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Summary

In the last few years, as superconducting devices reached tens and later
hundred qubits on a single chip, quantum computing has become a real-
ity [1, 2], tackling problems that would be prohibitively time-consuming
even with the most powerful classical supercomputers. These early quan-
tum computers (QC) are called noisy intermediate-scale quantum com-
puters, since environmental noise cannot be efficiently counteracted in
such small qubit arrays. While certain algorithms can indeed leverage
the potential of hundreds of imperfect qubits [3], the great promises of
quantum computing require perfect qubits that can be realized only in
qubit arrays of much larger scales, using quantum error correction (QEC)
[4, 5].

Spin qubits in semiconductors [6,7] are the only platform to date that
has the potential of reaching such scales, paving way for fault-tolerant
quantum computing. Qubits hosted in quantum dots (QDs) [6] have di-
mensions of few tens of nanometers, facilitating the integration of po-
tentially millions of qubit on a single chip. Especially compelling candi-
dates are spin qubits in silicon nanostructures. With decades of experi-
ence coming from the semiconductor industry, silicon is one of the most
studied elements with the prosperity of uniquely advanced manufactur-
ing techniques.

Electron spin qubits in silicon have immensely matured in the last
few years reaching single- and two-qubit gate fidelities matching the er-
ror thresholds of QEC algorithms [8, 9]. However, the weak intrinsic
spin-orbit interaction (SOI) in the conduction band necessitates the use of
micromagnets to aid the all-electical qubit control. This additional com-
plication presents new challanges in device design and fabrication. Hole
spin qubits in silicon and germanium QDs, on the other hand, benefit
from strong direct Rashba SOI [10] accelerating qubit control speeds to
several hundreds of megahertz [11,12], without the need to integrate ad-
ditional elements in the device.

In this thesis, we start with an introduction and a brief overview of
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the field, in Chapter 1, where we discuss the fundamental physics of hole
quantum dots and how they satisfy the stringent prerequisites of quan-
tum computing. Furthermore, we take a glimpse at the various compo-
nents of scalable architectures and the requirements on the qubit archi-
tecture posed by QEC codes. In the subsequent chapters we address the
question how the enhanced anisotropy and SOI affect two-qubit gates in
hole QDs. In particular, we discuss exchange anisotropy due to orbital
effects of the magnetic field and crystalline anisotropy in Chapter 2. We
also confirm the emergence of the zero-field splitting of triplet states in
hole QDs numerically, and develop an analytical model linking the effect
to the cubic Rashba SOI in Chapter 3. This work presents the first theo-
retical model to explain this recently observed effect in hole QDs [13]. Af-
terwards, in collaboration with the Zumbühl lab, we decipher the strong
spin-orbit effects in an experiment on Ge/Si nanowire QDs, where we
also identify the strong g factor renormalization caused by enhanced SOI
(Chapter 4). Furthermore, we study the tunability of SOI in silicon Fin-
FET devices in Chapter 5, identifying sweet spots where the qubit life-
time is greatly prolonged. Finally, we study the prospects of coupling
distant spin qubits by a chiral magnon mode localized at the edge of a
two-dimensional ferromagnet in Chapter 6.
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CHAPTER 1
Introduction

In this Chapter we revisit the basic requirements for quantum compu-
tation with spin qubits, focusing on the already achieved milestones in
hole-spin qubits and the challenges on the road ahead. We will keep re-
turning to the importance of spin-orbit interaction (SOI) as it is a crucial
element of the spin manipulation and readout techniques, but also have
a prominent effect on the two-qubit operations and lead to decoherence
channels, setting a trade-off between fast operations and information loss
time scales.

Many of the frameworks used for quantum computing with spin qubits
[6] have been developed with the focus on electron spin qubits. As it will
be shown in Section 1.1, the low-energy physics of hole quantum dots
(QDs) share some of the key properties with that of electrons. There-
fore in most sections of this introduction, electrons and holes (referred
to as particles) will be treated on the same footing, and only the pivotal
qualitative and quantitative differences between eletcrons and holes are
discussed.

1.1 Holes in group-IV semiconductors

In this section we first consider the band structure of group-IV semicon-
ductors, e.g., silicon or germanium, then we discuss the effect of various
external fields. In particular the effect of magnetic and electric fields, as
well as strain in the top of the valence bands is discussed.

1



CHAPTER 1. INTRODUCTION 2

The structure of the valence bands in semiconductors with a diamond
lattice, can be understood in the tight binding picture. While the states
of the conduction band have s like wavefunctions (with orbital angu-
lar momentum l = 0), the valence bands consist of three degenerate p
type wavefunctions (l = 1). Since the two basis atoms each reside in an
inversion asymmetric (tetrahedral) position, spin-orbit interaction splits
up the 6 states with l = 1 and s = 1/2 as

1l ⊗
1

2 s
=

3

2HH-LH
⊕ 1

2SO
, (1.1)

where the heavy- and light-hole (HH and LH) bands are degenerate at
the Γ point (k = 0) of the Brillouin zone with a total angular momentum
j = 3/2. The spin-orbit splitt-off bands (SO) with j = 1/2 have a lower
energy than the former two pairs of bands. The elementary unit cell in
a diamond lattice is a cube that contains two atoms that are located at
1/4 and 3/4 of the body diagonal of a cube, respectively. Therefore the
elementary unit cell is inversion symmetric, implying no spin splitting in
the band structure at finite momentum, i.e., every band is doubly degen-
erate throughout the Brillouin zone.

Due to the cubic symmetry of the Bravais lattice, the valence bands
can be described by a few parameters at zero magnetic field. Here we re-
strict our attention to the case of the HH and LH bands since these are the
ones hosting the lowest energy hole excitations. This model is commonly
referred to as the Luttinger-Kohn model [14, 15] with the Hamiltonian

HLK =
~2

2me

[(
γ1 +

5

2
γ2

)
k2 − 2γ2(k2

xJ
2
x + c.p.)

−4γ3({kx, ky}{Jx, Jy}+ c.p.)
]
,

(1.2)

where me is the vacuum electron mass, γi are the (dimensionless) Lut-
tinger parameters, and ki are the momenta along the 〈100〉 crystallo-
graphic axes. Moreover, ~Ji is the ith component of the atomic angular
momentum operator in the spin-3/2 subspace, i.e., where J2 = 3/2(3/2 +
1), the anticommutator is defined as {A,B} = (AB + BA)/2, and c.p.
denotes cyclic permutations. Note that, since conduction bands are not
included explicitly in Eq. (1.2), we can use the convention that holes have
positive energy.

Later on we will include the effect of the QD confinement and define
a qubit basis based on the lowest-energy eigenstates of the hole-QD. In
order to split the degeneracy of the lowest pair of eigenstates, we will
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need the Zeeman interaction in the HH and LH bands. This also acquires
an anisotropic correction and reads

HZ = 2µBκB · J + 2µBq(BxJ
3
x + c.p.), (1.3)

where κ and q are the coefficients of the isotropic and anisotropic terms
with typically κ � q and Bi are the magnetic field component along
the 〈100〉 directions. Here we neglected the orbital effects of the mag-
netic field for simplicity, but we will account for this correction in Chap-
ter 2 where this contribution have a qualitative effect on the exchange
anisotropy, and also in Chapter 4 where the strength of the applied mag-
netic field lead to clearly observable effects on the g-factor renormaliza-
tion.

The contribution of the electric field is twofold. Its homogeneous part,
i.e., HE = −eE · r breaks inversion symmetry, giving rise to Rashba spin-
orbit interaction, while its gradient, e.g., −e(∂zEz)z2/2, will be used later
for the confinement of the QD. Furthermore, we discuss how the strain
enters the Hamiltonian of holes. The strain term, also called Bir-Pikus
Hamiltonian [82], can be written as

HBP =
(
−Dd +

5

6
Du

)
trε− 2

3
Du(ε

2
xxJ

2
x + c.p.)

−4

3
D′u(εxy{Jx, Jy}+ c.p.) ,

(1.4)

where εij are the components of the strain tensor and the deformation po-
tentials Dd, Du, and D′u are of the order of electronvolts. As opposed to
the conduction band at k = 0, where strain only enters via the renormal-
ization of the fundamental bandgap, for holes it mixes different angular
momenta leading to rich new physics.

Both the Luttinger-Kohn and the Bir-Pikus Hamiltonians in Eqs. (1.2)
and (1.4) can be interpreted via the directionality of the p like atomic
wavefunctions. The hopping strength (i.e., the momentum term) could
vary if the electron is hopping from a site with pi to a neighbouring site
with a different pj atomic wavefunction. Similarly, the p orbitals are more
sensitive to the direction of deformation (i.e., the strain term), as there is
a difference whether the pi orbital is compressed along its axis or per-
pendicular to it. All these issues are absent in the mesoscopic physics
of conduction electrons as their atomic wavefunction is of s type that is
lacking such an orientation dependence.

It is in general hard to find the exact eigenvalues and eigenvectors of
Eq. (1.2) due to the mixing of different momentum and angular momen-
tum components. One example where such a solution is known is when
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γ2 = γ3 and the last two terms of Eq. (1.2) can be written as −2γ2(k · J)2,
that is the spherical approximation (or axial appriximation in the presence of
a magnetic field). This approximation is expected to perform well for ger-
manium where (γ3 − γ2)/(γ3 + γ2) ∼ 10% [17], and is particularly useful
in systems where the confinement of the holes has a cylindrical symme-
try [18,19], like in the case of Ge/Si core/shell nanowires where the holes
are confined in the cylindrically symmetric germanium core. However,
it should be kept in mind that the neglected anisotropic corrections can
lead to important qualitative effects.

Elongated hole quantum dots

In order to describe the low-energy physics of holes confined in a QD,
we need to extend the Hamiltonian HLK + HZ + HE + HBP with the ef-
fect of confinement. This is usually done either by considering hardwall
boundary conditions at some interfaces, or by applying a harmonic con-
finement. While the former approach is suitable to describe the effect
of bandgap mismatch between two semiconductors or a semiconductor-
oxide interface, the latter is a better approximation for the smooth con-
finement provided by electrostatic gates. In quasi-2D systems there is
one strong axis of confinement, e.g., in a two-dimensional electron/hole
gas realized in a semiconductor sandwich structure, where electrostatic
gates are used to confine a QD in the in-plane directions. Another ap-
proach is taking a nanowire, where the confinement is only provided by
gates along the wire direction. Herein we will focus on this latter case.

Here we briefly discuss a way to describe quasi one-dimensional sys-
tems with a harmonic potential along the axis of weak confinement (the
z axis). The total Hamiltonian can be written as

HQD = H0 +H1kz +H2k
2
z + V, (1.5)

where the four terms are

H0 = HLK

∣∣
kz=0

+HZ +Hx,y
E +HBP , (1.6a)

H1 = ∂kzHLK

∣∣
kz=0

, (1.6b)

H2 =
1

2
∂2
kzHLK

∣∣
kz=0

, (1.6c)

V = −eEzz +
~2γ1

2meL4
z

z2 , (1.6d)
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with me/γ1 being the average HH-LH mass and Lz is the harmonic con-
finement length [20]. Using the lowest-energy eigenstates |m〉 of H0 with
energy εm, one can project the Hamiltonian into a few transversal sub-
bands as

Hmn
QD = εmδ

mn +Hmn
1 kz +Hmn

2 k2
z − eEzδmnz +

~2γ1

2mel4z
δmnz2 , (1.7)

where the coupling between the subbands is given by powers of kz. Fi-
nally, accounting for higher subbands perturbatively, we write the effec-
tive Hamiltonian of the lowest two subbands as

Heff =
~2k2

z

2m∗
+

1

2
gµBBσz + ~kzvso · σ − eEzz +

~2

2m∗l4z
z2 +O(k3

z) , (1.8)

where gµBB = ε2 − ε1 is the qubit splitting, the Pauli matrices σi act
on the subband or ’spin’ degrees of freedom, and the effective mass m∗

in the first term incorporates corrections of higher subbands. Moreover,
the confinement length lz is now defined with the effective mass as lz =
Lz(me/m

∗γ1)1/4, and the effective spin-orbit term ~kzvso · σ is simply the
projection of H1kz to the subspace of |m〉 ∈ {|1〉 , |2〉} . This approach
will be used in Chapter 3 and 5 to treat the linear- and cubic Rashba SOI,
respectively. This consideration also allows us in the following sections
to discuss the requirements for hole-spin qubits to be used for quantum
computing in a simple way.

A qubit can be encoded in the lowest spin-doublet eigenstates of the
Hamiltonian (1.8) and the qubit splitting is controlled by the strength of
the Zeeman term ∆z = gµBB. In the absence of spin-orbit interaction,
the qubit basis states are simply product states of the harmonic oscillator
ground state and the eigenstates of σz, i.e., |0〉 ≡ |↑〉 and |1〉 ≡ |↓〉. When
the SOI term is nonzero, spin-qubits can still be defined, but the spin and
orbital degrees of freedom are not be separable any more.

1.2 Single-qubit control

In order to perform the single-qubit rotations required for universal quan-
tum computing, rotations of the spin around two perpendicular axes
need to be achieved. The concept to achieve such rotations originates
from the electron spin-resonance (ESR) experiments [21]. In a homoge-
neous magnetic field, the spin undergoes the Larmor precession around
the axis of the magnetic field. If the precessing spin is exposed to a
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transversal ac magnetic field oscillating with a frequency that matches
the precession frequency ωL, the spin will also rotate continuously around
the axis of the oscillating field. The latter rotation is referred to as Rabi
oscillation [22].

Even though, two-axis control might seem to be straightforward to
achieve using static and alternating magnetic fields, both of these mech-
anisms are obstructed by the low temperatures, the small size of the QDs,
and the requirement of individual qubit control in a multi-qubit sys-
tem. The spin rotation due to Larmor precession only requires a static
magnetic field, however, the Zeeman field ∆z would need to be con-
trolled individually for each qubit to induce a relative phase difference
between them. Changing the strength of the magnetic field B over tens
of nanometers is challenging, especially since fast temporal switching
would be required to induce precise relative phase shifts from qubit to
qubit. This problem can be circumvented by electrical tunability of the g
factor [23–25], as it will be shown later.

Oscillating magnetic fields are also unfavorable since fast qubit drive
would require strong ac currents in close proximity to the qubits [6, 26].
The heat dissipation of such alternating currents can have a detrimental
effect on the low-temperature physics of the QD. Fortunately, spin-orbit
interaction offers a solution to this problem by translating the effect of an
ac electric field to oscillations of the spin degree of freedom [27, 28].

In order to obtain a simple picture how all-electrical control is real-
ized, let us consider a simple model with strong confinement along x
and y, and harmonic confinement along the z direction. We include a
static transversal electric field Ey entering the effective Hamiltonian (1.8)
as a Rashba spin-orbit term, and an ac electric field along the confinement
direction, shaking the QD as

Heff =
~2k2

z

2m∗
+

~2

2m∗l4z
z2 +

1

2
gµBBσz + αEykzσx − eEz,0z cos(ωact) , (1.9)

where α is the coefficient of the Rashba SOI, corresponding to a spin-
orbit vector of vso = ~−1αEyx̂ in Eq. (1.8), and Ez,0 is the amplitude of
the oscillating electric field. Writing the momentum and the z coordinate
in terms of harmonic oscillator creation and annihilation operators a and
a†, we get

Heff = ∆orba
†a+

1

2
∆zσz + itso(a

† − a)σx + Ez cos(ωact)(a
† + a) , (1.10)
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where ∆orb = ~2/m∗l2z is the orbital splitting, ∆z = gµBB is the Zee-
man energy, tso = αEy/

√
2lz is the spin-orbit coupling strength, and

Ez = −eEz,0lz/
√

2. In order to find the lowest order contribution of SOI to
the Zeeman field and the oscillating transversal Zeeman field needed for
the two-axis qubit control, we consider two orbital levels and perform
second order perturbation theory. The effective qubit Hamiltonian then
reads

H =
1

2
∆̃zσz + ν0 cos(ωact)σx , (1.11)

with the coefficients being

∆̃z = ∆z

(
1− 2

t2so
∆2

orb

)
, (1.12a)

ν0 =
Eztso∆z

∆2
orb

, (1.12b)

where we assumed Ez, tso,∆z � ∆orb. Even from this simplistic model,
it is apparent that SOI facilitates the replacement of both the local static
magnetic field and the ac magnetic field required for ESR, by static and
alternating electric fields that are more compatible with low tempera-
tures and the small feature size of semiconductor devices.

For small Zeeman splitting ∆z and spin-orbit interaction tso Eq. (1.12a)
yields a correction to the qubit splitting that is proportional to the Zee-
man splitting. As long as the splitting of the qubit levels is linear in the
magnetic field, the effect of SOI is a small electric field dependent renor-
malization of the g factor, g → g̃(Ey). This small renormalization is al-
ready enough for selective qubit phase control. By changing their g factor
for a certain time period, a relative phase is assigned to the corresponding
qubit. The electrical tunability of the g factor has been observed in sev-
eral experiments by now providing means of accomplishing phase gates,
and also individual qubit addressability for the Rabi drive [23–25]. When
the magnetic field is not small any more, orbital effects of the magnetic
field can enter the g factor via SOI making it dependent on the magnetic
field strength [29, 30]. Furthermore, for holes where the SOI strength can
be profoundly strong, the renormalization of the g factor is not perturba-
tive but depends exponentially on the magnetic field, as it will be shown
in Chapter 4.

The strength of the oscillating coupling in Eq. (1.12b) determines the
rotation frequency of the qubit along an axis perpendicular to the static
Zeeman field. Due to the electric dipole moment elz/

√
2 involved in the



CHAPTER 1. INTRODUCTION 8

process, the SOI-assisted ESR is commonly referred to as electric-dipole
spin resonance (EDSR) [27, 31]. Other than being linearly dependent on
the electric fields and the Zeeman splitting, the driving strength ν0 in
Eq. (1.12b) depends strongly on the effective mass and the QD length, i.e.,
ν0 ∝ l4z . Therefore elongating the QD along the direction of the drive is
a key to achieve fast Rabi oscillations [27, 31]. The EDSR mechanism has
been used in recent experiments on hole QDs in germanium, to induce
the fastest Rabi oscillations to date [11,12], the success of which relies on
the strong direct Rashba SOI of holes [10].

Besides EDSR, another alternative to obtain an effective oscillating
magnetic field is to electrically modulate the anisotropy of the g tensor
[32]. If the qubit Zeeman splitting can be written as ∆0

Z = B·ĝ(V0), where
ĝ is the g tensor that depends on the gate voltage V0, small changes in the
gate voltage lead to a change in the Zeeman field δ∆Z = B · ∂V ĝ(V0)dV .
However, due to the change of anisotropy in the g tensor, the modulation
of the Zeeman field –as opposed to Eq. (1.12a)– can have two components
e.g., δ∆Z = δ∆

‖
Z + δ∆⊥Z . If a periodic drive is applied to the gate volt-

age with a frequency |∆0
Z |/~, the perpendicular Zeeman field component

δ∆⊥Z acts as a transversal oscillating field that is needed for the coherent
spin rotations.

We have seen two ways to connect the oscillating magnetic field of
the ESR experiment to oscillating electric fields that are more compatible
with further requirements of QD systems. However, as opposed to the
ESR experiments –where the emphasis is on the population difference be-
tween spin-up and spin-down electrons in an ensemble– for single qubit
control it is profoundly important how accurately one can flip the spin
state of a single particle [26]. Therefore, it is worthwhile to take a closer
look at the dynamics of a single spin subjected to a resonant transversal
field.

The rotating wave approximation

Here we consider the time-evolution under the Hamiltonian with a pe-
riodically modulated coupling of Eq. (1.11) [33]. Taking the state |ψ〉 =

U(t) |ψ̃〉 the Schrödinger equation can be written as

d

dt
|ψ̃〉 = − i

~

(
U †HU − i~U †U̇

)
|ψ̃〉

= − i
~
H̃ |ψ̃〉

(1.13)
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where the unitary transformation is chosen such that the frame is ro-
tating around the quantization axis by the frequency of the oscillating
coulpling, i.e., U(t) = exp(−iωactσz/2). In this case the Hamiltonian in
the rotating frame reads as

H̃ =
1

2
(∆z − ~ωac)σz +

1

2
ν0[1 + cos(2ωact)]σx +

1

2
ν0 sin(2ωac)σy , (1.14)

where the rapidly oscillating terms can be neglected if ∆z/~−ωac, ν0/~�
2ωac. This approximation is referred to as the rotating wave approxima-
tion with

HRWA =
1

2
(∆z − ~ωac)σz +

1

2
ν0σx . (1.15)

If the ac drive is resonant with the qubit frequency, i.e., ∆z/~ = ωac, the
total time evolution of the qubit state then includes coherent rotations of
the spin state around the x axis on top of the usual Larmor precession
as |ψ(t)〉 = exp(−i∆ztσz/2~) exp(−iν0tσx/2~) |ψ(0)〉, where |ψ(0)〉 = |0〉.
This driven rotation of the spin state provides a spin-flip time of top =
~/2ν0 that is the operation time of the single-qubit gate X .

The exact time evolution is illustrated in Fig. 1.1(a)-(b) for weak drive
(ν0/∆z = 0.01), where the RWA is a very good approximation, and for
ν0/∆z = 0.2, where the effect of the counter-rotating terms is not negligi-
ble any more. The plotted quantity is the expectation value of the polar-
ization operator (1 + σz)/2, that is unity for the state |0〉 and zero for |1〉.
The small modulation on top of the sinusoidal oscillations in Fig. 1.1(b)
seems harmless at first, but have serious implications on the qubit-flip
probability. Namely, after time top, the state does not end up exactly in
the other qubit basis state |1〉. This effect can be interpreted as a gate error
and is shown as a function of coupling strength in Fig. 1.1(c). It should be
also noted that the drive cannot be switched on abruptly, and the pulse
shape can also have a negative effect on the overall gate fidelity. These
issues have been addressed by Zeuch et al., where it is shown that the im-
perfect time-evolution can be corrected by considering 1/∆z corrections
to the RWA [34].

1.3 Two-qubit gates

Two-qubit gates are essential parts of a quantum computer, since they are
used to establish entanglement between qubit states. Depending on their
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Figure 1.1: (a)-(b) polarization of the state |ψ(t)〉 during the exact time-
evolution according to Eq. (1.13) with resonant drive, starting from the
state |ψ(0)〉 = |0〉. (c) Spin-flip fidelity, i.e., qubit polarization at t = top,
as a function of driving strength ν0/∆z.

role in the quantum architecture one can distinguish short- and long-
range entangling gates. Short-ranged two-qubit gates connect neigh-
bouring qubits in the array, while long-range gates can act as coherent
links between dense-quibit arrays [35], that are discussed in more detail
in Section. 1.6. Spin qubits offer a natural way to realize entanglement
between neighboring qubits, that is the inter-dot exchange interaction be-
tween tunnel-coupled QDs.

For example, the eigenstates of two decoupled qubits |↑↓〉 and |↓↑〉
are degenerate if the g factors are identical. As the shape of QDs is ad-
justed by electrostatic gates, a tunnelling channel opens between QDs
facilitating overlap between the wavefunctions of the two particles. Ow-
ing to Pauli’s exclusion principle, the spin triplets, i.e., (|↑↓〉 + |↓↑〉)/

√
2,

need to be paired with an antisymmetric orbital wavefunction, while the
spin singlet, i.e., (|↑↓〉 − |↓↑〉)/

√
2, has a symmetric orbital part that is

lower in energy [36]. In this simple case, where we have assumed that
the wavefunction can be written as a product of orbital and spin parts,
the low-energy dynamics of the system is described by the Heisenberg
Hamiltonian

HH =
J

4
σ1 · σ2 (1.16)

where J is the exchange splitting, separating the singlet from the triplets,
and σi is the vector of Pauli matrices acting on the ith qubit. The time
evolution according to the static Heisenberg Hamiltonian of Eq. (1.16)
for a time t = h/4J results in a

√
SWAP operation on the qubit. This is an

entangling gate which can be used to construct a controlled-NOT gate [6],
that is required by some of the most potent quantum error correction
algorithms (see Section 1.7).
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In order to find a model that correctly describes the low-energy be-
havior of our coupled-QD system, we assume that switching on the Coulomb
interaction between the two particles does not change the two-particle
ground state1. In this case one can write down the two-site Fermi-Hubbard
model as,

HFH =
∑
s=↑,↓

ε

2
(c†L,scL,s − c†R,scR,s) + tc(c

†
L,scR,s + c†R,scL,s)

+ U(nL,snL,−s + nR,snR,−s) ,

(1.17)

where c†j,s creates a particle on site j ∈ {L,R} with spin s ∈ {↑, ↓}, obey-
ing fermionic commutation relations. Furthermore we use the conven-
tion that −s = ↓ if s = ↑, and vice versa, and define the particle number
operator for site j as nj,s = c†j,scj,s. In this simple model each site con-
tains a single orbital level (higher orbitals are neglected), and have an
onsite potential ±ε/2 for left and right, respectively. Particles can tunnel
to the neighboring site by a hopping tc, and the double occupation of
each site is penalized by the charging energy U [37]. Projecting HFM onto
the two-particle sector leads to the commonly used effective Hamiltonian
of double QDs,

HDQD =


U + ε 0

√
2tc 0

0 U − ε
√

2tc 0√
2tc

√
2tc 0 0

0 0 0 0


S(2,0)

S(0,2)

S(1,1)

T(1,1)

(1.18)

where the order of the basis states is shown next to the matrix, with sin-
glet states being defined as |S(2,0)〉 = c†L,↑c

†
L,↓ |0〉, |S(0,2)〉 = c†R,↑c

†
R,↓ |0〉, and

|S(1,1)〉 = 1/
√

2(c†L,↑c
†
R,↓ − c†L,↓c

†
R,↑) |0〉. The notation T(1,1) comprises the

three degenerate triplets |Tss〉 = c†L,sc
†
R,s |0〉 and |T0〉 = 1/

√
2(c†L,↑c

†
R,↓ +

c†L,↓c
†
R,↑) |0〉. In a symmetric double QD, i.e., ε = 0, due to the coupling

between S(1,1) and the doubly occupied singlets, the S(1,1) will become
the ground state with energy −J ≈ −4t2c/U for weak tunnel-coupling.

This model is widely used in both theoretical and experimental works
to describe the inter-dot exchange interaction phenomenologically, since
it provides a correct qualitative description [38]. Furthermore the model
can be extended by spin-orbit or hyperfine interaction terms [29, 39].

1In other words, the lowest two-particle eigenstates are mainly composed of com-
binations of the lowest energy single-particle states.
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Despite the simple form of the Hamiltonian in Eq. (1.18), it is remark-
ably difficult to obtain its parameters from first principles. The Heitler-
London and Hund-Mulliken methods are using linear combinations of
single QD eigenstates of the left and right dot to project the full Hamil-
tonian of the tunnel-coupled QDs onto the low-energy subspace [40].
These methods rely on the assumption that the tunnel-coupling between
the QDs is weak and the low-energy two-particle eigenstates can be de-
scribed by products of single particle wavefunctions that are localized on
the left and right QD respectively. However, in many cases the electro-
static contribution of the Coulomb potential has an important influence
on the shape of the two-particle wavefunction. For double QDs that are
much longer than the Bohr radius aB (for Si aB ∼ 3 nm, while in Ge
aB ∼ 12 nm), the Coulomb repulsion is strong enough to force the two
particles apart even if the potential barrier between the QDs is reduced
to zero [41, 42].

This phenomenon, also referred to as Wigner molecularization [43,
44], and is illustrated in Fig. 1.2. The naive picture, when the left and
right peaks of the two-particle density merge into a single peak as the po-
tential barrier vB is reduced to zero corresponds to the weak interaction
or short QD limit (first row of figures, for aB = 5L). However, in mate-
rials with short Bohr radius, like silicon, the the Coulomb repulsion acts
as an effective tunnel barrier between the QDs, maintaining the bimodal
character of the particle density even in the single QD limit (second row
of figures, for aB = 0.2L). The details of the two-particle density calcu-
lation can be found in Section 1.A. Importantly, the exchange splitting is
strongly suppressed in the latter case, since it is determined by the over-
lap of the wavefunctions [43, 44]. Furthermore, we note that the strong
electrostatic contribution of the Coulomb interaction can also result in an
effective spin-spin interaction, by virtue of spin orbit interaction, even if
the QDs are not tunnel coupled [45].

Concluding the discussion on short-range entangling gates, we give a
brief overview on the experimental progress with two-qubit gates. Two
qubit gates in group-IV semiconductors have been realized with electron
QDs in silicon first [46]. Since then, two-qubit gate fidelities in Si im-
proved continuously [47] and already have reached the fault-tolerance
threshold [8, 9]. Fast two-qubit logic has also been demonstrated for
holes in planar germanium [48, 49], but achieving such a milestone for
hole QDs in silicon still lies in the future.

Establishing long-range two-qubit gates is an essential element of the
prospective large-scale quantum computers. Such gates act as coherent
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Figure 1.2: Double QD potential for an elongated dot along the weak
confinement axis z, with reducing barrier height vB from left to right
(blue curves). First row corresponds to the weak interaction regime,
while the second row is the strong interaction case (this latter is prac-
tically more feasible e.g., in Si). The effective one-dimensional Coulomb
pair-potential as in Ref. [50], is shown as dashed gray lines. Reduced
two-particle density ρ(z) is shown in red (in arbitrary units). The en-
ergy offset of particle density corresponds to the ground state energy.
The length unit L is the side length of the cross section (square), while
∆T = ~2/2m∗L2 is the orbital splitting in the transversal direction.

links coupling dense qubit clusters and thereby transmitting entangle-
ment over a larger scale quantum processor, while leaving room for clas-
sical control electronics on the same chip [35]. Due to the large spatial
separation (tens or hundreds of micrometers) such quantum gates re-
quire a mediator between the distant spin qubits to be entangled. Some
proposals use fermionic particles (e.g., electrons or holes) for such a trans-
mitter, while others rely on bosons (e.g., photons in a cavity or magnonic
modes of a ferromagnet). Here we briefly review some of these propos-
als.

Entangling gates based on electronic mediators use tunnel coupling
between the QD and a delocalized electron state (unoccupied). The chem-
ical potential of the QD is tuned below the resonance of the respective
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mode, making the overlap with the delocalized state highly tunable. The
mediator mode can be, e.g., a quantum Hall edge mode of a two-dimensional
electron gas [51], or an electronic cavity mode. The latter case has been
confirmed experimentally by achieving coherent tunnelling between QDs
mediated by a circular electronic cavity in GaAs [52]. A slightly different
approach is to coherently transfer an electron from dot to dot [53] using
a few sets of gates [54].

On the other hand, entanglement can also be transferred by bosonic
modes, e.g., photons. Qubits can be coupled to the cavity photons of a
microwave resonator via the electric dipole moment of the QD which in
turn couples to the spin due to SOI [55, 56]. Owing to their high quality
factors superconducting resonators are often subject of theoretical pro-
posals [57] and experimental studies [26, 27] for coupling qubits to the
lowest photonic mode of the resonator. In state-of-the-art experiments
20 MHz of qubit-qubit coupling strength can be achieved between sili-
con QDs separated by a distance of 250µm [27]. While numerous works
are targeting the so called transversal coupling regime, when the interac-
tion of the qubit with the cavity mode relies on the qubit splitting being
close the resonance, another opportunity is to couple the qubits longitu-
dinally. The main advantage of this coupling regime is that it does not
require near-resonant coupling with the cavity mode, since no spin-flip
occurs, while still facilitating two-qubit entangling gates [60].

Finally, magnonic modes in a ferromagnet can also be leveraged for
long distance entanglement using dipole-dipole or direct exchange inter-
action to couple the spin-qubits to the FM. Here, the interaction strength
depends on the transverse spin-susceptibility, that decays slower with
the distance in quasi-1D systems, providing longer range for the two-
qubit entangling gate [61]. As we will see in Chapter 6, chiral magnonic
modes provide such a one-dimensional channel, allowing for fast and
high-fidelity coupling between distant qubits.

1.4 Initialization and readout

Several qubit readout protocols have been developed along the two decades
of research in the field of semiconductor spin-qubits [6]. Early experi-
ments have measured the current through a double QD, where the de-
tuning between the two QDs is set such that the energy of the doubly
occupied singlet S(2,0) lies close to the states of (1, 1) charge configura-
tion [62], that is ε ∼ −U in Eq. (1.18). A current of particles from left to
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right can flow uninterrupted through the S(2,0) → S(1,1) → (1, 0) transi-
tion2. However, in the reversed biased case, when the double QD is re-
filled from the right i.e., (1, 0)→ S(1,1)/T(1,1), the system will (eventually)
fall into one of the triplet states, blocking the flow of the current in the ab-
sence of the spin-flip transition T(1,1) → S(2,0). This phenomenon is called
the Pauli spin blockade (PSB), and the measurement scheme established
in Ref. [62] is widely used to date for the demonstration of strong spin-
orbit interaction (as in the case of Chapter 4), or coherent Rabi oscilla-
tions [11,63]. The key property of PSB that is leveraged in those measure-
ments is that it converts spin to charge, by allowing |↑↓〉 = (|S〉+|T 〉0)/

√
2

(and also |↓↑〉) to tunnel into the |S(2,0)〉 state that is the only energetically
available state in the (2, 0) charge configuration, whereas |↑↑〉 and |↓↓〉
will stay in the (1, 1) charge configuration.

The above mentioned readout technique has several advantages such
as being fast and working reliably at high temperatures [63]. On the other
hand, the particle hosting the spin-qubit is lost to the reservoir during the
protocol, making the measurement destructive. Furthermore the mea-
sured signal relies on several tunnelling events as opposed to measuring
the spin in a single process. In the following we will consider single-
shot readout schemes that can measure the spin of the particle without
driving current through the QD hosting it.

The spin state of an individual electron in a QD was first read out
by Elzerman et al. [64]. In this readout protocol two additional compo-
nents are required, e.g., a reservoir on one side of the QD and a quantum
point contact (QPC) on the other side. The QD is coupled to the reser-
voir by a gate-tunable coupling and its chemical potential with respect
to the Fermi level of the reservoir is also adjustable by an electrostatic
gate. If the Zeeman splitting of the spin states is sufficiently large, the
spin-to-charge conversion can be achieved by tuning the QD chemical
potential such that the electron from a spin-up state can tunnel to the
reservoir but not from the spin-down state. Once the spin information
is converted into 1 or 0 charge on the QD, the charge state is measured
via the QPC [65]. The QPC is tuned such that the conductance is very
sensitive to the electrostatic potential of the QD, thus the escape of the
electron from the QD is observable in the QPC current.

Since the experiment of Elzerman et al., several improvements have
been proposed and implemented on the spin readout of quantum dots.

2The notation (m,n) refers to m (n) particles on the left (right) QD. Forward bias
means that particles can enter to the left QD and escape from the right.
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The spin-to-charge conversion in the original experiment has been severely
limited by the temperature, i.e., the Zeeman splitting of the QD needs to
be much larger than kBT . As we will see later, this condition is compro-
mised by the qubit relaxation process that requires small Zeeman split-
ting for long qubit coherence. The charge readout based on the dc current
measurement of the QPC can also be made significantly faster by radio
frequency (RF) reflectometry. Furthermore, the readout is still destruc-
tive, since the electron that hosts the qubit gets lost in the reservoir.

Using a sensor QD instead of the reservoir significantly reduces the
constraint on the Zeeman energy and temperature. A commonly em-
ployed technique is using the PSB for the spin-to-charge conversion and
initialization [66]. Here the qubit QD and the sensor QD contain a single
particle each, the qubit is in an unknown state |ψq〉 while the the particle
on the sensor QD is in the |↓s〉 state. The spin-to-charge conversion fol-
lows the same scheme as we have seen above with the left QD being the
sensor and the right QD the qubit. If the charge measurement collapsed
the two-electron wavefunction to the |S(2,0)〉 state, the quantum dot can
be brought back to the (1, 1) charge configuration by raising the chemi-
cal potential of the sensor dot. Provided that this step is adiabatic with
respect to the |S(2,0)〉 - |T↓↓〉 anticrossing (i.e., caused by SOI), the state
is initialized in the |↓s〉 |↓q〉 state. If no excess charge was observed in
the charge measurement, the system is already projected into the |↓s〉 |↓q〉
state, and there is no need for an additional gate pulse on the sensor dot.

Readout based on charge sensing

Charge sensors have also developed remarkably since the early works
using QPC-current based charge readout [64, 65]. Connecting the sensor
QPC or a single-electron transistor (SET) to a high frequency resonant
circuit, the reflection of a resonant carrier signal can be used to infer the
charge state of the nearby QD [67]. This RF reflectometry based read-
out has been used in numerous works ever since to measure the charge
state [68–72] down to (potentially) nanosecond timescales for donor based
spin qubits [73], providing a crucial advantage over the QPC-current
measurement. Using this charge readout scheme, the spin state of a sin-
gle particle in a QD can be read out by spin-to-charge conversion [73–75]
in 1.5µs microseconds and up to 97% fidelity [73]. Similar method for
gate-defined hole QDs result in 6µs readout time [66] with a fidelity lim-
ited by triplet relaxation in the PSB. There have been also potent theoreti-
cal proposals for current-based charge sensors using Aharonov-Bohm in-
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terferometers [76], but their experimental realization is yet to be achieved.
Moreover, further improvement is required from the scalability stand-
point, since the charge sensing circuitry would increase the single qubit
footprint tremendously.

Instead of having a separate tunnel junction to measure its absolute
charge, the QD can be coupled directly to the RF circuit [77, 78]. When
the particle on the QD tunnels to the neighboring site (e.g., to an other
QD), the quantum capacitance changes, shifting the resonance frequency
of the RF circuit. This readout protocol is called dispersive readout, since
the information is encoded in the dispersive shift of the reflected sig-
nal, rather than the damping of the resonant circuit as for the previously
considered RF-QPC (or RF-SET) readout. The advantage of the disper-
sive approach is the low back action on the qubit as well as the fact that
the readout circuitry does not contain a mesoscopic charge detector. On
the other hand, dispersive charge sensing to date is still outperformed
in operation speed by the other reflectometry-based readout schemes.
The best charge sensing times range from milliseconds to hundreds of
nanoseconds [77–79], whereas the measurement times are down to the
nanosecond regime for the RF-SETs [73]. Gate-based spin readout has
been achieved in 6µs with 98% fidelity in Si using superconducting res-
onators [79], while normal off-chip resonators require milliseconds for
single-shot readout of about 70% fidelity [80].

While single and two qubit gates improved tremendously reaching
the error thresholds of quantum error correction algorithms [8, 9], spin
readout remained to this date a ”skeleton in the closet”, down-performing
quantum gates in both operation times and fidelities. In fact new quan-
tum gate benchmarking techniques needed to be developed such as ran-
domized benchmarking [81] and gate set tomography [82], in order to
measure gate fidelities that exceed the performance of the qubit read-
out. Additionally, gate set tomography also allows for the identification
of systematic errors caused by the time evolution under an ”imperfect”
Hamiltonian [8, 82].

1.5 Decoherence

In this section we present some of the common frameworks to treat qubit
decoherence due to stationary classical noise. Here we follow the more
extensive review of Burkard et al. [37] and the lecture notes of Christoph
Kloeffel on ”Spin-based Quantum Information Science”. In the first subsec-
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tion general considerations and formulas are presented, assuming a sta-
tionary noise with a given noise power spectrum S(ω), while the noise
sources relevant for practical applications in semiconductor structures
are discussed in the subsection to follow.

Qubit decoherence due to classical noise

In the two-dimensional qubit subspace, the noise can be divided into lon-
gitudinal, i.e., ∝ σz, and transversal, i.e., ∝ σ±, components. The qubit
Hamiltonian ∆zσz/2 extended with the time-dependent noise terms reads

H =
1

2
[∆z + bz(t)]σz +

1

4
b+(t)σ− +

1

4
b−(t)σ+ , (1.19)

where bz(t) [b±(t)] is the noise term coupling longitudinally (transver-
sally) to the qubit. Within the framework of the Bloch-Redfield the-
ory [83] two important timescales can be deduced: the relaxation time
T1 and the dephasing time T2. In analogy with the Bloch equations in
the context of nuclear magnetic resonance, the relaxation time T1 de-
scribes the (exponential) decay of the qubit polarization, i.e., 〈σz〉, due
to transversal noise, whereas 〈σ±〉 decays with the dephasing time T2 as
a result of longitudinal noise.

The relaxation time can be derived straightforwardly, using Fermi’s
golden rule. Considering the spontaneous flipping of the qubit (|0〉 to |1〉
and vice versa)

1

T1

= Γ|0〉→|1〉 + Γ|1〉→|0〉 =
1

4~2
Sb−(∆z/~) , (1.20)

where the transition rates are expressed in terms of the power spectral
function of the transversal noise,

Sb−(ω) =

∫
dte−iωt (〈b+(t)b−(0)〉+ 〈b−(0)b+(t)〉) . (1.21)

In the formula for the relaxation rate the noise power spectrum shows
up at ω = ∆z/~. This is intuitive, since the qubit needs to emit/absorb
an energy of ∆z to flip its spin state. Similarly, the dephasing time in the
Bloch-Redfield approximation can be obtained as

1

T2

=
1

2T1

+
1

4~2
Sbz(0) , (1.22)
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where the second term is called the pure dephasing, often denoted as
1/T ∗2 , and the spectral function of the longitudinal noise Sbz(ω) is defined
analogous to Eq. (1.21).

The Bloch-Redfield approximation is valid only if the noise is Marko-
vian and decoherence times are much longer than the correlation time
of the noise, i.e., the noise is local in time. Or equivalently, the power
spectrum needs to change slowly on the scale of the respective decoher-
ence rates, i.e., Sb−(∆z/~) ≈ Sb−(∆z/~± T−1

1 ) for relaxation and Sbz(0) ≈
Sbz(T

−1
2 ) for dephasing [84]. The condition for the relaxation time T1

is usually fulfilled, but the one for dephasing breaks down for some
of the practically relevant noise spectra, e.g., the 1/f charge-noise with
Sbz(ω) ∝ 1/ω.

In order to find a better description for the pure dephasing 1/T ∗2 , we
abandon the Bloch-Redfield approximation and consider the so called
filter function formalism [37, 85–87]. This method accounts for the time-
evolution of the qubit spin due to external drive, e.g., when pulses are
applied to prolong the coherence of the qubit. Assuming the amplitude
of the noise is much smaller than the qubit Zeeman splitting, i.e., b/∆z �
1, and the applied π pulses are instantaneously flipping the qubit spin
as σ̃z = r(t)σz with r(t) ∈ {−1, 1}, the decay due to pure dephasing is
〈σ±(t)〉 ∼ exp(−χ(t)), where

χ(t) =
1

8π~2

∞∫
−∞

dωSbz(ω)
F (ωt)

ω2
, (1.23)

with the filter function given by

F (ωt) = ω2
∣∣∣ ∫ t

0

r(t′)eiωt
′
dt′
∣∣∣2 . (1.24)

For a given pulse sequence the filter function can be straightforwardly
evaluated. In the case of a Ramsey experiment where no pulses are ap-
plied, the filter function is F (ωt) = 4 sin2(ωt/2). That is the filter function
of free induction decay (FID), shown in Fig. 1.3. The pure dephasing time
is then defined by χ(T ∗2 ) = 1, that is when the transversal qubit polariza-
tion decays to 1/e. As opposed to the result of Eq. (1.22) obtained in the
Bloch-Redfield approximation, the pure dephasing in the filter function
formalism accounts for fluctuations with finite frequencies as well.

If the noise is longitudinal and its spectrum is well approximated by a
power-law, i.e., Sbz(ω) ∝ |ω|−β , the decay of the transversal component of
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the qubit polarization reads 〈σ±(t)〉 ∼ exp[−(t/T ∗2 )1+β]. This can be seen
by a simple substitution of the integration variable τ = ωt in Eq. (1.23).
Since the filter function of FID is finite at ω = 0, the divergence of the
noise power-spectrum necessitates the introduction of a low-frequency
cutoff ωir, that is the averaging time of the Ramsey experiment. In other
words, noise components changing slower than the measurement time
only give a constant contribution of the qubit splitting during the Ramsey
experiment.

If pulses are applied, the low-frequency noise components, i.e., ω <
1/t can be mitigated. For example in a Hahn echo experiment, where an
π pulse is applied at t′ = t/2 the filter function is F (ωt) = 16 sin4(ωt/4).
For low frequencies, F (ωt)/ω2 ∼ ω2 in (1.23), hence providing a natural
low-frequency cutoff for the 1/f -noise, (see Fig. 1.3). Another important
example is the static noise, i.e., Sbz(ω) ∝ δ(ω), the effect of which is com-
pletely eliminated by the echo pulse.

Furthermore, a timescale often reported in experiments is T2,Rabi, the
decay of 〈σz〉 during continuous Rabi drive. This decay is analogous to a
Hahn echo type of experiment with several π pulses, hence the notation
T2,Rabi. The driven case analogue of the relaxation process is the decay
timescale T1ρ, when the qubit is initialized along the axis of rotation. In
that case the filter function is sampling the noise spectrum at the Rabi
frequency (see Fig. 1.3), rather than ω = 0, and therefore T2,Rabi > T ∗2 for
low-frequency noise.

Finally, for the sake of completeness, we note that the pure dephas-
ing formula in Eq. (1.22) in the Bloch-Redfield approximation can be ob-
tained from the filter function formalism, exploiting that F (ωt)/ω2 in
Eq. (1.23) is strongly peaked around ω < 1/t. If the spectral function
varies slowly on the scale of the dephasing rate, it can be factored out as
Sbz(0) for timescales t ∼ T ∗2 . The remaining frequency integral yields 2πt,
regardless of the form of the filter function, thus leading to Eq. (1.22).

Noise sources

In the early days of semiconductor based quantum computing, the coher-
ence of electron spin qubits in GaAs heterostructures has been severely
limited by the fluctuating nuclear spin environment that couples to the
qubit via (contact) hyperfine interaction [38]. Even though group-IV
semiconductors like Si and Ge contain a significantly lower proportion
of nuclear-spinful isotopes, hyperfine noise is still present. Owing to the
slow dynamics of the nuclear spins, the spectral function of hyperfine
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Figure 1.3: Filter function defined in Eq. (1.24), for three practically im-
portant cases: free induction decay (FID) shown in blue, Hahn-Echo
pulse (H-E) shown in red, and Rabi drive (Rabi) shown in green. Ver-
tical guidelines correspond to x = ±2πfRabit.

noise can be approximated as Sbz(ω) = σ2
bδ(ω), where σ2

b ∝ 1/Nnuc is the
variance of the Zeeman field fluctuations due to the nuclear spins. In hole
states, owing to their p-type bloch function, the contact hyperfine inter-
action is suppressed, however, other hyperfine contributions can still act
as a source of decoherence [88]. While the respective noise spectrum is
qualitatively similar, the coupling mechanism can be strikingly different
from that of electrons, showing nontrivial dependence on strain, device
geometry and electric field [89, 90].

Further inevitable sources of noise include charge noise or 1/f -noise
that is the fluctuation of electric field due to fluctuations of gate volt-
age, or fluctuating charge traps formed at the interfaces or the gate ox-
ide. Even though the origin of the noise is not well understood, it has
been confirmed by several experiments that the low-frequency part of the
spectral density is inversely proportional to the noise frequency, hence
the name 1/f -noise [91–93]. Charge noise couples to the qubit via spin-
orbit interaction or a magnetic field gradient. Due to the strong Rashba
type of spin-orbit interaction, the coherence of hole-spin qubits is often
limited by charge noise. However, in certain geometries and growth di-
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rections the spin-orbit interaction can be switched off, leading to dephas-
ing sweet spots, where T ∗2 → ∞, at finite electric fields in Si FinFET de-
vices [20].

Dynamical deformations of the lattice, i.e., phonons, also generate a
fluctuating electric field that can couple to the qubit in a similar way as
we have seen for the case of charge noise. In Si and Ge the coupling
to phonons happens via the deformational potential mechanism. The
piezoelectric contribution is not present as the basis atoms do not have
a net polarization. The primary phonon-induced decoherence mecha-
nism is relaxation [89, 95] where an acoustic phonon is emitted, having
an energy equal to the qubit splitting. Dephasing mechanisms on the
other hand require a two phonon processes [96] due to the conservation
of energy. The spectral function of the phonon bath is determined by the
phonon density of states and therefore, depending on the dimensionality
of the device, it is proportional to some high power of the frequency for
small qubit splittings.

Having discussed quantum gate and readout protocols as well as de-
coherence timescales, we provide a summary of these relevant timescales
and error rates for some of the most recent and most influential experi-
ments on electron spin-qubits in silicon (see Table 1.1) where we distin-
guish experiments according to the qubit temperature. The correspond-
ing quantities are collected for hole-spin qubits as well in Table. 1.2. Com-
parison of the timescales in the two tables reflects on the accelerated life
of hole-spin qubits that is driven by the strong direct Rashba SOI [10].
Finally, we also remark that decoherence timescales have been measured
already in hundreds of experiments. For a detailed quantitative compar-
ison in different materials, qubit definitions, and noise sources we refer
the reader to the extensive review of Ref. [97].

1.6 Scalability

So far we have been considering the so called qubit layer of the qaun-
tum computer, that is expected to work at sub-kelvin temperatures. We
have seen that one of the key challenges is the compactification of the
readout circuitry. Until this point, the goal has been to identify a qubit
architecture with fast operation and long coherence times in a scalable
fashion, that is the qubit footprint facilitates control, readout, and suf-
ficient qubit-to-qubit connectivity for quantum error correction (QEC)
algorithms. However, scalability of the quantum layer is only a neces-
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Electrons electrons in Si [8, 9] hot electrons in Si [98, 99]
X gate 4 MHz, F = 99.7% 1-2 MHz, F = 98.7%
Z gate ∼ ∼
T1 > 10 ms 2-20 ms
T ∗2 6-20µs 2µs

T2,Rabi 50µs 8µs
two-qubit gate 5 MHz, F = 99.5% 2.5 MHz, F = 86.1%

readout v ∼ 0.6 (RF) v ∼ 0.2 (SET)
long-range gate 20 MHz, d = 250µm [27] –

Table 1.1: Characteristic timescales and fidelities for a few state-of-the-art
experiments on electrons. The first comulmn, ’electrons in Si’ correspond
to measurements at the usual dilution refrigerator temperatures (tens of
mK), while the temperature of ’hot’ electrons is ∼ 1 K. ’RF’ refers to RF-
SET readout, while ’SET’ is normal SET based charge readout. F is gate
fidelity, v is the readout visibility, and d qubit-to-qubit distance.

Holes holes in planar Ge [48, 49] hot holes in Si [63]
X gate 20 MHz, F = 99.4% 147 MHz, F = 98.9%
Z gate ∼ 45 MHz
T1 1-16 ms > 10µs
T ∗2 150-400 ns 70-200 ns

T2,Rabi > 100µs (CPMG) > 2µs
two-qubit gate 10-100 MHz –

readout 10µs, v ∼ 0.8 (RF) (dc)
long-range gate – –

Table 1.2: Characteristic timescales and fidelities for a few state-of-the-art
experiments on holes. Holes in planar Ge correspond to measurements
at the usual dilution refrigerator temperatures (tens of mK), while the
temperature of ’hot’ holes in Si is ∼ 1-4 K. In the parentheses ’dc’ refers
to dc current based readout, i.e., a particle current is flowing through
the measured QD. Furthermore T2,Rabi is replaced by T2,CPMG (where the
qubit coherence is prolonged by ’CPMG’ refocusing pulses) for Ge in the
absence of the former data.
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sary condition for scalable quantum computing. Scalability has to be
successfully implemented also for the quantum-classical interface that
connects the qubit layer with the room temperature classical control. To
date, the largest quantum chips consist of a few tens or hundred qubits
controlled by a large number of analog cables, limiting the expansion
of the qubit array [1, 2]. Making use of the advanced fabrication tech-
niques and decades of experience with the material, the silicon CMOS
technology is envisioned to expedite the progress towards truly scalable
quantum computers.

The aforementioned QEC algorithms require repeated feedback be-
tween the qubits and the classical control. One of such feedback loops
would consist of a digital signal sent from the classical driver to a digital-
analog converter (DAC) that translates the digital signal into analog dc
signals, pulses, and microwave signals used to communicate with an ar-
ray of qubits. This analog signal needs to be demultiplexed –i.e., sep-
arated with respect to the addressed qubit– and then sent toward the
respective qubits. Some qubits are then read out, the signals (analog) are
multiplexed and converted back to a digital signal (ADC) that arrives at
the classical control thus closing the loop.

Few-qubit devices can be controlled directly by room temperature
electronics skipping the multiplexing step, but this approach cannot be
carried over for thousands or millions of qubits. While the multiplexing
still needs to happen at the qubit temperatures to minimize the number
of input and output lines to and from the higher temperature electron-
ics, the conversion between analog and digital signals can be deferred to
cryogenic temperatures where higher cooling powers are available [100].
For the qubit control, the cryogenic electronics should be able to generate
ns pulses and microwave signals as well. These requirements are fulfilled
by the cryo-CMOS technology [100–104].

So far we have discussed that the elements of the analog control cir-
cuitry can be deferred to cryogenic temperatures. Another step forward
toward full scalability would be to bring the qubits and multiplexers to
the same temperature as the ADC/DAC layer. One approach is to de-
velop electronics that are suitable for the even smaller cooling powers of
a dilution refrigerator, working at 100 mK temperatures [105, 106]. An
other promising alternative is to use hot spin-qubits in silicon that oper-
ate in cryogenic temperatures [63, 98, 99], therefore –leveraging the full
potential of the CMOS technology– in the future they are expected to fa-
cilitate the integration of the electronics and the qubits on the same die.
Such an approach requires clever device design to bring the electronics
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as close as possible to the qubit array that they control.
A recent proposal suggests to arrange small, dense qubit arrays in a

checkerboard pattern with their corresponding control electronics [35].
In order to connect the qubit islands –forming a quantum processor of
a larger scale– coherent links bridging over micrometer distances are
highly desired. These links can be thought of as long-range two-qubit
gates that mediate entanglement between qubit islands. There have been
several theoretical proposals to realize such a long-range entanglement [53,
56, 57, 60, 61, 107–109], and the experimental realization of such a coher-
ent link –using electronic cavities and superconducting resonators– is a
recently achieved milestone in the field [26, 27, 52].

1.7 Quantum error correction on scalable spin
qubit arrays

Most of the quantum algorithms promising exponential speed up for
solving certain problems require decoherence free qubits (at least on the
time-scale of the total running time) and a universal set of quantum gates.
However, as we have seen in Section 1.5 this is practically not achievable
in the real world due to the finite coupling to the environment. In order to
tackle such problems we need to convert noisy qubits into a smaller num-
ber of logical qubits that maintain their coherence ’indefinitely’. One of
the early proposals from Peter Shor was inspired by the classical repeti-
tion code and used 9 qubits to encode a logical qubit, where both bit- and
phase-flip error probabilities are reduced from p to p2 [110]. This simple
error correction approach, however, requires rich connectivity between
the physical qubits in order to realize two-qubit gates between logical
qubits. More generally, quantum error correction (QEC) algorithms aim
to encode a logical qubit in a qunatum state that is distributed among a
large number of qubits such that individual qubit errors can be detected
without influencing the logical qubit [4, 5].

Here we briefly discuss one of the most popular topological error cor-
rection codes, the surface code, based on the review article of James Woot-
ton [4]. We take a square grid of qubits and divide them into two groups
(data and ancilla qubits) distributed in a checkerboard pattern. For each
ancilla qubit we define a plaquette enclosed by the four neighbouring
data qubits. The ancillas are used to measure the eigenvalue of the X
(Z) stabilizer of a given plaquette, that is the product of σxi (σzi ) operators
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with i indexing the four nearest-neighbour data qubits. The X and Z sta-
bilizers are defined for each plaquette in an alternating pattern, leading
to a set of mutually commuting operators with eigenvalues ±1. The sta-
bilizer space is then the subspace of the total Hilbert space for which all
stabilizers have eigenvalue +1. Note that a single bit-flip error changes
the eigenvalues of two Z stabilizers from +1 to −1, thereby helping to
keep track or correct such error types (similarily X stabilizers monitor
phase-flips) in the periodically applied stabilizer measurements. For the
definition of logical qubits, it is crucial how stabilizers are defined on the
boundaries. Stabilizers on the boundaries of the system are defined as
merging all the incomplete plaquettes of the same type (X or Z) that touch
in the corners. Internal boundaries can be realized as well by switching
off stabilizer measurements thereby deactivating some plaquettes on the
lattice3.

