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Summary 
Background: Schistosomiasis is a human disease caused by blood borne trematode flukes. Three 

species, Schistosoma haematobium, S. mansoni, and S. japonicum cause most of disease. Morbidity is 

primarily a result of a human’s immune response to eggs that are not shed from the body. The 

estimated disability-adjusted life years (DALYs) attributed to schistosomiasis have decreased since 2006 

largely due to increased mass distribution of preventive chemotherapy. These reductions have 

accelerated discussions on controlling schistosomiasis morbidity, eliminating schistosomiasis as a public 

health problem, and even eliminating transmission of schistosomiasis. The World Health Organization’s 

(WHO’s) framework for assessing morbidity control utilizes categorizations of an individual’s infection 

intensity and targets for homogenous ecological zones based on heavy-intensity infections. The 

foundational research for these categorizations is at least 30 years old. Research since then has 

illuminated the relationship between Schistosoma infection and all morbidity. In addition, the 

decreasing burden of schistosomiasis means that severe, chronic morbidity is less common. Portions of 

this framework have been evaluated and there are calls for improvements, especially relating to the 

measurement of schistosomiasis morbidity. 

Goals and objectives: The focus of this thesis is to improve the schistosomiasis monitoring and 

evaluation framework by: (i) adding to the evidence base of studies looking at the associations between 

morbidity and infection; (ii) evaluating aspects of the current framework and whether those aspects are 

linked to schistosomiasis morbidity; (iii) suggesting programmatic targets linked to morbidity; and (iv) 

promoting novel technologies in monitoring and evaluation programmes. The specific objectives for 

these goals were to: (i) evaluate changes in morbidity in preventive chemotherapy cohorts; (ii) 

summarize morbidity-related research from the Schistosomiasis Consortium for Operational Research 

(SCORE); (iii) evaluate the linkage between schistosomiasis intensity categories and related morbidity; 

(iv) evaluate associations between heavy-intensity infection targets and morbidity levels; (v) derive 
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empirically-based targets that are linked to morbidity; and (vi) demonstrate the utility of a tablet-based 

ultrasound system for measuring schistosomiasis morbidity. 

Methods: Longitudinal cohorts were used in most analyses. The first analyses utilized cohorts of 9-12-

year-old children from SCORE projects in Kenya and Tanzania. These cohorts were observed for five 

years where the first measurement was taken pre-treatment and the fifth year was either after four 

years of preventive chemotherapy with praziquantel disseminated via the community or two years of 

preventive chemotherapy distributed via schools. The second set of analyses involved the pooling of two 

cohorts of school-aged children from chemoprophylaxis campaigns in Burkina Faso, Mali, Niger, Uganda, 

Tanzania, and Zambia, all of which were supported by the Schistosomiasis Control Initiative (SCI). The 

first of these cohorts were consenting children, aged 6-12, enrolled in primary education and followed 

up two or more years (excluding Zambia, which has only one year of follow up). The second was a 

community cohort which utilized a random sample of all ages at each year, for which we included the 

school-aged children in analyses. In both cohorts, this was the first known preventive chemotherapy 

administration in the area. Each of the cohorts were evaluated for infection (S. mansoni only in the 

SCORE cohorts; S. haematobium and S. mansoni in the SCI cohorts) as well as morbidity indicators from 

ultrasound evaluations, lab-based examinations, and questionnaires. The last study used data collected 

as part of the Morbidity Operational Research for Bilharziasis Implementation Decisions (MORBID) 

project. Regression-type methods were used in many of these methods, with both frequentist and 

Bayesian applications. 

