissionmay be a core pathophysiology of schizophrenia.162This hypothesis was based
on the observation that NMDA receptor antagonists like ketamine do not only produce ef-
fects reminiscent of core symptoms observed in patients, but also MMN amplitude reduc-
tions.162,67 Chapter 3 studied the expression of precision-weighted PEs during three different
MMN paradigms and identified alterations in both low- and high-level precision-weighted
PEs in early psychosis. Weber et al.253 reported an effect of ketamine on the expressionof high-
level precision-weighted PEs implicating NMDA receptor functioning. This finding points
towards a potential explanation of changes in high-level precision-weighted PEs in emerging
psychosis, namely alterations in NMDA receptor functioning. However, we also found that
low-level precision-weighted PEs differentiated converters from non-converters. Moreover,

78



others report a positive association between low-level precision-weighted PEs and prodromal
symptom severity in CHR.32 Thus, it will be important to clarify the neuropharmacologi-
cal basis for low-level precision-weighted PEs during the oddball task. Acetylcholine appears
to be a promising candidate mechanism since previous studies showed an impact of cholin-
ergic interventions on both the MMN as well as the computational mechanisms underlying
it.163,203,254

4.1.3 Implications for the dysconnectivity hypothesis

The results presented in the three experimental chapters are in line with the dysconnectiv-
ity hypothesis, which emphasises the interaction between neuromodulators and NMDA-
receptors.91,87,221,222,90 Importantly, although different neuromodulatory systems may be in-
volved in computing precisions across different cognitive tasks, these neuromodulators may
still converge on NMDA receptors.102 Once our results have been replicated, it will be im-
portant to investigate whether the changes in the expression of precision-weighted PEs in
emerging psychosis (Chapter 3) are driven by changes in the computation of precisions or
PEs and secondly, to determine the neurotransmitters involved in computing these computa-
tional quantities. However, importantly, a recent study suggests that the relationship between
computational and neural mechanisms may not be straightforward113 highlighting that the
interaction between different neurotransmitter systems remains an important field of future
research.

4.1.4 Implications for the predictive coding account

Our results are in line with the predictive coding account of psychosis, which emphasises per-
turbations in the precisions associated with incoming sensory information and prior expecta-
tions.76,227We foundmore uncertain high-level priors (Chapter 1), increased belief instability
(Chapter 2), and altered expression of precision-weighted PEs in patients with psychotic dis-
orders (Chapter 3). Jointly, our results suggest that this modelling approach may be concep-
tually useful to understand how information processing is changed in psychotic disorders. It
can be employed tomap developmental changes in information processing across the lifespan
and different phases of psychosis.
Furthermore, this approach allows us to examine whether symptoms of psychosis are

caused by a uniform deficit in predictive coding or whether different symptoms are explained
by different computational mechanisms, for example changes in low- or high-level precisions
(see Eq. 1.5). While the literature has consistently found changes in parameters that relate to
learning about environmental volatility across different (social and non-social) tasks and even
species,184,231,53 the study of other symptoms such as hallucinations has yielded more hetero-
geneous results (see227 for an overview). Sterzer and colleagues227 have argued that this may
be resolved by localising the deficits at different levels of a processing hierarchy.
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Moreover, it is important to consider along which dimension information is hierarchically
organised in the brain.260 In theHGF, hierarchical levels are coupled via their variances, which
implies representation of a hierarchy in time, where the third level reflects the (more slowly
changing) rate of change of the level below. Other fields have assumed a hierarchy of causes or
of what is represented, for example letters nested in words nested in sentences associated with
a specific meaning in hierarchical Bayesian schemes for semantic processing.76 Importantly,
these different possibilities are not necessarilymutually exclusive as larger objects, for example
a face, will also remain longer in the receptive field of a cell than a simple visual feature like a
short edge as detected by cells in primary visual cortex. Nonetheless, it is important to clarify
what information is hierarchically organised, for example by comparing different hierarchical
models.

4.2 Clinical implications

There are several avenues to employ the computational approach presented in this thesis for
clinical applications. First of all, Chapters 1 and 3 outlined the possibility of using this ap-
proach to predict transition to a psychotic disorder from a clinical high risk state. In Chap-
ter 1, we observed heterogeneity in model attributions, especially in the high risk group, in
which the model formalising the notion of an altered perception of environmental volatility
was favoured for some individuals, whereas the standard HGF was better accounting for be-
haviour in others. In Chapter 3, we found that the expression of low-level precision-weighted
PEs significantly differed between individuals who later converted to a psychotic disorders
and non-converters.

While there have been successful approaches to predict transition to psychosis based on
anatomical data,45,138 the approach proposed here bares the advantage that it is mechanis-
tically interpretable. Using computational model parameters as features for transition-to-
psychosis prediction does not only drastically reduce the dimensionality of the feature space,
but it facilitates explaining why a prognostic model arrives at an individual risk prediction.
Understanding why an algorithm comes to the conclusion that a given individual has a high
risk of transitioning to psychosis is essential to both clinical practitioners and patients. It en-
ables clinical practitioners to identify the most suitable treatment strategy, but also to spot
potential errors of a predictive model, while also helping patients to understand the (biologi-
cal) basis of their condition better.

Secondly, this approach could prove useful for predicting treatment response in individual
patients with psychotic disorders as demonstrated in Chapter 2, in which we predicted treat-
ment response to a psychotherapeutic intervention. This treatment was specifically tailored
to different reasoning biases that we modelled and therefore constituted a promising candi-
date for treatment response prediction. In future, computational mechanisms may them-
selves constitute new targets for psychotherapeutic interventions. Advanced understanding
of the computational mechanisms underlying behavioural differences possibly culminating
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in reasoning biases could also help to expand psychoeducation programs.
Provided that computational quantities like low- and high-level precisions can be associ-

ated with specific neurotransmitter systems, it may be possible to employ this approach to
predict treatment response to pharmacological interventions as well. However, this relation-
ship is likely complex113 and may vary across brain regions, whose recruitment depends on
the experimental task that is utilised. Reinforcement learning tasks or the social learning task
employed in Chapter 1 may be appropriate to probe dopaminergic processes, while choliner-
gic signalingmay be better probed with an oddball task. If a relationship between cholinergic
modulation and precisions can be confirmed, the approach outlined inChapter 3may be use-
ful for predicting treatment response to antipsychotic medication that affects the cholinergic
system such as clozapine or olanzapine. However, it is possible that models, which include
more biophysical detail are required to uncover changes in specific neurotransmitter systems,
for example conductance-based dynamic causal models152 (see164,234 for recent applications).

Lastly, this approachmay be used for computational phenotyping to identify more homo-
geneous subgroups of patients, some of whichmay display changes in computing low- others
in high-level precision. This may also be an alternative explanation for heterogeneous results
suggesting either weak214 or strong priors181 observed in studies investigating hallucinations
outlined in the preceding section. Understanding the heterogeneity in both symptom ex-
pression and treatment response across patients and stratifying patients based on pathophys-
iological mechanisms may increase the chance of identifying effective treatments for these
subgroups of patients. For example, if a relationship between high-level precision-weighted
PEs and NMDA receptor function can be confirmed,253 this modelling approach may be
used to identify high risk patients that would benefit specifically from pharmacological inter-
ventions targeting NMDA receptor-related deficits like d-serine administration. In addition
to different subgroups, such computational assays may also be well-suited to identify critical
timewindows to alter the trajectory of the disease progression. The possibility of such critical
time windows for pharmacological interventions has been outlined for example in a recent
revision of the glutamate hypothesis.64

4.3 Limitations and future directions

There are a number of limitations to the computational approach presented in this thesis.
First, especially for clinical applications like treatment response prediction, the reliability of
parameters estimates and the specificity of parameter effects with respect to other psychi-
atric conditions need to be carefully assessed. This will require more challenging and costly
repeated-measure designs and studies that include other clinical control groups such as pa-
tients with affective disorders, respectively.

Secondly, the HGF focuses on a detailed model of perception, but only considers a very
simplemapping fromperception to action. There are othermodelling approaches that should
be explored further, since they take actions more explicitly into account. One such approach

81



is Q-learning, which assumes that agents learn about Q-values, i.e., the values of state-action
pairs,252,251 or active inference, which proposes to solve the exploration-exploitation dilemma
byminimising expected free energy or surprise24,88,89 (see4,74 for recent examples). Since some
symptoms of schizophrenia are expressed in action choices – for example, anhedonia may
manifest as the choice not to go towork ormeetwith friends – taking action policies explicitly
into account may provide additional insight.

Thirdly, hierarchical Bayesian inference – as a reductionist account – fails to provide an
explanation for all characteristics of specific symptoms, such as delusional themes155 and phe-
nomenological aspects that accompany psychotic experiences.72 Delusions in psychosis often
involve recurring themes, for example paranoid beliefs, which also distinguishes them from
delusions occurring in other disorders likemajor depressive disorder, where delusions of guilt
are reported more frequently.180 Recent studies have suggested that broader social and cul-
tural contexts may play a role in shaping both delusions and hallucinations.139,146,230 For ex-
ample, Luhrmann and colleagues146 reported that across three groups of participants, who
experienced auditory hallucinations, individuals from theUSweremore likely to report hear-
ing violent commands than participants from India or Ghana, whomore frequently reported
positive experiences with their voices. More research involving patients with diverse cultural
backgrounds is needed and future models may benefit from taking these contextual factors
into account.

Furthermore, as Feyaerts and colleagues72 recently pointed out, patients often do not de-
scribe delusions as reasoned conclusions based on particular experiences (e.g., of aberrant
salience); instead, they perceive them as sudden and spontaneous revelations. Delusions are
also frequently accompanied by radical changes in the basic structure of human experience,
for example alterations in the perception of time, space, or causality.72 Future models may
need to consider these additional aspects of the phenomenology of psychotic experiences.