It can be shown that the Z stabilizers with −1 eigenvalue can be as-
sociated with anyonic quasiparticles of one flavour while X stabilizers
with −1 eigenvalue correspond to anyons of a different flavour4. Due
to the definition of stabilizers such anyons can be localized either on the
plaquettes or the boundaries of the lattice. This brings us in position to
define a logical qubit in the Z basis using an internal boundary of partial
Z plaquettes: the state |0〉 (|1〉) represents zero (one) anyon on the inter-
nal boundary. We only keep track of anyons on the plaquettes, therefore
the qubit can be in a superposition of zero and one anyon. Furthermore,
by switching on and off certain ancilla measurements, the logical qubit
can be moved on the lattice, allowing one to make use of the anyonic
exchange statistics. Exploiting the pairwise creation and the exchange
statistics of anyons, single qubit X and Z gates can be applied on the log-
ical qubit as well as CNOT gates by braiding of logical qubits.

In order to realize the stabilizer measurements and the qubit opera-
tions on the lattice, it is sufficient to have a large number of spin qubits
in a square grid with single qubit rotations, nearest neighbour CNOT
gates, and projective measurements on the physical qubits available [4].
E.g., the Z-type stabilizer requires four CNOT gates each of them tar-
geted on the ancilla and controlled on the nearest-neighbour data qubits.
Measuring the ancilla on the Z basis yields the eigenvalue of the corre-

3It is important to note that boundary stabilizers do not participate in the periodic
stabilizer measurement cycles.

4Anyons are quasiparticles in 2D, obeying a peculiar exchange statistics. Here the
important property is that two subsequent exchanges of two anyons with different
flavours lead to a phase shift of −1.
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sponding stabilizer [111]. Defining the X-stabilizers follows the same
logic. Therefore we conclude that scalable spin qubit arrays are viable
platforms to achieve fault tolerant quantum computing. Assuming that
the single-, two-qubit and readout error probabilities within a stabilizer
measurement cycle are equal, e.g., pc, the most efficient error correction
algorithms [111–113] manage to achieve a fault tolerance error threshold
of pc ∼ 1%.

1.A Details of the particle density calculation
in a double QD

In Fig. 1.2 we have considered a double QD in a nanowire geometry with
square cross section of side length L, and a corresponding ’transversal’
orbital energy ∆T = ~2/2m∗L2. Assuming that the double QD is signifi-
cantly longer than the side length of the wire, we restrict our analysis to
the lowest transversal subband. This allows us to use the simple fitting
formula derived in Ref. [50] for the effective one-dimensional Coulomb
interaction, that is

Ceff(z) =
e2

4πε

1√
z2 + (L/4)2

, (1.25)

where ε is the dielectric constant of the material and L/4 acts as a short-
range cutoff for the Coulomb potential. Using this formula, we write the
spin-independent Hamiltonian of the double QD as

HDQD = − ~2

2m∗
(∂2
z1

+ ∂2
z2

) + VDQD(z1) + VDQD(z2) + Ceff(z1 − z2) , (1.26)

where VDQD(z) = vB(z2/a2−1)2 with a = 10L(
√

2∆T/vB+1)−1/2 being the
position of the minimum, fixed by the condition that VDQD(z = ±10L) =
2∆T . This parametrization of the double QD potential allows for a mean-
ingful comparison between different barrier heights. Then we calculate
ψ(z1, z2), the lowest energy eigenstate of the Hamiltonian. Owing to the
particle exchange symmetry of the Hamiltonian (that is z1 ↔ z2) one can
simply define the reduced two-particle density as

ρ(z) =

∫
dz′|ψ(z, z′)|2 . (1.27)
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Figure 1.4: Exchange splitting as a function of interaction strength. The
markers correspond to the strong (green) and weak interaction limit (or-
ange) for vB = 0 in Fig. 1.2.

Finally, we deduced the exchange splitting from the eigenvalues of
the Hamiltonian in Eq. (1.26). We define the exchange splitting J as the
energy difference between the lowest odd and even orbital states. The
exchange splitting as a function of aB/L is shown in Fig. 1.4, quantify-
ing the suppression of the exchange in the strong interaction case, when
the wavefunction overlap is reduced by the strong Coulomb repulsion.
Note that we refer to the strength of the Coulomb interaction via the Bohr
radius that is defined as aB = 4πε~2/e2m∗ (small value means strong in-
teraction).
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CHAPTER 2
Exchange interaction of hole-spin

qubits in double quantum dots

Adapted from:
Bence Hetényi, Christoph Kloeffel, and Daniel Loss

“Exchange interaction of hole-spin qubits in double quantum dots in highly anisotropic
semiconductors”,

Phys. Rev. Research 2, 033036 (2020)

We study the exchange interaction between two hole-spin qubits in a
double quantum dot setup in a silicon nanowire in the presence of mag-
netic and electric fields. Based on symmetry arguments we show that
there exists an effective spin that is conserved even in highly anisotropic
semiconductors, provided that the system has a twofold symmetry with
respect to the direction of the applied magnetic field. This finding fa-
cilitates the definition of qubit basis states and simplifies the form of
exchange interaction for two-qubit gates in coupled quantum dots. If
the magnetic field is applied along a generic direction, cubic anisotropy
terms act as an effective spin-orbit interaction introducing novel exchange
couplings even for an inversion symmetric setup. Considering the exam-
ple of a silicon nanowire double dot, we present the relative strength of
these anisotropic exchange interaction terms and calculate the fidelity of
the
√

SWAP gate. Furthermore, we show that the anisotropy-induced
spin-orbit effects can be comparable to that of the direct Rashba spin-
orbit interaction for experimentally feasible electric field strengths.
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2.1 Introduction

Over the last two decades localized spins in quantum dots (QDs) be-
came a promising candidate for scalable quantum computing [1,2]. Elec-
tron spins confined in semiconductor heterostructures benefit from the
feasibility of coherent control via electric-dipole-induced spin resonance
(EDSR) [3–6] and exchange based two-qubit gates [7–9]. On the other
hand, besides charge noise and phonon induced decoherence, electrons
are also exposed to fluctuating nuclear spins [10–12].

Holes confined in quantum dots [13,14] have recently attracted much
attention due to the possibility of fast single-qubit control by virtue of a
strong spin-orbit interaction (SOI) [15–21], and slow decoherence owing
to the suppressed hyperfine interaction [19, 22–25]. Single-shot readout
[26], exchange-coupled quantum dots [27, 28] and two-qubit gates [29]
have recently been realized in systems, where the heavy-hole (HH) and
light-hole (LH) states are well separated.

As opposed to planar QDs, eigenstates of holes being strongly con-
fined in more than one directions have significant contributions from
both the HH and LH states [30, 31]. These systems benefit from an even
stronger Rashba type of SOI that relies on the HH-LH mixing and is not
suppressed by the fundamental band gap [32, 33]. In agreement with
recent experiments [15, 17, 34–41], Si and Ge/Si core/shell nanowires
(NWs) are particularly promising platforms for such low-dimensional
hole systems. Remarkably, these NWs and QDs therein can be formed
with a complementary metal-oxide-semiconductor (CMOS) compatible
fabrication process [17,36,38,42,43], which indicates an exceptional scal-
ability. Furthermore, both Si and Ge are bulk inversion symmetric, lead-
ing to a suppressed piezoelectric interaction between holes and phonons,
and can be isotopically enriched, allowing to reduce the number of nu-
clear spins to nearly zero [44–47].

Two-qubit gates between hole-spin qubits in NW QDs can be imple-
mented in different ways. For example, the qubits can be coupled over
long distances via floating metallic gates [48] or via the cavity photons
of transmission-line resonators [16, 49] by harnessing the strong, direct
Rashba SOI (DRSOI) [32, 33]. Nearby qubits, on the other hand, can be
coupled by electrically controlling the wave function overlap and thereby
inducing an exchange interaction. However, this important possibility
has not been explored yet since the HH-LH mixing renders the interac-
tion multifaceted.
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In this paper, we address the question how the HH-LH mixing af-
fects the form of the exchange interaction in tunnel-coupled QDs. This
question is relevant not only for two-qubit operations but also for, e.g.,
the implementation of singlet-triplet qubits [50–52] and spin-to-charge
readout schemes [1, 7, 53] with holes. In the most general case the form

H(1,1) =
1

4
σL · J̄σR +

1

2

(
∆L · σL + ∆R · σR

)
(2.1)

needs to be assumed for the interaction between the qubit basis-states
|0〉 and |1〉 of the left (L) and right (R) QDs, where J̄ is the exchange-
matrix and the coefficients in the single-qubit part ∆L(R) are related to
the g-tensor ḡL(R) via ∆L(R) = µB ḡL(R)B. The Pauli-matrices (e.g., σLz =
|0L〉 〈0L|− |1L〉 〈1L|) are acting on the energetically lowest two eigenstates
of the QDs.

For electrons, the exchange matrix obtains the simple form Jij = JRij(n, θ),
where the parameters of the rotation Rij depend on the spin-orbit cou-
plings [54]. However due to the strong anisotropy of the hole states in
materials like silicon, the exchange interaction acquires anisotropic cor-
rections even in the case of an inversion symmetric setup. As reported
earlier, these anisotropic effects can enhance the role of spatial symme-
tries in the theoretical description [38, 55, 56].

We discuss the possible symmetries of a generic double quantum dot
(DQD) setup. If the confinement, the crystal structure, and the external
fields respect the same symmetry, an effective spin can be associated to
the qubit states of each QD. The conservation of this effective spin allows
one to identify selection rules for the exchange interaction J̄.

We consider coupled hole-spin qubits in a silicon NW and identify
the high symmetry axes of the magnetic field along which the effective
spin is conserved. However, effective spin projections can get mixed
upon application of an external electric field (inducing DRSOI), or by
changing the direction of the magnetic field due to crystalline anisotropy
(anisotropy-induced spin mixing). One of our central results is shown in
Fig. 2.4, where we present the effect of the hitherto neglected anisotropy-
induced spin mixing mechanism on the exchange interaction J̄ and the
induced Zeeman splittings ∆. This mixing will lead to anisotropic cor-
rections to the exchange interaction even in the presence of inversion
symmetry. Furthermore, we compare our results obtained for silicon
NWs with that of Ge/Si core/shell NWs, where crystalline anisotropy
manifests itself rather weakly in the valence band.
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If coupling is established between two QDs each hosting a single hole-
spin qubit, the exchange interaction can be utilized to implement a fun-
damental entangling gate such as the

√
SWAP [1]. However, in silicon

the anisotropic corrections can lead to systematic gate errors limiting the
fidelity of the

√
SWAP gate. We calculate the gate fidelities in the coher-

ent system and find that anisotropic corrections can be mitigated if the
gate is sufficiently fast.

This paper is organized as follows: In Sec. 2.2 we review the sim-
ple model of conduction band electrons and present the Hamiltonian of
the valence band holes together with the commonly used axial approx-
imation. In Sec. 2.3 we introduce an effective spin and discuss its ad-
vantages for the application as spin qubits. Projecting the Hamiltonian
of coupled quantum dots to the low-energy basis in Secs. 2.4 and 2.5,
we study the selection rules that apply for the exchange interaction if
the quantum dots respect a mutual twofold symmetry. In Sec. 2.6 we
propose a symmetry-decomposition of the Hamiltonian that reveals the
different effective spin mixing terms, compare the spin mixing effect of
the cubic anisotropy and the DRSOI, present the relative energy scales of
the anisotropic corrections to the exchange interaction, and calculate the
anisotropy-limited fidelities of a

√
SWAP gate. We conclude with a few

remarks and a short summary in Secs. 6.5 and 6.6. Technical details are
deferred to Apps. 2.A-2.H.

2.2 Single hole-spin qubit

We consider a single hole confined by electric gates either in a NW or
in a two-dimensional hole gas in a heterostructure. Provided that the
energy scale associated with the temperature is much lower than the or-
bital splittings, the hole will occupy the lowest orbital state. If the con-
finement is significantly stronger along one or two axes, the lowest state
will retain only two-fold degeneracy in the absence of magnetic field due
to the different effective masses corresponding to the HH and the LH
states [32, 33]. Splitting of these eigenstates by magnetic field establishes
an effective two-level system |0〉 , |1〉 to be referred to as hole-spin qubit
later on.

First we consider the general Hamiltonian of a single quasiparticle,
an electron (+) or a hole (−) confined in a QD

HQD = Hb(k, Ĵ) +HZ(Ĵ,B)± eE · r + VQD(r) +Hc, (2.2)
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where Hb(k, Ĵ) is the bulk Hamiltonian of either the conduction band
or the valence bands with the vector operator ~ Ĵ combining the atomic
orbital angular momentum [l = 0 (1) for the conduction band (valence
bands)] and the spin. The crystal-momentum including the vector po-
tential A is ~k = −i~∇ + eA, where e is the positive elementary charge.
The Zeeman termHZ(Ĵ,B) contains the spherical and anisotropic correc-
tions coupling the magnetic field B = ∇×A to the angular momentum
~ Ĵ. The electric field is taken into account via the term ±eE · r and the
inversion symmetric confinement potential VQD(r), where r is the posi-
tion operator of the quasiparticle. The last term Hc contains further cor-
rections such as the Rashba and the Dresselhaus spin-orbit interaction
(which are higher order terms in the multi-band perturbation theory) as
well as the strain and the interface effects.

In the case of the conduction band the s-wave property of the Bloch-
functions (i.e., zero orbital angular momentum) implies that the angu-
lar momentum components are given by the three Pauli matrices i.e.,
~ Ĵi = ~

2
σi. Since the Pauli matrices together with the identity matrix

form a complete basis, the effective Hamiltonian of the conduction band
electrons in a homogeneous magnetic field can be written in the simple
form

Hcond(k) +HZ(Ĵ,B) =
~2k2

2m∗
+ g∗µBB · Ĵ , (2.3)

with the effective band mass m∗ and g-factor g∗. The special property
of the Pauli matrices then imply that the Hamiltonian of Eq. (2.3) has
continuous axial symmetry (the Hamiltonian commutes with the spin
projection ĴB along the magnetic field).

In the presence of magnetic field the Luttinger-Kohn Hamiltonian
HLK + HZ describing the top of the HH-LH bands for cubic crystals can
be written as

HLK(k, Ĵ) +HZ(Ĵ,B) =

~2

2m

[(
γ1 +

5

2
γ

)
k2 − 2γ(k · Ĵ)2

]
+ (2κ+ γ)µBB · Ĵ + ∆γ K(k, Ĵ) + 2qµBB · Ĵ

(2.4)

where m is the bare electron mass, γ1 is the first Luttinger parameter,
γ = (2γ2 + 3γ3)/5 is the averaged Luttinger parameter, and ∆γ = γ3 − γ2

is the prefactor of the terms with cubic symmetry [57–61]. The spin-3/2
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vector operator ~ Ĵ is combining the atomic orbital angular momentum
(l = 1) and the spin. The Zeeman part HZ(Ĵ,B) = 2κµBB · Ĵ + 2qµBB · Ĵ
is composed of the isotropic and anisotropic terms [62] with coefficients
κ and q, respectively.

The first two terms of the Hamiltonian in Eq. (2.4) are invariant under
arbitrary rotations around the magnetic field axis i.e., [H(1,2), e−iφF̂B ] = 0

holds for any angle φ, where ~ F̂B is the total angular momentum ~F̂ =

~Ĵ + ~L̂ projected along the magnetic field, with the orbital angular mo-
mentum being ~L̂ = −i~ r×∇ [61]. For materials like Ge, InAs, and GaAs
these terms give the main contributions, since ∆γ � γ and q � |κ| (e.g.,
the anisotropy parameters ∆γ/γ obtained from Ref. [63] are 0.28, 0.091,
and 0.31, respectively), and the last two terms are treated only perturba-
tively within the framework of the axial approximation [30, 31, 63–65].

While for electrons even the spin ~ ĴB is approximately conserved,
only the total angular momentum conservation could be considered for
the valence band states. However, corrections due to cubic anisotropy
can play important role [20], especially for materials with strong cubic
anisotropy (e.g., silicon where ∆γ/γ = 1.1) corrections to the axial ap-
proximation cannot be treated perturbatively. We wish to identify an
effective spin as a good quantum number that is conserved by the Hamil-
tonian in Eq. (2.4), for the highly anisotropic case. For this we consider
the point symmetry group of the QD system in the next section.

2.3 Symmetry considerations

To properly define a qubit, we first consider the symmetries of the bulk
crystal in the presence of magnetic and electric fields and identify high
symmetry axes. This will allow us to identify an effective spin α =
mod2(FB) ∈ {−1/2, 1/2} [66], which is related to the eigenvalues of a
twofold symmetry operator such as D(C2B) = e−iπF̂B , where F̂B is the
total angular momentum operator and has half-odd-integer eigenvalues
FB. The eigenstates in a QD are also characterized by this quantum num-
ber α and can be used as a qubit, provided that the confinement respects
the considered symmetry. Finally, we present DQD geometries where
a twofold symmetry is maintained implying spin selection rules for the
interaction between the two quantum dots.

The Bravais lattice of a bulk crystal is defined by discrete translations
in the three spatial directions. The Bravais lattice can be invariant un-
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der further symmetry transformations, e.g., N -fold rotations CNa about
an axis a, inversion I , or their combinations, the so called rotoreflections
SNa = I · CNa. The set of symmetry elements taking the lattice into itself
constitute the point group of the crystal [67]. The external fields can also
be described in the language of point groups as follows. The homoge-
neous electric and magnetic fields E and B are invariant under any rota-
tions around their axis. In addition, E is symmetric and under reflections
with respect to any mirror plane that contains its axis. However, since
B is a pseudo-vector it only respects inversion symmetry and reflection
symmetry with respect to the single mirror plane being perpendicular to
it.

Comparing the symmetries of a cubic crystal with that of the external
fields one obtains the reduced point group of the crystal in the presence
of external fields which we summarize in Tab. 2.1 for different directions
of the external fields. The resulting point group is non-trivial, only if
the magnetic field is applied along a high-symmetry axis, e.g., the point
group C4, which contains the elements of a four-fold rotation around the
axis of the magnetic field B, i.e., C4 = {E,C4B, C2B, C

3
4B}, where E is the

identity element.

B ‖ 〈100〉 B ‖ 〈110〉 B ‖ 〈111〉 other
E = 0 C4h → α4 C2h → α C3i → α3 Ci
E ‖ B C4 → α4 C2 → α C3 → α3 C1

E ⊥ B Cs → α Cs → α C1 C1

Table 2.1: Reduction of the cubic point group (using Schoenflies sym-
bols) with diamond structureOh upon application of external electric and
magnetic fields [63]. To each point group containing an N -fold symme-
try one can associate (indicated by an arrow) a generalized effective spin
αN = modN(FB) as discussed in App. 2.A. The special case of a two-
level system in the ground state of a single QD with α ≡ α2 is used here
as qubit basis.

We have seen, that the bulk crystal can have a non-trivial point group
even if external fields are applied. Moreover, if we consider a quasi-
particle confined in a QD, the point group of this system consists of
the symmetry elements that respect the symmetries of the crystal, the
fields, and the confinement (i.e., the intersection of the corresponding
point groups). Fig. 2.1 illustrates confinement geometries respecting only
a single twofold symmetry of the magnetic field. The resulting point
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(a) (b)B B

S2B

C2B

Figure 2.1: Sketch of single QDs with two-fold symmetryR2 in the pres-
ence of a magnetic field B (red) where the blue objects illustrate the shape
of the QDs in real space, e.g., the geometry of the confinement or the
charge density of the confined holes. (a) The QD possesses a mirror sym-
metry R2 = S2B; the only direction of the magnetic field respecting the
symmetry of the QD is perpendicular to the symmetry plane (red trans-
parent). (b) The QD possesses a twofold rotation symmetry R2 = C2B;
the only direction of the magnetic field respecting the symmetry is along
the symmetry axis (red).

group is S2 = {E, S2B} for the system in Fig. 2.1(a) and C2 = {E,C2B} for
Fig. 2.1(b).

If R2 ∈ {C2B, S2B} is a twofold symmetry element of the point group
of the QD system, the Hamiltonian of Eq. (2.2) has to commute with
the symmetry operator D(R2), the representation of R2 on the Hilbert
space [67]. As a consequence, the (non-degenerate) eigenstates |m〉 ∈
{|0〉 , |1〉 , |2〉 , ...} of the Hamiltonian are also eigenstates of D(R2),

D(R2) |mα〉 = e−iπα |mα〉 , (2.5)

where α = mod2(FB) is a spin-like quantum number of the state |mα〉 ≡
|m〉, where, again, α = ±1/2. Furthermore, it can be shown that the two
states of a Kramers doublet (states that are transformed to each other by
time-reversal) correspond to effective spin α and−α (see App. 2.B). With
this finding we conclude that spin qubits can be defined as the lowest
Kramers doublet of a quantum dot in any crystal or confinement geome-
try, as long as a twofold symmetry is preserved in the system.

The effective spin α is rooted in the discrete rotational (rotoreflec-
tional) symmetry and gives rise to a discrete conservation law for the
total angular momentum expressed as α = mod2(FB). This relation can
be proven in general for an N -fold symmetry axis (with N ≥ 2) which
gives rise to a quantum number αN = modN(FB) that is conserved mod-
ulo N . This result can be seen as Bloch’s theorem for angular momenta
(see App. 2.A for further details).
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B B

S2B

C2B

(b)(a)

Figure 2.2: DQD geometries where the symmetry-induced quantum
numbers αL(R) = ±1/2 are conserved and can be used to label a qubit
in each QD. The DQD axis (a) lies in the symmetry plane (red transpar-
ent plane) that is perpendicular to the magnetic field B or (b) coincides
with both the magnetic field and the twofold rotation axis.

The interaction between holes with their effective spin gives rise to
matrix elements of the interaction which satisfy certain selection rules
due to the underlying conservation laws. In particular, we find that the
matrix elements for the Hamiltonian of coupled QDs HDQD obey the fol-
lowing selection rules:

〈mα, nβ|HDQD|pχ, qξ〉 ∝ δ0,mod2(α+β−χ−ξ) , (2.6)

provided that the DQD setup respects the twofold symmetry of the left
and right QDs (for details see App. 2.C). The two-particle states above,
|mα, nβ〉 = |mα〉1 ⊗ |nβ〉2, are product states of the single-particle states
|mα〉1 and |nβ〉2 for the first and second particle, respectively. The indices
m,n, p, q ∈ {0L, 0R, 1L, 1R, 2L, ...} label the single-particle eigenstates of
the left or right QD, and α, β, χ, ξ = ±1/2 stand for the effective spins
associated with the single-particle states.

We have seen that the point group of the crystal may contain two-
, three- or fourfold symmetry axes, even if external fields are applied.
However, the confinement potential defining the DQD should also re-
spect these symmetries in order to benefit from the selection rules given
in Eq. (2.6). A DQD setup can obey a twofold symmetry in two ways:
(i) The DQD axis (i.e., the axis connecting the centers of the two coupled
QDs) lies in the common symmetry plane of the QDs being perpendicu-
lar to the magnetic field [as illustrated in Fig. 2.2(a)]. (ii) The DQD axis
coincides with the common rotation axis, see Fig. 2.2(b).
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2.4 Low-energy basis of a DQD

In order to determine the interaction between the two qubits in a DQD
system the low-energy solutions of the following Hamiltonian [68] have
to be considered,

HDQD = HL(1) + δVL(1) +HR(2) + δVR(2) + C(1, 2) , (2.7)

where HL(R) is the single-QD Hamiltonian in Eq. (2.2) of the left (right)
QD with VQD = VL(R), δVL(R) = VDQD − VL(R) is the difference between
the double- and single-dot potentials, and C(1, 2) = e2/(4πε|r1 − r2|) is
the Coulomb interaction with the single-particle coordinates r1,2 and the
dielectric constant ε = ε0εr, where ε0 is the vacuum permittivity.

In order to construct a basis for the low-energy effective Hamiltonian
of the DQD, the energetically lowest eigenstates (for qubits) |0L〉 , |1L〉 of
the single QD Hamiltonian HL need to be orthonormalized with respect
to the ones in the right well |0R〉 , |1R〉 [69]. In general, these eigenstates
can not be written as a product of an orbital and a spin part [70, 71] (e.g.,
due to spin-orbit interaction or the HH-LH mixing) and therefore the |0〉
and |1〉 eigenstates of different QDs are not necessarily orthogonal. To
characterize this mutual non-orthogonalities, we introduce the overlap
matrix elements

Sab = 〈aL|bR〉 , (2.8)

where a, b ∈ {0, 1}. Even though the wave functions of electrons in the
presence of inversion symmetry is separable into orbital and spin part,
ensuring S01 = 0 and S00 = S11 regardless of the magnetic field, for
holes these relations hold only for zero magnetic field [54]. Neverthe-
less we find that S01 can also vanish provided the magnetic field pre-
serves a twofold symmetry in the DQD system, while the difference of
the diagonal elements is proportional to the applied magnetic field, i.e.,
S00 − S11 ∝ B for small magnetic fields.

The overlap Sab is suppressed exponentially with distance between
the dots, therefore the orthonormalization can be performed in such a
way that the same quantum numbers can be used to label the orthonor-
malized states, e.g., |0L〉ON =

∑
mCm,0L |m〉, where Cm,0L ∼ δm,0L+O(Sab)

(the precise form is given in App. 2.D). Further on the subscript “ON”
will be suppressed for simplicity, and the non-orthogonal states are used
only in the definition in Eq. (2.8).

From the orthonormalized low-energy single-particle states, six fermionic
two-particle states can be constructed in accordance with the Pauli prin-
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ciple. Three of them are analogous to triplet states, |T0±〉 [e.g., |T+〉 =
(|0L, 0R〉 − |0R, 0L〉)/

√
2], one corresponds to a singlet state with a sin-

gle particle on each dot |S〉, and there are two singlet states |SL(R)〉 with
both particles on the left (right) dot. Within the framework of the Hund-
Mulliken approximation these six states are used to project the Hamilto-
nian of Eq. (2.7) onto the low-energy Hilbert space.

2.5 Low-energy Hamiltonian of a DQD

Exchange coupling is known to be adequate for implementation of two-
qubit gates [1]. However the effect of the doubly occupied singlets (|SL(R)〉)
can be crucial for correct quantitative analysis [69], for simplicity we re-
strict the DQD Hamiltonian of Eq. (2.7) to the lowest energy subspace
{S, T0, T+, T−} for the qualitative discussion here and take the higher sin-
glets into account only for the numerical results in Sec. 2.6 via Schrieffer-
Wolff transformation [72].

Changing the confinement of the left QD (initially described by the
Hamiltonian 1

2
∆L

0 σ
L
z ) results in a modification of the Zeeman splittings

∆L inducing coupling between the qubit basis states [38, 56]. To lowest
order in the potential difference δVL = VDQD − VL one obtains

∆L
z = ∆L

0 + 〈0L|δVL|0L〉 − 〈1L|δVL|1L〉 , (2.9a)

∆L
x − i∆L

y = 2 〈0L|δVL|1L〉 , (2.9b)

for the coefficients of the single-qubit effective Hamiltonian 1
2
∆L · σL,

where the Pauli matrices σLx,y,z are defined with the orthonormalized states
|aL〉 (e.g., σLz = |0L〉 〈0L|−|1L〉 〈1L|). If the DQD respects the same twofold
symmetry as the left and right QDs, the couplings vanish, i.e., ∆L

x =
∆L
y = 0 due to the modulo-2 conservation law. On the other hand, the

energy splitting ∆L
z can still be affected by the potential. The results given

by Eqs. (2.9a) and (2.9b) are in correspondence with those obtained from
the study of mirror symmetries in the g-matrix formalism [56].

Next, we turn to a discussion of the exchange couplings. First we
point out that, in the presence of a twofold symmetry, due to Eq. (2.6)
the T±-triplet sector is decoupled from the rest of the subspace. This is
so because the triplets |T±〉 are composed from products of two single-
particle states with the same quantum number α, whereas all the other
states contain products of single-particle states with opposite quantum
numbers α. While this decoupling also exists for conduction band states,
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the matrix elements 〈T+|C|T−〉 and 〈S|C|T0〉 (which vanish for electrons)
do not need to vanish for valence band holes.

In the most general case, the Hamiltonian of two coupled qubits is
given in Eq. (2.1). Rewriting this expression in the singlet-triplet basis
{S, T0, T+, T−}, we obtain the effective Hamiltonian

H(1,1) =

1

4


−Jxx−Jyy−Jzz 2iJaxy

√
2
(
−Jaxz−iJayz

) √
2
(
−Jaxz+iJayz

)
−2iJaxy Jxx+Jyy−Jzz

√
2(Jsxz+iJ

s
yz) −

√
2(Jsxz−iJsyz)√

2
(
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) √
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) √
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 ,

(2.10)

where J̄s =
(
J̄ + J̄T

)
/2 is the symmetric part, J̄a =

(
J̄ − J̄T

)
/2 is the

antisymmetric part of the exchange matrix, and the Zeeman terms ∆s =
(∆L + ∆R)/2 account for the homogeneous part of the magnetic field,
while ∆a = (∆L −∆R)/2 for the inhomogeneous part. In general, these
terms can also arise if the g-factors of the dots are different. If the mag-
netic field is oriented along a high-symmetry axis, the T± sector becomes
independent of the ST0 sector, and therefore the off-diagonal elements of
the exchange matrix Jsxz, Jaxz, Jsyz, and Jayz have to vanish.

2.6 Coupled hole-spin qubits in silicon NWs

In this section we consider a cylindrical NW fabricated from silicon. A
coupled QD setup is established by means of electrostatic gates such that
each QD is occupied by a single hole. First we discuss what assumptions
were made and which parameter values were used to describe the sys-
tem, then in Sec. 2.6 we decompose the Hamiltonian of a single QD into
an effective spin conserving and a symmetry breaking part. We com-
pare the effect of different mechanisms that can lead to anisotropic ex-
change interaction in Sec. 2.6, namely the DRSOI and the anisotropy-
induced spin mixing (to be clarified below). In Sec. 2.6 we provide nu-
merical examples for the parameters characterizing the effective 4 × 4
Hamiltonian in Eq. (2.10) for the inversion symmetric limit, where the
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anisotropic exchange couplings can only appear by virtue of the strong
cubic anisotropy in silicon. Finally, the effect of anisotropic corrections
on the fidelity of a

√
SWAP gate is discussed in Sec. 2.6.

To be concrete for the numerical evaluations to follow, we focus on a
silicon NW with circular cross section and cylinder axis along the [001]
direction of the silicon crystal. We use γ1 = 4.285, γ2 = 0.339, γ3 =
1.446, κ = −0.42, and q = 0.01 for the Luttinger-parameters and εr =
12.1 for the dielectric constant [63]. The axes x, y, z correspond to the
[100], [010], [001] crystallographic axes, respectively. The magnetic field
B = B(cosϕ, sinϕ, 0) is applied in the plane perpendicular to the cylinder
axis, and it is parametrized by the angle ϕ it encloses with the x axis [see
Fig. 2.3(a)].

For the confinement potential in Hamiltonian of Eq. (2.7) we assume
the form VDQD(r) = VNW(x, y)+ vB

a4
(z2−a2)2 with vB being the height of the

quartic-potential barrier, and VNW(x, y) is the transverse confinement po-
tential. In order to efficiently approximate the wells of the DQD potential
by independent harmonic potentials VL(R)(z), the barrier height should
be larger than the orbital energy of the harmonic confinement, or equiva-
lently vB > 2 ~2γ1/(ma

2) (∼ 2.9 meV for the parameters of our example of
Si NW). The confinement potential VDQD(r) is inversion symmetric [due
to the cylindrical shape of the NW, i.e. VNW(x, y) = VNW(x2 + y2)] and the
inversion-asymmetric part of the electric fields is taken into account via
the term −eE · r, where E is a homogeneous electric field.

Corrections beyond the conservation of effective spin

Since the magnetic field B in the present case is always perpendicular to
the DQD axis (z axis), only reflection symmetry S2B can be maintained
[see Fig. 2.2(a)]. For example, if the magnetic field is applied along the
[100] axis (ϕ = 0) and E = 0, the system respects the symmetry S2B, facili-
tating the definition of the effective spin α. The modulo-2 conservation of
this effective spin simplifies the form of the exchange interaction matrix
and the induced Zeeman splittings (as we discussed in Sec. 2.5).

Changing the direction of the magnetic field or the application of a
homogeneous electric field can break the symmetry. Since the confine-
ment potential VDQD(r) and the Coulomb interaction C(r1 − r2) both re-
spect the symmetry S2B for any ϕ, the symmetry breaking contribution
in the Hamiltonian of Eq. (2.7) has to be a part of the single QD Hamilto-
nian HQD. In this case, the mixing of effective spins has a strong similar-
ity with the case of localized electron spins in the presence of Rashba or
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Dresselhaus spin-orbit interaction [70, 71]. Therefore, we are motivated
to decompose the single QD Hamiltonian in the following way,

H0 = HQD −HSO , (2.11a)

HSO =
1

2
[D(S2B), HQD]D(S2B) , (2.11b)

where H0 commutes with the symmetry operator D(S2B) conserving the
effective spin, and the analogue of the SOI, HSO, anti-commutes with
the symmetry and thus leads to couplings only of sectors with different
quantum numbers.

Performing the decomposition given in Eq. (2.11) on the Hamilto-
nian of Eq. (2.2), one obtains the following three terms for the spin-non-
conserving part HSO:

~2

2m
∆γ sin (4ϕ)

[
(k2
⊥ − k2

B){ĴB, Ĵ⊥}

+{kB, k⊥}(Ĵ2
⊥ − Ĵ2

B)
]
,

(2.12a)

2qµBB
sin (4ϕ)

4

[
Ĵ⊥(Ĵ2

⊥ − Ĵ2
B)− 2ĴB{ĴB, Ĵ⊥}

]
, (2.12b)

− eEBrB , (2.12c)

where {A,B} = (AB + BA)/2 defines the anti-commutator. The mo-
menta rotated to the frame of the magnetic field are defined as kB =

kx cos (ϕ) + ky sin (ϕ) and k⊥ = −kx sin (ϕ) + ky cos (ϕ), analogously ~ ĴB
and ~ Ĵ⊥ are the rotated angular momenta and rB is the rotated coordi-
nate. The first term, Eq. (2.12a) is coming from the momentum-resolved
part of the LK Hamiltonian, the second, Eq. (2.12b) is related to the anisotropic
Zeeman term, and the third term, Eq. (2.12c) arises from the electric field
component EB perpendicular to the symmetry plane, i.e., parallel to the
magnetic field B.

Note that the anisotropic spin-orbit corrections of Eqs. (2.12a) and (2.12b)
are proportional to sin (4ϕ) and therefore vanish if B ‖ [100], B ‖ [110],
etc., in correspondence with the expectations from the symmetry argu-
ments. Below we will see that this oscillatory ϕ-dependence manifests
itself in the overlap matrix element S01 [see Figs. 2.3(b)-(c)], the induced
Zeeman splittings ∆x,y, and the off-diagonal exchange couplings Jxy, Jxz
and Jyz [see Figs. 2.4(b)-(c)].
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Figure 2.3: (a) Schematic figure of the DQD system realized in a sil-
icon NW. (b)-(c) Absolute value of the anti-aligned overlap |S01| =
| 〈0L|1R〉 |, as a function of ϕ, the angle enclosed by the magnetic field
B = B(cosϕ, sinϕ, 0) and the x ‖ [100] axis, (b) when the electric field E =
E(cosϕ, sinϕ, 0) is applied parallel to the magnetic field, and (c) when
applied perpendicular to the magnetic field, E = E(− sinϕ, cosϕ, 0). For
this calculation we used a distance of 2a = 30 nm between the QDs, bar-
rier height of vB = 3 meV, magnetic field of B = 1 T, and cylindrical
hard-wall confinement with a radius of R = 7 nm. Details on the basis
choice and adopted assumptions can be found in App. 2.E.

Effects of homogeneous electric fields on the effective
spin mixing

As we have seen for the spin-non-conserving part HSO of the Hamilto-
nianHQD, the symmetry S2B can be broken by terms with cubic anisotropy
in Eqs. (2.12a) and (2.12b) or due to a finite electric field component EB
along the magnetic field in Eq. (2.12c). As a consequence, the qubit states
of different QDs are no longer orthogonal to each other. In order to qual-
ify and compare these two anisotropy effects, we take the overlap matrix
element |S01| = | 〈0L|1R〉 | as a figure of merit for this qubit mixing, since it
is usually nonzero but vanishes when the QDs respect the symmetry S2B.
Furthermore, S01 can be shown to be proportional to the off-diagonal ex-
change interaction Jxz and Jyz and the induced Zeeman splittings ∆x and
∆y (see App. 2.F).

For the results presented in Figs. 2.3(b)-(c) we used a cylindrically
symmetric hard-wall confinement in the transverse directions for VNW(x, y)
and studied the effect of asymmetries via the homogeneous electric field
term −eE · r with E = (Ex, Ey, 0). The standard Rashba SOI is also taken
into account with the coefficient αh = 0.002 nm2e (according to Ref. [33]),
although the effect of this term is dominated by the DRSOI [32, 33]. For
the example above the relative deviation from the αh = 0 case is less than
1%.
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Figure 2.4: (a)-(c) Coefficients characterizing the exchange matrix Jij and
the single-particle Hamiltonian ∆i as a function of the magnetic field
direction ϕ, for a silicon NW. For the numerical simulation the follow-
ing parameters were used: DQD distance 2a = 30 nm; barrier height
vB = 3 meV; magnetic field B = 1 T; harmonic potential of Eq. (2.13) with
a confinement length of 2lT = 8 nm. For details on the basis states used
for the numerics see App. 2.E.

In Fig. 2.3(b) a homogeneous electric field E is applied parallel to the
magnetic field, i.e., E · r = EBrB. We plot |S01| as a function of the
magnetic field direction ϕ for different strength of the electric field be-
tween 0 and 0.1V/µm. Even for relatively small electric fields, e.g., EB ∼
10−3 V/µm, the overlap |S01| becomes independent ofϕ and changes roughly
linearly with the electric field EB. These findings are in agreement with
the strong DRSOI predicted for this growth direction [32, 33].

In Fig. 2.3(c) the electric field is applied perpendicular to the mag-
netic field and the wire axis, therefore EB = 0 and the symmetry S2B

can only be broken by the cubic anisotropy terms. Importantly, S01 ob-
tains the same angular dependence sin (4ϕ) as the terms of the spin non-
conserving part of the Hamiltonian HSO (see also App. 2.F). Unlike the
DRSOI contribution, this effect does not have an analogue in the case of
conduction band electrons, since it appears even in the presence of in-
version symmetry (E = 0). We refer to this phenomenon as anisotropy-
induced spin mixing (see below).

Anisotropic exchange interaction in the presence of
inversion symmetry

In the absence of the homogeneous electric field, i.e., E = 0, the Hamil-
tonian of Eq. (2.7) is inversion-symmetric, implying that the low-energy
Hamiltonian of Eq. (2.1) is invariant under the swap of L and R. The
exchange matrix has to be symmetric (J̄ = J̄s) and the Zeeman splittings
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have to be identical (∆a = 0), therefore in line with Eq. (2.10) the inver-
sion symmetry decouples the singlet |S〉 from the three triplets, but the
|T0〉 state can still be coupled to the |T±〉 states in the Hamiltonian H(1,1).

To simplify the numerical calculation of the Coulomb integrals, the
eigenstates of the left (right) QD |0L(R)〉 and |1L(R)〉 were calculated nu-
merically using harmonic confinement,

VNW(x, y) =
~2γ1

2ml4T
(x2 + y2), (2.13)

for the transverse directions as well, where 2lT is the diameter of the NW.
After the orthonormalization, the two-particle states were constructed in
order to project the Hamiltonian of Eq. (2.7) to the lowest 6× 6 subspace.
In order to take the effect of the doubly occupied singlets into account,
we perform a second-order Schrieffer-Wolff transformation and obtain
the coefficients of the effective Hamiltonian in Eq. (2.10) as a function of
the magnetic field direction ϕ. The result [73] is presented in Fig. 2.4.

As implied by Eq. (2.6), the off-diagonal elements of the exchange
matrix Jxz and Jyz and the Zeeman splittings (i.e., ∆x,y) corresponding to
off-diagonal terms in the single-qubit Hamiltonian vanish, if B is along
a high-symmetry direction. The coupling between the |T±〉 states, i.e.,
〈T−|C|T+〉 = 1

4
(Jxx − Jyy + 2iJxy) remains finite regardless of the angle

ϕ. The exchange matrix element Jxy vanishes along the high-symmetry
directions in Fig. 2.4, however, this is only due to the relative phase
between the numerically calculated basis states |T±〉. The ST0 splitting
(Jxx + Jyy)/2 is approximately equal to Jzz, but this feature is observed
only for small enough potential barriers vB. The anisotropic exchange
matrix elements and the Zeeman splittings acquire their highest value at
the low-symmetry field directionϕ ∼ π/8, i.e., in-between high-symmetry
points.

Having obtained the effective interaction between the two qubits, we
are now in the position to discuss how the anisotropic corrections affect
the fidelity of two-qubit gates. This will be done in the following subsec-
tion.

√
SWAP gate with anisotropic exchange interaction

Isotropic exchange interaction is a well-known way to implement the√
SWAP gate [1] from which the fundamental CNOT gate can be ob-

tained. However, in Fig. 2.4 we have seen that anisotropic exchange
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Figure 2.5: Overlaps between DQD basis states and the states |ψ01(t)〉
[(a) and (b)] and |ψ11(t)〉 [(c) and (d)] as a function of time for the low-
symmetry case where ϕ = π/8, for a silicon NW. The time evolution is
shown (a) on a liner-linear scale (b) on a log-log scale, with the horizon-
tal lines showing the estimates for the overlaps obtained in Eqs. (2.14)-
(2.16) [(c) and (d) similarly]. Horizontal lines are showing the maxi-
mal overlap as a function of time [note that the one corresponding to
| 〈01|ψ11(t)〉 |2 = | 〈11|ψ01(t)〉 |2 is shown on both (b) and (d)]. Overlaps
with different basis states are oscillating with the half-cycle duration of
∼ h/U for | 〈SL|ψ01(t)〉 |2, ∼ h/∆z for | 〈11|ψ01(t)〉 |2, and ∼ h/(2∆z) for
| 〈00|ψ11(t)〉 |2 as illustrated by the vertical lines in (b) and (d).

matrix elements and off-diagonal Zeeman splittings (i.e., ∆x,y) emerge
which might affect the operation of such a quantum gate for exchange
coupled hole-spin qubits.

In this subsection we adopt the notation widely used in the literature
of quantum computation. Instead of the two-particle states with (1, 1)
charge configuration we introduce the two-qubit basis states |00〉 = |T+〉,
|11〉 = |T−〉, |01〉 = (|T0〉 − |S〉)/

√
2, and |10〉 = (|T0〉 + |S〉)/

√
2. How-

ever, the discussion of the gate errors for exchange coupled QDs cannot
be complete without taking into account the doubly occupied singlets
|SL〉 and |SR〉 explicitly. An ideal

√
SWAP gate leaves the qubit states

unchanged, if the two qubits are in the |00〉 or |11〉 state, while creating
a maximally entangled state, if they are either in the |01〉 or in the |10〉
state, e.g., U√SWAP |01〉 = |−〉 ≡ (|01〉 − i |10〉)/

√
2.
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Since the exchange interaction is electrically tunable via the poten-
tial barrier vB [1, 69, 74–76], we consider a case where initially the two
qubits are in a (disentangled) product state e.g., |01〉 or |11〉 and the inter-
action is switched on at t = 0. Therefore, we study the time evolution of
the state |ψ01(t)〉 according to the effective low-energy 6× 6 Hamiltonian
H6×6

DQD corresponding to the parameters of Sec. 2.6, such that the time evo-
lution starts from a product state, e.g., |ψ01(0)〉 = |01〉. The state |ψ01(t)〉
will have the highest overlap with the target state |−〉, when t = τs =
~π (Jxx + Jyy)

−1. To benchmark the accuracy of the gate corresponding
to the |01〉 input state, we define the fidelity F01 = | 〈−|U√SWAP|01〉 |2 =
| 〈−|ψ01(τs)〉 |2 and the error rate 1−F01.

To illustrate the role of the anisotropic corrections, we compare the
performance of the gate for two different magnetic field directions, a high
symmetry case (ϕ = 0), where the system respects the twofold symmetry
S2B, and a low-symmetry case (ϕ = π/8), where the anisotropic correc-
tions are the largest in Fig. 2.4. Due to the relatively low potential barrier
vB = 3 meV, fast operation times τs ∼ 210 ps can be achieved, but the
fidelity F01 is limited by the tunneling to the doubly occupied states [see
Figs. 2.5(a)-(b) for the low-symmetry case]. Exploiting the L ↔ R sym-
metry, the error rate 1−F01 can be simply estimated by

1−F01 ∼ 2| 〈SL|ψ01(τs)〉 |2 ∼
Jxx + Jyy

U
, (2.14)

where U ∼ 15 meV is the charging energy. This error also sets a limit for
the fidelity in the high-symmetry case, since the singlet-singlet tunneling
cannot be ruled out by symmetry arguments.

Due to the anisotropic coupling terms in Hamiltonian H6×6
DQD, the |11〉

and |00〉 states are also affected by the operation. Introducing the state
|ψ11(t)〉, such that the time evolution starts from a product state, i.e.,
|ψ11(0)〉 = |11〉, we define the fidelity of the gate corresponding to the
|11〉 input state as F11 = | 〈11|U√SWAP|11〉 |2 = | 〈11|ψ11(τs)〉 |2 and the cor-
responding error rate 1 − F11. In Figs. 2.5(c)-(d) the time evolution of
the overlaps of the state |ψ11(t)〉 with the four two-qubit basis states are
shown in the low-symmetry case (ϕ = π/8). In this case, the fidelity is
limited by the transition probability from the input state |11〉 to the |01〉
and |10〉 states. The estimated error rate is then given by the induced
Zeeman splittings as

1−F11 ∼ 2| 〈01|ψ11(τs)〉 |2 ∼ 2
∆2
x + ∆2

y

∆2
z

. (2.15)
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high symmetry low symmetry
ϕ 0 π/8

1−F01 6.2 · 10−4 6 · 10−4

1−F11 10−8 6.4 · 10−7

Table 2.2: Error rates of the
√

SWAP gate for the high-symmetry case (ϕ =
0) and a low-symmetry case (ϕ = π/8, providing the poorest fidelities as
a function of magnetic field direction) for the silicon NW setup illustrated
in Fig. 2.3(a).

As pointed out in Sec. 2.5, the |00〉 and |11〉 states (|T±〉 states in the ear-
lier notation) are coupled to each other even in the presence of a twofold
symmetry. The error rate 1 − F11 in the high-symmetry case is then de-
termined by the anisotropic correction to the exchange term Jxx − Jyy as
follows

1−F11 ∼ | 〈00|ψ11(τs)〉 |2 ∼
(
Jxx − Jyy

4∆z

)2

. (2.16)

However, for the system considered in Sec. 2.6 the fidelity F11 is signifi-
cantly higher than F01 for both the high- and low-symmetry cases (see
Tab. 2.2 for the calculated values), implying that for low enough po-
tential barriers vB the fidelity of the

√
SWAP gate is not limited by the

anisotropic corrections but by the probability of tunneling to a doubly
occupied state (the opposite limit with a high potential barrier vB is dis-
cussed in App. 2.G).

2.7 Discussion

Validity of the axial limit. In the axial limit (∆γ, q → 0), the symmetry of
the Hamiltonian in Eq. (2.4) is higher than the actual symmetry of the sys-
tem. In this case due to the continuous rotation symmetry of the Hamil-
tonian, the total angular momentum component ~FB ( = ~α∞) is a good
quantum number regardless of the magnetic field direction. Therefore
this approximation completely ignores the couplings between T± and the
ST0 sector that arise even for perfectly inversion symmetric confinement.

Since the anisotropic terms coupling states with different quantum
numbers in Eqs. (2.12a) and (2.12b) are proportional to ∆γ and q, they
are expected to be suppressed for materials of lower anisotropy. A com-
parison of exchange interaction between the above studied silicon and
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the Ge/Si core/shell NW presented in App. 2.H is consistent with this
expectation.

Silicon NW with different arrangements. In Ref. [33] the authors sug-
gested to study silicon NWs with 〈100〉 growth direction, since a Rashba-
type of SOI is enhanced in these directions compared to the conven-
tionally used 〈110〉 growth direction [77]. On the other hand, the 〈110〉
growth direction can be advantageous for the study of the anisotropy
induced SOI effects, since it is less susceptible to external electric fields.

Another interesting feature of the 〈100〉 growth direction is that the
NW axis coincides with a 4-fold symmetry axis. If the magnetic field is
applied along the NW, the modulo-4 conservation law of the angular mo-
mentum rules out the anisotropic coupling Jxx−Jyy as well. However, in
order to achieve such a symmetry in an experimental setup, the electro-
static gates would have to be arranged such that they respect the 4-fold
rotation symmetry and therefore this favourable case does not seem to
be within current experimental reach.

Orientation of the spin-orbit vector. When an electron or hole propa-
gates along the NW axis z, an electric field along the x direction induces
an effective magnetic field along the y axis on account of Rashba SOI. For
holes, however, additional terms can arise such that the electric-field-
induced effective magnetic field (spin-orbit vector) is not parallel to y.
For example, considering a silicon NW with z ‖ 〈100〉 and a square cross-
section, the calculations in Ref. [33] resulted in an effective magnetic field
whose component along x (parallel to the electric field) is nonzero unless
γ2 = γ3 or sin(4φ′) = 0, where the angle φ′ depends on the orientation of
the crystallographic axes with respect to the NW cross-section. We note
that this result has remarkable similarities with Eq. (2.12a). The sym-
metry considerations in the present work provide a simple and intuitive
explanation for the unusual, effective magnetic field component parallel
to the electric field derived in Ref. [33].

Further signatures for the T± decoupling. As discussed in Sec. 2.5, a re-
markable consequence of the conserved quantum number is the vanish-
ing exchange interaction and single-particle couplings between the T±
sector and the remaining four basis states. Besides the numerical results
for the overlap S01 and the matrix elements in Fig. 2.4, we also studied the
crossing of the |SL〉 and the |T−〉 energy levels as a function of detuning
and the leakage current near the crossing point. These results also con-
firmed the decoupling of the sectors with different quantum numbers.

Magnetic Weyl points. In Refs. [78]- [79], the authors find that topo-
logically protected magnetic degeneracy points (referred to as magnetic
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Weyl points) can appear in DQDs for arbitrary SOI, i.e., for certain ori-
entations of the magnetic field ±BW , the singlet |S〉 and the lower triplet
state |T−〉 become degenerate: the levels cross as function of magnetic
field and are protected from hybridization.

In the DQD system considered here, the decoupling of the T± states
from the ST0 states also leads to magnetic degeneracy points at fine-
tuned magnetic fields. These degeneracies are protected by the two-fold
(in generalN -fold) symmetry of the DQD system. However, establishing
a connection between the topologically and symmetry protected mag-
netic degeneracies requires further analysis.

Applications in experiments. Our results corroborate the strong anisotropy
in spin-related quantities observed in recent experiments [35, 36, 80, 81].
Furthermore, many of the recent experimental setups seem to be invari-
ant under reflection with respect to a certain plane, e.g., the plane be-
ing perpendicular to the plunger gates in Refs. [40] and [78]. Since the
orientation of the magnetic field is usually tunable via a two- or three-
dimensional vector magnet, the study of anisotropic effects is well within
the reach of state-of-the-art experiments. In situ control of the confine-
ment is usually also available by all-electrical means via tuning the con-
finement gate voltages [82].

2.8 Conclusion

We showed that an effective spin quantum number can be assigned to
confined hole-states even in highly anisotropic materials if the magnetic
field is applied along a twofold symmetry axis of the system. Even though
in general, the isotropic Heisenberg exchange is not sufficient to describe
the interaction, exchange based two-qubit gates are likely to be feasible
for hole-spin qubits in NWs. Besides enabling fast single-qubit opera-
tions by purely electrical means [16], silicon and Ge/Si core/shell NWs
are also promising platforms to realize fast and high fidelity two-qubit
operations.

2.A Magnetic field along an N -fold symmetry
axis, generalization of Bloch’s theorem

Considering a system with continuous translational symmetry and im-
posing periodic boundary conditions with a period of L, the eigenstates
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of the Hamiltonian are characterized by the momentum p = ~n2π
L

with
n ∈ Z. For discrete translational symmetry Bloch’s theorem [83] states
that only the wave number k = modG(p/~) is a good quantum number,
where G = 2π

a
, is the primitive reciprocal lattice vector with a being the

lattice constant. Even though the wave number k is not a consequence
of a continuous symmetry, it obeys the conservation law modG[

∑
i(ki −

k′i)] = 0 for microscopic processes involving more than one particle,
where ki and k′i are the initial and final wave numbers of the ith parti-
cle.

An analogous conservation law holds for the angular momentum in
a system with discrete rotational symmetry. The proof is very similar to
that of Bloch’s theorem for a one-dimensional lattice, only the translation
operator Ta = exp (−ip̂a/~), with p̂ being the momentum operator, needs
to be replaced by the rotation operator Rφ = exp (−iφF̂z), with ~F̂z being
the z-component of the total angular momentum operator, ~F̂ = ~L̂+~Ĵ,
keeping in mind that for particles with half-odd-integer spin the periodic
boundary condition should be imposed for φ = 4π.

For a system where z is anN -fold symmetry axis the eigenstates of the
Hamiltonian are characterized by the quantum number αN = modN(Fz),
where Fz is the associated angular momentum eigenvalue. A derivation
analogous to the case of translational symmetry leads to the conservation
of the quantum number αN , namely

modN
[∑

i

(αNi − α′Ni)
]

= 0 , (2.17)

where αNi and α′Ni are the initial and final quantum numbers of the ith
particle. The wave function fm,j,αN (r) = 〈r, j|mαN〉 corresponding to the
single particle eigenstate |mαN〉 of the Hamiltonian respecting an N -fold
symmetry can be written as

fm,j,αN (r, φ, z) = ei(αN−j)φ um,j,αN (r, φ, z) , (2.18)

where j is the eigenvalue of Ĵz, and the function um,j,αN (r) respects theN -
fold rotation symmetry, i.e., um,j,αN (r, φ, z) = um,j,αN (r, φ + 2πn/N, z) for
every n ∈ Z. In theN →∞ limit α∞ = Fz is conserved in agreement with
Noether’s theorem and Eq. (2.18) corresponds to the ansatz of the axial
limit from Refs. [30]- [32]. This finding also explains the presence or ab-
sence of “hole-spin mixing” for vertically stacked lateral QDs in Ref. [65],
even without assuming cylindrical symmetry for the LK Hamiltonian.
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In the case of rotoreflections SNB, the derivation is very similar, how-
ever, the symmetry of the function um,j,αN (r) corresponds to the rotore-
flection, i.e., um,j,αN (r, φ, z) = um,j,αN (r, φ+πn+ 2πn/N, (−1)nz) for every
n ∈ Z.

2.B Lowest-energy Kramers doublet

In this appendix we show that the two lowest-energy eigenstates of a
single-particle Hamiltonian HB=0 obeying a twofold symmetry R2 have
to belong to different values of the quantum number α ≡ α2 in the ab-
sence of a magnetic field.

According to Kramers theorem, in the absence of magnetic field each
energy level should be at least twofold degenerate. Let us assume that
there are no fields and the two energetically lowest eigenstates |ψ1〉 and
|ψ2〉 = T |ψ1〉 are degenerate ground states, i.e.,

HB=0 |ψ1,2〉 = ε0 |ψ1,2〉 , (2.19)

with T being the anti-unitary time-reversal operator and ε0 is the ground
state energy. Furthermore, due to the anti-unitarity of T the time-reversed
partner |ψ2〉 is necessarily orthogonal to |ψ1〉 [67].

If the Hamiltonian commutes with a twofold symmetry operatorD(R2),
the eigenstates |ψ1,2〉 can always be chosen to be simultaneous eigenstate
of D(R2) as well,

D(R2) |ψ1〉 = ±i |ψ1〉 . (2.20)

with the eigenvalue either +i or −i. Since T commutes with D(R2), one
obtains

D(R2) |ψ2〉 = D(R2)T |ψ1〉 = T D(R2) |ψ1〉
= T (±i |ψ1〉) = ∓iT |ψ1〉 = ∓i |ψ2〉 .