Results: Reductions in prevalence and heavy-intensity prevalence were noted in the SCORE S. mansoni 

cohorts and these reductions were associated with drops in wasting and elevated portal vein diameter 

and increases in PedsQL overall and all domain scores over the five years. Though, these changes were 

associated with increases in stunting and decreases in VO2 max scores. In SCORE studies, a pilot of the 

Behavioral Assessment System for Children (BASC-2) instrument provided initial evidence that treatment 
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can improve school behavior and a meta-analysis showed poorer school attendance and performance 

are related to Schistosoma infection. Another meta-analysis found that preventive chemoprophylaxis is 

associated with reductions in morbidity for both S. haematobium and S. mansoni. In studies with data 

from SCI-supported countries, infection intensity categories were associated with morbidity levels for S. 

haematobium but not for S. mansoni. Targets for morbidity control and elimination of schistosomiasis as 

a public health problem were robustly associated with microhaematuria levels. Schools binned by their 

morbidity control or elimination as a public health problem status were associated with other S. 

haematobium-associated morbidity levels but not distinguish between participants in <1% prevalence of 

heavy intensity (PHI) schools and those in 1-5% PHI schools. For S. mansoni-related morbidities, 

participants in <1% PHI schools had less morbidity than those in ≥5% PHI schools. Due to the strong 

association between the PHI-based control categories for S. haematobium and microhaematuria, targets 

were calculated based on potential background microhaematuria prevalence values of 10%, 13%, and 

15%. A school with an infection prevalence of 5% had at least a 90% chance across all three surveys of 

possessing a microhaematuria prevalence at or below 10%. Schools with infection prevalences of 8% 

and 11% had at least a 90% chance to possess microhaematuria levels less than 13 and 15%, 

respectively. School-level PHI was unable to achieve a similar level of certainty as infection prevalence. 

Only in the baseline survey were schools with a given infection prevalence able to achieve at least a 90% 

chance of realizing a microhaematuria prevalence less than 10%, 13%, or 15%. In addition, small changes 

in PHI result in large changes in the chance of having a microhaematuria prevalence at or lower than the 

threshold, suggesting measurement error can have a large impact on PHI-based targets. Finally, the 

point-of-care, tablet-based ultrasound system was successful at identifying morbidities, suggesting this 

technology could be utilized by control programmes in the future to more accurately progress towards 

eliminating schistosomiasis as a public health problem. 
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Conclusions: Schistosoma infection prevalence and the prevalence of heavy-intensity Schistosoma 

infections decreased in the SCORE and SCI cohorts after treatment. Morbidity indicators also decreased 

in both cohorts after treatment, though in the SCI cohorts the association between infection and 

morbidity was stronger with S. haematobium as compared to S. mansoni. Robust targets based on 

microhaematuria prevalence were calculated for S. haematobium prevalence and further research 

should incorporate other morbidity indicators into these computations. Given the correlations between 

infection and most morbidity indicators, arriving at an elimination as a public health problem target 

based on a suite of morbidity indicators seems feasible. For S. mansoni, associations between infection 

and morbidity were much weaker and it appears unlikely that a reliable target can be found unless 

further research finds stronger associations. This suggests that S. mansoni morbidity control needs 

major changes in order accurately measure a person’s S. mansoni morbidity burden. One potential 

change could be to incorporate technology, especially tablet-based ultrasound systems, to collect more 

comprehensive morbidity data to measure programme impact, though widespread use will depend on 

testing in multiple settings, creating training materials, and developing ethical guidelines. 
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1 Introduction 
Schistosomiasis, or bilharzia, is the infectious disease caused by worms of the genus 

Schistosoma (Colley et al. 2014a). There are 21 recognized schistosome species, of which eight have 

been reported in humans: Schistosoma guineensis, Schistosoma haematobium, Schistosoma 

intercalatum, Schistosoma japonicum, Schistosoma mansoni, Schistosoma malayensis, Schistosoma 

mattheei, and Schistosoma mekongi (Standley et al. 2012). Human disease is primarily caused by S. 

haematobium, S. mansoni, and S. japonicum. S. haematobium is the only species to affect the urogenital 

system; all other species affect the intestinal system.  

1.1 History 
Evidence of schistosomiasis dates back at least 6,000 years based on identification of 

schistosomes in skeletal remains in present-day Syria (Anastasiou et al. 2014). The disease was likely 

mentioned in Egyptian medical papyri as early as 1500 BCE (Di Bella et al. 2018) and evidence of calcified 

eggs was found in mummified kidneys of Egyptians from the twentieth dynasty (Ruffer 1910). A high 

incidence of haematuria, a common symptom of S. haematobium infection, was noted in Egypt in the 

16th century (Alpino 1591). In the late 18th century, a French physician recorded an outbreak of 

haematuria that was likely caused by S. haematobium during Napoléon’s campaign in Egypt and Syria 

(Renoult 1808). He also noted that Egyptian men appeared to menstruate (Sarant 2017). 