Additionally, more studies are needed to understand the dynamics of psychosis in indi-
vidual patients. Schizophrenia and other psychiatric illnesses like depression258 are not only
characterised by dynamic processes at a macro-scale such as the transition from a prodromal
to a psychotic state, but also by fluctuations on smaller timescales (e.g., month-to-month or
even hour-to-hour). Here, we investigated different groups including high risk individuals,
first-episode, early-illness and chronic patients in a cross-sectional manner. While this ap-
proach provided important insights into some of the mechanisms underlying these different
populations, more studies that employ longitudinal designs and newmethods like experience
sampling173 are needed to fully address the dynamic nature of psychosis. These approaches
may be invaluable for understanding how symptom dynamics in individual patients predict
critical events, including not only transition-to-psychosis, but also relapse and recovery fol-
lowing psychotic episodes. This approach has produced first promising results in depression
research242,258,259 and may provide important insights into psychotic disorders as well.

Lastly, more pharmacological studies are urgently needed to determine the precise relation-
ship between computational mechanisms (e.g., changes in high- and low-level precisions and
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PEs) and neurophysiological mechanisms such as reduced pyramidal gain2 and alterations in
specific neurotransmitter systems (see113,163,203,254 for recent examples). Clarifying this rela-
tionship will be crucial to determine the most promising clinical applications for this mod-
elling approach, for example treatment response prediction tomedication thatmodulates spe-
cific neurotransmitter systems or for stratifying individual patients into more homogeneous
subgroups based on the underlying pathophysiological mechanisms.223

4.4 Final remarks

As outlined in the introduction of this thesis, psychotic disorders like schizophrenia can im-
pose a tremendous burden on patients and their families. The field has come a long way from
locking patients away in asylums to both psychotherapeutic and pharmacological treatments,
which allow some patients to return to a relatively normal life. However, for other patients,
treatments are unsuccessful as residual symptoms persist or relapses occur. Some patients
experience strong side effects of medication that can in and of themselves drastically reduce
life expectancy and quality of life. Thus, there is still a long road ahead to further improve
treatment for psychotic disorders.

It is also important to note that patients are still confronted with stigmatisation today,
which is deeply ingrained in our culture.190 This may possibly be rooted in an elusive mind-
body dualism, that is still institutionalised inmedicine, for example in the distinction between
neurology (the study of the nervous system) and psychiatry (the study of the psyche). Fortu-
nately, with the advent of new technologies, this boundary between bodily and mental ill-
nesses has blurred. With the computational approach presented in this thesis, I sought to
blur this boundary even further and advance a quantifiable andmathematically rigorous way
to understand psychiatric symptoms and link them to biological mechanisms.

In this thesis, I cast several symptoms of psychotic disorders as instances of hierarchical
Bayesian inference, including paranoid delusions, reasoning biases and aberrant sensory learn-
ing. This approach provided new conceptual insights into the emergence of paranoid delu-
sions and reasoning biases such as increased belief updating in light of disconfirmatory evi-
dence in patients with psychotic disorders. Furthermore, I provided a proof-of-concept that
this approachmay be clinically useful by predicting treatment response to a psychotherapeu-
tic intervention based on computational model parameters. Lastly, I assessed the biological
plausibility of this model by using it to explain EEG amplitude fluctuations during a sensory
learning task. Jointly, this work demonstrates that this approach may not only be conceptu-
ally and clinically useful, but also biologically plausible. Hopefully, approaches such as the
one outlined here will deliver computational assays that may be used as clinical tests to iden-
tify specific pathophysiological mechanisms that can be targeted by treatments and lead to
de-stigmatisation of mental illnesses and better treatments for psychotic disorders.
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Acronyms

A1 primary auditory cortex

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

APS attenuated psychotic symptoms

AUC area under the curve

BAC balanced accuracy

BLIP brief and limited intermittent psychotic symptoms

CBT cognitive-behavioural therapy

CHR individuals at clinical high risk for psychosis

COGIDS cognitive disturbances

COPER cognitive-perceptive basic symptoms

CRT cognitive remediation therapy

DCM dynamic causal modelling

EEG electroencephalography

FEP first-episode psychosis patients

fMRI functional magnetic resonance imaging

GABA gamma-aminobutyric acid

GRD genetic risk and deterioration syndrome

HC healthy controls

HGF Hierarchical Gaussian Filter
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IFG inferior frontal gyrus

JTC jumping-to-conclusions bias

M.I.N.I. Mini-International Neuropsychiatric Interview

MCT Metacognitive Training

MMN mismatch negativity

NMDA N -methyl-D-aspartate

NPV negative predictive value

PANSS Positive and Negative Syndrome Scale

PCL Paranoia Checklist

PCP phencyclidine

PEs prediction errors

PET positron emission tomography

PPV positive predictive value

PSYRATS Psychotic SymptomRating Scales

SCZ early-illness schizophrenia patients

SE sensitivity

SIPS Structured Interview for Prodromal Symptoms

sMRI structural magnetic resonance imaging

SP specificity

SPECT single photon emission computerised tomography

SPI-A Schizophrenia Proneness Instrument, adult version

SPI-CY Schizophrenia Proneness Instrument, child and youth version

STG superior temporal gyrus

85



References

[1] Adams, R. A., Napier, G., Roiser, J. P., Mathys, C., &Gilleen, J. (2018). Attractor-like dynam-
ics in belief updating in schizophrenia. Journal of Neuroscience, 38(44), 9471–9485.

[2] Adams, R. A., Pinotsis, D., Tsirlis, K., Unruh, L., Mahajan, A., Horas, A. M., Convertino, L.,
Summerfelt, A., Sampath, H., Du, X.M., et al. (2022). Computational modeling of electroen-
cephalography and functionalmagnetic resonance imagingparadigms indicates a consistent loss
of pyramidal cell synaptic gain in schizophrenia. Biological Psychiatry, 91(2), 202–215.

[3] Adams, R. A., Stephan, K. E., Brown, H. R., Frith, C. D., & Friston, K. J. (2013). The com-
putational anatomy of psychosis. Frontiers in Psychiatry, 4, 47.

[4] Adams, R. A., Vincent, P., Benrimoh, D., Friston, K. J., & Parr, T. (2021). Everything is con-
nected: inference and attractors in delusions. Schizophrenia Research.

[5] Allen, N. C., Bagade, S., McQueen, M. B., Ioannidis, J., Kavvoura, F. K., Khoury, M. J., Tanzi,
R. E., & Bertram, L. (2008). Systematic meta-analyses and field synopsis of genetic association
studies in schizophrenia: the SzGene database. Nature Genetics, 40(7), 827–834.

[6] An, S. K., Kang, J. I., Park, J. Y., Kim, K. R., Lee, S. Y., & Lee, E. (2010). Attribution bias in
ultra-high risk for psychosis and first-episode schizophrenia. Schizophrenia Research, 118(1-3),
54–61.

[7] Andreou, C.,Moritz, S., Veith, K., Veckenstedt, R., &Naber, D. (2014). Dopaminergicmodu-
lation of probabilistic reasoning and overconfidence in errors: a double-blind study. Schizophre-
nia Bulletin, 40(3), 558–565.

[8] Andreou, C., Schneider, B. C., Braun, V., Kolbeck, K., Gallinat, J., & Moritz, S. (2015).
Dopamine effects on evidence gathering and integration. Journal of Psychiatry and Neuro-
science, 40(6), 422–428.

[9] Andreou, C., Steinmann, S., Leicht, G., Kolbeck, K., Moritz, S., & Mulert, C. (2018). fMRI
correlates of jumping-to-conclusions in patients with delusions: connectivity patterns and ef-
fects of metacognitive training. NeuroImage: Clinical, 20, 119–127.

[10] Andreou, C., Wittekind, C. E., Fieker, M., Heitz, U., Veckenstedt, R., Bohn, F., & Moritz,
S. (2017). Individualized metacognitive therapy for delusions: a randomized controlled rater-
blind study. Journal of Behavior Therapy and Experimental Psychiatry, 56, 144–151.

86



[11] Anticevic, A., Hu, X., Xiao, Y., Hu, J., Li, F., Bi, F., Cole, M.W., Savic, A., Yang, G. J., Repovs,
G., et al. (2015). Early-course unmedicated schizophrenia patients exhibit elevated prefrontal
connectivity associated with longitudinal change. Journal of Neuroscience, 35(1), 267–286.

[12] Appelbaum, P. S., Robbins, P. C., & Roth, L. H. (1999). Dimensional approach to delusions:
comparison across types and diagnoses. American Journal of Psychiatry, 156(12), 1938–1943.

[13] Ashinoff, B. K., Singletary, N. M., Baker, S. C., & Horga, G. (2021). Rethinking delusions: a
selective review of delusion research through a computational lens. Schizophrenia Research.

[14] Baker, S. C., Konova, A. B., Daw,N.D., &Horga, G. (2019). A distinct inferential mechanism
for delusions in schizophrenia. Brain, 142(6), 1797–1812.

[15] Behrens, T. E., Woolrich, M. W., Walton, M. E., & Rushworth, M. F. (2007). Learning the
value of information in an uncertain world. Nature Neuroscience, 10(9), 1214–1221.

[16] Benamer, N., Marti, F., Lujan, R., Hepp, R., Aubier, T. G., Dupin, A., Frébourg, G., Pons, S.,
Maskos, U., Faure, P., et al. (2018). GluD1, linked to schizophrenia, controls the burst firing
of dopamine neurons. Molecular Psychiatry, 23(3), 691–700.

[17] Bendfeldt, K., Smieskova, R., Koutsouleris, N., Klöppel, S., Schmidt, A., Walter, A., Harris-
berger, F., Wrege, J., Simon, A., Taschler, B., et al. (2015). Classifying individuals at high-risk
for psychosis based on functional brain activity during workingmemory processing. NeuroIm-
age: Clinical, 9, 555–563.

[18] Bentall, R. P., Corcoran,R.,Howard,R., Blackwood,N.,&Kinderman, P. (2001). Persecutory
delusions: a review and theoretical integration. Clinical Psychology Review, 21(8), 1143–1192.

[19] Bergstein, M., Weizman, A., & Solomon, Z. (2008). Sense of coherence among delusional pa-
tients: Prediction of remission and risk of relapse. Comprehensive Psychiatry, 49(3), 288–296.

[20] Berridge, K. C. & Robinson, T. E. (1998). What is the role of dopamine in reward: hedonic
impact, reward learning, or incentive salience? Brain Research Reviews, 28(3), 309–369.

