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Abstract

Stefan Niklaus HEINEN

Quantum Machine Learning Applied to Chemical Reaction Space

The scope of this thesis is the application of quantum machine learning (QML)
methods to problems in quantum chemistry and chemical compound space, espe-
cially chemical reactions.

First, QML models were introduced to improve job scheduling of quantum chem-
istry tasks on small university and large super computing clusters. Using QML
based wall time predictions to optimally distribute the workload on a cluster re-
sulted in a significant reduction of the time to solution by up to 90% depending on
the type of calculation studied: Ranging from single point calculations, over geom-
etry optimizations, to transition state searches on a variety of levels of theory and
basis sets.

The main focus of this thesis remains with the navigation through the chemical re-
action space using QML models. To train and test these models large, consistent,
and carefully evaluated data sets are required. While extensive data sets with ex-
perimental results are available, consistent quantum chemical data sets, especially
for reactions, are rare in literature. Thus, a dataset for two competing text book re-
actions E2 and SN2 was generated, reporting thousands of reactant complexes and
transition states with different nucleophiles (- H−, - F−, - Cl−, - Br−), leaving groups
(- F, - Cl, - Br), and functional groups (- H, - NO2, - CN, - CH3, - NH2) on an ethane
scaffold. The geometries were obtained on the MP2/6-311G(d) level of theory with
subsequent DF-LCCSD/cc-pVTZ single point calculation.

However, limited by computational resources, the data set was incomplete. There-
fore, reactant to barrier (R2B) machine learning models were introduced to support
the data generation and complete the dateset by predicting∼11’000 activation barri-
ers solely using the reactant geometry as input. Using R2B predictions, design rules
for chemical reaction channels were derived by constructing decision trees. Further-
more, Hammond’s postulate was investigated, showing the limits for its application
on reactants far away from the transition state, e.g. conformers.

Finally, the geometry relaxation and transition state search solely using machine
learned energies and forces was investigated. Trained on 200 reactions, the QML
model was able to find 300 transition states, reaching out of sample RMSD of 0.14Å
and 0.4Å for reactant geometries and transition states, respectively. Although, rela-
tively large RMSD for the geometries remain, the out of sample MAE of 26.06cm−1

for the transition state frequencies show a well described curvature of the transition
state normal modes in agreement with the MP2 reference.
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Chapter 1

Introduction

1.1 Motivation

Computational chemistry, in addition to experimental work, allows for fast and de-
terministic results delivering insights in chemical reactions. As an example, Merkel
et al. in 1988[5] studied the SN2 reaction for a simple system (H− + CH3F → F− +
CH4) on MP2/6-311G** level of theory, giving insights in transition state geometries
as well as rate constants.

With expanding compute resources (Moore’s law[6]), more and larger systems could
be studied. Even though, quantum chemical calculations allow for fast insights in
chemistry, the more accurate methods are used, the more expensive the calculations
will get. Hence, there is always a trade-off between accuracy and speed. Here,
machine learning offers a solution, which keeps the accuracy of high level quantum
chemical calculation but delivers the results (predictions) in milliseconds. Although,
chemical space is immense[7], there are many redundancies in molecular structures.
This fact is used by machine learning models, which infer data between molecules
close in representation space, allowing to circumvent expensive quantum chemical
calculations for an entire data set and deliver fast and accurate predictions through-
out chemical compound space given a training set.

In 1988, the computational resources were 10−3 peta FLOPS (top 500 super computers[8]),
which limited the study of reactions to a few dozens at most, as shown by Merkel
et. al.[5]. Today these resources grew to 103 peta FLOPS and allow for the genera-
tion of large, consistent data sets, studying the same reaction but adding multiple
functional groups, different leaving, as well as attacking groups, and therefore ex-
panding the chemical space on a similar level (MP2/6-311G(d)). Figure 1.1 sets the
computational resources from the 1990’s and the 2020’s into contrast. Going from
the analysis of few transition states (a), to thousands of transition state geometries
(c), and from a few rate constants (b) towards 15’000 activation barriers (d) allowing
for a much broader and more systematic insight into the chemical reaction space.

1.2 Overview

Up to now, the main focus in machine learning was to develop reaction predictors,
artificial neural networks (ANN) using experimental but energy free data to predict
the outcome of a reaction, or the optimal reaction path for a given product[9–15].
Only a few quantum reaction data sets are available[16,17], therefore the focus of this
thesis was to generate a quantum chemical data set (Chapter 5), the use of machine
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FIGURE 1.1: Development of computational resources and machine
learning then and now. left: Merkel et. al.[5] in 1988 vs. right: in the
year 2020. a) fictitious figure of a transition state in[5], b) Scheme of an
activation barrier, c) Picture from Chapter 5 showing 2’466 transition
state geometries projected into the xy plane, and d) summary of 7’500

differences in activation energies (Chapter 6)

learning models to support the data generation (Chapter 6), as well as the analysis
of quantum chemical data sets, using machine learning techniques (Chapter 6 & 7).

This thesis walks the reader through the entire process of quantum machine learn-
ing. The workflow for quantum machine learning is shown in Figure 1.2 with the
insets being representative equations of Chapters 2-4 and the introduction figures of
Chapters 5-7.

This thesis starts with a brief introduction to quantum chemistry (Chapter 2), fol-
lowed by an introduction to machine learning, in particular kernel ridge regression
(KRR) in Chapter 3.

Having the tools for quantum chemical calculations and machine learning, Chap-
ters 4 and 5 deal with the generation of the data set. Chapter 4 is devoted to the
optimization of scheduling in high performance compute (HPC) centers for differ-
ent quantum chemical methods on different levels of theory and basis sets. The
generation of the E2 vs. SN2 data set using quantum chemical calculations yield-
ing thousands of reactant complexes and transition states is described in Chapter 5.
Also, ∆-machine learning models[18] were applied to obtain reaction barriers on cou-
pled cluster level of theory. Both reactions, E2 and SN2, have a common reactant, an
ethane scaffold which was substituted by various functional groups, leaving groups,
and nucleophiles.

Chapter 6 introduces the reactant to barrier (R2B) machine learning model, which
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solely depends on the reactant geometry and after training, predicts activation barri-
ers. Using the R2B model, the data set from Chapter 5 was completed with ∼11’000
activation barrier predictions and subsequently analysed. Using this data, support-
ing experimental reaction design was possible by constructing decision trees. Also,
learning key geometrical parameters, Hammond’s postulate was studied and its lim-
itations for the E2 reaction were shown.

Chapter 7 addresses the geometry optimization and transition state search using the
operator quantum machine learning approach[19,20]. Using the atomic simulation
environment (ASE) LBFGS optimizer or gaussian09 QST2 optimizer with predicted
forces and energies, allowed fast and accurate screening of the chemical reaction
space of the constitutional isomers of QM9 and the SN2 reaction, for geometry opti-
mizations or transition state searches, respectively.

The supplementary information of chapter 4, 6, and 7 can be found in the Appen-
dices B, C, and D, respectively.
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FIGURE 1.2: Schematic overview of the Machine Learning work flow,
starting from the left 1) High performance Computing and 2) Data
Set Generation, towards the middle with Quantum Machine Learn-
ing, which takes geometries as input and returns Energies (top) and
Energies and forces (bottom), to the right 3) Learning activation barri-
ers from reactant geometries only and 4) Geometry optimization and

transition state search using machine learned energies and forces..
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Chapter 2

Quantum Chemistry

This chapter relies on the books of Levin[21], Szabo and Ostlund[22], and Steinhauser[23].

2.1 Introduction

The development of quantum mechanics began in the 1900 when the lower frequen-
cies of the black body radiation were investigated and became experimentally avail-
able. This lead to the failing of classical mechanics, in particular Wien’s formula[24],
to describe the low frequency area in black body radiation:

I =
aν3

ebν/T (2.1)

where a an b are empirical constants and ν is the energy frequency. In the low fre-
quency area the classical description of continuous energy levels failed. Max Planck
proposed a new formula which also describes the low frequency area accurately:

I =
aν3

ebν/T − 1
(2.2)

This lead Planck to believe that electromagnetic radiation can only be absorbed or
emitted in discrete packets, meaning it is restricted to whole numbers. These whole
numbers are multiples of hν with h ≈ 6.626× 10−34 J ·Hz−1 being Planck’s constant
which he found by fitting the experimental black body curve. Thus the energy of
each packet is quantized.

In 1905 Einstein proposed a solution to the problem of the photo electric effect in
his “quantum paper”[25] by assuming the light being composed of particles (pho-
tons) with each photon having the energy:

Ephoton = hν (2.3)

This is in agreement with the observation that the kinetic energy of an emitted
electron is independent of light’s intensity but increases as the light’s frequency in-
creases. This behaviour was contradictory to what was expected from a wave like
character in classical mechanics. The correct description of the photo electric effect
later lead to the nobel prize in physics for Einstein.

These two applications of the quantization of the energy lead, in the early 1920s,
to many contributions in the field of quantum mechanics, such as the work by Born
“Zur Quantenmechanik”[26,27], by DeBroglie “Welle-Teilchen Dualismus”[28], in 1927
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Heisenberg’s uncertainty principle[29], and many more[30]. In 1926 Schrödinger in-
troduced the wave mechanics and the famous Schrödinger equation (SDE)[31].

This chapter gives an introduction to the SDE and covers the different methods used
in quantum chemistry to solve the SDE starting from the Hartree-Fock approach,
over the post Hartree-Fock methods adding electron correlation (MP2, CC, CI), as
well as the density functional theory (DFT).

2.2 The Schrödinger Equation

The Schrödinger equation is possibly the most important equation in quantum chem-
istry:

ih̄
∂

∂t
Ψ(r, R, t) =

[
− h̄2

2m
∂2

∂r2 +− h̄2

2m
∂2

∂R2 + V(r, R, t)

]
= ĤΨ(r, t) (2.4)

where Ψ(r, R, t) is the wave function which depends on the position of the electrons
r, the positions of the nuclei R, the time t and Ĥ is the Hamilton operator. In general,
the time independent SDE is used in quantum chemistry. The wave function can
be written as a product of two functions, one depending on the coordinates and the
other depending on the time using following product Ansatz:

Ψ(r, R, t) = ψ(r, R) · f (t) (2.5)

which leads to following expression of the time independent SDE (the derivation
can be found in Appendix A):

Ĥψ(r, R) = Eψ(r, R) (2.6)

where Ĥ is the Hamilton operator:

Ĥ =
n

∑
i=1

1
2
∇2

i︸ ︷︷ ︸
T̂e

−
M

∑
I=1

1
2MI
∇2

I︸ ︷︷ ︸
T̂N

+
n

∑
i<j

1
rij︸ ︷︷ ︸

V̂ee

+
M

∑
I<J

ZI ZJ

RI J︸ ︷︷ ︸
V̂NN

−
n,M

∑
i,I

ZI

riI︸ ︷︷ ︸
V̂e N

(2.7)

Here atomic units were used (derivation can be found in Appendix A), where i and I
represent the electrons and nuclei, respectively. The number of electrons and nuclei
are denoted as n and M. The first two terms are the kinetic operators of the elec-
trons and the nuclei T̂e and T̂N , respectively. The last three terms are the potential
energy operators between the electrons V̂ee, the nuclei V̂NN , and between electrons
and nuclei V̂eN . The Hamilton operator can thus be written in a more compact form:

Ĥ = T̂e(r) + T̂N(R) + V̂ee(r) + V̂NN(R) + V̂eN(r, R) (2.8)

Since the nuclei are three orders of magnitude heavier than the electrons, the move-
ment between these particles can be separated with the Born Oppenheimer approx-
imation using the wave function product Ansatz:

Ψ({ri}, {RI}) ≈ χn({RI}) · ψ{RI}
el,n ({ri}) (2.9)

The derivation can be found in Appendix A. This leads to the electronic wave func-
tion, which is commonly used in quantum chemistry to calculate the energy of a
system of a given geometry:

Ĥel(ri)ψ
{RI}
el,n ({ri}) = Eelψ

{RI}
el,n ({ri}) (2.10)
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with the electronic hamilton operator:

Ĥel = T̂e(r) + V̂ee(r) + V̂ext(r) (2.11)

The external potential (V̂ext) is the interaction between the electrons and the nuclei
whose positions RI enter parametrically in the equation. For every position of the
nuclei, the electronic energy can be calculated resulting in the potential energy sur-
face of a molecule Eel(R). However, the SDE can only be solved analytically for the
Hydrogen atom. For polyelectronic atoms or molecules the solution of the high di-
mensional SDE is only available using numerical methods. In the following sections
the most common methods are introduced.

2.3 Hartree Fock

The hamilton operator (equation 2.8) can be divided into one electron operators ĥ(i)
and two electron operators v̂(i, j), with i and j being the electron indices.

ĥ(i) = −1
2
∇2

i −
M

∑
I=1

ZI

riI
and v̂(i, j) =

1
rij

(2.12)

using these two simplifications we can write the hamilton operator from equation
2.8 as follows:

Ĥel =
n

∑
i=1

ĥ(i) +
n

∑
i=1

n

∑
j>i

v̂(i, j) + V̂NN (2.13)

The main approximation in the HF method is the assumption that the electrons do
only interact with each other on a mean filed approach (V̂ee = 0). Therefore, the
wave function can be written as a product of one electron orbitals φi(i) using a Slater
determinant ΦHF(1, 2, ..., n):

ΦHF(1, 2, ..., n) = (n!)−
1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(1) φ2(1) . . . φn(1)

φ1(2) φ2(2) . . . φn(2)
...

...
. . .

...

φ1(n) φ2(n) . . . φn(n)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.14)

where all n electrons are distributed over all (n!) orbitals φn. In contrary to the
Hartree Product, the Slater determinant accounts for the Pauli principle[32], where
a system of electrons is described by an antisymmetric wave function. To obtain the
Slater determinant with the lowest energy, the variational method[33] is used. Af-
ter some mathematical transformations (which are omitted here), the Hartree-Fock
eigenvalue equation can be written as:

ĥ(i)φi +
n

∑
i=1
〈φi|r−1

ij |φi〉︸ ︷︷ ︸
Ĵ

φi −
n

∑
i=1
〈φi|r−1

ij |φj〉︸ ︷︷ ︸
K̂

φi =
n

∑
i=1

εijφi(i) (2.15)

where εij is the energy eigenvalue of the orbital φi, Ĵ the coulomb operator, and K̂
the exchange operator. Defining the Fock-operator f̂ = ĥi + ∑n

i=1 Ĵi − ∑n
i=1 K̂i the

eigenvalue equation can be written as:

f̂ |φi〉 = εi|φi〉 (2.16)
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The Hartree-Fock equation (2.16) can be solved numerically. However, this is ex-
tremly time intensive and therefore not practical. To circumwent this problem Roothaan
and Hall introduced the basis set approach, where the HF wave function ΦHF is ap-
proximated with a basis set expansion:

|ΦHF〉 =
K

∑
k=1

cki|ψi〉 (2.17)

using the local combination of atomic orbital (LCAO) approach, every cik of a molec-
ular orbital would be the coefficient for an atomic orbital ψi. A summary of different
basis sets can be found in this review[34]. Using equation 2.17 and multiplying with
〈ψi|, the HF equation (2.16) can then be rewritten as:

K

∑
k=1

cki〈ψi| f̂ |ψi〉 = εi

K

∑
k=1

cki〈ψk|ψi〉 (2.18)

These k equations can now be summarized in a matrix form leading to the Roothaan-
Hall equation:

FC = SCε (2.19)

where F is the fock matrix with matrix element Fki = 〈ψk| f̂ |ψi〉, S is the overlap
matrix with matrix element Ski = 〈ψk|ψi〉, C is the coefficient matrix, and ε is the
eigenvalue diagonal matrix. This matrix equation can now be solved iteratively us-
ing the self-consistent-field (SCF) method: Figure 2.1 shows a flow chart with the
working principle of the Hartree-Fock self-consistent-field method. The individuall
steps are listed below:

1. Choose a basis function ψi and calculate the integrals ĥ, Ĵ, K̂, and Ŝ.

2. Use an initial guess for the coefficients cki and calculate the Fock matrix.

3. Solve the Roothaan-Hall equation (2.19).

4. Check for convergence.

5. If converged→ calculate molecular properties

6. If not converged→ go back to step 3 using the newly acquired coefficients cki
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Molecular
coordinates "RI"

choose basis
function "ψi"

Compute integrals
"ĥ", " Ĵ", "K̂", "Ŝ"

Initial guess of
coefficients "cki"

Calculate Fock
matrix "Fki"

Solve Roothaan
equation for "cki"

SCF con-
verged?

Calculate
properties

Use new coef-
ficients "cki"yes

no

FIGURE 2.1: Flow chart showing the working principle of the self
consistent filed method to solve the Roothaan-Haal equation.

2.4 Electron Correlation

Since HF does not consider electron correlation effects, significant errors can emerge
from such approximations. Therefore, multiple post HF methods were developed
to introduce electron correlation. The introduction of electron correlation improves
the accuracy of QM calculations but also comes with a trade-off, namely the time to
solution scales exponentially w.r.t. the number of electrons. In the following sections
the four most common electron correlation methods are briefly discussed: The three
post Hartree-Fock methods: The Møller-Plesset perturbation theory (MP2), the cou-
pled cluster (CC) method, the configuration interaction (CI) method, as well as the
density functional theory (DFT).

2.4.1 Post Hartree-Fock methods

Møller-Plesset perturbation theory:
In perturbation theory, a problem is solved by taking an already known solution of
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a related and simpler problem (the unperturbed system). Then treating the prob-
lem to be solved with a power series approach. The first term is the solution of the
unperturbed system. Every following term describes the perturbation to the unper-
turbed system. This power series is then truncated after a chosen number of terms.
Keeping the first three terms results in a perturbation theory of second order, where
the first term is the unperturbed system. In the Moller-Plesset perturbation theory,
the unperturbed wave function is the Hartree-Fock wave function (ΦHF). The per-
turbed Hamiltonian Ĥ′ is the difference between the HF Hamiltonian Ĥ0 and the
true molecular electronic Hamiltonian Ĥ:

Ĥ′ = Ĥ − Ĥ0 = ∑
i

∑
j>i

1
rij
−

n

∑
j=1

n

∑
k=1

[
Ĵk(j)− K̂k(j)

]
(2.20)

The perturbed Hamiltonian introduces the electronic repulsion which is missing
in the Hartree-Fock interelectronic potentials (which is only an average potential).
Since the first order correction to the energy (E(0)

0 + E(1)
0 ) recovers the HF energy[35],

the second order term has to be taken into account to improve the Hartree-Fock en-
ergy:

E(2)
0 = ∑

s 6=0

|〈ψ(0)
s |Ĥ′|ΦHF〉|2

E(0)
0 − E(0)

s

(2.21)

with ψ
(0)
s being the unperturbed functions formed from n different spin orbitals. To

perform an MP2 calculation, one first obtains ΦHF, EHF, and virtual orbitals from an
SCF MO calculation. Then the second order energy correction (E(2)) is calculated,
which gives the total MP2 energy:

EMP2 = EHF + E(2) (2.22)

In general, the second order perturbation theory (MP2) is used. The higher order
terms can be taken into account but although their contribution is not small, they
are usually omitted because the computational cost is too demanding.

Configuration interaction method:
Another method to tackle the electron interaction is the configuration interaction (CI)
method. Here, the wave function is expanded in linear combinations of slater deter-
minants.

ΨCI = ∑
i=0

ciψi = c0ψ0 + c1ψ1 + c2ψ2 + ... (2.23)

The first term corresponds to the HF wave function (ΦHF = c0ψ0). The following
terms are slater determinants where electrons are mixed with virtual orbitals to ac-
count for the electron interaction. If all possible linear combinations are used a full
CI (FCI) calculation is obtained. In practice, due to the enormous computational cost
of a FCI, the wave function is truncated after several terms. For a CI singles doubles
(CISD) calculation only the first three terms are considered, the HF determinant and
the first, as well as the second excited determinant.

An important problem of the truncation is the size consistency which is not ful-
filled anymore. A quantum chemical method should yield the same result for two
systems A and B, once calculated at infinite separation (no interaction between the
systems) and the other in two seperate calculations. This is not fulfilled in the CI
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method[36]. Here, the Davidson correction[37] can account for the missing higher
order excitations to correct for the truncation error:

∆EQ = (1− c2
0)(ECISD − EHF) (2.24)

where c0 is the coefficient of the HF wavefunction, ECISD and EHF are the energies of
the respective methods and ∆EQ is the correction to the ECISDTQ energy. In a multi
reference CI (MRCI) calculation several ground state reference determinants are con-
sidered to account for a better description of the system at hand.

Coupled-Cluster method:
The coupled-cluster theory describes the electron correlation through excitation of
electrons i and j to virtual orbitals a and b with an amplitude tab

ij , this cluster can be
written as:

|ΦHF〉+ ∑
a<b

tab
ij τ̂ab

ij |ΦHF〉 (2.25)

where |ΦHF〉 is the HF wave function and τ̂ab
ij is the excitation operator. The cluster

ij can be coupled with all the other clusters to get the coupled cluster wave function
|CC〉:

|CC〉 = Πa>b;i>j(1 + tab
ij τ̂ab

ij )|ΦHF〉 (2.26)

We can define a cluster operator T̂ (not the kinetic operator) which can be written as:

T̂ = ∑
µ

τ̂µ (2.27)

using this Ansatz we can simplify equaton 2.24 to |CC〉 = exp(T̂)|ΦHF〉. If only the
first two terms in T̂ are considered, we obtain a Coupled-Cluster singles doubles
wave function with T̂ = T̂1 + T̂2 which can be written as:

ΨCCSD = exp(T̂1 + T̂2)|ΦHF〉 (2.28)

= exp(T̂1)exp(T̂2)|ΦHF〉 (2.29)

In practice the similarity transformed Hamiltonian (exp(−T̂)Ĥexp(T̂)) is used. This
way, not the wave function but the Hamiltonian is parameterized and we can write
the energy expression:

ECC = 〈ΦHF|exp(−T̂)Ĥexp(T̂)|ΦHF〉 (2.30)

which can be simplified to the compact notation:

ECC = 〈ΦHF|ĤT|ΦHF〉 (2.31)

The gold standard for a long time (and still) is the CCSD(T) calculation where the
triple excitation enters in a perturbation theory approach. This method is commonly
used for bench mark calculations to compare new developed methods, eg. function-
als in DFT calculations (which will be discussed in the following section).
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2.4.2 Density functional theory

In density functional theory (DFT) the electronic energy of a system can be calculated
using the electron density ρ(r) instead of the wave function Ψ. The density only de-
pends on three spatial coordinates. The first Hohnerg-Kohn theorem[38] proves that
the density is sufficient to describe the system. Therefore, the electronic energy Eel,0
can be written as a functional of the electron density ρ(r) resulting in Eel[ρ(r)]. The
second Hohnberg-Kohn theorem[38] allows to use the variational principle to find
ρ(r) through minimization of said functional. From the electronic SDE (equation
2.10) it can be seen that the energy contains three terms: The kinetic energy, the
electron-electron interaction, and the external potential (interaction between elec-
trons and nuclei). Therefore, the energy functional can be written as:

Eel,0[ρ] = T[ρ] + Vext[ρ] + Vee[ρ] (2.32)

Using Ts[ρ] = − 1
2 ∑n

i 〈φi|∇2|φi〉 as the kinetic energy of non interacting electrons
(denoted with the subscript s), the external potential Vext[ρ] =

∫
V̂extρ(r)dr, and the

electron-electron interaction as the coulomb interaction J[ρ(r)] = 1
2

∫ ρ(r1)ρ(r2)
|r1−r2| dr1dr2,

inspired by the HF eigenvalue equation (equation 2.16). The energy functional can
thus be rewritten as:

Eel,0[ρ] = Ts[ρ] + Vext[ρ] + J[ρ] + Exc[ρ] (2.33)

where we introduced the exchange correlation functional:

Exc[ρ] = (T[ρ]− Ts[ρ]) + (Vee[ρ]− J[ρ]) (2.34)

The exchange correlation functional is the term collecting all the unknown expres-
sions or the error that is made by treating the electron-electron interaction classically
(non-interactinc kinetic part and coulomb potential). Using the density written in
non-interacting Kohn-Sham orbitals θKS

i (ρ(r) = ∑n
i |θKS

i |2) and applying the varia-
tional theorem the Kohn-Sham equation is obtained:[

−1
2
∇2 + vext(r) + J(r) + vxc(r)

]
θKS

i (r) = εiθ
KS
i (r) (2.35)

where we introduced the exchange correlation potential vxc =
∂Exc[ρ]

∂ρ . This set of equa-
tions are similar to the HF equations (2.16) with the exchange operator (K̂) being
replaced by the exchange correlation potential (vxc(r)).