(2.21)

In other words, if |ψ1〉 belongs to the quantum number α = +1/2 its
time reversed partner |ψ2〉 has to have the opposite quantum number
α = −1/2.

Consequently, when the doublet is split by an external magnetic field
such that the twofold symmetry is preserved, the resulting eigenstates
are of different quantum number (unless the Zeeman splitting exceeds
the orbital splitting, in which case the lowest eigenstates of HQD are not
time-reversed partners of each other).
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2.C Conservation of the effective spin

In this appendix we derive Eq. (2.6) of the main text. First we list some
important relations regarding the effect of the symmetry operator D2 ≡
D(R2) on single- and two-particle states which are eigenstates of this
operator:

D2 |mα〉 = e−iπα |mα〉 , (2.22a)

D2
2 |mα〉 = − |mα〉 , (2.22b)

D̃2 |mα, nβ〉 =
(
D

(1)
2 ⊗D(2)

2

)
|mα, nβ〉

= (−1)α+β |mα, nβ〉 ,
(2.22c)

D̃2
2 |mα, nβ〉 = |mα, nβ〉 , (2.22d)

where the two-particle states above, |mα, nβ〉 = |mα〉1 ⊗ |nβ〉2, are prod-
uct states of the single-particle states |mα〉1 and |nβ〉2 for the first and
second particle, respectively. The indices m,n, p, q ∈ {0L, 0R, 1L, 1R, 2L...}
label the single-particle eigenstates of the left or right QD, and α, β, χ, ξ =
±1/2 stand for the effective spins associated to the single-particle states.
The representation of the symmetry D̃2 acts on the two-particle states
as a tensor product of the corresponding single-particle representations
D

(1,2)
2 . Furthermore, we see that D̃2

2 acts on the two-particle states as the
identity, in correspondence with the fact that these states are always of
integer spin.

Provided that the DQD Hamiltonian HDQD commutes with the sym-
metry operator D̃2 using the relations given above one finds

〈mα, nβ|HDQD |pχ, qξ〉 = 〈mα, nβ|HDQDD̃
2
2|pχ, qξ〉

= 〈mα, nβ|D̃2HDQD D̃2|pχ, qξ〉
= (−1)α+β+χ+ξ 〈mα, nβ|HDQD|pχ, qξ〉 .

(2.23)

Subtracting the rightmost part of the equation from the leftmost, we ob-
tain

(1− (−1)α+β+χ+ξ) 〈mα, nβ|HDQD|pχ, qξ〉 = 0 , (2.24)

which leads to Eq. (2.6) in the main text.
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2.D Orthonormalization method

In this appendix we present a method to orthonormalize the single-particle
states of the left |aL〉 and right dot |bR〉. Even though the Gram-Schmidt
procedure is a well known method for the orthonormalization, being a
recursive method it can not ensure theL↔ R symmetry for the orthonor-
malized states. Here we present a method that is although less straight-
forward, conserves the physically relevant implications of the inversion
symmetry.

Assuming L ↔ R symmetry, the most general transformation con-
necting the single-particle states |aL(R)〉 to the orthonormalized states
|aL(R)〉ON has a block-matrix structure, i.e.,

|0L〉ON
|1L〉ON
|0R〉ON
|1R〉ON

 = CT


|0L〉
|1L〉
|0R〉
|1R〉

 =

A B

B A



|0L〉
|1L〉
|0R〉
|1R〉

 , (2.25)

where A and B are general 2× 2 matrices.
Let us consider the state |i〉ON which is a linear combination of the

states |n〉 ≡ |aL(R)〉, that can have nonzero overlap 〈n|m〉, i.e.,

|i〉ON =
∑
n

(CT )in |n〉 =
∑
n

Cni |n〉 , i = 1, ..., 4 , (2.26)

whereCni are coefficients. Next, we impose the orthonormality condition
on these states,

〈i|ON|j〉ON =
∑
n,m

C∗niCmj 〈n|m〉

=
∑
n,m

C∗ni SnmCmj
!

= δij ,
(2.27)

where we defined the overlap-matrix Snm = 〈n|m〉. Making the choice
Cnm = (S−1/2)nm (used e.g. in Ref. [84]), the transformation matrix is not
only Hermitian but also acquires the block-matrix structure of Eq. (2.25)
as will be shown below.

First the eigenvalue problem of the overlap-matrix will be solved and
then the inverse square-root matrix will be calculated via its eigen-decomposition.

In the L ↔ R symmetric case the aligned overlaps S00 and S11 are
real and the anti-aligned overlaps are related via conjugation S10 = S∗01.
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Therefore the overlap-matrix Snm obtains a simple form

S = 14×4 +


0 0 S00 S01

0 0 S∗01 S11

S00 S01 0 0
S∗01 S11 0 0

 , (2.28)

where 14×4 is the 4 × 4 identity-matrix. We recall that the states |0L〉 and
|1L〉 are orthonormal and the same applies to the right QD. Since the ma-
trix has two identical Hermitian blocks, its eigenvectors are of the follow-
ing form

v(1) =
1√
2


v1

v2

v1

v2

 , v(2) =
1√
2


v1

v2

−v1

−v2

 , (2.29a)

v(3) =
1√
2


−v∗2
v1

−v∗2
v1

 ,v(4) =
1√
2


−v∗2
v1

v∗2
−v1

 , (2.29b)

corresponding to the eigenvalues 1 + λ+, 1− λ+, 1 + λ−, and 1− λ−, re-
spectively. The parameters of the eigenvectors and eigenvalues are given
by

v1 =
1

N ′
(
S00 − S11

2
+ |wS|

)
, v2 =

S10

N ′ ,

λ± =
S00 + S11

2
± |wS|,

(2.30a)

where we used the following definitions:

N ′2 =

(
S00 − S11

2
+ |wS|

)2

+ |S01|2,

|wS|2 = (S00 − S11)2/4 + |S01|2.
(2.30b)

The inverse square-root matrix C = S−1/2 is then obtained in the eigen-
decomposition.
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The first block A of the transformation matrix CT reads as

A =
1

2

v
2
1

(
1√

1−λ+
+ 1√

1+λ+

)
+ |v2|2

(
1√

1−λ−
+ 1√

1+λ−

)
v1v
∗
2

(
1√

1−λ+
+ 1√

1+λ+
− 1√

1−λ−
− 1√

1+λ−

)
v1v2

(
1√

1−λ+
+ 1√

1+λ+
− 1√

1−λ−
− 1√

1+λ−

)
v2

1

(
1√

1−λ−
+ 1√

1+λ−

)
+ |v2|2

(
1√

1−λ+
+ 1√

1+λ+

)


=

(
1 + 3

8

(
v2

1λ
2
+ + |v2|2λ2

−
)

v1v2
3
8

(
λ2

+ − λ2
−
)

v1v
∗
2

3
8

(
λ2

+ − λ2
−
)

1 + 3
8

(
v2

1λ
2
− + |v2|2λ2

+

))+O(S3
ab),

(2.31a)

where we exploited that v2
1 + |v2|2 = 1 and λ± = O(Sab) as implied by

Eq. (2.30a). The lowest order corrections to the identity matrix are of
second order in Sab = 〈aL|bR〉. Similarly, one can obtain the matrix B and
perform the Taylor expansion in Sab as

B =
1

2

v
2
1

(
− 1√

1−λ+
+ 1√

1+λ+

)
+ |v2|2

(
− 1√

1−λ−
+ 1√

1+λ−

)
v1v
∗
2

(
− 1√

1−λ+
+ 1√

1+λ+
+ 1√

1−λ−
− 1√

1+λ−

)
v1v2

(
− 1√

1−λ+
+ 1√

1+λ+
+ 1√

1−λ−
− 1√

1+λ−

)
v2

1

(
− 1√

1−λ−
+ 1√

1+λ−

)
+ |v2|2

(
− 1√

1−λ+
+ 1√

1+λ+

)


=− 1

2

(
v2

1λ+ + |v2|2λ− v1v2 (λ+ − λ−)

v1v
∗
2 (λ+ − λ−) v2

1λ− + |v2|2λ+

)
+O(S3

ab),

(2.31b)

which turns out to be of the first order in Sab.
Finally, we comment on the well-known case of electrons with sepa-

rable wave functions, where S01 = 0 and S00 = S11 = S, and thus λ± = S.
Substituting this into Eqs. (2.31a) and (2.31b) and using v2

1 + |v2|2 = 1, the
formula used for the orthonormalized states in Refs. [69,84] is recovered.
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2.E Single-particle basis for the numerics

The eigenvalue problem of Eq. (2.2) was solved numerically using a finite
number of basis states. The eigenstates |a〉 of the Hamiltonian in Eq. (2.2)
can be expanded on the product basis of orbital states |m,n, p〉 and the
spin-3/2 eigenstates |j〉 as

|a〉 =
∑
m,n,p,j

cm,n,pj |m,n, p, j〉 , (2.32)

where p is the orbital quantum number corresponding to the wire axis, m
and n are the orbital quantum numbers corresponding to the transverse
direction, j is the eigenvalue of a spin-3/2 operator Ĵz, and the expansion
coefficients are given by cm,n,pj = 〈m,n, p, j|a〉.

For the analysis of the overlaps in the presence of both electric and
magnetic fields we used hard-wall confinement in the transverse direc-
tions, i.e.,

VNW(x, y) =

{
0, if x2 + y2 < R2

∞, otherwise
, (2.33)

with R being the radius. In this case, the basis states can be decomposed
into a product form |m,n, p, j〉 = |m,n〉 |p, j〉. For the state corresponding
to the transverse directions |m,n〉 the wave function is given in terms of
Bessel-functions of the first kind,

〈r, φ|m,n〉 =
1

Jm+1(xm,n)
√
πR

Jm

(
xm,n

r

R

)

×


√

2 cos(mφ), for m > 0

1, for m = 0√
2 sin(mφ), for m < 0 ,

(2.34)

where xm,n is the nth root of the mth Bessel function Jm. The confinement
of the QD along the wire (z axis) is assumed to be harmonic, with the
corresponding eigenstates given by Hermite polynomials Hp(z). The z-
resolved wave function of the second part |p, j〉 then becomes

〈z|p, j〉 =
Hp(z/lzj) exp(− z2

2l2zj
)√

2pp!lzj
√
π

|j〉 , (2.35)

where the confinement length is defined with the effective mass mzj as
l4zj = ~2a2/(8vBmzj). The effective mass is obtained by taking the coeffi-
cient of the k2

z term in 〈j|HLK|j〉, and equating it with ~2/(2mzj). Allowing
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for different confinement lengths lzj in the basis states 〈z|p, j〉 for differ-
ent j, we can reduce the off-diagonal elements in the Hamiltonian. In
our calculation for Fig. 2.3, the quantum numbers can take the following
values: m ∈ {−2,−1, 0, 1, 2}, n ∈ {1, 2, 3}, and p ∈ {0, 1, 2, 3, 4}.

Calculating the coefficients of the exchange interaction in Fig. 2.4 re-
quired the numerical evaluation of the matrix elements of the Coulomb
interaction ∼ 1/|r1 − r2| between two-particle basis states. In the basis
of Bessel-functions the solution leads to long running times and poor
accuracy. However, assuming harmonic confinement in the transversal
directions and using the basis of Hermite polynomials in the x and y di-
rections analogous to Eq. (2.35) facilitates the analytical calculation of the
matrix elements in the transversal directions. For Fig. 2.4 the quantum
numbers of the basis states can take the following value m ∈ {0, 1, 2},
n ∈ {0, 1, 2} and p ∈ {0, 1, 2, 3, 4}.

2.F S01 as a figure of merit for the effective spin
mixing

In the main text we argued that the quantity S01 is a good measure for the
(unwanted) mixing of effective spins (qubits) in the absence of a twofold
symmetry. Here we will show that S01 can be expressed in terms of
the anisotropy terms ∆x,y of the DQD Hamiltonian as well as the off-
diagonal exchange matrix elements such as Jxz.

To this end we focus on our particular example of a silicon NW with
[001] growth direction and in the presence of a perpendicular magnetic
field and perform the symmetry decomposition given in Eq. (2.11) of the
corresponding single QD Hamiltonian in Eq. (2.2) according to the mir-
ror symmetry S2B. The symmetry breaking part HSO contains the terms
shown in Eqs. (2.12a)-(2.12c). From this decomposition we derive an ef-
fective 2 × 2 Hamiltonian describing the lowest energy (or qubit) sub-
space. A convenient way to do this is to find the eigenstates of the high-
symmetry part H0 and perform an exact Schrieffer-Wolff transformation.
This leads to

H2×2
QD = H2×2

0 +H2×2
SO =

∆′0
2
σ′z + Re(ν)σ′x + Im(ν)σ′y (2.36)

for the lowest 2× 2 block of HQD, which is decoupled from the rest of the
states. The Pauli matrices above are defined as σ′z = |0+〉 〈0+|−|1−〉 〈1−|,



CHAPTER 2. EXCHANGE INTERACTION OF HOLE-SPIN QUBITS
IN DOUBLE QUANTUM DOTS 72

Figure 2.6: Overlaps of the |ψ01(t)〉 state [(a) and (b)], and the |ψ11(t)〉
state [(c) and (d)] as a function of time for the low symmetry case,
where ϕ = π/8 and vB = 15 meV, for a silicon NW. The time evo-
lution is shown (a) on a liner-linear scale (b) on a log-log scale, with
the horizontal lines showing the estimates for the overlaps obtained in
Eqs. (2.15), (2.16), and (2.43) [(c) and (d) similarly]. Horizontal lines are
showing the maximal overlap as a function of time [note that the one
corresponding to | 〈01|ψ11(t)〉 |2 = | 〈11|ψ01(t)〉 |2 is shown on both (b) and
(d)]. Overlaps with different basis states are oscillating with the half cy-
cle duration of ∼ h/U for | 〈SL|ψ01(t)〉 |2, ∼ h/∆z for | 〈11|ψ01(t)〉 |2, and
∼ h/(2∆z) for | 〈00|ψ11(t)〉 |2 as illustrated by the vertical lines in (b) and
(d).

with the states |0+〉 and |1−〉 being eigenstates of the symmetry opera-
tor D(S2B). The energy splitting between the states |0+〉 and |1−〉 is ∆′0
and the symmetry breaking part of the Hamiltonian H2×2

SO is proportional
to ν = 〈1−|H2×2

SO |0+〉 = 〈1−|H2×2
QD |0+〉. Furthermore, Re(ν) and Im(ν)

correspond to the real and imaginary parts of ν, respectively.
Even though the coupling ν cannot be expressed in a simple form

generally, for the NW system considered in Sec. 2.6 one can simply ex-
tract relations for ν in two special cases, without performing an explicit
Schrieffer-Wolff transformation. These are:

(i) IfEB = 0, the symmetry breaking part contains only Eqs. (2.12a) and (2.12b)
and thereforeHSO ∼ sin (4ϕ). Consequently, the coupling associated with
the cubic anisotropy is ν ∼ sin (4ϕ). The values of ϕ where the coupling
vanishes correspond to high-symmetry directions in the system where
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S2B is a symmetry of the Hamiltonian HQD.
(ii) If we treat the bulk Hamiltonian HLK + HZ in the axial approxi-

mation (i.e., ∆γ = q = 0), the coupling induced by the electric field is
ν ∼ eEB, similarly to the case of Rashba SOI. Therefore, we associate this
effect to DRSOI [32, 33].

Diagonalizing the effective 2×2 Hamiltonian of Eq. (2.36), we recover
the eigenstates of HQD as

|0〉 =
∆0 + ∆′0

2N |0+〉+
ν

N |1−〉 , (2.37a)

|1〉 = −ν
∗

N |0+〉+
∆0 + ∆′0

2N |1−〉 , (2.37b)

corresponding to the energies +∆0/2 =
√

∆′20/4 + |ν|2 and −∆0/2, re-
spectively. The normalization factor is N =

√
(∆0 + ∆′0)2/4 + |ν|2.

Moving on to the DQD problem, we introduce the low-energy basis
|0L(R)+〉 and |1L(R)−〉 associated to the left (right) QDs and define the
overlaps

s0 = 〈0L+|0R+〉 (2.38a)

s1 = 〈1L−|1R−〉 , (2.38b)

which are in general nonzero, whereas the anti-aligned overlaps vanish,
i.e., 〈1L−|0R+〉 = 〈0L+|1R−〉 = 0 due to the symmetry properties of the
basis states. The system we consider in Sec. 2.6 is L ↔ R symmetric,
implying that the quantities s0 and s1 are real. Exploiting the relations
between the basis states Eq. (2.38) , we write the overlap between eigen-
states |0L〉 and |1R〉 as

S01 = 〈0L|1R〉 =
ν∗

N
∆0 + ∆′0

2N (s1 − s0) . (2.39)

Due to the cylindrical symmetry of the NW the confinement respects the
symmetry S2B, if the magnetic field is applied perpendicularly to the
wire. The induced Zeeman splittings of the left QD reads

∆L
x − i∆L

y

2
=
ν∗

N
∆0 + ∆′0

2N
× [〈1L−|δVL|1L−〉 − 〈0L+|δVL|0L+〉] ,

(2.40)

where δVL = VDQD−VL, and the corrections due to the orthogonalization
of the left and right bases are neglected. At last, we show the formula for
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the coupling matrix element 〈T+|C|T0〉 (to lowest order in the overlaps)

Jsxz − iJsyz
2
√

2
=
ν∗

N

(
∆0 + ∆′0

2N

)3√
2

×
[
〈0L+, 1R−|C|0L+, 1R−〉
− 〈0L+, 0R+|C|0L+, 0R+〉

]
.

(2.41)

Importantly, the overlap S01 and anisotropic couplings share the prefac-
tor ν∗/N , which is typically a small parameter. Therefore, the simple
quantity S01 does not only show the symmetry properties of HDQD but
can also be used to study the competition of the two main spin mixing
effects, the cubic anisotropy and DRSOI.

2.G Slow
√

SWAP gates and
anisotropy-limited fidelity

In Sec. 2.6 we considered the time evolution of the states |ψ01(t)〉 and
|ψ11(t)〉, identified the couplings leading to the largest undesired over-
laps which provided good estimates for the error rates 1−F01 and 1−F11

for the
√

SWAP gate. We found that the error rate 1 − F01 is orders of
magnitudes higher than the one corresponding to the |11〉 state, due to
the possibility of tunneling to a doubly occupied state.

In this appendix we discuss a parameter regime for the
√

SWAP gate
where the two fidelities are limited by the same transition probability
that is set by the anisotropic couplings. This is the regime where the po-
tential barrier is high enough, e.g., vB = 15 meV in Fig. 2.6, while the rest
of the parameters were set to be identical to the case of Figs. 2.4 and 2.5.
The corresponding error rate for the

√
SWAP gate is obtained as

1−F ∼ 2| 〈01|ψ11(τs)〉 |2 ∼ 2
∆2
x + ∆2

y

∆2
z

∼ 3 · 10−6 , (2.42)

where F = F01 = F11 is the gate fidelity that is independent from the
input state. When the potential barrier is increased, the singlet triplet
splitting is reduced, increasing the

√
SWAP operation time by two orders

of magnitude to τs ∼ 18 ns.
For large enough potential barrier vB, Eq. (2.14) loses its validity since

in general the transition probability is set by the tunnel coupling 〈SL|H6×6
DQD|S〉,
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Figure 2.7: (a)-(c) Coefficients characterizing the exchange interaction
and the single particle Hamiltonian as a function of the magnetic field
direction ϕ for a silicon NW. For the numerical simulation the follow-
ing parameters were used: double dot distance 2a = 30 nm; barrier
height vB = 15 meV; magnetic field B = 1 T; harmonic potential in the
transverse directions with a confinement length of 2lT = 8 nm. (d)-(f)
Coefficients characterizing the exchange interaction as a function of the
magnetic field direction ϕ for a Ge/Si core/shell NW. For the numeri-
cal simulation the following parameters were used: double dot distance
2a = 60 nm; barrier height vB = 15 meV; magnetic field B = 0.5 T; rel-
ative shell thickness [85] (Rs − Rc)/Rc = 0.2; harmonic potential in the
transverse directions with a confinement length of 2lT = 8 nm.

i.e.,

| 〈SL|ψ01(τs)〉 |2 ∼ 2
| 〈SL|H6×6

DQD|S〉 |2
U2

∼ 10−7 . (2.43)

This is an order of magnitude smaller than the leading correction to the
error rate. Therefore, we conclude that the anisotropic corrections are
influencing the

√
SWAP gate fidelities only for very slow gates.
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2.H Comparison of the exchange interaction
between silicon and Ge/Si core/shell NWs

In this appendix we present the role of the anisotropy parameters ∆γ/γ
and q/|κ| for the exchange interaction and, in particular, compare sili-
con with Ge/Si NWs in the absence of electric fields, i.e., E = 0. In
Fig. 2.4 we saw for the case of silicon that the cubic anisotropy renders
the exchange interaction anisotropic and introduces off-diagonal terms
Jxz, Jyz, if the magnetic field is applied in a low-symmetry direction. As
we have seen in App. 2.F, these anisotropic effects disappear in the axial
approximation since the symmetry breaking parts of the Hamiltonian,
Eqs. (2.12a) and (2.12b) are proportional to ∆γ and q, respectively.

Next, given the recent experimental interest, we consider a Ge/Si
core/shell NW, with [001] growth direction. The coordinate axes were
chosen identically to the case of silicon (x, y, z correspond to the [100],
[010] and [001] crystallographic axes, respectively) in which case the Bir-
Pikus Hamiltonian becomes

H
[001]
BP = b(εzz − ε⊥)J2

z , (2.44)

where we omitted a constant part, b = −2.5 eV, while the values of the
strain (εzz and ε⊥) as a function of relative shell thickness (Rs−Rc)/Rc =
0.2 are taken from Ref. [85].

We performed the calculation similarly to Sec. 2.6. For the case of a sil-
icon NW in Figs. 2.7(a)-(c) we used the same parameters as in Sec. 2.6, the
only difference being that we used a significantly higher potential barrier,
vB = 15 meV. For the case of the Ge/Si core/shell NW [see Figs. 2.7(d)-
(f)], the shell is taken into account via the strain term in the Hamiltonian
of Eq. (2.44), and the Luttinger parameters are γ1 = 13.38, γ2 = 4.24,
γ3 = 5.69, κ = 3.41, and q = 0.06 [63]. Note that while the anisotropy
parameters for silicon are ∆γ/γ̄ = 1.1 and q/|κ| = 0.024, for germa-
nium the same quantities are significantly smaller, i.e., ∆γ/γ̄ = 0.28 and
q/|κ| = 0.018.

A remarkable reduction can be observed in the anisotropic exchange
terms for a Ge/Si core/shell NW (see Fig. 2.7), compared to the case of
silicon NWs. The parameters are set such that the Zeeman splitting and
the diagonal exchange matrix elements are of the same order for the two
materials. One can directly see that although in the case of silicon NW the
off-diagonal terms can be comparable to the diagonal ones, they almost
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disappear (at least they are below the accuracy of our numerics) for the
strained Ge/Si core/shell NW.
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G. Stoltz, P. M. Petroff, and R. J. Warburton, Science 325, 70 (2009).

[24] J. Fischer and D. Loss, Phys. Rev. Lett. 105, 266603 (2010).

[25] F. Maier, C. Kloeffel, and D. Loss, Phys. Rev. B 87, 161305(R) (2013).
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[33] C. Kloeffel, M. J. Rančić, and D. Loss, Phys. Rev. B 97, 235422 (2018).

[34] A. P. Higginbotham, F. Kuemmeth, T. W. Larsen, M. Fitzpatrick, J.
Yao, H. Yan, C. M. Lieber, and C. M. Marcus, Phys. Rev. Lett. 112,
216806 (2014).

[35] M. Brauns, J. Ridderbos, A. Li, E. P. A. M. Bakkers, and F. A. Zwa-
nenburg, Phys. Rev. B 93, 121408(R) (2016).

[36] B. Voisin, R. Maurand, S. Barraud, M. Vinet, X. Jehl, M. Sanquer, J.
Renard, and S. De Franceschi, Nano Lett. 16, 88 (2016).

[37] R. Wang, R. S. Deacon, J. Yao, C. M. Lieber, and K. Ishibashi, Semi-
cond. Sci. Technol. 32, 094002 (2017).

[38] A. Crippa, R. Maurand, L. Bourdet, D. Kotekar-Patil, A. Amisse,
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CHAPTER 3
Zero-field splitting in Si and Ge

quantum dots

Adapted from:
Bence Hetényi, Stefano Bosco,and Daniel Loss

“Anomalous zero-field splitting for hole spin qubits in Si and Ge quantum dots”,
arXiv:2205.02582 (2022)

An anomalous energy splitting of spin triplet states at zero magnetic
field has recently been measured in germanium quantum dots. This
zero-field splitting could crucially alter the coupling between tunnel-
coupled quantum dots, the basic building blocks of state-of-the-art spin-
based quantum processors, with profound implications for semiconduct-
ing quantum computers. We develop an analytical model linking the
zero-field splitting to spin-orbit interactions that are cubic in momen-
tum. Such interactions naturally emerge in hole nanostructures, where
they can also be tuned by external electric fields, and we find them to
be particularly large in silicon and germanium, resulting in a significant
zero-field splitting in the µeV range. We confirm our analytical theory by
numerical simulations of different quantum dots, also including other
possible sources of zero-field splitting. Our findings are applicable to a
broad range of current architectures encoding spin qubits and provide
a deeper understanding of these materials, paving the way towards the
next generation of semiconducting quantum processors.
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3.1 Introduction

The compatibility of localized spins in semiconducting quantum dots
(QDs) [1] with the well-developed CMOS technology is pushing these ar-
chitectures to the front of the race towards the implementation of scalable
quantum computers [2, 4, 11, 16, 18]. Spin qubits based on hole states in
silicon (Si) and germanium (Ge), in particular, are gaining increasing at-
tention in the community [11,16] because of their large spin-orbit interac-
tion (SOI) [7–10], enabling fast and power-efficient all-electric gates [11–
13] and strong transversal and longitudinal coupling to microwave res-
onators [14–18]. Also, significant steps forward in material engineer-
ing [19, 20] as well as fast spin read-out and qubit initialization pro-
tocols [21–24] facilitated the implementation of high-fidelity two-qubit
gates [6, 25] and of a four-qubit quantum processor with controllable
qubit-qubit couplings [27].

In contrast to electrons, the properties of hole QDs depend on the mix-
ing of two bands, the heavy-hole (HH) and light-hole (LH) bands, result-
ing in several unique features that are beneficial for quantum computing
applications [28–35]. In addition to the large and externally controllable
SOI [7,28,33], that can be conveniently engineered to be linear or cubic in
momentum [8,29,36–39], hole spin qubits also feature highly anisotropic
and electrically tunable g-factors [40–44], hyperfine interactions [35], and
anisotropies of exchange interaction at finite magnetic fields [31]. Be-
cause HHs and LHs are strongly mixed in quasi one-dimensional (1D)
systems, these effects are significantly enhanced in long QDs.

Recent experiments in Ge QDs with even hole occupation have also
detected a large anomalous lifting of the threefold degeneracy of triplet
states at zero magnetic field [45], yielding another striking difference
between electrons and holes. A similar zero-field splitting (ZFS) has
been reported in other quantum systems e.g., divacancies in silicon car-
bide [46], nitrogen-vacancies in diamond [47,48], and carbon nanotubes [49],
where it is associated to the anisotropy of the two-particle exchange inter-
action. In this letter, we discuss the microscopic origin of this anisotropy
in hole QDs and we propose a general theory modelling the ZFS in a
wide range of devices. Our theory helps to develop a fundamental un-
derstanding of ZFS, essential to account for its effect in quantum comput-
ing applications. For example, the exchange anisotropy could enable the
encoding of hole singlet-triplet qubits [50–53] at zero magnetic filed, and
when combined with a Zeeman field, it can lift the Pauli spin-blockade,
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with critical implications in read-out protocols [54]. Furthermore, ZFS
can introduce systematic errors in two-qubit gates based on isotropic in-
teractions between tunnel-coupled QDs [1, 31, 55].

We associate the large ZFS emerging in hole QDs to a SOI cubic in mo-
mentum. The SOI is a natural candidate to explain exchange anisotropies,
however, its dominant contribution –linear in momentum– can be gauged
away in quasi 1D systems [56–58] and cannot lift the triplet degeneracy
without magnetic fields. While in electronic systems only the linear SOI
is sizeable, in hole nanostructures the large mixing of HHs and LHs in-
duces a large cubic SOI [29, 30] yielding a significant ZFS in Si and Ge
QDs. Strikingly, this ZFS is tunable by external electric fields and can be
engineered by the QD design.

We develop a theory for the cubic-SOI induced ZFS that relies ex-
clusively on single-particle properties of the QD and the Bohr radius,
providing an accurate estimate of the ZFS in a wide range of common
architectures. In realistic systems, this ZFS is in the µeV range, orders
of magnitude larger than alternative mechanisms. For example, we find
that ZFS of a few neV can also be induced by short-range corrections of
the Coulomb interaction arising from the p-type orbital wavefunctions
of the valence band [34, 59]. In addition, our theory relates the axis of
the exchange anisotropy to the direction of the SOI, and corroborates the
observed response of the QDs to small magnetic fields [45]. Importantly,
because in long QDs comprising two holes the Coulomb repulsion of the
two particles forms a double QD [60–63], our theory describes the ex-
change anisotropy also in tunnel-coupled QDs, the prototypical building
blocks of current spin-based quantum processors [31, 55, 64], and thus
our findings have profound implications in the growing research field of
quantum computing with holes.

3.2 Analytical theory

Large SOI emerges naturally in hole spin qubits encoded in long quan-
tum dots, where the confinement potential in two directions is stronger
than in the third one. Such nanostructures include a wide range of com-
mon spin qubit architectures, such as Si FinFETs [12, 23, 28, 33], squeezed
QDs in planar Ge [37], and Si and Ge NWs [7, 9, 62, 68]. Their response
is well-described by an effective 1D low-energy Hamiltonian acting only
on a few subbands.
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Figure 3.1: Exchange interaction in long quantum dots. (a) The effective
1D potential Vc(z1 − z2) is shown in gray (without units) as a function
of relative coordinate z = z1 − z2, where ±z0 are the minima of the po-
tential. The energy levels corresponding to the lowest singlet and triplet
states, and the corresponding orbital wavefunctions are overlayed with
blue and red, respectively. Vertical arrows show the definition of the ex-
change splitting and ZFS, J and D, respectively. Note that the energy
scale of the singlet-triplet energy levels is only schematic, not matched
with that of the effective potential. (b) Splitting ε of the three triplet states
when the Zeeman field is aligned with the SOI (∆y, left panel), and when
it is perpendicular to it (∆⊥, right panel).

We now focus on a QD defined in a NW with a square cross-section
of side L. By resorting to Schrieffer-Wolff perturbation theory [69] dis-
cussed in detail in Sec. 3.A of [66], we find the effective Hamiltonian
acting on the lowest pair of subbands as

H1 =
p2
z

2m∗
+ vpzσ

y + v3p
3
zσ

y +
~2γ1

2m∗l4z
z2 , (3.1)

up to third order in the momentum pz in the long-direction. Here, m∗

is the effective mass, v and v3 are the linear and cubic SOI, respectively,
and σy is a Pauli matrix. The QD is defined by a harmonic potential
parametrized by the length lz and modelling the smooth electrostatic
confinement produced by metallic gates. Eq. (3.1) is valid when lz & L/π.
Two holes confined in the same QD are described by the Hamiltonian
H2 = H

(1)
1 + H

(2)
1 + V

(1,2)
c , where V (1,2)

c is the effective Coulomb poten-
tial in the lowest subband sector. Coulomb interactions with higher sub-
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Figure 3.2: Anisotropic exchange interactions in Ge. (a) Exchange split-
ting J and ZFSs D and E in a Ge square NW with side length L = 10 nm
and compressive strain εzz = −0.5%, as a function of QD length Lz
for Ex = 5 V/µm; the analytical results of the corresponding quan-
tities are shown in dashed lines. Here the QD length is defined as
Lz = (m∗γ1/me)

1/4lz ≈ lz, where me/γ1 is the averaged hole mass with
me being the electron mass and γ1 is a Luttinger parameter [65, 66]. (b)
ZFSs as a function of electric fieldEx for Lz = 12 nm; inset: zoom at small
electric fields, where the main anisotropy axis changes from the wire axis
(z) to the SOI axis (y).

bands are negligible when L/π < aB, where aB = 4πεr~2/m∗e2 is the
effective Bohr radius with εr being the dielectric constant of the material.
The Coulomb potential V (1,2)

c is sketched in Fig. 3.1(a), and is discussed
in [66].

The linear SOI v in Eq. (3.1) can be eliminated exactly by a spin-
dependent shift of momentum that leaves the potential unchanged, and
only negligibly renormalizes the effective mass m∗ [66]. The two-particle
Hamiltonian is then given by

H2 =
1

4m∗
P 2 +

~2

m∗l4z
Z2 +

1

m∗
p2 +

~2

4m∗l4z
z2 + Vc(z)

+ P+
3 (σy1 + σy2) + P−3 (σy1 − σy2) ,

(3.2)

where Z = (z1 + z2)/2 is the center-of-mass (COM) coordinate with con-
jugate momentum P = pz1 +pz2 , and z = z1− z2 is the relative coordinate
with momentum p = (pz1 − pz2)/2. The cubic SOI yields the perturbative
corrections P+

3 = v3

(
1
8
P 3 + 3

2
Pp2

)
, and P−3 = v3

(
3
4
P 2p+ p3

)
in the sec-

ond line of Eq. (3.2); these terms mix relative and COM coordinates and
are crucial for the ZFS.

At v3 = 0, the Hamiltonian of the COM coordinates is a harmonic
oscillator with an orbital energy ∆o = ~2/m∗l2z , while the Hamiltonian of
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the relative coordinates isHrel = p2/m∗+~2z2/4m∗l4z+Vc(z). In a NW with
a square cross-section and when lz & aB, the effective 1D Coulomb inter-
action is well-approximated by Vc(z) ≈ ∆o[z

2 + (L/4)2]−1/2l2z/aB, where
L/4 is a short-range cutoff of the potential derived in Sec. 3.A of [66]. In
this case, the system is fully described by two relative length scales lz/aB
and L/aB. Because the effective potential in Hrel is an even function of
z, the corresponding eigenfunctions have either even or odd parity, en-
abling the distinction between singlets (even) and triplets (odd) states.

While in this work we focus on a single QD occupied by two holes,
we emphasize that our theory is also valid for two tunnel-coupled QDs,
the basic components of current spin-based quantum processors [6, 27].
In fact, as sketched in Fig. 3.1(a), in a doubly occupied long QD, with
lz & aB, the Coulomb repulsion forces the two particles towards opposite
ends of the dot [60–62], effectively resulting in two coupled dots. We also
remark that because aB∼12 nm (aB∼3 nm) in Ge (Si), the condition lz &
aB of long QDs is typically respected in current experimental setups [13,
45, 70].

By a second order Schrieffer-Wolff transformation [69] and projecting
the two-particle Hamiltonian onto the lowest energy singlet and triplet
states, we find that the exchange Hamiltonian is

Heff =
1

4
(J +D)σ1 · σ2 −

1

2
Dσy1σy2

+
1

2
∆⊥ · (σ⊥1 +σ⊥2 ) +

1

2
∆y(σy1 +σy2) ,

(3.3)

where ∆y is the Zeeman field parallel to the SOI, while ∆⊥ = (∆x,∆z)
are components perpendicular to it. The exchange splitting J = εT± −
εS > 0 only weakly depends on v3 and it is well approximated by J0 =
ζ ~2a2

B/m
∗l4z , the energy gap between the lowest odd and even eigenstates

of the relative coordinate Hamiltonian. We introduce the dimensionless
coefficient ζ ∼ 0.3− 1 for 0.8 < L/aB < 2 and aB . lz [66].

Without magnetic fields, ∆i = 0 and Eq. (3.3) corresponds to an ex-
change Hamiltonian with a uni-axial anisotropy, i.e., Jxx = Jzz = J and
the anisotropy axis is aligned to the SOI (i.e., y-direction) with Jyy =
J + D. As sketched in Fig. 3.1(a), the ZFS D lifts the degeneracy of the
triplets T± and T0, where the three triplets T±,0 are defined with quanti-
zation axis along y-direction. From perturbation theory, we obtain [66]

D = m∗v2
3

~4

l4z
η . (3.4)
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Here the dimensionless coefficient η ∼ 0.4 − 0.8 includes various com-
binations of dimensionless momentum matrix elements. The exact func-
tional dependence of η and ζ on L and lz is discussed in detail in Sec. 3.A
of [66]. Because η depends only weakly on the relative length scales lz/aB
and L/aB in long QDs, to good approximation we find that D ∝ l−4

z . We
also emphasize that this ZFS is strongly dependent on the cubic SOI and
it requires a sizeable value of v3, achievable only in hole QDs. The rela-
tive anisotropy of the exchange interactions is

D
J =

m∗2v2
3~2

a2
B

η

ζ
, (3.5)

where η/ζ ∼ 1 − 5 depends weakly on aB and therefore, the anisotropy
scales as D/J ∝ (m∗)4.

The magnetic field dependence of the triplet states can also be de-
duced straightforwardly from Eq. (3.3) and it is sketched in Fig 3.1(b). If
the magnetic field is applied parallel to the SOI (i.e. the anisotropy axis)
the non-degenerate triplet T0 is unaffected by the field and εT0 = J +D,
whereas the degenerate triplets T± split linearly with the Zeeman field
as εT± = J ± ∆y. In contrast, if the field is applied perpendicular to
the SOI, one of the degenerate triplets, e.g., T ′0, stays at the same energy
εT ′0

= J , while the remaining triplets T ′± split quadratically as εT ′± =

J + D/2 ±
√
D2/4 + |∆⊥|2 at small Zeeman fields. This signature of the

exchange anisotropy is consistent with recent experimental observations
in Ref. [45], supporting our theory of ZFS in Ge hut wires.

3.3 Numerics

We confirm our analytical results by comparing them with a numerical
simulation of long QDs in square Ge and Si NWs with side length L
based on the 6-band Kane model [65]. By imposing hard-wall bound-
ary conditions at the edge of the NW cross-section, we obtain an effec-
tive 1D model including several transversal subbands. With a third or-
der Schrieffer-Wolff transformation, we then fold the higher energy sub-
bands down to the lowest four subbands, also accounting for terms that
are cubic in momentum. We emphasize that in contrast to our analyti-
cal treatment, where we only account for a single pair of subbands, see
Eq. (3.1), our numerical treatment also includes a pair of higher-energy
subbands [66]. Furthermore, we include Coulomb interaction matrix el-
ements that couple different subbands, as well as short-range interband
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corrections to the Coulomb interaction [34], that we identify as an alter-
native source of ZFS. In our simulation, we also consider a compressive
strain along the wire, with εzz = −0.5%, ensuring that the lowest band
has a positive effective mass [7, 28]. More details on the numerical simu-
lation are provided in Sec. 3.B of [66], where we also confirm the validity
of our four subband model by comparing it to a full three-dimensional
simulation.

In Fig. 3.2(a), we compare the numerical simulation of a Ge NW with
L = 10 nm with the analytical formulas of the exchange splitting J and
the ZFS in Eq. (3.4) as a function of QD length Lz. In this calculation, the
{x, y, z} axes coincide with the 〈100〉 crystallographic directions. Strik-
ingly, the numerical exchange splitting J is in excellent agreement with
the analytical formula, and alsoD is reasonably well captured by the sim-
ple Eq. (3.4) in a wide range of QD sizes. We emphasize that due to the
weak dependence of the coefficient η on the side length L in long QDs
(L, aB < lz) Eq. (3.4) can accurately estimate the ZFS in general architec-
tures.

The numerical solution in Fig. 3.2(a) also reveals an additional ZFS
of the remaining two triplet states, that emerges because of the short-
range corrections to the Coulomb interaction [34]. These corrections stem
from the atomistic interactions of the p-type Bloch functions and induce
mixing between the different bulk hole bands. The contribution of the
short-range corrections to the effective Hamiltonian of Eq. (3.3) can be
written as

Heff, s-r =
1

2
Eσz1σz2 , (3.6)

where E is the exchange anisotropy along the NW (z-direction). This
ZFS induces an energy gap E between the triplets |T0〉, |Ta〉 = (|T+〉 +
|T−〉)/

√
2, and the remaining states [the singlet |S〉 and the third triplet

|Tb〉 = (|T+〉− |T−〉)/
√

2], thereby lifting the remaining triplet degeneracy
at zero magnetic field.

The exchange anisotropy E induced by the short-range Coulomb in-
teraction is also present without external electric fields, where the SOI
vanishes [see Fig. 3.2(b)]. In this special case because of the fourfold sym-
metry of the system, the anisotropy axis is aligned to the wire [66,71,72].
If an electric field is applied perpendicular to the wire, the symmetry
is reduced and the remaining degeneracy is also lifted. (For a detailed
symmetry analysis of different wire geometries see Sec. 3.C of [66].) At
small Ex, the ZFS D increases quadratically with the electric field, be-
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Figure 3.3: Dependence of the ZFS D in Eq. (3.4) on the electric field Ex.
With blue (red) lines, we show Ge (Si) for two different growth directions
and split-off gap ∆SO ∼ 150∆o (∆SO ∼ 4∆o). Here, we consider lz = L =
2aB, z ‖ [001], and we use the strain εzz = −0.5%. The orbital energy is
∆o = ~2/m∗l2z .

cause v3 ∼ Ex, and eventually overcomes E [see the inset in Fig. 3.2(b)],
aligning the main anisotropy axis to the SOI. For higher electric fields, v3

(and thusD) reaches a maximum value and starts to decrease, in analogy
to the linear SOI v in various NW geometries [28, 33].

The electric field dependence of the ZFS in Eq. (3.4) is dominated
by v2

3 and therefore D is highly tunable by the external gate potentials
and by the QD design. In particular, in Fig. 3.3 we show D as a func-
tion of electric field in Ge and Si NWs for different growth directions.
For both growth directions, the ZFS –relative to the orbital splitting– is
significantly smaller in Si than in Ge. This reduction is a result of the
hybridization of HHs and LHs with the spin-orbit split-off band that is
much closer in Si (∆SO = 44 meV) than in Ge (∆SO = 296 meV) [65],
effectively decreasing the HH-LH mixing and the SOI [33].

The ZFS also varies substantially between different growth directions
for both materials as shown in Fig. 3.3. The strong dependence of the SOI
on the growth direction is well-known in Si nanowires [28, 33], and it is
also significant in Ge. Strikingly, the linear SOI v changes only slightly
in Ge between the two growth directions [28, 37], but the cubic SOI v3 is
strongly altered between the two cases, yielding an order of magnitude
larger ZFS when x ‖ [110]. This enhancement can be explained by consid-
ering that the cubic SOI is a higher order correction that involves more
subbands, making v3 more sensitive to the growth direction and to the
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design of the QD. This finding stresses once again that the ZFS in hole
QDs is induced by the cubic SOI v3 and that there is no direct relation
between the ZFS and the linear SOI v.

3.4 Conclusions

We presented a simple analytical model explaining the large anomalous
triplet splitting at zero magnetic field, emerging in QDs occupied by two
holes and shedding some light on recent experimental findings [45]. We
related the ZFS to a cubic SOI that is externally tunable by electric fields
and can be engineered by the design of the QD. In striking contrast to
linear SOI effects, the ZFS is found to depend significantly on the growth
direction not only in Si but also in Ge QDs, where such anisotropic ef-
fects are typically small [7, 28]. The SOI induced ZFS is also found to be
orders of magnitude larger than short-range corrections to the Coulomb
interaction, an alternative mechanisms for the ZFS of triplet states. While
our analytical model focuses on doubly occupied long QDs, our findings
are also valid in two tunnel-coupled QDs, the main building blocks of
current spin-based quantum processors, and thus our work has deep im-
plications for the design of future scalable quantum computing architec-
tures with hole spin qubits.

We thank A. Pályi, D. Miserev, and G. Katsaros for the fruitful discus-
sions. This work was supported as a part of NCCR SPIN funded by the
Swiss National Science Foundation (grant number 51NF40-180604).

3.A Zero-field splitting induced by cubic
spin-orbit interaction

Here, we discuss in more detail the effective model of the zero-field split-
ting introduced in the main text. When the QD is elongated in the z
direction, the low-energy behaviour of the system can be described by
an effective model where only the lowest subbands of a quasi-1D system
are taken into account. Here we present a two-band minimal model that
is sufficient to explain the mechanism. This model gives a rather accurate
estimate of the zero-field splitting in a wide range of cases. We consider
the Hamiltonian up to third order in momentum including a harmonic
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confinement

H1 =
p2
z

2m
+ vpzσ

y + v3p
3
zσ

y +
~2γ1

2meL4
z

z2 , (3.7)

where m is the effective mass, v is the spin-orbit velocity, v3 is the coeffi-
cient of the SOI cubic in momentum pz, and Lz the harmonic confinement
length of the QD. Note that the linear and the cubic SOI terms need to be
aligned to the same SOI axis (here σy), otherwise one could construct
second order terms at B = 0 such as 〈p3〉mn 〈p〉nm σxσy ∼ p4σz that would
break time-reversal symmetry.

We apply a unitary transformation U(p0) = exp(−ip0zσ
y/~) on the

Hamiltonian in Eq. (3.7) that shifts the momentum as pz → pz − p0σ
y. By

choosing the momentum shift p0 = (1 −
√

1− 12m2v3v)/6mv3 such that
the terms linear in pz vanish, we obtain the Hamiltonian

H̃1 = U †(p0)H1U(p0) =
p2
z

2m∗
+ v3p

3
zσ

y +
~2γ1

2meL4
z

z2

with
1

m∗
=

1

m

√
1− 12m2v3v ,

(3.8)

where 12m2v3v � 1 even for strong electric fields and we introduce the
renormalized harmonic confinement length as lz = (me/m

∗γ1)1/4Lz. In
the followings we omit the tilde from the transformed Hamiltonian H̃1

(as in the main text).
We now consider two-particle systems and we include Coulomb in-

teraction in the 1D Hamiltonian of Eq. (3.8). Then the two-particle Hamil-
tonian reads

H2 = H
(1)
1 +H

(2)
1 +

~2

2m∗l4z
(z2

1 + z2
2) + Vc(z1 − z2) . (3.9)

Here, Vc(z1−z2) is the effective 1D Coulomb interaction obtained by pro-
jecting the Coulomb interaction onto the lowest subband with the corre-
sponding lowest eigenstates of the full 3D Hamiltonian at pz = 0. Due
to this projection, the singularity of the Coulomb interaction is cut off in
Vc(z1 − z2) at a distance |z1 − z2| ∼ L� lz determined by the transversal
confinement (see Sec. 3.A for a fitting formula at square cross section).
Moving to the center-of-mass (COM) frame one obtains,

H2 =
1

4m∗
P 2 +

~2

m∗l4z
Z2 +

p2

m∗
+

~2

4m∗l4z
z2 + Vc(z)

+ v3

(
1

8
P 3 +

3

2
Pp2

)
(σy1 + σy2) + v3

(
3

4
P 2p+ p3

)
(σy1 − σy2) ,

(3.10)
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where the position and the conjugate momentum for the COM and the
relative coordinates read

Z = (z1 + z2)/2 , P = pz1 + pz2 , (3.11a)

z = z1 − z2 , p = (pz1 − pz2)/2 , (3.11b)

respectively. Since the cubic SOI term ∝ v3 is obtained by a third order
Schrieffer-Wolff (SW) transformation, it is suppressed by the subband
gap compared to other terms of the Hamiltonian. If the subband gap is
large compared to v3~3/l3z , the cubic SOI term can be treated as a small
perturbation that couples both the COM and relative coordinates with
the spin degree of freedom. We divide Eq. (3.10) into three terms

HCOM
2 =

1

4m∗
P 2 +

~2

m∗l4z
Z2 , (3.12a)

Hrel
2 =

p2

m∗
+

~2

4m∗l4z
z2 + Vc(z) , (3.12b)

V = v3

(
1

8
P 3 +

3

2
Pp2

)
(σy1 + σy2) + v3

(
3

4
P 2p+ p3

)
(σy1 − σy2)

≡ P+
3 (σy1 + σy2) + P−3 (σy1 − σy2) .

(3.12c)

The COM Hamiltonian of Eq. (3.12a) can be rewritten using the har-
monic oscillator ladder operators defined as P = i(a† − a)~/lz and Z =
(a† + a)lz/2 such that HCOM

2 = ∆oa
†a, where ∆o = ~2/m∗l2z is the energy

splitting of the COM mode. In contrast to HCOM the Hamiltonian Hrel

cannot be diagonalized exactly. Nevertheless exploiting the z ↔ −z sym-
metry of the Hamiltonian, we can denote the lowest even (odd) eigen-
state with S (T ) referring to their singlet-like (triplet-like) behaviour un-
der particle exchange. Even though the 1D two-particle problem of a
harmonic potential in the long QD limit (lz � aB) can be treated ana-
lytically in the Hund-Mulliken approximation [60, 62], here we resort to
the numerical solution of this problem because we are interested in the
lz & aB regime where this approximation is not accurate.

By using a second order Schrieffer-Wolff transformation, we project
the Hamiltonian to the ground state of the COM Hamiltonian and the
two energetically lowest eigenstates of the relative coordinate Hamilto-
nian (i.e., one singlet-like and one triplet-like state). Thereby, an effective
low-energy Hamiltonian is obtained, from which the anisotropy axis can
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be deduced and the magnetic field dependence can be straightforwardly
discussed. The effective low-energy Hamiltonian reads

Heff = −J0 |χS〉 〈χS|+Weff , (3.13)

where J0 is the energy splitting between the lowest-energy eigenstates
of (3.12b) and |χS〉 = (|↑〉1 |↓〉2 − |↓〉1 |↑〉2)/

√
2 is the spin part of the sin-

glet wavefunction, and where we choose the spin quantization axis along
y-direction, i.e. σyi |↑ (↓)〉i = ± |↑ (↓)〉i. In the following we also need
the three triplet-like states, denoted by |χT0〉 = (|↑〉1 |↓〉2 + |↓〉1 |↑〉2)/

√
2,

|χT+〉 = |↑〉1 |↑〉2, and |χT−〉 = |↓〉1 |↓〉2. The effective coupling

Weff = − i

2~
lim
η→0+

∞∫
0

dt e−ηt 〈[V (t), V ]〉

= − i
~

lim
η→0+

∞∫
0

dt e−ηt
{
〈[P+

3 (t),P+
3 ]〉 (1 + σy1σ

y
2)

+ 〈[P−3 (t),P−3 ]〉 (1− σy1σy2)
}
,

(3.14)

stems from the cubic SOI terms of Eq. (3.12c), where V (t) = eiH0t/~V e−iH0t/~

is the perturbation in the interaction picture, with the unperturbed Hamil-
tonianH0 = HCOM

2 +Hrel
2 . Also, the expectation values in Eq. (3.14) project

the effective Hamiltonian onto the low-energy singlet-triplet subspace,
and in the second equation we exploited the fact that (σy1 +σy2)(σy1−σy2) =
0.

To include Pauli’s principle, we restrict the Hilbert space to the anti-
symmetric 2-particle solutions by projecting Eq. (3.14) onto the lowest-
energy singlet and triplet basis. The respective spin matrices projected
onto the triplet sector can be written as

(1 + σy1σ
y
2)T = 2(|χT+〉 〈χT+|+ |χT−〉 〈χT−|) = 1 + σy1σ

y
2 , (3.15a)

(1− σy1σy2)T = 2 |χT0〉 〈χT0| =
1

2
− σy1σy2 +

1

2
σ1 · σ2 , (3.15b)

while the corresponding projection of the singlets reads

(1 + σy1σ
y
2)S = 0 , (3.15c)

(1− σy1σy2)S = 2 |χS〉 〈χS| =
1

2
− 1

2
σ1 · σ2 . (3.15d)
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Exploiting that the spin parts of the effective low-energy Hamiltonian do
not couple the singlet with the triplet sectors one may write the pertur-
bation as

Weff = W+
T (1 + σy1σ

y
2) +W−

T

(
1

2
− σy1σy2 +

1

2
σ1 · σ2

)
+W−

S

(
1

2
− 1

2
σ1 · σ2

)
,

(3.16)

where the prefactors, in analogy with Eq. (3.14) are given by

W±
S(T ) = − i

~
lim
η→0+

∞∫
0

dt e−ηt 〈[P±3 (t),P±3 ]〉S(T ) . (3.17)

Here, 〈. . .〉S(T ) is the expectation value taken with respect to the state
|0, ψS(T )〉 = |0〉 |ψS(T )〉, where |0〉 is the ground state of the COM Hamilto-
nian and |ψS(T )〉 is the lowest-energy singlet-like (triplet-like) eigenstate
of the relative coordinate Hamiltonian in Eq. (3.12b).

Substituting the effective coupling (3.16) into (3.13), the effective Hamil-
tonian can be written in the following form

Heff =
1

4
(J +D)σ1 · σ2 −

1

2
Dσy1σy2 , (3.18)

where D = 2(W−
T −W+

T ) is the exchange anisotropy responsible for the
zero-field splitting and J = J0 + 2(W+

T −W−
S ) is the exchange splitting

between the singlet and the T± doublet. In order to determine the zero-
field splitting D we need to calculate the quantities W±

S(T ). To this aim,
we first write the time-evolution of the COM momentum as

P (t) = i
~
lz

(
a†ei∆ot/~ − ae−i∆ot/~

)
, (3.19)

while higher powers of the momentum can be expressed straightfor-
wardly by using the creation and annihilation operators a† and a. For
the matrix elements of the relative momentum we can only exploit the
even/odd parity of the basis states to write the matrix elements of p and
p3 between |ψS(T )〉 and an arbitrary state |ψn〉 as

〈ψS| p1,3(t) |ψn〉 =
∑
i

δn,Ti 〈p1,3〉S,Ti e
−i(εTi−εS)t/~ , (3.20a)
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〈ψT | p1,3(t) |ψn〉 =
∑
i

δn,Si 〈p1,3〉T,Si e
−i(εSi−εT )t/~ , (3.20b)

where Si (Ti) denote the higher energy even (odd) states for i = 1, 2, 3 . . .
The matrix elements of p2(t) can be written analogously and only couple
even (odd) states to higher even (odd) states. In the next step the pro-
jected commutators in Eq. (3.17) are obtained using Eqs. (3.19)-(3.20b),
resulting in

〈[P+
3 (t),P+

3 ]〉T =
9

64
v2

3

~6

l6z
e−i∆ot/~ +

6

64
v2

3

~6

l6z
e−3i∆ot/~

+
9

8
v2

3

~4

l4z
〈p2〉

TT
e−i∆ot/~

+
9

4
v2

3

~2

l2z

∑
i

| 〈p2〉
TTi
|2e−i(∆o+εTi−εT )t/~ − h.c. ,

(3.21a)

〈[P−3 (t),P−3 ]〉T =
3

2
v2

3

~2

l2z

∑
i

Re[〈p3〉
TSi
〈p〉

SiT
]e−i(εSi−εT )t/~

+ v2
3

∑
i

|〈p3〉
TSi
|2e−i(εSi−εT )t/~

+
9

16
v2

3

~4

l4z

∑
i

|〈p〉
TSi
|2e−i(εSi−εT )t/~

+
9

8
v2

3

~4

l4z

∑
i

|〈p〉
TSi
|2e−i(2∆o+εSi−εT )t/~ − h.c. ,

(3.21b)

〈[P−3 (t),P−3 ]〉S =
3

2
v2

3

~2

l2z

∑
i

Re[〈p3〉
STi
〈p〉

TiS
]e−i(εTi−εS)t/~

+ v2
3

∑
i

|〈p3〉
STi
|2e−i(εTi−εS)t/~

+
9

16
v2

3

~4

l4z

∑
i

|〈p〉
STi
|2e−i(εTi−εS)t/~

+
9

8
v2

3

~4

l4z

∑
i

|〈p〉
STi
|2e−i(2∆o+εTi−εS)t/~ − h.c. ,

(3.21c)

where the commutator in W+
S is not listed since it does not contribute to

the effective coupling in Eq. (3.16). The time integrals in Eq. (3.17) can be
evaluated using

∫∞
0
eiωt−0+t = −i/(ω − i0+).
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Finally, the zero-field splitting D is expressed in terms of momentum
matrix elements as

D =
11

16
v2

3

~6

l6z

1

∆o

+
9

2
v2

3

~4

l4z

〈p2〉
TT

∆o

+ 9v2
3

~2

l2z

∑
i

| 〈p2〉
TTi
|2

∆o + εTi − εT

− 6v2
3

~2

l2z

∑
i

Re[〈p3〉
TSi
〈p〉

SiT
]

εSi − εT
− 4v2

3

∑
i

|〈p3〉
TSi
|2

εSi − εT

− 9

4
v2

3

~4

l4z

∑
i

|〈p〉
TSi
|2

εSi − εT
− 9

2
v2

3

~4

l4z

∑
i

|〈p〉
TSi
|2

2∆o + εSi − εT
≡ m∗v2

3

~4

l4z
η ,

(3.22)

where we defined the dimensionless prefactor η as in Eq. (3.4) of the main
text. We show its functional dependence in Sec. 3.A. Moreover, the ex-
change splitting is given by

J = J0 −
11

16
v2

3

~6

l6z

1

∆o

− 9

2
v2

3

~4

l4z

〈p2〉
TT

∆o

− 9v2
3

~2

l2z

∑
i

| 〈p2〉
TTi
|2

∆o + εTi − εT

+ 6v2
3

~2

l2z

∑
i

Re[〈p3〉
STi
〈p〉

TiS
]

εTi − εS
+ 4v2

3

∑
i

|〈p3〉
STi
|2

εTi − εS

+
9

4
v2

3

~4

l4z

∑
i

|〈p〉
STi
|2

εTi − εS
+

9

2
v2

3

~4

l4z

∑
i

|〈p〉
STi
|2

2∆o + εTi − εS
≈ J0 ,

(3.23)

where J0 = εT − εS is the triplet-singlet splitting of the unperturbed
Hamiltonian. These equations correspond to the ones reported in the
main text.