[21] Blackwood, N. J., Howard, R. J., Bentall, R. P., &Murray, R.M. (2001). Cognitive neuropsy-
chiatric models of persecutory delusions. American Journal of Psychiatry, 158(4), 527–539.

[22] Bodatsch, M., Ruhrmann, S., Wagner, M., Müller, R., Schultze-Lutter, F., Frommann, I.,
Brinkmeyer, J., Gaebel, W., Maier, W., Klosterkötter, J., et al. (2011). Prediction of psychosis
by mismatch negativity. Biological Psychiatry, 69(10), 959–966.

[23] Bonner, S. E. & Sprinkle, G. B. (2002). The effects of monetary incentives on effort and task
performance: theories, evidence, and a framework for research. Accounting, Organizations and
Society, 27(4-5), 303–345.

[24] Botvinick, M. & Toussaint, M. (2012). Planning as inference. Trends in Cognitive Sciences,
16(10), 485–488.

87



[25] Bowie, C. R.&Harvey, P. D. (2006). Cognitive deficits and functional outcome in schizophre-
nia. Neuropsychiatric Disease and Treatment, 2(4), 531–536.

[26] Box,G.E. (1976). Science and statistics. Journal of theAmericanStatisticalAssociation, 71(356),
791–799.

[27] Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32.

[28] Cannon, T. D., Cadenhead, K., Cornblatt, B., Woods, S. W., Addington, J., Walker, E., Seid-
man, L. J., Perkins, D., Tsuang, M., McGlashan, T., et al. (2008). Prediction of psychosis in
youth at high clinical risk: amultisite longitudinal study inNorthAmerica. Archives of General
Psychiatry, 65(1), 28–37.

[29] Catalan, A., Tognin, S., Kempton, M. J., Stahl, D., de Pablo, G. S., Nelson, B., Pantelis, C.,
Riecher-Rössler, A., Bressan,R., Barrantes-Vidal,N., et al. (2020). Relationship between jump-
ing to conclusions and clinical outcomes in people at clinical high-risk for psychosis. Psycholog-
icalMedicine, (pp. 1–9).

[30] Chadwick, P. K. (1993). The stepladder to the impossible: a first hand phenomenological ac-
count of a schizoaffective psychotic crisis. Journal ofMental Health, 2(3), 239–250.

[31] Charlson, F. J., Ferrari, A. J., Santomauro, D. F., Diminic, S., Stockings, E., Scott, J. G., Mc-
Grath, J. J., & Whiteford, H. A. (2018). Global epidemiology and burden of schizophrenia:
findings from the global burden of disease study 2016. Schizophrenia Bulletin, 44(6), 1195–
1203.

[32] Charlton, C. E., Lepock, J. R., Hauke, D. J., Mizrahi, R., Kiang, M., & Diaconescu, A. O.
(2022). Atypical prediction error learning is associated with psychosis-like symptoms in pa-
tients at clinical high risk for psychosis: A computational single-trial analysis of the mismatch
negativity. Under Review.

[33] Chen, G. M. & Weston, J. K. (1960). The analgesic and anesthetic effect of lN-(l-
Phenylcyclohexyl) Piperidine HCl on the monkey. Anesthesia & Analgesia, 39(2), 132–137.

[34] Clark, S. R., Schubert, K. O., & Baune, B. T. (2015). Towards indicated prevention of psy-
chosis: using probabilistic assessments of transition risk in psychosis prodrome. Journal of
Neural Transmission, 122(1), 155–169.

[35] Cohen, J. (1988). Statistical power analysis for the behavioral sciences. New York: Routledge.

[36] Coid, J. W., Ullrich, S., Kallis, C., Keers, R., Barker, D., Cowden, F., & Stamps, R. (2013).
The relationship between delusions and violence: findings from the East London first episode
psychosis study. JAMA Psychiatry, 70(5), 465–471.

[37] Cole, D.M., Diaconescu, A. O., Pfeiffer, U. J., Brodersen, K. H., Mathys, C. D., Julkowski, D.,
Ruhrmann, S., Schilbach, L., Tittgemeyer, M., Vogeley, K., et al. (2020). Atypical processing
of uncertainty in individuals at risk for psychosis. NeuroImage: Clinical, 26, 102239.

88



[38] Corlett, P. R., Frith, C. D., & Fletcher, P. C. (2009). From drugs to deprivation: a Bayesian
framework for understanding models of psychosis. Psychopharmacology, 206(4), 515–530.

[39] Corlett, P.R.,Honey,G.D.,&Fletcher, P.C. (2016). Prediction error, ketamine andpsychosis:
an updated model. Journal of Psychopharmacology, 30(11), 1145–1155.

[40] Corlett, P. R., Honey, G. D., Krystal, J. H., & Fletcher, P. C. (2011). Glutamatergic model
psychoses: prediction error, learning, and inference. Neuropsychopharmacology, 36(1), 294–
315.

[41] Corlett, P. R., Murray, G. K., Honey, G. D., Aitken, M. R., Shanks, D. R., Robbins, T. W.,
Bullmore, E. T., Dickinson, A., & Fletcher, P. C. (2007). Disrupted prediction-error signal in
psychosis: evidence for an associative account of delusions. Brain, 130(9), 2387–2400.

[42] Corlett, P. R., Taylor, J., Wang, X.-J., Fletcher, P., & Krystal, J. (2010). Toward a neurobiology
of delusions. Progress in Neurobiology, 92(3), 345–369.

[43] Creese, I., Burt, D. R., & Snyder, S. H. (1976). Dopamine receptor binding predicts clinical
and pharmacological potencies of antischizophrenic drugs. Science, 192(4238), 481–483.

[44] Croft, J., Teufel, C.,Heron, J., Fletcher, P., David, A. S., Lewis, G.,Moutoussis,M., FitzGerald,
T.H., Linden,D. E., Thompson,A., et al. (2021). A computational analysis of abnormal belief-
updating processes and their association with psychotic experiences and childhood trauma in a
UK birth cohort. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging.

[45] Das, T., Borgwardt, S., Hauke, D. J., Harrisberger, F., Lang, U. E., Riecher-Rössler, A.,
Palaniyappan, L., & Schmidt, A. (2018). Disorganized gyrification network properties during
the transition to psychosis. JAMA Psychiatry, 75(6), 613–622.

[46] Daunizeau, J., Adam, V., & Rigoux, L. (2014). Vba: a probabilistic treatment of nonlinear
models for neurobiological andbehavioural data. PLoS computational biology, 10(1), e1003441.

[47] Daunizeau, J., Den Ouden, H. E., Pessiglione, M., Kiebel, S. J., Friston, K. J., & Stephan, K. E.
(2010a). Observing the observer (II): deciding when to decide. PLoS one, 5(12), e15555.

[48] Daunizeau, J., Den Ouden, H. E., Pessiglione, M., Kiebel, S. J., Stephan, K. E., & Friston, K. J.
(2010b). Observing the observer (I): meta-bayesian models of learning and decision-making.
PloS one, 5(12), e15554.

[49] Davies, C., Cipriani, A., Ioannidis, J. P., Radua, J., Stahl, D., Provenzani, U., McGuire, P., &
Fusar-Poli, P. (2018). Lack of evidence to favor specific preventive interventions in psychosis: a
network meta-analysis. World Psychiatry, 17(2), 196–209.

[50] Davis, K. L., Kahn,R. S., Ko,G.,&Davidson,M. (1991). Dopamine in schizophrenia: a review
and reconceptualization. The American Journal of Psychiatry, 148(11), 1474–1486.

[51] Dean, K. & Murray, R. M. (2005). Environmental risk factors for psychosis. Dialogues in
Clinical Neuroscience, 7(1), 69–80.

89



[52] Delay, J., Deniker, P., & Harl, J. (1952). Utilisation en thérapeutique psychiatrique d’une
phénothiazine d’action centrale élective (4560 RP) [Therapeutic use in psychiatry of phenoth-
iazine of central elective action (4560RP)]. AnnalesMedico-Psychologiques, 110(21), 112–117.

[53] Deserno, L., Boehme, R.,Mathys, C., Katthagen, T., Kaminski, J., Stephan, K. E., Heinz, A., &
Schlagenhauf, F. (2020). Volatility estimates increase choice switching and relate to prefrontal
activity in schizophrenia. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging,
5(2), 173–183.

[54] Diaconescu, A. O., Hauke, D. J., & Borgwardt, S. (2019). Models of persecutory delusions: a
mechanistic insight into the early stages of psychosis. Molecular Psychiatry, 24(9), 1258–1267.

[55] Diaconescu, A. O., Litvak, V., Mathys, C., Kasper, L., Friston, K. J., & Stephan, K. E. (2017a).
A computational hierarchy in human cortex. arXiv: 1709.02323.

[56] Diaconescu, A. O., Mathys, C., Weber, L. A., Daunizeau, J., Kasper, L., Lomakina, E. I., Fehr,
E., & Stephan, K. E. (2014). Inferring on the intentions of others by hierarchical Bayesian
learning. PLoS Computational Biology, 10(9), e1003810.

[57] Diaconescu, A. O., Mathys, C., Weber, L. A., Kasper, L., Mauer, J., & Stephan, K. E. (2017b).
Hierarchical prediction errors in midbrain and septum during social learning. Social Cognitive
and Affective Neuroscience, 12(4), 618–634.

[58] Diaconescu, A. O., Wellstein, K. V., Kasper, L., Mathys, C., & Stephan, K. E. (2020). Hierar-
chical Bayesian models of social inference for probing persecutory delusional ideation. Journal
of Abnormal Psychology, 129(6), 556–569.

[59] Doeller, C. F.,Opitz, B.,Mecklinger, A., Krick,C., Reith,W.,&Schröger, E. (2003). Prefrontal
cortex involvement in preattentive auditory deviance detection: neuroimaging and electrophys-
iological evidence. NeuroImage, 20(2), 1270–1282.

[60] Doya, K., Ishii, S., Pouget, A., & Rao, R. P. (2007). Bayesian brain: Probabilistic approaches to
neural coding. Cambridge: MIT press.

[61] Dudley, R., Taylor, P., Wickham, S., &Hutton, P. (2016). Psychosis, delusions and the “jump-
ing to conclusions” reasoning bias: a systematic review and meta-analysis. Schizophrenia Bul-
letin, 42(3), 652–665.