The analytical expression of Exc[ρ] and vxc(r) is not known. Therefore a lot of work
was invested in finding accurate approximations (fits) for the exchange correlation
functional, a guide through the functional zoo can be found in[39]. Figure 2.2 shows
Jacob’s ladder for the different types of functionals.

Starting from the bottom of Figure 2.2, the first step of the ladder is the local den-
sity approximation (LDA) where we assume a homogeneous electron gas (ρ varies
slowly with position) resulting in:

ELDA
xc [ρ] =

∫
ρ(r)εxc(ρ)dr (2.36)

where εxc(ρ) is the exchange and correlation energy per electron in said homoge-
neous electron gas. Taking the derivative leads to the exchange correlation potential:
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vLDA
xc =

∂ELDA
xc

∂ρ
= εxc(ρ(r)) + ρ(r)

∂εxc(ρ)

∂ρ
(2.37)

εxc can be written as a sum of exchange and correlation parts:

εx(ρ) = −
3
4

(
3
π

)1/3

· (ρ(r))1/3 εc(ρ) = εVWN
c (ρ). (2.38)

where εVWN
c (ρ) is a known function[40]. For the exchange energy functional we get:

ELDA
x =

∫
ρεxdr = −3

4

(
3
π

)1/3 ∫
[ρ(r)]4/3dr (2.39)

For open shell molecules the local spin density approximation (LSDA) is used. The
difference to LDA is that electrons with opposite spin do not have to share a spatial
orbital. Densities of electrons with α and β spin are treated separately:

Exc = Exc[ρ
α, ρβ] (2.40)

and the exchange energy functional can be written as:

ELSDA
x = −3

4

(
6
π

)1/3 ∫
[(ρα)4/3 + (ρβ)4/3]dr (2.41)

The next step on the ladder is the generalized gradient approximation (GGA). In the
LDA approach we assumed no change of the density w.r.t. to position. This is now
accounted for in the GGA approach by using gradients:

EGGA
xc [ρα, ρβ] =

∫
f (ρα, ρβ,∇ρα,∇ρβ)dr (2.42)

Also, the GGA energy functional can be split into an exchange and a correlation part:

EGGA
xc = EGGA

x + EGGA
c (2.43)

One example of a GGA exchange functional was developed by Perdew and Wang in
1988 (B88) which is a gradient correction to the ELSDA

x functional:

EB88 = ELSDA
x + ∆EB88

x (2.44)

with :

∆EB88
x = −b ∑

σ=α,β

∫
(ρσ)4/3χ2

σ

1 + 6bχσln[χσ + (χ2
σ + 1)1/2]

dr (2.45)

where χσ = |∇ρσ|/(ρσ)4/3 and b is an empirical parameter fitted to the HF exchange
energy.

The next step on the ladder goes one step further and adds second derivatives and
are the so called metaGGA’s (or mGGA’s), which are also referred to as the kinetic
energy density. These functionals have the form:

EmGGA
xc [ρα, ρβ] =

∫
f (ρα, ρβ,∇ρα,∇ρβ,∇2ρα,∇2ρβ, τα, τβ)dr (2.46)
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where τα/β are the Kohn-Sham kinetic energy densities for the α and β spin electrons,
respectively:

τα/β =
1
2 ∑

i
|∇θKS

α/β,i|2 (2.47)

Hybrid functionals, the next step on the ladder, add parts together from Ex and
Ec from GGA or mGGA with the exact exchange (from the HF exchange operator K̂
using KS orbitals):

Exc = EGGA
x + cxEexact

x + EGGA
c (2.48)

where cx is an empirical parameter fitted on different data sets.

Another improvement are the double hybrid functionals using the MP2 second or-
der energy correction terms to account for electron correlation by adding virtual
orbitals:

Exc = Ehybrid
xc + (1− a)EKS−MP2

c (2.49)

where EKS−MP2
c is calculated from the MP2 equation (2.21) using KS-orbitals and the

parameter a is fitted to a specific data set to yield good results for a particular set of
molecules.
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FIGURE 2.2: Jacob’s ladder showing different approximations for the
exchange correlation functional. First step (LDA) using only the den-
sity ρ(r), second step (GGA) using the density ρ(r) and gradients
∇ρ(r), third step using the density ρ(r), the gradients∇ρ(r), and sec-
ond derivatives∇2ρ(r) or kinetic energy density τα/β, the fourth step
adds exact HF exchange, and the last steps adds virtual KS orbitals

using a MP2 approach.
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Chapter 3

Quantum Machine Learning

The first part of the following section relies on the book of Vapnik[41].

3.1 Introduction

The mathematical analysis of machine learning processes began in the 1960’s with
the introduction of the perceptron by F. Rosenblatt[42,43]. The idea itself was not new,
and already derived in the neurophysiologic literature[44], but this was the first time
a model was created to solve pattern recognition problems using a program - an
algorithm[41]. Using this model, it was possible to solve the classification problem
with a simple rule to separate data of two different categories when given examples
- training data. The perceptron has n input data x = (x1, ..., xn) ∈ X ⊂ Rn and is
connected via neurons to one output y ∈ {−1, 1} as shown in Figure 3.1.

x1

x2

x3

x4

y = sign{(w · x)− b}

Neurons
Input
layer

Output
layer

FIGURE 3.1: Illustration of a perceptron with input layers {x1, ..., x4}
(blue rectangles), neurons (gray circles), and output layer y (red cir-

cle).

The connection between the output and the inputs is given by:

y = sign{(w · x)− b} (3.1)

where (w · x) is the inner product of two vectors, b is a threshold value, and sign(u)
is the sign function returning 1 if u > 0 and -1 if u ≥ 0. The neuron divides the space
X into two subspaces where y takes either the value 1 or -1. These two subspaces are
separated by the hyperplane:

(w · x)− b = 0 (3.2)
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During the learning, the perceptron chooses the hyperparameter w and b. In this
case, learning means finding the optimal combination of hyperparameters for all
neurons given a training set. When in 1990’s gradient based techniques were introduced[45],
the discontinuous function (e.q. 3.2) was substituted with a continuous function us-
ing the following conditions:

y = S{(w · x)− b} S(−∞) = −1, S(+∞) = 1 (3.3)

with S being the tanh(u) function. This way, the training of the perceptron was im-
proved by the gradient approach using the so called back propagation. This was the
birth of the neural networks, as they are known today.

The field of machine learning grew fast over the past decades and great milestones
were achieved, some famous examples are: In 1997 Deep Blue beating a chess grand
master[46], in 2016 AlphaGo wins 99.8% of all games against state of the art GO-
engines and won 5-0 games against the human European GO champion[47], and in
2017 AlphaZero defeats the chess engine stockfish[48]. Furthermore, in 2017 Deep-
Minds AlphaStar beats top human Starcraft 2 (SC2) players[49]. This was a break-
through because, in contrary to the board games, SC2 adds an additional difficulty
to the learning tasks, since the entire map is not know a priori and therefore has to be
discovered, hence not all data is initially available.

With ML growing bigger, it also attracted the attention of the fields of computa-
tional sciences. From 2010 to 2019 the number of publications containing the key
words “machine learning” and either “chemistry” or “materials” grew from ∼100
towards ∼1’500 publications per year[50].

The most important quantity in quantum chemistry is the energy of a molecule from
which most other properties can be derived. To get the energy of a system the elec-
tronic Schrödinger equation for a given set of atom coordinates RI has to be solved:

{ZI , RI}
ĤΨ−−→ E (3.4)

where ZI is the nuclear charge, Ĥ the hamilton operator, Ψ the wave function, and
E the energy of the system. Finding the solution of the Schrödinger equation (SDE)
is an NP hard problem[51] and the time to solution scales exponentially with the
number of electrons of the systems. As described in the previous chapter, the more
accurate results are targeted the more time has to be invested. The scaling of the
Hartree-Fock (HF) method is N4, with N being the number of electrons. The den-
sity functional theory (DFT) has a similar scaling but generally outperformes the HF
method, which lead to the Nobel price for Walter Kohn and John A. Pople in 1998.
Post HF methods implementing electron correlation like Moller-Plesset perturbation
theory (MP), Coupled-Cluster (CC) and Configuration Interaction (CI) are more ac-
curate but with the cost of N5, N6, and N7, respectively.

Hence, to circumvent the problem of solving the SDE for all molecules in a given
data set, machine learning techniques allow us to infer energies of similar molecules
and therefore reduce the calculation time. Machine learning models take the same
input (ZI , RI) from quantum chemical calculations, but use training data to predict
energies of unknown compounds, as shown below (ĤΨ→ QML):

{ZI , RI}
QML−−−→ E (3.5)
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In an early attempt, von Lilienfeld et. al.[52] introduced a ML model using ker-
nel ridge regression (KRR) which takes the coulomb term as a representation and
estimated atomization energies of an out of sample test set with an accuracy of
∼10kcal/mol. Although neural networks are a crucial part in quantum machine
learning, kernel ridge regression models offer an advantage when a system is well
known (prior knowledge). Given this information, representations in KRR are able
to compete and even outperform neural networks, a summary can be found in Faber
et al[53]. A summary of machine learning models in chemical compound space can
be found in[54] and the review[9] shows the recent developments in quantum ma-
chine learning in chemical reaction space. Although, in the beginnings of machine
learning neural networks were predominant, in computational sciences, especially
in quantum chemistry, kernel ridge regression became a fundamental part in quan-
tum machine learning. In this thesis kernel ridge regression models were applied to
chemical compound space, especially quantum chemical reaction space.

This chapter begins with an introduction to quantum machine learning, in partic-
ular, kernel ridge regression. First, a general introduction to the theory of KRR is
given, then in section 3.2.1 the representations used in this work are introduced,
followed by section 3.2.2 covering the training and evaluation of models using an
example machine learning task, and finally section 3.3 which covers the data sets
used in this work.

3.2 Kernel Ridge Regression

Ridge regression belongs to the supervised learning techniques, where the input
space is mapped to a feature space within which fitting is applied. This transforma-
tion has to be found individually for every system and can grow computationally
expensive. To circumvent this problem the “kernel trick” is applied where the inner
product of the representations of two compounds are replaced by the so-called ker-
nel function. The kernel uses the data in the input space and returns the dot product
of the transformed vectors in the feature space. For example, the kernel trick for a
second degree polynomial is derived below. Let φ(a) and φ(b) be the transforma-
tions of the two points a and b and said transformation be:

φ(a)T · φ(b) =


a2

1
√

2a1a2

a2
2

 ·


b2
1

√
2b1b2

b2
2

 (3.6)

= a2
1b2

1 + 2a1b1a2b2 + a2
2b2

2 (3.7)

= (a1b1 + a2b2)
2 (3.8)

=


a1

a2

 ·
b1

b2




2

(3.9)

= (a · b)2 (3.10)

In this case the kernel function is a polynomial kernel of second degree:

k(a, b) = (a · b)2 (3.11)
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When given a set of N training instances (xi, yi) a query property yest
q (xq) can be

estimated:

yest
q (xq) =

N

∑
i

αik(xi, xq) (3.12)

where xi is the representation (discussed further below), k(xi, xq) is the kernel ele-
ment between the training compounds i and the query compound q, and αi is the set
of regression coefficients which can be obtained with the following matrix equation:

α = (K + λI)−1y (3.13)

with λ beeing the regularizer, I the identity matrix, and K the kernel matrix of the
training compounds (i, j) with the kernel element k(xi, xj). The two kernels used
throughout this work are the gaussian (3.14) and the laplacian (3.15) kernel:

kg(xi, xj) = exp

(
−
||xi − xj||22

2σ2

)
(3.14)

kl(xi, xj) = exp
(
−
||xi − xj||1

σ

)
(3.15)

The kernel element is a similarity measurement between two representations. The
estimation of a query property yest

q (xq) is achieved by comparing the representation
of the target compound (xq) to all the training compounds (xi), summing up the con-
tributions of the individual training points as described in equation 3.12.

In QML only one property (in general the energy of a molecule) is learned. In geom-
etry optimizations or transition state searches both, energies and forces, are required.
The operator quantum machine learning approach[19,20] allows to train a model, in a
similar way as shown in equation 3.13, simultaneously on energies and forces using
following loss function:

J(α) =

∥∥∥∥∥∥∥
y

f

−
 K

− ∂
∂r K

 α

∥∥∥∥∥∥∥
2

2

(3.16)

After training, the regression coefficients α can be used to predict the energies (yest):

yest = Ksα (3.17)

and the forces (f):

fest = − ∂

∂r
Ksα (3.18)

where Ks is the test kernel containing training and test instances.

3.2.1 Representations

The representation x is the numerical way the environment (e.g. a molecule) is en-
coded in the ML model. The representation should fulfill certain conditions: i) it
should to be unique, meaning that two molecules (e.g. enantiomers) that have dif-
ferent energies, also differ in the representation space, ii) the representation has to
be invariant with respect to the translations or rotations.
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Coulomb matrix[55]

The CM is a two body representation that takes the coulomb potential (nuclear
charge) of the atoms scaled by their distances as off diagonal elements. The
diagonal terms in the CM are the nuclear charges of the atoms to the power of
2.4 which leads to:

xI J =

{
0.5ZI Z2.4

J , if I = J
ZI ZJ

||RI−RJ || , otherwise
(3.19)

where Z is the nuclear charge and R is the position of the atom.

Bag of Bonds (BoB)[56]

BoB is also a two body representation and was derived from the CM. BoB uses
the nuclear coulomb terms from the CM and groups them into different bins,
the so called bags, for all the elemental atom pair combinations.

SLATM[57]

The “Atomic Spectrum of London-Axilrod Teller Muto Potential” (SLATM)
representation contains two- and three body terms. The two-boy terms uses
the London dispersion function, rather than coulomb repulsion like CM and
BoB. The three-body part consists of the Axilrod-Teller-Muto potential[58,59].

FCHL
FCHL18 contains one-, two-, and three-body terms, where the one-body term
encodes the position of the element in the PSE (group and period). Its two-
body terms contain all atom-to-atom distances (R) scaled by R−4, and the
three-body term contains all angles between each three atom combination scaled
by R−2. FCHL19[60] is an updated version of FCHL18[61] but limits itself to two-
and three-body terms.

One-hot encoding
The one-hot encoding is a simple geometry free representations, generally
used in prediction of properties of proteins[62,63]. The representation is a vector
containing 0’s and 1’s - a bit vector - encoding if feature is present or not. For
example a protein can be encoded by its amino acids, or a chemical reaction us-
ing the same scaffold but a variety of functional, attacking, or leaving groups,
can be encoded as well.

A detailed review of physics-inspired structural representations can be found in[64].

3.2.2 Training & Testing

Representation & data set split

Throughout this work, the QMLcode[65] was used to train QML models and predict
properties. Therefore, as an example, three models using the representations CM,
BoB, and FCHL19, were trained on the conformer data set from Ramakrishnan et.
al[66] to illustrate how QML models are generated, trained, and tested. The data set
contains 6095 constitutional isomers of the sum formula C7H10O2. The property for
this example is the atomization energy on the B3LYP/6-31G(2df,p) level of theory.

To train and test a model the data set is commonly split into two parts: training and
test set as illustrated in Figure 3.2. First, the representations for all compounds was
computed and then the data set was randomly split into 5000 training and 1095 test
compounds. The following code shows the generation of the coulomb matrix and
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the split into training and test set. The other representations are created in a similar
fashion. For the sake of simplicity, only clips of the code are shown below. The entire
code can be found on github[67].

# calculate the representation (CM)
for mol in mols:

mol.generate_coulomb_matrix(size=5) # equation 3.19
# get representation and split the data set
X = np.array([mol.representation for mol in mols])
X_training, X_test = X[:5000], X[5000:]

Total data set

Training set Test set

K-fold CV Learning curves

Out of sample predictions

Optimized σ and λ

FIGURE 3.2: Scheme showing how the data set is split into training
and test set. Training set is used to optimize hyperparameters σ and λ
using k-fold cross validation where the training set is split again into

training and validations.
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Cross Validation

To optimize the hyperparameters a 5-fold cross validation, a scan over different hy-
perparameters σ and λ, for the three models was performed on the training set as
shown in Figure 3.2. Figure 3.3 shows the working principle of the k-fold cross val-
idation. Here, the training set is split into five folds. Then, the model is trained on
all but one fold and the left out fold is used as validation set. This is done iteratively
over all the folds (five times), calculating the MAE at every step. This way all the
training instances are part of the training as well as the validation. The code below
shows an example for one fold (eg. 1st Iter in Figure 3.3) and one set of hyperparam-
eters (σ and λ), starting by calculating the training kernel:

X_train, X_validation = X_training[:4000], X_training[4000:]
sigma = 25.6
llambda = 1e-7
K_train = gaussian_kernel(X_train, X_train, sigma) # equation 3.14
K_train[np.diag_indices_from(K_train)] += llambda

The next step is to train the model using equation 3.13:

Y_training = Y[:5000]
Y_train, Y_validation = Y_training[:4000], Y_training[4000:]
alpha = np.inverse(K_train) * Y_train # equation 3.13

Finally the predictions can be made (using equation 3.12) and compared to the vali-
dation set:

K_validation = gaussian_kernel(X_train, X_validation, sigma) # equation 3.14
Y_predicted = np.dot(K_validation, alpha) # equation 3.12
print(np.mean(np.abs(Y_predicted - Y_validation)))

1st Iter

2nd Iter

3rd Iter

kth Iter

Training set

TrainVal.

· · ·

Fold-1

MAE1

Fold-2

MAE2

Fold-3

MAE3

Fold-k

MAEk

FIGURE 3.3: Scheme of working principle of k-fold cross validation
for one set of hyperparameters σ and λ.

If this is done for all combinations of σ and λ and all folds, we can plot the results in
a heat map. Figure 3.4 shows the resulting heatmap for the FCHL19 representation.



24 Chapter 3. Quantum Machine Learning

This procedure allows a direct and uncomplicated way to find the optimal set of
hyperparameters. After optimizing the hyperparameter, the transferability and per-
formance of the model can be tested using learning curves which will be discussed
in the following section.

FIGURE 3.4: Results of the 5-fold cross validation shown as a heat
map with encoded MAE in the color map for FCHL19.

Learning Curves

In general, the out of sample test error ε of a model decreases[41] with increasing
number of training points N as shown in equation 3.20

ε ∝ bN−a (3.20)

Plotting the error ε vs. the training set size N on a log-log plot results in learning
curves as shown in equation 3.21 and Figure 3.5.

log(ε) = −alog(N) + b + HOT (3.21)

a corresponds to the slope, b is the off set and HOT stands for higher order terms,
which are negligible[41]. Good models, as shown in Figure 3.5 (left), decay linearly
with respect to the training set size. For an inferior model, the learning curve flattens
out at the end. Therefore, it does not improve any further by adding more training
instances and preventing the model to reach the target accuracy. For good models,
learning curves also give an estimate on how much more data is needed to obtain
the desired accuracy, e.g. chemical accuracy (kcal/mol).

After obtaining the optimal combination of hyperparameters, the model is used to
predict the out of sample test data (Figure 3.2), to evaluate its performance and trans-
ferability. To generate the learning curves the random sub-sampling cross validation[68]

was used. The training set is shuffled after every iteration and the first N instances
are taken for training with N being the number of training points. Both cross vali-
dation methods are commonly used, as well as applied during this work. Figure 3.5
(right) shows the performance of the three aforementioned models (CM, BoB, and
FCHL19). Although, learning is achieved for all representations, only one reached
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FIGURE 3.5: Fictitious learning curves showing basic principles of
good/bad performing models, as well as basic principles of learn-
ing curves (left) and learning curves for the constitutional isomers of

QM9 (right) for three representations.

chemical accuracy of 1kcal/mol, namely the more sophisticated FCHL19 represen-
tation. The data set contains constitutional isomers which are best described by
interatomic distances and angles (FCHL19), rather than only using interatomic dis-
tances (CM and BoB), leading to a better performance of FCHL compared to the
other representations.

3.3 Data sets

QM9[66]

The QM9 data set contains computed geometric, electronic and thermody-
namic data for 134k stable small organic compounds including the heavy atoms:
carbon, nitrogen, oxygen and fluorine. SMILES, containing up to nine heavy
atoms (non hydrogen atoms), were chosen from the GDB-17 data set[69]. These
SMILES[70,71] were then optimized using PM7 semi-empirical level of theory
and subsequently were relaxed on B3LYP/6-31G(2df,p) level of theory.

QMrxn20[3]

This reaction data set contains 1’286 E2 (elimination) and 2’361 SN2 (substi-
tution) LCCSD/cc-pVTZ//MP2/6-311G(d) activation barriers. The leaving
groups, for both reactions, are the halogens: fluorine, chlorine, and bromine.
The nucleophiles (attacking group) are the halogens: fluorine, chlorine, bromine,
as well as hydride. The functional groups are: -CH3, -NH2, -CN, and -NO2.

The initial reactant geometries from the reaction data set were obtained by
generating the unsubstituted molecule (hydrogen atoms instead of functional
groups and fluorine as leaving group) without the nucleophile. Subsequently
substituting the hydrogen atoms with functional groups span the chemical
space. For every reactant a conformer search using the universal force field
(UFF) was performed and the lowest lying conformer geometries were then
further optimized on MP2/6-311G(d) level of theory.
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Similarly, as described in the previous paragraph, the starting geometries for
the transition state (TS) search were obtained. A transition state search was
performed on the unsubstituted case and from the found TS the chemical space
was spanned by exchanging the hydrogen atoms with functional groups.

QMspin[72]

A carbene chemical space of roughly 8’000 small organic molecules derived
from 4’000 randomly selected QM9 molecules by abstracting two hydrogens
from every saturated carbon center. The resulting geometries were relaxed for
both states, singlet and triplet. For the triplet case the geometry was optimized
using B3LYP with the def2-TZVP molecular basis and the def2-TZVPP density
fitting basis. For the singlet case the geometry was optimized using the com-
plex active space self consistent filed (CASSCF) method using the cc-pVDZ-F12
molecular orbital and the cc-pVTZ density fitting basis.