Schistosomiasis is potentially referred to in the Bible in relation to a curse. When Joshua invaded 

Palestine, he captured Jericho along his way to Judea and cursed Jericho (Joshua, 6:26, R.S.V.). The 

language Joshua used in his curse, the defeatist attitude of Jericho when invaded (Joshua, 2:1, R.S.V.), 

and the comments of “bad water” and “unfruitful land” that were used when the city is cleansed (II 

Kings, 2:19, R.S.V.) are consistent with citizens of Jericho suffering from urogenital schistosomiasis 

(Hulse 1971). Although no known evidence of S. haematobium in Jericho exists, excavations of the area 
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found a juvenile example of Bulinus truncatus, the intermediate host for S. haematobium, preserved in 

mud bricks from the same era (Biggs et al. 1960) suggesting a circumstantial link.  

Two German parasitologists, Theodor Maximilian Bilharz and Carl Theodor Ernst, first described 

schistosomiasis during an autopsy in 1851 in Cairo (Bilharz 1852). Initially called Distomum 

haematobium (Bilharz 1853), the disease process of schistosomiasis, including fibrosis and ulcer 

formation, was described not long after (Griesinger 1854; Bilharz 1856). Only a few years later, 

schistosomes were identified in a primate, Cercopithecus fuliginosus (Cobbold 1859). 

Around the same time as Bilharz was working in Cairo, Yoshinao Fujii first described acute 

schistosomiasis (Katayama syndrome) in the medical literature in 1847 (Fujinami 1909), though 

mentions appeared in other literature early in the 19th century (Ishii et al. 2003). About forty years later, 

Tokuho Majima reported schistosome eggs in patients with acute schistosomiasis and made the 

connection between the two (Majima 1888). Research in Japan in the last quarter of the 19th century led 

to concurrent discoveries by Akira Fujinami of a S. japonicum female worm in the hepatic system during 

an autopsy (Fujinami 1904) and a series of findings by Fijiro Katsurada on the discovery of worms in the 

portal vein a cat, which he referred to as Schistosomum japonicum (Katsurada 1904b; 1904c; 1904a).  

Research on S. japonicum continued and many milestones were established by Japanese scientists 

(Fairley 1919; Tanaka et al. 1997). The two lead researchers who first recognized S. japonicum, Fujinami 

and Katsurada, also worked simultaneously on describing transmission. In 1909, one group immersed a 

dog and cat in water suspected to be infectious and found flukes in the cat’s portal vein after it had died 

(Katsurada et al. 1909). The second team immersed calves to demonstrate transmission by water 

(Fujinami et al. 1909). This was quickly followed by the description of human transmission by the 

dermatologist Matsuura who walked through water considered to be infectious and eventually shed 

eggs (Matsuura 1909). These groups succeeded after early efforts to establish transmission of Egyptian 



1   Introduction 

3 
 

strains of S. haematobium to humans failed (Cobbold 1872; Sonsino 1884; Fairley 1919). Through a 

series of experiments on animals in 1912 and 1913, Miyagawa found that, after penetrating the skin, 

worms migrated through the heart to get to the portal system (Miyagawa 1912a; 1912b; 1913a; 1913b). 

Although it had been hypothesized that the lifecycle included snails, Japanese researchers were finally 

able to establish that mollusks serve as the intermediate host for S. japonicum shortly thereafter (Miyairi 

et al. 1913). 

Confirming the existence of S. mansoni was more complicated. In 1902, Patrick Manson suggested 

the possibility of another species beyond S. haematobium that was causing schistosomiasis (Manson 

1902). Five years later, S. mansoni was identified from a single worm in Brazil (Sambon 1907a; 1907b) 

although there were arguments in the literature (Looss 1908; Sambon 1909) regarding whether this was 

a new schistosome species or S. haematobium (Katz 2008).  