[62] Durstewitz, D. & Seamans, J. K. (2008). The dual-state theory of prefrontal cortex dopamine
function with relevance to catechol-o-methyltransferase genotypes and schizophrenia. Biologi-
cal Psychiatry, 64(9), 739–749.

[63] Egerton, A., Chaddock, C. A., Winton-Brown, T. T., Bloomfield, M. A., Bhattacharyya, S.,
Allen, P., McGuire, P. K., & Howes, O. D. (2013). Presynaptic striatal dopamine dysfunction
in people at ultra-high risk for psychosis: findings in a second cohort. Biological Psychiatry,
74(2), 106–112.

90



[64] Egerton, A., Grace, A. A., Stone, J., Bossong, M. G., Sand, M., &McGuire, P. (2020). Gluta-
mate in schizophrenia: neurodevelopmental perspectives anddrugdevelopment. Schizophrenia
Research, 223, 59–70.

[65] Ehrlichman, R. S., Maxwell, C. R., Majumdar, S., & Siegel, S. J. (2008). Deviance-elicited
changes in event-related potentials are attenuated by ketamine in mice. Journal of Cognitive
Neuroscience, 20(8), 1403–1414.

[66] Erdmann, T. & Mathys, C. (2021). A generative framework for the study of delusions.
Schizophrenia Research.

[67] Erickson, M. A., Ruffle, A., & Gold, J. M. (2016). A meta-analysis of mismatch negativity in
schizophrenia: from clinical risk to disease specificity and progression. Biological Psychiatry,
79(12), 980–987.

[68] Esterberg, M. L. & Compton, M. T. (2009). The psychosis continuum and categorical versus
dimensional diagnostic approaches. Current Psychiatry Reports, 11(3), 179–184.

[69] Fear, C. F. &Healy, D. (1997). Probabilistic reasoning in obsessive–compulsive and delusional
disorders. PsychologicalMedicine, 27(1), 199–208.

[70] Feinberg, I. (1978). Efference copy and corollary discharge: implications for thinking and its
disorders. Schizophrenia Bulletin, 4(4), 636–640.

[71] Felleman, D. J. & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate
cerebral cortex. Cerebral Cortex, 1(1), 1–47.

[72] Feyaerts, J., Henriksen,M. G., Vanheule, S., Myin-Germeys, I., & Sass, L. A. (2021). Delusions
beyond beliefs: a critical overview of diagnostic, aetiological, and therapeutic schizophrenia
research from a clinical-phenomenological perspective. The Lancet Psychiatry, 8(3), 237–249.

[73] First, M. B. (1997). Structured Clinical Interview for DSM-IV Axis I Disorders (SCID), Re-
search Version, Patient Edition with Psychotic Screen. New York: New York State Psychiatric
Institute, Biometrics Research.

[74] FitzGerald, T. H., Schwartenbeck, P., Moutoussis, M., Dolan, R. J., & Friston, K. (2015). Ac-
tive inference, evidence accumulation, and the urn task. Neural Computation, 27(2), 306–328.

[75] Flandin, G. & Friston, K. J. (2019). Analysis of family-wise error rates in statistical parametric
mapping using random field theory. Human BrainMapping, 40(7), 2052–2054.

[76] Fletcher, P. C. & Frith, C. D. (2009). Perceiving is believing: a Bayesian approach to explaining
the positive symptoms of schizophrenia. Nature Reviews Neuroscience, 10(1), 48–58.

[77] Fornito, A. & Bullmore, E. T. (2015). Reconciling abnormalities of brain network structure
and function in schizophrenia. Current Opinion in Neurobiology, 30, 44–50.

91



[78] Fouragnan, E., Chierchia, G., Greiner, S., Neveu, R., Avesani, P., & Coricelli, G. (2013). Rep-
utational priors magnify striatal responses to violations of trust. Journal of Neuroscience, 33(8),
3602–3611.

[79] Frässle, S., Aponte, E.A., Bollmann, S., Brodersen, K.H., Do, C.T.,Harrison,O.K.,Harrison,
S. J., Heinzle, J., Iglesias, S., Kasper, L., et al. (2021). TAPAS: an open-source software package
for translational neuromodeling and computational psychiatry. Frontiers inPsychiatry, 12, 857.

[80] Freeman,D. (2016). Persecutory delusions: a cognitive perspective on understanding and treat-
ment. The Lancet Psychiatry, 3(7), 685–692.

[81] Freeman, D. & Garety, P. (2014). Advances in understanding and treating persecutory delu-
sions: a review. Social Psychiatry and Psychiatric Epidemiology, 49(8), 1179–1189.

[82] Freeman, D. &Garety, P. A. (2000). Comments on the content of persecutory delusions: does
the definition need clarification? British Journal of Clinical Psychology, 39(4), 407–414.

[83] Freeman, D., Garety, P. A., Bebbington, P. E., Smith, B., Rollinson, R., Fowler, D., Kuipers,
E., Ray, K., & Dunn, G. (2005). Psychological investigation of the structure of paranoia in a
non-clinical population. The British Journal of Psychiatry, 186(5), 427–435.

[84] Freeman, D., Garety, P. A., Kuipers, E., Fowler, D., & Bebbington, P. E. (2002). A cognitive
model of persecutory delusions. British Journal of Clinical Psychology, 41(4), 331–347.

[85] Freeman, D., Startup, H., Dunn, G., Wingham, G., Černis, E., Evans, N., Lister, R., Pugh, K.,
Cordwell, J., &Kingdon,D. (2014). Persecutory delusions and psychological well-being. Social
Psychiatry and Psychiatric Epidemiology, 49(7), 1045–1050.

[86] Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of theRoyal Society
B: Biological Sciences, 360(1456), 815–836.

[87] Friston, K., Brown, H. R., Siemerkus, J., & Stephan, K. E. (2016). The dysconnection hypoth-
esis (2016). Schizophrenia Research, 176(2-3), 83–94.

[88] Friston, K., Kilner, J., & Harrison, L. (2006). A free energy principle for the brain. Journal of
Physiology, 100(1-3), 70–87.

[89] Friston, K., Schwartenbeck, P., FitzGerald, T., Moutoussis, M., Behrens, T., & Dolan, R. J.
(2013). The anatomy of choice: active inference and agency. Frontiers in HumanNeuroscience,
7, 598.

[90] Friston, K. J. (1998). The disconnection hypothesis. Schizophrenia Research, 30(2), 115–125.

[91] Friston, K. J., Frith, C. D., et al. (1995). Schizophrenia: a disconnection syndrome. Clinical
Neuroscience, 3(2), 89–97.

[92] Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. NeuroImage,
19(4), 1273–1302.

92



[93] Friston, K. J. & Stephan, K. E. (2007). Free-energy and the brain. Synthese, 159(3), 417–458.

[94] Frith,C.D.&Done,D. J. (1989). Experiences of alien control in schizophrenia reflect a disorder
in the central monitoring of action. PsychologicalMedicine, 19(2), 359–363.

[95] Frith, C. D. & Friston, K. J. (2013). False perceptions and false beliefs: understanding
schizophrenia. Neurosciences and the Human Person: New Perspectives on Human Activities,
121, 1–15.

[96] Fusar-Poli, P., Borgwardt, S., Bechdolf, A., Addington, J., Riecher-Rössler, A., Schultze-Lutter,
F., Keshavan,M.,Wood, S., Ruhrmann, S., Seidman, L. J., et al. (2013). The psychosis high-risk
state: a comprehensive state-of-the-art review. JAMA Psychiatry, 70(1), 107–120.

[97] Garety, P. (1991). Reasoning anddelusions. TheBritish Journal of Psychiatry, 159(S14), 14–18.

[98] Garety, P., Hemsley, D., Wessely, S., et al. (1991). Reasoning in deluded schizophrenic and
paranoid patients. Journal of Nervous andMental Disease, 179(4), 194–201.

[99] Garrido, M. I., Kilner, J. M., Stephan, K. E., & Friston, K. J. (2009). The mismatch negativity:
a review of underlying mechanisms. Clinical Neurophysiology, 120(3), 453–463.

[100] Geisler, W. S. &Diehl, R. L. (2002). Bayesian natural selection and the evolution of perceptual
systems. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences,
357(1420), 419–448.

[101] Grace, A. A. (1993). Cortical regulation of subcortical dopamine systems and its possible rele-
vance to schizophrenia. Journal of Neural Transmission, 91(2), 111–134.

[102] Gu, Q. (2002). Neuromodulatory transmitter systems in the cortex and their role in cortical
plasticity. Neuroscience, 111(4), 815–835.

[103] Haddock,G.,McCarron, J., Tarrier,N.,&Faragher, E. (1999). Scales tomeasure dimensions of
hallucinations and delusions: the psychotic symptom rating scales (PSYRATS). Psychological
Medicine, 29(4), 879–889.

[104] Hamilton, H. K., Roach, B. J., Bachman, P. M., Belger, A., Carrion, R. E., Duncan, E., Jo-
hannesen, J. K., Light, G. A., Niznikiewicz, M. A., Addington, J., et al. (2019). Association
between P300 responses to auditory oddball stimuli and clinical outcomes in the psychosis risk
syndrome. JAMA Psychiatry, 76(11), 1187–1197.

[105] Hauke, D. J., Roth, V., Karvelis, P., Adams, R.A.,Moritz, S., Borgwardt, S., Diaconescu, A.O.,
& Andreou, C. (2022). Increased belief instability in psychosis predicts treatment response to
metacognitive training. Schizophrenia Bulletin, 48(4), 826–838.

[106] Hauke, D. J., Schmidt, A., Studerus, E., Andreou, C., Riecher-Rössler, A., Radua, J., Kam-
beitz, J., Ruef, A., Dwyer, D. B., Kambeitz-Ilankovic, L., et al. (2021). Multimodal prognosis
of negative symptom severity in individuals at increased risk of developing psychosis. Transla-
tional Psychiatry, 11(1), 1–11.

93



[107] Hjorthøj, C., Stürup, A. E., McGrath, J. J., & Nordentoft, M. (2017). Years of potential life
lost and life expectancy in schizophrenia: a systematic review and meta-analysis. The Lancet
Psychiatry, 4(4), 295–301.