Subsets
For chapter 4 seven subsets were generated, derived from the aforementioned
three data sets (QM9, QMspin, and QMrxn) containing five different levels
of theories (CCSD(T), MRCI, B3LYP, MP2, CASSCF) using four basis sets, as
well as three different calculation methods (singlepoint (SP), geometry opti-
mization (GO), and transition state (TS) search calculations). The subsets are:
QM9SP

CC/DZ, QM9SP
CC/TZ, QM9GO

B3LYP, QMrxnGO
MP2, QMrxnTS

MP2, QMspinSP
MRCI, and

QMspinGO
CASSCF. The main term states the data set from where the compounds

were taken, the subscript defines the method (level of theory), and the su-
perscript defines the type of calculation. A more detailed description of the
subsets can be found in chapter 4 section 4.3.3.
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Machine learning the
computational cost of quantum
chemistry

Machine learning the computational cost of quantum chemistry
S. Heinen, M. Schwilk, G.F. von Rudorff, O.A. von Lilienfeld; Machine Learning: Science and Technol-
ogy, 1, (2), 025002

4.1 Abstract

Computational quantum mechanics based molecular and materials design campaigns
consume increasingly more high-performance compute resources, making improved
job scheduling efficiency desirable in order to reduce carbon footprint or wasteful
spending. We introduce quantum machine learning (QML) models of the compu-
tational cost of common quantum chemistry tasks. For single point, geometry op-
timization, and transition state calculations the out of sample prediction error of
QML models of wall times decays systematically with training set size. We present
numerical evidence for thousands of organic molecular systems including closed
and open shell equilibrium structures, as well as transition states. Levels of elec-
tronic structure theory considered include B3LYP/def2-TZVP, MP2/6-311G(d), local
CCSD(T)/VTZ-F12, CASSCF/VDZ-F12, and MRCISD+Q-F12/VDZ-F12. In com-
parison to conventional indiscriminate job treatment, QML based wall time predic-
tions significantly improve job scheduling efficiency for all tasks after training on
just thousands of molecules. Resulting reductions in CPU time overhead range from
10% to 90%.
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4.2 Introduction

Solving Schrödinger’s equation, arguably one of the most important compute tasks
for chemistry and materials sciences, with arbitrary accuracy is a NP hard problem[51].
This leads to the ubiquitous limitation that accurate quantum chemistry calcula-
tions typically suffer from computational costs scaling steeply and non-linearly with
molecular size. Therefore, even if Moore’s law was to stay approximately valid[6],
scarcity in compute hardware would remain a critical factor for the foreseeable fu-
ture. Correspondingly, chemistry and materials based compute projects have been
consuming substantial CPU time at academic high-performance compute centers
on national and local levels worldwide. For example, in 2017 research projects from
chemistry and materials sciences used∼25 and∼35% of the total available resources
at Argonne Leadership Computing Facility[73] and at the Swiss National Supercom-
puting Center (CSCS)[74], respectively. In 2018,∼30% of the resources at the National
Energy Research Scientific Computing Center[75] were dedicated to chemistry and
materials sciences and even ∼50% of the resources of the ARCHER[76] super com-
puting facility over the past month (May 2019). Assuming a global share of∼35% for
the usage of the Top 500 super computers (illustrated in Figure 4.1) over the last 25
years, this would currently correspond to ∼0.5 exaFLOPS (floating point operations
per seconds) per year. But also on most of the local medium to large size university
or research center compute clusters, atomistic simulation consumes a large fraction
of available resources. For example, at sciCORE, the University of Basel’s compute
cluster, this fraction typically exceeds 50%. Acquisition, usage, and maintenance of
such infrastructures require substantial financial investments. Conversely, any im-
provements in the efficiency with which they are being used would result in imme-
diate savings. Therefore a lot of work is done to constantly improve hardware and
software of HPCs, e. g. at the International Supercomputing Conference NVIDIA
announced the support of the Advanced RISC Machines (Arm) CPUs, which allows
to build extremely energy efficient exascale computers, by the end of the year[77].
Compute applications on such machines commonly rely on schedulers optimizing
the simultaneous work load of thousands of calculations. While these schedulers are
highly optimized to reduce overhead, there is still potential for application domain
specific improvements, mostly due to indiscriminate and humanly biased run time
estimates specified by users. The latter is particularly problematic when it comes
to ensemble set-ups characteristic for molecular and materials design compute cam-
paigns with very heterogeneous compute needs of individual instances. One could
use the scaling behaviour of methods to get sorted lists w.r.t wall times and improve
scheduling by grouping the calculations by run time. For example the bottleneck of a
multi-configuration self-consistent field calculation (MCSCF) is in general the trans-
formation of the Coulomb and exchange operator matrices into the new orbital basis
during the macro-iterations. This step scales as nm4 with n the number of occupied
orbitals and m the number of basis functions. All Configuration Interaction Singles
Doubles (CISD) schemes that are based on the Davidson algorithm[37] scale formally
as n2m4, where n the number of correlated occupied orbitals and m the number of
basis functions[78]. As these methods (and basis sets) contain different scaling laws
and geometry optimizations additionally depend on the initial geometry, a more
sophisticated approach was applied: In this paper, we show how to use quantum
machine learning (QML) to more accurately estimate run times in order to improve
overall scheduling efficiency of quantum based ensemble compute campaigns.
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Since the early 90’s, an increasing number of research efforts from computer sci-
ence has dealt with optimizing the execution of important standard classes of al-
gorithms that occur in many scientific applications on HPC platforms[79–81], but also
with predicting memory consumption[82], or, more generally, the computational cost
itself.Such predictive models may even comprise direct minimization of the esti-
mated environmental impact of a calculation as the target quantity in the model[83].
ML has already successfully been applied, however, towards improving scheduling
itself[84], or entire compute work flows[85,86]. Furthermore, a potentially valuable ap-
plication in the context of quantum chemistry may be the run time optimization of
a given tensor contraction scheme on a specific hardware by predictive modelling
techniques[87]. Another noteworthy effort has been the successful run time model-
ing and optimization of a self-consistent field (SCF) algorithm on various computer
architectures in 2011[88] using a simple linear model depending on the number of re-
tired instructions and cache misses. Already in 1996, Papay et al. contributed a least
square fit of parameters in graph based component-wise run time estimates in par-
allelized self consistent field computations of atoms[89]. Other noteworthy work in
the field of computational chemistry is the prediction of the run time of a molecular
dynamics code[90], or the prediction of the success of DFT optimizations of transition
metal species as a classification problem by Kulik and coworkers[91]. In the context
of quantum chemistry and quantum mechanical solid state computations, very lit-
tle literature on the topic is found. This may seem surprising, given the significant
share of this domain on the overall HPC resource consumption (cf. Figure 4.1). To
the best of our knowledge, there is no (Q)ML study that predicts the computational
cost (wall time, CPU time, FLOP count) of a given quantum chemical method across
chemical space.

Today, a large number of QML models relevant to quantum chemistry applications
throughout chemical space exists[92–94]. Common regressors include Kernel Ridge
Regression[53,95–99] (KRR), Gaussian Process Regression[100] (GPR), or Artificial Neu-
ral Networks[53,101–105] (ANN). For the purpose of estimating run times of new molecules,
and contrary to pure computer science approaches, we use the same molecular rep-
resentations (derived solely from molecular atomic configurations and composi-
tions) in our QML models as for modeling quantum properties. As such, we view
computational cost as a molecular “quasi-property” that can be inferred for new,
out-of-sample input molecules, in complete analogy to other quantum properties,
such as the atomization energy or the dipole moment.

4.3 Data

All QML approaches rely on large training data sets. Comprehensive subsets of the
chemical space of closed shell organic molecules have been created in the past, e. g.,
the QM9[66] data set which is derived from a subset of the GDB17[69]. Further rele-
vant data sets in the literature include, among others, reaction networks[106], closed
shell ground state organometallic compounds[1], or non-equilibrium structures of
small closed shell organic molecules[107]. Yet, regions of chemical space that may in-
volve more sophisticated and costly quantum chemistry methods, such as open shell
and strongly correlated systems[108,109] or chemical reaction paths, are still strongly
underrepresented. For this study, we have generated and used timings of the com-
putational cost associated to seven tasks which reflect variances of three common
use cases: single point (SP), geometry optimization (GO) and transition state (TS)
search calculations.
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FIGURE 4.1: Compute resource growth of 500 fastest public
supercomputers.[8] Estimated use by chemistry and materials sci-
ences corresponds to 35%, corresponding to 2017 usage on Swiss Na-

tional Supercomputing Center.[74].

4.3.1 Quantum Data Sets

We have considered coordinates coming from three different data sets (QM9, QM-
spin, QMrxn) corresponding to five levels of theory (CCSD(T), MRCI, B3LYP, MP2,
CASSCF) and four basis set sizes. Molecules in the three different data sets consist
of the following:

i) QM9 contains 134k small organic molecules in the ground state local minima
with up to nine heavy atoms which are composed of H, C, N, O, and F. All co-
ordinates were published in 2014[66]. Here, we also report the relevant timings.

ii) QMspin consists of carbenes derived from QM9 molecules containing calcula-
tions of the singlet and triplet state, respectively, with a state-averaged CASSCF(2e,2o)
reference wave function (singlet and triplet ground states with equal weights).
The entirety of this data set will be published elsewhere, here we only provide
timings and QM9 labels.

iii) QMrxn consists of reactants and SN2 transition states of small organic molecules
with a scaffold of C2H6 which was functionalized with the following substituents:
-NO2, -CN, -CH3, -NH2, -F, -Cl and -Br. The entirety of this data set will be pub-
lished elsewhere, here we only provide timings and geometries.

4.3.2 Toy System

To demonstrate that it is possible to learn the number of steps of an optimization
algorithm, we apply our machine learning method to two cases from function opti-
mization theory: quantifying the number of steps for an optimizer. The functions in
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question are the Rosenbrock function[110]

f (x, y) = (1− x)2 + 100(y− x2)2 (4.1)

and the Himmelblau function[111]

f (x, y) = (x2 + y− 11)2 + (x + y2 − 7)2 (4.2)

The fucntions are shown in the top row of Figure 4.4 b) and c). We applied three rep-
resentative optimizers in their SciPy 1.3.1[112] implementation on both functions: the
“NM” simplex algorithm (Nelder-Mead[113]), the gradient based “BFGS” algorithm[114],
and an algorithm using gradients and hessians (Conjugate Gradient with Newton
search “N-CG”[115]). For every function and optimizer we performed 10200 opti-
mizations from different starting points on a cartesian grid over the domain −5 ≤
x, y ≤ 5 in steps of 0.1. The minimum of the Rosenbrock function and the four min-
ima of the Himmelblau function lie within this domain. Figure 4.4 b) row two, three,
and four show a heatmap of the number of optimization steps for NM, BFGS, and
N-CG, respectively, for Rosenbrock (left column) and Himmelblau (right column).
Generally, the minimum searches on the Himmelblau function required much fewer
steps (mostly reached after a few tens of iterations). While the gradient based opti-
mizer BFGS clearly outperforms NM for both functions, the N-CG optimization of
the Rosenbrock function did not converge with a iteration limit of 400 for a set of
points in the region of x < −0.5 and y > 2.5. A very small step size for the N-CG
algorithm implementation in SciPy in the critical region is responsible for the slow
convergence.

4.3.3 Quantum Chemistry Tasks

The three data sets were then divided into the seven following tasks for which tim-
ings were obtained (See also Table 4.1):

QM9SP
CC/DZ – 5736 PNO-LCCSD(T)-F12/VDZ-F12[116–118] single point energy tim-

ings. Details of the calculation results other than timings are subject of a separate
publication[119].

QM9SP
CC/TZ – 3497 PNO-LCCSD(T)-F12/VTZ-F12 single point energy timings.

QMspinSP
MRCI – 2732 single point calculations using MRCISD+Q-F12/VDZ-F12[120–123].

Details of the calculation results other than timings are subject of a separate publication.[124]

QM9GO
B3LYP – 3724 geometry optimization timings with initial B3LYP/6-31G*[125,126]

geometries optimizing at the B3LYP/def2-TZVP level of theory.

QMrxnGO
MP2 – 8148 geometry optimization timings on MP2/6-311G(d) level of theory.

QMspinGO
CASSCF – 1595 CASSCF(2e,2o)[Singlet]/VDZ-F12[127,128] geometry optimiza-

tion timings.

QMrxnTS
MP2 – 1561 timings of transition state searches on MP2 level of theory.

Further details on the data sets can be found in section 1 of the supporting informa-
tion (SI). A distribution of the properties (wall times) of the seven tasks is illustrated
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TABLE 4.1: Seven tasks used in this work generated from three data
sets (QM9, QMspin, QMrxn), using three use cases (SP, GO, TS) on

different levels of theory and basis sets.

Task QM9SP
CC/DZ QM9SP

CC/TZ QMspinSP
MRCI QM9GO

B3LYP QMrxnGO
MP2 QMspinGO

CASSCF QMrxnTS
MP2

Use case SP GO TS

Data set QM9 QMspin QM9 QMrxn QMspin QMrxn

Level CCSD(T) CCSD(T) MRCI B3LYP MP2 CASSCF MP2

Basis set VDZ-F12 VTZ-F12 VDZ-F12 def2-TZVP 6-311G(d) VDZ-F12 6-311G(d)

Size 5736 3497 2732 3724 8148 1595 1561

Code Molpro Molpro Molpro Molpro ORCA Molpro ORCA

in Figure 4.2. Single point calculations (the two QM9SP
CC tasks) and the geometry op-

timization (task QM9GO
B3LYP) have wall times smaller than half an hour. In general, the

smaller the variance in the data, the less complex the problem and the easier it is for
the model to learn the wall times. For geometry optimizations and more exact (also
more expensive) methods (task QMspinSP

MRCI and QMspinGO
CASSCF) the average run

time is ∼ 9 hours. With a larger variance in the data the problem is more complex
(higher dimensional) and the learning is more difficult (higher off-set).

0.1 0.3
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

QM9SP
CC/DZ

QM9SP
CC/TZ

QM9GO
B3LYP

0 10 20
0.00

0.05

0.10

0.15

0.20

0.25

QMspinSP
MRCI

QMrxnGO
MP2

QMspinGO
CASSCF

QMrxnTS
MP2

Fr
eq

ue
nc

y 
[a

.u
.]

Wall times [h]

FIGURE 4.2: Wall time distribution of all tasks using kernel density
estimation.

4.3.4 Timings, Code, and Hardware

The calculations were run on three compute clusters, namely our in-house compute
cluster, the Basel University cluster (sciCORE) and the Swiss national supercom-
puter Piz Daint at CSCS. We used two electronic structure codes to generate timings.
Molpro[129] was used to extract both CPU and wall times for data sets i) and ii), and
ORCA[130] was used to extract wall times for data set iii). Further information of
the data sets, the hardware, and the calculations can be found in section 3 to 4 of
Appendix B. The retired floating point operations (FLOP) count of the local cou-
pled cluster calculation task QM9SP

CC/DZ was obtained as follows: The number of
FLOPs have been computed with the perf Linux kernel profiling tool[131] for data
set QM9SP

CC/DZ. perf allows profiling of the kernel and user code at run time with
little CPU overhead and can give FLOP counts with reasonable accuracy. FLOP
count is an adequate measure of the computational cost when the program execution
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is CPU bound by numerical operations, which is given in the PNO-LCCSD(T)-F12
implementation[116–118,132] in Molpro.

4.4 Methods

4.4.1 Quantum Machine Learning

In this study, we used kernel based machine learning methods which were initially
developed in the 1950s[133] and belong to the supervised learning techniques. In
ridge regression, the input is mapped into a feature space and fitting is applied there.
However, the best feature space is a priori unknown, and its construction is compu-
tationally hard. The “kernel trick” offers a solution to this problem by applying a
kernel k on a representation space R that yields inner products of an implicit high
dimensional feature space: the Gram matrix elements k(xi, xj) of two representations
x ∈ R between two input molecules i and j are the inner products 〈i, j〉 in the feature
space. For example,

k(xi, xj) = exp
(
−
||xi − xj||1

σ

)
(4.3)

or

k(xi, xj) = exp

(
−
||xi − xj||22

2σ2

)
(4.4)

with σ as the length scale hyperparameter, represent commonly made kernel choices,
the Laplacian (eq. 4.3) or Gaussian kernel (eq. 4.4). Fitting coefficients ααα can then be
computed in input space via the inverse of the kernel matrix [K]ij = k(xi, xj):

ααα = (K + λI)−1y (4.5)

where λ is the regularization strength, typically very small for calculated noise-free
quantum chemistry data.

Hence, kernel ridge regression (KRR) learns a mapping function from the inputs xi,
in this case the representation of the molecule, to a property yest

q (xq), given a training
set of N reference pairs {(xi, yi)}N

i=1. Learning in this context means interpolation
between data points of reference data {(xi, yi)} and target data {(xq, yest

q )}. A new
property yest

q can then be predicted via the fitting coefficients and the kernel:

yest
q (xq) =

N

∑
i

αi · k(xi, xq) (4.6)

For the toy systems, a Laplacian kernel was used, the representation corresponding
simply to the starting point (x = (x, y)) of the optimization runs. For the purpose of
learning of the run times, we used two widely used representations, namely Bag of
Bonds (BoB)[56] with a Laplacian kernel. BoB is a vectorized version of the Coulomb
Matrix (CM)[95] that takes the Coulomb repulsion terms for all atom to atom dis-
tances and packs them into bins, scaled by the product of the nuclear charges of
the corresponding atoms. This representation does not provide a strictly unique
mapping[98,134] which may deteriorate learning in some cases (vide infra). The sec-
ond representation used was atomic FCHL[60] with a Gaussian kernel. FCHL ac-
counts for one-, two-, and three-body terms (whereas BoB only contains two-body
terms). The one-body term encodes group and period of the atom, the two-body
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term contains interatomic distances R, scaled by R−4, and the three-body terms in
addition contain angles between all atom triplets scaled by R−2.

To determine the hyperparameters σ and λ, the reference data was split into two
parts, the training and the test set. The hyperparameters were optimized only within
the training set using random sub-sampling cross validation. To quantify the perfor-
mance of our model, the test errors, measured as mean absolute errors (MAE), were
calculated as a function of training set size. The leading error term is known to be
inversely proportional to the amount of training points used:[135]

MAE ≈ a/Nb (4.7)

The learning curves should then result in a decreasing linear curve with slope b and
offset log a:

log(MAE) ≈ log(a)− b log(N) (4.8)

where a is the target similarity which gives an estimate of how well the mapping
function describes the system[98] and b is the slope being an indicator for the effec-
tive dimensionality[136]. Therefore, good QML models are linearly decaying, have
a low offset log(a) (achieved by using more adequate representations and/or base-
line models[137]), and have steep slopes (large b).

For each task, QML models of wall times were trained and subsequently tested on
out-of-sample test set which was not part of the training. As input for the representa-
tions the initial geometries of the calculations were used. To improve the predictions
of geometry optimizations for the task QMspinGO

CASSCF, we split the individual op-
timization steps into the first step (GO1) and the subsequent steps (GO2), because
the first step takes on average ∼20% more time than the following steps (for more
details we refer to section 1.4 of the SI). For learning the timings of the geometry
optimization task GO2, we took the geometries obtained after the first optimization
step.

As input for the properties, wall times were normalized with respect to the num-
ber of electrons in the molecules. Figure 4.3 shows the wall time overhead (CPU
time to wall time ratio) for calculations run with Molpro. To remove runs affected
by heavy I/O, wall time overheads higher than 3%, 5%, 10%, 30%, and 50% were
excluded from the tasks QM9SP

CC/DZ, QM9SP
CC/TZ, QMspinSP

MRCI, QMspinGO
CASSCF, and

QM9GO
B3LYP, respectively. In order to generate learning curves for all the seven tasks,

all timings were normalized with respect to the median of the test set to get compara-
ble normalized mean absolute errors (MAE). The resulting wall time out-of-sample
predictions were used as input for the scheduling algorithm. Whenever the QML
model predicted negative wall times, the predictions were replaced by the median
of all non-negative predictions.
All QML calculations have been carried out with QMLcode[65]. Wall times and CPU
times (Molpro) and wall times (ORCA) for all the seven tasks, as well as QML scripts
can be found in Appendix B.

4.4.2 Application: Optimal Scheduling

Job Array and Job Steps

In many cases, efforts in computational chemistry or materials design require the
evaluation of identical tasks on different molecules or materials. Distributing those
tasks across a compute cluster is typically done in one of two ways. When using job



4.4. Methods 35

1.0 1.2
0

20

40

60

80 QM9SP
CC/DZ

QM9SP
CC/TZ

1 2 3
0

1

2

3

4

5

6

7

QMspinSP
MRCI

1.0 1.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

QM9GO
B3LYP

5 10
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

QMspinGO
CASSCF

Fr
eq

ue
nc

y 
[a

.u
.]

Wall time overhead

FIGURE 4.3: Wall to CPU time ratio (using kernel density estimation)
for Molpro calculations to identify runs with high wall time overhead

due to heavy I/O load on clusters.

arrays, the scheduler assigns compute resources to each calculation separately, such
that the individual calculation is queued independently. This approach typically
extends the total wall time, and has little overhead with the jobs themselves but
leads to inefficiencies for the scheduler since the individual wall time estimate of
each job needs to be (close to) the maximum job duration.

In the second approach, there are only few jobs submitted to the scheduler and tasks
are executed in parallel as job steps. The first approach has little overhead with the
jobs themselves but can lead to inefficiencies. The second approach yields inefficien-
cies due to lack of load balancing. These two common methods require no knowl-
edge of the individual run time of each task, and usually rely on a conservative run
time estimate in practice.

Scheduling Simulator

Using the QML based estimated absolute timings turns the scheduling of the remain-
ing calculations into a bin packing problem. For this problem we used the heuristic
first fit decreasing (FFD) algorithm which takes all run time estimates for all tasks,
sorts them in decreasing order and chooses the longest task that fits into the remain-
ing time of a compute job (for more details on FFD, see section 2 in the SI). If there
is no task left that is estimated to fit into a gap, then no task is chosen and resources
are released early.

We implemented a job scheduling simulator assuming idempotent uninterruptible
tasks for all three job schedulers: Conventional job arrays, conventional job steps,
and our new QML based job scheduler. Using a simulator is particularly useful be-
cause the duration of the job array and job step approaches depend on the (random)
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order of the jobs, and therefore requires averaging over multiple runs. We used this
simulator in the context of two environments: our university cluster sciCORE (de-
noted S) where users are allowed to submit single-core jobs and the Swiss national
supercomputer (CSCS, denoted L) where users are only allowed to allocate entire
compute nodes of 12 cores. In all cases, we assumed that starting a new job via the
scheduler takes 30 seconds and that every job queues for one hour. These numbers
have been observed for queuing statistics of sciCORE and CSCS.

4.5 Results and Discussion

4.5.1 Toy System

FIGURE 4.4: 2D non-linear toy systems consisting of the Rosenbrock
(“Rosen”) and Himmelblau (“Him”) functions and minimum search
with three optimizers (Nelder-Mead (NM), BFGS, and Newton-CG
(N-CG)). a) Learning curves showing the prediction error of KRR for
Rosen (solid lines) and Him (dashed lines) function using starting
point (x, y) as representation input. b) Top row shows the function
values for Rosen (left) and Him (right). Row two, three, and four
show the number of optimization steps (encoded in the heat map)
for 10200 starting points for NM, BFGS, and N-CG, respectively. c)
Row two, three, and four show the relative prediction error of the ML
model trained on the largest training set size N = 3200 for NM, BFGS,

and N-CG, respectively.

From the total data set (10200 optimizations) 3200 were chosen randomly for ev-
ery combination of optimizer and function and the prediction error was computed
for different training set sizes N. Figure 4.4 a) shows the learning curves for the
Rosenbrock (“Rosen”) and the Himmelblau (“Him”) functions. Well behaved learn-
ing curves were obtained for both functions and all optimizers. The ML models
for Him-BFGS and Him-N-CG have a lower offset because the variance of the data
set is smaller (between 0 and 25 optimization steps) than for the others (∼50-120
steps). The offset of Rosen-Newton-CG can be explained by the truncated runs
which caused a non smooth area in the function space (x < −0.5 and y > 2.5)
which leads to higher errors.

In addition to the learning curves, we computed the relative prediction errors of
the different optimization runs. These results are shown in Figure 4.4 c). As ex-
pected, the errors get larger when the starting point is close to a saddle point: small
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TABLE 4.2: QML results (normalized prediction errors) for seven task
and both representations (BoB and FCHL) for largest training set size

(Nmax).

Calculation SP GO TS

Label QM9SP
CC/DZ QM9SP

CC/TZ QMspinSP
MRCI QM9GO

B3LYP QMrxnGO
MP2 QMspinGO

CASSCF QMrxnTS
MP2

Nmax 5000 3200 2000 3200 6400 1200 1000

BoB [%] 2.0 3.3 32.7 42.5 40.5 47.8 32.9

FCHL [%] 1.3 1.6 30.9 37.6 38.9 39.8 27.0
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FIGURE 4.5: Learning curves showing normalized test errors (cross
validated MAE divided by median of test set) for seven tasks us-
ing BoB (solid) and FCHL (dashed) representations. The model was
trained on wall times normalized w.r.t. number of electrons. Hori-
zontal lines correspond to the performance estimating all calculations
have mean run time (standard deviation divided by mean wall time

of the task).

changes in the starting point coordinates may lead to very different optimization
paths. These discontinuities naturally occur for any optimizer based on the local
information at the starting point and can be consistently observed in Figure 4.4 b).
Additional discontinuities can also be observed depending on the optimizer. For all
these regions larger relative errors for KRR can be observed [shown in Figure 4.4 c)]
illustrating that small prediction errors rely on a reasonably smooth target function.
In summary, we can show that KRR is capable of learning the discrete number of op-
timization steps which is a strong indication that the computational cost of quantum
chemistry geometry optimization and transition state searches should be learnable
in principle .