Momentum matrix elements of the relative coordinate

We now provide more details on the magnitude of the exchange J and
of the zero-field splitting D. The analytical result of the ZFS in Eq. (3.22)
involves a number of matrix elements of different powers of momentum
between the eigenstates of the HamiltonianHrel

2 of the relative coordinate
in Eq. (3.12b). Since the Hamiltonian contains the effective 1D potential
Vc(z1 − z2), it is difficult to estimate this matrix elements in general.

Here we restrict our attention to nanowires with square cross section
and side length of L and calculate the effective 1D Coulomb potential
numerically as discussed in Sec. 3.B. We find that the relevant momen-
tum matrix elements are very well reproduced by using the following
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effective potential

Vc(z) ≈ e2

4πεr

1√
z2 + (L/4)2

, (3.24)

where εr is the dielectric constant of the material. The dimensionless
Hamiltonian with the approximating formula used for the effective 1D
Coulomb interaction reads as

Hrel
2

∆o

= −∂2
x +

1

4
x2 +

lz
aB

1√
x2 + (L/4lz)2

, (3.25)

where x = z/lz. The Hamiltonian depends on two dimensionless pa-
rameters lz/aB and L/lz (or equivalently lz/aB and L/aB). Therefore all
the matrix elements in Eq. (3.22) can be expressed as a function of these
quantities leading to D = η m∗v2

3~4/l4z . The dimensionless coefficient η
depends on the relative length scales through the eigenstates of Hrel

2 and
can be written as

η =
11

16
− 9

2
〈∂2
x〉o1o1 +

∑
i

{
9
| 〈∂2

x〉o1oi |2
1 + ε̃oi−ε̃o1

−6
Re[〈∂3

x〉o1ei〈∂x〉eio1 ]
ε̃ei − ε̃o1

−4
|〈∂3

x〉o1ei |2
ε̃ei−ε̃o1

− 9

4

|〈∂x〉o1ei |2
ε̃ei − ε̃o1

− 9

2

|〈∂x〉o1ei|2
2 + ε̃ei − ε̃o1

}
,

(3.26)

where Hrel
2 /∆o |ei〉 = ε̃ei |ei〉 for the even, Hrel

2 /∆o |oi〉 = ε̃oi |oi〉 for the odd
eigenstates with respect to x, and−i 〈∂x〉nm = −i 〈ψn|∂x|ψm〉 is the matrix
element of the dimensionless momentum. The coefficient η is shown as
a function of the two relative length scales lz/aB and L/aB in Fig. 3.4(a).
Importantly, the dependence on the 1D cutoff L/4 is rather weak for lz &
aB and therefore we expect the analytical formula provided in the main
text, see Eq. (3.4), to be valid for a wide range of cross sections.

The (unperturbed) exchange splitting J0 = ∆o(ε̃o1 − ε̃e1) can also be
expressed in terms of the two relative length scales lz/aB and L/aB, as
J0 = ζ~2a2

B/m
∗l4z , where ζ is a dimensionless coefficient. Combining J0

with D, we find that the anisotropy can be expressed as

D
J =

m∗2v2
3~2

a2
B

η

ζ
+O(v4

3) . (3.27)

This equation shows that the anisotropy depends strongly on both v3 and
on the effective mass, i.e., D/J ∼ (m∗)4. The mass dependence can be
understood by considering that aB ∝ 1/m∗ and that η/ζ depends weakly
on aB, and therefore on the mass as well [see Fig. 3.4(b)].
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Figure 3.4: (a) Coefficient η of the zero-field splitting D as a function of
QD length lz and NW width L. (b) Ratio η/ζ of the anisotropy D/J as
a function of QD length and NW width. The thin red line corresponds
to the region plotted in Fig. 3.2(a) of the main text. For reference aB ≈
11.7 nm in Ge and aB ≈ 2.7 nm in Si.

3.B Details of the numerical calculation

Here, we discuss in detail the numerical calculations introduced in the
main text. We start the numerical analysis by considering a single QD
with two holes, and assume harmonic confinement along the wire (z di-
rection) as

H = HK,1(p1) +HK,2(p2) +
~2γ1

2meL4
z

(z2
1 + z2

2) + C(r1 − r2) , (3.28)

where pi and ri are the momentum and spatial coordinate of the ith parti-
cle, C(r1−r2) is the Coulomb interaction, and hard-wall boundary condi-
tions in the x-y directions are implied. The n× n Kane model describing
n = 4 or n = 6 valence bands in inversion symmetric semiconductors
close to the Γ point is [65]

Hn×n
K (p) =

n∑
α=1

Eα |α〉 〈α|+
γ1

2me

p2 −
(
γ2

me

p2
x +

2

3
Duεxx

)
Axx

−
(

2
γ3

me

{px, py}+
4

3
D′uεxy

)
Axy + c.p. ,

(3.29)

where Eα is the energy of the band α at p = 0, the coefficients γ1, γ2,
and γ3 are the Luttinger parameters determined by the band structure
of the material, Du and D′u are the deformational potentials, and Aij are
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n × n matrices acting on the band degree of freedom. Moreover, the an-
ticommutator between two operatrs O1 and O2 is defined as {O1, O2} =
(O1O2 + O2O1)/2. For example in the 4-band Luttinger-Kohn model de-
scribing the top of the HH and LH bands, Eα = 0 and Aij = {Ji, Jj}
where Ji are the spin-3/2 matrices. For the 6-band model –obtained
by considering the third pair of valence bands– the splitt-off holes are
shifted by ∆SO from the HH and LH bands, and the Aij matrices are
given in Ref. [65]. Throughout this work, we assume compressive strain
with strain tensor εij ∝ εiiδij .

Long-QD calculation

Here we study the long QD case, where the Coulomb interaction is weak
compared to the transversal confinement energy but stronger than the
longitudinal confinement energy, i.e., L/π . aB . Lz. We start by de-
riving an effective 1D model (in z direction) accounting for a few NW
subbands. To this goal, we add the electric field term HE = −eE · r to the
Hamiltonian of Eq. (3.29), impose the hard-wall boundary conditions in
the x − y directions, and expand the full Hamiltonian in powers of mo-
mentum pz. The operator multiplying pjz reads as H(j)

K = 1
j!
∂jpzHK(p)

∣∣
pz=0

for j ∈ {0, 1, 2} [35]. Then, we find the eigensystem of the Hamiltonian
H

(0)
K as

H
(0)
K φn(x, y, s) = εnφn(x, y, s) , (3.30)

where s is the band index of the Kane model. The eigenstates φn(x, y, s)
include the effects of electric field and strain and are used to project the
full Hamiltonian onto the 1D subspace as

[HK(pz)]nm = εnδnm + [H
(1)
K ]nmpz + [H

(2)
K ]nmp

2
z , (3.31)

where the indices m and n label the NW subbands. We include a large
number of NW subbands (Nxy = 200 in the present work) and we derive
the effective wire model

[H̃K(pz)]nm = εnδnm+[H
(1)
K ]nmpz+[H̃

(2)
K ]nmp

2
z+[H̃

(3)
K ]nmp

3
z+O(p4

z) , (3.32)

by third order SW transformation. By using this effective Hamiltonian
instead of Eq. (3.31), we can restrict ourselves to a few number of bands,
greatly simplifying the two-body problem.

In our numerical analysis we applied an additional transformation
that helps to improve the convergence of the ZFSs for large linear SOI.
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For this, we divide the Hamiltonian in Eq (3.32) into 2 × 2 blocks ac-
cording to the Kramers partners. Due to time reversal symmetry, each
diagonal block has to be of the form of Eq. (3.8), therefore for each sub-
band one can apply a spin dependent momentum shift analogous to the
one in Eq. (3.7).

Using the NW subbands, the two particle Hamiltonian of Eq. (3.28)
reads

Hn1,n2
m1,m2

(z1, z2) =[HK(pz1)]n1m1 + [HK(pz2)]n2m2

+
~2γ1

2meL4
z

(z2
1 + z2

2) + Cn1,n2
m1,m2

(z1 − z2) ,
(3.33)

where the Coulomb matrix elements are defined as
Cn1,n2
m1,m2

= 〈φn1 , φn2|C|φm1 , φm2〉. For example the Coulomb matrix ele-
ment in the lowest subbands is Cn1,n2

m1,m2
(z1 − z2) = δm1,n1δm2,n2Vc(z1 − z2),

(where m1,2, n1,2 ∈ {1, 2}) that has no singularity at z1 = z2, and is well
approximated by using a simple cutoff determined by the transversal
confinement length as shown in Eq. (3.24).

To diagonalize Eq. (3.33), we move to the COM frame, using the rela-
tion in Eq. (3.11), and we define the orthonormal basis states

ψn1,n2
u,w,s1,s2

(r1, r2) =φn1(x1, y1, s1)φn2(x2, y2, s2)

× φCOM
n1,n2,u

[
1

2
(z1 + z2)

]
φrel
n1,n2,w

(z1 − z2) .
(3.34)

The COM basis state φCOM satisfy the eigenvalue equation
HCOM(n1, n2)φCOM

n1,n2,u
(Z) = εCOM

u φCOM
n1,n2,u

(Z), with the Hamiltonian

HCOM(n1, n2) =
1

4

(
[H̃

(2)
K ]n1n1 + [H̃

(2)
K ]n2n2

)
k2
Z +

~2γ1

meL4
z

Z2 . (3.35)

We note that the COM basis states are harmonic oscillator eigenstates
with subband dependent mass 1/mn1,n2 =

(
[H̃

(2)
K ]n1n1 + [H̃

(2)
K ]n2n2

)
/2~2.

In contrast, the basis states of the relative coordinate depend also on the
Coulomb potential. We use φrel as basis states, i.e., the eigenfunctions
satisfying the eigenvalue equation Hrel(n1, n2)φrel

n1,n2,w
(z) = εrel

w φ
rel
n1,n2,w

(z),
with Hamiltonian

Hrel(n1, n2) =
(

[H̃
(2)
K ]n1n1 + [H̃

(2)
K ]n2n2

)
k2
z +

~2γ1

4meL4
z

z2 + Cn1,n2
n1,n2

(z) . (3.36)



CHAPTER 3. ZERO-FIELD SPLITTING IN SI AND GE QUANTUM
DOTS 105

Short-QD calculation

Using a few NW subbands as a basis for the numerical calculation is
only justified if the longitudinal confinement length is large compared
to the width of the NW, i.e., lz > L/π. However, in short QDs, where
the ZFS is expected to be stronger, several subbands may be required. In
this case, instead of effective wire bands, we use multiple basis states in
the x-y direction that satisfy the appropriate boundary conditions. In the
present work, we start from the 4× 4 Kane model and use the particle in
a box basis states

φn,m(x, y) |3/2, s〉 =
2

L
cos(nπx/L) cos(mπy/L) |3/2, s〉 , (3.37)

where the spin part is |3/2, s〉 ≡ |j = 3/2, jz = s〉. Along the z direction,
the COM and relative coordinate basis states are chosen as eigenstates of
the Hamiltonians

HCOM
s1,s2

=
~2

2ms

k2
Z +

~2γ1

meL4
z

Z2 , (3.38)

Hrel
s1,s2

=
2~2

ms

k2
z +

~2γ1

4meL4
z

z2 + Cn1,m1,n2,m2
n1,m1,n2,m2

(z) , (3.39)

respectively, where the mass is

1

ms

=
1

me


(γ1 − 2γ2) , if |s1| = |s2| = 3/2

(γ1 + 2γ2) , if |s1| = |s2| = 1/2

γ1 , if |s1| 6= |s2|
. (3.40)

Finally, the resulting the two-particle basis states used to diagonalize the
complete 2-body Hamiltonian are

ψn1,m1,n2,m2
u,w,s2,s2

(r1, r2) =φn1,m1(x1, y1)φn2,m2(x2, y2)

× φCOM
s1,s2,u

[
1

2
(z1 + z2)

]
[φrel]n1,m1,n2,m2

s1,s2,w
(z1 − z2) .

(3.41)

Anisotropic short-range corrections to the Coulomb
interaction

In Ref. [34] it is shown that the Coulomb interaction can acquire anisotropic
corrections at short distances that couple the band degrees of freedom,
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i.e., the HH, LH, and the spin-orbit split-off bands. This effect is a conse-
quence of the finite orbital angular momentum of the p-type wavefunc-
tions corresponding to the valence bands.

Three different type of corrections were identified in Ref. [34]: intra-
band, partially intraband, and interband corrections. The intraband and
partially intraband terms contain both short-range (r < a/4, where a is
the lattice constant) and long-range (a/4 < r . 2a) contributions, while
the interband corrections are exclusively short-ranged. Here we omit the
long-ranged contributions as their contribution is negligible compared to
the short-range terms [34]. The form of the short-range Coulomb correc-
tions used in our work is

δCs-r =
F2

25
gd(r1 − r2) [PHH(1)PHH(2) + PLH(1)PLH(2)

−PLH(1)PHH(2)− PHH(1)PLH(2)]

+
√

2
F2

25
gd(r1 − r2)[Jpart, d(1)Jpart, od(2) + Jpart, od(1)Jpart, d(2)]

+
F2

25
gd(r1 − r2)

[
Jpart, od(1)Jpart, od(2) + 3Jint, YJ

†
int, Y + 3J†int, YJint, Y

+6Jint, XJ
†
int, X + 6J†int, XJint, X

]
,

(3.42)

where the first term is the intraband, the second term is the partially in-
terband, the third term is the interband correction, and F2 = F2(4p, 4p) =
4.235 eV is the relevant Slater-Condon parameter for Ge as provided in
Ref. [59]. The functional form of gd(r) has been derived for the contin-
uum representation of the atomistic model in Ref. [34]. Here we provide
only the simplest approximation for this short-ranged function, i.e.,

gd(r) ∝
(a

2

)3

δ(r) . (3.43)

Since gd(r) is cut at the boundary of a cube with an edge of a/2 (where
a = 0.56 nm is the lattice constant for Ge), the spatial dependence is well
approximated by a Dirac delta within the envelope function approxima-
tion (i.e., L, lz � a).

In order to simplify the formulas of Ref. [34] to the case of the 6 × 6
Kane model in Eq. (3.42), we introduced the following operators

PHH = |3
2
, 3

2
〉 〈3

2
, 3

2
|+ |3

2
, −3

2
〉 〈3

2
, −3

2
| , (3.44a)

PLH = |3
2
, 1

2
〉 〈3

2
, 1

2
|+ |3

2
, −1

2
〉 〈3

2
, −1

2
| , (3.44b)
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Jpart, d = PHH − PLH , (3.44c)

Jpart, od = |3
2
, 1

2
〉 〈1

2
, 1

2
|+ |3

2
, −1

2
〉 〈1

2
, −1

2
|+ h.c. , (3.44d)

Jint, X =− 1√
3
|3
2
, 3

2
〉 〈3

2
, −1

2
| −
√

2

3
|3
2
, 3

2
〉 〈1

2
, −1

2
|

+
1√
3
|3
2
, 1

2
〉 〈3

2
, −3

2
|+
√

2

3
|1
2
, 1

2
〉 〈3

2
, −3

2
| ,

(3.44e)

Jint, Y =−
√

2

3
|3
2
, 3

2
〉 〈3

2
, 1

2
|+ 1√

3
|3
2
, 3

2
〉 〈1

2
, 1

2
|

−
√

2

3
|3
2
, −1

2
〉 〈3

2
,−3

2
|+ 1√

3
|1
2
,−1

2
〉 〈3

2
,−3

2
|

+ |3
2
, 1

2
〉 〈1

2
,−1

2
| − |1

2
, 1

2
〉 〈3

2
,−1

2
| ,

(3.44f)

where the states |j, jz〉 are eigenstates of the total angular momentum
operators ~2Ĵ2 and ~Ĵz with eigenvalues ~2j(j + 1) and ~jz, respectively.

Comparison between short and long QDs

In this section we compare the two numerical approaches described in
Secs. 3.B and 3.B to calculate the exchange- and zero-field splittings. The
first approach well describes long quantum dots, with Lz > aB, L. In
this approach we account for 4 NW subbands, and 30 states for the COM
and 30 states for the relative coordinates. The second approach works for
short QDs, with Lz L < aB, and uses basis states adapted to the confine-
ment in each spatial directions (3 - 3 particle in a box eigenstates in x− y
and 8 harmonic oscillator eigenstates in z directions) and therefore de-
scribe the short QD limit, i.e., Lz ∼ L < aB. Since the numerical analysis
in short QDs requires a large number of basis states to converge, in these
calculations we omit the spin-orbit split-off bands (reducing the size of
the two-particle Hilbert space to 82′944 in the short QD case). The effect
of the split-off holes is fully accounted for in the main text.

The results of the two numerical solutions are compared in Fig. 3.5
for a Ge wire with square cross-section with side length L = 10 nm, com-
pressive strain εzz = −2.5%, and electric field Ex = 2 V/µm. The {x, y, z}
axes of the wire correspond to the 〈100〉 crystallographic directions. The
simulation of the exchange shows a good quantitative agreement in the
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Figure 3.5: Exchange splitting J and zero-field splittings D and E as a
function of Lz in a Ge quantum dot. We consider a square wire with
side length L = 10 nm, compressive strain εzz = −2.5%, and electric field
Ex = 2 V/µm. The {x, y, z} axes of the wire correspond to the 〈100〉 crys-
tallographic directions. The first set of curves starting from Lz = 4 nm
to Lz = 10 nm are calculated in the short QD assumption discussed in
Sec. 3.B, while the second set from Lz = 8 nm to Lz = 26 nm is calculated
using the long QD calculation discussed in Sec. 3.B and also used in the
main text. The vertical line corresponds to Lz = aB in Ge.

two cases. The ZFSs computed in these cases are also in qualitative agree-
ment, however, at L ∼ 10 nm the numerical precision used for short QDs
is not sufficient and the results of the short QD simulation are not reli-
able for larger QD lengths. We expect that the ZFS interpolates smoothly
between the two limits.

From this comparison we conclude that the results obtained with the
long quantum dot procedure remain reasonably accurate even at rather
small values of Lz, confirming also the numerical and analytical theory
discussed in the main text.

3.C Symmetry analysis of the triplet
degeneracy

In this section we use group theoretical tools to study the degree of de-
generacy of the two-particle eigenstates that is allowed by the irreducible
representations of the two-particle point groups (i.e., double groups).
Starting from the case with cubic symmetry, we consider the compati-
bility table of the cubic point group and we show how the degeneracy
is resolved if certain symmetries are broken by e.g., the interface, electric
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Oh Γ+
1 (1) Γ+

2 (1) Γ+
3 (2) Γ+

4 (3) Γ+
5 (3)

D4h Γ+
1 (1) Γ+

3 (1) Γ+
1 (1)+Γ+

3 (1) Γ+
2 (1)+Γ+

5 (2) Γ+
4 (1)+Γ+

5 (2)
D2h Γ+

1 (1) Γ+
1 (1) 2Γ+

1 (1) Γ+
2 (1)+Γ+

3 (1)+Γ+
4 (1) Γ+

2 (1)+Γ+
3 (1)+Γ+

4 (1)
C2v Γ1(1) Γ2(1) Γ1(1)+Γ2(1) Γ2(1)+Γ3(1)+Γ4(1) Γ1(1)+Γ3(1)+Γ4(1)

Table 3.1: Compatibility table of the cubic point group [72]. For NW
QDs the symmetry groups D4h, D2h, and C2v correspond to square, rect-
angular cross section, and the hut wire, respectively. Assuming that the
confinement along the wire is symmetric, the coordinate axes x, y, z cor-
respond to 〈100〉 crystallographic axes, and no additional fields are ap-
plied.

field, or strain.
In the following discussion, we restrict our attention to the HH and

LH bands. These bands at k = 0 are described by the irreducible rep-
resentation Γ+

8 (4), where ” + ” indicates even parity with respect to in-
version and the number in parentheses is the dimension of the repre-
sentation i.e., the degree of degeneracy [71]. By assuming the most gen-
eral form of the interaction –e.g., accounting for the short-range inter-
band Coulomb interaction– the two-particle representation can be de-
composed into irreducible representations as follows

Γ+
8 (4)× Γ+

8 (4) = Γ+
1 (1) + Γ+

2 (1) + Γ+
3 (2) + 2Γ+

4 (3) + 2Γ+
5 (3) , (3.45)

where one obtains 1-, 2-, and 3-dimensional irreducible representations.
This decomposition implies that the full 3-fold degeneracy of the triplet
states is maintained if the QD confinement respects every symmetry of
the cubic point group. In experiments this is usually not the case, there-
fore we consider the few nontrivial point groups that are of practical rel-
evance:

(i) a NW with square cross section and Ex = 0 as in Figs. 3.2 and 3.3 of
the main text, described by theD4h tetragonal point group that con-
tains one fourfold and two twofold rotation axes as well as inver-
sion symmetry. The triplet degeneracy is indeed lifted as predicted
by the first line of Tab. 3.1.

(ii) a rectangular NW in the absence of electric field, or a square wire
with compressive strain along the x or y directions, described by the
D2h orthorhombic point group that contains three twofold rotation
axes as well as inversion symmetry. In this case each of the three
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triplets are non-degenerate (see second line of Tab. 3.1). This case
has been confirmed in our numerical calculation (not shown).

(iii) a rectangular or square NW with electric field applied perpendicu-
lar to either of the sides of the cross section, or a NW with an equi-
lateral triangle cross section. These cases are both described by the
C2v orthorhombic point group that contains two reflection planes
and one twofold rotation axis. In this case each of the three triplets
are non-degenerate (see third line of Tab. 3.1). This case has been
confirmed as well by our numerical calculation (see Figs. 3.2 and 3.3
of the main text).

Finally, we note that including only the spin-independent Coulomb
interaction is not enough to lift all the triplet degeneracies as predicted by
symmetries. To obtain the lowest possible degeneracy, short-range inter-
band corrections to the Coulomb interaction also need to be considered.
However, in the main text, we show that these effects are significantly
smaller than the cubic spin-orbit induced lifting of triplet degeneracy.
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CHAPTER 4
Strong spin-orbit interaction and

g-factor renormalization
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“Strong spin-orbit interaction and g-factor renormalization of hole spins in Ge/Si
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The spin-orbit interaction lies at the heart of quantum computation
with spin qubits, research on topologically non-trivial states, and various
applications in spintronics. Hole spins in Ge/Si core/shell nanowires ex-
perience a spin-orbit interaction that has been predicted to be both strong
and electrically tunable, making them a particularly promising platform
for research in these fields. We experimentally determine the strength of
spin-orbit interaction of hole spins confined to a double quantum dot in a
Ge/Si nanowire by measuring spin-mixing transitions inside a regime of
spin-blockaded transport. We find a remarkably short spin-orbit length
of ∼ 65 nm, comparable to the quantum dot length and the interdot dis-
tance. We additionally observe a large orbital effect of the applied mag-
netic field on the hole states, resulting in a large magnetic field depen-
dence of the spin-mixing transition energies. Strikingly, together with
these orbital effects, the strong spin-orbit interaction causes a significant
enhancement of the g-factor with magnetic field. The large spin-orbit in-
teraction strength demonstrated is consistent with the predicted direct
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Rashba spin-orbit interaction in this material system and is expected to
enable ultrafast Rabi oscillations of spin qubits and efficient qubit-qubit
interactions, as well as provide a platform suitable for studying Majorana
zero modes.

4.1 Introduction

The spins of single electrons or holes can be coupled to orbital degrees
of freedom through the spin-orbit interaction. In a solid-state environ-
ment, this interaction arises from the motion of electrons or holes in elec-
tric fields associated with the host lattice atoms, structural or bulk inver-
sion fields, or externally applied electric fields, and its strength can range
from a typically small perturbation in the conduction band to a signifi-
cant effect in the valence band [1]. Spin-orbit interaction is particularly
useful for fundamental applications in spintronics and quantum infor-
mation processing with spin qubits [2–4], as it can be employed to real-
ize fast manipulation of spin states purely through electrical means [5,
6]. For example, Rabi oscillations with frequencies of ∼ 100 MHz have
been obtained for electron spins confined in group III-IV semiconduc-
tor nanowires, where the spin-orbit interaction was used to mediate a
coupling of the spins to an electrical driving field [7, 8]. Furthermore,
spin-orbit interaction provides a promising path towards implementing
entangling operations between distant spin qubits, by mediating the cou-
pling of spins to electromagnetic cavity modes [9, 10] or floating gate ar-
chitectures [11]. An important advantage of using spin-orbit interaction
for these purposes is that it requires no additional on-chip components
such as micromagnets.

The emergence of Majorana zero modes in semiconductor nanowires
relies on the presence of a strong spin-orbit interaction [12–15]. When
combined with conventional bulk s-wave superconductivity, induced in
the nanowire through proximitization, and with a Zeeman field, suf-
ficiently strong spin-orbit interaction results in an effective 1D p-wave
superconductor supporting Majorana zero modes. Such Majorana zero
modes are of fundamental interest since they exhibit exotic non-Abelian
statistics and hold great promise to realize quantum computation with
topological protection from decoherence [16]. The strength of the spin-
orbit interaction sets the range of Zeeman energies in which a topologi-
cally non-trivial phase exists together with a sufficiently large supercon-
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ducting gap, making a strong spin-orbit interaction essential for experi-
mental studies [17].

Hole spins in semiconductor nanostructures can experience a spin-
orbit interaction many times stronger than for electron spins [1, 18, 19].
In particular, a strong and electrically tunable direct Rashba spin-orbit
interaction arises for holes confined in one-dimensional Ge- or Si-based
nanostructures [20, 21]. The direct Rashba spin-orbit interaction results
from direct dipolar coupling of holes to an external electric field, in com-
bination with mixing of heavy and light hole states due to confinement to
one dimension. This interaction is estimated to be 10-100 times stronger
than the conventional Rashba-type spin-orbit interaction for electrons or
holes.

Such a strong spin-orbit interaction would enable pushing spin qubit
Rabi frequencies into the GHz regime [9], an order of magnitude higher
than recently demonstrated with hole spin qubits [14, 22, 23], and state-
of-the-art electron-based spin qubits [8, 25, 32]. Moreover, a large electri-
cal tunability of spin-orbit interaction strength promises exquisite con-
trol over qubit coherence and manipulation speeds, providing a gate-
controlled ON/OFF switch of the coupling to electrical environmental
degrees of freedom, which could be used to, on the one hand, maximize
the coupling to microwave drive fields and, on the other hand, mini-
mize the coupling to charge noise. Such controllable coupling would
make it possible to combine ultrafast qubit operations with long coher-
ence times. Furthermore, such electrical tunability can be used to control
the localization length of Majorana zero-modes confined to each end of
a nanowire [17], creating the possibility of electrically performing topo-
logically non-protected operations on Majorana zero-modes.

Due to the tunable nature of the spin-orbit interaction, the magnitude
of the g-factor of hole spins in Ge/Si nanowires can be modulated over
a large range using applied electric fields [27, 28]. This feature enables
local control over the Zeeman energy and allows to tune the energy of a
qubit relative to a spin resonance driving field, or to a microwave cav-
ity mode, making it possible to selectively address individual qubits in a
multi-qubit device. Furthermore, in addition to strong and tunable spin-
orbit interaction, hole spins in Ge/Si nanowires combine several other
features that make them amenable for implementation of high-quality
qubits. Hyperfine-induced decoherence is expected to be strongly sup-
pressed, since holes have a p-type Bloch function, which has zero overlap
with lattice nuclear spins [29]. Furthermore, both Ge and Si have a low
natural abundance of isotopes with non-zero nuclear spins (29Si < 5%,
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Figure 4.1: Device and Pauli spin blockade. (a) False-colour scanning
elecron micrograph of the device, used for all the measurements of this
work. The finger gates g1-5 (red: barrier gates, green: plunger gates)
are biased with positive voltages Vg1-5 in order to create a double quan-
tum dot in the Ge/Si core/shell nanowire (yellow). The source (S) and
drain (D) contacts are defined on either side of the nanowire. Dashed
ellipses indicate the approximate locations of the two quantum dots. (b)
Schematic illustration of Pauli spin blockade, with zero magnetic field.
When the double dot is occupied by holes in a triplet (1, 1) state, the
current is blocked until mixing with a singlet state takes place. The dou-
ble dot detuning is indicated by ε. (c) Bias triangles taken at VSD = 2 mV
showing signatures of Pauli spin blockade, through a suppression of cur-
rent, in the area delineated by the dashed white lines. The blue arrow
indicates the direction of the detuning axis. (d) Current as a function of
detuning, swept along the arrow in (c), without (red) and with (green)
applied magnetic field.

29Ge < 8%), which can be made vanishingly small through isotopic pu-
rification. Finally, in contrast to electrons, holes in Ge and Si do not ex-
perience valley degeneracy, which for electron spins in Si-based devices
can have a detrimental effect on qubit relaxation times [30].

Here, we investigate the spin-orbit interaction of hole spins confined
in a double quantum dot defined electrostatically in a Ge/Si core/shell
nanowire [31, 32]. We use mixing of singlet and triplet spin states de-
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Figure 4.2: Measured leakage current as a function of magnetic field for
detunings covering the entire bias triangle, as shown by the arrow in
Fig. 4.1(c). The dashed white lines delineate the spin-blockaded region
also shown in Fig. 4.1(c). Here, Vg3 = 3820 mV.

tected through lifting of Pauli spin blockade [33–37] to perform spec-
troscopy on the effectively doubly occupied double dot. Notably, we
also find a large orbital effect of the magnetic field. We have developed
a spectroscopic model, which fully takes into account these orbital ef-
fects, allowing to independently determine the Landé g-factor, the inter-
dot tunnel coupling strength, and the strength of the spin-orbit interac-
tion in this device. We find a particularly strong spin-orbit interaction,
with a spin-orbit length of the same order as the dot size. Such a regime
of strong spin-orbit interaction is expected to exhibit effects [38, 39] typ-
ically not observed in experiments with quantum dots. Specifically, it
causes a renormalization of the g-factor, which we find here to lead to
a Zeeman energy that is a non-linear function of the applied magnetic
field.

4.2 Device and measurement setup

The device we use consists of a single Ge/Si core/shell nanowire deter-
ministically placed on top of five finger gates, which are equally spaced
with a pitch of 50 nm (see Fig. 4.1(a)). The nanowire has an overall ra-



CHAPTER 4. STRONG SPIN-ORBIT INTERACTION AND g-FACTOR
RENORMALIZATION 124

dius of 11 nm ± 2 nm, as determined through atomic force microscopy,
and a nominal Si shell thickness of 2.5 nm. A 20 nm thick layer of Al2O3

in between gates and nanowire serves as electrical insulation. Electrical
contact to the nanowire is made through two Ti/Pd contact pads, de-
fined on either side of the nanowire. For more details of the device, see
Froning et al. [31]. Previously, we have shown a large degree of con-
trol over the formation of quantum dots in such devices, which can be
tuned over hundreds of charge transitions down to the few-holes occu-
pation regime [31, 32]. Here, we form a tunnel-coupled double quantum
dot by applying positive voltages to the finger gates g1 − g5 that locally
deplete the nanowire hole gas [40]. We use the contact pads to apply a
source-drain voltage bias of VSD = 2 mV across the nanowire and to mea-
sure the current flowing through the double dot. An external magnetic
field is applied in the sample plane, perpendicular to the major axis of
the nanowire, as indicated in Fig. 4.1(a). All measurements were taken at
a temperature of 1.4 K.

4.3 Double quantum dot and Pauli spin
blockade

We tune the double dot to an effective occupation of two holes and study
the transport cycle (0, 1) → (1, 1) → (0, 2) → (0, 1) in a Pauli spin block-
ade [3, 33] configuration (see Fig. 4.1(b)). Here the first and second num-
bers refer to the effective hole occupation of the left and right dot, respec-
tively. Transport in this regime is subject to a spin selection rule imposed
by the Pauli exclusion principle: interdot transitions (1, 1) → (0, 2) are
blocked for spin triplet states (|T↓↓〉, |T0〉, |T↑↑〉, with spin quantum num-
bers s= 1 and ms = -1, 0, +1), since the |T (0, 2)〉 states are energetically in-
accessible. In contrast, interdot transitions are energetically allowed for
holes in a spin singlet state (|S〉, s = ms = 0). Therefore, when a triplet
(1, 1) state gets occupied, current through the double dot is blocked, until
mixing with a singlet state takes place.

We exploit such spin-selective transport as a read-out method allow-
ing us to distinguish spin states [33]. Fig. 4.1(c) shows a measurement
of the current through the double dot as a function of the voltage on
gates g2 and g4, taken at zero magnetic field. We identify the area of re-
duced current, enclosed by the dashed line in Fig. 4.1(c), as a signature of
spin blockade. Consistently, for opposite VSD, we obtain a larger current
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(not shown). Furthermore, as can be seen in the traces of Fig. 4.1(d), the
blockade is lifted at a finite magnetic field, resulting in an increased cur-
rent. Even when in a triplet state, transport can become unblocked [33]
through various spin-mixing mechanisms that coherently or incoherently
couple triplet and singlet states. Possible spin-mixing mechanisms are
based on hyperfine interactions with the nuclear spin bath of the host
lattice [34,35,41], spin-flip cotunneling [36,42–44], g-factor differences in
the double quantum dot, and spin-orbit interaction [13, 35–37, 41]. The
dominant spin-mixing mechanism can be investigated by leakage cur-
rents in Pauli spin blockade.

4.4 Lifting of Pauli Spin Blockade

We study the lifting of spin blockade in more detail, focussing on the
dependence of the resulting leakage current on double-dot detuning ε,
magnetic fieldB, and interdot tunnel coupling strength tc. Fig. 4.2 shows
a measurement of the current through the double dot as a function of
magnetic field B and detuning ε. The latter is swept over the entire bias
triangle, by changing Vg2 and Vg4 following the arrow in Fig. 4.1(c). The
white dashed lines in Fig. 4.2 indicate the spin-blockaded regime 0 < ε <
ε∆, with ε∆ ≈ 1 meV the detuning for which states with one hole in the
first orbital excited state becomes energetically available. For detunings
exceeding ε∆, we observe features with a significantly increased current.
We attribute these features to spin-flip transitions involving a higher or-
bital state, i.e. either |T↑↑,↓↓(1, 1)〉 − |S∆(0, 2)〉, or |S(1, 1)〉 − |T↑↑,↓↓(0, 2)〉
transitions, where |S∆〉 refers to a singlet state with one hole in the orbital
ground state and one hole in the first orbital excited state. Note that also
spin-conserving |T (1, 1)〉−|T (0, 2)〉 transitions can take place for these de-
tunings, but these transitions would not exhibit multiple peaks at finite
magnetic field, since they do not exhibit a Zeeman splitting. Remarkably,
we find that in our experiment transitions that do not conserve spin have
a higher amplitude than transitions that do conserve spin, as discussed
later.

Here we are interested in the spin-blockaded region and in the re-
maining part we focus on the features between the white lines in Fig. 4.2.
In this range of detuning, we see a markedly increased current that cor-
respond to lifting of Pauli spin blockade. These leakage current features
form the main topic of this work. We can make two important obser-
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vations: 1) for a given sign of B, the leakage current is maximum along
two curves as a function of ε and B, marked ε±(B) in Fig. 4.2; 2) around
zero magnetic field the leakage current is suppressed. These observa-
tions form the starting point in identifying the triplet-singlet transitions
underlying the leakage current along ε±(B), as well as the spin-mixing
mechanism.

As explained in more detail in Section 4.6, the position of the two
curves as a function of detuning and magnetic field allows us to as-
sign them to |T↑↑,↓↓(1, 1)〉 − |S(0, 2)〉 transitions. These transitions oc-
cur at different detuning depending on the magnetic field, due to an
increase in Zeeman splitting, as well as orbital effects of the magnetic
field. As shown in the next section, we identify spin-orbit interaction as
the dominant spin-mixing mechanism by evaluating the magnetic field-
dependent intensity of these transitions.

4.5 Possible Spin-mixing mechanisms

We now discuss the origin of the spin mixing leading to the observed
lifting of spin blockade by considering the dependence of possible spin-
mixing mechanisms on the magnetic field and detuning. In particular,
the zero-field gap can be attributed to spin-orbit interaction, which is not
effective at B = 0 T due to time-reversal invariance [41, 46], but becomes
important at finite B [47, 48]. Furthermore, for ε= 0 and |B| smaller than
a characteristic field B̃, the triplet (1, 1) states lie within the |S(1, 1)〉 −
|S(0, 2)〉 avoided crossing, at which point spin-orbit interaction does not
couple them efficiently to the singlet states.

Spin-flip cotunneling can also lead to dips or peaks in the leakage cur-
rent around B = 0 T. Such spin-flip cotunneling involves the exchange of
a hole spin with one of the lead reservoirs through a process involving a
virtual intermediate state, which can lead to decay of the triplet (1, 1) to
a singlet state. Such cotunneling can result in a leakage current peak at
B = 0 T that exists for ε= 0, as well as for values of ε up to ε∆. A shallow
zero-field dip can also result from cotunneling, when the temperature T
is small compared to tc [42, 43]. However, the data presented in Fig. 4.2
shows a deep zero-field gap and our operating temperature of 1.4 K is,
as will be shown later, comparable to tc. We therefore rule out spin-flip
cotunneling as the dominant spin-mixing mechanism in our measure-
ments.
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Figure 4.3: Magnetic-field dependencies. (a) Calculated magnetic field
dependence of the addition energy U (See Eq. (4.35) of Appendix 4.B).
Inset: Schematic illustration of the effect of increasing magnetic field B
on dot size and separation leading to the observed changes in U , tc and
g. Quantities change qualitatively with B as indicated by the arrows. (b)
Calculated magnetic field dependence of the spin-conserving tunnel cou-
pling tc (see Eq. (4.30a) of Appendix 4.B). (c) Calculated magnetic field
dependence of the g-factor (see Eq. (4.2)). For the plots in (a)-(c), the rele-
vant parameters correspond to those of the measurement of Fig. 4.2. (d)
Double dot energy level diagrams for different values of the magnetic
field. For B = 0 T, the spin-conserving tunnel coupling tc is maximum
and there is no singlet-triplet mixing due to spin-orbit interaction. For
large enough magnetic fields (B > B̃), avoided crossings (highlighted by
dashed circles) appear when the triplet (1, 1) states cross a singlet state
with (0, 2) component, corresponding to spin-flip tunneling due to spin-
orbit interaction. The size of all avoided crossings becomes smaller with
increasing magnetic field, as can be understood from (b) and Eq. (4.4).
Moreover, due to the magnetic field dependence of the addition energy
U (see (a)), as well as the Zeeman energy, all avoided crossings move
to higher detuning with magnetic field. Parameters used to plot the dia-
grams were extracted from the data set shown in Fig. 4.2, using the model
described in the text.

Furthermore, fluctuating polarizations of the nuclear spin bath in the
double dot can result in triplet-singlet mixing [34, 35, 49]. However, as
mentioned in the introduction, hyperfine interaction is expected to be
very small for hole spins in Ge- and Si-based devices. Moreover, this
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mechanism is only effective for values of B up to the root mean square
value of nuclear field fluctuations, which we estimate to be < 1 mT in
our system [34]. Most notably, in contrast to what we observe, this spin-
mixing mechanism should result in a leakage current peak [34,35] around
B = 0 T for ε up to ε∆.

Finally, differences in g-factor between the two dots need to be con-
sidered. The effective g-factor for holes in Ge/Si nanowires can depend
sensitively on the electric field [27], confinement potential [38, 39], and
hole occupation number. At finite field, such a g-factor difference will
mix the |T0(1, 1)〉 and |S(1, 1)〉 states, thus leading to an additional reso-
nance of the leakage current. However, such |T0(1, 1)〉 − |S(1, 1)〉mixing
would not result in the two separated curves of increased current that we
observe, but instead provide a background leakage current in the detun-
ing range considered, with no magnetic field dependence. Note further
that such mixing is suppressed as |T0(1, 1)〉 is split off from the singlet by
the exchange energy.

In conclusion, we identify spin-orbit interaction as the dominant spin-
mixing mechanism responsibe for the observed leakage current. In a
double quantum dot, spin-orbit interaction can flip the spin of a hole
tunneling between the quantum dots. This enables triplet-singlet mix-
ing, when these states are aligned in energy, which can effectively lift
Pauli spin blockade. As shown in the next section, we can explain the
spectroscopy of the observed leakage current using this mechanism.

4.6 Model of the two transitions

Here, we present an analytical model that takes into account non-spin-
conserving interdot tunneling and its dependence on magnetic field and
detuning. Our model agrees very well with the data and accurately re-
produces the field-dependence of the two observed transitions shown in
Fig. 4.2, allowing us to identify them as |T↑↑,↓↓〉 − |S〉 transitions.

As mentioned before, we assume that the spin-blockade and its lift-
ing can be understood in terms of an effectively doubly-occupied double
dot. When the spin-conserving interdot tunnel coupling tc is finite, the
singlet states |S(0, 2)〉 and |S(1, 1)〉 are coupled, giving rise to two new
eigenstates we refer to as the lower and higher hybridized singlet states,
|S−〉 and |S+〉, respectively [50]. These hybridized singlets are defined as
|S−〉 = sin(θ/2)|S(1, 1)〉 − cos(θ/2)|S(0, 2)〉 and |S+〉 = cos(θ/2)|S(1, 1)〉 +
sin(θ/2)|S(0, 2)〉, with the mixing angle θ being a function of detuning



CHAPTER 4. STRONG SPIN-ORBIT INTERACTION AND g-FACTOR
RENORMALIZATION 129

ε and tc (see Eq. (4.37) for the full expression of θ). The |S±〉 states ex-
hibit an avoided crossing around ε= 0 with a gap of 2

√
2tc, as shown in

Fig. 4.3(d). Importantly, the proportion of |S(0, 2)〉 and |S(1, 1)〉 present
in each of the |S±〉 states depends on the detuning.

In the presence of spin-orbit interaction, spin-flip tunneling couples
the |T↑↑,↓↓(1, 1)〉 states with the two hybridized |S±〉 states, due to the
|S(0, 2)〉 content of the latter. The coupling strength of this spin-flip tun-
neling is given by the strength of the spin-conserving tunnel coupling as
well as the strength of the spin-orbit interaction and can be written as
tso = tc tan

(
a/λso

)
(see Appendix 4.B for derivation), with a the interdot

distance and λso the spin-orbit length (defined by πλso/2 being the dis-
tance a hole has to travel for spin-orbit interaction to induce a π-rotation
of its spin state).

This coupling leads to avoided crossings when the energies of the
|T↑↑,↓↓〉 states exactly match the energies of the |S±〉 states, as illustrated
in the energy level diagrams in Fig. 4.3(d). The leakage current is maxi-
mum for those values of the detuning where the triplet-singlet avoided
crossings occur, which can be written as:

ε±(B) = U(B)− U(0)±
(

2t2c(B)

g(B)µBB
− g(B)µBB

)
. (4.1)

Here the indices + and − correspond to the |T↑↑〉 − |S+〉 and |T↓↓〉 −
|S−〉 transitions, respectively. Furthermore, µB is the Bohr magneton, g
the g-factor in the dot, and U the single dot addition energy. Eq. (4.1)
describes the evolution of spin-blockade leakage current with magnetic
field shown in Fig. 4.2 between the white dashed lines, with ε±(B) giving
the detunings of the resonant peaks of the two features as a function of
magnetic field.

In order to explain the precise magnetic field dependence of ε±(B),
we need to take into account effects that rely on the magnetic field chang-
ing the size of the hole orbitals. In the experiment, the magnetic field is
oriented perpendicular to the principal nanowire axis and is varied over
a wide range of amplitudes (−8 T ≤ B ≤ 8 T), making such orbital effects
significant in this system.

Remarkably, this turns the spin-conserving tunnel coupling tc, the ad-
dition energy U and the g-factor into quantities that all depend on the
magnetic field (see inset Fig. 4.3(a)). Such effects are usually dealt with
only qualitatively, even though their relative magnitude can be quite
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large. Here, we take these effects fully into account in our spectroscopic
model, enabling us to quantify the g-factor and the spin-orbit length in
our device.

To derive the functional dependence of these quantities onB, we start
from the Hund-Mulliken theory of atomic orbitals and we assume har-
monic confinement in all three directions. By considering an anisotropic
3-dimensional oscillator, we model the effects of a confinement potential
that is smoother (sharper) in the direction along (perpendicular to) the
nanowire as well as the strain-induced anisotropy of the effective mass
[21]. The hole wavefunctions in each dot are squeezed by the magnetic
field and as a result the spin-conserving tunneling tc(B) is reduced at
large fields while the single-dot addition energy U(B) is enhanced, as
shown schematically in the inset of Fig. 4.3(a). The explicit dependencies
of tc(B) and U(B) on magnetic field are given in Eqs. (4.30a) and (4.35)
of Appendix 4.B, and are plotted in Fig. 4.3(a), (b).

The detunings at which the |T↑↑,↓↓〉 − |S±〉 avoided crossings appear
also depend on the Zeeman splitting EZ of the |T↑↑,↓↓〉 states with respect
to the singlets. Usually, the Zeeman splitting is a linear function of the
magnetic field, which can be written in terms of the g-factor as EZ =
gµB|B|. However, strong spin-orbit interaction can renormalize the g-
factor [38, 39] when the size of the quantum dot is changed. In our case,
the magnetic field changes the dot size through orbital effects, leading
to a dependence of the g-factor on the magnetic field and turning the
Zeeman energy into a non-linear function of the magnetic field.

The shrinking of the dot with increasing magnetic field causes the g-
factor to be enhanced at large values of the magnetic field and we can
write [38, 39]

g(B) = g0e
−

l2‖
λ2so

(
1+B2

B2
0

)−1/2

, (4.2)

where g0 is the g-factor without the spin-orbit-induced renormalization.
Furthermore, l‖ is the field-independent harmonic length of the hole wave-
function (l‖ = lz(B = 0), with lz being the dot confinement length along
the wire) and B0 is a characteristic magnetic field that depends on the
average confinement strength in the directions perpendicular to the field.
See Appendix 4.A for the precise definition of these quantities. Fig. 4.3(c)
shows a plot of Eq. (4.2), using the values of l‖ and B0 extracted from the
measurement of Fig. 4.2. We stress that the magnetic-field dependence of
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Figure 4.4: Spectroscopy measurements and modelling. (a)-(c) Measured
leakage current as a function of magnetic field and detuning ε < ε∆, for
Vg3 = 3820, 3830, and 3840 mV. The green curves are fits of each data set
to Eq. (4.1), with (solid) and without (dashed) taking into account g-factor
renormalization with magnetic field. (d)-(f), Simulated leakage current
as a function of magnetic field and detuning. Here, we used the model
discussed in Sections 4.6-4.8 of the main text, with relevant parameters
determined from fits of the data shown in (a)-(c). The green curves are
identical to the curves in (a)-(c).

the g-factor in Eq. (4.2) is a direct consequence of the strong spin-orbit in-
teraction in the nanowire and it vanishes when the spin-orbit length λso
is much larger than the dot size, which is typically the case for quantum
dot systems that have been experimentally realized thus far.

As will be shown in the next section, when taking into account the
magnetic field dependence of U , tc, and g, the resonant positions ε±(B)
of the |T↑↑,↓↓〉 − |S±〉 transitions given by Eq. (4.1) closely reproduce the
evolution of the two features of spin blockade leakage current of Fig. 4.2
as a function of magnetic field and detuning.
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4.7 Varying the strength of interdot tunnel
coupling

To demonstrate the versatility of our model we now explore the influence
of varying the voltage Vg3 on the middle gate on the leakage current. The
main expected effects are a change in the interdot tunnel coupling tc and
a change in the dot confinement. Figs. 4.4(a)-(c) show measurements sim-
ilar to that of Fig. 4.2, for three values of Vg3 (see the Supplemental Ma-
terial for extended data sets). Comparing the three data sets, we see that
an increase of Vg3 leads to a closing of the zero-field gap. As discussed
before, Pauli spin blockade only becomes lifted through spin-orbit inter-
action for magnetic fields above a critical value. This critical field B̃ can
be written as

B̃ =

√
2

µB

tc(B̃)

g(B̃)
, (4.3)

where we include the magnetic field dependence of tc and g. When
|B| = B̃, the Zeeman energy matches the size of half of the avoided
crossing given by tc. At this point, ε−(B) = ε+(B) (see Eq. (4.1)) and both
|T↑↑,↓↓(1, 1)〉 − |S±〉 transitions become possible at ε ≈ 0 (see Fig. 4.3(d)
and Fig. 4.4(a)). For |B| < B̃, each of the singlet-triplet avoided crossings
occur at detunings where the involved |S±〉 states are mostly composed
of |S(1, 1)〉, which does not couple to |T↑↑,↓↓(1, 1)〉 through spin-orbit in-
teraction, leading to a gap in leakage current with characteristic width B̃
around zero magnetic field.

By increasing Vg3, we reduce tc and from Eq. (4.3) it follows that spin
blockade can be lifted at smaller magnetic fields. This moves the points
of emergence of ε±(B) for both magnetic field polarities closer together
and effectively reduces the width of the zero-field gap of leakage current,
in accordance with the observations. In Fig. 4.4(a)-(c), we can clearly see
this reduction of the zero-field gap (indicated with B̃) when the middle
gate voltage Vg3 is increased. Using Eq. (4.3), we extract the ratio tc/g

at the critical field B̃ for each data set. When the magnetic field is not
much larger than B̃, we neglect as a first approximation the variation of
tc(B) and g(B) from their value at B̃, see Figs. 4.3(a) and (c), and so us-
ing Eq. (4.1) we deduce tc(B̃) and g(B̃) from the relative position of the
resonant peaks. Values of B̃, tc(B̃), and g(B̃) extracted in this way for the
three data sets of Fig. 4.4 are listed in Table 4.1.
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By taking into account the orbital effects, our model allows us to ex-
plain the main features of the resonances at low magnetic fields. By lin-
early expanding the single-dot addition energy in the vicinity of the crit-
ical field, U(B) ≈ U(B̃) + U ′(B̃)

(
B − B̃), we can approximate ε−(B) ≈

ε(B̃) +
(
U ′(B̃) + g(B̃)µB

)(
B − B̃), reproducing the approximately linear

dependence of the upper resonance on magnetic field seen in Fig. 4.4.
On the other hand, in the expression of the ε+(B) resonant peak the term
linear in B is smaller and the 1/B term gives a significant contribution,
leading to a less pronounced shift in detuning, especially at low magnetic
field. Although the 1/B term is proportional to the tunneling energy, its
effect is counter-intuitively more pronounced in Fig. 4.4(c), because here
Pauli spin blockade is lifted at lower magnetic fields.

To characterize the overall magnetic field dependence of the leak-
age current, we now find ε±(B) for each data set by fitting to Eq. (4.1).
The green curves in Fig. 4.4 are plots of ε±(B) with (solid) and without
(dashed) taking into account the renormalization of the g-factor given
by Eq. (4.2). The additional features at larger magnetic fields, such as
the bending of the ε+(B) curve, are captured by the model by consider-
ing the function U(B) beyond the linear approximation, as well as the
renormalization of the g-factor due to spin-orbit interaction. We see that
the enhancement of the g-factor captured by Eq. (4.2) is quite important
for large magnetic fields (see also the Supplementary Material), where it
causes a sizeable bending of the resonant peaks. Including the renormal-
ized g-factor gives much better agreement with the measurements over
the whole range of magnetic field values.

In order to calculate the renormalized g-factor using Eq. (4.2), we esti-
mate the dot confinement length l‖ =

√
~/(m‖ω‖), which depends on the

confinement energy ω‖ and on the effective mass m‖ along the nanowire.
We determine ~ω‖ ∼ 1 meV from measurements of the double dot charge
stability diagram and assume m‖ ∼ 0.05m0 (here m0 is the bare electron
mass). This choice of m‖ is justified by the fact that we still measure
a non-zero current even at |B| = 8 T. If the effective mass along the
nanowire growth direction would be smaller, the orbital effects would
shrink the wavefunction to the extent that the interdot tunnel coupling
would vanish at 8 T. For our experiment, we determine l‖ ≈ 39− 45 nm
for the range of Vg3 used here. All the parameters extracted from our
analysis for the three datasets are reported in Table 4.1. These values
capture the qualitative trend expected: when the voltage Vg3 is increased,
the hole wavefunctions become more separated and squeezed, causing a
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reduction of the tunneling energy tc and an enhancement of the g-factor
because of the strong spin-orbit interaction, as described by Eq. (4.2). As
shown in the next section, our model allows us to extract the spin-orbit
length for each measurement. The model color plots shown in Fig. 4.4(d)-
(f) take into account the extracted values of the spin-orbit length, allow-
ing a full reconstruction of the leakage current in very good agreement
with the measurements.

4.8 Spin-orbit length

We now turn to the evaluation of the strength of the spin-orbit interac-
tion from the measurements shown in Fig. 4.4. The model developed
in the previous sections facilitates the extraction of this strength from
the width of the two leakage current features as a function of detuning
in Fig. 4.4(a)-(c). This width is given by the sizes 2∆±ST of the avoided
crossings (see Fig. 4.3d) induced by the spin-orbit interaction. Here, the
spin-flip tunneling energies ∆±ST are functions of the spin-orbit length
λso and furthermore depend on the overlap of the wave functions of the
|T↑↑,↓↓(1, 1)〉 states with those of the |S±〉 states, as well as on the dot size.
The spin-flip tunneling energy can be written as (see Appendix 4.C for
the complete derivation)

∆±ST = tc tan

(
a

λso

)√
1± cos(θ)

2
, (4.4)

with θ the mixing angle of the |S±〉 states.

The leakage current I±(B) corresponding to the resonances around
ε = ε±(B) can be written as [13, 51–53]

I± = I0 + eΓ

(
∆±ST

)2

(ε− ε±)2 + 3
(
∆±ST

)2
+ h2Γ2/4

. (4.5)

Here, the lead-to-dot relaxation rate Γ ∼ 0.45 GHz is taken to be sym-
metric for both of the leads and is estimated by adjusting the formula in
Eq. (4.5) for the |S(0, 2)〉 → |S(1, 1)〉 transition, and fitting it to the current
measured for opposite VSD. The offset current term I0 contains all inco-
herent relaxation mechanisms, as well as |S〉 − |T0〉 mixing. Discussing
this term in detail is beyond the scope of this paper and we refer the in-
terested reader to Ref. [41]. Additionally, we note that since we operate
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Figure 4.5: Measured leakage current as a function of detuning, for Vg3 =
3820 mV and B = −3.45 T. The black curve is a fit of Eq. (4.5) to the data.

at relatively high temperature, it might be expected that the transitions
are thermally broadened. However, the temperature of 1.4 K is still low
compared to the orbital level splitting of 1 meV, making such broadening
negligible. The dot-lead tunneling rate Γ is influenced by temperature,
but the value of Γ that we determine independently from the measure-
ments already includes this effect.