[108] Homayoun, H. & Moghaddam, B. (2007). NMDA receptor hypofunction produces oppo-
site effects on prefrontal cortex interneurons and pyramidal neurons. Journal of Neuroscience,
27(43), 11496–11500.

[109] Howes, O., Bose, S., Turkheimer, F., Valli, I., Egerton, A., Stahl, D., Valmaggia, L., Allen, P.,
Murray, R., &McGuire, P. (2011). Progressive increase in striatal dopamine synthesis capacity
as patients develop psychosis: a PET study. Molecular Psychiatry, 16(9), 885–886.

[110] Howes,O.D.&Kapur, S. (2009). The dopamine hypothesis of schizophrenia: version III—the
final common pathway. Schizophrenia Bulletin, 35(3), 549–562.

[111] Howes, O. D., Montgomery, A. J., Asselin, M.-C., Murray, R. M., Valli, I., Tabraham, P.,
Bramon-Bosch, E., Valmaggia, L., Johns, L., Broome, M., et al. (2009). Elevated striatal
dopamine function linked to prodromal signs of schizophrenia. Archives of General Psychiatry,
66(1), 13–20.

[112] Huq, S., Garety, P. A., &Hemsley, D. R. (1988). Probabilistic judgements in deluded and non-
deluded subjects. The Quarterly Journal of Experimental Psychology Section A, 40(4), 801–812.

[113] Iglesias, S., Kasper, L., Harrison, S. J.,Manka, R.,Mathys, C., & Stephan, K. E. (2021). Cholin-
ergic and dopaminergic effects on prediction error and uncertainty responses during sensory
associative learning. NeuroImage, 226, 117590.

[114] Iglesias, S., Mathys, C., Brodersen, K. H., Kasper, L., Piccirelli, M., den Ouden, H. E., &
Stephan, K. E. (2013). Hierarchical prediction errors in midbrain and basal forebrain during
sensory learning. Neuron, 80(2), 519–530.

[115] Iglesias, S., Tomiello, S., Schneebeli, M., & Stephan, K. E. (2017). Models of neuromodulation
for computational psychiatry. Wiley Interdisciplinary Reviews: Cognitive Science, 8(3), e1420.

[116] Jardri, R. & Deneve, S. (2013). Circular inferences in schizophrenia. Brain, 136(11), 3227–
3241.

[117] Jardri,R.,Duverne, S., Litvinova,A. S.,&Denève, S. (2017). Experimental evidence for circular
inference in schizophrenia. Nature Communications, 8(1), 1–13.

[118] Jaspers, K. (1913). Allgemeine Psychopathologie. Berlin: J. Springer.

[119] Javitt, D. (2004). Glutamate as a therapeutic target in psychiatric disorders. Molecular Psychi-
atry, 9(11), 984–997.

[120] Javitt, D. C., Steinschneider, M., Schroeder, C. E., & Arezzo, J. C. (1996). Role of cortical N-
methyl-D-aspartate receptors in auditory sensorymemory andmismatch negativity generation:
implications for schizophrenia. Proceedings of theNationalAcademy of Sciences, 93(21), 11962–
11967.

94



[121] Javitt, D. C.&Zukin, S. R. (1991). Recent advances in the phencyclidinemodel of schizophre-
nia. The American Journal of Psychiatry.

[122] Javitt, D. C., Zukin, S. R., Heresco-Levy, U., & Umbricht, D. (2012). Has an angel shown the
way? Etiological and therapeutic implications of the PCP/NMDA model of schizophrenia.
Schizophrenia Bulletin, 38(5), 958–966.

[123] Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical Review, 106(4),
620–630.

[124] Kantrowitz, J. T., Woods, S. W., Petkova, E., Cornblatt, B., Corcoran, C.M., Chen, H., Silipo,
G., & Javitt, D. C. (2015). D-serine for the treatment of negative symptoms in individuals at
clinical high risk of schizophrenia: a pilot, double-blind, placebo-controlled, randomised par-
allel group mechanistic proof-of-concept trial. The Lancet Psychiatry, 2(5), 403–412.

[125] Kapur, S. (2003). Psychosis as a state of aberrant salience: a framework linking biology, phe-
nomenology, and pharmacology in schizophrenia. American Journal of Psychiatry, 160(1), 13–
23.

[126] Kay, S. R., Fiszbein, A., & Opler, L. A. (1987). The Positive and Negative Syndrome Scale
(PANSS) for schizophrenia. Schizophrenia Bulletin, 13(2), 261–276.

[127] Kendler, K. S., Gallagher, T. J., Abelson, J. M., & Kessler, R. C. (1996). Lifetime prevalence,
demographic risk factors, and diagnostic validity of nonaffective psychosis as assessed in a us
community sample: the national comorbidity survey. Archives of General Psychiatry, 53(11),
1022–1031.

[128] Kiebel, S. J., Daunizeau, J., & Friston, K. J. (2008). A hierarchy of time-scales and the brain.
PLoS Computational Biology, 4(11), e1000209.

[129] Kiebel, S. J. & Friston, K. J. (2004). Statistical parametric mapping for event-related potentials:
I. Generic considerations. NeuroImage, 22(2), 492–502.

[130] King, D. J., Hodgekins, J., Chouinard, P. A., Chouinard, V.-A., & Sperandio, I. (2017). A
review of abnormalities in the perception of visual illusions in schizophrenia. Psychonomic Bul-
letin & Review, 24(3), 734–751.

[131] King, R., Barchas, J. D., &Huberman, B. (1984). Chaotic behavior in dopamine neurodynam-
ics. Proceedings of the National Academy of Sciences, 81(4), 1244–1247.

[132] King-Casas, B., Tomlin, D., Anen, C., Camerer, C. F., Quartz, S. R., & Montague, P. R.
(2005). Getting to knowyou: reputation and trust in a two-person economic exchange. Science,
308(5718), 78–83.

[133] Klosterkötter, J., Hellmich, M., Steinmeyer, E. M., & Schultze-Lutter, F. (2001). Diagnosing
schizophrenia in the initial prodromal phase. Archives of General Psychiatry, 58(2), 158–164.

95



[134] Knowles, R., McCarthy-Jones, S., & Rowse, G. (2011). Grandiose delusions: a review and
theoretical integration of cognitive and affective perspectives. Clinical PsychologyReview, 31(4),
684–696.

[135] Körding,K.P.&Wolpert,D.M. (2004). Bayesian integration in sensorimotor learning.Nature,
427(6971), 244–247.

[136] Koutsouleris, N., Borgwardt, S., Meisenzahl, E. M., Bottlender, R., Möller, H.-J., & Riecher-
Rössler, A. (2012). Disease prediction in the at-risk mental state for psychosis using neu-
roanatomical biomarkers: results from the FePsy study. Schizophrenia Bulletin, 38(6), 1234–
1246.

[137] Koutsouleris, N., Meisenzahl, E. M., Davatzikos, C., Bottlender, R., Frodl, T., Scheuerecker,
J., Schmitt, G., Zetzsche, T., Decker, P., Reiser, M., et al. (2009). Use of neuroanatomical
pattern classification to identify subjects in at-riskmental states of psychosis and predict disease
transition. Archives of General Psychiatry, 66(7), 700–712.

[138] Koutsouleris, N., Riecher-Rössler, A., Meisenzahl, E. M., Smieskova, R., Studerus, E.,
Kambeitz-Ilankovic, L., Von Saldern, S., Cabral, C., Reiser, M., Falkai, P., et al. (2015). Detect-
ing the psychosis prodrome across high-risk populations using neuroanatomical biomarkers.
Schizophrenia Bulletin, 41(2), 471–482.

[139] Larøi, F., Luhrmann, T. M., Bell, V., Christian Jr, W. A., Deshpande, S., Fernyhough, C.,
Jenkins, J., & Woods, A. (2014). Culture and hallucinations: overview and future directions.
Schizophrenia Bulletin, 40(Suppl_4), S213–S220.

[140] Leanza, L., Studerus, E., Bozikas, V. P., Moritz, S., & Andreou, C. (2020). Moderators of
treatment efficacy in individualized metacognitive training for psychosis (MCT+). Journal of
Behavior Therapy and Experimental Psychiatry, 68, 101547.

[141] Lee, T. S. &Mumford, D. (2003). Hierarchical Bayesian inference in the visual cortex. Journal
of the Optical Society of America A, 20(7), 1434–1448.

[142] Lehrl, S., Triebig, G., & Fischer, B. (1995). Multiple choice vocabulary testMWTas a valid and
short test to estimate premorbid intelligence. Acta Neurologica Scandinavica, 91(5), 335–345.

[143] Lieberman, J., Kane, J., & Alvir, J. (1987). Provocative tests with psychostimulant drugs in
schizophrenia. Psychopharmacology, 91(4), 415–433.

[144] Locke, E. A., Shaw, K. N., Saari, L. M., & Latham, G. P. (1981). Goal setting and task perfor-
mance: 1969–1980. Psychological Bulletin, 90(1), 125.

[145] Luby, E. D., Gottlieb, J. S., Cohen, B. D., Rosenbaum, G., & Domino, E. F. (1962). Model
psychoses and schizophrenia. American Journal of Psychiatry, 119(1), 61–67.

[146] Luhrmann, T.M., Padmavati, R., Tharoor, H., &Osei, A. (2015). Differences in voice-hearing
experiences of people with psychosis in the USA, India and Ghana: interview-based study. The
British Journal of Psychiatry, 206(1), 41–44.

96



[147] Lynall, M.-E., Bassett, D. S., Kerwin, R., McKenna, P. J., Kitzbichler, M., Muller, U., & Bull-
more, E. (2010). Functional connectivity and brain networks in schizophrenia. Journal of
Neuroscience, 30(28), 9477–9487.

[148] Maia, T. V. & Frank, M. J. (2017). An integrative perspective on the role of dopamine in
schizophrenia. Biological psychiatry, 81(1), 52–66.

[149] Marco-Pallarés, J., Grau, C., & Ruffini, G. (2005). Combined ICA-LORETA analysis of mis-
match negativity. NeuroImage, 25(2), 471–477.