A key piece to this puzzle was the morphology of the eggs. Bilharz established that S. 

haematobium eggs have a terminal spine, though eggs with lateral spines were found in 1884 in a 

bladder infection (Sonsino 1884) and then again two years later in a purely S. mansoni bladder infection 

(Belleli 1886), which is now known to be a rare occurrence (Depaquit et al. 2019). In Brazil, the eggs had 

a lateral spine (Sambon 1907a; 1907b) and extensive work was done by Manoel Augusto Pirajá da Silva 

to demonstrate that all eggs identified from Brazil had lateral spines (Pirajá da Silva 1908b; 1908a; 

1908d; 1908c; 1909). Robert Leiper, with help from Pirajá da Silva, articulated the complete lifecycle of 

schistosomiasis in 1915 and definitively distinguished between S. haematobium and S. mansoni, thus 

putting an end to the argument that they were the same species (Leiper 1915c; 1915a; 1915b; Leiper et 

al. 1916; Leiper 1918). 

In the interwar period, S. intercalatum was described as a separate species (Fisher 1934) and 

attention turned to establishing control efforts. Many surveys had been performed to understand the 
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prevalence and distribution of schistosomiasis in the Nile Delta region of Egypt (Scott 1937). The only 

national programme against schistosomiasis was in Egypt until Venezuela started a control programme 

in 1942 (Sandbach 1976). A request was made by the Egyptian Ministry of Health to the League of 

Nations to begin control work at an international level (Bey 1938). Despite a report from the commission 

that called for more research (League of Nations Health Organization 1938) nothing was done. This was 

due to a variety of reasons including poor representation from affected areas, poor organization, a lack 

of data and understanding of disease burden, and the prospect of another major war (Shousha 1949; 

Sandbach 1976).  

World War II brought more exposure to schistosomiasis as many allied soldiers acquired the 

disease while serving in tropical regions (Sandbach 1976). After World War II, the first assessment of the 

global distribution of schistosomiasis was included in Norman Stoll’s summary of parasites around the 

world (Stoll 1947). There was a growing recognition that schistosomiasis is an international problem 

(Shousha 1949) and the newly formed World Health Organization convened their first study group on 

schistosomiasis in Africa (WHO 1950). Many surveys and other reports of the distribution and extent of 

schistosomiasis around the world were performed during this era (Dewhurst 1949; Meira 1949; Cowper 

1953; Ayad 1956; Blair 1956; White et al. 1957; Mao 1958).  

An extremely productive period followed that was marked by many advances in the 

understanding, evaluation, and control of schistosomiasis. A great deal of knowledge was gained about 

how Schistosoma worms oviposit, such as how many eggs are produced by a worm pair per day (Moore 

et al. 1956) and the distribution of trapped eggs throughout the human body (Gelfand et al. 1953; von 

Lichtenberg et al. 1973; Cheever et al. 1977). Extensive headway was made in the understanding of 

disease progression and pathology (Cheever et al. 1967; Edington et al. 1970; Sadun et al. 1970; 

Andrade et al. 1971; Cook et al. 1974; Smith et al. 1974; Cheever et al. 1978; Kamel et al. 1978; Miller et 

al. 1978; 1980). Parasitological tests that remain the standard for determining the presence and 
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intensity of infection were developed and refined (Katz et al. 1972; Peters et al. 1976a; Peters et al. 

1976b). In addition, antigens that form the basis of tests which may soon supplant parasitological tests 

were identified (Deelder et al. 1980). Initial reports of the utility of ultrasonic evaluation were published 

(Abdel-Wahab et al. 1978). This period is bookended by two important findings related to disease 

control. At the beginning was widespread use of molluscicides, including niclosamide, which were 

evaluated for snail control (Foster et al. 1960). At the end was the discovery and demonstration of the 

effectiveness of praziquantel for the treatment of adult worms of all major schistosome species that 

predominantly affect humans (Pearson et al. 1983). 

These findings helped spur an expansion in schistosomiasis research and control efforts. 

Ultrasonic evaluation was utilized to evaluate severe pathology (Cerri et al. 1984; Hussain et al. 1984; 

Burki et al. 1986; Hatz et al. 1990; Doehring-Schwerdtfeger et al. 1992a) and a WHO working group was 

formed to standardize ultrasound methodology (The Cairo Working Group 1992; Richter et al. 2000). 