We therefore conclude that the width of the two leakage current fea-
tures is given by the spin-flip tunneling energies ∆±ST, which are then de-
duced by fitting the Lorentzians in Eq. (4.5) to the data sets of Fig. 4.4(a)-
(c). An example of this is shown in Fig. 4.5. The color plots of Fig. 4.4(d)-
(f) are constructed from the Lorentzians found in this way for different
values of the magnetic field. It can be seen that the model plots accurately
reproduce the leakage current observed in the corresponding experimen-
tal data.

Importantly, the determined ∆±ST allow to extract the spin-orbit length
λso. Using Eq. (4.4), we obtain the ratio λso/a directly from the ratio
∆ST/tc of the average spin-flip tunneling ∆ST =

[
(∆+

ST)2 + (∆−ST)2
]1/2 and

the spin-conserving tunneling tc. This yields ratios of λso/a as shown
in Table 4.1 for the different configurations of our double quantum dot.
The precise value of the interdot distance a cannot be exactly determined
from the measurements, but we can roughly estimate a ∼ 90 nm by con-
sidering the distance between the gates g2 and g4 (see Fig. 4.1(a)). Us-
ing this value, we obtain an average estimated value λso ∼ 65 nm for
the spin-orbit length, with small variation between the measurements of
Fig. 4.4(a)-(c).
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Vg3 B̃ B0 tc(B̃) g(B̃) l‖ λso/a
(mV) (T) (T) (µeV) (nm)

Fig. 4.4(a)3820 1.2 3.8 44 0.9 45 0.78
Fig. 4.4(b)3830 0.8 4.8 33 1.0 41 0.72
Fig. 4.4(c)3840 0.35 5.0 16 1.1 39 0.71

Table 4.1: Extracted hole spin parameters, obtained for the three datasets
shown in Fig. 4.4 by fitting the model to the data as described in the main
text.

Together with the orbital effects of the magnetic field, this notably
small λso leads to a dependence of the g-factor on the magnetic field, as
described by Eq. (4.2). This effect is large, since the spin-orbit length λso
and the confinement length along the wire l‖ are of the same order of
magnitude. In our measurements, this manifests itself in the additional
bending of the transitions ε±(B) at high values of the magnetic field.

4.9 Conclusions and outlook

Summarizing, we have characterized the strength of spin-orbit interac-
tion for hole spins confined in a double quantum dot in a Ge/Si nanowire,
using spectroscopy measurements in Pauli spin blockade. We found the
spin-orbit length to be of the same order of magnitude as the dot length
and interdot distance. This has the remarkable consequence that the g-
factor exhibits a non-linear dependence on magnetic field, which we ob-
serve experimentally at high values of the magnetic field.

The observation of this strong spin-orbit interaction in Ge/Si nanowires
forms the starting point of various subsequent experiments in this mate-
rial system. From the value of λso we can estimate the Rabi frequency
for electric dipole induced spin resonance [5,19] mediated through spin-
orbit interaction to be in the range of ∼ 0.1 − 1 GHz, for realistic values
of microwave amplitudes. Such Rabi frequencies form an excellent basis
for the implementation of fast hole spin qubits in this system.

Further characterization studies of the spin-orbit interaction in this
platform are of interest, in particular because here a quantitative com-
parison to relevant theoretical works [9, 17, 20, 21, 27] is challenging, due
to the relatively high dot occupation number. For instance, direct Rashba
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spin-orbit interaction is predicted to lead to a profound dependence of
the spin-orbit interaction as well as the g-factor on electric fields. While
we observe a dependence of the g-factor on a gate voltage (see Table 4.1),
a more complete investigation of these effects would include measure-
ments of the strength of the spin-orbit interaction as function of electric
field amplitude or orientation of magnetic field. Such tunability of g-
factor and spin-orbit strength could enable individual addressability of
spin qubits in coupling them to microwave fields, as well as provide a
way to limit the impact of charge noise on spin coherence.

4.A Model Hamiltonian

Here, we provide a more detailed analysis of the theoretical model used
in the main text. The relevant physics of a single hole confined in a quan-
tum dot can be captured by the effective 2-dimensional Hamiltonian

H = Ho +Hso +HZ , (4.6)

with

Ho =
π2
x

2m⊥
+

π2
y

2m⊥
+

π2
z

2m‖
+
m‖ω

2
‖

2
z2

+
m⊥ω

2
⊥

2
(x2 + y2) , (4.7a)

Hso = απzσy , (4.7b)

HZ =
g0µB

2
B · σσσ . (4.7c)

Here, we define the dynamical momentum πππ = −i~∇ − eA, where A is
the vector potential accounting for an externally applied magnetic field
B. These operators satisfy the commutation relations [πi, πj] = iεijk~eBk,
[πi, xj] = −i~δij . We model the confinement potential by an anisotropic
harmonic oscillator, with confinement frequencies ω⊥ and ω‖, and effec-
tive masses m⊥ and m‖ in the direction perpendicular and parallel to the
nanowire growth direction, respectively. In the following, we assume
ω⊥ > ω‖. Because of the magnetic field, the spin states are split in energy
by the Zeeman energy; here g0 is the g-factor of the system and the field
B is assumed to be homogeneous. The interaction between different spin
states is captured by a Rashba-like spin-orbit interaction Hso [20, 21].
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Our final goal is to extract from the measurements the spin-orbit interac-
tion parameter α. It is convenient to introduce the spin-orbit length

λso =
~

m‖α
, (4.8)

and to perform the unitary spin-dependent displacement of states [54]

S = eiσyz/λso , (4.9)

that diagonalizes the spin-orbit interaction in spin-space

S
(
Ho +Hso

)
S† = Ho −

~2

2m‖λ2
so

, (4.10)

converting the Zeeman term to a position-dependent quantity. We now
focus on the case where the magnetic field points in the x-direction, i.e.
B = Bex, and we obtain

SHZS
† =

g0µB
2

B

[
σx cos

(
2z

λso

)
+ σz sin

(
2z

λso

)]
. (4.11)

In the harmonic confinement approximation, the orbital Hamiltonian Ho

can always be diagonalized exactly. Assuming B > 0, we can introduce
the vector of gauge-independent canonical positions Q and momenta P

Q =

 z
lB
− lB

~ πy
lB
~ πy
x

 and P =

 y
lB

+ lB
~ πz

lB
~ πz
−i∂x

 , (4.12)

satisfying [Qi, Pj] = iδij ; here lB =
√
~/(e|B|) is the magnetic length.

When B < 0, the first two positions and momenta are swapped. The
coupled harmonic oscillators can be decoupled by the symplectic Bogoli-
ubov transformation(

Q
P

)
=

(
A(r) 0

0 A(−r)T
)(

q
p

)
, (4.13)

where 3-dimensional matrix A(r) is defined by

A(r) =

 cosh(r) −ω⊥
ω‖

sinh(r) 0

− ω‖
ω⊥

sinh(r) cosh(r) 0

0 0 1

 , (4.14)
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with squeezing parameter

r =
1

2
arccoth

 e2B2

m⊥m‖
+ ω2

⊥ + ω2
‖

2ω⊥ω‖

 . (4.15)

In the new coordinate system with positions q and momenta p, we obtain
three independent harmonic oscillators with frequencies ω⊥ and ω1 < ω2,
where the Fock-Darwin frequencies are

ω1 = ω2 tanh(r)

=

√
m‖m⊥

eB
ω‖ω⊥

√(
1− ω‖

ω⊥
tanh(r)

)(
1− ω⊥

ω‖
tanh(r)

)
. (4.16)

We point out that when B → 0, Eq. (4.16) is still valid and it leads to the
expected result ω1 = ω‖ and ω2 = ω⊥.

The groundstate |0〉 is the state simultaneously annihilated by the anni-
hilation operators in this coordinate system

aj =
1√
2

(
βjqj +

i

βj
pj

)
, (4.17)

where

βj =

[(
ω‖m‖
ω⊥m⊥

γ

)1/4

,

(
ω‖m‖
ω⊥m⊥

1

γ

)1/4

,
√
m⊥ω⊥/~

]
j

, (4.18)

and γ =
ω‖
ω⊥

ω‖/ω⊥−coth(r)

ω⊥/ω‖−coth(r)
. To determine the groundstate wavefunction in

real-space, we need to specify a gauge. In the symmetric gauge A =
B× r/2, and combining Eqs. (4.12), (4.13) and (4.17), we obtain

ψ0(r) =
1

π3/4
√
lxlylz

e
− 1

2

(
x2

l2x
+ y2

l2y
+ z2

l2z

)
+i yz

2l2
B

(
ω‖−ω⊥
ω‖+ω⊥

)
, (4.19)

where we defined the magnetic field-dependent lengths

ly = l⊥

(
1 +

B2

B2
0

)−1/4

and lz = l‖

(
1 +

B2

B2
0

)−1/4

, (4.20)
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and the usual harmonic lengths

lx = l⊥ =

√
~

m⊥ω⊥
and l‖ =

√
~

m‖ω‖
. (4.21)

The characteristic magnetic field B0 in Eq. (4.20) determines the relevant
field at which the orbital effects start to become significant and it is de-
fined by

B0 =

√
m‖m⊥

e
(ω‖ + ω⊥) . (4.22)

Projecting the Hamiltonian in Eq. (4.6) onto the groundstate subspace
and subtracting a constant energy term, we obtain the effective low en-
ergy Hamiltonian

HGS =
gµBB

2
σx , (4.23)

where we introduce the effective g-factor

g = g0e
−l2z/λ2so . (4.24)

We emphasize that the g-factor is renormalized by the spin-orbit interac-
tion, and it acquires a magnetic field dependence via lz, see Eq. (4.20).

We remark that because of the transformation in Eq. (4.9), we are now
treating spin-orbit interaction exactly, and the perturbation coupling dif-
ferent orbital states comes from the space-dependent magnetic field in
the Zeeman energy, see Eq. (4.11). This approach is the most convenient
to describe the results of this experiment, where a strong spin-orbit in-
teraction is measured. Because of this term, the orbital ground state is
coupled to the first excited orbital state |1〉with energy ~ω1. In particular,
the interaction is

〈0|H|1〉 =
lB√

2λsoβ1

(
cosh(r)− ω‖

ω⊥
sinh(r)

)
gµBBσz . (4.25)

Using the values extracted in the main text, see Table 4.1, we find that the
amplitude of this interaction term is ∼ 20% of the energy gap ∼ ~ω1 at
the maximal field measured B = 8 T. Consequently, in the following we
focus on the ground state subspace only.
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4.B Double-dot Hamiltonian

We now construct the double-dot effective Hamiltonian by using the
Hund-Mulliken method. To do so, we create an orthonormal basis of har-
monic eigenfunctions whose center of mass is at the positions z = ±a/2.
Here, a is the interdot distance. Following the conventional procedure,
we find the overlap matrix between the orbital ground states of the two
dots: Pij = 〈Ψi|Ψj〉 , where Ψ =

(
Tz
(
− a/2

)
S†ψ0, Tz

(
+ a/2

)
S†ψ0

)
. The

magnetic translation operators are defined as Tz(X) = eiX(πz/~+y/l2B) and
ψ0 is the ground state wavefunction in Eq. (4.19). Here |Ψ〉 is defined as:

|Ψ〉 =
(
Tz
(
− a/2

)
S†|ψ0 ↑〉, Tz

(
− a/2

)
S†|ψ0 ↓〉,

Tz
(

+ a/2
)
S†|ψ0 ↑〉, Tz

(
+ a/2

)
S†|ψ0 ↓〉

)
(4.26)

Importantly, because the unitary S† in Eq. (4.9) is spin-dependent,
here P is a 4× 4 matrix. Explicitly, we find

P = τ0σ0 + s cos

(
a

λso

)
τxσ0 + s sin

(
a

λso

)
τyσy , (4.27)

where τi are Pauli matrices acting on the different dots, σi are acting on
spins and we define the small parameter

s = e
− a2

4l2z

(
1+

(ω⊥−ω‖)
2

4ω⊥ω‖
B2

B2+B2
0

)
. (4.28)

Orthogonal and symmetric states |O〉 are constructed from the non-orthogonal
states |NO〉 by the linear map |O〉 = |NO〉P−1/2 and single-particle oper-
ators H transform as HO = P−1/2HNOP−1/2. The generalization to two-
body operators is straightforward.

For rather general double-dot confinement potentials, we find that the
orbital Hamiltonian in the orthonormal basis has the form

Ho = tcτxσ0 + tsoτyσy +
ε

2
τzσ0 . (4.29)

Here, ε is the detuning between the two dots typically caused by an elec-
tric field along the wire, tc is the spin-conserving tunneling energy and
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tso is the spin-flip tunneling energy caused by the spin-orbit interaction.
In particular, we find that

tc =
s

1− s2
t0 cos

(
a

λso

)
and (4.30a)

tso =
s

1− s2
t0 sin

(
a

λso

)
= tc tan

(
a

λso

)
. (4.30b)

where t0 is a characteristic energy dependent on the details of the confine-
ment potential and the leading magnetic field dependence of the tunnel-
ing energy is caused by the exponential dependence of the overlap s on
B, see Eq. (4.28).

Also, the Zeeman energy in the orthogonal basis is

HZ =
gµBB

2

(
g1τ0σx + g2τxσx + g3τzσz

)
, (4.31)

where we introduce the dimensionless prefactors

g1 =
1 +
√

1− s2 − 2s2 cos
(

a
λso

)
2− 2s2

+

(
1−
√

1− s2
)

cos
(

2a
λso

)
2− 2s2

= 1 +O(s2) , (4.32)

g2 =
1− cos

(
a
λso

)
1− s2

s , (4.33)

g3 =
s2 −

(
1−
√

1− s2
)

cos
(

a
λso

)
1− s2

sin

(
a

λso

)
= O(s2) . (4.34)

Neglecting corrections of order s2, we can discard the term proportional
to g3, that couple the triplet states T↑↓(1, 1) to the singlet state S(1, 1). The
term proportional to g2 arise when the spin-orbit interaction is large and
cause interactions between the triplet T0(1, 1) and the doubly-occupied
singlet states S(2, 0) and S(0, 2). This term causes an extra resonant peak
of the leakage current, however, in the present experiment the energy of
this interaction is of a few microelectronvolts, much smaller than the con-
tribution due to the spin-flip tunneling. Consequently, in the following,
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we will ignore it and consider only HZ ≈ gµBBτ0σx/2.

Coulomb interactions are also required to understand the physics of the
system. In particular, the most relevant electrostatic interaction element
for the current experiment is the addition energy,

U = 〈ΨiΨi|
e2

4πεsr
|ΨiΨi〉

=
e2

4πεs

√
2

π

F
(

cos−1
(
lz
lx

)
| l

2
x−l2y
l2x−l2z

)
√
l2x − l2z

, (4.35)

where F (a|b) is the elliptic F function and εs = 16ε0 is the dielectric
constant of the Germanium times the vacuum permittivity ε0. Eq. (4.35)
holds for general values of lengths li provided that the appropriate limit
is taken carefully. The next largest Coulomb interaction elements are the
Hartree and Fock termsUH = 〈ΨiΨj 6=i| e2

4πεsr |Ψj 6=iΨi〉 andUF = 〈ΨiΨj 6=i| e2

4πεsr |ΨiΨj 6=i〉,
respectively. In the present experiment, the overlap s between wave
functions of different dots is expected to be small, and so we discard
the corrections of order O(s2) and we ignore the exchange interaction
UF ≈ 0.

4.C Singlet-Triplet basis

We can now rewrite the Hamiltonian in the singlet-triplet basis. Neglect-
ing higher orbital states, the relevant triplet states are

||T↑↑,↓↓(1, 1)〉 = c†−,↑(↓)c
†
+,↑(↓)|0〉 and

|T0(1, 1)〉 =
c†−,↑c

†
+,↓ + c†−,↓c

†
+,↑√

2
|0〉 ,

and the singlets are

|S(0, 2)〉 = c†+,↑c
†
+,↓|0〉 and

|S0(1, 1)〉 =
c†−,↑c

†
+,↓ − c†−,↓c†+,↑√

2
|0〉 ,

where we introduce the fermionic ladder operators c†i,σ creating an elec-
tron at the ith dot with spin σ. We do not consider here the singlet state
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S(2, 0) because it is far detuned in energy, and so the interactions of these
states with it are suppressed by the large energy difference.

By aligning the spin quantization axis to the direction of the magnetic
field, we find in the singlet-triplet basis

(
S(0, 2), S(1, 1), T↑ ↑ (1, 1), T↓ ↓

(1, 1), T0(1, 1)
)T

H =


U − ε

√
2tc tso −tso 0√

2tc UH 0 0 0
tso 0 UH + gµBB 0 0
−tso 0 0 UH − gµBB 0

0 0 0 0 UH

 , (4.36)

where tc, tso and g and U are defined in Eqs. (4.30a), (4.24) and (4.35),
respectively. The singlet sector is hybridized by the spin-conserving tun-
neling energy. By introducing the hybridized singlet states S± obtained
by rotating the singlet sector by θ/2, where θ is

θ = arctan

(
2
√

2tc
U − UH − ε

)
, (4.37)

we can rewrite the Hamiltonian in the convenient form

H =


E+ 0 ∆+

ST −∆+
ST 0

0 E− −∆−ST ∆−ST 0
∆+

ST −∆−ST UH + gµBB 0 0
−∆+

ST ∆−ST 0 UH − gµBB 0
0 0 0 0 UH

 , (4.38)

where we defined the hybridized singlet energies E± and the spin-orbit
interaction ∆±ST via

E± =
1

2
(U + UH − ε)±

√
2t2c +

1

4
(U − UH − ε)2 , (4.39a)

∆±ST = tso

√
1± cos(θ)

2
. (4.39b)

Note that in the limit of weak spin orbit coupling, i.e., a/λso � 1, we
recover the result obtained previously for the ST splitting [50].
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The leakage current is related to the matrix elements ∆±ST between
singlet and triplet states via [13, 51–53]

I± = eΓL

(
∆±ST

)2

(ε− ε±)2 +
(
∆±ST

)2
(

ΓL
ΓR

+ 2
)

+ h2ΓL
2/4

. (4.40)

where ΓR(L) is the coupling between the right, occupied (left, unoccu-
pied) dot to the metallic lead and ε± is the position of the triplet T↑↑,↓↓(1, 1)
and the singlet S± anticrossing. In particular, by using Eq. (4.39a), we
find

ε± = U − UH ±
(

2t2c
gµBB

− gµBB
)
. (4.41)

Neglecting the corrections due to the Hartree energy UH , small compared
to the addition energy U , and assuming symmetric dot-lead coupling
ΓL ≈ ΓR = Γ, we obtain Eqs. (4.1) and (4.5) of the main text. Note that
in the man text the detuning is measured from the singlet-singlet anti-
crossing, therefore Eq. (4.1) contains a constant energy shift.
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CHAPTER 5
Fully tunable spin-orbit

interaction in Si FInFETs

Adapted from:
Stefano Bosco, Bence Hetényi, and Daniel Loss

“Hole Spin Qubits in Si FinFETs With Fully Tunable Spin-Orbit Coupling and Sweet
Spots for Charge Noise”,

PRX Quantum 2, 010348 (2021)

The strong spin-orbit coupling in hole spin qubits enables fast and
electrically tunable gates, but at the same time enhances the susceptibil-
ity of the qubit to charge noise. Suppressing this noise is a significant
challenge in semiconductor quantum computing. Here, we show theo-
retically that hole Si FinFETs are not only very compatible with modern
CMOS technology, but they present operational sweet spots where the
charge noise is completely removed. The presence of these sweet spots
is a result of the interplay between the anisotropy of the material and
the triangular shape of the FinFET cross-section, and it does not require
an extreme fine-tuning of the electrostatics of the device. We present how
the sweet spots appear in FinFETs grown along different crystallographic
axes and we study in detail how the behaviour of these devices change
when the cross-section area and aspect ratio are varied. We identify de-
signs that maximize the qubit performance and could pave the way to-
wards a scalable spin-based quantum computer.
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5.1 Introduction

Strong spin-orbit coupling [1] is a desirable ingredient to build a scalable
spin-based quantum computer [2,3], enabling fast and fully electrical ma-
nipulations of quantum bits [4–6]. Promising platforms to reach large
values of spin-orbit interactions are p-doped semicondutor nanowires,
where the charge carriers are holes rather than electrons [7–14]. When
holes are strongly confined in two directions, an externally tunable elec-
tric field generates a large effective spin-orbit field [15, 16] that results
in ultrafast Rabi frequencies, larger than 400 MHz [17, 18], and in spin-
orbit lengths of tens of nanometers [19–25], shorter than typical interdot
distances. The regime of strong coupling between spins and photons in
microwave resonators [26, 27] has been predicted in these systems [28],
which could enable long-range coupling between distant qubits. Because
of the large spin-orbit interaction, hole-superconductor heterostructures
have attracted also much interest as platforms to detect and manipulate
Majorana bound states [29–31].

On the other hand, large interactions between spin and charge de-
grees of freedom render the system strongly susceptible to charge noise,
reducing the qubit lifetime [17, 32–34]. Efforts to find operational sweet
spots where charge noise is reduced have been focusing on planar Ge
qubits [35] or considering single atoms [36], as well as artificial spin-orbit
fields [37]. The appearance of sweet spots depending on the direction of
the applied magnetic field has also been analyzed [38,39]. At the working
points identified in these studies, the spin-orbit interaction is not suscep-
tible to small fluctuations of the electric field, but remains finite. How-
ever, in electrostatically defined quantum dots in hole nanowires, there
are additional noise channels that are not suppressed at these working
points. For example, because of the large value of the spin-orbit cou-
pling, the fluctuations of the size of the dot strongly couple to the spin
and lead to decoherence. To remove charge noise in these systems, one
needs the ability to on-demand fully switch ON and OFF the spin-orbit
interactions depending on whether the qubit is operational or idle.

We find that such a spin-orbit switch naturally occurs in p-doped Sil-
icon Fin Field Effect Transistors (FinFETs) [40–43], thus making these de-
vices ideal candidates to reliably store quantum information. Silicon is
highly compatible with modern semiconductor industry and is one of the
frontrunner materials for scalable large scale quantum computers. State-
of-the-art electron Si qubits can operate reliably at temperatures higher
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than 1 K [44, 45], and high fidelity two-qubit gates [46–50], as well as
singlet-triplet qubit operations [51], control over higher spin states [52]
and scalable readout schemes [53–57] have been demonstrated in Si. In
addition, Si offers the unique possibility to drastically reduce the hyper-
fine noise [58–64] by isotopic purification [65,66], resulting in spin qubits
whose performances are essentially limited only by the charge noise [32].

The tunability of the spin-orbit coupling by varying the electric field
is a well-known feature of semiconductor nanowires [9, 11], but in many
typical geometries, such as wires with rectangular [16, 67, 68] or circular
cross-sections [15, 17, 24, 28], the spin-orbit interaction is only fully re-
moved when there is no external electric field. While working without a
DC electric field can be possible for etched [69] or self-assembled [70]
quantum dots, in electrostatically defined nanostructures, an external
gate potential is required to delimit the dot. Consequently, the electric
field cannot be easily set to zero, resulting in a residual spin-orbit in-
teraction, which degrades the qubit performance. In contrast, a crucial
feature of the Si FinFETs studied here is their nearly triangular cross-
section, which results in sweet spots where the spin-orbit coupling can
be switched off at finite values of the electric field, thus removing the
charge noise. In fact, we show that holes confined in triangular wires
present a large spin-orbit coupling even without electric fields and, de-
pending on the design of the fin, an external gate potential can suppress
this intrinsic coupling.

The present paper is organized as follows. In Sec. 5.2, we introduce
different state-of-the-art FinFET designs [40–43], including Silicon-on-
Insulator (SOI) FinFETs and bulk Si FinFETs, and we discuss the theo-
retical model used in our analysis.

In Sec. 5.3, we consider an ideal fin with an equilateral triangular
cross-section and study the long wavelength dynamics of the holes con-
fined there. Because Si is an anisotropic semiconductor [1], we pay par-
ticular attention to how different growth directions affect the effective
spin-orbit interactions [16, 71–73]. By using a simple theoretical model,
which only includes heavy and light holes, and by considering realistic
inhomogeneous electric field profiles, we identify qualitatively distinct
mechanisms that remove the spin-orbit coupling and that are suitable
for different device designs. Here, we also comment on the the effect of
a possible moderate strain on the spin-orbit switch.

In Sec. 5.4, we extend the theoretical model of the FinFET by includ-
ing the spin-orbit split-off hole band (SOHs). This band is energetically
separated from heavy and light holes by the bulk Si spin-orbit gap [1],
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but it strongly influences the hole behaviour in small wires and we find
that it can even remove the spin-orbit sweet spot in wires with a trian-
gular cross-section of side shorter than 35 nm. Fortunately, we find that
a more careful device design can counteract the action of the SOHs and
we discuss a possible way of recovering the sweet spot.

Finally, in Sec. 5.5, we study the charge noise of spin 1/2 qubits [2]
in Si FinFETs. We find that working close to the spin-orbit sweet spot
drastically suppresses the influence of charge noise on the qubit lifetime,
and strongly improves the dephasing time. By including in our anal-
ysis the fluctuations of the g-factor as a function of the electric field, a
charge noise mechanism that is not directly related to the effective spin-
orbit coupling of the wire, the exact position of the sweet spot is slightly
shifted, but the charge noise can still be exactly cancelled, resulting in a
system fully resilient against small charge fluctuations.

5.2 Theoretical Model

In this paper, we analyze the hole Si FinFET sketched in Fig. 5.1. The
fin extends in the z-direction and it defines a nanowire with an isosceles
triangular cross-section with equal sides Ly and base Lx. We study two
different FinFET designs: Silicon-on-Insulator and bulk FinFETs. In SOI
FinFETs, the triangular fin lies on top of a dielectric material, while in
bulk FinFETs, it lies on top of a Si substrate. The apex of the fin is covered
by a dielectric with an ideal metallic gate placed on top. The top gate is
fixed at a potential Vg measured with respect to a back-gate at a distance
dB from the bottom of the wire. In bulk FinFET, a negative gate potential
Vg is required to localize the hole wavefunction inside the fin, while in
SOI FinFETs, the holes are confined in the wire by the dielectric and Vg
can attain positive values, too.

The dynamics of this system is accurately described by the Hamilto-
nian

H = HLK + VHW(x, y) + VE(x, y) , (5.1)

which comprises the hole kinetic energy HLK and two distinct potential
energies VHW and VE .

The potential VHW captures the abrupt interfaces between the semi-
conductor and the dielectric and because of the large energy gap be-
tween the materials, we model it by requiring the wavefunction to van-
ish at the edges of the system (hard-wall boundary conditions). In con-
trast, VE describes the smoother and externally tunable electrostatic po-
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tential generated by Vg. In the cross-section of the wire, this term is well-
approximated by the multipole expansion

VE(x, y) = −eE · r− e

2
r · δE · r , (5.2)

that includes a homogeneous electric field vector E = (Ex, Ey) and a ten-
sor modelling the inhomogeneous component of the electric field (δE)ij .
The coordinate system r = (x, y) is centred in the center of mass of the
wire. Importantly, both the homogeneous and inhomogeneous compo-
nents of the electric field depend linearly on the external gate potential Vg
and their strength can be tuned by the gate design. More details on this
approximation and a thorough discussion on the values of Ei and δEij in
the FinFETs analyzed in this paper can be found in App. 5.A.

A precise description of the kinetic energy of the holes in the valence
bands of semiconductors is provided by the 4 × 4 Luttinger-Kohn (LK)
Hamiltonian [1, 74]

H ′LK =

(
γ1 +

5

2
γ2

)
p′2

2m
− γ2

m
p′2 · J′2 − 2γ3

m
p′ip
′
j

{
J ′i , J

′
j

}
+ cp , (5.3)

which describes the mixing of heavy holes (HHs) and light holes (LHs)
with spin 3/2 and 1/2, respectively. Here, m is the bare electron mass,
we use the anticommutator {A,B} = (AB + BA)/2, and cp stands for
cyclic permutations. Also, we defined p′2 = p′2x + p′2y + p′2z and the vectors
p′2 = (p′2x , p

′2
y , p

′2
z ) and J′2 = (J ′2x , J

′2
y , J

′2
z ), where p′i = −i~∂i′ are canonical

momenta and the four-dimensional matrices J ′i are spin 3/2 matrices.
The primed coordinate system is aligned to the main crystallographic
axes, i.e. x′ ‖ [100], y′ ‖ [010] and z′ ‖ [001].

The LK Hamiltonian is parametrized by three material-dependent di-
mensionless quantities: γ1,2,3. Here, we use the values of γi given in
Ref. [1]. Si is an anisotropic semiconductor because the parameters γ2

and γ3 are quite different. As a consequence, the low-energy descrip-
tion of the system strongly depends on the orientation of the nanowire
with respect to the crystallographic axes [16, 71–73]. In our convention,
the nanowire always extends along the z-direction, and to conveniently
account for different growth directions, we transform the LK Hamilto-
nian as H ′LK → HLK by performing a rotation of an angle θ around the
y′ ‖ [010] crystallographic axis and a subsequent rotation of an angle ϕ
around the rotated z′ axis, see Fig. 5.1. This transformation aligns the co-
ordinate system and the spin-matrices to the axes (x, y, z) in the figure;
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the HamiltonianHLK and the relation between the primed and unprimed
coordinates are given explicitly in Eqs. (5.30) and (5.31), respectively.

The most relevant orientations of the wire for this paper are summa-
rized in Fig. 5.1b). In particular, it is instructive to study the behaviour
of wires where the coordinate system is aligned to the crystallographic
axes, and of wires grown along the [110] direction, as standardly done
in experiments [22,41–43,67]. We also consider the growth direction that
maximizes the direct Rashba spin-orbit interactions in inversion symmet-
ric Silicon nanowires [16] and quantum dots [71]. We will refer to these
orientations as to Crystallographic Axes (CA), Standard Axes (SA), and
Direct Rashba Axes (DRA), respectively.

The 4× 4 LK Hamiltonian in Eq. (5.3) captures accurately the physics
of Si nanowires with large cross-sections, however, to describe smaller
wires one needs to include the contribution of the spin 1/2 spin-orbit
split-off holes (SOHs), that are gapped from the HHs and LHs by a material-
dependent spin-orbit energy ∆0. The SOHs are negligible only when ∆0

is much larger than the confinement energy, such that the HH-LH sub-
space is well-separated in energy from the subspace of the SOHs. In
Silicon, the gap ∆0 ≈ 44.1 meV [1], is comparable to the confinement en-
ergy in narrow wires, leading to a strong influence of the SOHs on the
response, especially in the presence of an electric field. To take the SOHs
fully into account, we compare our results obtained with the 4×4 Hamil-
tonian (5.3) to more accurate results obtained with the 6× 6 extension of
the LK Hamiltonian, the complete form of which can be found for ex-
ample in Appendix C of Ref. [1]. The conduction electrons are separated
by a much larger gap from the holes, and so their contribution is always
neglected in the present analysis.

Without magnetic field, the eigenvalues of the Hamiltonian in Eq. (5.1)
are doubly-degenerate Kramers partners. When the wavelength of the
hole wavefunction along the nanowire is larger than the confinement
length in the cross-section, the low-energy physics of the system is well
described by an effective nanowire Hamiltonian HNW that only acts on
the lowest pair of eigenstates. To second order in the momentum pz along
the wire, we obtain

HNW =
p2
z

2m∗
+ vvv · σσσpz , (5.4)

where σσσ is a vector of Pauli matrices acting on the subspace of the low-
est Kramers partners. The nanowire Hamiltonian is parametrized by an
effective mass m∗ and a spin-orbit velocity vector vvv that can be found
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in perturbation theory. In particular, one can decompose H into powers
of pz as H = H0 + H1pz + H2p

2
z, with H0 = HLK(pz = 0) + VHW(x, y) +

VE(x, y), and introduce the unitary matrix ME that diagonalizes H0, i.e.(
M †

EH0ME

)
nm

= εnEδnm. To obtain accurate results, we compute the
eigenvectors ME and the eigenenergies εE numerically by discretizing
the Hamiltonian H0. By standard perturbation theory, it is straightfor-
ward to find (

vvv · σσσ
)
ij

=
(
M †

EH1ME

)
ij
, (5.5)

where i, j only act on the lowest pair of Kramers partners; a similar per-
turbative expression for the effective mass is given in Eq. (5.36). The
subscript E in the eigensystem ME and εE emphasizes the dependence
on the electric field. For this reason, the effective parameters of the wire
Hamiltonian are externally tunable by the gate potential Vg, which con-
trols the electrostatic potential VE(x, y). We also introduce the spin-orbit
length

lso =
~

m∗|vvv| , (5.6)

that characterizes the spin-orbit interactions relative to the inertia of the
particle.

To define a spin qubit, we include an external, homogeneous mag-
netic field B. For weak values of the magnetic field, typically below
one Tesla, we can safely neglect the orbital contribution of the magnetic
field and only focus on the coupling of the magnetic field to the spin-
degree of freedom via the Zeeman energy, which in the 4 × 4 Luttinger-
Kohn Hamiltonian is HZ = 2B · (κJ + qJ3). Here, κ and q are material-
dependent parameters for the magnetic interactions. The magnetic inter-
actions when SOHs are included, as well as the precise value of κ and q
for Si, can be found in Ref. [1]. Projecting the Zeeman Hamiltonian onto
the groundstate of the wire, to linear order in B, the effective Hamilto-
nian in Eq. (5.4) acquires the correction

HZ
NW =

1

2
∆∆∆ · σσσ , (5.7)

where we introduce the vector ∆∆∆ = µBg · B. Here, µB is the Bohr magne-
ton and g is a dimensionless 3× 3 matrix of g-factors. From perturbation
theory, we obtain the electric field dependent Zeeman interactions(

∆∆∆ · σσσ
)
ij

= 2
(
M †

EHZME

)
ij
. (5.8)
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5.3 Equilateral FinFETs

To have a simple model of FinFETs, we consider first a nanowire with a
triangular cross-section and we require that the hole wavefunction van-
ishes at the boundaries of the triangle, see Fig. 5.1. This model provides
an accurate description of SOI FinFETs, but it is questionable in bulk Si
FinFETs, where there is no sharp interface at the bottom of the fin and the
wavefunction can leak into the bulk. In this case, however, the hard-wall
approximation still provides a good qualitative understanding of the sys-
tem, especially when the hole wavefunction is strongly confined inside
the fin by a large negative gate potential Vg. The effect of the substrate in
a bulk Si FinFET is discussed in App. 5.F.

The choice of a triangular fin is crucial in our analysis. In fact, com-
pared to rectangular or circular nanowires, a triangular cross-section lacks
inversion symmetry in the (x, y) plane, i.e. VHW(x, y) 6= VHW(−x,−y), and
consequently the triangular nanowire can present large intrinsic spin-
orbit interactions without external homogeneous electric fields, i.e. vvv0 ≡
vvv(E = 0) 6= 0 1.

In this section, we examine how the spin-orbit interaction varies as
a function of the gate potential and of the growth direction in an ideal
case, where the cross-section is an equilateral triangle of side L. In Si
FinFETs, the triangular cross-section can be made rather equilateral, see
e.g. [42, 43], however it is often the case that the fin is a more narrow
[41] or wide [22] isosceles triangle. The spin-orbit coupling in isosceles
triangles with different aspect ratios is analyzed in Sec. 5.4.

A convenient orthonormal basis to describe this system comprises the
eigenfunctions of the two-dimensional Laplace operator p2

x+p2
y vanishing

at the boundary of an equilateral triangle. Because of the highly symmet-
ric geometry, the eigenfunctions can be expressed in terms of trigonomet-
ric functions, see App. 5.B [in particular Eq. (5.27)] and Ref. [75] for more

1If E = 0 and the cross-section is inversion symmetric, then V (x, y) ≡ VHW(x, y) +
VE(x, y) = IV (x, y)I† = V (−x,−y), where I = e−iπFz is the inversion operator in the
(x, y) plane; Fz is the component parallel to the wire of the total angular momentum.
It follows that the ground subspace of HLK(pz = 0) + V (x, y) can be labelled by |i, ↑↓〉
and is composed of a degenerate Kramers doublet | ↑↓〉 that is also an eigenstate of I
to eigenvalue i. Let us consider the correction to the LK Hamiltonian H1pz to linear
order in pz , such that the states |i, ↑↓〉 are still approximate eigenstates. Because H1

anticommutes with I, i.e. IH1I† = −H1, H1 is an block off-diagonal matrix in the basis
of the eigenstates of I. Consequently, in the groundstate subspace there cannot be spin-
orbit interactions linear in pz and because time-reversal symmetry prohibits different
masses for the Kramers partners, the first possible spin-orbit interactions are ∝ p3z .
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details. A natural energy scale for this problem is the confinement energy

εc =
16~2π2

3mL2
γ1 , (5.9)

which characterizes the energy gap between different orbital states, see
Eq. (5.29). This energy is quite large, for example in a Silicon wire with
side L = 35 nm, the quantization energy is εc ≈ 14 meV, approximately
30% of the gap to the split-off band ∆0 ≈ 44.1 meV [1]. While for L &
35 nm, the 4×4 LK Hamiltonian in Eq. (5.3) is valid, in smaller wires such
a strong quantization results in a large contribution of the SOHs, which
demands a more detailed analysis that fully includes these states. In the
following, we will refer to small (large) wires when the side L is smaller
(larger) than 35 nm. To gain a qualitative understanding of the system,
we begin our analysis by studying large nanowires by using the 4× 4 LK
Hamiltonian; a detailed analysis of the effect of the SOHs is postponed
to Sec. 5.4.

We first compute the intrinsic spin-orbit velocity vvv0 in the absence of
electric fields, focusing on its dependence on the growth direction. Then,
we separately describe the effect of homogeneous and inhomogeneous
electric fields. We discuss when the electric field-induced spin-orbit cou-
pling compensates for the intrinsic spin-orbit interactions, yielding con-
venient operational sweet spots where spin-orbit effects vanish.

Intrinsic spin-orbit velocity

Without external fields, a simple yet satisfactory description of the sys-
tem is provided by a reduced 12 dimensional Hamiltonian H12 that in-
cludes only the lowest three orbital states in Eq. (5.27). H12 parametrically
depends on the growth orientation via the angles ϕ and θ, see Fig. 5.1,
and its general expression can be obtained by combining Eqs. (5.34) and (5.33);
when θ = 0, H12 is explicitly given in Eq. (5.39). By using a second or-
der Schrieffer-Wolff transformation [1, 76] on H12, the intrinsic spin-orbit
velocity vvv0 can be written as

vvv0 =
~
mL

(γ3 − γ2) ααα0(θ, ϕ) , (5.10)

where ααα0(θ, ϕ) is a dimensionless three-dimensional vector that charac-
terizes strength and direction of the spin-orbit field and depends on the
growth direction and on the Luttinger parameters. Importantly, for an
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a1 a2 a3 b1 b2

2.468 0.683 0.013 0.298 0.011

Table 5.1: Parameters of the intrinsic spin-orbit vector vvv0 in Eq. (5.11b)
when θ = −π/2. These parameters describe the SA (CA) when ϕ =
−3π/4 (ϕ = 0).

equilateral triangle, the intrinsic spin-orbit interaction is a result of the
anisotropy of the semiconductor and it vanishes when γ2 = γ3. For this
reason, materials such as Silicon, where the anisotropy is large, are a con-
venient choice to study this effect.

The general dependence of these quantities on the growth directions
in Silicon is discussed in App. 5.C, see, in particular, Fig. 5.12. From
the analysis, we observe that the maximal value of |vvv0| ≈ 2.91~/(mL) is
reached when the wire extends along one of the crystallographic axes, i.e.
when z ‖ [100], [010], or [001]. In this case, there is no spin-orbit coupling
in the direction of the wire, i.e. (vvv0)z = 0, and we define the complex
quantity α0(θ) = (ααα0)x(θ, ϕ) + i(ααα0)y(θ, ϕ), where to simplify the notation
we suppress the explicit dependence of α0(θ) on ϕ. In particular, we find

α0(0) = 9.34
γ3

γ1 + (5/2)γ2

e−4iϕ ≈ 2.631 e−4iϕ , (5.11a)

α0

(π
2

)
=

a1 − a2 cos(4ϕ) + a3 (γ3 − γ2) cos(8ϕ)

1− b1 (γ3 − γ2) cos(4ϕ) + b2 (γ3 − γ2)2 cos(8ϕ)
, (5.11b)

where ai and bi are real functions of the Luttinger parameters, whose
values for Silicon are shown in Table 5.1. The numerical value 2.631 in
Eq. (5.11a) is obtained by using the Luttinger parameters of Si and de-
scribes the CA and the DRA. From Eq. (5.11b), we estimate α0

(
π
2

)
≈ 2.354

at ϕ = −3π/4, corresponding to the SA.
A comparison between the perturbative results in Eq. (5.10) and the

exact spin-orbit velocity computed numerically by using Eq. (5.5) and a
larger number N = 200 of the orbital basis states in Eq. (5.27) is shown
in Fig. 5.2. When the elevation angle is θ = 0, the wire extends along
the [001] direction, and the spin-orbit vector has a roughly constant am-
plitude, but as a consequence of the four-fold rotational symmetry of the
Luttinger-Kohn Hamiltonian, its direction oscillates as a function of the
azimuthal angle ϕ with period π/2. In contrast, when θ = ±π/2, the
intrinsic spin-orbit vector has a constant direction (vvv ‖ ex) and an oscil-
lating amplitude that reaches its maximum when the wire is aligned to
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the main crystallographic axes [100] or [010]. The minimal spin-orbit cou-
pling occurs when the wire extends along the [110] direction, which cor-
responds to the standard experimental growth direction (SA), see Fig. 5.1b).
We note that while Eq. (5.11a) agrees well with the numerically com-
puted spin-orbit coupling, Eq. (5.11b) captures the periodic oscillations
but overestimates absolute value of the intrinsic coupling at the SA.

The dependence of the effective mass and of the spin-orbit length on
the growth direction can also be straightforwardly obtained, and a de-
tailed analysis of these quantities is given in App. 5.C. Importantly, the
spin-orbit length defined in Eq. (5.6) is of the order of the side L of the
triangle, which is typically much smaller than the lateral size of the dot,
and it reaches the minimal value lso ≈ 0.83L when z ‖ [001]. Conse-
quently, we expect hole Si FinFETs to show effects due to large spin-orbit
interaction such as renormalization of the g-factor [10, 21, 24, 25, 67, 68]
and ultrafast Rabi oscillations [17].

Homogeneous electric field

We now analyze the effect of the electrostatic potential VE in Eq. (5.2)
on the spin-orbit velocity. For Si wires, there are two distinct mecha-
nisms that suppress the spin-orbit interactions and eventually remove
them entirely. These mechanisms are the application of a homogeneous
electric field Ey pointing along the y direction and the application of in-
homogeneous electric fields δExx and δEyy that harmonically confine the
wavefunction inside the fin. Both these fields are controllable by the ex-
ternal potential, and their strengths strongly depend on the gate design,
see App. 5.A for a more detailed analysis.

Let us first consider the effect of homogeneous electric fields, which
models setups where the non-linearities of the fields are suppressed. In
realistic devices the top gate covers the wire rather symmetrically with
respect to the y-direction. For this reason, the homogeneous electric field
Ex in the x-direction is zero and we will neglect it in the present analy-
sis 2.

In Fig. 5.3, we show the results of a numerical analysis showing the
dependence of the spin-orbit velocity on the dipole energy eEyL for the

2The results presented in Sec. 5.3 are qualitatively valid even in the presence of
asymmetries that lead to a finite Ex. In particular, we find that the value of the spin-
orbit velocity at Ey = 0 is increased by Ex and consequently the spin-orbit switch is
pushed to higher values of Ey .
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growth directions given in Fig. 5.1b). These results are obtained by pro-
jecting the Hamiltonian (5.1) onto the first 200 orbital states in Eq. (5.27)
and using Eq. (5.5). We observe that the electric field strongly influences
the spin-orbit field and it can increase it or decrease it depending on
the orientation of the wire. In particular, for the DRA and the SA, the
spin-orbit field can be exactly switched off when the dipole energy eEyL
becomes comparable to the confinement energy εc. More precisely, the
spin-orbit switch occurs at

ESW
DRA ≈ 1.13

εc
eL
≈ 19.42× 103nm3

L3
V/µm , (5.12a)

ESW
SA ≈ −4.3

εc
eL
≈ −73.9× 103nm3

L3
V/µm . (5.12b)

for the DRA and SA case, respectively. For realistic cross-section with
sides of a few tens of nanometers, these electric fields are of the order
V/µm, easily reachable in state-of-the-art devices. For the DRA, the spin-
orbit coupling is removed when the electric field is positive and the holes
are pushed to the apex of the fin, while for the SA growth direction,
a negative field is required and the holes are pushed to the bottom of
the triangle. Consequently, the SA is convenient in SOI FinFETs, where
the wire is separated from the substrate by an oxide and the hard-wall
boundary condition is a good approximation also at the bottom of the
fin. In contrast, the DRA can also be suitable in bulk FinFETs because the
large positive electric field confines the hole wavefunction in the fin and
suppresses the leakage of the wavefunction into the substrate.

The suppression of the spin-orbit interaction comes from an interplay
between the anisotropy of Si and the reduced symmetry of the cross-
section. For simplicity, we focus on wires where z ‖ [001], i.e. θ = 0, and
examine the dependence of vvv on ϕ. In this limit, a reasonable description
of the system is provided by the reduced Hamiltonian H12 in Eq. (5.39),
which includes the lowest three orbital states given in Eq. (5.27). By ap-
plying a fourth order Schrieffer-Wolff transformation to H12, we find that
vz = 0, and we can write the complex off-diagonal matrix element of the
spin-orbit velocity v = (vvv)x + i(vvv)y as the sum of an anisotropic term αA
and an isotropic direct Rashba-like term αI , i.e.

v =
~
mL

[
(γ3 − γ2)αA(ϕ) + (γ3 + γ2)αI

]
. (5.13)

Importantly, αI is a real function of eEyL and it does not depend on the
azimuthal growth angle ϕ, while αA is a complex function of eEyL and
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oscillates as a function of ϕ. In particular, for small electric fields and in
Silicon we find

αA(ϕ) ≈ α0 − 0.367e−4iϕ (eEyL/εc)
2 , (5.14a)

αI ≈ 0.35 (eEyL/εc) + 0.246 (eEyL/εc)
2 , (5.14b)

where α0 is the zero field result in Eq. (5.11a) and in αA we also neglected
quantitatively small corrections linear in eEyL/εc and proportional to dif-
ferent powers of e−4iϕ. For the general dependence of these parameters
on the Luttinger parameters, see Eq. (5.41). To better convey the impor-
tance of the shape of the cross-section, in App. 5.C, we highlight the main
differences in the spin-orbit coupling of triangular and square Si wires.

The spin-orbit interaction is fully switched off when |vvv| = 0. From
Eq. (5.14), it follows that this cancellation can only occur at the growth
angles ϕ = π(2n + 1)/4 where αA is a real-valued function, and where
α0 has a sign opposite to all the electric field-dependent terms. From
Eqs. (5.13) and (5.14), we estimate that the switch in Silicon occurs at
ESW

DRA ≈ 1.52εc/(eL). Note that our perturbative analysis provides good
qualitative insights into the switching mechanism, and in addition, the
numerical prefactor 1.52 is reasonably close to the prefactor 1.13, derived
from the detailed numerical analysis including higher orbital states.

Inhomogeneous electric field

The electric field profile in a triangular FinFET comprises a large inho-
mogeneous component that significantly alters the spin-orbit velocity. In
this section, we restrict ourselves to the analysis of Si FinFETs where a
negative gate potential Vg is applied, such that the hole wavefunction is
pushed to the apex of the triangle.

When the back gate is far from the wire, the inhomogeneous compo-
nent of the electric field in the cross-section can be well-approximated
by a linearly varying electric field parametrized by the tensor δEij , see
Eq. (5.2). As discussed in App. 5.A, in typical devices, the cross-terms
δExy are very small. In contrast, the diagonal components δExx and the
δEyy are large and they vary linearly with the top gate potential Vg, with
slopes that are comparable in absolute value, but have opposite signs. In
particular, we estimate δExx/δEyy ≈ −1.01, and thus the saddle potential
energy

VE(x, y) = eδE(y2 − x2)/2 , (5.15)
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accurately describes the inhomogeneity of the electric field. Negative
values of Vg correspond to positive values of the parameter δE and so
VE(x, y) harmonically confines the holes in the y-direction and pushes
their wavefunction to the sides of the triangle in the x-direction.

We first study separately the effect of the inhomogeneous coupling
by setting the homogeneous electric field to zero, i.e. Ey = 0. We remark
that for inversion symmetric cross-sections such as cylindrical or rect-
angular wires, the potential in Eq. (5.15) does not induce any spin-orbit
interactions because VE(x, y) = VE(−x,−y), and the results obtained in
this section are specific for triangular wires.

In Fig. 5.4a), we show the spin-orbit interactions as a function of δE
and for the orientations in Fig. 5.1b). We observe a qualitatively similar
picture as discussed in Sec. 5.3 for the homogeneous electric field: de-
pending on the growth direction, the spin-orbit velocity varies with δE,
and while it increases in the CA and SA, it decreases for the DRA, result-
ing in an operational sweet spot at

δESW ≈ 20.5
εc
eL2
≈ 35× 103 × 104nm4

L4
V/µm2 , (5.16)

where |vvv| vanishes.
This spin-orbit sweet spot remains present also when non-idealities of

the electric fields are included. In App. 5.D, we show that the spin-orbit
switch persists in rather general FinFET design, where δExx 6= −δEyy.
Also, possible asymmetries of the gate design can lead to a small cross-
coupling δExy. The effect of δExy on the spin-orbit velocity is shown in
the inset of Fig. 5.4a). We find that the spin-orbit switch is removed by
including δExy. However, we expect that in most setups, δExy remains
a few orders of magnitude smaller than δE and thus, at the switch, the
spin-orbit velocity is orders of magnitude smaller than the intrinsic ve-
locity |vvv0|, still providing a good working point where charge noise is
strongly reduced.

In realistic devices, the effects of homogeneous and linearly varying
electric fields cannot be easily decoupled and thus we now examine how
their interplay affects the spin-orbit switch. In App. 5.A, we estimate that
in the FinFET shown in Fig. 5.1

Ey ≈ −0.3
Vg
dB
≈ 0.25LδE . (5.17)

While this constraint is strictly valid only for setups with top and back
gates, we now explore a much larger parameter space where Ey and δE
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are varied independently. Consequently, our results are valid for a broad
range of device designs, including for example Si FinFETs with gates
placed sequentially along the wire.

In Fig. 5.4b), we show the spin-orbit velocity in a FinFET grown along
the DRA as a function of both Ey and δE. We observe that |vvv| vanishes
along a (blue) curve that intersects the (purple) line defining the con-
straint (5.17) at the point (eδEL2, eEyL) = (7.8εc, 1.95εc).

The switching-off of the spin-orbit velocity is mostly driven by the
homogeneous electric field Ey and the inhomogeneous potential δE only
renormalizes the value of Ey required to compensate for the intrinsic
spin-orbit interaction. Combining with Eq. (5.17), this point corresponds
to the potential V SW

g = −111.7×nm2(dB/L
3) V and when L = 20 nm and

dB = 100 nm, one obtains the working point V SW
g = −1.4 V. Perturbative

expressions of |vvv| as a function of Ey and δE can be found by general-
izing the treatment discussed in Sec. 5.3 and are given in App. 5.C, see
Eq. (5.41).

Another important feature of the spin-orbit switch is its robustness
against moderate strain. In semiconductor nanostructures, strain can
play a relevant role by renormalizing the response of the system to ex-
ternal fields [77]. In Si wires, strain could be induced for example by
nearby metallic gates [78], or by incoherent interfaces between SiO2 and
Si [79, 80]. The precise strain profile is strongly device dependent and
it can be engineered by a careful fabrication process, where details such
as choice of the materials [81] and dielectric thickness matter. Instead of
focusing on a specific device realization, here we consider a simple strain
model where the elements of the strain tensor εij are homogeneous in
the fin. By using the Bir-Pikus Hamiltonian [1, 82], we estimate that the
analysis provided above is qualitatively valid as long as

εxx + εyy − 2εzz ∈ [0.54%,−1.6%]× (L/10 nm)−2 , (5.18a)
|εxx − εyy| < 0.12%× (L/10 nm)−2 , (5.18b)
|εxz| , |εyz| < 0.08%× (L/10 nm)−2 , (5.18c)

|εxy| < 0.9%× (L/10 nm)−2 . (5.18d)

Consequently, for typical cross-sections where L is a few tens of nanome-
ters, reasonable values of the strain parameters εij ∼ 0.1% can still pre-
serve the spin-orbit switch. A detailed analysis of the effect of strain as
well as a justification for the homogeneous model is provided in App. 5.E.
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5.4 Effect of the SOHs

In Sec. 5.3, the effective spin-orbit velocity is computed by using the 4×4
LK Hamiltonian in Eq. (5.3), which describes the mixing of heavy and
light holes. In this case, nanowires with equilateral triangular cross-
sections having different sides L show the same qualitative behaviour,
and L only sets the scale of the spin-orbit velocity v ∝ ~/(mL) and of
the confinement energy εc ∝ ~2/(mL2), see Eqs. (5.13) and (5.9), respec-
tively. This model is valid for wires with a large cross-section, where εc
is the smallest energy scale and one can neglect the coupling to the split-
off holes, gapped by a large energy ∆0. In contrast, for small Si wires,
∆0 is comparable with εc and because of the influence of the SOHs, the
ground-state dynamics of the wire depends non-trivially on the side L of
the cross-section [83]. As anticipated in Sec. 5.2, to study this dependence
we use the 6× 6 LK Hamiltonian [1], fully accounting for the SOHs.

In Fig. 5.5, we show how the intrinsic spin-orbit velocity |v0| is modi-
fied by the SOHs in wires with different cross-section sides L. For large
wires, with L & 35 nm, the contribution of the SOHs is small and |v0|
approaches the value in Eq. (5.10) obtained with the 4 × 4 LK Hamilto-
nian (dashed lines). In contrast, for very small wires, with L . 10 nm,
the SOHs strongly suppress |v0|. For moderately small wires, because
of the anisotropy of Si, the effect of the SOHs strongly depends on the
growth direction. In fact, while for the SA |v0| decreases monotonically,
when θ = 0, the spin-orbit velocity overshoots and reaches a maximum
at L ∼ 20 nm, where |v0| is larger than the value obtained for the 4 × 4
LK Hamiltonian. In addition, at L ∼ 10 nm we observe that for the DRA,
the intrinsic spin-orbit interaction can be exactly cancelled, restoring the
usual direct Rashba spin-orbit coupling typical of inversion symmetric
cross-sections [15, 16].

The SOHs strongly affect the response of the system to external elec-
tric fields. For example, we analyze here the spin-orbit velocity in wires
with the DRA, where in Sec. 5.3, we predict that the intrinsic spin-orbit
interaction can be exactly cancelled by a positive homogeneous electric
field Ey and by an inhomogeneous field δE. In Fig. 5.6, we show how
the spin-orbit switch-off mechanism discussed in Sec. 5.3 and Sec. 5.3
are modified by the SOHs. In particular, in Fig. 5.6a) we show the com-
bined effect of Ey and δE on the spin-orbit velocity v when the SOHs are
accounted for. We study here an equilateral triangle of side L = 20 nm,
which maximises the intrinsic spin-orbit coupling, see Fig. 5.5, and is eas-
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ily achievable in state-of-the-art devices [41–43]. Comparing to Fig. 5.4b),
where v is obtained by using the 4 × 4 LK Hamiltonian, we observe
that the SOHs drastically alter the response of the wire and they remove
the charge noise sweet spot produced by the homogeneous electric field
Ey, while maintaining the sweet spot resulting from the inhomogeneous
field δE. This latter sweet spot persists also when a strong homogeneous
electric field Ey is present and Ey only pushes the switch-off field δESW

to larger values. In the plot, we show with a dashed line the curve along
which the spin-orbit vanishes when the SOHs are neglected. Importantly,
for the simple gate design studied here, where Ey and δE are constrained
along the purple line in the figure, the charge noise sweet spot is removed
by the SOHs.