[150] Markov, N. T., Ercsey-Ravasz, M. M., Ribeiro Gomes, A., Lamy, C., Magrou, L., Vezoli, J.,
Misery, P., Falchier, A., Quilodran, R., Gariel, M.-A., et al. (2014). A weighted and directed
interareal connectivity matrix for macaque cerebral cortex. Cerebral Cortex, 24(1), 17–36.

[151] Marr, D. (1982). Vision. San Francisco: Freeman.

[152] Marreiros, A. C., Kiebel, S. J., Daunizeau, J., Harrison, L. M., & Friston, K. J. (2009). Popula-
tion dynamics under the Laplace assumption. NeuroImage, 44(3), 701–714.

[153] Mathys, C., Daunizeau, J., Friston, K., & Stephan, K. (2011). A Bayesian foundation for indi-
vidual learning under uncertainty. Frontiers in Human Neuroscience, 5, 39.

[154] Mathys, C. D., Lomakina, E. I., Daunizeau, J., Iglesias, S., Brodersen, K. H., Friston, K. J., &
Stephan,K.E. (2014). Uncertainty inperception and theHierarchicalGaussianFilter. Frontiers
in Human Neuroscience, 8, 825.

[155] McKay, R. (2019). Measles, magic and misidentifications: a defence of the two-factor theory
of delusions. Cognitive Neuropsychiatry, 24(3), 183–190.

[156] McLean, B. F., Mattiske, J. K., & Balzan, R. P. (2017). Association of the jumping to con-
clusions and evidence integration biases with delusions in psychosis: a detailed meta-analysis.
Schizophrenia Bulletin, 43(2), 344–354.

[157] Miller, T. J., McGlashan, T. H., Rosen, J. L., Cadenhead, K., Ventura, J., McFarlane, W.,
Perkins, D. O., Pearlson, G. D., &Woods, S. W. (2003). Prodromal assessment with the struc-
tured interview for prodromal syndromes and the scale of prodromal symptoms: predictive
validity, interrater reliability, and training to reliability. Schizophrenia Bulletin, 29(4), 703–
715.

[158] Miller, T. J., McGlashan, T. H., Rosen, J. L., Somjee, L., Markovich, P. J., Stein, K., &Woods,
S. W. (2002). Prospective diagnosis of the initial prodrome for schizophrenia based on the
Structured Interview for Prodromal Syndromes: preliminary evidence of interrater reliability
and predictive validity. American Journal of Psychiatry, 159(5), 863–865.

[159] Mittal, V. A., Ellman, L. M., & Cannon, T. D. (2008). Gene-environment interaction and
covariation in schizophrenia: the role of obstetric complications. Schizophrenia Bulletin, 34(6),
1083–1094.

97



[160] Moghaddam, B. (2003). Bringing order to the glutamate chaos in schizophrenia. Neuron,
40(5), 881–884.

[161] Moghaddam, B. (2004). Targeting metabotropic glutamate receptors for treatment of the cog-
nitive symptoms of schizophrenia. Psychopharmacology, 174(1), 39–44.

[162] Moghaddam, B. & Javitt, D. (2012). From revolution to evolution: the glutamate hypothesis
of schizophrenia and its implication for treatment. Neuropsychopharmacology, 37(1), 4–15.

[163] Moran, R. J., Campo, P., Symmonds, M., Stephan, K. E., Dolan, R. J., & Friston, K. J. (2013).
Free energy, precision and learning: the role of cholinergic neuromodulation. Journal of Neu-
roscience, 33(19), 8227–8236.

[164] Moran, R. J., Symmonds, M., Stephan, K. E., Friston, K. J., & Dolan, R. J. (2011). An in vivo
assay of synaptic function mediating human cognition. Current Biology, 21(15), 1320–1325.

[165] Moritz, S., Veckenstedt, R., Bohn, F., Hottenrott, B., Scheu, F., Randjbar, S., Aghotor, J.,
Köther, U., Woodward, T. S., Treszl, A., et al. (2013). Complementary group metacognitive
training (MCT) reduces delusional ideation in schizophrenia. Schizophrenia Research, 151(1-
3), 61–69.

[166] Moritz, S., Veckenstedt, R., Hottenrott, B., Woodward, T. S., Randjbar, S., & Lincoln, T. M.
(2010a). Different sides of the same coin? Intercorrelations of cognitive biases in schizophrenia.
Cognitive Neuropsychiatry, 15(4), 406–421.

[167] Moritz, S., Veckenstedt, R., Randjbar, S., Vitzthum, F., & Woodward, T. (2011). Antipsy-
chotic treatment beyond antipsychotics: metacognitive intervention for schizophrenia patients
improves delusional symptoms. PsychologicalMedicine, 41(9), 1823–1832.

[168] Moritz, S., Vitzthum, F., Randjbar, S., Veckenstedt, R., &Woodward, T. S. (2010b). Detecting
and defusing cognitive traps: metacognitive intervention in schizophrenia. Current Opinion in
Psychiatry, 23(6), 561–569.

[169] Moritz, S. & Woodward, T. S. (2007). Metacognitive training in schizophrenia: from basic
research to knowledge translation and intervention. CurrentOpinion inPsychiatry, 20(6), 619–
625.

[170] Moutoussis, M., Bentall, R. P., El-Deredy, W., & Dayan, P. (2011). Bayesian modelling of
jumping-to-conclusions bias in delusional patients. Cognitive Neuropsychiatry, 16(5), 422–
447.

[171] Murray,G.,Corlett, P., Clark, L., Pessiglione,M., Blackwell, A.,Honey,G., Jones, P., Bullmore,
E., Robbins, T., & Fletcher, P. (2008). Substantia nigra/ventral tegmental reward prediction
error disruption in psychosis. Molecular Psychiatry, 13(3), 267–276.

[172] Murray, R.M.&Lewis, S.W. (1987). Is schizophrenia a neurodevelopmental disorder? British
Medical Journal (Clinical Research Ed.), 295(6600), 681–682.

98



[173] Myin-Germeys, I., Oorschot, M., Collip, D., Lataster, J., Delespaul, P., & Van Os, J. (2009).
Experience sampling research in psychopathology: opening the black box of daily life. Psycho-
logicalMedicine, 39(9), 1533–1547.

[174] Näätänen, R., Paavilainen, P., Rinne, T., &Alho, K. (2007). Themismatch negativity (MMN)
in basic research of central auditory processing: a review. Clinical Neurophysiology, 118(12),
2544–2590.

[175] Nakao, K., Jeevakumar, V., Jiang, S. Z., Fujita, Y., Diaz, N. B., Pretell Annan, C. A., Es-
kow Jaunarajs, K. L., Hashimoto, K., Belforte, J. E., & Nakazawa, K. (2019). Schizophrenia-
like dopamine release abnormalities in a mouse model of NMDA receptor hypofunction.
Schizophrenia Bulletin, 45(1), 138–147.

[176] Opitz, B., Rinne, T., Mecklinger, A., Von Cramon, D. Y., & Schröger, E. (2002). Differential
contribution of frontal and temporal cortices to auditory change detection: fMRI and ERP
results. NeuroImage, 15(1), 167–174.

[177] Perez, V. B., Woods, S. W., Roach, B. J., Ford, J. M., McGlashan, T. H., Srihari, V. H., &
Mathalon, D. H. (2014). Automatic auditory processing deficits in schizophrenia and clinical
high-risk patients: forecasting psychosis risk with mismatch negativity. Biological Psychiatry,
75(6), 459–469.

[178] Peters, E. & Garety, P. (2006). Cognitive functioning in delusions: a longitudinal analysis.
Behaviour Research and Therapy, 44(4), 481–514.

[179] Phillips, L. D. & Edwards, W. (1966). Conservatism in a simple probability inference task.
Journal of Experimental Psychology, 72(3), 346––354.

[180] Picardi, A., Fonzi, L., Pallagrosi, M., Gigantesco, A., & Biondi, M. (2018). Delusional themes
across affective and non-affective psychoses. Frontiers in Psychiatry, 9, 132.

[181] Powers, A. R., Mathys, C., & Corlett, P. R. (2017). Pavlovian conditioning–induced halluci-
nations result from overweighting of perceptual priors. Science, 357(6351), 596–600.

[182] Raihani, N. J. & Bell, V. (2017). Paranoia and the social representation of others: a large-scale
game theory approach. Scientific Reports, 7(1), 1–9.

[183] Rao, R. P. N. & Ballard, D. H. (1999). Predictive coding in the visual cortex: a functional
interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 79–87.

[184] Reed, E. J., Uddenberg, S., Suthaharan, P., Mathys, C. D., Taylor, J. R., Groman, S. M., &
Corlett, P. R. (2020). Paranoia as a deficit in non-social belief updating. Elife, 9, e56345.

[185] Rescorla, R. A. & Wagner, A. R. (1972). A theory of pavlovian conditioning: Variations in
the effectiveness of reinforcement and nonreinforcement. In A. H. Black & W. F. Prokasy
(Eds.),Classical Conditioning II: Current Research and Theory (pp. 64–99). New York: Apple-
ton Century Crofts.

99



[186] Rigoux, L., Stephan, K., Friston, K., & Daunizeau, J. (2014). Bayesian model selection for
group studies — revisited. NeuroImage, 84, 971–985.

[187] Ross, R.M.,McKay, R., Coltheart, M., & Langdon, R. (2015). Jumping to conclusions about
the beads task? A meta-analysis of delusional ideation and data-gathering. Schizophrenia Bul-
letin, 41(5), 1183–1191.

[188] Salvatore, G., Lysaker, P. H., Popolo, R., Procacci, M., Carcione, A., & Dimaggio, G. (2012).
Vulnerable self, poor understanding of others’ minds, threat anticipation and cognitive biases
as triggers for delusional experience in schizophrenia: a theoretical model. Clinical Psychology
& Psychotherapy, 19(3), 247–259.

[189] Sartorius, N., Jablensky, A., Korten, A., Ernberg, G., Anker, M., Cooper, J. E., & Day, R.
(1986). Early manifestations and first-contact incidence of schizophrenia in different cultures:
a preliminary report on the initial evaluation phase of the who collaborative study on determi-
nants of outcome of severe mental disorders. PsychologicalMedicine, 16(4), 909–928.