4.5.2 Quantum Machine Learning

Single Point (SP) Wall Times

In the following, learning of the wall times for the different quantum chemistry tasks
is discussed, the learning of the corresponding CPU times has also been investigated
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and results of the latter are given in Appendix B. Figure 4.5 (left) shows the perfor-
mance of QML models of wall times using learning curves for the SP use case. For
the two similar tasks QM9SP

CC/DZ and QM9SP
CC/TZ, the timings of the smaller basis

set was consistently easier to learn, i.e. smaller training set required to reach sim-
ilar predictive accuracy. Similarly to physical observables[60], the use of the FCHL
representation results in systematically improved learning curve off-set with respect
to BoB. It is substantially more difficult to learn timings of multi-reference calcula-
tions (task QMspinSP

MRCI), nevertheless, learning is achieved, and BoB initially also
exhibits a larger off-set than FCHL, but the learning curves of the respective two
representations converge for larger training set sizes. More specifically, for training
set size N = 1’600, BoB/FCHL based QML models reach an accuracy of 3.1/1.8,
4.3/2.4, and 33.7/31.8 % for QM9SP

CC/DZ, QM9SP
CC/TZ, and QMspinSP

MRCI, respectively.
Corresponding respective average wall times in our data-sets, distributions shown
in Fig. 4.2, average at ∼6, 15, and 480 minutes. To the best of our knowledge, such
predictive power in estimating compute timings has not yet been demonstrated for
common quantum chemistry tasks.

The extraordinary accuracy that our model can reach in the prediction of the wall
times for the QM9SP

CC/DZ and QM9SP
CC/TZ quantum chemistry tasks may be explained

by the undlying quantum chemical algorithm. The tensor contractions in the local
coupled cluster algorithm are sensitively linked to the chemically relevant many-
body interactions expressed in the basis of localized orbitals. Therefore, the compu-
tational cost can be suitably encoded by atom-based machine learning representa-
tions.

In order to investigate the relative performance of BoB vs. FCHL further, we have
performed a principal component analysis (PCA) on the respective kernels (training
set size N = 2’000) for task QMspinSP

MRCI. The projection onto the first two com-
ponents is shown in Figure 6.3, color-coded by the training instance specific wall
times, and with eigen-value spectra as insets. For FCHL, the decay of the eigenval-
ues is very rapid (tenth eigenvalue already reaches 0.1). From the PCA projection,
the number of heavy atoms emerges as a discrete spectrum of weights for the first
principal component. The second principal component groups constitutional iso-
mers. This reflects the importance of the one-body terms in the FCHL representa-
tion. The data covers well both components and the color various monotonically. All
of this indicates a rather low dimensionality in the FCHL feature space which facil-
itates the learning. The kernel PCA plot of the FCHL representation shows that the
learning problem is smooth in representation space and that there is a correlation be-
tween the property (computational cost) and the representation space. By contrast,
the BoB’s PCA projection onto the first two components displays a star-wise pattern
with linear segments which indicate that more dimensions are required to turn the
data into a monotonically varying hypersurface. The eigenvalue spectrum of BoB
decays much more slowly with even the 100th eigenvalue still far above 1.0. All of
this indicates that learning is more difficult, and thereby explains the comparatively
higher off-set.

Geometry Optimization (GO) Wall Times

Learning curves in Figure 4.5 (middle) shows that it is, in general, possible to build
QML models of GO timings for the tasks considered. We obtained accuracies for
BoB/FCHL for N = 800 of 50.0/43.3, 61.7/57.6, and 50.7/41.2% for tasks QM9GO

B3LYP,
QMrxnGO

MP2, and QMspinGO
CASSCF, respectively.



4.5. Results and Discussion 39

2 0

2

1

0

1

BoB

2000
3000

4000

0.3

0.4

0.5

0.6

0.7

FCHL

0 100
No. of EV

100

101
EV

 [a
.u

.]

0 100
No. of EV

100
103

EV
 [a

.u
.]

5

10

15

20

PCA 1

PC
A 

2

W
all tim

e [h]

FIGURE 4.6: PCA plots of kernel elements for BoB (left) and FCHL
(right) for data set QMspinSP

MRCI. The weights of the two first princi-
pal components for the molecules in the data sets are plotted against
each other and corresponding wall times are encoded as a heat map.

Insets show the first 100 eigenvalues on a log scale.

Interestingly, the comparatively larger off-set in the learning curves, however, in-
dicates that it is more difficult to learn GO timings than SP timings. This is to be
expected since GO timings involve not only SP calculations for various geometries
but also geometry optimization steps. In other words, the QML model has to learn
the quality of the initial guesses for subsequent GO optimizations. This can not be
expected to be a smooth function in chemical space. Furthermore, the mapping from
an initial geometry (used in the representation for the QML model) to the target ge-
ometry can vary dramatically when the initial geometry happens to be close to a
saddle point (or a second order saddle point in the case of TS searches, see next sec-
tion): Very slight changes in the initial geometry (or in the setup of the geometry
optimization) may lead to convergence to very different stationary points on the po-
tential energy surface. This makes the statistical learning problem much less well
conditioned than for single point calculations, which also reflects in the larger vari-
ance of the geometry optimization timings compared to single point calculations.
As such, GO timings represent a substantially more complex target function to learn
than SP timings. Note that for any task (even for the toy system applications) we
require a different QML model. The cost of the GO depends on the initial geometry
and the convergence criteria. The latter varies only slightly within a data set. The
former is part of the representation of the molecular structure and therefore cap-
tured by our model. The input structures for the task QMrxnGO

MP2 are derived from
the same molecular skeleton and are therefore very similar. The same holds for task
QM9GO

B3LYP and QMspinGO
CASSCF which are derived from QM9 molecules. The conver-

gence criteria also stay the same for all calculations within a data set and would only
cause a more difficult learning task if a machine was trained over several different
data sets. We also showed with the toy system that it is possible to learn the number
of steps for different optimizer starting from different areas on the surface (see Fig-
ure 4 b)). To further improve the performance of our model of task QMspinGO

CASSCF,
we split the GO into the first GO step (GO1) and all subsequent steps (GO2). This
choice has been motivated by our observation that most of the variance stemmed
from the first GO step (requiring to build the wave-function from scratch), while the
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subsequent steps for themselves have a substantially smaller variance. The result-
ing learning curves are shown in Figure 4.7 and justify this separation in leading
to an improvement of the QML model to reach errors of less than 25% at N = 800
(rather than more than 40%), as well as further improved job scheduling optimiza-
tion (shown below in Figure 4.10).
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FIGURE 4.7: Learning curves showing normalized test errors (cross
validated MAE divided by median of test set) for the first two geom-
etry optimization steps on task QMspinGO

CASSCF using BoB and FCHL
as representations. The model was trained on CPU times divided
by the number of electrons. Horizontal lines correspond to the per-
formance estimating all calculations have mean run time (standard

deviation divided by the mean wall time of the data set).

Transition State (TS) Wall Times

Transition state search timings were slightly easier to learn than geometry optimiza-
tion timings (see Figure 4.5 (right)). Particularly for the larges training set size
(Nmax = 1000) for BoB/FCHL we obtained MAEs of 32.9/27.0% and reduced the
off-set by ∼ 10% compared to learning curves for the GO use case. As already dis-
cussed in the previous section, the run time of GO and TS timings not only scales
with the number of electrons but also depends on the initial structure. For the tran-
sition state search, the scaffold (which is close to a transition state) was function-
alized with the different functional groups. Since the initial structures were closer
to the final TS the offset of the learning curves is lower than for learning curves of
the GO use case, where the initial geometries were generated with a semi empiri-
cal method (PM6) for task QMrxnGO

MP2, carbenes were derived from QM9 molecules
for task QMspinGO

CASSCF, and geometries for task QM9GO
B3LYP were obtained with a

different basis set.
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A summary of the results for all tasks for the largest training set size (Nmax) can be
found in Table 4.2.

Timings, Code, Hardware

Regarding hardware dependent models, within one data set we only used one elec-
tronic structure code which is also consistent with the general handling of the data
set generation. The noise that is generated using different infrastructures affects the
learning only in a negligible amount in our case, since the difference in hardware ca-
pabilities is minimal. When looking at the task QMrxnTS

MP2 where we used five differ-
ent CPU types on two clusters (Table 1 in the SI), we could not find any evidence that
different hardware affects the learning compared to other GO tasks that ran on only
one CPU type and cluster. However the hardware for these calculations is still very
similar. When it differs to a greater extant, the noise level will rise. The noise does
not only depend on the cluster itself but also on other calculations running on the
cluster which is non-deterministic and will limit the transferability of the ML mod-
els. For this reason we removed some of the timings with large I/O overhead using
Figure 3. For the QM9SP

CC tasks, the run time difference using the Intel MKL 2019
library[138] and OpenBlas 0.2.20[139] were computed for a few cases and are found to
be only within a few percents of the wall time. Furthermore, run times of a native
build of the Molpro software package version 2018.3 with OpenMPI 3.0.1[140], GCC
7.2.0[GCC], and GlobalArrays 5.7[141,142] and the shipped executable were compared
and yielded run times within a few percents of difference. The FLOP calculations
on the QM9SP

CC data set have been performed on a compute node with 24 processors
[Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz (Broadwell)]. The significant part of
the FLOP clock cycles constituted of vectorized double precision FLOP on the full
256 bit FLOP register, i. e. the essential numerical operations of the quantum chem-
istry algorithm were directly measured. Hence, FLOP count constitutes a valuable
measure of the compute cost in our case.[143] We anticipate that Hardware specific
QML models will be used in practice.

Single Point (SP) FLOPs

To provide unequivocal numerical proof that it is justifiable to learn wall times we
applied our models to FLOP counts for the task QM9SP

CC/DZ, shown in Figure 4.8.
FLOP count as a “clean” measurement (almost no noise) for computational cost was
slightly easier to learn than wall times and the learning curves show similar be-
haviour: The model trained on the same task QM9SP

CC/DZ reaches ∼4% MAE already
with just 400 training samples, while ∼1000 training samples were required in the
case of wall times using BoB. For FCHL, the performance is similar but the slope is
steeper for the FLOP model which indicates a faster learning or less noise.

4.5.3 Application: Optimal Scheduling

Job Array and Job Steps

For the scheduling optimization for all seven tasks (QM9SP
CC/DZ, QM9SP

CC/DT, QMspinSP
MRCI,

QM9GO
B3LYP, QMrxnGO

MP2, QMspinGO
CASSCF, QMrxnTS

MP2), the QML model with the best
representation (lowest MAE with maximum number of training points) was used
which in all cases was FCHL. For the FFD algorithm absolute timing predictions are
needed to make good decisions. The lower panel of Figure 9 shows the accuracy of
the QML predictions. While the individual predictions (absolute not relative) are in
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FIGURE 4.8: Learning curves showing normalized prediction errors
(cross validated MAE divided by median of test set) for FLOP count
and wall times on task QM9SP

CC/DZ using BoB and FCHL representa-
tions.

many cases not perfect and partially still exhibit a significant MAE (cf. Figure 5), this
level of accuracy is already sufficient to reduce the overhead of the job scheduling.
The lower panel of Figure 4.9 shows the accuracy of the QML predictions. While the
individual predictions (absolute not relative) are in many cases not perfect and par-
tially still exhibit a significant MAE (cf. Figure 4.5), this level of accuracy is already
sufficient to reduce the overhead or the wall time limits of the job scheduling. In
particular, in the limit of a large number of cores working in parallel, our approach
typically halved the computational overhead (data sets with closed shell systems
and TS searches) while also reducing the time to solution by reducing the total wall
time. This shows that for the scheduling efficiency problem, it is not required to
obtain perfect estimates for the individual job durations, but rather reasonably ac-
curate estimates. However, if there was the need for better accuracy, by virtue of
the ML paradigm (prediction error decay systematically with training set size) this
could easily be accomplished by decreasing the error simply through the addition of
more training data.

When comparing the different methods in the upper panel of Figure 4.9, we see
that the job array approach had no overhead for cases where single-core jobs can be
submitted separately. While this is true it means that every job needs to wait in the
queue again, thus increasing the total time to solution. For large task durations, this
effect is less pronounced but typically the job array approach doubles the wall time
which renders this approach unfavourable.

Using job steps alone becomes inefficient if the task durations are long, since the as-
sumption that all tasks are roughly of identical duration will mean that interruptions
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FIGURE 4.9: Scheduling efficiencies for the seven different tasks
(columns) assuming a certain per-job wall time limit specified in col-
umn title. Infrastructure assumptions correspond to either a large
(solid lines, L) compute center or a small (dashed lines, S) university
compute center. Top row reports CPU time overhead reduction when
using the QML based (blue) rather than the conventional (green, or-
ange) packing. Results are given relative to the total CPU time needed
for the calculations of each data set for established methods (job array
and jobs steps, see text) and our suggested method (QML). Bottom
row shows actual vs. predicted times (using FCHL as representation)
for all calculations in each data set using maximum training set size.

of unfinished calculations occur more often. Having a more precise estimate allows
for more efficient packing. This becomes important on large compute clusters where
only full nodes can be allocated: In this case, the imbalance of the durations of cal-
culations running in parallel further increases the overhead. Our method typically
gave a parallelization overhead of 10-15% for a range of data sets. For example, in
the task QMrxnGO

MP2, our approach allowed us to go to two orders of magnitude more
compute resources and have the same overhead as job step parallelization. This is
a strong case for using QML based timing estimates in a production environment –
in particular, since the number of training data points required is very limited (see
Figure 4.5).

Geometry Optimization Steps

Given that the number of steps of a geometry optimization is difficult to learn (see
lower panel of Figure 4.9), the ability to accurately predict the duration of a single
geometry optimization step allows to increase efficiency via another route. On hy-
brid compute clusters, the maximum duration of a single compute job is limited.
We suggest to check during the course of a geometry optimization whether the re-
maining time of the current compute job is sufficient to complete another step. If
not, it is more efficient to relinquish the compute resources immediately rather than
committing them to the presumably futile undertaking of computing the next step.
We refer to these strategies as the “simple approach” (take all CPU time you can,
give nothing back) and the “QML approach” (give up resources early). Figure 4.10
shows the advantage of the QML approach: it allows to go towards shorter compute
jobs and reduces the CPU time overhead by up to 90% for small wall time limits
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time given relative to the wall time resulting from using the QML
approach. All geometry optimizations come from task QM9GO

CASSCF.

using the job array approach. This is more efficient for the scheduler and increases
the likelihood of the job being selected by the backfiller, further shortening the wall
time. Using the QML approach does not severely affect the wall time, i.e. the time-
to-solution. This is largely independent of the extent of parallelization employed in
the calculation (see right hand side plot in Figure 4.10). We suggest to implement
an optional stop criterion in quantum chemical codes where an external command
can prematurely stop the progress of the geometry optimization to be resumed in
the next compute job. This change can drastically improve computational efficiency
on large scale projects. Estimating the current consumption to be on the order of at
least 5·105 petaFLOPS (see discussion above in section ??) for computational chem-
istry and materials science this approach may lead to potentially large savings in
economical cost.

4.6 Conclusion

We have shown that the computational complexity of quantum chemistry calcula-
tions can be predicted across chemical space by QML models. First we looked at
a 2D non-linear toy system consisting of example functions which are known to be
difficult to optimize. Using these test functions and three optimizers, we build a first
ML model and the learning curves show that it is possible to learn the number of op-
timization steps using only the starting position (x, y). Representations are designed
to efficiently cover all relevant dimension in the given chemical space. Hence, if the
computational cost is learnable by QML models, it is a reasonably smooth function
in the variety of chemical spaces that we considered. This is a fundamental result.

Our approach succeeds in estimating realistic timings of a broad variety of represen-
tative calculations commonly used in quantum chemistry work-flows: single-point
calculations, geometry optimizations, and transition state searches with very dif-
ferent levels of theory and basis sets. The machine learning performance depends
on the quantum chemistry method and on the type of computational cost that is
learned (FLOP, CPU, wall time). While the accuracy of the prediction is shown to
be strongly dependent on the computational method, we could typically predict the
total run time with an accuracy between 2% and 30%.
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Exploiting QML out-of-sample predictions, we have demonstrably used compute
clusters more efficiently by reordering jobs rather than blindly assuming all calcula-
tions of one kind to fit into the same time window. Without significant changes in
the time-to-solution, we reduced the CPU time overhead by 10% to 90% depending
on the task. With the scheme presented in this work, compute resource usage can be
significantly optimized for large scale chemical space compute campaigns. To sup-
port this case, all relevant code, data, and a simple-to-use interface is made available
to the community online[144].

We believe that our findings are important since it is not obvious that established
QML models, designed for estimating physical observables, are also applicable to
more implicit quantities such as computational cost.
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Chapter 5

Quantum Chemistry: E2 vs. SN2

Thousands of reactants and transition states for competing E2 and S2 reactions
G.F. von Rudorff, S. Heinen, M. Bragato, O.A. von Lilienfeld; Machine Learning: Science and Technol-
ogy, 1, (4), 045026

5.1 abstract

Reaction barriers are a crucial ingredient for first principles based computational
retro-synthesis efforts as well as for comprehensive reactivity assessments through-
out chemical compound space. While extensive databases of experimental results
exist, modern quantum machine learning applications require atomistic details which
can only be obtained from quantum chemistry protocols. For competing E2 and SN2
reaction channels we report 4,466 transition state and 143,200 reactant complex ge-
ometries and energies at respective MP2/6-311G(d) and single point DF-LCCSD/cc-
pVTZ level of theory covering the chemical compound space spanned by the sub-
stituents NO2, CN, CH3, and NH2 and early halogens (F, Cl, Br) as nucleophiles and
leaving groups. Reactants are chosen such that the activation energy of the com-
peting E2 and SN2 reactions are of comparable magnitude. The correct concerted
motion for each of the one-step reactions has been validated for all transition states.
We demonstrate how quantum machine learning models can support data set exten-
sion, and discuss the distribution of key internal coordinates of the transition states.
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5.2 Introduction

Reactions are the very core of chemistry and their understanding is crucial for molec-
ular design problems: Even if a compound has been identified to be interesting for
a certain application, a reaction pathway has to be found to connect abundant com-
pounds to the desired target molecule. Large experimental databases of reaction
paths with associated barriers and yields have been compiled to that end[145] and
have been proven to be useful in the design of reaction steps[146,147] or for the opti-
mization of reaction environments[148].

These databases however, rely on careful experimental work and would benefit from
a computational perspective, since their extension relies on manual work. As a con-
sequence, they are of limited detail and size when compared to chemical space.
High-throughput calculations are one way of obtaining reaction paths, but pose an-
other complex problem: Finding the relevant transition state geometries is techni-
cally difficult, in particular if the reaction pathway is not known beforehand, since
it requires finding the saddle points on the potential energy surface[149–151]. As a
consequence, previous computational work reporting on transition state configura-
tions covered only a modest number of cases, and employed a wide range of levels
of theory[152–161]. Additionally, an accurate representation of the Minimum Energy
Path requires knowledge of the conformational space spanned by the reactant and
products, a challenging task by itself[162,163]. Furthermore, not all established quan-
tum chemistry methods are suitable for yielding accurate potential energies of reac-
tive processes[152,162]. Direct comparison of calculated energy barriers to experiment
in itself is often impracticable since the relevant barriers require the calculation of
ensemble-averaged free energies in explicit solvent. This task on its own is already
challenging just for a single molecule[164] and might be computationally prohibitive
for large numbers of reactions. In the reverse picture, gas-phase reaction experi-
ments are particularly challenging but possible in some cases.[165,166]

With recent successes of machine learning models in the context of exploration of
chemical space[93] e.g. non-covalent interactions[167], response properties[168], and
molecular forces[169], it would be desirable to also explore reaction space. Some ini-
tial work in this direction has been done already[170–178]. For any machine learning
approach, consistent data sets are of high value for training and validation. Typi-
cally, a single study in literature gives about five (experimental) to fifty (computa-
tional) transition state geometries or energies. This is insufficient for the training of
converged and meaningful quantum machine learning models. Furthermore, atom-
istic details (geometries) are often lacking in the case of experimental data, while
level of theory used in the case of theoretical studies can often no longer be con-
sidered to be state of the art. While it is possible to merge reaction data from dif-
ferent sources or to learn their respective differences in the potential energy sur-
face by means of Delta machine learning (∆-ML)[137], multi-fidelity machine learn-
ing models[179], multi-level combination grid technique[179] or transfer learning[180],
the resulting multilevel approaches require at least part of the data to be evaluated
in many different sources. Thus there is considerable need for one large consistent
data set which subsequently could be used as a basis for multilevel machine learning
models and their application in reaction design. When assessing possible reactions
from a given reactant, it is not always sufficient to be able to quantify just one par-
ticular pathway. Rather, several competing reaction channels need to be estimated
at the same time to decide which reactions will occur with which weight. To enable
such modeling, a homogeneous data set for competing reactions is desirable.
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Starting from the lowest lying conformers of the organic molecules listed in the GDB-
7[181] data set, Grambow et al[16] have just recently generated 12k transition state
geometries using the double-hybrid ωB97X-D3 density functional approximation,
allowing for any feasible reaction mechanisms. In contrast, we here focus on the
narrow reaction space obtained for typical substitutions and attacking and leaving
groups of the competing textbook reactions E2 and SN2 with the specific intent to
enable more thorough, systematic and comprehensive explorations of the nature of
the corresponding chemical compound space. Often, SN2 was used as a benchmark
reaction due to its iconic, well established mechanism[182–186], and having the ad-
vantage of a less complex transition state over its competing reaction E2[187]. Even
though the overall reaction mechanisms are well understood, their competition in
terms of exploring the chemical compound space defined by specific combinations
of substituents, leaving groups, and nucleophiles has not yet been studied in a sys-
tematic manner—to the best of our knowledge.

We include geometries of reactant and product conformers, reactant complexes, and
transition state geometries. For our calculations, we chose the MP2/6-311G(d)[188–192]

level of theory since benchmark studies have found this level to be a good com-
promise between accuracy and computational effort for the reactions under investi-
gation in particular with regards to geometries[152,193,194]. DFT methods have been
found to exhibit significant deviations for both energies and geometries[195]. Even
for hybrid functionals, it is known for a long time that their share of exact exchange
should be different for reactants and for saddle points in order to yield best accuracy[196]

which renders them inapplicable for activation energies. MP2 has been shown to be
more accurate for saddle point geometries, all else being equal[196,197]. For e.g. nu-
cleophilic substitution, the MP2 error in energies is nearly half the error of typical
DFT methods[183]. In order to further improve on the accuracy of the MP2 energies,
we also performed single-point DF-LCCSD calculations for every transition state
geometry, as well as for their reactants.

We see the main use case of this data set in the context of assessing competing re-
actions with machine learning methods. This is key to chemical synthesis design
where competing reactions could have a strong impact on the yield. With most ex-
isting data sets focused on (near-)equilibrium geometries and associated properties,
the current work offers access to a larger part of potential energy surfaces. This is
particularly challenging as the ideal machine learning model would only require the
reaction type and reactant information to estimate the transition state geometry or
its energy, since an explicit search for each transition state geometry is expensive (as
shown below). This requires strategies to estimate a property at a different point of
the potential energy surface than the explicit query configuration. To develop such
strategies, this data set might prove particularly useful. Moreover, the reaction data
set is directly applicable to cases where the low ambient temperature renders the
potential energy dominant for reaction barriers, e.g. interstellar environments. For
these cases, a list of potential reactions taking place can be derived directly from the
activation energy data in this work.

5.3 Methods and Computational Details

In our database, we have considered all 7,500 reactant molecules that can be built
from ethane with the substituents listed in Table 5.1 using the positions shown in
Figure 5.1.
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A B C D E

Rk H NO2 CN CH3 NH2

X F Cl Br

Y H F Cl Br

TABLE 5.1: Chemical space for our reaction database: substituents
R, leaving groups X and the nucleophiles Y−. Molecular skeleton is
ethane, see also Figure 5.1. The letters refer to the labels in our data

set files.