To have a better understanding of the system, we show in Figs. 5.6b)
and 5.6c) the effect of Ey and δE in wires grown along the DRA and hav-
ing different cross-section side L. We observe that when L . 35 nm,
the spin-orbit switch at ESW

DRA is removed by the SOHs. In contrast, the
SOHs enhance the effect of δE and the spin-orbit switch at δESW persists
in small wires and is pushed to lower values. A more detailed analy-
sis of the inhomogeneous electric field response, including the general
dependence on δExx and δEyy for different growth directions is given in
App. 5.D.

A more careful device design can minimize the effect of the SOHs. For
example, in wires grown along the DRA, the spin-orbit switch is restored
in wide isosceles FinFETs. To understand this result, we analyze the spin-
orbit coupling in isosceles triangular wires with equal sides Ly and base
Lx, see Fig. 5.1. The aspect ratio is

r ≡ Lx/Ly = 2 sin(Θ/2) ∈ (0, 2) . (5.19)

The FinFET is equilateral when r = 1, and we call wide and narrow
FinFETs the devices with r > 1 and r < 1, respectively [Θ is the apex
angle of the fin]. For convenience, we also define an effective length
L̃ = Ly

√
sin(Θ)/ sin(π/3), that is the side of an ideal equilateral triangle

with the same area of the isosceles triangle. We redefine the confinement
energy εc in Eq. (5.9) by the substitution L→ L̃.

In Fig. 5.7a), we focus on cross-sections with L̃ = 20 nm and we exam-
ine the dependence of |vvv| on δE whenEy = 0 and when different values of
r are considered. These numerical results are obtained by using Eq. (5.5)
and by discretizing the 6×6 LK Hamiltonian in isosceles triangular cross-
sections. Here, we use the approximate potential in Eq. (5.15); the limits
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of this approximation in isosceles fins are discussed in App. 5.D. Impor-
tantly, we observe that δE can remove the spin-orbit interactions for a
broad range of r and that δESW is significantly reduced when the fin is
wide.

This enhancement of the inhomogeneous field is crucial to restore the
spin-orbit sweet spot. In fact, in Fig. 5.7b), we show the simultaneous
effect of δE and Ey when r = 1.2 and L̃ = 20 nm, i.e. Lx = 22.8 nm
and Ly = 19 nm. In the FinFET design shown in Fig. 5.1, where δE and
Ey are constrained on the (purple) line defined by Eq. (5.17), we find
that the spin-orbit coupling can be switched off by the inhomogeneous
electric field at the gate potential V SW

g ≈ −249× nm2dB/L̃
3 V. This value

corresponds to V SW
g ≈ −3.12 V when L̃ = 20 nm and the back gate

is dB = 100 nm apart from the center of mass of the wire. This gate
potential is rather large, but it can be reduced by placing a back gate
closer to the fin. We believe that an optimized electrostatic design of the
device can also reduce V SW

g , but we do not investigate this aspect further.
Interestingly, in this setup, we recover also the spin-orbit sweet spotESW

DRA
driven by the homogeneous field Ey, see the dashed line in the figure. In
addition, in the inset of Fig. 5.7b), we show the total hole density |ψ|2 at
V SW
g . Because the wavefunction is strongly confined in the fin and has

no support close to the bottom boundary, we expect the results presented
here to be valid for both SOI and bulk FinFETs.

Finally, we estimate that in the range of parameters considered, the
spin-orbit length in this setup can be pushed down to a minimal value of
lmin
so ≈ 1.5L̃ by reducing the amplitude of the gate potential. While still

rather short, this length is longer than in the equilateral triangle, resulting
in a smaller maximal spin-orbit coupling. Other possible SOI and bulk
FinFETs designs where the spin-orbit switch is restored are discussed in
App. 5.F. Amongst the setups analyzed, we chose to focus on the wide
DRA FinFET because it guarantees the largest spin-orbit coupling when
the interaction is turned on.

5.5 Suppressing charge noise in FinFET Qubits

We now study the susceptibility to charge noise of an elongated quan-
tum dot that defines a spin 1/2 qubit [2]. All the results discussed in this
section take fully into account the SOHs. To define the dot, we include
a confining potential in the direction of the wire eδEzzz2/2, which is as-
sumed to be much smoother than the cross-section side L; in this way, the
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effective wire Hamiltonian in Eq. (5.4) accurately describes the system.
We emphasize that while here we discuss only elongated quantum dots,
where l � L, our results apply also to FinFET-based spin qubits where
l ≈ L 3, such as the ones in [42, 43]. A potential eδEzzz2/2 is typically
generated by terminating the top gate above the FinFET such that it has
a finite extension in the direction along the wire (z-direction). The precise
value of δEzz depends on the size of the gate along z, on the distance dB
of the back gate; also δEzz varies linearly with the top gate potential Vg.

Without an external magnetic field B, one can exactly gauge the spin-
orbit coupling away by the unitary transformation S = e−inv ·σz/lso [84],
where nv is the direction of the spin-orbit vector vvv, and the Hamilto-
nian reduces to a harmonic oscillator with frequency ωz =

√
e|δEzz|/m∗,

whose ground state wavefunction is a gaussian with standard deviation

l =

√
~

m∗ωz
= 4

√
~2

em∗|δEzz|
. (5.20)

Because δEzz ∝ Vg, the harmonic length l depends on the gate potential
as l ∝ |Vg|−1/4; the divergence of l for Vg → 0 is a consequence of the fact
that in electrostatically defined quantum dots a finite value of the gate
potential Vg is required to confine the particles.

At finite values of B, the unitary S leads to an effective magnetic field
that oscillates as a function of the position along the wire. When pro-
jected onto the groundstate of the dot, these oscillations cause a spin-
orbit coupling dependent renormalization of the g-tensor in the direction
perpendicular to nv [21, 24, 25]. In particular, decomposing the vector ∆∆∆
defined in Eq. (5.8) into the sum of the two vectors ∆∆∆‖ and ∆∆∆⊥ that are
parallel and perpendicular to the spin-orbit vector nv, respectively, we
obtain the qubit Hamiltonian

Hq =
1

2

(
∆∆∆‖ + e

− l2

l2so∆∆∆⊥

)
· σσσ . (5.21)

3A more precise condition for the validity of the nanowire Hamiltonian in Eq. (5.4)
is that the harmonic frequency ~ωz = ~2/(m∗l2) is much smaller than the energy gap
∆E between the ground-state and the first excited state of the nanowire. For the de-
vices considered and in the range of parameters shown the minimal energy gap is
∆E ∼ 0.05εc at the switching field, and so we obtain the condition 1 � ~ωz/∆E ∼
3L2/(0.05× 16π2γ1m

∗l2) ∼ L2/(γ1l
2), where we used the effective mass in Eq. (5.35).

Because of the prefactor 1/γ1 ∼ 0.22, the nanowire Hamiltonian works reasonably well
when L ≈ lso ≈ l.
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To study the effect of charge noise, we consider small fluctuations δV
of the gate potential around the fixed working point Vg. To linear order
in δV the parameters of Hq modify as ∆∆∆ → ∆∆∆ + ∆∆∆′δV , l → l + l′δV and
lso → lso + l′soδV , leading to

Hq → Hq +
δV

2
Q · σσσ , (5.22)

where we define the vector with the units of charge

Q = ∆∆∆′‖ + e
− l2

l2so∆∆∆′⊥ + 2
l2

l2so
e
− l2

l2so

(
l′so
lso
− l′

l

)
∆∆∆⊥ . (5.23)

Unless the device is operated at the sweet spot, in elongated hole
quantum dots, l is comparable with the spin-orbit length lso, and the last
term in Eq. (5.23) dominates. In addition, we stress that in these systems
the requirement of a vanishing first derivative |vvv|′ of the spin-orbit ve-
locity |vvv| at the sweet spot is not sufficient to remove spin-orbit-caused
charge noise [35, 36], because there is an additional large contribution
coming from the variation of the dot size l. In contrast, at the spin-orbit
switch point, where lso → ∞, the last term in Eq. (5.23) vanishes exactly
and charge noise only affects the qubit by the fluctuations of the g-factor.

We now restrict ourselves to the analysis of the wide FinFET grown
along the DRA that is discussed in Sec. 5.4. Because of the symmetries
of this device, the principal axes of the g-tensor are aligned to the coordi-
nate system chosen in Fig. 5.1 [73], and the ith component of the Zeeman
energy is ∆∆∆i = giiµBBi. Here, we consider a magnetic field pointing in
the y-direction, i.e. B = Byey. This choice maximizes the Rabi frequency
in electric spin dipole resonance experiments [85] because the spin-orbit
vector points in the x-direction, see Eq. (5.13). In addition, this magnetic
field direction minimizes the noise and provides the largest Zeeman en-
ergy gap. The dependence of the elements of the g-factor matrix on the
gate potential Vg for this device design is shown in Fig. 5.8a). The value
of the g-factors computed here and the strong anisotropy of the Zeeman
energy depending on the direction of the magnetic field is in reasonable
agreement with experiments [12, 42, 43, 67].

In general, the vector Q can have a component pointing along the
vector ∆∆∆ and a component perpendicular to it; these components cause
the dephasing and the relaxation of the qubit, respectively. However,
when the matrix of g-factors is diagonal and B = Byey, the vector Q
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is aligned to ∆∆∆ and the qubit is only subjected to dephasing. From a
Bloch-Redfield analysis and for 1/f -type noise with spectrum S(ω) =
〈δV 2〉/|ω|, the dephasing rate 1/T ∗2 is given by [86, 87]

1

T ∗2
=

1

~
|Q|
√
〈δV 2〉

√√√√ 1

2π
log

(
|Q|
√
〈δV 2〉

~ωir

)
, (5.24)

where ωir ∼ 1 Hz is a cut-off frequency depending on the experiment.
Here, we only consider free induction decay, and do not account for echo
pulses that can further improve the qubit lifetime.

The dependence of the dephasing rates due to charge noise on the
gate potential for a wide FinFET qubit with L̃ = 20 nm and r = 1.2 is
shown in Fig. 5.8b). For the plot, we consider a magnetic field By =
100 mT, which leads to a Zeeman energy of tens of µeV, comparable to
the values measured in [17]. Also, we consider dots with a fixed value
of δEzz/Vg, chosen such that the lateral size of the dot is l = 30 nm at
the spin-orbit switching point Vg = V SW

g = −3.12 V. In addition, at
Vg = V SW

g , the longitudinal confinement energy is ~ωz = 0.14 meV, an or-
der of magnitude larger than the Zeeman gap ∆y = 11 µeV and an order
of magnitude smaller than the transverse subband gap ∆E = 1.7 meV;
we then conclude that our approach is valid in this regime. To estimate
the fluctuations of the gate potential, we consider that the typical fluctu-
ations of the energy levels are

√
〈~2ω2

z〉 ∼ 5 µeV [88] and are connected
to the fluctuations of the gate potential by the dimensionless lever arm
α ≡ |~∂ωz/(e∂Vg)|, i.e.

√
〈δV 2〉 = α

√
〈~2ω2

z〉/e. At Vg = V SW
g , choosing

l = 30 nm, we obtain α ≈ 65, and we estimate
√
〈δV 2〉 ≈ 0.3 mV. We

note that if l = 15 nm at Vg = V SW
g , the lever arm is α ≈ 16, in reasonable

agreement with recent experiments where the lever arm is about 20 [89].
The black solid line in Fig. 5.8b) represents the total dephasing rate

of the FinFET qubit. We observe that charge noise leads to dephasing
times T ∗2 of hundreds of nanoseconds, in agreement with recent exper-
imental data [89], that can be pushed to infinity when the devices are
tuned to work at the sweet spots. Importantly, the sweet spot is close
to the spin-orbit switching point V SW

g = −3.12 V, but it does not ex-
actly coincide with it. To have a better understanding of this shift, we
show with dashed red and gray lines the dephasing rates 1/T ∗2 obtained
by considering only the terms of the vector Q in Eq. (5.23) that are re-
lated respectively to the fluctuations of the g-factor, i.e. ∝ ∆∆∆′, and to the
spin-orbit coupling, i.e. ∝ l2/l2so. Because these different contributions



CHAPTER 5. FULLY TUNABLE SPIN-ORBIT INTERACTION IN SI
FINFETS 173

in Eq. (5.23) can have a different sign depending on whether the g-factor
and the spin-orbit coupling increases or decreases as a function of Vg,
the small shift of the sweet spot is a result of the interference between
the g-factor fluctuations and the spin-orbit coupling contribution to de-
phasing. In the wide DRA FinFET, where the spin-orbit length is very
short, the spin-orbit coupling contribution to dephasing is dominating
and the g-factor fluctuations are relevant only very close to the spin-orbit
switch. Working at the sweet spot leads to a clear practical advantage,
completely removing the charge noise when the qubit is idle.

5.6 Conclusion

In this work, we present ways of suppressing charge noise in hole Si
FinFET qubits. The advantage of these structures compared to other
nanowires is their triangular cross-section, which by symmetry permits
large intrinsic spin-orbit interactions without external electric fields. When
the device has a simple equilateral triangular cross-section, we find this
effect to be a result of the interplay between the low symmetry of the
cross-section and the anisotropy of Si. When an external gate potential
is applied an extra tunable contribution to the spin-orbit coupling arises
and depending on the growth direction of the wire, it can enhance or sup-
press the total spin-orbit interactions. This suppression leads to points
where the spin-orbit velocity can be tuned exactly to zero, dramatically
boosting up the coherence times of spin-1/2 qubits.

We study in detail the dependence of spin-orbit coupling on the gate
potential by considering an inhomogeneous electric field profile, which
matches numerical simulations of the electrostatics of realistic FinFET
devices. We distinguish between different mechanisms that drive the
switching-off of the spin-orbit coupling and that have a different be-
haviour as the cross-section area becomes smaller as a result of the spin-
orbit split-off hole band. These states generally degrade the performance
of the FinFET and can even remove the spin-orbit switch. We present
more involved designs, e.g. wide FinFETs, that reduce their effect and
restore the spin-orbit switch.

When a small external magnetic field is applied, hole nanowire qubits
become susceptible also to fluctuations of the Zeeman energy caused by
an electrically tunable g-factor. By analyzing the response of FinFET de-
vices to small magnetic fields, we find sweet spots where the charge noise
can be completely removed to linear order in the fluctuations of the gate
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potential, providing an ideal working point where quantum information
can be reliably stored in charge noise resilient spin qubits.

5.A Electric field simulation

We present the model of the electric field profile in Si FinFETs and com-
pare the approximate potential in Eq. (5.2) to the electrostatic potential
obtained by solving the Laplace equation in the FinFET sketched in Fig. 5.1.
We study a fin with an equilateral triangular cross-section with side L.
For simplicity, we neglect the effect of the dielectric on the electric field
lines. This approximation describes well devices that use thin high-k di-
electric materials, with a dielectric constant similar to Si, but we expect
our results to be at least qualitatively correct for a wider range of de-
vices, including devices made with SiO2. In addition, we assume that the
top and back gates extend to infinity along the wire (in the z-direction),
such that we can restrict our analysis to a cross-section of the FinFET in
the (x, y) plane. We solve the Laplace equation considering that the top
gate fixes the electrostatic potential of Si to Vg and that the back gate is
grounded to zero potential. To model the lateral sides of the substrate,
we consider a wide substrate, that extends symmetrically up to x = ±15L
from the position of the fin at x = 0, and we set the potential at the sides
below the top gate to ground. This approximation describes well the po-
tential in the fin as long as the distance dB of the back gate from the fin
is . 30L. In Fig. 5.9, we show the potential energy V N

E simulated in this
setup when the back gate is at dB = 15L from the bottom of the fin. Note
that the potential in this simple design varies linearly with Vg and that
the lengths are normalized against the side L of the fin.

We compare the numerical solution V N
E of the Laplace equation to the

approximate potential in Eq. (5.2); in this section, we call the approxi-
mate potential V A

E to distinguish it from the numerical solution V N
E . To

find the parameters Ei and δEij , we compute the appropriate deriva-
tives of the potential and find their average in the fin. For example,
δExx = −(1/Afin)

∫
fin dr∂xxV N

E (x, y), with Afin being the area of the trian-
gle, where the averaging is performed. Because the device is symmetric
around x = 0, the homogeneous electric field in the x-direction vanishes
and Ex = 0. Simulating devices with different substrate thickness dB,
we find that the homogeneous and inhomogeneous components of the



CHAPTER 5. FULLY TUNABLE SPIN-ORBIT INTERACTION IN SI
FINFETS 175

electric field can be written to good approximation as

Ey =
cyVg
dB

and δEij =
cijVg
dBL

, (5.25)

where the dimensionless coefficients c are of order one. By fitting these
formulas against the results of the simulation, we find a good fit when

cy = −0.3 , cxx = −1.21 , cyy = 1.2 , (5.26)

see Fig. 5.10a). Note that δExx ≈ −δEyy, justifying the approximation in
Eq. (5.2). We also find that cxy = 0 in this geometry. When accounting
for the finite size of the top gate, cxy acquires a finite value, however,
it is reasonable to assume that |cxy| � |cii| as long as the top electrode
fully covers the fin. A comparison between the approximate potential
V A
E and V N

E simulated from the Laplace equation for dB = 15L is shown
in Fig. 5.10b) and c). We observe that the electrostatic potential in the
fin V N

E is reasonably well approximated by V A
E . We remark that the pre-

cise values of the coefficients c can change for different devices, e.g. by
including dielectric materials, changing the aspect ratio of the fin or in-
cluding additional gates. While we do not expect drastic changes of our
model, we do not investigate these effects in detail here.

5.B Orbital eigenstates

A convenient basis to analyze wires with triangular cross-sections com-
prises the eigenstates of the two-dimensional Laplace operator p2

x + p2
y

vanishing at the boundary of an equilateral triangle of side L [75]. These
solutions can be chosen to be even (e) or odd (o) with respect to the height
of the triangle at x = 0 and they are written compactly as

ψλ(x, y) = cλfλ(x/L) · g(y/L) (5.27)
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where where λ = e, o indicates the parity and cλ is a normalization con-
stant. We define the vectors

fe(x) =

(
cos

[
2π(3m+ l)

3
x

]
, cos

[
2π(3m+ 2l)

3
x

]
, − cos

[
2πlx

3

])
,

(5.28a)

fo(x) =

(
− sin

[
2π(3m+ l)

3
x

]
, sin

[
2π(3m+ 2l)

3
x

]
, sin

[
2πlx

3

])
,

(5.28b)

g(y) =

(
sin

[
2π(m+ l)

3

(√
3y − 1

)]
, sin

[
2πm

3

(√
3y − 1

)]
,

sin

[
2π(2m+ l)

3

(√
3y − 1

)])
.

(5.28c)

The quantum numbers m, l are integers satisfying the conditions m ≥
1 , l ≥ 0 and m ≥ 1 , l ≥ 1 for the even and odd solutions, respectively.
These quantum numbers label the eigenvalues of the Laplace operator
according to

(
p2
x + p2

y

)
ψλ =

~2

L2

16π2

3

(
m2 + lm+

l2

3

)
ψλ . (5.29)

The states characterized by l = 0 are three-fold rotationally symmetric
and even with respect to the height of the triangle; no odd solutions with
l = 0 are allowed. The remaining even and odd solutions labelled by the
same quantum numbers m and l 6= 0 are degenerate. The lowest three
normalized eigenfunctions are shown in Fig. 5.11. These three states are
used in App. 5.C to find an effective analytical model for the triangular
FinFET.

5.C Spin-orbit interaction in perturbation
theory

Intrinsic spin-orbit velocity and length

In this section, we show the general dependence of the intrinsic spin-
orbit vector vvv0 in Eq. (5.10) and of the spin-orbit length lso in Eq. (5.6) on
the orientation of the wire. To account for the different growth directions,
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we rotate the 4× 4 LK Hamiltonian H ′LK in Eq. (5.3) by the unitary opera-
tor U = eiθFy′eiϕFz′ , i.e. H ′LK → HLK = U †H ′LKU , where F = J′+x′×p′ [with
x′ = (x′, y′, z′) and J′ = (J ′x, J

′
y, J

′
z)] is the total angular momentum, and θ

and ϕ are the angles between the crystallographic axes and the final co-
ordinate system, see Fig. 5.1. This unitary rotation aligns the coordinate
system and the direction of the spin-matrices to the axes x, y and z. More
explicitly, the Hamiltonian in the rotated coordinate system is given by

HLK =

(
γ1 +

5

2
γ2

)
p2

2m
− γ2

m
p2 · J2 − 2γ3

m
pipj {Ji, Jj}+ cp , (5.30)

where the rotated momenta are

p =

 cos(θ) cos(ϕ)p′x + cos(θ) sin(ϕ)p′y − sin(θ)p′z
cos(ϕ)p′y − sin(ϕ)p′x

sin(θ)
(
cos(ϕ)p′x + sin(ϕ)p′y

)
+ cos(θ)p′z

 , (5.31)

and p2 = (p2
x, p

2
y, p

2
z), J2 = (J2

x , J
2
y , J

2
z ), p2 = p2

x + p2
y + p2

z. The spin 3/2
matrices J are rotated in the same way.

We do not include electric or magnetic fields at the moment and we
focus on the intrinsic spin-orbit coupling. To obtain simple equations, we
restrict the orbital space to the space spanned by the lowest three eigen-
states of the Laplace equation in an equilateral triangle, see Fig. 5.11. By
projecting HLK onto this subspace, we obtain a 12× 12 reduced Hamilto-
nian H12 that parametrically depends on the angles ϕ and θ and on the
momentum pz.

Specifically, H12 is found from HLK in Eq. (5.30) by separating the dif-
ferent powers of pipj , i.e.

HLK ≡
∑
i,j

pipjHij , (5.32)

and using the matrix representation of the momenta operators in the ba-
sis
(
|1, 0, e〉, |1, 1, e〉, |1, 1, o〉

)
, where the eigenstates |m, l, λ〉 are defined

by Eqs. (5.27) and (5.28). Denoting the matrix representation of the mo-
mentum operators in this basis by a under bar pipj , H12 is given by

H12 =
∑
i,j

pipj ⊗Hij , (5.33)

The expressions of the matrix elements ofH12 as a function of θ and ϕ can
be straightforwardly derived from Eq. (5.30) and we do not give them
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here. We report instead the matrices of the momenta:

p2
x =

~2

L2


8π2

3
k√
2

0
k√
2

56π2

9
− 21

25
k 0

0 0 56π2

9
+ 21

25
k

 , (5.34a)

pxpy =
~2

L2

 0 0 − k√
2

0 0 −21
25
k

− k√
2
−21

25
k 0

 , (5.34b)

pxpz =
9~kpz

10
√

2πL

 0 0 i
0 0 0
−i 0 0

 , (5.34c)

pypz =
9~kpz

10
√

2πL

 0 −i 0
i 0 0
0 0 0

 , (5.34d)

and p2
y = p2

x

∣∣∣
k→−k

, p2
z = p2

zI3; also k = 2187/112 ≈ 19.53 and I3 is the

3-dimensional identity matrix. In the simple case θ = 0, the 12 × 12
Hamiltonian, also including electric fields, is explicitly given in Eq. (5.39).

We resort to perturbation theory on H12 to derive a low-energy de-
scription of the system. With a second order Schrieffer-Wolff transfor-
mation, see e.g. Appendix B of [1] or [76], we obtain a 2 × 2 effective
Hamiltonian that acts on the ground state subspace of the wire. Expand-
ing the matrix elements of this Hamiltonian up to second order in pz, we
find an effective wire Hamiltonian as in Eq. (5.4). The terms linear in
pz are related to the spin-orbit velocity vvv, while the effective mass m∗ is
twice of the inverse of the diagonal term quadratic in pz.

For a Si wire, the dependence of the components of the intrinsic spin-
orbit velocity vector vvv0 on the growth angles obtained in this way is
shown in Fig. 5.12. Importantly, we find that the vvv0 is in general pro-
portional to the anisotropy of the material γ3 − γ2 and to the velocity
~/mL, and thus it can be written as in Eq. (5.10). In addition, there is
no spin-orbit coupling in the direction along the wire when θ = 0 and
θ = ±π/2 (red and blue lines, respectively), and in these cases (vvv0)z = 0.
While these results were found by perturbation theory, we find numer-
ically that they hold generally. Interestingly, the off-diagonal compo-
nents of the spin-orbit velocity (vvv0)x,y vanish e.g. when ϕ = π/4 and
θ = − arctan

√
2 +
√

3, where the diagonal spin-orbit (vvv0)z is maximal.
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This orientation corresponds to z ‖ [111], along which the Si lattice has
a three-fold rotational symmetry, and is marked with black circles in the
figures.

By taking the limits θ = 0 and θ = ±π/2, the expressions of the
spin-orbit vector simplify notably and are given in Eqs. (5.11). When
θ = ±π/2, the spin-orbit vector points along the x-direction and it has an
oscillating amplitude, while when θ = 0, the direction is oscillating as a
function of ϕ. A plot of the absolute values of vvv0 in these cases and a com-
parison between the perturbation theory and a more detailed numerical
solution comprising 200 orbital states in Eq. (5.27) is shown in Fig. 5.2.

With this approach, we also find the effective massm∗ from the diago-
nal elements of the effective Hamiltonian. Along the θ = 0 and θ = ±π/2
directions, m∗ can be compactly written as

m

m∗(θ = 0)
= γ1 + 2γ2 −

5.35γ1γ
2
3 + 1.86γ3

2 + 15.23γ2γ
2
3

(γ1 + 5γ2/2)2
≈ 2.73 ,

(5.35a)
m

m∗(θ = ±π/2)
≈ 5.12− 5.57 cos(4ϕ) + 1.14 cos(8ϕ)− 0.09 cos(12ϕ)

1− 0.91 cos(4ϕ) + 0.13 cos(8ϕ)
.

(5.35b)

where in the second equation we discarded higher harmonic components
oscillating with a small amplitude and a fast period in ϕ; m is the bare
electron mass. In Fig. 5.13a), we show the effective mass as a function
of ϕ, comparing the approximate Eq. (5.35) with a more precise numer-
ical result. This numerical result is obtained by extending the general
perturbation theory developed in Sec. 5.2 [see in particular Eq. (5.5)]. By
considering HLK = H0 + H1pz + H2p

2
z and defining the matrix ME of col-

umn eigenvectors of H0, the effective mass is given by

1

2m∗
=
(
M †

EH2ME

)
ii

+
∑
k 6=i,j

∣∣∣ (M †
EH1ME

)
ik

∣∣∣2
εiE − εkE

; (5.36)

the indexes i, j label the ground state Kramers partners and, on the left-
hand side of the equation, we omitted them because m∗i = m∗j ≡ m∗. In
analogy to above, ME is computed numerically by accommodating 200
orbital states given in Eq. (5.27).

We observe that the simple analytical results capture well the oscillat-
ing behaviour of the mass as a function of ϕ, but they underestimate the
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amplitude of the oscillations, leading to a smaller mass, especially when
the wire extends along a crystallographic axis, e.g when θ = 0 or when
θ = −π/2 and ϕ = 0. For the SA, where θ = −π/2 and ϕ = −3π/4,
Eq. (5.35b) works well and gives an effective mass m∗SA ≈ 0.17m, while
for the CA and DRA, the numerical analysis is more precise and it gives
an effective mass m∗CA ≈ m∗DRA ≈ 0.41m.

Analytical expressions for the intrinsic spin-orbit length lso defined
in Eq. (5.6) can be obtained when θ = 0 and θ = π/2 by combining
Eqs. (5.10), (5.11) and (5.35). A comparison between these expressions
and the numerically computed values of lso is shown in Fig. 5.13b). Be-
cause of the underestimation of the effective mass, the spin-orbit length
predicted by perturbation theory is larger than the numerical values when
the wire extends along a crystallographic axis. In contrast, for the SA,
the perturbative result is smaller than the numerical result because of the
overestimation of the spin-orbit velocity, see Fig. 5.2. From the numerical
analysis, we find that

lso(θ = 0) ≈ 0.83L , (5.37a)

lso(θ = ±π/2) ∈
[
0.83L , 2.89L

]
. (5.37b)

Importantly, the intrinsic spin-orbit length is always of the order of the
side of the triangle, typically much shorter than the confinement length
of the quantum dot along the wire, leading to large spin-orbit interac-
tions.

Finally, we point out that while our quantitative analysis here is lim-
ited to Si, our results can apply also to other semiconductors. For exam-
ple, in [22], the spin-orbit interaction in hole Ge hut-wires is studied and
an intrinsic spin-orbit field of ~|v0| ∼ 10 meV · nm was measured for a
triangular device with width Lx = 80 nm and height H = 4 nm. An
estimate of the amplitude of the intrinsic spin-orbit interaction related to
the triangular cross-section can be found by using the equilateral triangle
equation for the crystallographic growth direction,

|v0| = 9.34
~
mL̃

γ3(γ3 − γ2)

γ1 + (5/2)γ2

, (5.38)

obtained by combining Eqs. (5.10) and (5.11a). To better compare with
the experiment, we consider a fictitious equilateral triangle of side L̃ hav-
ing the same area of the cross-section of the hut-wire; from the condition
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3L̃2/4 = LxH/2, we find that the effective side of the fictitious equilat-
eral triangle is L̃ ≈ 19 nm. Using the Luttinger parameters of Ge [1], we
estimate an intrinsic spin-orbit field ~|v0| ≈ 12.65 meV ·nm, in very good
agreement with the experiment [22].

Electric field dependence

Here, we focus on wires with θ = 0, i.e. wires grown along the [001]
crystallographic direction, and we study the dependence of the spin-
orbit velocity on the electric field. In this case, the spin-orbit velocity
vector has no component along the z-direction and is off-diagonal. We
define then the complex off-diagonal component of the spin-orbit veloc-
ity v = (vvv)x + i(vvv)y. This quantity can be decomposed into the sum of an
isotropic direct Rashba-like component that vanishes when the external
electrostatic potential in Eq. (5.2) is turned off, and an anisotropic com-
ponent that varies as a function of the angle ϕ, see Eq. (5.13). At finite
values of the electrostatic potential, v depends on the homogeneous elec-
tric field Ey and on the inhomogeneous fields δExx and δEyy. Here, we do
not account for the effect of the terms Ex and δExy and we introduce the
sum and difference of the inhomogeneous fields δE = (δExx−δEyy)/2 and
ΣE = (δExx + δEyy)/2. For simplicity of notation, we rescale the electric
field by the confinement energy to obtain dimensionless quantities, i.e.
eEyL/εc → Ey, eδEL2/εc → δE and eΣEL2/εc → ΣE, and we define the
vector εεε =

(
Ey , δE , ΣE

)
.

We neglect the SOHs and in analogy to the treatment in Sec. 5.C, we
study the 12×12 Hamiltonian obtained from the 4×4 total Hamiltonian in
Eq. (5.1) rotated by the angle ϕ and projected onto the subspace spanned
by the lowest three orbital states in Eq. (5.27). Explicitly,

H12 =
~2

mL2

 H00 H0e H0o

H†0e Hee Heo

H†0o H†eo Hoo

 . (5.39)

By introducing the quantities γ±⊥ = γ1±γ2, γ∓‖ = γ1∓2γ2,C± =
√

3
2
k [e4iϕ (γ3 − γ2)± (γ3 + γ2)],

aE = 59049
4480π

γ1 ≈ 4.186γ1, aδ =
(

3969
2000π

− 7
√

3
25

)
aE ≈ 0.616γ1, bδ =

(
1107

280
√

2π
−
√

2
3

)
aE ≈

0.308γ1,K = 9
10π

√
3
2
kγ3 ≈ 6.851γ3, [k ≈ 19.53, see Eq. (5.34)], we can write
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the dimensionless blocks as

H00 = diag
(

8π2

3
γ+
⊥ +

p2
z

2
γ−‖ ,

8π2

3
γ−⊥ +

p2
z

2
γ+
‖ , (5.40a)

8π2

3
γ−⊥ +

p2
z

2
γ+
‖ ,

8π2

3
γ+
⊥ +

p2
z

2
γ−‖

)
, (5.40b)

Hee =
56π2

9
γ+
⊥ + p2z

2
γ−‖ 0 −21

25
C− 0

0 56π2

9
γ−⊥ + p2z

2
γ+
‖ 0 −21

25
C−

−21
25
C∗− 0 56π2

9
γ−⊥ + p2z

2
γ+
‖ 0

0 −21
25
C∗− 0 56π2

9
γ+
⊥ + p2z

2
γ−‖


− I4

(
21

25
aEEy − aδδE +

16

27
γ1ΣE

)
,

(5.40c)

H0e =


0 Kpz

1√
2
C− 0

−Kpz 0 0 1√
2
C−

1√
2
C∗− 0 0 −Kpz
0 1√

2
C∗− Kpz 0

− I4

(√
2aEEy − bδδE

)
,

(5.40d)

Heo =


0 0 −21

25
iC+ 0

0 0 0 −21
25
iC+

21
25
iC∗+ 0 0 0
0 21

25
iC∗+ 0 0

 . (5.40e)

Also,Hoo = Hee|C−→−C−,δE→−δE,Ey→−Ey ,H0o = H0e|C−→−iC+,K→−iK,δE→0,Ey→0,
and I4 is a 4× 4 identity matrix. Here, pz is given in units of ~/L.

In contrast to Sec. 5.C, a second-order Schrieffer-Wolff transformation
does not capture accurately the dependence of the spin-orbit coupling
on the electric field and thus we increase the accuracy of our calculation
by using a fourth-order order transformation. To obtain compact equa-
tions, we also Taylor expand the spin-orbit velocity to second order in
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the vector εεε, leading to

αI ≈
γ3

γ1 + 5γ2/2

(
γ1

γ1 + 5γ2/2
ααα

(1)
I · εεε (5.41a)

+
γ2

1

(γ1 + 5γ2/2)(γ1 − γ2)
εεε · α(2)

I · εεε
)
, (5.41b)

αA(ϕ) ≈ γ3

γ1 + 5γ2/2
e−4iϕ

(
α

(0)
A +

γ1

γ1 + 5γ2/2
ααα

(1)
A · εεε (5.41c)

+
γ2

1

(γ1 + 5γ2/2)(γ1 − γ2)
εεε · α(2)

A · εεε
)
, (5.41d)

ααα
(1)
I ≈

(
0.928(γ1 + 6γ2)

γ1 − γ2

,
0.066γ1 − 0.407γ2

γ1 − γ2

, 0

)
, (5.41e)

α
(2)
I ≈

 0.811γ1+0.938γ2
γ1−γ2 −0.107γ1+0.155γ2

γ1−γ2
0 0.0034γ1+0.0055γ2

γ1−γ2
0

0.0317γ21+0.2692γ2γ1+0.0871γ22
(γ1−γ2)(γ1+5γ2/2)

0.0022γ21−0.0217γ2γ1−0.0006γ22
(γ1−γ2)(γ1+5γ2/2)

0

 ,

(5.41f)

α
(0)
A =

14

45

(
k

2π

)3

≈ 9.338 , (5.41g)

ααα
(1)
A ≈

(
0. , 0. , 0.158

)
, (5.41h)

α
(2)
A ≈

 −
1.251γ21+4.231γ2γ1+1.604γ22

(γ1−γ2)(γ1+5γ2/2)

0.13γ21+0.52γ2γ1+0.0855γ22
(γ1−γ2)(γ1+5γ2/2)

0 −0.0019γ21+0.0185γ2γ1−0.0013γ22
(γ1−γ2)(γ1+5γ2/2)

0 0

0.
0.

0.0027 γ1−γ2
γ1+5γ2/2

 .

(5.41i)

To simplify further the expressions, we kept only the terms with the low-
est possible power in 1/γ1. This approximation allows for a good qual-
itative understanding of the system while keeping the equations short.
As a result of this approximation, the α parameters are independent of
γ3 and we discard small terms -at least one order of magnitude smaller
than the dominant terms- in αA that do not oscillate as e−4iϕ, i.e. terms
proportional to e+4iϕ and to (γ3 − γ2)e−8iϕ. To specify where these terms
have been neglected in Eq. (5.41), we use the notation 0. and 0 to distin-
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guish between terms that are negligibly small but finite (0.) from terms
that are exactly zero (0). For Si, Eq. (5.41) reduces to

αI ≈ 0.35Ey + 0.246E2
y + 0.0086δE + 0.0011δE2 − 0.0331EyδE

+ 0.0124EyΣE + 0.00011δEΣE ,
(5.42a)

αA(ϕ) ≈ e−4iϕ
(
2.631− 0.367E2

y − 0.00078δE2 + 0.0372ΣE

+0.00053ΣE2 + 0.0398δEEy
)
.

(5.42b)

These expressions give valuable insights into the dependence of the
spin-orbit coupling on the external fields and allow for a qualitative un-
derstanding of the numerical results presented in Sec. 5.3 and 5.3. For ex-
ample, let us take the limit ΣE = 0 as in the main text. To obtain v = 0, the
intrinsic and electric field dependent spin-orbit couplings need to have
opposite signs. By looking at Eq. (5.42), it is clear that the DRA, with
ϕ = π/4, can drive the switch because in this case all the terms varying
with the electric field have the opposite sign with respect to the intrinsic
coupling. In this case, when δE = 0, we find that v = 0 at ESW

DRA ≈ 1.52
and when Ey = 0, v = 0 at δESW ≈ 29.5. Quantitatively, the values of
these critical fields are only accurate up to prefactors of order one, see
Eqs. (5.12a) and (5.16).

The spin-orbit coupling vanishes also when the fields Ey and δE are
both present. The precise shape of the curve along which this occurs
strongly depends on the numerical values of the α parameters. Using
Eq. (5.42), one predicts v = 0 along two separate lines that do not in-
tersect, while numerically we observe that the two lines merge together,
see the blue curve in Fig. 5.4b). This discrepancy is a consequence of the
numerical inaccuracy of the approximation used: slight variations of the
cross-coupling terms ∝ EyδE can drastically change the behaviour of the
switching curve. We note that the correct qualitative behaviour of v is
restored by including higher powers of εεε in the expansion in Eq. (5.41),
but we do not give explicit expressions for these terms here.

Comparison with square cross-section

We summarize now the key qualitative differences between Si FinFETs
with equilateral triangular cross-section and Si wires with an inversion
symmetric cross-section. In particular, here we focus on wires with a
square cross-section; a detailed analysis of the direct Rasbha spin-orbit
coupling in the these wires can be found in Ref. [16]. The first key differ-
ence is that without external fields, the inversion symmetry of a square
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cross-section prohibits the presence of an intrinsic spin-orbit coupling,
and vvv

sq
0 = 0. Another important difference between the two systems

is that the amplitude of the spin-orbit velocity in an square wire is a
symmetric function of the homogeneous electric field, and |vvvsq(Ey)| =
|vvvsq(−Ey)|. In contrast, in a triangular wire, the spin-orbit coupling does
not need to be symmetric and the spin-orbit velocity v is modified in dif-
ferent ways when the hole wavefunction is pushed to the bottom or to
the apex of the triangle, see Fig. 5.3. We notice, however, that the am-
plitude of the spin-orbit velocity in triangular wires is still a symmetric
function of the homogeneous field Ex.

To make a more quantitative comparison, we consider a Si wire with
side L grown along the z ‖ [001] direction. To linear order in the electric
field, the direct Rashba spin-orbit coupling can be written as [16]

vsq ≈ ~
mL

[
−0.41 (γ3 − γ2) e−4iϕ + 0.38 (γ3 + γ2)

] eEyL
ε

sq
c

, (5.43)

where εsq
c = ~2π2γ1/mL

2 is the characteristic confinement energy for a
particle in a square cross-section. To obtain this expression, we combined
Eqs. (77), (78), (79), and (80) in Ref. [16] and used the Luttinger param-
eter of Si. To facilitate the comparison with our Eqs. (5.13) and (5.14)
obtained for an equilateral triangle, we also introduced the imaginary
spin-orbit velocity vsq = vvv

sq
x + ivvv

sq
y , we expanded the function χ(ϕ) =

0.36/
(

1 + 0.16(γ3 − γ2) cos(4ϕ)
)

[directly related to the function in Eq. (79)
of [16]] to linear order in (γ3 − γ2) cos(4ϕ), and we discarded the small
terms oscillating as e4iϕ and e−8iϕ. The overall minus sign of the spin-
orbit velocity here compared to Eq. (80) in Ref. [16] is a result of the field
being applied in the y-direction instead of the x-direction.

Comparing Eqs. (5.13) and (5.43), we observe that in square and tri-
angular wires the spin-orbit coupling is a sum of an isotropic term and
an anisotropic term, proportional to γ3 +γ2 and to γ3−γ2, respectively. To
linear order inEy, the isotropic contributions in both cross-sections are in
good quantitative agreement, but the anisotropic terms are qualitatively
different, see Eq. (5.14). In fact, while in square wires the anisotropic term
varies linearly with Ey and its contribution to the overall direct Rasbha
spin-orbit velocity is roughly equal to the isotropic contribution, in a tri-
angular wire αA(ϕ) comprises a constant intrinsic term and has a negli-
gible linear dependence on Ey.

Including higher powers in the electric field, we find an additional
qualitative difference between the spin-orbit coupling in the two differ-
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ent cross-sections. In fact, in a square wire, the spin-orbit velocity has
no corrections quadratic in Ey and the next order corrections are propor-
tional to E3

y . In contrast, in a triangular FinFET, both αI and αA present
quadratic terms proportional to E2

y , that make v asymmetric in Ey, see
Eq. (5.14).

These qualitative differences are crucial here because, as discussed in
Sec. 5.3, in triangular wires the presence of a spin-orbit switch at a finite
value of the electric field is a result of the competition between the intrin-
sic spin-orbit coupling and the direct Rashba-like spin-orbit interaction
dependent on the electric field. In a square Si wire there is no intrin-
sic spin-orbit velocity and the spin-orbit coupling only vanishes when
Ex,y = 0 (or when Ex,y → ∞, see Eq. (86) in Ref. [16]), a much inconve-
nient working point for electrostatically defined quantum dots.

Finally, another difference between triangular and square cross-sections
comes from the sensitivity of the spin-orbit coupling to the quadratic po-
tential δEijrirj/2, see Eq. (5.2). Without an homogeneous electric field,
such a potential is inversion symmetric and does not produce spin-orbit
coupling in square wires. In contrast, in Sec. 5.3, we show that this poten-
tial can produce another spin-orbit switch in triangular FinFETs, where
the inversion symmetry is broken by the cross-section.

5.D Spin-orbit coupling against δEii

In the main text, we assume that the inhomogeneous electric field tensor
is diagonal and δExx ≈ −δEyy ≡ δE. Here, we show that the presence of
the spin-orbit switch is not related to this approximation by examining
separately the effect of the fields δExx and δEyy on the spin-orbit velocity.
We restrict ourselves to the analysis of FinFETs grown along the [001]
direction, with θ = 0. In this section, we consider Ey = 0.

In Fig. 5.14, we study the spin-orbit velocity in equilateral triangles.
In the top Figs. 5.14a) and 5.14b), we show the results obtained for large
wires neglecting the SOHs and using the 4 × 4 LK Hamiltonian. The
two figures correspond to the DRA and CA, respectively. The purple line
marks the approximation δExx = −δEyy used in the main text. We ob-
serve that in the DRA, |vvv| = 0 also by considering a more general relation
between the inhomogeneous fields δEyy = cyyδExx/cxx, see Eq. (5.25). The
spin-orbit coupling is not suppressed only when |cyy/cxx| � 1. We re-
mark that the parameters cyy and cxx can vary depending on the device
design. In the same regime of parameters, we do not find a comparable
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sweet spots for the CA. In the bottom Figs. 5.14c) and 5.14d), we show
the results obtained by including the SOHs for an equilateral triangular
cross-section of side L = 20 nm. For the DRA, the spin-orbit coupling
vanishes for any value of the ratio |cyy/cxx| and interestingly also when
|cyy/cxx| � 1, in contrast to when the SOHs are neglected. In addition,
the SOHs modify the response when the wire is grown along the crys-
tallographic orientation. In fact, in Fig. 5.14d) we observe that the spin-
orbit velocity vanishes along the vertical line δExx ≈ 30εc/(eL

2). While
this result shows that also this orientation might present suitable work-
ing points where charge noise is suppressed, we do not investigate this
possibility further.

We now study how these results change when we consider wires with
an isosceles triangular cross-section as the ones studied in Sec. 5.4. We
consider a FinFET in the DRA and in Fig. 5.15, we compare the spin-
orbit velocity in isosceles triangles with the same area

√
3L̃2/4 and dif-

ferent aspect ratios r = Lx/Ly. Here, we fully account for the SOHs and
we use an effective side length of L̃ = 20 nm. In the top Figs. 5.15a)
and 5.15b), we show the spin-orbit velocity when the triangle is nar-
row. When r = 0.8, the spin-orbit coupling is still suppressed when
δEyy = cyyδExx/cxx = −δExx (purple line), but when the ratio |cyy/cxx| . 1,
the spin-orbit coupling does not vanish and the charge noise sweet spot
is removed. Even worse, when r = 0.7, the spin-orbit coupling vanishes
only when the ratio |cyy/cxx| � 1, away from the limit studied in the
main text. In the bottom Figs. 5.15c) and 5.15d), we show the spin-orbit
velocity when the triangle is wide. In contrast to the narrow triangle,
here the spin-orbit coupling vanishes for any values of the ratio |cyy/cxx|.
By increasing r, we observe that the line where |vvv| = 0 is pushed to-
wards lower values of δE and when r = 1.5, an additional line where the
spin-orbit coupling vanishes appears. However, we also note that the
maximal spin-orbit velocity in these devices decreases compared to the
equilateral FinFET, see Fig. 5.14c).

5.E Effect of strain

Here, we examine in detail how strain modifies the spin-orbit coupling.
In particular, we extract the maximal strain that the system can support
before the spin-orbit switch is removed. We restrict ourselves to the anal-
ysis of heavy and light holes of a fin grown along the DRA, where the
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effect of the strain tensor elements εij is well-described by the Bir-Pikus
Hamiltonian [1, 82]

HDRA
BP = εS0J

2
z +


0 εS1 εS2 0(
εS1
) ∗ 0 0 εS2(

εS2
) ∗ 0 0 −εS1

0
(
εS2
) ∗ − (εS1 ) ∗ 0

 , (5.44)

with

εS0 = −2b (εxx + εyy − 2εzz) , (5.45a)

εS1 = d (εxz − iεyz) , (5.45b)

εS2 =

√
3

2
b (εxx − εyy) + idεxy . (5.45c)

For Si, the parameters b = −2.2 eV and d = −5.1 eV can be found e.g. in
Ref. [1].

In general, the strain elements εij are functions of position, resulting
in a complicated spin-dependent potential. We estimate the strain pro-
file in the Si FinFET shown in Fig. 5.1, when a pressure of 100 MPa is
applied pushing the top interface downwards in the y-direction. For the
simulation, we used the Structural Mechanics module of COMSOL Mul-
tiphysics® [90], and considered an equilateral triangular cross-section of
side L = 20 nm, and a substrate thickness of dB = 20 nm. We imposed
free boundary condition on the substrate in the x-direction, while the
bottom interface is kept fixed. The total width of the substrate in the x
direction is 50 nm, with the fin being placed in the middle.

The relevant combination of the strain tensors are shown in Fig. 5.16.
With this simple model, we observe that most terms are rather homo-
geneous in the cross-section, and thus we study the effect of constant
values of the εSi energies. The homogeneous approximation is reasonable
for the diagonal elements εii, but it is more debatable for the cross-terms
εij 6=i. In particular, the term εxy has also a component that varies linearly
in the x-direction, and so we extend our analysis by using Im[εS2 (x)] ≈
Im(εS2 )+x∂xIm(εS2 ). Note however that in our simulation we are applying
the pressure directly on the top of the Si structure. Applying the pressure
on the electrode could potentially reduce the strain close to the bound-
aries of the Si triangle, due to the effect of the gate oxide. We also point
out that the terms εzz and εiz are likely to have a z-dependence when
qubits are defined and the top gate is terminated along the z-direction.
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However, we expect the strain field to be strongly peaked in a narrow re-
gion close to the edges of the electrodes, where the hole density is small,
and, in the following, we neglect these inhomogeneities.

By studying the effect of each term independently, we find a reason-
able estimation of the strain that the system can support. The results of
this analysis are given in Fig. 5.17, where we show how the spin-orbit
velocity dependence on Ey and δE is affected by the strain energies εSi
given in Eq. (5.45). Here, we express the energies εSi in terms of the con-
finement energy εc ≈ 17.2/L2 eV × nm2. A positive and negative diag-
onal strain εS0 is examined in Figs. 5.17a) and 5.17b), respectively. The
spin-orbit switch is robust against εS0 , but the shape of the curve along
which |vvv| = 0 changes and, in particular, negative (positive) values of
the strain narrow (widen) the curve. We extract bounds on the maximal
strain allowed by considering that when εS0 /εc & 0.1, the |vvv| = 0 curve
is too wide and the inhomogeneous switch δESW disappears from the
range of parameters considered. In contrast, when εS0 /εc . −0.035, the
curve becomes too narrow and results in a finite spin-orbit coupling in
the whole parameter space.

Similar physics appears when the contribution of Re(εS2 ) ∝ εxx − εyy
is examined, see Figs. 5.17c) and 5.17d) for positive and negative val-
ues of Re(εS2 ), respectively. In fact, the spin-orbit switch persists, but the
|vvv| = 0 curve is modified by the strain. In particular, when Re(εS2 ) < 0
the inhomogeneous field δE is strongly enhanced and the switching field
δESW is pushed towards lower values. For this reason, a moderate neg-
ative strain might be helpful to compensate for the SOHs, in analogy to
the wide FinFET discussed in Sec. 5.4. We do not explore this intriguing
possibility in more detail. In analogy to before, we extract the bounds
Re(εS2 )/εc ∈ [−0.1, 0.1] by verifying when the switch is pushed outside
the range of parameters studied.

In contrast, the homogeneous components of the cross-couplings εij
remove the spin-orbit switch, but the shape of the curve where |vvv| is min-
imal does not change. In Figs. 5.17e) and 5.17f), we show how the terms
Im(εS2 ) ∝ εxy and Im(εS1 ) ∝ εyz influence |vvv|. The effect of Re(εS1 ) ∝ εxz is
analogous to the effect of εyz and is not reported here. To find bounds on
the maximal strain allowed, we estimate that when |Im(εS1 )|/εc < 0.025
and |Im(εS2 )|/εc < 0.025, the minimal value of the spin-orbit coupling is
lower than 10% of the maximal coupling. We report the limiting values
of the tensor elements εij in Eq. (5.18).

Finally, in Figs. 5.17g) and 5.17h), we show how the largest inhomoge-
neous strain component x∂xIm(εS2 ) alters |vvv|. In analogy to εS0 and Re(εS2 ),
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the spin-orbit coupling vanishes along a curve that is rescaled by strain.
We estimate that the physics described in the main text remains qualita-
tively valid when L∂xIm(εS2 )/εc ∈ [−0.15, 0.5], from which it follows that
L∂xεxy ∈ [−1.7%, 0.5%]× (L/10 nm)−2.

From Fig. 5.16, we see that when L = 20 nm, the cross-term εxy ∈
[−0.06%, 0.06%], resulting in |L∂xεxy| ∼ 0.1%. This value is smaller but
still comparable to the estimated bound. However, we observe that most
of the inhomogeneity of the strain comes from hotspots at the bound-
ary of the triangle, where the wavefunction has no support, and thus
the effective value of |L∂xεxy| is even smaller in more realistic scenarios.
In addition, while the homogeneous part of the cross-terms εij 6=i remove
the spin-orbit switch, from the simple simulations shown in Fig. 5.16, we
expect those terms to be rather small. Thus, we believe that the condi-
tions on the homogeneous part of the diagonal elements εii are the most
stringent ones.

5.F Compensating for the SOHs

In Sec. 5.4, we show that the SOHs can remove the spin-orbit switch in
small wires and wide DRA FinFETs are proposed to restore the sweet
spot. Here, we discuss other possible design concepts valid for both SOI
and bulk Si FinFETs that can compensate for the SOHs. In particular, in
equilateral SOI FinFETs the spin-orbit can be switched-off in wires grown
along the [110] direction (SA) by pushing the hole wavefunction at the
bottom of the triangles, while in bulk FinFETs, the spin orbit switch is
naturally recovered by considering the leakage of the hole wavefunction
into the Si substrate; a summary of the different designs considered is
given in Table 5.2.

In small equilateral SOI FinFETs, the spin-orbit velocity can also be
suppressed by pushing the hole wavefunction towards the bottom of the
fin by a positive gate potential. As discussed in Sec. 5.3, in a wire grown
along the [110] direction (SA) with an equilateral triangular cross-section,
the spin-orbit velocity vanishes by the effect of a negative homogeneous
electric field ESW

SA < 0, see Eq. (5.12). In Fig. 5.18a), we show the depen-
dence of this switching field on the size of the equilateral cross-section.
In this case, the SOHs do not remove the sweet spot, but they push it to
lower values of the homogeneous electric field, that can be reached by a
smaller gate potential. In Fig. 5.18b), we study the spin-orbit coupling in
an equilateral wire with side L = 20 nm when also δE is included. In this
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FinFET Orientation Aspect ratio lmin
so V SW

g

SOI/Bulk DRA r = 1.2 1.5L̃ −3.12 V
SOI SA r = 1 4L +0.72 V
Bulk DRA r = 1 10L −0.28 V

Table 5.2: Examples of FinFETs designs where the spin-orbit sweet spot
is restored in the small cross-section limit. To estimate the values of min-
imal spin-orbit length we consider devices with L = L̃ = 20 nm. For the
first two designs, we consider a back gate at dB = 100 nm, while for the
last FinFET, we consider a cross-section 120 nm wide and 60 nm high.
V SW
g increases by increasing dB or by decreasing L.

case, we observe that, along the purple line defined by Eq. (5.17), |vvv| van-
ishes at the gate potential V SW

g ≈ +57.3× nm2dB/L̃
3 V, corresponding to

V SW
g ≈ +0.72 V when L̃ = 20 nm and dB = 100 nm, easily achievable in

state-of-the-art devices. The total hole density |ψ|2 at the switching po-
tential V SW

g is shown in the inset of Fig. 5.18b). Comparing to the wide
DRA FinFET, we find that in the regime of parameters examined, the
SA device has a larger minimal spin-orbit length lmin

so ≈ 4L, leading to
smaller spin-orbit interactions when the qubit is operational.

So far, we focused on FinFETs, where the triangular fin is well-separated
from the bulk and we modelled these systems by using hard-wall bound-
ary conditions at the edges of the triangle. This approximation is valid as
long as the hole wavefunction is well-confined inside the fin, such that
the substrate can be neglected. In bulk Si FinFETs, there is a thick sub-
strate that is strongly coupled to the holes in the wire and the confine-
ment potential that localizes the holes in the fin is provided by the neg-
ative potential Vg applied to the top gate. By fully simulating this cross-
section, in Fig. 5.19, we show that a convenient working point where
the spin-orbit velocity can be completely removed at smaller values of
the gate potential [see Table 5.2] emerges naturally also in these sys-
tems when the wire is grown in the DRA. To obtain this result, we sim-
ulate a cross-section composed of an equilateral triangular fin with side
L = 20 nm symmetrically placed on top of a rectangular substrate 120 nm
wide and 60 nm high. For this simulation, we used the 6×6 LK Hamilto-
nian and the electrostatic potential generated by the top gate is calculated
by solving the Laplace equation with the boundary conditions described
in App. 5.A. When |Vg| & 0.1 V, the holes are confined in the fin and the
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spin-orbit velocity shows a behaviour that is in qualitative agreement
with our treatment, see e.g. Fig. 5.3. The results obtained for lower val-
ues of the gate potential |Vg| < 0.1 V, where the hole wavefunction is
largely spread in the substrate are inaccurate and have been removed
from the figure. In this system, |vvv| = 0 at V SW

g = −0.28 V, where the
wavefunction is strongly localized into the fin, see the inset of the figure;
in larger devices, we expect again that the potential will scale roughly
as V SW

g ∝ dB/L
3. While the spin-orbit coupling can be conveniently

switched off in this setup, we also estimate that the minimal spin-orbit
length lmin

so ∼ 10L is larger than in the other designs.