Investigation of disease pathogenesis progressed, leading to a deeper understanding of schistosomiasis 

immunology (Colley et al. 1986; Boros 1989). The control of schistosomiasis became a focus of the 

World Health Organization (WHO 1980; WHO Expert Committee on the Control of Schistosomiasis 1985; 

WHO 1993) and schistosomiasis morbidity was brought into focus (Mott et al. 1983; Warren et al. 1983; 

WHO 1987; 1988; 1989). Highs and lows of disease control were experienced with successes, e.g., the 

eradication of schistosomiasis from Japan (Tanaka et al. 1997), and failures, such as the devastating 

outbreak of schistosomiasis in the Senegal River Basin after the construction of two dams (Talla et al. 

1990; Stelma et al. 1994; Southgate 1997). 

The introduction of preventive chemotherapy using mass drug administration led to a decreasing 

burden of schistosomiasis from 2006 onward (Global Burden of Disease Collaborative Network 2020), 

resulting in large part from donations of praziquantel from Merck KGaA (Hotez et al. 2010; Fenwick et al. 

2016) and the success of nascent schistosomiasis control programmes, such as those supported by the 
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Schistosomiasis Control Initiative (Fenwick et al. 2009; Deol et al. 2019). This spurred discussions about 

eliminating schistosomiasis transmission (London Declaration on Neglected Tropical Diseases 2012; 

WHO 2012; World Health Assembly 2012) even though those discussions were likely premature (Ross et 

al. 2015b; Toor et al. 2018a). Nevertheless, control programme targets were developed (WHO 2011c; 

2013) and the Schistosomiasis Consortium for Operational Research and Evaluation (SCORE) 

implemented a wide array of projects to improve control and elimination initiatives (Colley et al. 2020a; 

Colley et al. 2020b).  

Recently, efforts to better evaluate disease burden (Steinmann et al. 2006) and morbidity, both 

subtle (King et al. 2005) and underreported, such as female genital schistosomiasis (Christinet et al. 

2016), have heighted our understanding of the global impact of schistosomiasis. Further development is 

needed to improve diagnostics, such as CAA (Corstjens et al. 2008) and CCA (van Dam et al. 2004) and 

advanced analytics, such as spatial statistics (Clennon et al. 2004; Raso et al. 2005; Clements et al. 2006; 

Brooker 2007; Simoonga et al. 2009; Magalhães et al. 2011; Schur et al. 2011; Scholte et al. 2012; Schur 

et al. 2012; Schur et al. 2013; Chammartin et al. 2014; Scholte et al. 2014; Lai et al. 2015; Wiegand et al. 

2017; Fornace et al. 2020; Kokaliaris et al. 2021) and mathematical modelling (Lo et al. 2015; Lo et al. 

2018; Toor et al. 2018a; Toor et al. 2018b; NTD Modelling Consortium Schistosomiasis Group 2019; Toor 

et al. 2019; Coffeng et al. 2020; Kura et al. 2020; Toor et al. 2020) are being utilized to better describe 

and predict the disease burden and distribution and the effects of interventions. Further technology, 

such as the use of light unmanned aerial vehicles (Chamberlin et al. 2021) and smartphone based 

diagnostic tests (Diehl et al. 2020), could provide more low-cost options for facilitating schistosomiasis 

control. 

1.2 Aetiology 
Humans infected with S. haematobium shed Schistosoma eggs in urine while eggs of all other 

species are shed through stool. Eggs hatch in freshwater and release miracidia. These free-swimming 
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larvae then penetrate the tissue of specific snail species. The snail acts as an intermediate host where 

asexual reproduction happens. Over the course of 4-6 weeks, mother and daughter sporocysts are 

produced, develop, and eventually cercariae are released into the water (Pan 1965). The cercariae swim 

and look to penetrate the skin of a mammalian host. Cercariae that enter a human host lose their forked 

tails and become schistosomulae. The migration through the human body is largely unknown, but has 

been studied using murine experimental models, especially with S. mansoni (Wilson 2009). Given mice 