[190] Scarf, D., Zimmerman,H.,Winter, T., Boden,H., Graham, S., Riordan, B. C., &Hunter, J. A.
(2020). Association of viewing the films joker or terminator: dark fate with prejudice toward
individuals with mental illness. JAMANetwork Open, 3(4), e203423–e203423.

[191] Scarr, E., Cowie, T., Kanellakis, S., Sundram, S., Pantelis, C., & Dean, B. (2009). Decreased
cortical muscarinic receptors define a subgroup of subjects with schizophrenia. Molecular Psy-
chiatry, 14(11), 1017–1023.

[192] Scarr, E., Craig, J., Cairns, M., Seo, M., Galati, J., Beveridge, N., Gibbons, A., Juzva, S., Wein-
rich, B., Parkinson-Bates, M., et al. (2013). Decreased cortical muscarinic M1 receptors in
schizophrenia are associated with changes in gene promoter methylation, mRNA and gene tar-
geting microRNA. Translational Psychiatry, 3(2), e230–e230.

[193] Scarr, E., Hopper, S., Vos, V., Seo, M. S., Everall, I. P., Aumann, T. D., Chana, G., & Dean,
B. (2018). Low levels of muscarinic M1 receptor–positive neurons in cortical layers III and V
in brodmann areas 9 and 17 from individuals with schizophrenia. Journal of Psychiatry and
Neuroscience, 43(5), 338–346.

[194] Schmack, K., de Castro, A. G.-C., Rothkirch, M., Sekutowicz, M., Rössler, H., Haynes, J.-D.,
Heinz, A., Petrovic, P., & Sterzer, P. (2013). Delusions and the role of beliefs in perceptual
inference. Journal of Neuroscience, 33(34), 13701–13712.

[195] Schmack, K., Rothkirch, M., Priller, J., & Sterzer, P. (2017). Enhanced predictive signalling in
schizophrenia. Human BrainMapping, 38(4), 1767–1779.

[196] Schmack, K., Schnack, A., Priller, J., & Sterzer, P. (2015). Perceptual instability in schizophre-
nia: Probing predictive coding accounts of delusions with ambiguous stimuli. Schizophrenia
Research: Cognition, 2(2), 72–77.

100



[197] Schmidt, A., Antoniades, M., Allen, P., Egerton, A., Chaddock, C. A., Borgwardt, S., Fusar-
Poli, P., Roiser, J. P., Howes, O., & McGuire, P. (2017a). Longitudinal alterations in moti-
vational salience processing in ultra-high-risk subjects for psychosis. Psychological Medicine,
47(2), 243–254.

[198] Schmidt, A., Cappucciati, M., Radua, J., Rutigliano, G., Rocchetti, M., Dell’Osso, L., Politi,
P., Borgwardt, S., Reilly, T., Valmaggia, L., et al. (2017b). Improving prognostic accuracy in
subjects at clinical high risk for psychosis: systematic review of predictive models and meta-
analytical sequential testing simulation. Schizophrenia Bulletin, 43(2), 375–388.

[199] Schmidt, A., Palaniyappan, L., Smieskova, R., Simon, A., Riecher-Rössler, A., Lang, U. E.,
Fusar-Poli, P., McGuire, P., & Borgwardt, S. J. (2016). Dysfunctional insular connectivity
during reward prediction in patients with first-episode psychosis. Journal of Psychiatry and
Neuroscience, 41(6), 367–376.

[200] Schmidt, A., Smieskova, R., Aston, J., Simon, A., Allen, P., Fusar-Poli, P., McGuire, P. K.,
Riecher-Rössler, A., Stephan, K. E., & Borgwardt, S. (2013). Brain connectivity abnormalities
predating the onset of psychosis: correlation with the effect of medication. JAMA Psychiatry,
70(9), 903–912.

[201] Schmidt, A., Smieskova, R., Simon, A., Allen, P., Fusar-Poli, P., McGuire, P. K., Bendfeldt,
K., Aston, J., Lang, U. E., Walter, M., et al. (2014). Abnormal effective connectivity and psy-
chopathological symptoms in the psychosis high-risk state. Journal of Psychiatry and Neuro-
science, 39(4), 239–248.

[202] Schmidt, K. H. & P., M. (1992). Wortschatztest. Göttingen: Hogrefe.

[203] Schöbi,D.,Homberg, F., Frässle, S., Endepols,H.,Moran,R. J., Friston,K. J., Tittgemeyer,M.,
Heinzle, J., & Stephan, K. E. (2021). Model-based prediction of muscarinic receptor function
from auditory mismatch negativity responses. NeuroImage, 237, 118096.

[204] Schultz, W. (2002). Getting formal with dopamine and reward. Neuron, 36(2), 241–263.

[205] Schultz,W., Dayan, P., &Montague, P. R. (1997). A neural substrate of prediction and reward.
Science, 275(5306), 1593–1599.

[206] Schultze-Lutter, F. (2009). Subjective symptoms of schizophrenia in research and the clinic:
the basic symptom concept. Schizophrenia Bulletin, 35(1), 5–8.

[207] Schultze-Lutter, F., Addington, J., Ruhrmann, S., & Klosterkötter, J. (2007). Schizophrenia
Proneness Instrument, adult version (SPI-A). Rome: Giovanni Fioriti.

[208] Schultze-Lutter, F. & Koch, E. (2010). Schizophrenia Proneness Instrument: child and youth
version (SPI-CY). Rome: Giovanni Fioriti.

[209] Seeman, P. & Lee, T. (1975). Antipsychotic drugs: direct correlation between clinical potency
and presynaptic action on dopamine neurons. Science, 188(4194), 1217–1219.

101



[210] Seeman, P., Lee, T., Chau-Wong, M., &Wong, K. (1976). Antipsychotic drug doses and neu-
roleptic/dopamine receptors. Nature, 261(5562), 717–719.

[211] Selten, J.-P., Van Der Ven, E., & Termorshuizen, F. (2020). Migration and psychosis: a meta-
analysis of incidence studies. PsychologicalMedicine, 50(2), 303–313.

[212] Shaner, A. (1999). Delusions, superstitious conditioning and chaotic dopamine neurodynam-
ics. Medical Hypotheses, 52(2), 119–123.

[213] Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., Hergueta, T.,
Baker, R., Dunbar, G. C., et al. (1998). The Mini-International Neuropsychiatric Interview
(M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for
DSM-IV and ICD-10. The Journal of Clinical Psychiatry, 59(20), 22–33.

[214] Shergill, S. S., White, T. P., Joyce, D. W., Bays, P. M., Wolpert, D. M., & Frith, C. D.
(2014). Functional magnetic resonance imaging of impaired sensory prediction in schizophre-
nia. JAMA psychiatry, 71(1), 28–35.

[215] Shiga, T., Horikoshi, S., Kanno, K., Kanno-Nozaki, K., Hikita, M., Itagaki, S., Miura, I., &
Yabe, H. (2020). Plasma levels of dopamine metabolite correlate with mismatch negativity in
patients with schizophrenia. Psychiatry and Clinical Neurosciences, 74(5), 289–293.

[216] Siafis, S., Tzachanis, D., Samara, M., & Papazisis, G. (2018). Antipsychotic drugs: from
receptor-binding profiles to metabolic side effects. Current Neuropharmacology, 16(8), 1210–
1223.

[217] Smieskova, R., Roiser, J. P., Chaddock, C. A., Schmidt, A., Harrisberger, F., Bendfeldt, K.,
Simon, A.,Walter, A., Fusar-Poli, P.,McGuire, P. K., et al. (2015). Modulation ofmotivational
salience processing during the early stages of psychosis. Schizophrenia Research, 166(1-3), 17–
23.

[218] Snyder, S. H. (1976). The dopamine hypothesis of schizophrenia: focus on the dopamine re-
ceptor. The American Journal of Psychiatry, 133(2), 197–202.

[219] Speechley,W. J.,Whitman, J. C., &Woodward, T. S. (2010). The contribution of hypersalience
to the “jumping to conclusions” bias associated with delusions in schizophrenia. Journal of
Psychiatry and Neuroscience, 35(1), 7–17.

[220] Spratling, M. W. (2017). A review of predictive coding algorithms. Brain and Cognition, 112,
92–97.

[221] Stephan, K. E., Baldeweg, T., & Friston, K. J. (2006). Synaptic plasticity and dysconnection in
schizophrenia. Biological Psychiatry, 59(10), 929–939.

[222] Stephan, K. E., Friston, K. J., & Frith, C. D. (2009a). Dysconnection in schizophrenia: from
abnormal synaptic plasticity to failures of self-monitoring. Schizophrenia Bulletin, 35(3), 509–
527.

102



[223] Stephan, K. E., Iglesias, S., Heinzle, J., & Diaconescu, A. O. (2015). Translational perspectives
for computational neuroimaging. Neuron, 87(4), 716–732.

[224] Stephan, K. E. &Mathys, C. (2014). Computational approaches to psychiatry. Current Opin-
ion in Neurobiology, 25, 85–92.

[225] Stephan, K. E., Penny, W. D., Daunizeau, J., Moran, R. J., & Friston, K. J. (2009b). Bayesian
model selection for group studies. NeuroImage, 46(4), 1004–1017.

[226] Stephan, K. E., Schlagenhauf, F., Huys, Q. J., Raman, S., Aponte, E. A., Brodersen, K. H.,
Rigoux, L.,Moran, R. J., Daunizeau, J., Dolan, R. J., et al. (2017). Computational neuroimag-
ing strategies for single patient predictions. NeuroImage, 145, 180–199.

[227] Sterzer, P., Adams, R.A., Fletcher, P., Frith, C., Lawrie, S.M.,Muckli, L., Petrovic, P., Uhlhaas,
P., Voss, M., & Corlett, P. R. (2018). The predictive coding account of psychosis. Biological
Psychiatry, 84(9), 634–643.

[228] Strube, W., Marshall, L., Quattrocchi, G., Little, S., Cimpianu, C. L., Ulbrich, M., Schneider-
Axmann, T., Falkai, P., Hasan, A., & Bestmann, S. (2020). Glutamatergic contribution to
probabilistic reasoning and jumping to conclusions in schizophrenia: a double-blind, random-
ized experimental trial. Biological Psychiatry, 88(9), 687–697.