These substituents were selected for their following properties: i) electronic effects
should be maximized and ii) steric hindrance minimized. More precisely, while be-
ing as small as possible in order to make the reaction center sufficiently accessible
to the nucleophile, electron donating groups and withdrawing groups should cover
weak as well as strong inductive effects.

5.3.1 Machine Learning

In this study we used delta machine learning (∆-ML) in kernel ridge regression
(KRR) implemented in the QMLcode[65]. Kernel based methods were introduced
in the 1950s by Kriging et al.[133]. KRR uses as input a kernel function with the fea-
ture vector x to learn a mapping function to a property yest

q (xj) given a training set
of N reference pairs {xi, yi}N :

yest
q (xj) =

N

∑
i

αik(xi, xj) (5.1)

where α is the regularization coefficient and k(xi, xj) a gaussian kernel element:

k(xi, xj) = exp

(
−
||xi − xj||22

2σ2

)
(5.2)

A more detailed discussion of the KRR method employed in this work and pertinent
references can be found in Heinen et al.[2]. In the context of ∆-ML, the procedure
stays the same and only the property (y) changes from a molecular property to a
difference in properties, e.g. from yest =̂ Ea to yest =̂ ∆Ea.

The feature vector or representation x we used is one-hot encoding[68], which is a
bit vector. For every substitution site Rk, nucleophile Y and leaving group X, we
denote presence of a given combination with ones. In our case, this means that for
any transition state, six out of the 27 entries of the representation vector are ones, the
rest zeros.

5.3.2 Reactants and Products

We started from the unsubstituted case fluoroethane optimized with openbabel[198]

using the universal force field (UFF)[199] and functionalized the substituent sites Rk
in Figure 5.1 using the C++ interface of openbabel. Again, each resulting structure
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FIGURE 5.1: Energy diagram of the competing E2 and SN2 reactions,
exemplifying kinetic vs. thermodynamic control, respectively. Reac-
tant conformers (RS,E) are shared between the reactions, while tran-
sition states (TSS/E), product conformers (PS/E), reactant complexes
(R’S/E) ,and product complexes (P’S/E) are specific to each reaction.
For each reaction, the energy difference between transition state and

reactant complex is the activation energy ES/E
a .

was optimized with UFF to remove potential bad contacts. Using the Experimental-
Torsion Knowledge Distance Geometry (ETKDG) method as implemented in RDKit[200],
we searched for 1,000 conformer geometries. They subsequently were ordered by
UFF energy. Starting from the most stable conformer, all those configurations were
included in the followings steps if and only if their root mean squared difference
(RMSD) to the previously accepted configuration was at least 0.01 Å or the energy
difference between the two was at least 0.1 kcal/mol.

The resulting conformer candidate configurations were relaxed at MP2/6-311G(d)
level with ORCA 4.0.1[188–190,201–203] to be compatible with the level of theory to be
employed for the transition state search. For each of these minimized configurations,
all possible nucleophiles given in Table 5.1 were placed along the expected axis of
the CH bond in Figure 5.3. With the nucleophile being constrained to that axis, the
geometries were optimized to obtain an estimate of the reactant complex geometry.

For each of these reactant complexes, we subsequently lifted the constraint and re-
laxed further. This was helpful as the potential energy landscape around the reactant
complex is comparably shallow and therefore direct optimization to the free reactant
complex was often ineffective.

Each unconstrained reactant complex was validated using a variety of geometrical
criteria to ensure that the more than 100,000 minimum energy geometries repre-
sented meaningful configurations. The overall procedure is shown in Figure 5.2.
First, we required the reactant complex to constitute two fragments based on the
topology obtained from MDAnalysis[204] where one fragment needed to be of ex-
actly one atom, i.e. the nucleophile. This is to avoid erroneous fragmentation where
e.g. a proton is abstracted from the reactant. In the case of E2 reactions, we required
that the angle C–H· · ·Y must not be smaller than 178 degrees since configurations
with larger angles indicate trapping of the nucleophile by other hydrogen atoms of
the reactant not involved in this particular reaction channel.

For SN2, more validations are required.
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FIGURE 5.2: Validation procedure for reactant geometries starting
from a candidate reactant structure to the decisions whether to accept

or discard that candidate geometry.
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• The C· · ·Y distance had to be at least 1.14 Å, 1.41 Å, 1.86 Å, and 2.04 Å for hy-
drogen, fluorine, chlorine, and bromine, respectively. This avoids configura-
tions that are actually product complexes. Due to the low activation energy for
many such cases, a geometry optimization can end up in a product complex
minimum from a reactant complex initial guess.

• To avoid trapping of the nucleophile by reactant hydrogen atoms, the distance
between the nucleophile and the closest hydrogen of the reactant is required
to be at least 0.78 Å, 0.96 Å, 1.33 Å, and 2.48 Å for hydrogen, fluorine, chlorine,
and bromine, respectively.

• Since the SN2 reaction requires nearly planar bonds for the reaction center, we
require that the angle X· · ·C· · ·Y must be at least 178 degrees.

• We avoid artificially stretched geometries by requiring no carbon-carbon dis-
tance to be within 1.65–2 Å and no nitrogen-oxygen distance to be within 1.5–
2.5 Å.

Whenever these validation steps were successful, the lowest such minimum from all
conformers investigated is considered to represent the reactant complex. Otherwise,
the lowest energy configuration from the constrained optimization is taken as an
approximation of the reactant complex. In the latter case, ∆-ML[137] was employed to
estimate the residual relaxation energy between the constrained and unconstrained
reactant complex.

Duplicate reactant and product conformer geometries were identified using the FCHL19[169]

representation. By that measure, only unique geometries are retained. This test was
not applied to reactant complexes as their local minima energies and geometries can
be very similar yet distinct.

5.3.3 Transition States

Using Gaussian09[205] for an initial transition state geometry with B3LYP/6-31G*[125,126,206–209]

and subsequently ORCA 4.0.1 for a final transition state with MP2, we first found
the transition state of the unsubstituted case with chloride as nucleophile. Function-
alization followed the same procedure as for the reactants. Using these starting ge-
ometries, transition states were obtained via eigen mode following as implemented
in ORCA. After a transition state was found, the local Hessian matrix was obtained
from a numerical frequency calculation by finite displacements as implemented in
ORCA.

Once a transition state was found for a combination of the four substituents, this ge-
ometry was employed as starting geometry for further transition state searches for
missing cases where exactly one out of the four substituents was different from the
case where a validated transition state has been found. This scheme was used only
for those molecules where the substituent that was to be replaced did not have the
same functional group as the neighbouring substituent on the same carbon atom.
For some cases, this procedure was employed several times in a row, each time re-
sulting in an additional set of transition states which served as starting guesses. Sim-
ilarly, the nucleophile of validated transition states was replaced to obtain promising
starting geometries for the transition state search.

Once the transition state geometry has been found for any potential reaction target,
the Hessian was evaluated to ascertain that the geometry in fact is a transition state



54 Chapter 5. Quantum Chemistry: E2 vs. SN2

with exactly one imaginary frequency. We only included a transition state in our
data set if this frequency was at least 400 cm−1 and that the resulting motion corre-
sponding with this one normal mode was as shown in Figure 5.3 (left column). The
ethane skeleton features two carbon atoms Ck, where the one with substituents R1
and R2 is numbered C1. For the E2 transition state, X, Y and the hydrogen atom
were displaced along the normal mode and checked if the distances C2-H as well as
C1-X were larger and the C2-Y distance was smaller compared to the non-displaced
geometry. In the SN2 transition state, the nucleophile and leaving group were dis-
placed along the normal mode and C1-X was compared to C1-Y.

C1 C2

FIGURE 5.3: Illustration of validation procedures for generating E2
(top) and SN2 (bottom) geometries. Normal mode requirements for
transition states (left column) show concerted motions which are
characteristic for the reaction in question (red arrows point towards
product, blue arrows towards reactant). Bond cleavages tested for re-
actant complexes and product complexes are shown in the mid and
right column, respectively. Blue perpendicular lines correspond to
removal of Y−, YH and X− for E2 and X− or Y− for SN2 leading to
infinite separation as shown in Figure 5.1). Bond cleavage indicated

by red perpendicular lines corresponds to product formation.

While the investigation of the normal modes alone ensures that the vibrational mo-
tion belongs to the main configurational change the molecule undergoes during each
reaction, it is not a sufficient criterion that this particular transition state geome-
try actually connects reactant and product. We use the intrinsic reaction coordinate
(IRC)[210] as final criterion to ensure that the transition state indeed connects a valid
reactant complex with a valid product for the reaction in question. The IRC is com-
monly employed to find a reaction pathway starting from a transition state. The
Cartesian IRC is given by the steepest descent path in forward and backward di-
rection of the reaction. We use steepest descent as implemented in ORCA to trace
the Cartesian IRC. If the energy curvature near the transition state and along the re-
action coordinate is small, steepest descent paths can become subject to numerical
instabilities. To avoid this issue, we approximate the IRC close to the transition state
by a line scan in either direction based on the normal mode displacement of imag-
inary frequency. From the final point of the line scan, a regular steepest descent is
followed until a local minimum has been reached.
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Since the sign of the normal mode of imaginary frequency is not fixed with respect
to the direction of the reaction, we analyze the minimum energy endpoints of the
IRC to classify them as either close to reactant or close to product based on the bond
length as shown in Figure 5.3. If and only if exactly one of the endpoints is found to
be close in geometry to a reactant configuration and the other is found to be close in
geometry to the product configuration, the corresponding transition state is included
in our data set. To test whether the configurations are close to reactant or product,
we measured C2-H distances for the E2 case and C1-X and C1-Y distances for the
SN2 reaction to ensure bonds have been broken as shown in Figure 5.3.

For cases where several validated transition states for the same reaction have been
found, we consider the lowest one for the reaction barrier.

Finally, we performed single-point DF-LCCSD/cc-pVTZ calculations, as implemented
in Molpro2018[211–217] using the extremal geometries as obtained with MP2/6-311G(d).
All in all, the complete generation of the data set took about 2.8 million core hours.

5.4 Results

5.4.1 Data

Our resulting data set contains 4,466 validated transition state geometries, of which
2,785 are for SN2 (TSS) and 1,681 for E2 (TSE). Based on 26,997 reactant conformers
(RS,E), we identified 81,950 constrained reactant complexes for E2 (R’E) and 57,642
constrained reactant complexes for SN2 (R’S) which in turn have been refined to
yield 2,030 unconstrained reactant complexes for E2 (R’E) and 1,532 unconstrained
reactant complexes for SN2 (R’S). Finally, we have found 15,706 SN2 product con-
formers (PS) and 9,588 E2 product conformers (PE). All geometries are calculated at
MP2/6-311G(d) level of theory and given as XYZ files in this work. Two additional
files specify all individual energies and activation energies, respectively. The labels
in the text files relate to the labels in table 1.
All data is available in the materials cloud (https://doi.org/10.24435/
materialscloud:sf-tz).

5.4.2 Geometries

As shown in Figure 5.4, we were able to find many transition states for a variety
of substituents, nucleophiles and leaving groups. This means that we have reached
a substantial coverage of the chemical space in question, which is key for machine
learning. The challenge here is the low success rate of the transition state search
which might have been the key reason why such data sets have not yet been pub-
lished earlier. In particular, machine learning models will benefit from the compara-
bly low noise in the data set coming from our validation procedure. Moreover, the
data set features many different combinations of substituents such that there is con-
siderable promise that their interplay for the competing reactions can be analysed
and understood.

As in any iterative optimization scheme, convergence thresholds influence the final
results. This is the case for a transition state search as well and might potentially
give rise to some small noise in the transition state geometries. Since we calculated
the explicit Hessian matrix, we know that the transition state geometries reported in
this data set are indeed saddle points, and that their mass-weighted normal modes
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FIGURE 5.5: Overview scatter plot of atomic positions of scaffold
carbon atoms and nucleophiles and leaving groups for all transition
states for E2 (top row) and SN2 (bottom). Transition state geometries
have been translated such that C1 (top left) or C2 (top right and bot-
tom) are in the origin. Additionally, they have been rotated such that
all atoms shown with the exception of the hydrogen sites in the top
left panel are planar. Coordinates of other atoms have been projected

into the figure plane.
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represent the concerted rearrangement expected for E2 and SN2 reactions. Together
with the tight convergence criteria required for transition state optimization, this
means that our data set contains only highly compatible transition state geometries
for all the validated combinations of substituents, nucleophiles and leaving groups.

This is demonstrated in Figure 5.5 which shows a scatter plot of the most important
internal coordinates for the transition states. The reduction of dimensionality from
the more complex 3D geometry is obtained by placing one of the two central carbon
atoms in the origin and then aligning the carbon-carbon bond along one Cartesian
axis. The other markers then show the position of one atom for each transition state
found. For E2 reactions, the transition state geometry has been rotated such that all
three points shown in the corresponding panels are exactly within one plane. For
the SN2 case, this is not possible, as the four atoms in question are not necessarily ex-
actly in a plane even though they are very close to that. For this panel, the projection
on the fitted plane through all four points is shown. For the internal carbon-carbon
bond, the variance of the bond length is significantly higher for E2 than for SN2, as
shown in Figure 5.5. This can be explained by the nature of the two reactions: While
E2 consists of a concerted action on both carbons, SN2 happens only at one of the
two carbons. We also see that each element for the nucleophile and leaving group
has its own distribution of positions relative to the two central carbon atoms. This
distribution reflects the impact of the different substituents on each transition state
geometry. It is interesting that fluorine atoms exhibit much less spatial variation
as leaving group than other halogens for E2 while this is not at all the case for the
role of fluorine as nucleophile in the very same reaction. This is likely attributed to
the comparably short bond distance of fluorine for the leaving group, since in the
case of the nucleophile this distance is increased due to one intermediate hydrogen
atom between the central carbon and the nucleophile. The reduced distance in the
former case then would lead to a more pronounced Coulombic interaction with the
molecule, effectively restraining the fluorine atom to a smaller volume of configura-
tional space.

The centers of the positional distributions of the three halogens as leaving group
increase with the period of the element, which is in line with typical bond radii
for these elements. This is more pronounced in the case of the nucleophiles in E2
reactions where the intermediate hydrogen atom reduces the interaction between
nucleophile and molecule. The result is that the nucleophile positions are spread
out on arcs around the central carbon with most of the positional freedom captured
by the intermediate hydrogen atom. Again, the radii of the halogen arcs follow the
period of the elements, while a hydrogen as nucleophile is most flexible in regards
to its distance from the central carbon.

For the distribution of internal coordinates for the SN2 reaction in Figure 5.5, two
features are most striking: the triangular domain of the positions of halogenic nucle-
ophiles and the bimodal distribution of hydrogens in the same case which in turn is
mirrored in a bimodal distribution for the leaving group positions for all elements.

The triangular domain for halogenic nucleophiles in Figure 5.5 can be explained
by their electrostatic interaction with the reactant molecule in gas phase. For the
transition state to be a saddle point, all but one degrees of freedom must yield an
increase of energy. At the tip of the triangular domain, there are three bounds to ob-
serve. First, if the distance to the carbon forming the reaction center would decrease,
then the binding energy gain would become dominant, so this distance needs to
be slightly above the equilibrium bond length. Secondly, the direction towards the
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FIGURE 5.6: a) MP2 energies of constrained geometries. b) ∆Ea
of constrained to unconstrained geometries as obtained from quan-
tum chemistry calculations (training data for the ML models). Inset:
Learning curves for the ∆-ML models (constrained to unconstrained
energies) illustrating test errors (MAE in kcal/mol) vs training set
size (N). c) ML shifted MP2 energies. d) LCCSD energies on un-
constrained MP2 geometries. e) ∆Ea of MP2 to LCCSD energies as
obtained from quantum chemistry calculations (training data for the
ML models). Inset: Learning curves for the ∆-ML models (MP2 to
LCCSD energies) illustrating test errors (MAE in kcal/mol) vs train-

ing set size (N). f) ML shifted LCCSD energies.

planar substituents R1 and R2 would reduce the distance between the partially neg-
atively charged nucleophiles and the partially positively charged hydrogen atoms
of the substituents. This Coulombic interaction is more pronounced in gas-phase
and restricts the possible geometries for transition states in this direction. Finally,
pushing more towards the other carbon atom of the reactant skeleton (upwards in
Figure 5.5), would be unfavourable in the sp2 hybridisation of the reaction center.
Only for larger distances of the nucleophiles to the reaction center, deviations from
the last two constraining factors become possible, hence the triangular shape of the
domain for each element.

The bimodal distribution of the hydrogen nucleophiles for SN2 as shown in Fig-
ure 5.5 correlates with the leaving group in the corresponding reaction. Only leaving
groups of chlorine and bromine allow a distance C2-H larger than 2 Å. This could be
linked to the substantially higher electronegativity of fluorine, pulling more of the
C2 electron cloud towards the leaving group, allowing for a shorter distance to the
H−.

Results such as the triangular domains and the bimodal distribution can be easily
identified in large homogeneous data sets such as this one and can be interesting
test cases for machine learning models for phenomena resulting from the complex
interplay of competing physical interactions.

5.4.3 Energies

Based on the conformational search for the reactant geometries and the validated
transition states, we could calculate activation energies for both reactions. Figure 5.6
shows the broad distribution of said activation energies which span about 50 kcal/mol.
In general, E2 activation energies are lower than SN2 activation energies. Since the
activation energies are defined as the difference in energy between the transition
state and the reactant complex, the nature of the reactant complex is highly relevant.
This is exemplified by the significant portion of negative activation energies if we
consider the constrained approximation of the reactant complex alone (panel a) in
Figure 5.6).
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These spurious negative activation energies result from two aspects: the finite num-
ber of conformers tested as potential reactant complex geometry and the constraint
enforcing the characteristic alignment of the nucleophiles with the molecule when
forming a reactant complex. To alleviate the impact of the former effect, we searched
for more conformers until the number of negative activation energies could not be
reduced any further despite testing of additional conformers. Here, the small size
of the molecular skeleton was helpful, as only a few conformers can be realized for
each molecule in our chemical space. We dealt with the second reason for negative
activation energies by removing the constraint for the characteristic alignment of
the nucleophiles with the molecule. This constraint was needed initially to ensure
that the relaxation (described in the Methods section above) did not converge to an
irrelevant reaction complex where the nucleophiles would be trapped by the par-
tially positively charged hydrogen atoms of the substituents. Since the minimum of
the reaction complex is only shallow, this initial constraint drastically improved the
success rate of finding reactant complexes matching the reaction mechanism.

Relaxing the reactant complexes further without the constraint again bears the risk
of the substituents trapping the nucleophiles. Consequently, many but not all reac-
tant complexes could be refined this way: 301 and 348 targets for E2 and SN2, re-
spectively. We expect that turning the constraint into a restraint that subsequently is
reduced during the minimization until the unconstrained minimum is found could
be one route to identify the correct relaxation energy for all reactant complexes in
our data set. However, this would be extremely costly and is subject to many de-
grees of freedom, like the speed at which the restraint is removed such that this
route is not feasible for the thousands of reactant complexes we have in our data set.
Therefore, we trained a one-hot-encoding KRR machine learning model to take the
explicit relaxation energies we have found and to predict the relaxation energies for
the remaining compounds. These relaxation energies span about 15 kcal/mol. We
could machine learn the relaxation energy down to prediction errors of 1.5 and 1.8
kcal/mol (for 280 randomly chosen training instances) for two separate models for
SN2 and E2 reactions, respectively (see inset panel b) of Figure 5.6). This is much less
than the expected error of the quantum chemistry method that we use, MP2. We do
expect that more sophisticated machine learning methods could possibly improve
upon this accuracy.

Panel b) in Figure 5.6 shows the activation energies for those barriers where we were
able to find the explicit minimum geometry for the unconstrained reactant complex.
The fact that this exhibits nearly no negative activation energy is in line with our ob-
servation that searching for additional conformers as basis for the reactant complex
did not yield any further change to the activation energies. Using the explicitly cal-
culated relaxed reactant complexes where available and including a machine learned
relaxation energy in the activation energy for all other reactions, we obtain our final
MP2/6-311G(d) and ML corrected MP2/6-311G(d) numbers for the activation en-
ergy, shown in panel c) of Figure 5.6 which now span 60 kcal/mol for SN2 reactions
and 50 kcal/mol for E2 reactions.

Comparing panels a) and c) in Figure 5.6 shows how the number of negative acti-
vation energies has been greatly reduced by removing the constraint on the reactant
complex, confirming that this was the main reason for negative activation energies
in the initial case of panel a). Calculating activation energies directly from the reac-
tants at infinite separation is no substitute for this complicated procedure of correct-
ing for the constraint impact. This is due to the significant interaction energy gained
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in forming the reactant complex in the E2 case where the negatively charged nucle-
ophile approaches a hydrogen. For SN2, in few cases the reactant complex might be
higher in energy than the reactants at infinite separation.

Given the documented quality of MP2 geometries for substitution reactions[152], the
main difference to higher level of theory than MP2 is expected to come from higher-
quality energies for MP2 geometries. Since higher level of theory calculations are not
affordable in the context of the geometry optimizations for this many configurations,
additional single points on top of MP2 geometries recover at least a substantial part
of the difference in the potential energy landscape. For those cases where we have
both the transition state and the unconstrained reactant complex, we performed DF-
LCCSD/cc-pVTZ calculations. The explicit data is shown in panel d) of Figure 5.6.
The difference to the MP2 data however is more interesting and shown in panel e)
of the same figure. While the distribution of the corrections is centered around zero,
the typical correction is on the order of a few kcal/mol with only few substantially
larger values.

Explicit calculations of the LCCSD energy are only accessible for cases where we
have an explicit molecular geometry. If the unconstrained geometry optimization
did not successfully find the shallow minimum of the reactant complex, then this
explicit molecular geometry is not available. To extend the coverage of the LCCSD
correction which improves the accuracy of the activation energy data, we built a
one-hot encoding machine learning model that predicts the LCCSD energy for the
missing geometries. This ∆-ML approach exhibits learning with an error of less than
1 kcal/mol (SN2) and 1.5 kcal/mol (E2) after training on 280 instances. After this
second step, we obtain our final activation energies which have a slightly broader
distribution than before, shown in panel f) of Figure 5.6. It is interesting to note
that this final activation energy distribution of the E2 is dramatically more skewed
towards very small values than the SN2 which appears to be more normally dis-
tributed. This could be due to the symmetry in the case of the SN2 (as also shown in
Fig. 5.5) where one covalent bond is broken as the other is formed. The E2 reaction is
less symmetric, effectively breaking one single bond while forming a double bond.
The structural lack of symmetry is also on display in Fig. 5.5.

We also note that the learning curves for the activation energy of E2 display a higher
off-set than for SN2 even though, the E2 data has a smaller magnitude and variance.
This latter aspect could be due to some extreme outliers in the E2 data set for which
values larger than 50 kcal/mol have been observed, introducing severe bias in the
mean absolute error. A median error measure might be better tempered for such a
data set.