and humans have the same beginning and end to the process, the process in mice is assumed to be the 

same as humans (Colley et al. 2014b). Through the bloodstream, the schistosomulae feed on blood and 

travel to the lungs, through the heart, and eventually migrate to the liver. The larvae mature into male 

and female adults, mate, and produce eggs. S. haematobium worms generally reside in the venous 

plexus of the bladder and shed eggs through urine. S. mansoni, S. intercalatum, and S. guineensis are 

mostly found in the inferior mesenteric veins of the large intestine, but at different places. S. japonicum 

most often resides in the superior mesenteric veins of the small intestine. The complete lifecycle for 

both intestinal and urogenital species is included in Figure 1.1. 

The longevity of schistosome infection has been a challenge to estimate empirically since the 

date of infection is left censored (before the observation date but the exact date is unknown) and the 

time a schistosome would naturally die is right censored (after the observation date but the exact date is 

unknown) since it’s unethical to deny someone treatment to clear an infection. Two subpopulations 

have been useful for guessing the maximum age of a Schistosoma worm: permanent emigres from 

endemic areas (Wallerstein 1949; Berberian et al. 1953; Hall et al. 1970; Joyce et al. 1972; Harris et al. 

1984; Hornstein et al. 1990; Payet et al. 2006) and soldiers returning from conflicts in endemic areas 
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(Markel et al. 1978; Chabasse et al. 1985; Vieira et al. 2007). The maximum lifespan from those reports 

appears to be 47 years (Hall et al. 1970). Studies have combined data from people who have been 

removed from infection risk and, with some modelling assumptions, estimated the average lifespan of 

Schistosoma worms (Hairston 1965; Bradley et al. 1973; Warren et al. 1974; Holford et al. 1976; Hiatt et 

al. 1980; Vermund et al. 1983; Wilkins et al. 1984; Fulford et al. 1995). Estimates range from 3-10 years, 

with the most thorough estimate possessing a confidence interval of 5.7-10.5 years (Fulford et al. 1995). 

 

Figure 1.1. Life cycle of schistosomiasis. 
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During most of this time, females produce eggs and males fertilize them. Due to the challenges 

of using rodents with S. haematobium infections (Colley et al. 2014b), data on egg output has only been 

reported for intestinal species. Studies using hamsters (Moore et al. 1956) and mice (Cheever et al. 

1994) found S. mansoni females produced 300 and 350 eggs per day, respectively, while S. japonicum 

females produced 3,500 and 2,200 eggs per day, respectively. 

Quantification of Schistosoma worm burdens in humans is not possible to measure (Gryseels et 

al. 1996). Utilizing a model designed to describe observed egg counts, de Vlas and colleagues (de Vlas et 

al. 1992b; de Vlas et al. 1992c) estimated that people infected with over 100 S. mansoni worms would 

be plentiful in communities of all endemicities (Gryseels et al. 1996). In addition, 3% of people in low 

endemicity communities and 17% of people in moderate endemicity communities would have over 

1,000 S. mansoni worms. 

1.3 Geographic Range 
Schistosomiasis is primarily a disease of sub-Saharan African (SSA). Approximately 93% of the 

estimated global burden of schistosomiasis is in SSA (Steinmann et al. 2006), with 25% of the population 

being infected (Hotez et al. 2009b). The range spans most of the subcontinent, with variability by species 

(Lai et al. 2015). Schistosomiasis is also found in parts of Asia, South America, and the Caribbean. 

Schistosoma species are associated with certain snail species and the geographic range of each species is 

largely driven by the habitats of those snail hosts. 

S. haematobium infection is found in Africa and the Middle East where Bulinus snails live 

(Rollinson et al. 2001). In SSA, the range spans the entire subcontinent, with especially high prevalence 

in many countries along or near the African meningitis belt (the Gambia, Senegal, Guinea-Bissau, 

Guinea, Sierra Leone, Mali, Burkina Faso, Ghana, Togo, Benin, Niger, Nigeria, Cameroon, Chad, Central 

African Republic, Sudan, South Sudan, Kenya, and Somalia), northern Mozambique, and northeastern 
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South Africa (Lai et al. 2015). Other more focal areas of high prevalence include parts of Somalia, eastern 

Kenya, northern and central Tanzania, northern Angola, and northern Zimbabwe.  