Finally, in App. 5.E, it is shown that strain can enhance the effect of
the inhomogeneous electric field δE on the spin-orbit velocity. Conse-
quently, we expect that one could recover the spin-orbit switch also by
appropriately engineering the strain field in the device. However, here
we do not analyze this possibility more quantitatively.
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Figure 5.1: Sketch of a Si FinFET. In a), the blue and lightblue areas rep-
resent the semiconductor and the dielectric, respectively, while the gray
areas are the metallic gates. The orientation of the Si FinFET with respect
to the crystallographic axes (blue axes) depends on the angles θ and ϕ.
The wire extends along the z-direction and the fin has an isosceles tri-
angular shape with base Lx, equal sides Ly and height parallel to the
y-direction. The apex angle of the triangle is Θ. We call wide and narrow
FinFETs the Θ > π

3
and Θ < π

3
devices, respectively; the FinFET is equi-

lateral when Θ = π
3
. The dashed line at the bottom of the fin indicates

the lower boundary of the fin. In a SOI FinFET there is a clear physical
separation between the Si substrate and the wire, which is provided by
a thick dielectric layer at the position of the dashed line. In contrast, in
bulk Si FinFET, there is no physical separation between substrate and the
fin. In this case, the holes are localized in the fin by negative values of
the gate potential Vg applied with respect to a grounded back gate at a
distance dB from the bottom of the triangle. In b), we show the main ori-
entations of the axes of confinement with respect to the crystallographic
axes.
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Figure 5.2: Intrinsic spin-orbit velocity |vvv0|without external electric fields
in an equilateral FinFET. We compute |vvv0| as a function of the angle ϕ at
θ = 0 (red lines) and θ = −π/2 (blue lines). The dashed lines are ob-
tained by the approximate Eqs. (5.10) and (5.11), while the solid lines are
obtained numerically by using Eq. (5.5) and including 200 orbital states
in Eq. (5.27). We mark with black, orange, and purple circles the results
obtained for the relevant orientations of axes CA, DRA, and SA, respec-
tively, see Fig. 5.1b).
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Figure 5.3: Spin-orbit velocity |vvv| as a function of the homogeneous elec-
tric fieldEy in an equilateral FinFET. We neglect the inhomogeneous con-
tribution to the electric field profile and we compute |vvv| for the growth
directions in Fig. 5.1b). At negative (positive) electric fields, i.e. when the
hole wavefunction is pushed to the bottom (apex) of the triangle, |vvv| can
be zero when the wire is grown along the SA (DRA). We show the sweet
spot ESW

SA (ESW
DRA) see Eq. (5.12), with a purple (orange) circle.



CHAPTER 5. FULLY TUNABLE SPIN-ORBIT INTERACTION IN SI
FINFETS 195

Figure 5.4: Spin-orbit velocity |vvv| as a function of the inhomogeneous
electric field δE in an equilateral FinFET. In a) we use the confinement
potential in Eq. (5.15) without the homogeneous field Ey and study how
|vvv| varies for the wire orientations in Fig. 5.1b); for the DRA device, |vvv|
vanishes at the field δESW given in Eq. (5.16). In the inset, we show the
effect of δExy for the DRA close to the switching field δESW . In b) we
show how |vvv| varies for the DRA device when δE and Ey are tuned in-
dependently. Here, |vvv| vanishes along the blue curve that connects ESW

DRA
and δESW . In the device studied here, Ey and δE are constrained on the
purple line defined by Eq. (5.17). From the intersection of the purple and
blue lines, one finds the gate potential V SW

g of the spin-orbit switch.
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Figure 5.5: Intrinsic spin-orbit velocity |vvv0| as a function of the side length
L of an equilateral FinFET. We compare the effect of the SOHs in wires
grown along the orientations in Fig 5.1b) by showing with solid (dashed)
lines the values of |vvv0| obtained by the 6× 6 (4× 4) LK Hamiltonian that
includes (neglects) the SOHs.
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Figure 5.6: Effect of the SOHs on the spin-orbit switch in small equilat-
eral wires grown along the DRA. In a), we show how |vvv| varies in a wire
with cross-section L = 20 nm as a function of homogeneous and inho-
mogeneous electric field, Ey and δE, respectively. When the SOHs are
included, the spin-orbit switch driven by Ey is removed and |vvv| vanishes
only because of the inhomogeneous field δE. To facilitate the comparison
with Fig. 5.4b), we show with a dashed blue line the curve along which
|vvv| vanishes in large wires. Importantly, when δE and Ey are constrained
on the purple line [see Eq. (5.17)], the SOHs remove the spin-orbit switch
at V SW

g . In b) and c) we study how the SOHs affect the dependence of |vvv|
on Ey and δE when the cross-section side L is varied. While the homoge-
neous spin-orbit switch ESW

DRA is removed for wires with L . 35 nm, the
inhomogeneous switch δESW remains and is pushed to lower values as
the side length decreases. In the units used, the results obtained without
the SOHs are independent of L.
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Figure 5.7: Spin-orbit velocity |vvv| in a wide FinFET grown along the DRA.
In a) we show how the dependence of |vvv| on the inhomogeneous elec-
tric field δE varies as a function of the aspect ratio r [see Eq. (5.19)] of
the triangular cross-section. We compare triangles with the same area√

3L̃2/4, with effective length L̃ = 20 nm. When r > 1 (r < 1) the Fin-
FET is wide (narrow). In b) we show |vvv| as a function of Ey and δE for
a device with r = 1.2 and L̃ = 20 nm. The solid blue line shows the
spin-orbit switch driven by the inhomogeneous field δE. The spin-orbit
switch driven by the homogeneous field Ey is also restored and |vvv| van-
ishes along the dashed blue curve. In the FinFET studied here, δE and Ey
are constrained along the purple line defined by Eq. (5.17). In the inset,
we show the density |ψ|2 of the hole wavefunction in the cross-section at
the switching point V SW

g where purple and blue lines intersect. The hole
density vanishes in the blue region and attains maximal value in the red
region.



CHAPTER 5. FULLY TUNABLE SPIN-ORBIT INTERACTION IN SI
FINFETS 199

Figure 5.8: Anisotropic g-factor and dephasing rate 1/T ∗2 of a Si FinFET
qubit as a function of the gate potential Vg. We analyze a wide FinFET
grown along the DRA with r = 1.2 and L̃ = 20 nm. In a), we show the
diagonal entries gii of the wire g-factor matrix derived by considering a
small magnetic field Bi in the i-direction and diving ∆∆∆i in Eq. (5.8) by
µBBi. In this device, the off-diagonal components of the g-factor matrix
vanish. In b), the dephasing rate 1/T ∗2 of the qubit caused by charge
noise is obtained by combining Eqs. (5.23) and (5.24) when By = 100 mT.
The black line represents the total dephasing of the qubit, while with
dashed gray and red lines we show the contributions to 1/T ∗2 of the spin-
orbit coupling and of the g-factor fluctuations, respectively. Because B
is applied along the y-direction, ∆∆∆‖ = 0 in Eq. (5.23) (vvv points in the x-
direction) and there is no relaxation (∆∆∆′⊥ ‖ ∆∆∆⊥ ‖ Q). We fix δEzz/Vg such
that at V SW

g = −3.12 V the lateral size of the dot in Eq. (5.20) is l = 30 nm.
The dependence of lso on Vg is found by combining Eqs. (5.2) and (5.17).
Here, we use dB = 100 nm,

√
〈δV 2〉 = 0.3 mV and ωir = 1 Hz.
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Figure 5.9: Electrostatic potential V N
E in the cross-section of a Si FinFET.

For the simulation, we used dB = 15L and a substrate 30L wide with an
equilateral triangular fin of side L placed on top of it. The top gate covers
the whole upper part of the device and is fixed at the potential Vg; the rest
of the boundary is grounded.

Figure 5.10: Comparison between the electrostatic potential V N
E simu-

lated from the Laplace equation and the approximate potential V A
E . In a)

we show the dependence of the parameters δEii and Ey defining V A
E on

the substrate thickness dB/L. The dots are the results of the simulation,
while the solid lines are obtained by combining Eqs. (5.25) and (5.26).
In b) and c), we show a comparison between the potential in the fin com-
puted numerically (b) and its approximation (c) when dB = 15L. To facil-
itate the comparison, in b), we subtract the constant potential V0 = 0.996
obtained by averaging the potential in the fin.
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Figure 5.11: First three orbital states in Eq. (5.27) of the Laplace equation
in an equilateral triangle. We consider the even solution with (l,m) =
(0, 1) (a) and the solutions with (l,m) = (1, 1) and even (b) and odd (c)
symmetry. The wavefunctions in this plot are normalized. These states
are the ones used in App. 5.C.

Figure 5.12: Components of the intrinsic spin-orbit vector vvv0 in an equi-
lateral FinFET as a function of the angles θ and ϕ that parametrize the ori-
entation of the wire with respect to the crystallographic axes, see Fig. 5.1.
The results shown here are obtained by using a second order Schrieffer-
Wolff transformation and including only the lowest 3 orbital states in
Eq. (5.27). The wavefunction of these states is shown in Fig. 5.11. We in-
dicate with red and blue lines the cuts θ = 0 and θ = −π/2, respectively.
These two cases are studied extensively in the main text. The black circle
marks the point ϕ = π/4 and θ = − arctan

√
2 +
√

3, where the wire is
grown along the z ‖ [111] direction, and where (vvv0)x,y = 0 and (vvv0)z is
maximal.
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Figure 5.13: a) Effective mass m∗ and b) intrinsic spin-orbit length lso at
zero electric field as a function of ϕ in an equilateral FinFET. We show
with solid lines the results obtained numerically by using Eq. (5.36) for
m∗ and by combining Eqs. (5.5), (5.6) and (5.36) for lso. The dashed
lines show the approximate values obtained by a second order Schrieffer-
Wolff transformation and including only the lowest three orbital states in
Eq. (5.27). For the m∗, we use Eq. (5.35) and for lso we combine Eqs. (5.6),
(5.35), (5.10) and (5.11). Red and blue lines show results obtained at θ = 0
and θ = −π/2, respectively.
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Figure 5.14: Spin-orbit velocity |vvv| as a function of δExx and δEyy when
θ = 0. Here, we consider an equilateral triangular cross-section. In a)
and b) we neglect the SOHs and show results obtained for the DRA and
the CA orientations, respectively. In c) and d) we include the SOHs and
simulate a wire with cross-section of side L = 20 nm. We show results
obtained for the DRA and CA orientations, respectively. The purple lines
show the constraint δExx = −δEyy.
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Figure 5.15: Spin-orbit velocity |vvv| as a function of δExx and δEyy for
isosceles triangles. Here, we consider wires grown along the DRA ori-
entation whose cross-sections have an effective length L̃ = 20 nm and
different aspect ratios r = Ly/Lx. The SOHs are fully included in these
results. In a) and b) we show the spin-orbit coupling obtained for narrow
triangles (r < 1), while in c) and d) we show the results obtained for wide
triangles (r > 1). The purple lines show the constraint δExx = −δEyy.
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Figure 5.16: Simulation of the strain profile in a Si FinFET. We consider
here the strain in a L = 20 nm triangular fin caused by a pressure of 100
MPa applied on the top interface (the two surfaces with side length Ly
in Fig. 5.1), and show the distribution of the relevant combinations of
the εij parameters, see Eq. (5.18). The values provided here are given in
percentages.
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Figure 5.17: Effect of strain on the spin-orbit coupling. We use here the
Bir-Pikus Hamiltonian in Eq. (5.44), that is parameterized by the strain
energies εSi related to the strain tensor via Eq. (5.45). The values used
in the simulation are given in units of εc, see Eq. (5.9). In a) and b), we
show how the dependence of |vvv| as a function of Ey and δE changes by
positive and negative values of the energy εS0 , respectively. In c), d) and
e), f), we study the effect of positive and negative values of Re(εS2 ) and
the effect of Im(εS2 ) and Im(εS1 ), respectively. In g) and h), we show how
the inhomogeneous strain field x∂xIm(εS2 ) acts on the spin-orbit coupling
for positive and negative values of the gradient.
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Figure 5.18: Spin-orbit velocity |vvv| in an equilateral SOI FinFET grown
along the SA. In a), we show how the dependence of |vvv| on Ey varies as a
function of L. The switching field ESW

SA is pushed towards lower values
as the triangle becomes smaller. In this device, the spin-orbit coupling is
removed by a negative electric field generated by a positive gate poten-
tial Vg that pushes the hole wavefunction to the bottom of the triangle.
In the units used, the results obtained without including the SOHs are
independent of L. In b) we show |vvv| as a function of Ey and δE for a de-
vice with L = 20 nm. The spin-orbit coupling vanishes along the blue
line. The purple line indicates the constraint in Eq. (5.17). In the inset, we
show the total density |ψ|2 of the hole wavefunction in the cross-section
at V SW

g , where purple and blue lines intersect. The density vanishes (is
maximal) in the blue (red) region.
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Figure 5.19: Spin-orbit velocity |vvv| in a bulk equilateral FinFET grown
along the DRA. We show |vvv| as a function of the gate potential Vg in a
device where an equilateral triangle with side L = 20 nm is placed on
top of a substrate 6L wide and 3L high. The electrostatic potential in this
calculation is simulated by solving the Laplace equation as discussed in
App. 5.A. In the inset, we show the total density |ψ|2 of the hole wave-
function at Vg = −0.28 V, where the spin-orbit coupling vanishes. The
hole density vanishes in the blue region and attains maximal value in the
red region. At this potential, the holes are localised in the fin.
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CHAPTER 6
Long-distance coupling of spin
qubits via topological magnons

Adapted from:
Bence Hetényi, Alexander Mook, Jelena Klinovaja, and Daniel Loss

“Long-distance coupling of spin qubits via topological magnons”,
arXiv:2207.01264 (2022)

We consider two distant spin qubits in quantum dots, both coupled to
a two-dimensional topological ferromagnet hosting chiral magnon edge
states at the boundary. The chiral magnon is used to mediate entangle-
ment between the spin qubits, realizing a fundamental building block
of scalable quantum computing architectures: a long-distance two-qubit
gate. Previous proposals for long-distance coupling with magnons in-
volved off-resonant coupling, where the detuning of the spin-qubit fre-
quency from the magnonic band edge provides protection against spon-
taneous relaxation. The topological magnon mode, on the other hand,
lies in-between two magnonic bands far away from any bulk magnon
resonances, facilitating strong and highly tuneable coupling between the
two spin qubits. Even though the coupling between the qubit and the
chiral magnon is resonant for a wide range of qubit splittings, we find
that the magnon-induced qubit relaxation is vastly suppressed if the cou-
pling between the qubit and the ferromagnet is antiferromagnetic. A fast
and high-fidelity long-distance coupling protocol is presented capable
of achieving spin-qubit entanglement over micrometer distances with
1 MHz gate speed and up to 99.9% fidelities. The resulting spin-qubit
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entanglement may be used as a probe for the long-sought detection of
topological edge magnons.

6.1 Introduction

Along the journey towards universal quantum computing several of the
milestones [1] have already been reached, such as single-qubit gates with
long coherence times and fast readout as well as short-ranged two-qubit
gates in multiple platforms [2–13]. Universality, on the other hand, re-
quires coherent logical qubits, that can be achieved in large-scale quan-
tum computers by means of quantum error correction [14, 15]. Owing
to the highly developed semiconductor industry qubits defined in semi-
conductor quantum dots (QDs) [16–18] are increasingly believed to be
an exceptionally potent candidate for the long term goal: scalable quan-
tum computers. The challenge incorporates the improvement of single-
and two-qubit gate performance as well as the management of the corre-
sponding control electronics [19–21]. Leveraging the industry-standard
fabrication techniques, Ref. [20] proposed to accommodate elements of
the control electronics on the same chip by arranging small dense qubit
arrays and local control electronics in a checkerboard pattern, where the
qubit arrays are connected via long-range qubit couplers. For such ar-
chitectures having means to create entanglement over large distances
(& 1µm) would be highly desirable.

Long-range entanglement of spin qubits is realizable using a vari-
ety of mediators [18] such as floating gates [22, 23], microwave cavi-
ties [24], superconducting resonators [25–27] or spin shuttling [28–30].
While the fidelity of the aforementioned protocols may be limited by
charge noise, magnetic insulators are versatile platforms to create entan-
glement among distant spins with low dissipation and no heat gener-
ation due to Joule heating [31], Furthermore, the coupling to magnons
does not require spin-orbit interaction (SOI). In such systems the effec-
tive coupling between spin qubits can be established using ferromagnetic
(FM) magnons [32–34], antiferromagnetic domain walls [35] or magnon
waveguides [36]. An other promising approach to mitigate dissipation
is to couple spin qubits via topological edge states in quantum Hall sys-
tems [37–40].

Herein, as shown in Fig. 6.1, we bring together topological excita-
tions, magnets, and spin qubits by studying long-distance entanglement
mediated by topological magnons. The latter are examples of bosonic
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topological spin excitations above topologically trivial magnetic ground
states. Topological chiral magnons are predicted to exist in a large vari-
ety of magnetic systems, ranging from FM [41–49] and antiferromagnets
[50–52] to skyrmion crystals [53–58], and from two-dimensional to three-
dimensional systems [59–61]. Being nonconserved bosons, chiral edge
(or interface [43,62,63]) magnons exist within topological spectral gaps at
finite frequencies, typically between a few GHz in (artificially manufac-
tured or self-organized) topological magnonic crystals [43, 44, 47, 53–56,
64–68] up to several THz in magnetic compounds. Examples for the latter
are Cu(1,3-benzenedicarboxylate) [69], CrI3 [70], CrSiTe3, and CrGeTe3

[71]. For recent reviews on topological magnons, see Refs. [72–75].
Once the qubit is brought into proximity to the magnet’s edge (or in-

terface) and its frequency is tuned within the topological magnon gap,
the qubit is only resonant with the chiral edge mode. Coupling the qubit
to the FM leads to an emission of a physical unidirectionally propagating
magnon well localized to the edge of the sample. This magnon can be re-
absorbed by the second qubit thereby mediating entanglement between
the qubits. This nonreciprocal coupling protocol can be exceptionally fast
(∼ 1 GHz) and we find high gate fidelities when the inter-qubit distance
is well below the magnon mean free path, that is to say, well below 1µm.

Importantly, we report a coupling regime that drastically outperforms
the aforementioned protocol. If the two qubits are coupled simultane-
ously with the FM (antiferromagnetically), a virtual chiral magnon-mediated
process arises, which is proportional to the direct exchange coupling,
with the decoherence rates being suppressed by the smallness of the
dipole-dipole interaction. In this regime, fidelities of 99.9% of 1 MHz
two-qubit gates can be achieved even at distances comparable with the
magnon mean free path.

The remainder of this work is structured as follows: in Sec. 6.2 the
model of a two-dimensional topological FM in nanoribbon geometry is
presented and its chiral edge magnons characterized. In Secs. 6.2-6.2,
we consider two planar QDs residing in an adjacent non-magnetic layer,
coupled by both direct exchange and dipole-dipole interaction to an arm-
chair edge of the FM. In Secs. 6.2-6.2, we identify a coupling regime with
antiferromagnetic exchange coupling between the QD and the FM. In this
scenario the qubit relaxation is orders of magnitude slower than the effec-
tive coupling. In Secs. 6.3-6.3, we present the results of the corresponding
numerical study, which we show to agree well with our analytical esti-
mates. Finally, we consider the opposite (ferromagnetic) coupling regime
in Sec. 6.4 for which the resonant coupling together with the chiral prop-
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Figure 6.1: Schematic setup for the long-distance spin-qubit entangle-
ment mediated by chiral magnons in a topological ferromagnet. The light
blue honeycomb lattice represents the ferromagnet with the arrows indi-
cating the ground state spin polarization. The armchair edge of the fer-
romagnet hosts the chiral magnon mode propagating along the positive
x direction, indicated by the canted edge spins (gold). The spin qubits
(silver arrow embedded in a green ellipse) are lying in a parallel plane
close to the FM lattice (qubit layer is not shown explicitly), located near
the edge of the magnet.

agation of the magnon facilitates qubit entanglement via the exchange of
a physical magnon. After a discussion in Sec. 6.5, we conclude in Sec. 6.6.
Several Appendices provide more detailed information.

6.2 Theory

Model of the topological ferromagnet

We consider a two-dimensional honeycomb lattice, as shown in Fig. 6.1,
with each lattice site—indexed by i—hosting a localized spin operatorSi.
Nearest neighbors interact via ferromagnetic Heisenberg exchange inter-
action, J > 0, and next-nearest neighbors are coupled via Dzyaloshinsky-
Moriya interaction (DMI) [76,77], originating from spin-orbit interaction.
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The spin Hamiltonian of the FM thus reads as

HFM = −J
2

∑
〈i,j〉

Si · Sj +
D

2

∑
〈〈i,j〉〉

νij ẑ · (Si × Sj) +Hani, (6.1)

where νij = −νji = ±1 depending on the relative position of sites i and
j. Here, we adopt the convention that νij = +1, if the bond from site
i to site j points in anticlockwise direction as seen from the respective
hexagon. We also added an anisotropy termHani in Eq. (6.1) that gaps out
the Goldstone mode by creating a spin-wave gap. Since its microscopic
origin is of no further relevance, we model the anisotropy by a built-in
magnetic field, Hani = −∆F

∑
i S

z
i , into which potential external fields

may be absorbed as well. Then, ∆F comprises the energy of the uniform
ferromagnetic resonance.

Spin Hamiltonian (6.1) is well-studied in the context of topological
magnons as it realizes the magnonic version of the Haldane model [78],
as shown in Ref. [79]. Here, we do not repeat the derivation but only
summarize the most important aspects crucial for the coupling of spin
qubits. Assuming that the spins in the ground state are pointing in the
positive z direction, we perform a Holstein-Primakoff transformation
[80]. To lowest order in the 1/S expansion the spin operators are ex-
pressed as

Sxi ≈
√
S

2

(
ai + a†i

)
, (6.2a)

Syi ≈ −i

√
S

2

(
ai − a†i

)
, (6.2b)

Szi = S − a†iai , (6.2c)

where a†i and ai are bosonic creation and annihilation operators, respec-
tively, and S is the spin quantum number. By plugging Eqs. (6.2a)-(6.2c)
into Eq. (6.1), the spin Hamiltonian can be expanded in bosonic opera-
tors. In the harmonic approximation, only the bilinear piece is retained
and found to constitute the bosonic equivalent of the Haldane model.
Both nearest-neighbor hopping and onsite potentials are proportional to
JS. The time-reversal symmetry breaking complex next-nearest neigh-
bor hopping is brought about by DMI and, hence, ∝ DS [81]. The latter
causes a topologically nontrivial opening of a band gap that—according
to the bulk-boundary correspondence [82,83]—supports a chiral magnonic
edge mode.
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Figure 6.2: (a) Magnon spectrum of a honeycomb-lattice ferromagnetic
nanoribbon with armchair termination, D = 0.2 J , and Ny = 20 unit cells
in the y direction. Left (right) localized edge states are shown in blue
(red). (b) Localization length λ of the left localized edge mode [denoted
by a blue star on (a)] as a function of DMI strength. (c) Dynamic magnetic
moment of the left localized edge mode as a function of DMI strength.

In the rest of this work, we consider a two-dimensional FM in nanorib-
bon (or “slab”) geometry, infinite along the x direction, with armchair
termination in the y direction1. The elementary unit cell of size ax × ay
contains four atoms (where ax =

√
3a and ay = a), and the slab consists

of Ny unit cells in the y direction. Using periodic boundary conditions in
the x direction, the momentum kx ∈ [− π

ax
, π
ax

), is a good quantum num-
ber and the eigenvalue equation for a given kx reads as

ĤFM(kx)ϕkx,n = εkx,nϕkx,n , (6.3)

where n is the band index running from 1 to 4Ny, where 4Ny is the total
number of spins in the nanoribbon unit cell. Here, ĤFM(kx) is the linear

1We have chosen armchair rather than zigzag termination because the latter does
not support a chiral edge mode at zero momentum, a property that turns out to be
crucial to couple the edge mode to a QD.
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spin-wave matrix, and ϕkx,n an eigenvector with eigenvalue εkx,n. The
eigenvectors satisfy the usual normalization condition, i.e.,

∑
yi,µ
|ϕµkx,n(yi)|2 =

1, where yi ∈ [1, Ny] is the index of the armchair unit cell and µ ∈ [1, 4] a
basis site within the armchair unit cell. Furthermore, the eigenvectors are
related to the spin waves via S+

i ≈
√

2Sai =
√

2S/Nx

∑
kx

e−ikxxi
∑

n ϕ
µi
kx,n

(yi)akx,n,
where the second equality defines the annihilation operator of the magnonic
eigenmode (kx, n), with Nx being the number of unit cells in the x direc-
tion (see App. 6.A for further conventions). The spectrum εkx,n of such
a ferromagnetic slab is shown in Fig. 6.2(a), where the left- and right-
propagating chiral edge modes are highlighted in blue and red, respec-
tively. For the numerical results to follow the parameters of the FM slab
are listed in Tab. 6.1, unless otherwise specified.

Importantly, and in contrast to the electronic Haldane model, the chi-
ral mode is not “particle-hole” symmetric, i.e., its energy is not symmet-
ric with respect to the gap. This is due to missing nearest neighbors at
the edges, resulting in a reduction of energy for the edge modes [84–86].
This edge effect does not affect topological protection because the exis-
tence of a chiral mode is still dictated by the nontrivial topology of the
bulk. However, it does affect other properties of the chiral edge mode
that are related to the edge mode’s eigenvector ϕkx,e (subscript “e” for
edge mode) and, as we show, crucial for the spin-qubit coupling. These
properties are (i) the edge mode localization length λ = bay, with b being
the largest integer for which

∑b
yi=1

∑4
µ=1 |ϕµ0,e(yi)|2 ≤ 1−1/e, and (ii) the

edge mode dynamic magnetic moment, which reads as

δµe =

Ny∑
yi=1

4∑
µ=1

ϕµ0,e(yi) (6.4)

for the left edge. These quantities are shown as a function of D/J in
Figs. 6.2(b) and (c), respectively. In the following, we work at D/J = 0.2,
which ensures that the edge state is well localized within the unit cell
width, that is to say, λ ∼ ay.

Later on, we need the transversal spin susceptibility of the topological
ferromagnet. In the time domain, we may write it as

χ⊥nm(t, kx) ≡ −iθ(t)〈[S−−kx,n(t), S+
kx,m

(0)]〉 , (6.5)

where S−−kx,n(t) ≡
√

2Seiεkx,nt/~a†kx,n encompasses the dynamics associ-
ated with the nth magnon normal mode in the linear spin-wave approx-
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Table 6.1: Characteristic parameters of the topological ferromagnetic slab
assumed for the numerical calculations throughout this work. The slab
is assumed to be periodic in the x direction and has armchair termination
in the y direction.

Parameter Symbol Numerical value
Exchange coupling J 1 meV
DMI D 0.2 meV
Spin quantum nuber S 3/2
g-factor g 2
Ferromagnetic resonance ∆F 50µeV
Gilbert damping αG 10−4

Next-nearest-neighbor distance a 1 nm
Slab width Ly 20 nm

imation. In frequency space, we may rewrite it as

χ⊥nm(ω, kx) = −2S
δnm

εkx,n(1 + iαG)− ~ω
, (6.6)

where αG is the dimensionless Gilbert damping coefficient [87]. This
phenomenological constant accounts for the ubiquitous magnetization
damping processes without specifying microscopic origins. It brings about
a finite spectral broadening ∝ αGεkx,n of the magnon line width propor-
tional to the magnon energy [88]. In high-quality magnetic insulators at
low temperatures, as considered here, αG � 1, because metallic Stoner
excitations and Landau damping are absent, defect scattering is mini-
mized, magnon-magnon scattering is frozen out, and magnon-phonon
scattering suppressed. We take αG = 10−4 throughout, a value found, for
example, in sub-micrometer yttrium iron garnet films [89].

Model and requirements for the spin qubits

We assume that the spin qubits are defined by electrostatic gates in a 2D
(nonmagnetic) layer which is deposited directly on top of the FM layer.
The confinement is assumed to be harmonic in both directions with dif-
ferent confinement lengths lx � ax and ly & ay (see Fig. 6.1). The QD
under consideration is in the single-particle filling regime, with the low-
est orbital level occupied. An orbital level splitting & 10 meV is assumed.

In order to couple resonantly with the chiral magnon the qubit split-
ting is required to be close enough in energy to the edge states in the
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topological gap, approximately at an energy E/(JS) = 1.2 for zero mo-
mentum in Fig. 6.2(a). This is ensured by the strong exchange interaction
emerging between the FM and the excess electron occupying the QD.
This can be achieved if the conduction band edge (hosting the QD) is
close enough to the conduction band of the FM allowing for tunnelling,
and consequently for exchange interaction between the QD spin and the
spins of the FM lattice. Even though the qubit experiences the large ex-
change field of the FM layer, J⊥ ∼ 1 meV, the spectrum of the magnet
remains unaffected because the nonmagnetic qubit layer remains unpo-
larized and the QD spin has only a small weight on the individual lattice
sites. Here, the contribution of the dipole field is neglected since it is
assumed to be sufficiently small, ∆dip < 1µeV (see App. 6.B) when com-
pared to the exchange field.

Taking the interlayer exchange interaction into account as an effective
Zeeman field, the corresponding qubit Hamiltonian reads

HSQ = −J⊥
∑
i

|ψQD(xi, yi)|2Si · σ ≈ −wJ⊥Sσz ≡ ∆σz , (6.7)

where J⊥ is the interlayer exchange interaction strength (i.e., between the
FM and the QD layer), ψQD is the orbital part of the QD wavefunction,
and σ is the spin vector-operator with σz = 1

2
(|↑〉 〈↑| − |↓〉 〈↓|) being the

z component of the QD spin. Furthermore, we used the fact that in the
ground state of the FM Si = Sez, and therefore the weight of the QD
w =

∑
i |ψQD(xi, yi)|2 ≤ 1 can be factored out. The localized spin on the

QD can be identified with a qubit with basis states |0〉 ≡ |↑〉 and |1〉 ≡ |↓〉
and a qubit splitting ∆.

The spins of the FM point in the positive z direction: 〈S〉T=0 = Sez.
Therefore, if the ground state |↓〉 of the qubit is antialigned with the spins
of the FM, for example, due to antiferromagnetic interlayer exchange,
J⊥ < 0, the splitting ∆ is positive. This property is crucial in order to
mitigate magnon-induced relaxation from the higher energy qubit state
because the transition |↑〉 → |↓〉 requires a double spin flip, S−i σ

− (where
S− ∝ a†). This process cannot be assisted by the strong interlayer ex-
change but only by dipole-dipole interaction that is orders of magnitude
weaker.

For qubit applications, it is essential to have means to control the
qubit and to have long enough coherence times, simultaneously. If the
spin and orbital degrees of freedom are coupled in the QD (i.e., via spin
orbit interaction or magnetic field gradient), coherent flipping of the qubit
can be realized by electric-dipole-induced spin resonance (EDSR) [90–
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93]. In the present setup, besides intrinsic spin-orbit interaction, the in-
duced dipole-field near the edge of the FM can be leveraged for this pur-
pose2. This mechanism opens a channel for relaxation as well, via cou-
pling to charge noise and phonons. Nonetheless, due to the weakness of
the dipole-dipole interaction we do not expect this to be a severe limita-
tion.

We note that an additional dephasing mechanism appears near the
edge of the FM due to the strong exchange field. Since the exchange field
is zero outside the FM, the effective qubit splitting ∆(dy) = −w(dy)J

⊥S
depends on the QD position as w(dy) = [1 + erf(dy/ly)]/2, assuming har-
monic confinement for the QD, centred around y = dy. This sharp depen-
dence on exchange coupling would make the qubit extremely vulnerable
against fluctuations of dy, e.g., due to charge noise. In the following we
assume that this dephasing mechanism is prevented by the device de-
sign, an assumption that we return to in Sec. 6.5, and focus on the dy-
namical (i.e., magnon-induced) contributions of the decoherence rates.

Even though some of the requirements above might seem stringent at
first, due to generality of the results to be presented, we believe that there
is a large range of materials that are compatible with the criteria above
and can be stacked on top of each other. We return to a discussion of ma-
terials in Sec. 6.5. For the numerical results in this work the parameters
listed in Tab. 6.2 were used, unless specified otherwise.

Table 6.2: Characteristic parameters of the QD used in numerical evalua-
tions.

Parameter Symbol Numerical value
Qubit g-factor gQD 2
QD length along the edge 2lx 20 nm
QD length perpendicular to the edge 2ly 2 nm
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Table 6.3: Characteristic parameters of the FM-QD coupling used in nu-
merical evaluations.

Parameter Symbol Numerical value
Interlayer exchange interaction J⊥ −1.2 meV
QD-QD distance d 1µm
QD distance from the FM edge dy −0.4 nm
Interlayer distance dz 0.7 nm

Coupling to the Ferromagnet

Assuming a general, non-local coupling V̂int(ri − r) between spin Si and
QD spin at position r, the interaction Hamiltonian between a qubit and
the FM spins can be written as Vp =

∑
i Si ·

∑
r V̂int(ri − r)σp(r), where

σp(r) is the spin density of the pth QD and the interaction matrix V̂int(ri−
r) contains both exchange and dipolar interactions. As long as SOI is
negligible in the QD, the spin σ of the particle in the QD is independent
of the spatial coordinates and we may make the ansatz

σp(r) = |ψp(r)|2σp , (6.8)

where σp is acting on the spin space of the pth QD. The spatial part of the
QD wavefunction is ψp(r) = ψ(r−rp) is localized around rp = (xp, dy, dz)
and we assume that the two QD wavefunctions have no common sup-
port. Thus, we can introduce the coupling matrix between the pth QD
spin and the ith FM spin as M̂ (rp− ri) =

∑
r V̂int(ri− r)|ψ(r− rp)|2. For

notational convenience we introduce the coupling vectorMα = (Mαx,Mαy,Mαz)

that is the αth row of the coupling matrix M̂ , andM± = Mx± iM y, and
similarly σ± = σx ± iσy.

Writing the convolution between the FM spins and the coupling ma-
trix M̂ in Fourier space and expanding the coupling terms to first order

2Here, we estimate the dipole-field-induced Rabi frequency to be tens of megahertz.
In the case of EDSR the Rabi frequency is given by νRabi = ~−1ESO(eEyly)∆∆−2orb , if the
driving field is applied in the y direction. In order to estimate the dipole-interaction-
induced Rabi frequency, we used Ey = 0.5 V/µm for the amplitude of the drive and
ESO = 0.2µeV, that is the maximal coupling (as a function of dy for our set of parame-
ters) that the inhomogeneous dipole-field Byeff can induce between harmonic oscillator
basis states in the y direction.
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in magnon creation operators, one obtains

Vp =µBSBeff · σp
+

1

2

∑
kx,n

(
eikxxpS+

−kx,nM
−
kx,n
· σp + h.c.

)
+O(S0) , (6.9)

where µBBeff ≈ −wJ⊥ez is the effective field of the FM ground state act-
ing on the qubit as in Eq. (6.7), while second order terms in magnon cre-
ation operators are neglected. The coupling vector connecting the eigen-
modes of the FM to one of the qubits isM−

kx,n
= 1√

Nx

∑
i e
−ikxxiϕµi−kx,n(yi)M

−(xi, yi−
dy). Furthermore, owing to the hermiticity of the Hamiltonian, the cou-
pling matrix elements satisfy M+−

kx,n
= (M−+

−kx,n)∗, M++
kx,n

= (M−−
−kx,n)∗, and

M+z
kx,n

= (M−z
−kx,n)∗, where M−± = M−x ± iM−y.

Now, let two spin qubits (SQs) be situated near the edge of the FM
at positions rQD1 = (−d/2, dy, dz) and rQD2 = (d/2, dy, dz), respectively
(see Fig. 6.1). The model Hamiltonian under consideration is then

H = ∆ (σz1 + σz2) +HFM + Ṽ , (6.10)

where ∆ = −J⊥S, assuming w = 1 for simplicity, and

Ṽ =
∑
kx,n

S+
−kx,nM

−
kx,n
·
(
e−ikxd/2σ1 + eikxd/2σ2

)
+ h.c. (6.11)

is the coupling between the two qubits and the magnon modes of the FM.
Finally, the parameters of the FM-QD coupling used in our numerical
results are listed in Tab. 6.3, unless otherwise specified.

Effective qubit-qubit coupling

In this section we calculate the effective qubit-qubit coupling mediated
by the ferromagnet. To this end, we integrate out the magnons from the
Hamiltonian by means of a second order Schrieffer-Wolff transformation,
and write the effective Hamiltonian as

Heff = ∆ (σz1 + σz2) +Weff . (6.12)

The effective coupling between the qubits assumes the form [32, 94]

Weff = − i

2~
lim
η→0+

∞∫
0

dt e−ηt
〈[
Ṽ (t), Ṽ

]〉
FM

, (6.13)
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where η is the lifetime of the intermediate virtual excitation (i.e., magnons).
The expectation value 〈· · · 〉FM is taken with the FM ground state |0〉FM,
and Ṽ (t) = eiH0tṼ e−iH0t with H0 = HFM + ∆(σz1 + σz2).

Within the framework of the Schrieffer-Wolff transformation it is pos-
sible to (implicitly) account for the fact that the pure magnons are not the
true eigenstates of the FM. Magnons are dressed by other quasiparticles,
e.g., by phonons, causing a finite spectral width of the magnon modes.
Equation (6.13) can be written in the frequency domain as

Weff =
1

2~

∞∫
−∞

dω

2π

〈[
Ṽ (ω), Ṽ

]〉
FM

ω + iη
, (6.14)

where Ṽ (ω) =
∫∞
−∞dt Ṽ (t)e−iωt and ~η is the linewidth broadening of

the corresponding magnon. In our case the linewidth broadening of the
magnon mode (kx, n) is associated with Gilbert damping and therefore
~η → αGεkx,n, which effectively smears out the magnon density of states
cutting unphysical singularities. See App. 6.C for more technical argu-
ments.

Expanding H0 on the eigenbasis of the FM and the qubits, the time
evolution of spin and qubit creation operators takes the form S−−kx,n(t)σ−(t) =√

2Seiεkx,nt/~−i∆t/~a†kx,nσ
−. The Fourier transform Ṽ (ω) then contains terms

like 2π~
√

2SM++
kx,n

δ(~ω − εkx,n + ∆)a†kx,nσ
−, facilitating the exact evalua-

tion of the integral in Eq. (6.14). Performing the expectation value over
magnons, the resulting qubit-qubit interaction can be written as Weff =∑

p,q∈{1,2}Wpq, where Wpq contains products of qubit operators σp and σq.
Expressing each contribution in terms of the susceptibility in Eq. (6.6),
we obtain for p 6= q

Wpq =
1

32

∑
kx,n

eikx(xp−xq)χ⊥nn(∆/~, kx)M++
kx,n

σ−p

×
(
M−+
−kx,nσ

−
q +M−−

−kx,nσ
+
q +M−z

−kx,nσ
z
q

)
+ h.c. ,

(6.15)

where we have dropped the off-resonant terms proportional to χ⊥nm(0, kx)
and χ⊥nm(−∆/~, kx) because they are highly suppressed for antiferromag-
netic interlayer exchange J⊥ < 0 in the relevant limit, d � lx � ax (see
App. 6.D for further details). The diagonal terms Wpp simply give a tiny
dynamical contribution δBeff to the effective exchange field Beff. Since
|δBeff| � |Beff|, we omit Wpp in Weff.
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The fact that the coupling term of the XY type (i.e., ∝ σ−1 σ
+
2 ) is pro-

portional to |M++|2 instead of |M−+|2 is a direct consequence of the an-
tiferromagnetic coupling (∆ ∝ −J⊥ > 0). Furthermore, we note that the
dipole-dipole interaction can contribute to all terms in Eq. (6.15), while
the isotropic direct exchange only contributes to theM−+ matrix element.
The characteristic energies of these two interactions are strikingly dif-
ferent: for the dipole-dipole interaction µ0µ2B

a3
∼ 0.6µeV gives an upper

bound, while the direct exchange coupling is |J⊥| ∼ 1 meV. Thus, the
strongest coupling term is expected to be ∝ σ−1 σ

−
2 . The full analytical

form of the coupling matrix elements for the exchange and the dipole
mechanisms will be shown below in Secs. 6.3-6.3.

Decoherence rates

In the previous section the (virtual) magnon-mediated effective qubit-
qubit interaction has been discussed. However, the coupling of the QD
spin to the ferromagnet also gives rise to decoherence of the spin qubits
caused by real magnons. In order to calculate the contribution of magnons
to the decoherence times, we decompose the FM-QD interaction Hamil-
tonian of Eq. (6.9) such that V = 1

2
(V +σ− + V −σ+) + V zσz and define the

corresponding noise power spectra as SV b(ω) =
∫
dt
{

[V b(t)]†, V b(0)
}

e−iωt.
The relaxation and dephasing times within the Bloch-Redfield approx-
imation then read as Γ1 = 1

4~2SV −(∆/~) and Γ∗2 = 1
4~2SV z(0), respec-

tively [32, 95].
Substituting in the corresponding couplings, to lowest order of the

1/S expansion, we can relate both the longitudinal, SV z(ω), and transver-
sal, SV −(ω), noise spectrum to the transversal magnonic power spectrum
S⊥kx,n(ω) = ~ coth(β~ω/2)Im[χ⊥nn(~ω, kx)], where β = (kBT )−1 with T be-
ing the temperature. Finally, for the decoherence rates, one obtains

Γ1 =
1

16~2

∑
kx,n

|M++
kx,n
|2S⊥kx,n(∆/~) , (6.16a)

Γ∗2 =
1

2~2

∑
kx,n

|M+z
kx,n
|2S⊥kx,n(0) +O(S0). (6.16b)

The dephasing rate Γ∗2 can be highly suppressed when the ferromagnetic
resonance is shifted to finite energies, for example, by an external mag-
netic field or an easy-axis anisotropy (∆F > 0, cf. Sec. 6.2).
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The appearance of |M++
kx,n
|2 in the formula for the relaxation rate of

Eq. (6.16a) can be understood as follows: for antiferromagnetic coupling
(∆ ∝ −J⊥ > 0) if no magnons are excited, the excited state of the qubit
is |0m ↑〉 which can then relax to the qubit ground state |1m ↓〉 creating a
magnon by means of the coupling S−M++σ− (note that S− ∝ a†), where
we used the simplified notation |0m〉 for the FM ground state and |1m〉
for a single magnon excitation with energy ∆. For the ferromagnetic
case (∆ ∝ −J⊥ < 0) the qubit states are reversed and the transition
|0m ↓〉 → |1m ↑〉 describes the relaxation requiring an interaction term of
the type S−M+−σ+. The relaxation mechanism for ferromagnetic inter-
layer coupling is then mediated by direct exchange interaction, as op-
posed to dipole-dipole interaction in the antiferromagnetic case. For a
detailed derivation, we refer the reader to App. 6.E.

One of the central figure of merits in the field of quantum comput-
ing is the gate fidelity F = 2Tr[ρ(top)ρf ] − 1 ∈ [0, 1] that describes the
deviation of the qubit state after the operation from the targeted final
state, quantified by the respective density matrices ρ(top) and ρf [1, 96].
Let us consider a two-qubit gate implemented by the time evolution un-
der the static Hamiltonian Weff. Neglecting the subleading two-qubit
terms and the single qubit terms in the time evolution for simplicity,
one may consider only the σ−1 σ

−
2 coupling to get e−iWefftop/~ |00〉 = (|00〉 −

ieiφ |11〉)/
√

2 where top = ~π
4
|〈11|Weff |00〉|−1 is the operation time and

φ = arg(〈11|Weff |00〉). This two-qubit operation, supplemented with
single-qubit rotations, i.e., U√SWAP ∼ σx1 e−iWefftop/~σx1 , is equivalent to a√

SWAP gate up to a phase. Since the relaxation rate Γ1 describes the de-
cay of the diagonal elements of the density matrix as (ρ00−ρ11)(t) ∝ e−Γ1t,
using the operation time in the exponent, the fidelity of the two-qubit
gate is obtained as

F = exp

(
−π

4

~Γ1

|〈11|Weff |00〉|

)
∼ 1− π

4

~Γ1

|〈11|Weff |00〉| , (6.17)

provided that the decoherence is primarily caused by relaxation. As it
will be shown later, this is indeed the case for the chiral mode due to the
resonant coupling.

6.3 Results

A numerical simulation of the effective coupling has been performed by
evaluating Wpq in Eq. (6.15). To this end we solved the eigenvalue equa-
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Figure 6.3: (a) Spectrum of the ferromagnetic slab with Ny = 1000 unit
cells as a function of momentum kx. Chiral edge magnons at oppo-
site edges are indicated by red and blue lines, respectively. (b) Effec-
tive qubit-qubit coupling strength (blue) and magnon-induced qubit-
relaxation rate (orange) for T = 100 mK, as a function of qubit splitting.
Pronounced in-gap resonances are identified and associated with chiral
edge magnons. Note that at the two resonances the coupling strength
largely exceeds the relaxation rate, making them the optimal operation
points for two-qubit gates. (c) Infidelity 1 − F as a function of qubit
splitting. Largest fidelities are found in the energy windows of the chiral
edge magnons. Vertical lines correspond to a fidelity of 90%, 99%, and
99.9%, respectively. In (a)-(c), horizontal gray lines indicate the energy of
the chiral edge modes at kx = 0. Dashed grey lines in (b) and (c) corre-
spond to the result of the analytical formulas, i.e. Eqs. (6.19)-(6.20) with
the coupling matrices taken from Eqs. (6.24) and (6.25).

tion of Eq. (6.3) numerically using a slab unit cell consisting of Ny = 1000
armchair cells (i.e., 4000 spins). The resulting eigenvalues εkx,n were used
to obtain the susceptibility according to Eq. (6.6), while the eigenmodes
ϕkx,n were used in the explicit expressions for the direct exchange and
dipole-dipole couplings [for which we refer the reader to Eqs. (6.75) and (6.83)
of the corresponding appendices]. The interlayer exchange was varied
together with the qubit splitting as J⊥ = −∆/S to account for the effec-
tive exchange field, and the other parameters are listed in Tabs. 6.1-6.3.

We obtained pronounced Gaussian resonances for both the coupling
strength and the relaxation rate when the qubit splitting matches the
energy of the edge modes at kx = 0 [see Fig. 6.3(a)-(b)]. The coupling
strength for the lower in-gap resonance can reach up to 1 MHz facilitat-
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ing fast two-qubit operations over µm distances with fidelities exceed-
ing 99.9% [see Fig. 6.3(c)]. Further insight into the dependence of the
coupling on the various parameters of our model can be obtained via
the analytical formulas within the continuum approximation to be pre-
sented below. First we obtain the coupling strength as a function of the
coupling matrices in Sec. 6.3, then provide analytical formulas for the
coupling matrices for both the exchange and dipole-dipole interaction in
Secs. 6.3-6.3.

Chiral edge mode

If the qubit splitting ∆ lies within the magnonic gap and is close to ε0 ≡
ε0,e, defined as the energy of the chiral edge mode at kx = 0, the effective
coupling in Eq. (6.15) simplifies as the contribution of bulk modes (n 6= e)
are far off-resonant. Since the spin density of the QD is distributed over
several lattice sites, the qubit spin σ can only couple to magnon modes
with kx . l−1

x , where the spectrum of the edge mode can be written as
εkx,e = vxkx + ε0, with vx ∼ 0.39 meV·nm. Finally, the susceptibility near
the edge resonance reads as

χ⊥nn(∆, kx) ≈ −2S
δne

vx(kx + iκ)− δ (6.18)

where δ = ∆−ε0 is the detuning from the edge resonance and κ−1 ≈ vx
αGε0

is the mean free path of the chiral magnon. In the continuum approxima-
tion we replace the sum over kx by an integral [as in Eq. (6.58)]. Further-
more, close to resonance the integration limit can be extended to infinity,
provided that |δ/vx| � π/ax. Then, exploiting that M̂kx,n

is an analytic
function of kx, we can perform the momentum integral using the residue
theorem [see Eq. (6.59)] to obtain

〈01|Weff |10〉 ≈ − i
Sax
16vx

eik0d−|κ|d|M++
k0,e
|2 , (6.19a)

〈11|Weff |00〉 ≈ i
Sax
16vx

e−i|k0|d−|κ|dM++
k0,e
M−+
−k0,e , (6.19b)

〈10|Weff |00〉 ≈ iΘ(vx)
Sax

16|vx|
e−i|k0|d−|κ|dM++

k0,e
M−z
−k0,e , (6.19c)

〈01|Weff |00〉 ≈ iΘ(−vx)
Sax

16|vx|
e−i|k0|d−|κ|dM++

k0,e
M−z
−k0,e , (6.19d)

where k0 = δ/vx and we neglected κ in the coupling, i.e., M+α
k0+iκ,e ≈

M+α
k0,e

+ O(κdy). This latter approximation is justified since every length
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scale in the coupling is much smaller than κ−1 ≈ 2.2µm, for example,
dz, dy ∼ 1 nm.

The Gaussian dependence on the detuning around the resonance in
Fig. 6.3(b) can be understood via the spatial averaging effect of the QD.
Since the magnetic moment of the particle is equally distributed along
the QD, the coupling to magnon modes with kx > l−1

x is averaged out
leading to M̂kx,n

∝ e−k
2
xl

2
x/4 (see App. 6.F). Furthermore, lx is much larger

than the remaining length scales in the coupling (i.e., ly, dy, dz, and a) and
therefore one can expand the coupling as M̂kx,n

≈ e−k
2
xl

2
x/4M̂0,n+O(ly/lx).

Using the same assumptions as for the effective coupling, the contri-
bution of the edge modes to the decoherence rates can also be estimated
using Eq. (6.16). If the detuning is close to zero, the relaxation is domi-
nated by the resonant edge mode at kx = 0 and reads as

Γ1 ≈
Sax

16~vx
|M++

k0,e
|2 coth(βε0/2) . (6.20)

Since the (pure) dephasing rate is proportional to S⊥kx,n(0) [see Eq. (6.16b)],
the contribution of the edge mode is far off-resonant. In order to esti-
mate it, we expanded the susceptibility in the Gilbert damping αG to get
S⊥kx,e(0) ≈ ~ coth(βε0/2)2αGS/ε0. The dephasing rate can then be written
as

Γ∗2,e ≈
αGS

~
√

2πε0

ax
lx
|M−z

0,e |2 coth(βε0/2) , (6.21)

where we exploited that Mkx,n ≈ e−k
2
xl

2
x/4M0,n for every mode. Using

Eq. (6.21) we obtain Γ∗2 ∼ 10−4 Hz that is vastly underestimating the de-
phasing rate (as it will be shown later).

In order to find the leading contribution to dephasing we need to con-
sider the modes that are closest to zero energy. We do this in the 2D limit,
which is valid deep in the bulk when the QD is far from the edges of the
FM. Here one can replace the coupling Mkx,n by Mkx,ky , that is the cou-
pling to the magnon mode with energy εkx,ky , as obtained for periodic
boundary conditions along the x and the y direction. Since lx � ax, we
still restrict ourselves to kx = 0 in the coupling to get

Γ∗2 ≈
αGS

~
√

2π∆F

ax
lx

coth(β∆F/2)
∑
ky

|M−z
0,ky
|2 , (6.22)

where we neglected the curvature of the magnon band since ∆F . ε0,ky .



CHAPTER 6. LONG-DISTANCE COUPLING OF SPIN QUBITS VIA
TOPOLOGICAL MAGNONS 237

Using Eq. (6.19a) and Eq. (6.20), an important relation can be deduced,
namely,

| 〈01|Weff |10〉 |
~Γ1

= e−|κ|d tanh(βε0/2) ∼ O(1) , (6.23)

meaning that the relaxation provides an upper bound for the XY cou-
pling, regardless of the strength of the QD-FM coupling. The same for-
mula is valid in the ferromagnetic interlayer coupling regime (J⊥ > 0),
where both quantities are proportional to |M+−|2. Since the 〈01|Weff |10〉
is the leading coupling in that case, virtual magnon processes are unable
to create entanglement between qubits while maintaining the coherence
of the two-qubit system. Therefore, we have focused here on the anti-
ferromagnetic case, where the strongest coupling is 〈11|Weff |00〉; we will
revisit the ferromagnetic coupling case in Sec. 6.4, where we try to lever-
age the fast magnon emission/absorption rate (Γ1) in a scheme where a
real magnon is mediating the coupling between distant spin qubits (as
opposed to virtual magnons considered so far).

The dependence of the coupling on the inter-QD distance d is explic-
itly defined in Eq. (6.19), however, in order to determine the coupling
strength and to identify the dependence on the QD size and position we
need to calculate the coupling matrix elements Mkx,e for the case of direct
exchange and dipole-dipole coupling.

Exchange coupling

Let us first consider the contribution of (isotropic) direct exchange inter-
action between the FM spin Si and the qubit spin σ that is given by the
exchange matrix −Ĵi|ψ(ri − rQD)|2, where Ĵi is the local spin-spin inter-
action matrix between the ith site of the FM and the qubit layer. In this
case the effective coupling between the magnonic mode (kx, n) and the
spin qubit is given by

M−+
−kx,n =− 1√

Nx

∑
ri,µ

eikx(xi−xQD)ϕµkx,n(yi)2J
⊥
i |ψ(ri+r

µ −rQD)|2

≈− e−k
2
xl

2
x/4J⊥Ckx,n ,

(6.24)

where we assumed the QD wavefunction to be Gaussian, i.e., |ψ(ri)|2 =
ax√
πlx

e−x
2
i /l

2
x|ψ(yi)|2, and we defined Ckx,n = 1

2

∑
yi,µ

ϕµkx,n(yi)e
ikxxµ|ψ(yi −

dy)|2. Furthermore, for simplicity we assumed homogeneous and isotropic
coupling, Ĵi ≈ J⊥ 1.
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Figure 6.4: Coupling matrix elements M−+
kx,e

, M−−
kx,e

, and M−z
kx,e

at kx = 0
including both direct exchange and dipole-dipole interactions as a func-
tion of the QD position dy for (a)-(c) ly = 4 nm and dz = 1.7 nm and
(d)-(f) ly = 1 nm and dz = 0.7 nm. Numerical results (blue lines) are ob-
tained from Eqs. (6.75) and (6.83). Analytical results (red lines) are given
in Eqs. (6.24) and (6.25). The rest of the parameters are given in Tabs. 6.1-
6.3. Direct exchange interaction only contributes to M−+, therefore this
coupling element is orders of magnitude larger than M−− and M−z. We
observe good quantitative agreement between the numerical and analyt-
ical curves in (a)-(c), whereas for smaller ly and dz values in (d)-(f) the
coupling is strongly asymmetric around the FM edge (dy = 0) due to the
spatial profile of the edge magnon that is not taken into account in the
analytics.

Owing to the Gaussian factor in the coupling the main contribution
of the coupling matrix to the qubit-qubit coupling in Eq. (6.19) is given
by small momenta (kx . l−1

x ). In this regime, Ckx,e ≈ C0,e is a good
approximation for the coefficient in Eq. (6.24). Provided that the DMI is
strong enough, i.e., D > 0.1J , the localization length of the edge mode
is small, i.e., λ � ly [see Fig. 6.2(c)]. In this limit we can factor out δµe

and estimate the corresponding coefficient as C0,e ≈ ay
2
√
πly
δµee

−d2y/l2y (see
App. 6.F for further details).
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Figure 6.5: Position dependence of the effective qubit-qubit couplings
and the qubit relaxation. The parameters are the same as for Fig. 6.3, ex-
cept for the slab width that is set to Ny = 20 in order to show both edges
of the FM simultaneously. (a) Numerical results for the matrix elements
of the effective coupling Weff of Eq. (6.15) for a constant qubit splitting
of ∆ = 1.8 meV. (b) Analytical results of the couplings and the relaxation
are given in Eqs. (6.19)-(6.20) by substitution of Eqs. (6.24) and (6.25). The
analytical estimate in the bulk for Γ∗2 was calculated using Eq. (6.22) with
Eq. (6.27). The excellent quantitative agreement between the numerical
simulation (a) and analytical formulas (b) facilitates the estimation of the
various coupling and decoherence time scales in different materials with-
out having to perform the heavy numerical calculations.