Panel f) of Figure 5.6 shows some remaining negative activation energies. For SN2,
there are 43 such negative energies, all but one of which are from machine learning
predictions only. For E2, there are 120 such negative energies in total, 79 of which
come from machine learning predictions. Therefore, for the majority of cases the
machine learning model needs improvement, possibly by adding more explicit un-
constrained reactant complexes. The cases where the explicitly calculated activation
energies are still negative likely come from a finite search of conformer geometries,
meaning that some unconstrained reactant complex minima have not been found. In
our data set, we include these negative activation energies such that future machine
learning models correcting e.g. the constrained to unconstrained relaxation can test
whether they improve upon our approach.
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5.5 Conclusion

We present a large comprehensive data set of key geometries for the two compet-
ing E2 and SN2 reactions. We report energies and geometries obtained in a consis-
tent and systematic manner such that this data set can serve as a playing ground
for machine learning models dealing with competing reaction channels for a broad
range of substituent combinations. The substituents have been chosen to reflect a
substantial chemical diversity over a wide range of electron donating and electron
withdrawing effect strengths. We have used the internal consistency of the data set
to discuss the distribution of structural effects in transition state geometries. This
was only made possible due to the large chemical space covered by our calculations.
We have shown how simple machine-learning models can be used to reduce the
computational cost and to curate and extend (imputation) the data set in such high-
throughput efforts. The entire data set including geometries and energies at DF-
LCCSD/cc-pVTZ//MP2/6-311G(d) and MP2/6-311G(d) level of theory is available
as part of this publication.
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Chapter 6

Quantum Machine learning: E2 vs.
SN2

Toward the design of chemical reactions: Machine learning barriers of competing
mechanisms in reactant space
S. Heinen, G.F. von Rudorff, O.A. von Lilienfeld; The Journal of Chemical Physics, 155, (6), 064105

6.1 Abstract

The interplay of kinetics and thermodynamics governs reactive processes, and their
control is key in synthesis efforts. While sophisticated numerical methods for study-
ing equilibrium states have well advanced, quantitative predictions of kinetic behav-
ior remain challenging. We introduce a reactant-to-barrier (R2B) machine learning
model that rapidly and accurately infers activation energies and transition state ge-
ometries throughout chemical compound space. R2B enjoys improving accuracy
as training sets grow, and requires as input solely molecular graph of the reactant
and the information of the reaction type. We provide numerical evidence for the
applicability of R2B for two competing text-book reactions relevant to organic syn-
thesis, E2 and SN2, trained and tested on chemically diverse quantum data from
literature. After training on 1k to 1.8k examples, R2B predicts activation energies
on average within less than 2.5 kcal/mol with respect to Coupled-Cluster Singles
Doubles (CCSD) reference within milliseconds. Principal component analysis of ker-
nel matrices reveals the hierarchy of the multiple scales underpinning reactivity in
chemical space: Nucleophiles and leaving groups, substituents, and pairwise sub-
stituent combinations correspond to systematic lowering of eigenvalues. Analysis
of R2B based predictions of ∼11.5k E2 and SN2 barriers in gas-phase for previously
undocumented reactants indicates that on average E2 is favored in 75% of all cases,
and that SN2 becomes likely for nucleophile/leaving group corresponding to chlo-
rine, and for substituents consisting of hydrogen or electron-withdrawing groups.
Experimental reaction design from first principles is enabled thanks to R2B, which is
demonstrated by the construction of decision trees. Numerical R2B based results for
interatomic distances and angles of reactant and transition state geometries suggest
that Hammond’s postulate is applicable to SN2, but not to E2.
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6.2 Introduction
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FIGURE 6.1: Scheme for competing reactions E2 vs. SN2. Top row:
Transition states E2 (4) and SN2 (5). Middle row: Reactant and nucle-
ophile at infinite separation (1). In gas phase the energy of the tran-
sition state often lies lower than the energy of the reactants at infinite
separation[218]. Bottom row: Product geometries at infinite separa-
tion (6 and 7) and reactant complexes (2 and 3). Properties of interest
for this work are activation energies EE

a and ES
a , reactants, reactant

complexes, and transition states. Table shows substituents R, leaving
groups X, and nucleophiles Y.

To accelerate robotic experimental materials synthesis, design, and discovery[219,220]

a reliable operating system is necessary which can deploy robust virtual models of
alternative chemical reaction channels. Rapid yet accurate predictions of the kinetic
control of reaction outcomes for given reactants and competing reaction channels,
however, are still an unsolved problem. Considerable efforts in quantum chemistry
were already directed at the development of automated transition state (TS) searches
and chemical reaction paths. However, calculation of the relevant parts of potential
energy surfaces remains a difficult challenge under active research[221]. To this end,
many TS search algorithms have been introduced which can be grouped into sin-
gle or double ended methods[222,223]. An example of the former is the single-ended
growing string method[224], which uses only the reactant as starting point and then
searches minimum energy paths and transition states. Double-ended methods such
as nudged elastic band[149,225] or the two-sided growing string method[226] employ
both reactant and product geometries, to obtain a TS geometry. While successful,
both approaches are computationally demanding, and in practice often limited to
small systems with mostly single step reactions[16]. Recent advances in synthesis
planning and modern machine learning techniques hold the promise for dramatic
acceleration of such numerical challenges[227,228]. Already several artificial neural
networks to predict reaction outcomes were introduced (see[9] for a recent review),
including work based on molecular orbital interactions of reactive sites[10], molec-
ular fingerprints (template based)[11], reaction site identifiers (template free)[12,13],
scoring functions in search trees[14], sequence to sequence maps[15], and multiple
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fingerprint features[229]. However, all these machine learning models rely on experi-
mental records, meaning that they are agnostic of the underlying kinetics which are
known to be crucial for reliably predicting reaction outcomes. Neglecting the ener-
getics of chemical reactivity can be problematic, however, due to the reaction rate’s
exponential dependency on the activation energy (cf. Arrhenius equation).

To use machine learning to go beyond experimental data records and towards more
reliable virtual predictions of reaction outcomes for new chemistries, reaction con-
ditions, catalysts, or solvents, access to substantial and systematic relevant train-
ing data of fundamental energetics, e.g. encoding kinetic or thermodynamic effects,
is required[230]. Very recent first steps in the direction of quantum machine learn-
ing applied to reactivity included the prediction of H2 activation barriers of Vaska’s
complexes[231], the effect of nucleophilic aromatic substitution to reaction barriers[232],
the temperature dependency of coupled reaction rates[233], or the prediction of enan-
tioselectivity in organocatalysts[234].

In this work, we demonstrate how the reactant-to-barrier (R2B) model effectively
unifies the two directions (yield vs. energy) in order to deliver robust predictions of
reaction outcomes of competing mechanisms. We show how R2B can be used to pre-
dict and discriminate competing reaction channels among two of the most famous
text book reactions in chemistry, SN2 vs. E2[235] (See Fig. 7.1) using a quantum data
set from the literature encoding thousands of transition states obtained from high-
level quantum chemistry[3]. Using our R2B model, we complete the data set for un-
documented combinations for which transition state optimizers did not converge.
We also demonstrate how decision trees based on R2B give actionable suggestions
for experiments on how to control which reaction channel dominates, and thus the
reaction outcome. On the synthetic chemistry side, an analysis of the predicted ac-
tivation energies, as well as transition state and reactant complex geometries based
on our models suggests that Hammond’s postulate is not applicable for E2.

6.3 Methods

6.3.1 Kernel Ridge Regression

Ridge regression belongs to the family of supervised learning methods where the
input space is mapped to a feature space within which fitting is performed. The
transformation to the feature space is unknown a priori and computationally expen-
sive. To circumvent this problem, the “kernel trick”[68] is applied where the inner
product 〈xi, xj〉 of the representations of the two compounds i and j are replaced by
the so-called kernel function k(xi, xj). This results in kernel ridge regression (KRR).
A kernel is a measurement of similarity between two input vectors xi and xj. In this
work, we used the Gaussian kernel:

k(xi, xj) = exp

(
−
||xi − xj||22

2σ2

)
(6.1)

with the length scale hyperparameter σ and representation x. Using the represen-
tation of a molecule as input space, KRR learns a mapping function to a property
yest

q (xq), given a training set of N reference pairs (xi, yi). The representation FCHL19
was optimized for the Gaussian kernel and currently represents state of the art for
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energy predictions within KRR based ML models. The property yest
q (xq) can be ex-

panded in a kernel-basis set series centered on all the N training instances i,

yest
q (xq) =

N

∑
i

αik(xi, xq) (6.2)

where {αi} is the set of regression coefficients which can be obtained as follows:

α = (K + λI)−1y (6.3)

with the regularization strength λ, the identity matrix I and the kernel matrix K
with kernel elements k(xi, xj) for all training compounds. The kernel (K) within a
representation stays the same for both reactions and the difference in the R2B models
(α) enters in the change of the label (y)[236].

6.3.2 Representations

Here, we have selected four representations of varying complexity: the Bag of Bonds
(BoB)[56], spectrum of London[237] and Axilrod-Teller-Muto[58,59] potentials (SLATM),
FCHL19[60] and one-hot encoding[68].

BoB uses the nuclear Coulomb repulsion terms from the Coulomb matrix represen-
tation (CM[55]), and groups them into different bins (so-called bags) for all the differ-
ent elemental atom pair combinations. SLATM[136] uses London dispersion contri-
butions as two body term (rather than coulomb repulsion) and Axilrod-Teller-Muto
potential as three body term. While the FCHL18 parameterization accounts for one-
body effects in terms of the position of the element in the periodic table (group and
period)[61], FCHL19 limits itself to two- and three-body terms for the sake of compu-
tational efficiency[60]. Its two-body terms contain interatomic distances R scaled by
R−4, and the three-body terms account for the angular information among all atom
triples scaled by R−2.

All three geometry-based representations have been tested extensively on close-to-
equilibrium structures. Since reactive processes, by definition, deal with out of equi-
librium structures, we have also included a simple geometry free representation,
namely one-hot encoding. This representation has also been used to encode amino
acids in peptides for artificial neural networks[238,239]. In one-hot encoding, the rep-
resentation is a vector of zeros and ones (i.e. a bit vector), where only one entry is
non zero per feature. To describe the molecules, we used a bit vector for every sub-
stitution site (Ri ∈ {1, 2, 3, 4}, and one for the nucleophiles (Y) and the leaving group
(X), respectively. This results in a combined vector containing 6 bit vectors of total
length of 27 bits.

6.3.3 Training & Testing: Learning curves

To train our R2B models, the data set was split into a training set and a test set
to optimize the hyperparameters and evaluate the model, respectively. To get the
optimal hyperparameters, we used k-fold cross validation[68]. We divide the training
data into k folds and for each fold, we trained on all but one fold which was used
for evaluating the model. This procedure was done in an iterative fashion over all
the folds. We then calculated the averaged error over these folds. This was done for
different combinations of hyperparameters σ and λ.
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The input for all the geometry based R2B models was the reactants at infinite sep-
aration (Figure 7.1 compound 1). For each reaction, different reactant conformers
(yielding different reactant complexes, Figure 7.1 compound 2 and 3) have been re-
ported in the data set[3]. To obtain a uniquely defined problem for the ML models,
we canonicalized the reactant complexes by always choosing the lowest-lying one
from the source data base. Using compound 1 the kernel for both reaction channels
is the same (Ktot), which contains 2 kernels: one for the molecule (M and M’) and
one for the attacking group (Y and Y’) as shown in equation 4. Therefore, for both
reactions, the same kernel can be used, and the difference in the training enters by
the activation energy (y) in equation 3.

Ktot = K(Y, Y′) ◦ K(M, M′) (6.4)

Since one-hot encoding does not depend on the geometry, the kernel can be calcu-
lated directly for the entire system.

In order to measure the accuracy of our R2B models, we picked the best set of hyper-
parameters and trained the model using different training set sizes N and plotted the
mean absolute errors (MAE) vs. N (in a log-log plot), resulting in learning curves.
Using learning curves allowed us to see the learning behavior of our R2B models
and compare different representations. The error ε of a consistently improving ML
model should decrease following a power law for increasing training set sizes N[41],
in a logarithmic scale:

log(ε) = log(a)− b · log(N) + ... (6.5)

where a is the offset (an indicator of how well the selected basis functions fit reality)
and b the slope of the learning curve which describes the speed of which the accuracy
increases using larger training set sizes. Higher order terms (...) were neglected in
this work, as commonly done.

6.3.4 Data & Scripts

The data extracted from QMrxn20[3] are available on github[240]. The scripts used to
optimize the hyperparameters and to generate the learning curves are also available
in the same git repository.

The data set QMrxn20[3] contains 1,286 E2 and 2,361 SN2 machine learned LCCSD
activation barriers (∆Ea). From these reactions, 529 are overlapping reactions, mean-
ing they start from the same reactant (1) and go over different reactant complexes
(E2: 2 and SN2: 3) towards the corresponding transition states (E2: 4 and SN2: 5). All
geometries in the data set had been optimized with MP2/6-311G(d)[188–192] and sub-
sequently DF-LCCSD/cc-TZVP single point calculations (as implemented in Mol-
pro2018) were performed[211–217]. The backbone scaffold of all reactants is an ethane
molecule which is substituted by functional groups and a leaving group. The sys-
tem also contains the nucleophile (attacking group). The chemical composition of
the reactant complexes is shown in the table in Figure 1 and contain the functional
groups -H, NO2, -CN, CH3, and NH2, the leaving groups -F, -Cl, and -Br, as well
as the nucleophiles H−, F−, Cl−, and Br−. The molecular system (e.g. the reactant
complex) is negatively charged and contains at most 21 atoms (including hydrogens)
or 16 heavy atoms (non hydrogen atoms). To ensure the data source[3] did not con-
tain duplicated reactions, we verified this question by calculating the L2 norm of
all pairwise differences between training and test compounds of the corresponding
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FCHL19 representations and identified only three out of the 3,647 cases where that
norm is very close to zero. We have inspected these 3 cases and they correspond to
systems which only differ in the location of the same set of substituents. As such,
they are distinct but are, due to their similarity, mapped to very similar regions in
feature space. In any case, since they amount to only less than one per mille of the
datapoints, we chose to work on the original data set for better comparison to liter-
ature.

6.4 Results and discussion

6.4.1 Learning Barriers

Conventionally, the first principles based prediction of activation energies requires
the use of sophisticated search-algorithms which iteratively converge towards rel-
evant transition state geometries which satisfy the potential energy saddle-point
criterion[151,225,226]. The activation energy is then obtained as the energy differences
between reactant and transition state geometry. By contrast, our R2B models solely
rely on reactant information as input. We trained them using aforementioned ge-
ometry based representations BoB[56], SLATM[136], FCHL19[60], as well as one-hot-
encoding, to predict activation energies solely based on reactants at infinite sepa-
ration as input geometries (compound 1 in Figure 7.1). Resulting learning curves
in Figure 6.2 indicate systematically improving activation energy predictions with
increasing training set size N for E2 and SN2. For both mechanisms, the most data-
efficient R2B models (one-hot-encoding) reach prediction errors of 3 kcal/mol with
respect to CCSD reference, i.e. on par with the deviation of MP2 from CCSD, already
for less than 300 training instances. For 2’000 training instances, the prediction er-
ror approaches would 2 kcal/mol. Moreover, the lack of convergence suggests that
chemical accuracy (1 kcal/mol) could be reached if several thousand training data
points had been available. Insets in Figure 6.2 show true (Eref

a ) vs. predicted (Eest
a ) ac-

tivation barriers for both reactions. Barriers in the range of zero to fifty kcal/mol are
predicted with decent correlation coefficients (0.89 and 0.94 for E2 and SN2, respec-
tively). In short, after training on reference activation energies obtained for explicit
transition state geometries (taken from QMrxn20 data set[3]), the learning curves in
Figure 6.2 amount to overwhelming evidence that it is possible to circumvent the
necessity for explicit transition state structural search when predicting activation
energies for out-of-sample reactants.

The trends among learning curves in Figure 6.2, are consistent with literature re-
sults for equilibrium structures: The accuracy improves when going from BoB to
SLATM and FCHL19 for a given training set size[7]. Most surprisingly, however,
all R2B models based on geometry dependent representations are less accurate than
one-hot encoding. While still unique (a necessary requirement for functional R2B
models[241,242]) one-hot encoding is devoid of any structural information, and its
outstanding performance is therefore in direct conflict with the commonly made
conclusion that a physics inspired functional form of the representation is crucial
for the performance of R2B models[7,243,244]. Relying only on the period and group
information in the periodic table to encode composition, other geometry-free rep-
resentations have also been applied successfully to the study of elpasolite[245], or
perovskite[246] crystal structures. Here, by contrast, one-hot encoding provides the
compositional information for a fixed scaffold.
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One can speculate about the reasons for the surprising relative performance of one-
hot encoding. Due to its inherent lack of resolution which prohibits the distinction
between reactant and transition state geometry it could be that one-hot encoding
represents a more efficient basis which effectively maps onto a lower dimension-
ality with superior learning performance. In particular, the inductive effect (practi-
cally independent of specific geometric details) is known to dominate barrier heights
for the types of reactions under consideration[247], and it is explicitly accounted for
through one-hot encoding without imposing the necessity to differentiate it from the
configurational degrees of freedom.

Figure 2 shows one outlier per reaction. For the E2 case, the molecule closest in one-
hot encoding to the failed prediction (only differs in X and Y) has a much smaller
barrier of 12 kcal/mol. Similarly, for the SN2 reaction, the closest molecule (only
differs in X and Y) has a barrier of 24 kcal/mol. As such, this scarcity of training
instances in close vicinity to the outlier might be at the origin for such relatively
large prediction errors. To get an idea of the inner workings of the one-hot encod-
ing model, we performed a principal component analysis (PCA) of the kernel ma-
trix of the predictions which can go either way, i.e. E2 or SN2. For this subset it is
the difference in activation energy which will determine the kinetically stabilized
product. Color coding the first two components by the difference in reference acti-
vation barrier labels for the two reactions results in the graphic featured in Fig. 6.3.
Confidence ellipsoids of the covariance using Pearson correlation coefficients en-
code intuitive clusters corresponding to leaving-group/nucleo-phile combinations,
and suggest that substituents have less significant effect on trends in activation en-
ergies. However, the eigenvalue spectrum of the PCA in Figure 6.3 decays rapidly
only after the 21 eigenvalue which indicates the number of effective dimensions of
the model, and implies that the substituents, alhtough smaller, still have an effect
on the activation barrier. This is consistent with the dimensionality of the one-hot
encoding representation: the vector length is 27 (3 X’s, 4 Y’s and 4·5 R’s), which
is overdetermined, meaning e.g. the X part of the representation vector consists of
three elements F: [1, 0, 0], Cl: [0, 1, 0], or Br: [0, 0, 1]. This could also be uniquely
defined with F [0, 0], Cl: [1, 0], Br: [0, 1], which leads a dimension of 21 and is in
agreement with the dimensionality of the representation. To further investigate the
R2B model, we looked at the training set selection. It is known that for clustered
data (see Figure 3) random splits as used in this work tend to perform better than
splits along a cluster, even though random splits are more congruent with the na-
ture of the reaction space under investigation. As comparison, in a first model we
excluded the FG NO2 at position R2 and in a second model at two positions R2 and
R3 from the training to see how one-hot encoding and FCHL19 perform for known
functional groups but unknown positions in the test set. Figure 4 shows the learn-
ing curves for both cases. Although there is still learning, one-hot encoding does
not perform as good as a structural representation (FCHL19). For FCHL19 in the E2
case, the learning is not affected at all compared to random training set selection and
the model reaches a similar MAE for 800 training instances. FCHL19 is able to infer
the missing functional group at position R2 from training compounds where this FG
is present at the neighbouring position R1, since the corresponding representation
vectors are similar. Also, one-hot encoding shows learning but it is not the dominant
model anymore. In this case, learning is possible because the functional groups con-
tribute additively to the activation energy as described in Marco Bragato et. al[247].
This means, that all the other functional groups improve, except NO2 at positions R2
and R3, since it has no corresponding training data. For SN2 both models perform
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FIGURE 6.2: Learning curves Activation energy prediction errors
(out-of-sample) as a function of training set size N for activation bar-
riers (Ea) of E2 (left) and SN2 (right) using reactant geometries as in-
puts only. Results are shown for four representations (BoB, SLATM,
FCHL19, one-hot) used within KRR models. Training data refer-
ence level of theory corresponds to DF-LCCSD/cc-pVTZ//MP2/6-
311G(d), and estimated MP2 error is denoted as a green dashed hor-
izontal line. Insets: Reference vs. estimated activation barriers using
one-hot-based predictions and R2 values being 0.89 and 0.94 for E2

(left) and SN2 (right), respectively.

worse when excluding a functional group, especially for the position at R2, which is
closer to the reaction center and therefore contributes more to the barrier. This also
explains why the models perform better if two functional groups are missing in the
SN2 reaction. The second functional group at position R3 adds more barriers to the
test set with a smaller impact on the barrier (farther away form the reaction center),
which makes the learning problem easier. For larger molecules, not all combinations
of functional groups are present in the training data, rendering a cluster split a more
realistic scenario. In those cases, one-hot encoding will be less applicable and likely
outperformed by scalable approaches e.g. Amons.
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FIGURE 6.3: Kernel PCA of the training set. Kernel PCA of one hot
encoding colored by the energy difference of activation energies of the
two reactions ∆Ea = EE

a − ES
a . Inset: Eigenvalues of the kernel PCA.

Clusters represent most frequent combinations of leaving groups X
(green) and nucleophiles Y (black).

FIGURE 6.4: Learning curves across clusters test error (MAE) vs.
training set size (N) excluding NO2 from training at position R2
(spheres) and at positions R2 and R3 (diamonds) for both reactions
E2 (left) and SN2 (right). The test set only contains compounds with
NO2 at position R2 (spheres) or at positions R2 and R3 (diamonds).

6.4.2 New barrier estimates

Using one-hot encoding (leading to the most performing model) we have trained
two models, corresponding to the 1’286 and 2’361 activation energies of E2 and SN2
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transition state geometries, respectively. Subsequently, these two models were used
to predict 11’353 E2 and SN2 activation barriers for which conventional transition
state search methods had failed within the protocol leading up to the training data
set[3]. A comparison of the Rogers-Tanimoto distances (see SI) between the QM-
rxn20 dataset and the missing data points showed that the dissimilarity within the
QMrxn20 data set is comparable to the one of QMrxn20 vs the missing data points.
Together with the learning curves shown above, this suggests that our model is ap-
plicable to the missing data points from QMrxn20. A summary of the difference in
these predicted activation barriers is presented in Figure 6.5, where the x-axis corre-
sponds to the nucleophiles Y, the y-axis to the leaving groups X. For every combina-
tion of X and Y, there are 5·5 squares for the functional groups at position R1 and R2.
Within these, there are again 5·5 squares belonging to R3 and R4. Each of the squares
represents one reaction for a given combination of R1-4, X, and Y. Simple heuristic

FIGURE 6.5: Completion of data set using predictions of R2B mod-
els Differences in activation energies (∆Ea = EE

a − ES
a) for all 7,500

reactions (calculated and predicted). Every square stands for a com-
bination of R1-4, X, and Y shown in Figure 1. Positive values denote
compounds that undergo a SN2 reaction and negative values lead to-

wards an E2 reaction.

reactivity rules emerge from inspection of these results: If the nucleophile and the
leaving group are Cl, the preferred reaction is SN2. If the nucleophile and the leaving
group are F, the preferred reaction is E2. The functional groups at positions R1 and
R2 favour the E2 due to their electron donating properties which disfavour a nucle-
ophilic back side attack in the SN2 reaction. A comprehensive overview is shown in
Fig. 6.5. The same rules can be observed in Figure 6.6 which shows the distribution
of the differences in activation barrier (∆Ea) of the training, predicted and total data
set. The molecules of the extreme cases, largest difference in activation energies, are
shown for both reactions, E2 (left) and SN2 (right). Figure 6.6 shows a favouriza-
tion of the E2 reaction of a rate of roughly 75%. These results have to be taken with
caution, since this shift in E2 can also have occurred due to the composition of the
molecules in the training set, as well as the choice of small functional groups that
minimizes steric effects. A more detailed discussion of the training and the data set
completion with the R2B model can be found in Appendix C.
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FIGURE 6.6: Histogram of energy distribution of ∆Ea. Differences
in activation energies (∆Ea = EE

a − ES
a) of 529 overlapping train-

ing instances (blue), 11k predictions (orange) and all 7’500 reactions
(green). Molecules of the three highest, respectively lowest barrier

differences are shown as molecules.