[229] Stuke,H.,Weilnhammer, V.A., Sterzer, P.,&Schmack, K. (2019). Delusionproneness is linked
to a reduced usage of prior beliefs in perceptual decisions. Schizophrenia Bulletin, 45(1), 80–86.

[230] Suhail, K. & Cochrane, R. (2002). Effect of culture and environment on the phenomenology
of delusions and hallucinations. International Journal of Social Psychiatry, 48(2), 126–138.

[231] Suthaharan, P., Reed, E. J., Leptourgos, P., Kenney, J. G., Uddenberg, S., Mathys, C. D., Lit-
man, L., Robinson, J., Moss, A. J., Taylor, J. R., et al. (2021). Paranoia and belief updating
during the COVID-19 crisis. Nature Human Behaviour, 5(9), 1190–1202.

[232] Sutton, R. S. (1984). Temporal credit assignment in reinforcement learning. PhD thesis, Uni-
versity of Massachusetts, Amherst, MA, USA.

[233] Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine
learning, 3(1), 9–44.

[234] Symmonds, M., Moran, C. H., Leite, M. I., Buckley, C., Irani, S. R., Stephan, K. E., Friston,
K. J., & Moran, R. J. (2018). Ion channels in EEG: isolating channel dysfunction in NMDA
receptor antibody encephalitis. Brain, 141(6), 1691–1702.

[235] Synofzik,M., Vosgerau, G., &Voss,M. (2013). The experience of agency: an interplay between
prediction and postdiction. Frontiers in Psychology, 4, 127.

[236] Teufel, C., Alexis, D.M., Todd, H., Lawrance-Owen, A. J., Clayton, N. S., &Davis, G. (2009).
Social cognition modulates the sensory coding of observed gaze direction. Current Biology,
19(15), 1274–1277.

103



[237] Tien, A. Y. (1991). Distribution of hallucinations in the population. Social Psychiatry and
Psychiatric Epidemiology, 26(6), 287–292.

[238] Todd, J., Harms, L., Michie, P., & Schall, U. (2013). Mismatch negativity: translating the
potential. Frontiers in Psychiatry, 4, 171.

[239] Tripoli, G., Quattrone, D., Ferraro, L., Gayer-Anderson, C., Rodriguez, V., La Cascia, C.,
La Barbera, D., Sartorio, C., Seminerio, F., Tarricone, I., et al. (2021). Jumping to conclu-
sions, general intelligence, and psychosis liability: findings from themulti-centre EU-GEI case-
control study. PsychologicalMedicine, 51(4), 623–633.

[240] Uhlenbeck, G. E. & Ornstein, L. S. (1930). On the theory of the brownian motion. Physical
Review, 36(5), 823.

[241] Valli, I.,Marquand, A. F.,Mechelli, A., Raffin,M., Allen, P., Seal,M. L., &McGuire, P. (2016).
Identifying individuals at high risk of psychosis: predictive utility of support vector machine
using structural and functional MRI data. Frontiers in Psychiatry, 7, 52.

[242] van de Leemput, I. A., Wichers, M., Cramer, A. O., Borsboom, D., Tuerlinckx, F., Kuppens,
P., van Nes, E. H., Viechtbauer, W., Giltay, E. J., Aggen, S. H., et al. (2014). Critical slowing
down as early warning for the onset and termination of depression. Proceedings of the National
Academy of Sciences, 111(1), 87–92.

[243] van den Heuvel, M. P., Sporns, O., Collin, G., Scheewe, T., Mandl, R. C., Cahn, W., Goñi, J.,
Pol, H. E. H., & Kahn, R. S. (2013). Abnormal rich club organization and functional brain
dynamics in schizophrenia. JAMA Psychiatry, 70(8), 783–792.

[244] van der Gaag, M., Hoffman, T., Remijsen, M., Hijman, R., de Haan, L., van Meijel, B., van
Harten, P. N., Valmaggia, L., de Hert, M., Cuijpers, A., &Wiersma, D. (2006). The five-factor
model of the Positive and Negative Syndrome Scale II: A ten-fold cross-validation of a revised
model. Schizophrenia Research, 85(1), 280–287.

[245] vanGogh, V. (1888, July 9/10). [Letter fromVincent vanGogh toTheo vanGogh]. Accessible
online at: https://vangoghletters.org/vg/letters/let638/letter.html.

[246] van Oosterhout, B., Smit, F., Krabbendam, L., Castelein, S., Staring, A., & Van der Gaag, M.
(2016). Metacognitive training for schizophrenia spectrum patients: a meta-analysis on out-
come studies. PsychologicalMedicine, 46(1), 47–57.

[247] van Os, J., Rutten, B. P., & Poulton, R. (2008). Gene-environment interactions in schizophre-
nia: review of epidemiological findings and future directions. Schizophrenia Bulletin, 34(6),
1066–1082.

[248] Vassos, E., Pedersen, C. B.,Murray, R.M., Collier, D.A., &Lewis, C.M. (2012). Meta-analysis
of the association of urbanicity with schizophrenia. Schizophrenia Bulletin, 38(6), 1118–1123.

[249] von Helmholtz, H. (1867). Handbuch der physiologischen Optik. Leipzig: Leopold Voss.

104

https://vangoghletters.org/vg/letters/let638/letter.html


[250] Walter, A., Suenderhauf, C., Smieskova, R., Lenz, C., Harrisberger, F., Schmidt, A., Vogel,
T., Lang, U. E., Riecher-Rössler, A., Eckert, A., et al. (2016). Altered insular function dur-
ing aberrant salience processing in relation to the severity of psychotic symptoms. Frontiers in
Psychiatry, 7, 189.

[251] Watkins, C. J. & Dayan, P. (1992). Q-learning. Machine learning, 8(3), 279–292.

[252] Watkins, C. J. C. H. (1989). Learning from delayed rewards. PhD thesis, King’s College,
Cambridge, United Kingdom.

[253] Weber, L. A., Diaconescu, A. O., Mathys, C., Schmidt, A., Kometer, M., Vollenweider, F.,
& Stephan, K. E. (2020). Ketamine affects prediction errors about statistical regularities: a
computational single-trial analysis of the mismatch negativity. Journal of Neuroscience, 40(29),
5658–5668.

[254] Weber, L. A., Tomiello, S., Schöbi, D., Wellstein, K. V., Müller, D., Iglesias, S., & Stephan,
K. (2022). Auditory mismatch responses are differentially sensitive to changes in muscarinic
acetylcholine versus dopamine receptor function. eLife, 11, e74835.

[255] Wechsler, D. (1981).Wechsler adult intelligence scale-revised (WAIS-R). SanAntonio: Psycho-
logical Corporation.

[256] Weinberger, D. R. (1987). Implications of normal brain development for the pathogenesis of
schizophrenia. Archives of General Psychiatry, 44(7), 660–669.

[257] Wellstein, K. V., Diaconescu, A. O., Bischof, M., Rüesch, A., Paolini, G., Aponte, E. A., Ull-
rich, J., & Stephan, K. E. (2020). Inflexible social inference in individuals with subclinical per-
secutory delusional tendencies. Schizophrenia Research, 215, 344–351.

[258] Wichers,M. (2014). Thedynamicnature of depression: a newmicro-level perspective ofmental
disorder that meets current challenges. PsychologicalMedicine, 44(7), 1349–1360.

[259] Wichers, M., Groot, P. C., Psychosystems, E., Group, E., et al. (2016). Critical slowing down
as a personalized early warning signal for depression. Psychotherapy and Psychosomatics, 85(2),
114–116.

[260] Williams, D. (2018). Hierarchical Bayesian models of delusion. Consciousness and Cognition,
61, 129–147.

[261] Winton-Brown, T. T., Fusar-Poli, P., Ungless, M. A., & Howes, O. D. (2014). Dopaminergic
basis of salience dysregulation in psychosis. Trends in Neurosciences, 37(2), 85–94.

[262] Woodward, T. S., Moritz, S., Cuttler, C., & Whitman, J. C. (2006). The contribution of a
cognitive bias against disconfirmatory evidence (BADE) to delusions in schizophrenia. Journal
of Clinical and Experimental Neuropsychology, 28(4), 605–617.

[263] Woodward, T. S., Munz, M., LeClerc, C., & Lecomte, T. (2009). Change in delusions is asso-
ciated with change in “jumping to conclusions”. Psychiatry Research, 170(2-3), 124–127.

105



[264] Worsley, K. J., Marrett, S., Neelin, P., Vandal, A. C., Friston, K. J., & Evans, A. C. (1996). A
unified statistical approach for determining significant signals in images of cerebral activation.
Human BrainMapping, 4(1), 58–73.

[265] Xu, F. & Tenenbaum, J. B. (2007). Sensitivity to sampling in Bayesian word learning. Develop-
mental Science, 10(3), 288–297.

[266] Yaniv, I. & Kleinberger, E. (2000). Advice taking in decision making: egocentric discount-
ing and reputation formation. Organizational Behavior and Human Decision Processes, 83(2),
260–281.

[267] Young, H. F. & Bentall, R. P. (1997). Probabilistic reasoning in deluded, depressed and normal
subjects: effects of task difficulty andmeaningful versus non-meaningfulmaterial. Psychological
Medicine, 27(2), 455–465.

[268] Zhou, Z., Zhu, H., & Chen, L. (2013). Effect of aripiprazole on mismatch negativity (MMN)
in schizophrenia. PLoS One, 8(1), e52186.

106


	Introduction
	The Dopamine Hypothesis of Schizophrenia
	The Glutamate Hypothesis of Schizophrenia
	The Dysconnectivity Hypothesis
	The Predictive Coding Account of Psychosis
	The Hierarchical Gaussian Filter
	Outlook

	Modelling Paranoid Delusions
	Introduction
	Methods
	Results
	Discussion

	Modelling Reasoning Biases
	Introduction
	Methods
	Results
	Discussion

	Modelling Sensory Learning
	Introduction
	Methods
	Results
	Discussion

	Conclusions
	Theoretical implications
	Clinical implications
	Limitations and future directions
	Final remarks

	Acronyms
	References