Dipole-dipole coupling

Owing to its long-ranged nature, calculations involving the dipole-dipole
interaction are unwieldy and deferred to App. 6.G. Here, we only note
that the exponential suppression factor in momentum, e−k

2
xl

2
x/4, appears

regardless of the form of the interaction potential. Therefore, we restrict
our attention to the kx = 0 case and provide an analytical formula, as-
suming that the other confinement length of the QD, ly is sufficiently
large, compared to the localization length of the edge magnon, λ, e.g.,
λ� ly. The coupling matrix elements in this limit read as

M−+
0,e = −M−−

0,e =
µ0

π

g gQDµ
2
B

axl2y
δµeRe

[
I
(

idy−dz
ly

)]
, (6.25a)

M−z
0,e =− i

µ0

π

g gQDµ
2
B

axl2y
δµeIm

[
I
(

idy−dz
ly

)]
, (6.25b)
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where we have introduced the complex function I(x) = 1 +
√
πxex

2
[1 +

erf(x)]. Similarly to the case of the direct exchange interaction, it is the
λ� ly assumption that allowed us to factor out the dynamical magnetic
moment δµe of the chiral edge mode from the integral.

The analytical estimates for the couplings M−+
0,e , M−−

0,e , and M−z
0,e ob-

tained in Eqs. (6.24) and (6.25) are compared with the numerically evalu-
ated exact expressions given in Eqs. (6.75) and (6.83) as a function of dy in
Fig. 6.4. The analytical formulas are in very good agreement with the nu-
merics as shown in Fig. 6.4(a)-(c) for ly = 4 nm and dy = 1.7 nm. Further
parameters of the QD and the FM were set as in Tabs. 6.1-6.3. The only
apparent deviation is the slight shift of the peaks in the numerics, com-
pared to the edge (dy = 0). We attribute this effect to the asymmetric na-
ture of the edge mode (i.e., the mode terminates with a sharp maximum
at the edge and decays exponentially towards the bulk) that is not taken
into account in the analytical estimate which assumes ϕµ0,e(y) ∼ 1

4
δµeδ(y).

The FM-QD coupling matrix elements are presented in Figs. 6.4(d)-(f)
for the same parameters used in Fig. 6.3, i.e., ly = 1 nm and dz = 0.7 nm.
Even though the localization length λ ∼ 1 nm, is comparable with ly,
the qualitative behavior is correct and the maximal coupling strength is
reliable in order of magnitude. As compared to the analytical prediction,
the numerical results exhibit features that are slightly shifted outwards
from the edge [similarly to Fig. 6.4(a)-(c)] and small oscillations appear
on the side of the FM (dy > 0). These effects appear due to the spatial
“fine structure” of the edge mode (exponential decay and oscillations on
the scale of ay) that is not accounted for in the analytical approximation.

In order to complement the estimate of the bulk dephasing formula
in Eq. (6.22), we provide here the relevant coupling matrix element for
kx = 0 as a function of ky (assuming periodic boundary conditions along
y direction). The coupling between the QD spin and the lower-energy
acoustic magnon band reads

M−z
0,ky
≈ µ0µ

2
BggQD

2axay
kye
−k2yl2y/4e−|ky |dz , (6.26)

where we neglect the contribution of the optical magnon band, since
their contribution is suppressed by the negligible dynamical magnetic
moment as well as the large energy denominator in Eq. (6.22). The sum
over ky modes can be evaluated in the continuum limit as∑

ky

|M−z
0,ky
|2 ≈ 1

2π

ay
ly

(
µ0µ

2
BggQD

2axayly

)2

I2(dz/ly) , (6.27)
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where I2(x) =
√

2π(1 + 4x2)e2x2 [1 + erf(
√

2x)]− 4x.

Position dependence of the effective coupling

Choosing a smaller system size of Ny = 20 and considering the various
couplings and decoherence rates as a function of dy allows us to compare
the full analytical formulas with the numerics in Fig. 6.5(a) and (b). For
this we have tuned the qubit energy to be on resonance with the kx = 0
chiral mode i.e., ∆ = 1.8 meV [see Fig. 6.3(a)]. Even though, in potential
experiments if the QD is moved outside the FM (in-situ), the decreasing
interlayer exchange experienced by the QD would tune the qubit fre-
quency out of resonance3, which is not taken into account in Fig. 6.5.

As shown in Fig. 6.5, the peaks of the effective coupling develop only
close to the two edges of the sample at dy = 0 and dy = 20 nm, which pro-
vides a natural way to tune the qubits in and out of the coupling regime.
This property is crucial since the qubit splitting is set by the interlayer ex-
change interaction that is challenging to tune in-situ. On the other hand
dy can be changed freely in the range dy ∈ [0, 20 nm] since the interlayer
exchange is constant to a good approximation in this range.

The strongest coupling is achieved for the 〈11|Weff |00〉matrix element
because this is the only coupling that is proportional to the interlayer
exchange J⊥. In order to capture the exponential decay towards the bulk
we have used Eq. (6.80) for the analytical curve instead of the simplistic
formula for C0,e given in Sec. 6.3.

The second strongest coupling are the σ±σz-type of terms that come
about three orders of magnitude smaller than the 〈11|Weff |00〉 term. Im-
portantly, since the propagation direction is opposite along the left and
right edges, from Eq. (6.19) we expect only 〈01|Weff |00〉 coupling on the
left edge (because vx < 0) and 〈10|Weff |00〉 on the right edge (because
vx > 0). This is fulfilled up to several orders of magnitude in Fig. 6.5
(cf. yellow and blue lines) and a clear marker of chirality.

The excellent agreement between numerical and analytical results is
sustained for the decoherence rates as well. The ratio of the XY coupling
and the relaxation rate in Eq. (6.23) being O(1) is confirmed by the nu-
merical results close to the edge resonances. The dephasing rate estimate

3Within the present assumptions the detuning from resonance would change as
δ = S|J⊥|

2 {erf[dy/ly] + erf[(Ly − dy)/ly]}− ε0. Note that depending on the value J⊥, the
resonance can be reached at any dy in principle.
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for the bulk in Eq. (6.22) [using Eq. (6.27)] turns out to be a very good
estimate a few nm away from the edges.

6.4 Qubit entanglement via chiral magnon
transduction

As mentioned in Sec. 6.3, the virtual magnon coupling strength and the
relaxation rate are both proportional to the coupling |M+−

0,e |2 in the ferro-
magnetic interlayer coupling regime (J⊥ > 0). Therefore, since | 〈01|Weff |10〉 | ∼
Γ1, the virtual magnon mediated coupling is inefficient in this case. One
possibility to overcome this limitation is through coupling by real magnons
(as opposed to virtual ones described above). Provided that the FM-QD
coupling (i.e., J⊥) can be switched on and off on demand, the first qubit
can be used to emit a chiral edge magnon that propagates and is subse-
quently absorbed by the second qubit, coherently. This protocol is lever-
aging that the emitted magnon wave packet will propagate towards the
second qubit maintaining its shape (quasi-linear dispersion) because it
cannot backscatter at defects due to its chirality and the presence of the
topological gap.

Previous proposals for such a magnon transduction protocol have fo-
cused on the single magnon mode approximation [36]. Such an approxi-
mation, however, can only be made if the energy separation from higher
magnonic modes is much larger than the coupling strength. For the case
of the chiral magnon this energy scale is vx/C ∼ 1 neV, where C ∼ 100µm
is a typical circumference of the sample and vx ≈ 0.39 meV·nm. This en-
ergy separation is orders of magnitude smaller than the achievable FM-
QD coupling g ∝ M+−

0,e in Fig. 6.4(a). Note that we use Fig. 6.4(a) as a
reference here, because the coupling is dominated by direct exchange in-
teraction J⊥ and therefore it agrees up to a sign with the coupling of the
ferromagnetic case (J⊥ > 0).

In order to discuss the limit where g � vx/C, the complete dynamics
of the local magnon excitations need to be considered. To model the sce-
nario when the spin qubits are on resonance with the chiral edge mode,
we consider a one-dimensional bosonic lattice with the dispersion rela-
tion given by the chiral edge mode. In order to reduce the computational
cost further, we extend the FM unit cell to several lattice sites, ax → 2lx,
thereby backfolding the spectrum as depicted in Fig. 6.6(a). We consider
only a single mode that used to cross kx = 0 before the backfolding of
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the spectrum, which is the red line in the highlighted area in Fig. 6.6(a).
The coupling to higher-energy edge modes (originally at kx = nπ/lx) is
negligible, since they are suppressed by the factor e−(nπ)2/4. Furthermore,
we assume that each spin qubit couples to a single FM unit cell and the
coupling is uniform within the unit cell.

In order to mitigate the contribution of the virtual magnon processes,
only one of the qubits should be coupled to the magnon mode at any
given time. The entangling protocol then consists of three steps, viz., (i)
first qubit is coupled and emits a magnon; (ii) both qubits are decoupled
and the magnon propagates; (iii) second qubit is coupled and absorbs the
magnon. This could be achieved, for example, when the effective cou-
pling strength is g = 5µeV, in which case the size of the emitted magnon
wave packet vx~/g ∼ 80 nm is indeed much smaller than the distance
between the two qubits.

We account for the local coupling and the dynamics of the emitted
magnon wave packet by performing a numerical simulation of the sys-
tem by solving the Lindblad equation [97]

ρ̇ =− i
~ [H(t), ρ] + 1

2
Γ∗2

∑
i={1,2}

D[σzi ]ρ

+
2αG

~
∑
k

εk

{
(1 + n̄)D[ak]ρ+ n̄D[a†k]ρ

} (6.28)

whereD[O]ρ = OρO†− 1
2
(OO†ρ+ρOO†) and n̄ = [exp(βεk)−1]−1, with εk

being the linear dispersion of the edge mode. The corresponding Hamil-
tonian is written as

H(t) =∆(σz1 + σz2) + c1(t, δt)a1σ
+
1

+ c2(t− tprop, δt)aNxσ
+
2 + h.c.,

(6.29)

where tprop = ~d/vx is the propagation time. The time dependence of the
coupling is a smeared out box function, i.e., ci(t, δt) = ginF [t/trise]nF [(t +
δt)/trise], where δt is the length of the pulse, nF (x) = (exp(x) + 1)−1 and
trise = 70 ps is the rise time4 of the pulse [see Fig. 6.6(b)].

From the time series of the density matrix, we evaluate the von-Neumann
entropy of the ith qubit, defined by

νi = − Tr
H\Hi

[ρ ln(ρ)] , (6.30)

4The choice of the rise time is a crucial step in order to create a magnon wave packet
that can be efficiently absorbed by the second qubit. We found that a pulse with (rela-
tively) long trise time creates a more symmetric wave packet that can be absorbed with
a higher accuracy (i.e., magnon number reduces close to zero after absorption).
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Figure 6.6: (a) Backfolded topological magnonic bandgap of the ferro-
magnet with a unit cell size of 2lx = 5ax. Only the coupling to the high-
lighted bands are relevant (dashed white box), as discussed in the main
text. (b) Coupling strength c1,2 as a function of time for the first and sec-
ond qubit, respectively. (c) Expectation value of the qubit spins σz1 and
σz2 and the total magnon number nmag in the edge of the ferromagnet.
(d) von Neumann entropy of the first qubit ν1, the second qubit ν2, and
the two-qubit system ν12. Solid lines correspond to the dissipationless
process and dotted lines to αG = 10−4 and Γ∗2 = 100 kHz. It is apparent
from (c) and (d) that even small dissipation has a detrimental effect on
the entanglement of the qubits with the environment (i.e., ν12 6= 0 in the
end of the protocol) suggesting that efficient preparation of a two-qubit
entangled state requires a magnon mean-free-path that is much longer
than the qubit-to-qubit distance.

where Tr
H\Hi

denotes the partial trace, excluding the subspace of the cor-

responding qubit. Additionally, ν12 and νm are the entropies of the two-
qubit system and the magnons with the environment, respectively. The
spin expectation value of the ith qubit is then calculated as

〈σi〉 = Tr
H\Hi

[ρ σi] , (6.31)

and the magnon occupation number is

〈nmag〉 = Tr
H\Hm

[ρΣla
†
lal] . (6.32)
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The time-evolution of the entenglement entropy νi of Eq. (6.30), the
spin expectation value 〈σi〉 of Eq. (6.31), and the magnon number 〈nmag〉
of Eq. (6.32) are presented in Fig. 6.6(c)-(d). The density matrix ρ(t) in
the definition of these quantities were obtained by numerically integrat-
ing Eq. (6.28). We set 2lx = 14ax and consider Nx = 11 lattice sites
along the one-dimensional chain. After the emission of the magnon, the
wave packet propagates along the chain twice, traveling a total distance
of 42lx ≈ 510 nm before it is reabsorbed by the second qubit (periodic
boundary conditions have been assumed). Two cases are differentiated:
dissipationless [αG = 0 and Γ∗2 = 0; see solid lines in Fig. 6.6(c)-(d)] and
dissipative evolution [αG = 10−4 and Γ∗2 = 100 kHz; see dotted lines in
Fig. 6.6(c)-(d)]

The dissipationless case can be discussed straightforwardly in the
state vector representation. At t = 0, the time evolution starts from a
pure state of each subsystems i.e., |↑〉1 |↓〉2 |0〉m. Between t = 200 ps and
t = 300 ps the first qubit emits a magnon with 50% probability leading to
an entangled state 1√

2
[|↑〉1 |↓〉2 |0〉m + |↓〉1 |↓〉2 |ψ(x)〉m] where |ψ(x)〉m is a

spatially extended wavepacket of a single mangon. At this point the first
qubit has a vanishing spin expectation value and the magnon occupation
number is 1/2. The entanglement is created between the first qubit and
the magnon, therefore ν1 = νmax ≡ ln 2 and ν12 = νm = νmax [see solid
lines in Fig. 6.6(c)-(d)]. Until t = 700 ps the magnon wave packet prop-
agates through the lattice and reaches the position of the second qubit
(|ψ(x)〉m → |ψ(x− d)〉m5). In the final step of the protocol the second
qubit needs to absorb the incoming magnon with 100% probability [thus
the doubled coupling strength in Fig. 6.6(b)] creating a pure state of the
two qubit system 1√

2
[|↑〉1 |↓〉2 + |↓〉1 |↑〉2] |0〉m with ν1 = ν2 = νmax and

ν12 = νm = 0.
When the qubit decoherence and the Gilbert damping in Eq. (6.28)

is included, the main difference compared to the dissipationless case
is the damping of the magnon wavepacket during its propagation, i.e.,
〈nmag〉 < 1/2 at t = 700 ps in Fig. 6.6(c). The entanglement with the en-
vironment can be tracked via the entanglement entropies in Fig. 6.6(d).
Since the magnon number goes to zero, the corresponding entanglement
νm needs to vanish (the vacuum of magnons is a pure state). Nontheless
ν12 6= 0, meaning that the two qubits are still entangled with another sub-
system, the environment. Therefore, considering ν1 = νmax or ν2 ≈ νmax

5Since the first qubit is coupled to the first unit cell and the second to the last unit
cell, the effective qubit-qubit distance in the simulation is d = 42lx ∼ 510 nm.
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gives a false impression about ν12/νmax ≈ 0.6 becomes the only appropri-
ate measure for the infidelity.

We conclude this section by noting that even though qubit-qubit en-
tanglement can be created through magnon transduction, the fidelity of
the operation is seriously limited by the magnon mean free path (as also
pointed out in Ref. [36]). Moreover, we note that such a resonant cou-
pling protocol does not correspond to universal two-qubit logic [98] with
the chirality of the edge magnon restricting the quantum computing ap-
plications of the magnon transduction protocol even further.

6.5 Discussion

In the setup considered in this Paper, the QD needs to be close to the FM
edge in order to achieve sufficiently strong coupling. However, at this
position, due to the large exchange field gradient, the qubit is susceptible
to fluctuations of its position (i.e., δdy), which would lead to a fluctuat-
ing qubit splitting and thus dephasing. In order for the dephasing rate to
stay well below the two-qubit operation frequencies, the fluctuations δdy,
need to be small enough; we estimate that e−d

2
y/l

2
y(〈δd2

y〉/l2y)−1/2 � 10−6.
There are different ways to overcome this limitation: (i) The QD can be
confined in a narrow nanowire along the FM edge that fixes its position
and therefore the effective exchange field. In that case, it is required that
the qubit splitting is tuneable by other means (e.g., via an external field
if gQD 6= gFM) and thereby the qubit-qubit coupling can be switched on
and off on demand [as in Fig. 6.3(b)]. (ii) The qubit can be located close
to a domain-wall in DMI instead of the edge, where the magnetization
is constant throughout but the DMI strength D changes sign. Since the
chirality of the edge mode is given by sign(D), for a given ground state
magnetization [79], two well-localized edge modes are propagating in
the same direction along such a domain wall, potentially increasing the
coupling strength by a factor of two. (iii) The QD layer can be termi-
nated as well at the edge of the FM layer. In this case the QD experiences
a constant interlayer exchange J⊥, and therefore the decoupling has to
be performed by moving the QD towards the bulk of the lattice. Addi-
tionally, option (i) and (iii) might offer a solution to achieve a QD that is
narrow enough ly ∼ 1 nm to efficiently couple to the edge mode.

Throughout this work we concentrated on a honeycomb-lattice topo-
logical magnon insulator. This model is approximately realized in mono-
layers of the van der Waals materials CrI3 [70], CrSiTe3, and CrGeTe3 [71].
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These materials support chiral edge magnons in the low THz range. The
honeycomb-lattice model is also realized in artificial arrays of magnetic
disks hosting topological magnetic solitons that interact magnetostati-
cally; chiral modes are found in the low GHz range [99]. The general
formulas for the effective two-qubit coupling derived here, for exam-
ple, in Eq. (6.19), are agnostic to the actual realization of the platform
hosting topological magnons. As such, they apply to any topological-
magnon host—be it on the honeycomb or other lattices, in the GHz or
THz range—and provide a guide for the identification of suitable mate-
rials.

Finally, we point out that the long-range spin-qubit entanglement
may also be used as a probe for the experimental detection of topological
chiral edge magnons, one of the key challenges in the field of topolog-
ical magnons [72–75]. Chiral magnetic edge excitations are notoriously
hard to detect with common probes of magnetism that are nonlocal and
mostly bulk-sensitive, such as inelastic neutron scattering. In contrast,
the local coupling to quantum-dot spin qubits, as shown above, can be
considerably large. A single spin qubit probes the local magnonic density
of states via relaxation processes. By taking the difference of detuning-
resolved relaxation times at the edges with that in the bulk, one can
verify the existence of edge-located in-gap magnon modes. Moreover,
the detuning dependence of the relaxation time is remarkably distinct
for linearly dispersing bands, as expected for a chiral mode, and triv-
ial parabolic bands (see Appendix 6.D). On top of that, the two-qubit
setup, in particular the transduction protocol in Sec. 6.4, provides a di-
rect experimental handle on chirality because the entanglement protocol
is unidirectional.

6.6 Conclusion

We have presented a two-layer setup where the FM bottom layer hosts a
chiral magnon mode with energy lying in the magnonic band gap. Cou-
pling spin qubits to the chiral magnon facilitates two different long range
qubit-qubit coupling protocols, both of which have beeen studied in de-
tail.

Two-qubit coupling can be mediated by virtual magnons. We found
that this protocol is efficient if the interlayer exchange interaction J⊥ is
antiferromagnetic. For 1µm qubit separation, 1 MHz coupling strength
has been found with a

√
SWAP gate fidelity up to 99.9%. We also pre-
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sented general analytical formulas for coupling of two-dimensional spin
qubits with chiral edge magnons that can be of great use trying to iden-
tify the optimal materials and dimensions for such a system.

Finally, we have investigated the magnon transduction protocol in
the ferromagnetic interlayer coupling regime. The coupling is highly fast
(∼ 1 GHz), owing to the excitation of a physical magnon. Even though
the mean-free path of the edge magnon seriously limits the fidelity of
such a two-qubit coupling, the transduction protocol can be used as an
experimental probe of the chirality of topological edge magnons.

6.A Conventions

In this appendix we guide the reader through the conventions we used
throughout the main text and give explicit formulas as examples. First
we define the Fourier transformation of an operatorO =

∑
iOi as follows

Ok ≡
1√
N

N∑
i=1

e−ikriOi. (6.33)

For the bosonic creation and annihilation operators, this convention re-
sults in

ak ≡
1√
N

N∑
i=1

e−ikriai, (6.34a)

a†k ≡
1√
N

N∑
i=1

eikria†i = (ak)
† , (6.34b)

where the corresponding commutation relation is [ak, a
†
k′ ] = δkk′ . For the

Fourier transformation of the FM spin operators in the x direction this
leads to

S+
i ≈

√
2S

Nx

∑
kx

eikxxi

4Ny∑
n=1

ϕµikx,n(yi)akx,n , (6.35a)

S−i ≈
√

2S

Nx

∑
kx

eikxxi

4Ny∑
n=1

[
ϕµi−kx,n(yi)

]∗
a†−kx,n . (6.35b)

where we have performed a transformation from the band index n to the
index pair (yi, µ) as well, with yi being the armchair unit cell index, and
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µ is the index within the unit cell. Furthermore, the transformed spin
operators can be expressed with the Holstein-Primakoff bosons as

S+
kx,n
≈
√

2Sakx,n , (6.36a)

S−kx,n ≈
√

2Sa†−kx,n . (6.36b)

Consequently, the time evolution of the transformed spin operators reads
as

S+
kx,n

(t) ≈ e−iεkx,ntS+
kx,n

, (6.37a)

S−kx,n(t) ≈ eiε−kx,ntS−kx,n , (6.37b)

where we point out that S+
kx,n

(t) = [S−−kx,n(t)]†.
We define the susceptibility of the transformed spin operators as

χ⊥nm(t, kx) ≡ −iθ(t)δnm〈[S−−kx,n(t), S+
kx,n

]〉
= iθ(t)2Sδnme

iεkx,nt ,
(6.38)

where we used the time evolution of the spin operators in Eq. (6.37).
Furthermore, in frequency space the susceptibility assumes the form

χ⊥nm(ω, kx) =

∫ ∞
−∞

dt e−iωt−ηtχ⊥nm(t, kx)

=
−2S~

εkx,n − ~ω + iη
δnm ,

(6.39)

where one can substitute the linewidth as η → αGεkx,n in the case of
Gilbert damping.

6.B Effective qubit-magnon coupling:
analytical formulas

Assuming a general, non-local coupling between the qubit and the ferro-
magnet spins, the interaction Hamiltonian can be written as Vp =

∑
i Si ·

M̂ (rp − ri)σp. Writing the convolution between the FM spins and the
coupling matrix M̂ in Fourier space, and expanding the coupling terms
to first order in magnon creation operators one obtains

Vp =
1

2

∑
kx,n

eikxxQD(S+
−kx,nM

−
kx,n

+ S−−kx,nM
+
kx,n

) · σp

+ µBSBeff · σp +O(S0) ,

(6.40)
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where Beff is the effective magnetic field of the FM ground state felt by
the qubit. The couplingsM±

kx,n
= Mx

kx,n
± iM y

kx,n
have three vector com-

ponents x, y, z and can be expressed with the real space coupling matrix
elements as

M−
kx,n

=
1√
Nx

∑
xi,yi

∑
µ

e−ikxxiϕµ−kx,n(yi)

×M−(xi + xµ, yi + yµ − yQD), (6.41)

M+
kx,n

=
1√
Nx

∑
xi,yi

∑
µ

e−ikxxi
[
ϕµkx,n(yi)

]∗
×M+(xi + xµ, yi + yµ − yQD), (6.42)

Beff =
∑
xi,yi

∑
µ

M z(xi + xµ, yi + yµ − yQD), (6.43)

provided that xQD is commensurate with the lattice and therefore, the
index xi can be shifted by xQD.

Assuming that the QD is very narrow, i.e., l2y � d2
y + d2

z, the QD is
subjected to a homogeneous magnetic field that is given by the dipole
field of the FM slab at its position. For the parameters used in the main
text ly ∼ dy, dz, but the approximation above can still be used to esti-
mate the contribution of the dipole-field to the qubit splitting as shown
in Fig. 6.4. The dipole-field of the FM ground state may be estimated by
that of a magnetized ribbon substitutingm1(r) = Θ(y)Θ(Ly − y)Sez into
Eq. (6.81), where Θ(y) is the Heaviside step function. The dipole field felt
by the qubit at a position r = (x, dy, dz) is then given by

µBB
x
eff = 0 , (6.44a)

µBB
y
eff = −µ0

4π

z0ggQDµ
2
B

axay

[
dz

d2
y + d2

z

− dz
(Ly+dy)2 + d2

z

]
, (6.44b)

µBB
z
eff = −J⊥ − µ0

4π

z0ggQDµ
2
B

axay

×
[
− dy
d2
y + d2

z

+
Ly+dy

(Ly+dy)2 + d2
z

]
, (6.44c)

where Ly = Nya, the magnetic moment density of the ribbon is given by
z0µ

2
B/axay (z0 = 4 is the number of spins in the FM unit cell), and we

included the exchange field as well in the last equation. The contribution
of the z-component of the dipole field is ∼ 0.6µeV for the parameters
presented in the main text, and therefore one might neglect it compared
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to the exchange field. We note that the g-tensor anisotropy in the QD
layer can be straightforwardly accounted for, by replacing gQDσ with ĝσ,
where ĝ is the g-tensor of the QD.

6.C Including spectral broadening in the
Schrieffer-Wolff transformation

In this appendix we revisit the formula for the second order Schrieffer-
Wolff transformation and show how spectral broadening can be included
in the subspace to be projected out. For simplicity, in this section we
consider a single qubit coupled to the magnons via the effective coupling
V of Eq. (6.40), but the calculations we provide here can be extended
straightforwardly to the two-qubit system. Starting from the definition
of Weff in the Fourier space given in Eq. (6.14) of the main text, assuming
that the linewidth broadening of the qubit is negligible compared to the
broadening of the magnons we get

Weff =
1

2~
∑
α,β

∞∫
−∞

dω

2π

〈0|FM

[
Vαβ(ω) |α〉 〈β| , V

]
|0〉FM

ω + iΓ[εαβ(ω)]
, (6.45)

where |α〉 , |β〉 are qubit basis states corresponding to the energies εα, εβ ,
respectively. The state |0〉FM is the vacuum of magnons and εαβ(ω) =
|~ω − (εα − εβ)| is the contribution of the magnons to the total excitation
energy ~ω. Furthermore, the relaxation rate Γ[ε] is the inverse lifetime of
the magnon.

Physically the motivation behind this substitution is the following:
the magnons are coupled to the phonons of the FM lattice and thereby
these modes are dressed. However, the qubits are coupled to each other
via the ”pure” magnon modes. Therefore, we need to account for the
indirect coupling of the two-qubit system to the phonons of the FM lattice
through the finite lifetime Γ[ε] of the magnons.

Rewriting the coupling V on the eigenbasis of each subsystems (e.g.,
the qubits and the ferromagnet) and substituting the corresponding time
dependence we get

Vαβ(t) =

√
S

2

∑
kx,n

[
eiεkx,nt/~a†kx,n(M+

kx,n
·σ)αβ

+e−iεkx,nt/~akx,n(M−
−kx,n ·σ)αβ

]
ei(εα−εβ)t/~.

(6.46)



CHAPTER 6. LONG-DISTANCE COUPLING OF SPIN QUBITS VIA
TOPOLOGICAL MAGNONS 252

Taking the Fourier transform in time leads to

Vαβ(ω) =
√

2Sπ~
∑
kx,n

[
(M+

kx,n
·σ)αβδ(∆αβ+εkx,n−~ω)a†kx,n

+(M−
−kx,n ·σ)αβδ(∆αβ−εkx,n−~ω)akx,n

]
,

(6.47)

with ∆αβ = εα − εβ . Substituting Vαβ(ω) into Eq. (6.45), one obtains

Weff =
S

4

∑
α,β

|α〉 〈β|
∑
kx,n

∑
γ

(M−
−kx,n ·σ)αγ(M

+
kx,n
·σ)γβ

×
(

1

∆αγ − εkx,n + i~Γ(εkx,n)
+

1

∆βγ − εkx,n − i~Γ(εkx,n)

)
,

(6.48)

that is the usual 2nd order perturbative formula extended with the linewidth
broadening of the intermediate state.

The range of validity can be determined from Eq. (6.48) by requiring
that the second order correction δεα = 〈α|Weff |α〉 to the qubit energy
level εα is much smaller than the orbital level splitting of the QD, as-
sumed to be ∆orb ∼ 10 meV, and the bandwidth of the respective magnonic
subband W ∝ JS ≈ 2 meV. In particular, we consider (i) the magnon
mode n that is closest to the qubit splitting; (ii) the transition α =↑ and
γ =↓, for which ∆↑↓ = ∆. We neglect transitions α = γ because there
are no resonant transitions for ∆αα = 0 due to the FM resonance gap
(εkx,n ≥ ∆F ). The correction to the qubit splitting due the magnon mode
n reads as

δ∆n =
Sax
16π

∫
dk |M++

kx,n
|2 ∆− εkx,n

(∆− εkx,n)2 + ~2Γ2(εkx,n)
, (6.49)

which we then rewrite in terms of the density of states ρn(ε) = dkx/dεkx,n
as

δ∆n =
Sax
16π

εmax∫
εmin

dε ρn(ε)
∑
γ

|M++
kε,n
|2 ∆− ε

(∆− ε)2 + ~2Γ2(ε)
, (6.50)

where the integration boundaries correspond to the lowest- and highest-
energy magnon state of εkx,n. We first consider the case, when the qubit
splitting is renormalized by a quadratic mode εkx,n = ε0 +Dxk

2
x with the

density of states ρn(ε) = [4Dx(ε− ε0,n)]−1/2. We exploit that for long QDs
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the coupling can be estimated as |M++
kx,n
|2 ≈ |M++

0,n |2e−k
2
xl

2
x/2. Then, the

renormalization of the qubit splitting is given by

δ∆n ≈
Sax
16π
|M++

0,n |2
Dxl
−2
x∫

0

dε′
1

2
√
Dxε′

δ − ε′
(δ − ε′)2 + ~2Γ2

, (6.51)

where δ = ∆ − ε0,n and we have cut the frequency integral at Dxl
−2
x to

account for the decay of the coupling V in k-space and approximated
Γ(ε) with a constant linewidth Γ. First, we note that for Γ = 0 the above
integral diverges as 1/

√
δ near resonance. Evaluating the correction in

Eq. (6.51) for finite linewidth Γ and small detunings δ, we get

δ∆n ≈
S

32

|M++
0,n |2√

2Dxa−2
x ~Γ

[1 +O(δ/~Γ)] , (6.52)

where we omitted terms that are Γl2x/Dx and δl2x/Dx. Importantly, the
correction is no longer divergent on resonance, owing to the linewidth
that acts as a low-frequency cutoff in this case. For a very conservative
estimate we substitute |M++

kx,n
| ∼ µ0µ2B

a3
∼ 0.6µeV and the FM resonance

mode with Γ = αG∆F ∼ 5 neV that leads to δ∆n . 30 neV on resonance,
that is well within the ∼ 0.5 meV bandwidth of the respective magnon
mode. Moreover, we note that the density of states is not singular in the
2D limit (αGNy � 1) leading to even larger range of validity for the bulk
modes.

Now, we turn to the discussion of the chiral magnon mode εkx,e =
ε0 + vxkx that plays a central role in our work. Following similar consid-
erations as in Eq. (6.51) for the linear mode we get

δ∆e ≈
Sax

16πvx
|M++

0,e |2
vx/lx∫

−vx/lx

dε′
δ − ε′

(δ − ε′)2 + ~2Γ2
, (6.53)

where we get a finite contribution even for Γ = 0. In fact for δ = 0, the
correction is δ∆e = 0 in Eq. (6.53) because the spectrum is symmetric
around the qubit splitting leading to no renormalization of the excited
qubit state. However, note that the upper (ε > ∆) and the lower (ε < ∆)
parts of the integral are both logarithmically divergent if Γ = 0. Taking
the contribution of the magnon modes above resonance (ε > ∆) into
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consideration we get

δ∆e,ε>∆ ≈
Sax

16πvx
|M++

0,e |2
vx/lx∫
0

dε′
δ − ε′

(δ − ε′)2 + ~2Γ2

≈ − Sax
32πvx

|M++
0,e |2

[
log

(
1 +

v2
x

~2Γ2l2x

)
+O(lxδ/vx)

]
,

(6.54)

where we assume δ = 0 to arrive at the second line. In a very pessimistic
estimate we might replace the logarithm with −2 logαG ≈ 18, which
leads to δ∆e,ε>∆ ∼ 10−2 neV for |M++

0,e | ∼ 100 neV and the parameters
used in the main text. This qubit splitting correction is several orders of
magnitude smaller than the bandwidth of the chiral mode.

6.D Effective qubit-qubit coupling

Here, we show first how to obtain Eq. (6.15) of the main text and the
analytical formulas for linear and quadratic magnon modes in the subse-
quent subsections. To this we use the real time expression forWeff defined
in Eq. (6.13) and the coupling V defined in Eq. (6.40) in the Heisenberg
representation as

Ṽ (t) =
1

2

∑
p∈{1,2}

∑
kx,n

eikxxp(eiεkx,ntS+
−kx,nM

−
kx,n

+ e−iε−kx,ntS−−kx,nM
+
kx,n

) · σp(t),
(6.55)

where we dropped terms of O(S0), furthermore σ±(t) = e±i∆tσ± and
σz(t) = σz. Using Eqs. (6.38) and (6.39), we can identify the susceptibility
in each terms of the coupling in the form of χ⊥nn(ω, kx) = i

~

∫∞
0
dt e−i(ω−εkx,n)t−ηt.

As it is shown in App. 6.C, the linewidth η can be replaced by the Gilbert
damping ~Γ(εkx,n) = αGεkx,n. Finally, we get

Weff =
1

8

∑
p,q

∑
kx,n

eikxxpqM−
−kx,n · σq

×
{

1
2
M++

kx,n
σ−p χ

⊥
nn(∆/~, kx) + 1

2
M+−

kx,n
σ+
p χ
⊥
nn(−∆/~, kx)

+M+z
kx,n

σzpχ
⊥
nn(0, kx)

}
+ h.c.,

(6.56)

where xpq = xp− xq. Dropping the off-resonant terms χ⊥nn(−∆/~, kx) and
χ⊥nn(0, kx) and expanding M−

−kx,n · σq leads to Eq. (6.15). For ferromag-
netic interlayer coupling, i.e., J⊥ > 0 (that is ∆ < 0), the χ⊥nn(−∆/~, kx)
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term becomes the resonant contribution. In this latter case the leading
contribution to the coupling would be ∝ |M+−|2 that is of the same or-
der as the magnon-induced relaxation rate in the ferromagnetic coupling
case [see Eq. (6.68)]. This is a reason why in our work we focus on the
antiferromagnetic interlayer coupling.

We note that the off-resonant terms cannot be dropped for the qubit
splitting corrections [i.e., the p = q terms in Eq. (6.56)]. Considering
∆ ≈ ε0, where ε0 is the energy of the chiral mode at kx = 0, the res-
onant term gives a contribution on the order of the coupling strength
(∼ 1 neV), and the χ⊥nn(0, kx) term is expected to be even smaller. The
contribution of χ⊥nn(−∆/~, kx) on the other hand contains terms of the
order of |M+−|2/(2∆) (second order in exchange) that are orders of mag-
nitude stronger than the formers, i.e., |M+−| ∼ 100µeV, leading to a dy-
namical contribution to the effective field of the order of 1µeV. Since this
contribution is still a small corrections to the static exchange field one can
simply redefineBeff accordingly.

Linear spectrum

The chiral edge mode has a linear dispersion around kx ∼ 0 and it is
well separated in energy from the bulk modes. Therefore the main con-
tribution to the susceptibility at the corresponding energy range is given
by

χ⊥nn(∆/~, kx) ≈ −2S~
δne

vx(kx + iκ)− δ (6.57)

where δ = ∆ − ε0 and κ−1 ≈ vx
αG∆

is the mean free path of the chiral
magnon. The other chiral branch with opposite group velocity is local-
ized on the other edge of the sample and therefore is neglected in the
effective qubit-qubit coupling.

First we convert the sum over kx to an integral as

Wpq =
1

16

ax
2π

π/ax∫
−π/ax

dkx e
ikxxpqM++

kx,n
σ−p χ

⊥
ee(∆/~, kx)

×M−
−kx,n · σq + h.c.,

(6.58)

assuming that the sample is large enough, i.e., 2π/Lx → 0. If the inte-
gral is extended to infinity, i.e., ax → 0, it can be performed using the
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residue theorem. However, this approximation is only valid in the low-
energy limit, or in our specific case for |δ| � |vx/ax| ∼ JS, such that the
pole of the integrand remains at finite kx. The integral of interest can be
evaluated using residue theorem as

−Sax
π

∞∫
−∞

dkx
eikxxij

vx(kx + iκ)− δ f(kx)

= Θ(−vxxij)
2iSax
|vx|

eik0xij−|κxij |f(k0 − iκ) ,

(6.59)

where k0 = δ/vx, Furthermore, we have assumed that f(kx) is a holomor-
phic function and the contribution of the upper arc goes to zero if the
contour is extended to infinity. Thus, for the two-qubit couplings (p 6= q)
we have

W12 +W21 =
iSax
8|vx|

e−|κ|dM++
k0,n
M−
−k0,n

×
[
Θ(vx)e

−ik0dσ−1 σ2 + Θ(−vx)eik0dσ−2 σ1

]
+ h.c., (6.60)

which can be rewritten as

W12 +W21 =
iSax
16|vx|

e−|κ|d(M++
k0,n

M−+
−k0,ne

−i|k0|dσ−1 σ
−
2

+ sgn(vx)|M++
k0,n
|2e−ik0dσ−1 σ+

2 +M++
k0,n

M−z
−k0,n

× e−i|k0|d(Θ(vx)σ
−
1 σ

z
2 + Θ(−vx)σz1σ−2 ) + h.c. (6.61)

The individual two-qubit matrix elements can be read off directly to ob-
tain Eq. (6.19) of the main text.

Quadratic spectrum

Similarly to the case of the chiral edge magnon, we can discuss the effect
of a topologically trivial magnonic mode that is localized at the edge of
the FM. To this, we assume that the energy of the trivial mode εkx,e =
ε0 + Dxk

2
x is well separated from the two bulk bands and therefore the

single mode approximation is adequate. The effective interaction matrix
elements then read as

〈01|W12 |10〉 ≈ − Sax
Dx

Re
[
e−K|d|

K

]
|M++
−K,e|2 , (6.62a)
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Figure 6.7: Real and imaginary parts of the complex wave number K =

D
−1/2
x

√−δ + iαG∆, describing the decay and the period of the oscillations
in the effective coupling of Eq. (6.62), respectively.

〈11|W12 |00〉 ≈ − Sax
DxK

e−K|d|M++
−K,e(M

+−
−K,e)

∗ , (6.62b)

〈10|W12 |00〉 ≈ − Sax
DxK

e−K|d|M++
−K,e(M

+z
−K,e)

∗ , (6.62c)

〈01|W12 |00〉 = 〈10|W12 |00〉 , (6.62d)

where K = D
−1/2
x

√−δ + iαG∆ is a complex wave number, the real and
imaginary parts of which describe the decay and the oscillations of the
effective couplings, respectively. In Fig. 6.7, the real and imaginary parts
of K are shown as a function of the detuning, δ. We see that below res-
onance (δ < 0) the real part of K is large and positive, leading to fast
decay of the effective couplings in Eq. (6.62) as a function of qubit-qubit
distance d, whereas the imaginary part becomes larger above resonance
(δ > 0) leading mostly to oscillations in the coupling strength.

Furthermore we note that the formulas above are only valid for |K| �
π/ax, or equivalently δ � Dx/a

2
x ∼ JS. Therefore in the case of the bulk

modes (harmonic spectrum) the exponential decay in the coupling is only
valid close enough to the corresponding resonance. Consequently, the
finite coupling in the middle of the gap is not captured by these analytic
formulas.
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6.E Decoherence

In this section we show how to relate the transversal SV − and longitu-
dinal SV z qubit noise spectra to the transversal noise spectrum of the
magnons. The transversal noise spectrum of magnons is defined as

S⊥kx,n(ω) ≡
∞∫

−∞

dt e−iωt〈{S−−kx,n(t), S+
kx,n
}〉 , (6.63)

substituting the time dependence of the FM spin operators in Eq. (6.37)
the integral can be evaluated as

S⊥kx,n(ω) = 2π~δ(~ω − εkx,n)〈{S−−kx,n, S
+
kx,n
}〉 , (6.64)

where we can replace 2π~δ(~ω − εkx,n) by 1
S

Im[χ⊥nn(ω, kx)] in the dissipa-
tive case. Furthermore, using the time dependence of the FM spin oper-
ators in Eq. (6.37) and substituting it into Eq. (6.63), one can easily show
that

S⊥kx,n(−ω) =

∞∫
−∞

dt e−iωt〈{S+
kx,n

(t), S−−kx,n}〉 . (6.65)

Exploiting the commutation relations between the magnon creation and
annihilation operators one obtains

S⊥kx,n(ω) = Im[χ⊥nn(ω, kx)] coth(βεkx,n/2) , (6.66)

as stated in the main text. We note that this is just a form of the well-
known fluctuation-dissipation theorem.

Writing down the transversal qubit noise spectrum according to its
definition as SV −(ω) =

∫
dt
{

[V −(t)]†, V −(0)
}

e−iωt, where V − is the term
multiplying σ+

p in Eq. (6.40), leads to

SV −(ω) =
1

4

∑
kx,n

∞∫
−∞

dt e−iωt
[
|M++

kx,n
|2〈{S−−kx,n, S

+
kx,n
}〉

+|M−+
kx,n
|2〈{S+

kx,n
(t), S−−kx,n}〉

]
,

(6.67)
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where we exploited that 〈{S−−kx,n, S
+
k′x,n

′}〉 ∝ δkx,k′xδnn′ . In the equation
above, the perpendicular magnon noise spectum appears in the form of
Eqs. (6.63) and (6.65). Finally we get

SV −(ω) =
1

4

∑
kx,n

coth(βεkx,n/2)
[
|M++

kx,n
|2Im[χ⊥nn(ω, kx)]

+|M−+
kx,n
|2Im[χ⊥nn(−ω, kx)]

]
, (6.68)

where the second term can be dropped for ω = ∆/~ as it is strongly
suppressed even in the dissipative case. An analogous derivation leads
to the longitudinal qubit noise spectrum as

SV z(ω) =
∑
kx,n

coth(βεkx,n/2)|M+z
kx,n
|2

×
[
Im[χ⊥nn(ω, kx)] + Im[χ⊥nn(−ω, kx)]

]
.

(6.69)

Afterwards, the noise power spectra obtained in Eqs. (6.68) and (6.69)
can be used to obtain the decoherence rates in Bloch-Redfield approxi-
mation as

Γ1 = 1
4~2SV −(∆/~) , (6.70a)

Γ∗2 = 1
4~2SV z(0) , (6.70b)

where Γ1 is the qubit relaxation rate and Γ∗2 is called pure dephasing.

Decoherence due to a quadratic magnon mode

In the main text we focused on the decoherence rates due to the resonant
interaction with the chiral magnon mode. Here we provide analogous
formulas for the case of a quadratic mode, e.g., a bulk mode or a topolog-
ically trivial edge mode. We start the discussion with the non-dissipative
limit αG = 0, where the noise spectrum of the edge mode assumes the
form S⊥kx,e(ω) ∝ δ(Dxk

2
x+ε0−~ω) [see Eq. (6.64)], and the decoherence

rates of Eqs. (6.70a)-(6.70b) become

Γ1 =Θ(δ)
Sax

2~Dxk0

(
|M++

k0,e
|2 + |M++

−k0,e|
2
)
, (6.71a)

Γ∗2 ∼ O(S0) , (6.71b)
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where we used Eqs. (6.68) and (6.69) and substituted them into Eqs. (6.70a)-
(6.70b). Furthermore, k0 =

√
δ/Dx and we assumed that the FM spec-

trum is gapped (e.g., via external magnetic field) and therefore S⊥kx,e(0) =
0. The divergent behaviour at k0 = 0 is due to the van Hove singularity
of the density of states that can be observed in Fig. 6.8.

In order to account for the effect of Gilbert damping we assume dy, dz �
lx and neglect the dependence of the coupling on kx except for the Gaus-
sian factor e−k2xl2x/2. In contrast to Eqs. (6.71a) and (6.71b), we consider the
imaginary part of the susceptibility with quadratic dispersion in Eq. (6.39)
with a finite linewidth η = αGεkx,e, the integral over momentum is exactly
solvable leading to

Γ1 =− Sax
~Dx

|M++
0,e |2 Im

[
eK

2l2x/2 Erfc(Klx√
2

)

K

]
, (6.72a)

Γ∗2 ≈
αG

2
√
π

ax
lx

|M−z
0,F |2

~∆F

(
1 +

DF

l2x∆F

)
, (6.72b)

where we listed the relaxation rate for a trivial edge mode, assuming
|M++

0,e |2 ∼ 100µeV for the coupling matrix element, and the dephasing
rate for the FM resonance mode. Furthermore, ∆F is the ferromagnetic
resonance energy and DF is the curvature of the lowest magnonic band

Figure 6.8: Relaxation rate Γ1 from Eq. (6.71a) plotted as a function de-
tuning δ. The relaxation is caused by to a trivial (1D) edge magnon for
Dx = 0.5 meV·nm2. The effect of the van Hove singularity at zero detun-
ing is smoothed out by the finite Gilbert damping.
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at kx = 0. Even though the damping smoothens out the divergence of the
density of states at resonance, the relaxation rate is still highly enhanced
(see Fig. 6.8) rendering the trivial edge mode unfavourable in practical
applications.

6.F Exchange interaction — Analytical
formulas

In this section we provide details of the direct exchange-induced FM-
QD coupling and derive the effective analytical formula presented in
Eq. (6.24) of the main text. Since the QD layer is adjacent to the FM layer,
the wavefunction of the particle on the QD can have a finite overlap with
the FM spins. In real space the interaction can be written as

−
∑
i,µ

Si,µ · Ĵi,µσ|ψ(ri + rµ − rQD)|2 . (6.73)

Assuming that the interlayer exchange interaction Ĵi is homogeneous
and isotropic with a strength of J⊥ and keeping the leading terms only
in the 1/S expansion we get

−SJ⊥σz +
1

4

∑
kx,n

(S+
−kx,nM

−+
kx,n

σ− + S−−kx,nM
+−
kx,n

σ+) . (6.74)

Here, the first term provides the effective magnetic field asBeff = − 1
µB
SJ⊥ez

as well as we get

M−+
kx,n

= −2J⊥
∑
i,µ

e−ikxxiϕµ−kx,n(yi)

× |ψ(xi + xµ, yi + yµ − yQD)|2.
(6.75)

In what follows, the QD wave function is assumed to be Gaussian in both
spatial directions, i.e.,

|ψ(xi + xµ, yi + yµ)|2 =
axay

4πlxly
e−(xi+x

µ)2l−2
x e−(yi+y

µ)2l−2
y . (6.76)

Next we derive the estimate for the coupling to the chiral edge mode
in the continuum approximation. To this end we convert the sum over x
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to an integral and evaluate it as

1√
πlx

∞∫
−∞

dx e−ikxxe−(x+xµ)2l−2
x = e−k

2
xl

2
x/4+ikxxµ . (6.77)

The coupling matrix element then reads as

M−+
kx,e
≈ − J⊥ay

2
√
πly

e−k
2
xl

2
x/4
∑
yi,µ

e−ikxx
µ

ϕµ−kx,e(yi)e
−(yi+y

µ−dy)2l−2
y . (6.78)

Next, we exploit that the edge state is well localized around yi ∼ 0 and
neglect xµ � lx and yµ � ly in the formulas to arrive at

M−+
kx,e
≈ − J⊥ay

2
√
πly

e−k
2
xl

2
x/4e−d

2
yl
−2
y

∑
yi,µ

ϕµ−kx,e(yi) . (6.79)

Finally, since kx . l−1
x � π/ax the last sum can be replaced by δµe leading

to Eq. (6.24) of the main text.
We can also account for the exponential envelope of the edge mode

and arrive at

M−+
kx,e
≈ −J

⊥ay
4λ

e−k
2
xl

2
x/4e−dy/λ+l2y/(4λ

2)
[
1 + erf

(
ly
2λ
− dy

ly

)]
. (6.80)

This approximation is necessary to capture the qualitative dependence
of the coupling for large dy due to the short-ranged nature of the direct
exchange interaction.

6.G Dipole-dipole interaction analytical
formulas

In this section we provide details of the dipole-induced FM-QD coupling
and derive the effective analytical formula presented in Eqs. (6.25) and
(6.26) of the main text. The dipole-dipole interaction between localized
magnetic moments reads as

Hd−d =− µ0

4π

3(m1 · r̂)(m2 · r̂)−m1 ·m2

|r1 − r2|3

+ µ0
2

3
m1 ·m2 δ(r1 − r2) ,

(6.81)
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where the magnetic moments are m1 = −µBgSi with Si being the FM
spin at position r1 and m2 = −µBgQD|ψ(r2)|2σ, and we define r̂ =
(r1 − r2)/|r1 − r2|. Using the wavefunction of the QD, ψ(x′, y′), given
in Eq. (6.76), the coupling between the QD and a lattice spin at position
(x, y) is given by

M−+(x, y) = −µ0µ
2
BggQD

4π

∑
x′,y′

|ψ(x′, y′)|2

× (x− x′)2 + (y − y′)2 − 2d2
z

[(x− x′)2 + (y − y′)2 + d2
z]

5/2
,

(6.82a)

M−−(x, y) = −µ0µ
2
BggQD

4π

∑
x′,y′

|ψ(x′, y′)|2

× 3[(x− x′)− i(y − y′)]2
[(x− x′)2 + (y − y′)2 + d2

z]
5/2

,

(6.82b)

M−z(x, y) = −µ0µ
2
BggQD

4π

∑
x′,y′

|ψ(x′, y′)|2

× 3[(x− x′)− i(y − y′)]dz
[(x− x′)2 + (y − y′)2 + d2

z]
5/2

,

(6.82c)

where dz is the distance between the QD and the FM planes. Further-
more we note that M+−(x, y) = M−+(x, y), M++(x, y) = [M−−(x, y)]∗,
and M+z(x, y) = [M−z(x, y)]∗.

Using the couplings in Eq. (6.82), we write the coupling of the QD to
a given magnon mode (kx, n) as

M−
kx,n

=
∑
i,µ

e−ikxxiϕµ−kx,n(yi)
∑
i′,µ′

|ψ(r′i + rµ
′
)|2

×D−(∆x,∆y, dz) ,

(6.83)

where we have used Eq. (6.41). Furthermore we defined

D−(∆x,∆y, dz) =− µ0µ
2
BggQD

4π(∆x2 + ∆y2 + d2
z)

5/2

×

∆x2 + ∆y2 − 2d2
z

3(∆x− i∆y)2

3(∆x+ i∆y)dz

 +
−
z
,

(6.84)
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with ∆x = xi − x′i + xµ − xµ
′ and ∆y = yi − y′i + yµ − yµ

′ . Note that
D− is not given in a vector form, but the first (second, third) element of
the column correspond to the D−+ (D−−, D−z) coupling elements. This
notation is emphasized next to the corresponding row.

In order to obtain the formulas for the edge mode in the continuum
approximation we convert the sums over x coordinates to integrals, switch
to the center-of-mass frame, and neglect xµ, xµ′ ∼ ax since the QD wave-
function changes slowly on this scale. Furthermore, we make use of
Eq. (6.77) to get ∑

xi,x′i

e−ikxxi |ψ(x′i)|2D−(∆x,∆y, dz)

= e−k
2
xl

2
x/4

1

ax

∞∫
−∞

dx e−ikxxD−(x,∆y, dz) ,

(6.85)

where the Fourier transformation of the D− is analytically solvable and
reads as

1

ax

∞∫
−∞

dx e−ikxxD−(x,∆y, dz) = −µ0µ
2
BggQD

4πax

×


−2

3
k2
xK0 + 2

3

∣∣∣ kxd⊥ ∣∣∣K1 + 2
3
k2x
d2⊥

(∆y2 − 2d2
z)K2

−2k2
xK0 + 2

∣∣∣ kxd⊥ ∣∣∣ (1− 2kx∆y)K1 + 2
3
k2x∆y2

d2⊥
K2

−2idz

(∣∣∣ kxd⊥ ∣∣∣ kxK1 + k2x
d2⊥

∆yK2

)


+
−
z
,

(6.86)

with Kn ≡ Kn(|kx|d⊥) being the nth modified Bessel functions of the
second kind, and d⊥ =

√
∆y2 + d2

z.
From this point onwards, we will be focusing on the kx ∼ 0 case since

lx � dy, dz, ly. In this case, Eq. (6.86) for kx = 0 simplifies to

1

ax

∞∫
−∞

dxD−(x,∆y, dz) =
µ0µ

2
BggQD

2πaxd4
⊥

d2
z −∆y2

∆y2 − d2
z

2i∆ydz

 +
−
z
. (6.87)
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Figure 6.9: (a) Real and (b) imaginary part of the function I(x) in
Eq. (6.90) with x = (idy − dz)/ly. These functions determine the depen-
dence of the dipolar FM-QD coupling of Eq. (6.89) on the relative length
scales dy/ly and dz/ly.

Assuming yi, y′i � ly we substitute Eq. (6.87) back into Eq. (6.83) to get

M−
kx∼0,e =

µ0µ
2
BggQD

2πax
e−k

2
xl

2
x/4
∑
yi,µ

ϕµ0,e(yi)

× ay√
πly

∑
y′i

e−(y′i−d2y)l−2
y 1

d4⊥

d2
z −∆y2

∆y2 − d2
z

2i∆ydz

 +
−
z
.

(6.88)

Once again we assume that the edge mode is well localized around yi ∼ 0
and therefore ∆y = y′i. Then the sum over y′i can be converted to an
integral and coupling acquires its final form

M−
kx∼0,e =

µ0µ
2
BggQD

πaxl2y
e−k

2
xl

2
x/4δµe

×

 1 +
√
πRe[xex

2
(1 + erf(x))]

−1−√πRe[xex
2
(1 + erf(x))]

−i√πIm[xex
2
(1 + erf(x))]

 +
−
z
,

(6.89)

where x = (idy − dz)/ly and the formula is valid for k−1
x � ly, dy, dz, if

the QD covers several lattice sites i.e., lx, ly � a and the edge mode is
very well localized e.g., ly � λ. Furthermore we note that for dz . a
the coupling starts to depend on the lattice structure rµ that we have
neglected in the calculation above. Finally, we introduce the complex
function

I(x) = 1 +
√
πxex

2

[1 + erf(x)] , (6.90)
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in order to simplify the formula for the dipole interaction-induced cou-
plings M−+

0,e , M−−
0,e , and M−z

0,e in Eq. (6.25) of the main text. The real and
imaginary parts of I(x) determine the dependence of the coupling ma-
trix elements M−

0,e on the relative length scale x = (idy − dz)/ly. This
functional dependence is shown in Fig. 6.9.

Lastly, we show the derivation of the dipole coupling to the FM res-
onance mode deep in the bulk, where the magnonic eigenmodes can be
labelled by the quantum numbers kx and ky. The final result for this cou-
pling has been shown in Eq. (6.26) of the main text. Starting from

M−z
kx,ky

=
∑
xi,yi

e−ikxxi−ikyyi
∑
i′,µ′

|ψ(r′i + rµ
′
)|2

×D−z(∆x,∆y, dz) ,
(6.91)

we separate center-of-mass and relative coordinates obtaining the Gaus-
sian factors e−k2xl2x/4e−k2yl2y/4 from the center-of-mass integrals. Consider-
ing kx = 0 in the relative coordinates we are left with the integral

1

axay

∫
dxdy e−ikyyD−z(x, y, dz) =

µ0µ
2
BggQD

2axay
e−|ky |dzky , (6.92)

which together with the Gaussian factors yield Eq. (6.26). Finally we note
that the g-tensor anisotropy in the QD layer can be taken into account as
in Eq. (6.44) for the dipole field, by replacing gQDσ with ĝσ, where ĝ is
the g-tensor of the QD.
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