6.4.3 Design rule extraction

So far, most studies based on artificial neural networks aimed at predicting chemical
reactions using experimental data do not account for the kinetics of reactions. It is
well known, however, that activation barriers are crucial for chemical synthesis and
retrosynthesis planning. This is exemplified by a decision tree for the competing
reactions E2 and SN2 in Figure 6.7. The goal of such trees is to improve the search
for better reaction pathways (lower activation barriers), by showing the estimated
change in energy when changing functional groups, leaving groups, or nucleophiles.
To extract such rules for the design problem, a large and consistent reaction data set
is needed. After completing the data set[3], we are now able to identify (given a
desired product) the estimated changes in the activation barrier, when substituting
specific functional groups, leaving groups, or nucleophiles. This way, the yield of
chemical reactions can be optimized by getting insights of the effects that functional
groups have on a certain molecule. Furthermore, this insight could be used to direct
reactions towards the desired product. Figure 6.7 shows such a possible decision tree
to determine the change in barriers while exchanging substituents. Starting from
the total data set (left energy level), the first decision considers the functional group
NH2 at position R1. Going down the tree means accepting the suggested change
and the respective compounds, while going up means declining and removing these
compounds from the data. Depending on which product is sought after, hints to
improve the energy path can be found while constantly accepting (going down) or
declining (going up) the tree. For example, if the desired reaction is E2, then the best
way is to go down on the tree (decision accepted) which adds electron withdrawing
groups to the R3 and R4 position, as well as electron donating groups to R1 and R2.
In Figure 6.7 the first decision redirects the barrier towards E2 about ∼8 kcal/mol
by adding an electron withdrawing group (NO2) on the α-carbon. On the other
hand, electron donating group at the β-carbon favour the E2 reaction because they
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facilitate the abstraction of the leaving group, which is shown in the second and the
third decision, where NH2 was added in both positions, R1 and R2. In addition to
the R2B predictions, which tell you the outcome of a specific combination of one
reaction, a decision trees gives simple rules as an coarsened aggregation that can be
used in reaction design to achieve a desired outcome.

FIGURE 6.7: Decision tree using extracted rules and design guide-
lines. Decision tree using the R2B estimated activation barriers to
predict changes in barrier heights by starting at all reactions (first en-
ergy level on the left) and subsequently apply changes by substitut-
ing functional groups, leaving groups and nucleophiles with E2 as
an example. Blue dotted lines refer to an accepted change meaning
only compounds containing this substituents at the position are con-
sidered. Orange dotted lines refer to substitution declined, meaning
all compounds except the decision are kept. Vertical lines on the right
of energy levels denote the minimum first (lower limit), and the third
(upper limit) quartile of a box plot over the energy range. Numbers
above energy levels correspond to the number of compounds left af-
ter the decision. Lewis structures resemble the decision in question.

6.4.4 Estimates of reactant and transition state geometries

Additionally to barriers, we analysed the geometries of the transition states as well
as the geometries of the reactant complexes[3]. Choosing key geometrical param-
eters, such as distances, angles, and dihedrals, we were able to train R2B models
to learn these properties using the one-hot encoding as representation. These pa-
rameters were extracted from the ethylene scaffold defining the key positions of the
substituents, leaving groups, and nucleophiles shown in Figure 6.8 compounds 2
and 3 for the E2 and SN2 reaction, respectively.
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FIGURE 6.8: Model evaluation of geometrical properties using
learning curves. Test errors (MAE) of distances dx,y, angles α and β
and dihedrals θ for both reactions E2 (a) and SN2 (b). Horizontal lines
correspond to the null model which uses the mean value of the train-
ing set for predictions. Compounds (2 and 3) illustrate the learned
properties of the E2 reaction (2) and the SN2 reaction (3) for reactant

complexes and transition states.

The parameters for the E2 reaction are the C-X distance dx, the C-Y distance dy, the
X-C-C angle α, the C-C-Y angle β, and the X-C-C-Y dihedral θ. Similarly for SN2,
we have the C-X distance dx, the C-Y distance dy, and the X-C-Y angle α. For ev-
ery parameter, a separate model was trained using the one-hot representation. Al-
though this representation does not contain any geometrical information, learning
was achieved for every parameter. Figure 6.8 shows the learning curves and as hor-
izontal dashed lines the null model which uses the mean of the training set for pre-
dictions. In the same way as for the transition state geometries, we also trained a
model for the reactant complexes. Figure 6.8 shows the learning curves for both,
transition states and reactant complexes. The results for both geometries are simi-
lar except for the dihedral of the reactant complexes. The poor performance results
from the conformer search of the reactants. Compared to bond distances, dihedrals
have multiple local minima which leads to larger differences between the reactant
and transition state structures. The variance of the dihedrals are significantly higher
which makes the learning task much harder. The one-hot representation does not
contain any geometrical information and therefore is not able to learn the different
geometries only using information about the constitution (R’s, X’s, and Y’s) of the
reactant complexes. The poor performance of the model on angles and especially
on dihedrals renders the one-hot encoding impractical for 3D geometry predictions.
The recently published Graph to Structure (G2S) QML model[248] seem to be more
suitable for the 3D coordinate prediction problem in QMrxn20.

6.4.5 Hammond’s postulate

To investigate Hammond’s postulate we took the difference in the predicted geome-
tries (dx and dy) for all 7,500 reactions for the E2 and the SN2 reaction, respectively.
Then we plotted these values against the activation energies of both reactions EE

a and
ES

a (Figure 6.9). The distances ∆dx correlate well with the energies with R2 values of
0.87 and 0.80 for E2 and SN2, respectively. This is explained by the leaving group
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FIGURE 6.9: Applicability of Hammond’s postulate.Frequency heat
map of activation energies projected onto structural differences in dis-
tances (dx and dy) between reactant complex conformers and transi-
tion states for both reactions E2 (first two plots) and SN2 (last two
plots). For SN2 a good linear correlation (R2 are 0.8 and 0.65 for dx
and dy, respectively) in agreement with Hammond’s postulate can be
observed, while for E2 only dx shows good correlation (R2 = 0.86)

whereas dy lacks correlation (R2 = 0.5).

that is bonded to the carbon atom in the reactant complex and only small changes
in distance happen moving towards the transition state geometry. For the SN2 re-
action, the backside attack of the nucleophile does not allow a broad distribution
of distances and angles in the reactant complex and the transition state. Moreover,
the changes in geometry between the reactant complex and the transition state are
modest. Therefore, the parameter ∆dy for the SN2 correlates well with the activation
energy ES

a , which results in an R2 value of 0.65. The attack of the nucleophile on the
hydrogen atom (E2 reaction) allows for a much broader distribution of the position
of the nucleophile in the transition state. This makes the learning problem more dif-
ficult, especially for a representation not including geometrical information. These
higher degrees of freedom result in an R2 value of 0.50.

Hammond’s postulate typically holds for the end points of an intrinsic reaction co-
ordinate (IRC) calculation[249–251] which leads to a local minimum close to the tran-
sition state. Therefore, the reactant only needs a few reorganisations towards the
transition state. For geometries that are farther away from the transition state (such
as in our E2), Hammond’s postulate cannot hold anymore. This means that even
though more reorganization steps towards a transition state have to be made, the
activation energy is not affected anymore. As a consequence, Hammond’s postulate
is no longer applicable.

6.5 Conclusion

We have introduced a new machine learning model dubbed Reactant-To-Barrier
(R2B) to predict activation barriers using reactants as input only. This approach ren-
ders the model practically useful, as the dependency on the transition state geom-
etry is only implicitly obtained at the training stage, and not explicitly required for
querying the model. We find that one-hot-encoding, the trivial geometry free based
representation, yields even better results than geometry based representations de-
signed for equilibrium structures. As such, our results indicate that accounting only
for the combinations of functional groups, leaving group, and nucleophile of the
reaction is sufficient for promising data-efficiency of the model. Using R2B predic-
tions, we completed the reaction space of QMrxn20[3]. Future work could include
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delta ML[18] to improve these results even further, as corroborated by preliminary re-
sults in Ref.[3], further improvements on the representation (as recently found to lead
to improved barrier predictions for enantioselectivity in metal-organic catalysts[234]),
or the inclusion of catalytic or solvent effects[252].

Using R2B predicted activation barriers, we have also introduced the notion of a
decision tree, enabling the design and discrimination of either reaction channel en-
coded in the data. Such trees systematically extract the information hidden in the
data and the model regarding the combinatorial many-body effects of functional
groups, leaving groups, and nucleophiles which result in one chemical reaction be-
ing favoured over the other. As such, they enable the control of chemical reactions
in the design space spanned by reactants. Finally, we also report on geometries of
the reactant complexes consisting of different conformers, as well as on R2B based
transition state geometry predictions. Using these results, we discuss the limitations
of Hammond’s postulate which does not hold for the E2 reactant complexes stored
in the QMrxn20 data set[3].

Supplementary Material

The supplementary material (Appendix C) contains the results used to generate the
learning curves for the barrier learning (Table 1 and 2), and the geometry learning
(Table 3 and 4). It also gives a brief explanation how the models were trained and
shows a heat map for a hyperparameter scan of sigmas and lambdas containing
the training errors (Figure 1). Additionally, we added more learning curves (bar-
rier learning) using different geometries as input for the representations. Finally,
we added a Figure 3 which compares the Rogers-Tanimoto coefficients between the
training and the test set.
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7.1 Abstract

We use energies and forces predicted within response operator based quantum ma-
chine learning (OQML) to perform geometry optimization and transition state search
calculations with legacy optimizers. For randomly sampled initial coordinates of
small organic query molecules we report systematic improvement of equilibrium
and transition state geometry output as training set sizes increase. Out-of-sample
SN2 reactant complexes and transition state geometries have been predicted using
the LBFGS and the QST2 algorithm with an RMSD of 0.16 and 0.4 Å — after training
on up to 200 reactant complexes relaxations and transition state search trajectories
from the QMrxn20 data-set, respectively. For geometry optimizations, we have also
considered relaxation paths up to 5’500 constitutional isomers with sum formula
C7H10O2 from the QM9-database. Using the resulting OQML models with an LBFGS
optimizer reproduces the minimum geometry with an RMSD of 0.14 Å. For con-
verged equilibrium and transition state geometries subsequent vibrational normal
mode frequency analysis indicates deviation from MP2 reference results by on aver-
age 14 and 26 cm−1, respectively. While the numerical cost for OQML predictions is
negligible in comparison to DFT or MP2, the number of steps until convergence is
typically larger in either case. The success rate for reaching convergence, however,
improves systematically with training set size, underscoring OQML’s potential for
universal applicability.
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7.2 Introduction

One of the fundamental challenges in quantum chemistry is the understanding of
reaction mechanisms in order to predict chemical processes. To this end, numer-
ous neural networks (reaction predictors) have been introduced, proposing the most
likely reaction path way[9–15] for a given product. These models were trained on
data obtained from experimental studies[253] only containing the molecular graph
(as SMILES strings[70,71]) and their corresponding yields. However, a crucial prop-
erty of a chemical reaction is the activation energy (i.e. the difference between re-
actant and transition state energy), linked to the kinetics of the reaction. To predict
activation energies with conventional electronic structure methods, both the reac-
tant complex geometry and the transition state geometry need to be obtained. This
is commonly done by iteratively following gradients of the potential energy surface
(PES) towards the minimum or the saddle point, respectively. Due to the iterative
nature of these schemes, imposing the repeated need to perform self-consistent field
calculations to obtain updated forces, the computational burden is as large as it is
predictable[2]. Furthermore, finding saddle points remain an additional challenge
because often enough considerable manual work is required beforehand in order to
generate reasonable initial structure guesses. Consequently, it is not surprising that
so far only few reaction data-sets which contain transition state geometries as well
as corresponding energies have been published in 2020[3,16], and 2021[254].

Only very recently, attempts have been made to use machine learning models to
speed up transition state predictions. In 2019, Bligaard and co-workers used the
nudged elastic band (NEB)[151,225] method to find transition states relying on neural
network based ∆-ML model[18] together with a low level of theory as baseline[255].
More recently, Mortensen et al. contributed the ‘atomistic structure learning algo-
rithm’ (ASLA)[256], enabling autonomous structure determination with much re-
duced need for costly first-principles total energy calculations. Lemm et. al.[257]

introduced the graph to structure (G2S) machine learning model, predicting reac-
tant complexes and transition state geometries for the QMrxn20[3] data-set without
any account for energy considerations, solely using molecular graphs as input. Also,
for 30 small organic molecules neural networks predicting energies and forces to ac-
celerate the geometry optimization in between ab initio iterations was introduced by
Meyer and Hauser[258], and by Born and Kästner[259]. Similar to G2S, Makós et al.[260]

propose a ‘transition state generative adversarial neural network’ (TS-GAN) which
estimates transition state geometries using information from reactants and products
only. This procedure allows for better initial geometries for a transition state search
reducing the number of steps towards a saddle point. Jackson et. al.[254] developed
a neural network (TSNet) predicting transition states for a small (∼ 50) SN2 reaction
dateset, as well as geometries of the QM9[67] data-set.

However, to the best of our knowledge there is no machine learning model yet using,
in strict analogy to the conventional quantum chemistry based protocol, predicted
energies and forces only within the conventional optimization algorithms in order to
relax geometries or find transition states. To tackle this challenge, we have used for
this paper the response operator based quantum machine learning (OQML)[168,169]

model with the FCHL representation[60,61] and trained on energies and forces across
chemical compound space in order to speed up geometry relaxations as well as tran-
sition state searches for new, out-of-sample compounds (see Fig. 1). As for any prop-
erly trained QML model, prediction errors decay systematically with training set
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FIGURE 7.1: Schematic potential energy surfaces in chemical com-
pound space. Arrows show the working principle of OQML based it-
erative structural optimization: Training on reaction profiles of differ-
ent chemical systems (purple), the OQML model is able to interpolate
forces and energies throughout chemical compound space enabling
the relaxation of the reactant and the search of the transition state
(orange). Input geometries (squares) are easily obtained, e.g. from

universal force field predictions.
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size, and we demonstrate for the chemistries presented that encouraging levels of
accuracy can be reached.

First, we have investigated geometry optimizations for all constitutional isomers
with C7H10O2 sum formula drawn from QM9[67]. After training the OQML model
on random geometries along the optimization path of of 5500 calculations going
from a UFF minimum energy geometry to the B3LYP/6-31G(2df) minimum geome-
try we optimized the remaining 500 constitutional isomers resulting in a total RMSD
of only 0.14 Å. To probe transition states, we have trained OQML models on the
QMrxn20 data-set[3] with thousands of examples for the SN2 text book reaction at
MP2/6-311G(d) level of theory, enabling the relaxation of reactant complexes and
the search of transition states which both compare well to common density func-
tional theory (DFT) results. As shown in Figure 7.1 this means training the OQML
model on quantum chemistry reference energies and forces along the optimization
trajectory obtained for relaxation and transition state search runs of training sys-
tems. Starting with universal force field (UFF)[199] geometries, OQML subsequently
predicts energies and forces for 200 out-of-sample query systems, thereby enabling
the application of legacy relaxation and transition state search algorithms through-
out chemical compound space.

7.3 Methods

We have relied on operator quantum machine learning (OQML) approach as intro-
duced by Christensen et. al.[168,169] which is a kernel ridge regression (KRR) model
which explicitly encodes target functions and their derivatives. A detailed deriva-
tion can be found in Christensen et. al.[60] section 2 (Operator quantum machine
learning). To train a model the regression coefficients α the following cost function
is minimized:

J(α) =
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with K being the training kernel, y the energies, and f the forces. To predict the
energies following matrix equation can be used:

yest = Ksα (7.2)

and similarly for the forces:

fest = − ∂

∂r
Ksα (7.3)

where Ks being the test Kernel containing training and test instances.

The representation used throughout this work is the FCHL19 representation[60]. FCHL19
makes use of interatomic distances in its two body terms and includes interatomic
angles in the three body term. FCHL19 was selected because of its remarkable per-
formance for QM9 related data-sets[60], and due to being the best structure based
representation in direct learning of activation energies in QMrxn20[4].

To find transition states, the Gaussian09 QST2[261] algorithm with loose convergence
criteria was used, which allows for external energies and forces, in this case from
OQML. Note that no explicit Hessian is required by this method nor is one available
from our model. For both, reactant complexes and transition states, 300 out of sam-
ple reactions were chosen. For these 300 reactions also DFT geometry optimizations
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as well as transition state searches were performed. The three functionals used were:
B3LYP[125,262], PBE0[263], and ωB97X[264] with the 6-311G(d)[265–267] basis set (same as
for the reference method in[3]). More details of the training of the models can be
found in the SI.

The python package rmsd[268] with the Kabsch algorithm[269] was used to obtain the
RMSD’s including hydrogens. For every training set size, the success rate of the
geometry optimization (truncated after 50 iterations) and the transition state search
(truncated after 100 iterations which is the gaussian default) was reported. Scripts
and data can be found in the SI[270].

7.4 Results and Discussion

In the context of statistical learning theory, cross-validated learning curves amount
to numerical proof of the robustness and applicability of a machine learning model,
and they provide quantitative measures of the data-efficiency obtained. For the three
OQML models studied here-within (geometries of constitutional isomers, of reactant
complexes, and of transition states), Fig. 7.2(left) displays the OQML based learning
curves for energies (top) and atomic forces (bottom) which indicate the systematic
improvement of energy and force predictions as training set size increases.

The learning curve for the constitutional isomers are in line with the results by Chris-
tensen et. al.[169]. Surprisingly, although FCHL19 was optimized for small organic
closed shell molecules, the learning curves for the reactant complexes and the tran-
sition states have a faster learning rate. A possible reason for this trend could be that
the reactions in the QMrxn20 data-set share a common scaffold with only the sub-
stituents changing which represents a lower effective dimensionality of the problem
which typically leads to faster learning. Also, relaxations for only 200 reactions were
considered in the training set which implies an overall smaller subset of the chemical
universe. By contrast, for the constitutional isomers, geometries from 5500 different
compounds were chosen, covering a much broader chemical space.

While accurate OQML based estimates of forces and energies are necessary for sub-
sequent relaxation and transition state search, the eventual key figure of merit, the
RMSD with respect to query reference coordinates for increasing training set size,
amounts to a performance curve as shown in the mid panel of Figure 7.2. We ob-
serve strong systematic improvements with increasing training set size of the RMSD
for the constitutional isomers and reactant complexes. By contrast, RMSD perfor-
mance curves for transition states, while also monotonically increasing with train-
ing set size, exhibit substantially smaller learning rates. Differences in learning for
different data-sets while using the same representations and model architectures im-
plies that the target function is more complicated. One can argue that the constitu-
tional isomers are less pathological since they consist of small organic and closed
shell molecules, whereas the transition states include charged compounds and non-
covalent binding to leaving and attacking groups. The relatively flat progress made
for the transition states might also simply due to the fact of the more complex opti-
mization problems towards a saddle point compared to the simple downhill search
of a geometry optimization. More specifically, due to the underpinning high dimen-
sionality, the training set grows much more rapidly when adding a new reactive sys-
tem including optimization steps along the way to the saddle point. This implies that
the training will be less efficient. Possible ways to mitigate such a bottleneck could
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FIGURE 7.2: Learning curves for energies (top left) and atomic forces
(bottom left). RMSD performance curves of geometry vs. training
set size N (middle). Success rates of the optimization and transition
state searches (right). Colours correspond to results based on three
distinct data-sets: constitutional isomers (QM9), reactant complexes
(QMrxn20), and transition states (QMrxn20). Dashed green and dot-
ted orange horizontal lines correspond to the success rate of the refer-
ence calculations for the TS searches and the geometry optimization,

respectively

include the use of the Amons approach[271] which decomposes molecules in sub-
structures, drastically reducing the effective dimensionality of the problem. Also
∆-ML[18], multi-level grid combination techniques[272], or transfer learning[273,274]

could lead to significant speed-ups and would render the models more transferable.

Regarding the performance curve for the transition states it is encouraging to note
that the slope is substantially steeper than for the equilibrium geometry, also in-
dicating that the OQML based energies and gradients also work well for locating
saddle-points, which is unprecedented in literature, to the best of our knowledge.
A direct one-to-one comparison to the equilibrium geometry relaxations, however,
is not possible as the differences might also be due to the use of two very different
optimizers (LBFGS vs. QST2).

Performance curves for success rates have also been included in Figure 7.2 right.
We note that for all models and data-sets the success rate of the optimization runs
systematically increases with training set size. We find that even for OQML models
trained on small training set sizes resulting in relatively high RMSDs (∼ 0.4 Å), the
success rate increases from 7% to 28% and from 20% to 65% for the reactant com-
plexes and the transition states, respectively, as shown in Figure 7.2, closing to the
MP2 success rates (horizontal lines). Surprisingly, even though the RMSD perfor-
mance curve for the constitutional isomer set is the best, the success performance
curve is the worst. This could be due to the higher dimensionality in the QM9
based data-sets, where the optimizer has to locate the minimum for substantially
more degrees of freedom. In any case, the systematic increase in success rate rep-
resents strong evidence in favor of the proposed model, as one can always improve
it through mere addition of training instances, apparently resulting in increasingly
smooth potential energy surfaces with few artifacts—an important prerequisite for
successful optimization runs using algorithms such as LBFGS[275].
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For further analysis of reactant complexes and transition states we used 300 out-of-
sample compounds. Table 7.1 shows a summary of the predictions of the reactant
complex optimization of the ground states (GS) and the transition state (TS) search,
as well as the comparison to the three DFT methods (B3LYP, PBE0, ωB97X) with the
6-311G(d) basis set. RMSDs for the geometries are around 0.1Å for the DFT methods
and 0.4Å for the OQML method considering the transition states. The performance
of the ML model reaches the same accuracy for the reactant complexes as the DFT
geometry optimization resulting in RMSD’s on the order of 0.05 to 0.14 Å. Using the
same model we calculated numerical frequencies and reached a mean absolute error
over the 300 test transition states of 33.63 cm−1 and 14.09 cm−1 for transition states
and reactant complexes, respectively, which is comparable to the DFT errors.

For the activation energy Ea, the ML model reaches slightly higher MAE of 5.851
kcal/mol compared to the MAE of ∼1kcal/mol of the DFT methods. Although,
the error of ∼6 kcal/mol is still high, other ML models could be used to learn the
activation energies e.g. the R2B model[4] which was applied on this data-set and
solely uses the molecular graph as input for the ML model.

We note that a direct comparison of the OQML and DFT results in Table I would
not be fair as OQML was fitted on data similar to the query compounds while DFT
methods and basis sets are universal in nature and were fitted against much more
diverse chemistries.

Finally, we showcase the OQML predicted results for the transition state of one ran-
domly drawn exemplary reaction, involving [H(CN)C-C(CH3)(NH2)] with Cl and F
as leaving group and nucleophile, respectively. In Figure 7.3 the calculated transi-
tion state normal modes are shown, energies once predicted by OQML and once as
obtained from MP2 for comparison. Even though, the RMSD of the predicted ge-
ometries are off by 0.4 Å, the curvature is described reasonably well by the OQML
model, which is supported by the relatively small errors in frequencies, as well as by
the high success rate of the transition state search.

Method RMSD [Å] ∆ν [cm−1] Ea [kcal·mol−1] N

OQML (FCHL19 ) 0.161 0.381 14.09 26.06 (94.21) 5.851 3753/3812
B3LYP/6-311G(d) 0.053 0.134 31.37 32.37 (145.18) 1.352 116[276]

PBE0/6-311G(d) 0.046 0.096 22.93 33.89 (147.56) 1.016 106[263,277]

ωB97XD/6-311G(d) 0.033 0.096 13.94 33.63 (150.01) 0.853 1108[264]

TABLE 7.1: Summary of results for 300 out of sample test cases for
geometry optimizations (left) and transition state searches (right) for
OQML models and three DFT methods for comparison with MP2/6-
311G(d) as reference. The table shows the difference in geometry
(RMSD), in frequency (ν), and in activation energy (Ea) for each
method. N corresponds to the training set size of the ML models
(MP2/6-311G(d)) and to the data set size for parametrization of the
DFT functionals. Geometry optimizations using the LBFGS algorithm
from the ASE package were truncated after 50 iterations and the de-
fault thresh hold (fmax = 0.05 eV/Å) was used. The limit for the tran-
sition state search was the default iteration limit of 100 steps. Fre-
quency values in parenthesis for the transition states are the errors of

the first (imaginary frequency)
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FIGURE 7.3: Example normal mode scan showing energy changes
as a function of distortion along TS modes for the transition state of
the SN2 reaction of [H(CN)C-C(CH3)(NH2)] with Cl and F as leaving
group and nucleophile, respectively. Geometry of an MP2/6-311G(d)
converged and validated TS was used and distorted along its normal
modes. Subsequently, single point calculation (MP2), as well as ML
predictions were plotted for the first 23 normal modes and their dis-
placements. The x-axis describes the index of the distorted geometry
and the y-axis describes the energy relative to the MP2 equilibrium
geometry. Both energies, MP2 (blue) and ML (orange) are scaled by

the equilibrium geometry (index 10).