The geographic range of S. mansoni infections in SSA is more limited than that of S. 

haematobium (Lai et al. 2015). Focal areas can be found in the African meningitis belt, especially in 

Guinea, Sierra Leone, and Liberia, northeastern and east-central parts of the Democratic Republic of the 

Congo, the Great African Lakes, and focal areas of Madagascar, Mozambique, and eastern South Africa. 

S. mansoni is also endemic in the Americas, where Brazil has the most infection hotspots with multiple 

other countries in the Americas needing further data on their epidemiologic status as transmission has 

potentially been interrupted (Zoni et al. 2016), e.g., in St. Lucia (Gaspard et al. 2020). The spread to the 

Americas was through the slave trade (Lammie et al. 2007) and made possible by the presence of 

Biomphalaria snails, the intermediate hosts for S. mansoni.  

 S. japonicum is only found in Asia where Oncomelania snails live. O. hupensis is found in and 

around the Yangtze River (Wilke et al. 2000) and in lake and marshland regions of China (Jia-Gang et al. 

2005; Yang et al. 2006). Infections in Indonesia are confined to Sulawesi island, especially the Lindu, 

Napu, and Bada valleys where O. hupensis lindoensis lives (Satrija et al. 2015). O. nosophora was the 

intermediate host in Japan before schistosomiasis was eradicated there (Tanaka et al. 1997). 

S. mekongi is found in Lao People's Democratic Republic and Cambodia where Neotricula aperta 

snails live (Khieu et al. 2019). S. guineensis and S. intercalatum were recognized as distinct species in 

2003 (Kane et al. 2003) in west and central Africa. Bulinus spp. snails serve as the intermediate host. 

1.4 Burden 
Estimates of the disease burden of schistosomiasis have varied (King 2010). Schistosomiasis, like 

many neglected tropical diseases (NTDs), rarely causes mortality, meaning schistosomiasis burden is 

largely due to years lived with disability; succinctly, schistosomiasis is a disabler and not a killer (Hotez et 
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al. 2014). Unfortunately, this makes the public health impact of schistosomiasis and other NTDs hard to 

quantify. A simplified version of the function used by Global Burden of Disease (GBD) Programme to 

calculate the years lived with disability (YLDs) (King et al. 2008a) is 

YLDs = (duration of disease) x (prevalence) x (disability weight) x (age weight) x (future discount). 

Components of this function illustrate the reasons for the low estimate. First, the prevalence component 

of the equation has been underestimated by flawed estimates (Brooker et al. 2000; van der Werf et al. 

2003b; Steinmann et al. 2006). A portion of this is driven by diagnostic tests with poor sensitivity that 

lead to misclassification bias (de Vlas et al. 1992a; Lamberton et al. 2014; Knopp et al. 2015) where light 

infections are treated as negative (King 2015). In addition, the geographic overlap with other parasitic 

infections, especially soil transmitted helminths (Handzel et al. 2003; Kabatereine et al. 2006), has 

potentially driven prevalence estimates downward. The overlap with other disabling NTDs could also 

affect the second aspect (the disability weight) by attributing disability to other NTDs. This 

misappropriation of morbidity to other causes is likely due to a lack of recognition of schistosomiasis-

linked morbidity (King et al. 2005), especially the effects of chronic schistosomiasis (King et al. 2008b).  

All of these factors have resulted in an underestimation of the morbidity caused by 

schistosomiasis (King 2010). Debate continues regarding these calculations pertaining to schistosomiasis 

(Goldberg et al. 2018; King et al. 2018) as well as about the ethics of these estimates (Arnesen et al. 

1999; Murray et al. 2020). Global Burden of Disease (GBD) estimates of the disability-adjusted life-years 

(DALYs) attributed to schistosomiasis ranges between 1.6 and 2.1 million DALYs (Global Burden of 

Disease Collaborative Network 2020).  

1.5 Pathology and Morbidity 
Acute pathologies account for a trivial part of the overall morbidity burden. Early pathology of 

schistosomiasis infections includes cercarial dermatitis, or swimmer’s itch (Cort 1928), due to cercarial 
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penetration of the skin, resulting in pruritus that can last for approximately a week (Horák et al. 2015). 