7.4. Results and Discussion 87

Conclusion

Our findings indicate that OQML can be used to optimize geometries and search for
saddle points (transition states) across chemical compound space. OQML is a surro-
gate model of conventional quantum based energies and forces, and can be success-
fully employed within legacy optmizers. Based on the OQML approach accuracies
for RMSDs, frequencies, and activation energies improve as training set sizes in-
crease. Similarly, the convergence success rates also improve for larger training set
sizes.

Learning curves exhibit linear decay as a function of the training set size on loga-
rithmized scales, indicating that even further improvements of the model could be
reached by adding more training data. Performance curves of RMSDs suggest that
the optimization process (RMSD as well as success rate) based on these models could
also be further improved by increasing the training set size. Especially for the con-
stitutional isomers (small, organic, and closed shell molecules) the description of the
potential energy surfaces improves steadily by adding more training data, which
improves the success rate from 27% to 52% for the lowest and the largest training
set size, respectively. Vibrational frequencies obtained by OQML for our maximal
training set size deviate from the reference MP2 frequencies no more than DFT.

To explore out of equilibrium geometries farther away from a local minima the
QM7x data-set[278] could be investigated in the future. To make OQML more trans-
ferable and applicable also to larger reactants, an Amon based extension[271] could
be implemented. OQML could also be helpful for the generation of large and con-
sistent data-sets in quantum chemistry, especially for the study of reactions.

Acknowledgement

This project has received funding from the European Union’s Horizon 2020 research
and innovation program under Grant Agreement #957189. This project has received
funding from the European Research Council (ERC) under the European UnionâĂŹs
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Conclusion

In this work the reader was walked trough the process of quantum machine learn-
ing applied to chemical reaction space. The first two chapters (Chapter 2 and 3) gave
a brief introduction to quantum chemistry and quantum machine learning, respec-
tively.

Chapters 4 and 5 were devoted to the data generation. In Chapter 4 the schedul-
ing of quantum chemical calculations on small (eg. University) and large (eg. HPC)
computing clusters was analyzed. Using machine learning models developed to
study equilibrium properties of small organic molecules, it was possible to learn
the CPU times of quantum chemical calculations. Since the CPU time of a single
point calculation scales with the number of electrons, prediction errors of∼ 1% were
reached, which was to be expected consider the linear decay w.r.t. the training set
size for the FLOPs (Figure 4.8). However, a geometry optimization or a transition
state search deliver a much harder learning problem because they are a summary
of single point energy and gradient calculations. Here, the CPU time also depends
on the initial geometry, meaning, the closer the geometry is to the minimum or the
saddle point, the fewer optimization steps needed and the shorter the calculation
time. Machine learning models based on geometrical representation could learn the
distance to the local minima or the saddle point and they reached prediction errors
of run times of ∼20%. Although, the errors for GO and TS calculations were signif-
icantly higher than for the SP calculations, it was sufficient to optimized scheduling
of thousands of calculations. Using these CPU time predictions allowed for better
scheduling than random picking calculations by the cluster and improving the time
to solution by 10 to 90%. The term Green Chemistry has its origins in the “Pollution
Prevention Act” of 1990[279], where the pollution should be reduced by improved
design, eg. less waste/side products in chemical reactions or cleaner/less harmful
solvents. Reducing the time to solution and the number of idle cores on a super
computer saves electricity and is therefore a new and innovative way, how machine
learning models can be part in green chemistry.

Chapter 5 dealt with the data generation itself. Machine learning models requires
thousands of training data which are rare in literature for chemical reactions. There-
fore, a data set for the two text book reactions E2 vs. SN2 was generated on an
MP2/6-311G(d) level of theory. Thousands of reactants and transition states were
reported for these two reactions resulting 4’466 activation barriers. Using a ∆-ML
approach, the data set was extended with LD-LCCSD/cc-TZVP single point ener-
gies and barriers.

Although, thousands of CPU hours were spend to generate the data set, the tricky
nature of transition state calculations and the exhaustiveness of conformer searches
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on an MP2 level of theory prevented the completion of the data set. Therefore, in a
next approach (Chapter 6), the R2B machine learning model was introduced, where
common geometry based representation, as well as one-hot encoding were used to
complete the data set. To avoid the difficult transition state calculations, solely the re-
actants were used as input for the ML model, which was sufficient to predict activa-
tion barriers with MAE’s of 2 to 2.5 kcal/mol. Using these ML predictions, decision
trees showing the largest changes in activation energy by varying the substituents
were generated, which could support experimental reaction design. Furthermore,
the one-hot encoding representation was used to learn key geometrical properties,
such as distances, angles, and dihedrals, to study Hammond’s postulate. For this
data set, Hammond’s postulate is only applicable to the SN2 reaction but not to the
E2 reaction.

Finally, in Chapter 7, the geometry optimization, as well as the transition state search
using machine learned energies (as done so far) and forces (new) was investigated.
Using the operator quantum machine learning approach, ML models could be used
together with legacy optimizer, such as LBFGS or the Berny algorithm for geometry
optimizations and transition state searches, respectively. Applying these models,
similar accuracies as DFT calculations could be reached in terms of RMSD’s or tran-
sition state frequencies.
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Appendix A

9.1 Atomic Units[22]
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9.2 Time independent Schrödinger equation

ih̄
∂

∂t
ψ(t, r) =

(
− h̄2

2m
∆ + V(r)

)
= Ĥψ(t, r) (9.1)

Using the Ansatz: Ψ(t, r) = ψ(r) · f (t).

ih̄ψ(r)
∂ f (t)

∂t
= − h̄2

2m
∂2ψ(r)

∂r2 f (t) + V(r)ψ(r) f (t) | · 1
ψ(r) f (t)

(9.2)

ih̄
1

f (t)
∂ f (t)

∂t
= − h̄2

2m
1

ψ(r)
∂2ψ(r)

∂r2 + V(r) (9.3)

Since the left side of the equation only depends on t and the right side of the equation
only depends on r, both sides must be equal to a constant, which we denote E. We
can solve each side independently. For the left side of the equation we get:

ih̄
1

f (t)
∂ f (t)

∂t
= E (9.4)

ih̄
∂ f (t)

∂t
= f (t)E (9.5)

f (t) = Ce−iEt/h̄ (9.6)
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For the right side of the equation we get:

− h̄2

2m
1

ψ(r)
∂2ψ(r)

∂r2 + V(r) = E (9.7)

− h̄2

2m
∂2ψ(r)

∂r2 + V(r)ψ(r) = Eψ(r) (9.8)

Ĥψ(r) = Eψ(r) (9.9)

With the total wavefunction being:

Ψ(t, r) = ψ(r) · Ce−iEt/h̄ (9.10)

9.3 Born Opennheimer approximation

Since the nuclei are much heavier than the electrons the wavefunction can be sepa-
rated in a product Ansatz:

Ψk({ri}, {RI}) ≈ χk,n({ri}) · ψ{RI}
el,n ({ri}) (9.11)

inserting this Ansatz in the SDE results in:

Ĥχk,nψel,n = Eχk,nψel,n (9.12)

The total hamilton operator Ĥ can be split into an electronic (Ĥel) and a core hamilton
operator only depending on the kinetic operator of the nuclei (T̂K):

Ĥ = Ĥel + T̂K (9.13)

inserting the hamolton operator in equation 6.18 gives:

T̂Kχk,nψel,n + Ĥelχk,nψel,n = EĤel (9.14)

multiply from the left side with ψ∗el,n:

T̂Kχk,n〈ψel,n|ψel,n〉+ 〈ψel,n|Ĥel|ψel,n〉χk,n = Ekχk,n〈ψel,n|ψel,n〉 (9.15)
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This material is available free of charge via the Internet at http://pubs.acs.org/.
Code and raw data is available on GitHub https://github.com/ferchault/mlscheduling

10.1 Additional details on the data sets

Table 10.1 shows additional information regarding the used hardware.

10.1.1 QMrxnGO
MP2

The initial reactant geometries from the reaction data set were obtained by generat-
ing the unsubstituted molecule (hydrogen atoms instead of functional groups and
Fluor as leaving group) without the nucleophile. Subsequently substituting the hy-
drogen atoms with functional groups span the chemical space. For every reactant
a conformer search on PM6-D3 level was performed using ORCA. The lowest lying
conformer geometries were then further optimized on MP2/6-31G* level of theory
which resulted in the data set set QMrxnGO

MP2.

10.1.2 QMrxnTS
MP2

The starting geometries for the transition state (TS) search were obtained in a similar
way as described in section 10.1.1. A transition state search was performed on the

Calculation SP GO TS
Data set QM9 QMspin QM9 QMrxn QMspin QMrxn
# Cores 24 24 1 1 1 1 1

CPU Types E5-2680v3 E5-2680v3
E5-2650v2
E5-2640v3
E5-2630v4

E5-2630v4
E5-2640v3
E5-2650v4

E5-2650v2
E5-2640v3
E5-2630v4

E5-2650v2
E5-2680v3
E5-2640v3
E5-2630v4
E5-2650v4

σBoB 204.8 204.8 51.2 51.2 102.4 51.2 204.8
σFCHL 12.8 12.8 51.2 409.6 51.2 51.2 51.2
λBoB 1e-7 1e-7 1e-7 1e-7 1e-7 1e-5 1e-7
λFCHL 1e-7 1e-7 1e-7 1e-7 1e-9 1e-5 1e-7

TABLE 10.1: Data sets of calculations used in this work: Software
used for calculations, number of cores used per calculation, and CPU
types the calculation ran on as well as details of the ML hyperparam-

eter.
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unsubstituted case and from the found TS the chemical space was spanned by ex-
changing the hydrogen atoms with functional groups. The following timings (using
ORCA 4.0.1) and the initial geometries of the TS search form the data set QMrxnTS

MP2.

10.1.3 QM9GO
B3LYP

The QM9 data set contains geometries optimized with B3LYP/6-31G*. 5001 out of
these 134k molecules were further optimized with a larger basis set (def2-TZVP)
using Molpro to obtain data set QM9GO

B3LYP.

10.1.4 QMspinSP
MRCI and QMspinGO

CASSCF

For the geometry optimization of data set QMspinGO
CASSCF we use the CASSCF single

point energy[127] and energy gradient implementation[128] in Molpro. The calcula-
tions have been run on one compute core per job and similar amounts of run time
are spent for the wave function computation and the energy gradient. When per-
forming a geometry optimization, the CASSCF wave function of a previous step is
used as a starting guess for the CASSCF wave functions of the new geometry. For
that reason, the first step of a geometry optimization takes significantly longer than
the following steps. We take this aspect into account in our ML model as well as in
our scheduling model.

10.2 First fit decreasing algorithm

The bin packing problem is NP-hard[51], i. e., the search for the optimal solution
to the problem is prohibitively expensive for real-world workloads of thousands of
jobs even if the time estimates were arbitrarily accurate[280–282]. First Fit Decreasing
(FFD) is one of the many heuristic algorithms[283] that exists for the bin packing
problem. It has been shown that for practical purposes the FFD algorithm is close to
the optimal solution, as for q compute jobs as it uses at most 11/9q + 1 jobs[284], but
typically is within a few percent of the optimal solution[282]. In all cases, we calculate
the total core hours and the total duration from the first to the last job. The total
core hours divided by the sum of the real run times define the compute overhead.
The total duration from first to last job should not be exceedingly high compared
to other approaches, since this metric is about enabling science: if the calculations
would take too long, a research project would not be started. The ideal approach
therefore reduces the overhead while keeping the total wall time at least comparable
to established approaches.
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10.3 Learning curves

In the following we compare models with respect to different training inputs. We
trained models on CPU, normalized (by number of electrons) CPU, wall, and nor-
malized wall times. For CPU times only calculations done with Molpro could be
considered because ORCA output files only contain total (wall) times. Best perfor-
mance was reached with models trained on normalized CPU times. The differences
are small (around 1% to 4%). For predictions normalized wall times were used
because of their application to the scheduling. For the test sets QMspinSP

MRCI and
QMspinGO

CASSCF we also training on CPU times normalized by the formal scaling of
the method, this did neither lead to significant changes in the training model (results
not shown).
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FIGURE 10.1: Learning curves showing normalized test errors (cross
validated MAE divided by median of test set) using BoB and FCHL
as representations. The model was trained on CPU times. Horizontal
lines correspond to the performance assuming all calculations have
mean run time (standard deviation divided by the mean wall time of

the data set.
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mance assuming all calculations have mean run time (standard devi-
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11.1 Learning Barriers

To predict the activation barriers (Ea), we optimized the hyperparameters using a
five fold cross validation on the training set for different combinations of σ and λ as
described in the methods section of the manuscript. Figure 11.1 shows the results
of the hyperparameter optimization for learning the barriers as a heat map of the
different σ and λ combinations with the MAE encoded in the color map. Table 11.1
and 11.2 contain the values used to generate the learning curves for the E2 and the
SN2 reaction, respectively. Figure 11.2 shows learning curves for all models using
the reactants (solid lines) and the reactant complexes (dashed lines) as input for the
QML model. Using the reactant complexes as input yields slightly better results, but
the difference in learning is negligible. Reactant complexes as well as reactants were
canonicalized according to the lowest lying geometry to make the learning problem
unique.

11.2 Learning Geometries

Table 11.3 and 11.5 contain the data used to generate the learning curves for the SN2
and the E2 reaction, respectively.
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FIGURE 11.1: Hyperparameter optimization of R2B models: a) BoB,
b) SLATM, c) FCHL19, and d) one-hot encoding for E2 (left) and SN2

(right) reactions.
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Representation (λ/σ) N MAE [kcal/mol]

BoB
(1-05/1638.4)

50 5.48
100 4.90
200 4.40
400 3.86
800 3.53

SLATM
(1e-05/204.8)

50 5.42
100 4.32
200 3.97
400 3.36
800 3.06

FCHL19
(0.1/1.6)

50 5.28
100 4.65
200 3.87
400 3.32
800 2.95

one-hot encoding
(0.001/6.4)

50 4.29
100 3.55
200 3.32
400 2.86
800 2.53

TABLE 11.1: Results from R2B models used to generate learning
curves for the E2 reaction.

FIGURE 11.2: Learning curves Activation energy prediction errors
(out-of-sample) as a function of training set size N for activation
barriers (Ea) of E2 a) and SN2 b) using reactant complex geome-
tries (dashed lines) and reactants (solid lines) as inputs only. Results
are shown for four representations (BoB, SLATM, FCHL19, one-hot)
used within KRR models. Training data reference level of theory cor-
responds to DF-LCCSD/cc-pVTZ//MP2/6-311G(d), and estimated

MP2 error is denoted as a green dashed horizontal line.
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Representation (λ/σ) N MAE [kcal/mol]

BoB
(1e-05/1638.4)

50 6.75
100 5.22
200 4.73
400 4.32
800 4.06

1600 3.60

SLATM
(1e-05/204.8)

50 5.76
100 4.43
200 3.74
400 3.22
800 3.00

1600 2.82

FCHL19
(0.1/1.6 )

50 5.75
100 5.63
200 4.00
400 3.49
800 3.06

1600 2.76

one-hot encoding
(0.01/6.4)

50 4.58
100 3.74
200 3.33
400 2.87
800 2.44

1600 2.17

TABLE 11.2: Results from R2B models used to generate learning
curves for the SN2 reaction.
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FIGURE 11.3: Rogers-Tanimoto coefficients Similarity check for the
one hot encoding between the training and test molecules using the
Rogers-Tanimoto coefficient. Two binary representations are equal

and inverse if their coefficient is 0 and 1, respectively.
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Parameter (λ & σ) N MAE [kcal/mol]

Reactant dx
(0.1/3.2)

225 0.077
450 0.036
900 0.019
1800 0.012

Reactant dy

(0.1/1.6)

225 1.04
450 0.61
900 0.36
1800 0.25

Reactant α
(0.5/3.2)

225 7.47
450 4.71
900 3.63
1800 3.11

TS dx
(0.1/3.2)

225 0.010
450 0.053
900 0.035
1800 0.026

TS dy

(0.1/3.2)

225 0.146
450 0.098
900 0.079
1800 0.070

TS α
(0.1/3.2)

225 6.73
450 4.27
900 3.26
1800 2.89

TABLE 11.3: Results from R2B models used to generate learning
curves for the SN2 reaction. Learning of the reactant complex and

transition state geometries.
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Parameter (λ & σ) N MAE [kcal/mol]

Reactant dx
(0.1/3.2)

125 0.136
250 0.073
500 0.044
1000 0.032

Reactant dy

(0.1/3.2)

125 0.226
250 0.134
500 0.078
1000 0.052

Reactant dα
(0.1/3.2)

125 8.10
250 4.36
500 2.63
1000 1.87

Reactant β

(0.1/3.2)

125 8.45
250 5.62
500 4.39
1000 3.72

Reactant θ
(0.1/3.2)

125 85.67
250 83.48
500 82.05
1000 74.79

TABLE 11.4: Results from R2B models used to generate learning
curves for the E2 reaction. Learning of reactant complexes.

Parameter (λ & σ) N MAE [kcal/mol]

TS dx
(0.1/3.2)

125 0.158
250 0.094
500 0.056
1000 0.036

TS dy

(0.1/1.6)

125 0.203
250 0.120
500 0.071
1000 0.046

TS α
(0.1/3.2)

125 8.26
250 4.25
500 2.47
1000 1.59

TS β

(0.1/3.2)

125 9.92
250 7.27
500 6.04
1000 5.13

TS θ
(0.1/3.2)

125 16.66
250 11.96
500 9.73
1000 8.79

TABLE 11.5: Results from R2B models used to generate learning
curves for the E2 reaction. Learning of transition state geometries.
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12.1 Data Sets

12.1.1 Constitutional Isomers

The constitutional isomers are part of the QM9 data set[67] with the sum formula
C7O2H10. The data set contains 6095 compounds at the B3LYP/6-31G(p,2df) level of
theory (Gaussian09[205]).

For this work, all geometries were optimized with OpenBabel[198] using the UFF
force field[199] (truncated after 200 steps). Subsequently, the geometries were re-
optimized using the ORCA 4.0[130] electronic structure code at the B3LYP/6-31G(2df)
level of theory.

12.1.2 Nucleophilic Substitution Reaction (SN2)

The nucleophilic substitution reactions (SN2) are a subset from the QMrxn20[3,240]

data set. As described in Figure 1, the scaffold of the molecules is ethane which was
substituted with leaving groups X, nucleophiles Y−, and functional groups R1-4. The
data set contains 1807 reactions consisting of reactant complexes and transition states
on an MP2/6-311G(d) level of theory. Out of these reactions, 200 were randomly
chosen for training and the test set contains 300 out of sample compounds (reactant
complexes and transition states).

12.2 Model Training

To obtain the hyperparameters σ and λ a five fold cross validation over a range of
both hyperparameters within the training set was performed. The hyperparameter
were not optimized on the out of sample test set. The best performing model, lowest
MAE of energies and forces was chosen for the training of the model.

12.2.1 Constitutional Isomers

The 6095 compounds were split into 5595 training and 500 testing molecules. Then,
randomly picked geometries from the optimization steps were displaced using their
normal modes yielding 6000 training instances with energies and forces. Normal
modes were calculated using the freq=hpmodes keyword from the Gaussian09 code.
Energies and gradients were calculated using the ORCA 4.0 code (engrad keyword).

For the geometry relaxation UFF geometries as starting points were used and the
LBFGS algorithm as implemented in the ASE[285] python package was used together
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FIGURE 12.1: Example ethane scaffold of an SN2 reactions (left) with
leaving groups X, nucleophiles Y, and functional groups R1-4 (right).

with the ORCA 4.0 calculator implemented in ASE. For the convergence thresh hold
(fmax, maximum force of all atoms), the default value of the ASE package was used
(0.05 eV/Å) and the geometry optimization was truncated after 50 iterations. Exam-
ple scripts can be found in[270].

12.2.2 Reactant Complexes

For the reaction data set in QMrxn20, the reactant complexes (training set) were
optimized with the UFF force field (truncated after 200 steps) and subsequent ge-
ometry optimizations on the MP2/6-311G(d)[188–192] level of theory were performed
using the ORCA 4.0 code. For the training set, 200 reactions were randomly cho-
sen with their optimization steps. For these reactant complexes, random geometries
along the optimization paths were chosen and displaced along their normal modes
(using Gaussian09 freq=hpmodes), yielding 3753 training instances for the reactant
complexes. Energies and gradients were calculated using the engrad keyword from
the ORCA 4.0 package.

12.2.3 Transition States

For the transition state training data, reactant and product complexes from the QMrxn20[3]

data set were optimized using Openbabel’s UFF force field (truncated after 200 steps).
Then, a transition sate search for the 200 training instances was performed using
Gaussian09 QST2 keyword (berny algorithm) and the loose keyword. On the ge-
ometries along the transition state search path normal mode calculations using the
freq=hpmodes from the Gaussian09 code were performed yielding 3812 training in-
stances for the transition states. Energies and gradients were obtained using ORCA
4.0 engrad keyword.

12.3 Optimization

12.3.1 Geometry Relaxation

For the geometry relaxation (constitutional isomers and reactant complexes), the
ASE code and the LBFGS algorithm with the ORCA 4.0 calculator were used. For
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the OQML models a machine learning calculator yielding forces and energies when
given a geometry was implemented in ASE. Example scripts can be found in[270]

12.3.2 Transition State Search

For the transition state search the Gaussian09 package was used which allows for
external energy and force calculations with the keywords QST2 and loose. Example
scripts can be found in[270].

12.4 Validation

12.4.1 Constitutional Isomers

The validation criterion for the constitutional isomers was the convergence after 50
LBFGS (ASE) steps with the thresh hold of fmax=0.05 eV/Å.

12.4.2 Reactant Complexes

In addition to the convergence criteria for the LBFGS optimization, the fragments
for the reactant complexes were analyzed. For every reactant complex there should
be two fragments, the main molecule and the nucleophile Y− containing only one
atom.

12.4.3 Transition States

The transition state validation contains multiple tests:

1. normal termination of the Gaussian09 code

2. 1 imaginary frequency < 100 cm−1 (value derived from[3])

3. Y–C–X (nucleophile–reaction center–leaving group) angle > 155◦ (see Figure 2
a)

4. minimal distance of 0.9 Å between atoms (see Figure 2 b)

5. Correct movement of the reaction center (see Figure 2 c) for the first normal
mode

6. Movement of remaining normal modes < 0.5Å (see Figure 2 d)

Displaced geometries for 5 and 6 were obtained using the vibration package from
the ASE code (example script can be found in[270]). Only if a compound passes all
tests, it is considered in the subsequent analysis of RMSD’s and frequencies.

12.4.4 Success Rate

Success rates for the ML models and the DFT calculations are shown in Table 1. The
success rate is calculated by 100 divided by the total number of optimizations (300)
times the validated compounds.
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Angle
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Distance
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d)

FIGURE 12.2: Validation for transition states a) Angle of reaction cen-
ter, b) minimal distance of 0.9Å between the atoms, c) movement of
atoms in reaction center using the first normal mode, and d) move-

ment of all other atoms and normal modes.
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Method Success rate (GS) Success rate (TS)
OQML (FCHL19) 28% 64.66%
B3LYP/6-311G(d) 39.33% 65.33%
PBE0/6-311G(d) 41% 73.66%

ωB97X/6-311G(d) 46.66% 70%

TABLE 12.1: Success rates for geometry optimizations of ground
states (GS) and transition state searches (TS) for the OQML model

and the three DFT methods.

12.4.5 RMSD’s

For every validated constitutional isomer, reactant complex, and transition state
RMSD’s w.r.t. the MP2 reference compounds were calculated using the python
RMSD code[268] with the Kabsch algorithm including hydrogens (except for the con-
stitutional isomers).

12.4.6 Frequencies

The vibrational frequencies of the transition state and the reactant complexes were
obtained using the vibration package from the ASE code with the respective method
using the ORCA5[286] calculator.

12.4.7 Activation Energies

For the activation energies, the validated geometries of reactant complexes and tran-
sition states were taken and single point calculations using the ORCA5[286] code were
performed. Similarly, the same OQML models used for the optimization, were used
to calculate the energies of reactant complexes and transition states.
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