Acute schistosomiasis (or Katayama syndrome), a hypersensitivity reaction that generally occurs after 

initial infection, is the most observed early pathology of schistosomiasis (Ross et al. 2007; Jauréguiberry 

et al. 2010), especially in travelers to endemic areas. Typically, symptoms arise suddenly and include 

fever, fatigue, myalgia, malaise, cough, and eosinophilia and recovery is often rapid (Boros 1989; Ross et 

al. 2007; Montgomery 2020). Other pathologies during the initial infection stage are rare, though some 

may have more severe outcomes, such as neuroschistosomiasis (Ferrari et al. 2011). Acute pathologies 

are typically described in travelers (Zuidema 1981; Colebunders et al. 1995; Visser et al. 1995; 

Lambertucci et al. 2013; Meltzer et al. 2013), but acute manifestations may also occur in endemic areas 

and are likely overlooked (Lambertucci 2010).  

Pathology and morbidity associated with schistosomiasis are largely driven by the host’s long-

term immune responses to parasite eggs. As infections become chronic, urogenital and intestinal species 

begin to diverge in their pathology and morbidity, primarily as a function of different oviposition 

locations. The immune responses that lead to pathology are similar (Wynn et al. 2004) with clinical 

manifestations and morbidity resulting from eggs lodged in tissues instead of exiting the body via urine 

or faeces. Experimental studies of egg shedding in hamsters found that only 22% of S. mansoni eggs and 

16% of S. japonicum eggs were shed in faeces (Moore et al. 1956). In mice, approximately a third of S. 

mansoni eggs and a half of S. japonicum eggs were shed in faeces (Cheever et al. 1994). These findings 

suggest a large proportion of eggs do not leave the body. The association between parasite eggs and 

pathology has been recognized from the earliest studies of schistosomiasis as Bilharz postulated that the 

inflammation he observed in his initial autopsy was due to ova caught in the submucosa (Bilharz 1856). 

The trapped eggs release soluble egg antigens (von Lichtenberg 1964) that elicit a granulomatous 

immune response of lymphocytes, eosinophils, and macrophages (Pearce et al. 2002). 
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The extent of a person’s schistosomiasis-related morbidity is dependent on a few factors. The 

first factor is the species causing the infection since egg laying patterns differ between species (von 

Lichtenberg et al. 1973; Cheever et al. 1980; Cheever et al. 1982; Colley et al. 2014a). Second, is the 

infection intensity, which is crude approximation of the number of worms pairs present in the body 

(Gryseels et al. 1996), since people who tend to shed more eggs tend to have more severe symptoms 

(Kloetzel 1962; Forsyth et al. 1964; Forsyth et al. 1965; Forsyth et al. 1966; Cheever 1968; Cook et al. 

1974; Cheever et al. 1975; Arap Siongok et al. 1976; Lehman et al. 1976; Omer et al. 1976; Cheever et al. 

1977; Pugh et al. 1979; Warren et al. 1979; Gryseels et al. 1987; Kardorff et al. 1997). Third, repeated 

infections have an effect on parasite burdens (Crombie et al. 1985). Finally, some people’s immune 

systems are better able to regulate their response to trapped ova which reduces the disease severity 

(Colley et al. 2014b).  

1.5.1 Pathology and morbidity due to urogenital schistosomiasis 
Many studies from the first half of the 20th century commented on the distribution of ova in 

infected humans (Ferguson 1913; Begg 1920; Fairley 1920; Des Ligneris 1921; Dew 1923; Ibrahim 1923; 

Gibson 1925; Hutchison 1928; Blackie 1932; Gelfand et al. 1940; Gilbert 1943). These studies, largely 

from autopsies, found patterns of egg distribution are uneven, with ova lodged throughout the genital 

and urinary tracts. Usually the egg accumulation is focal (Gelfand et al. 1953; Christie et al. 1986a; 

Christie et al. 1986b), resulting in a greater inflammatory response and greater likelihood of symptoms 

(Gelfand et al. 1953). The clustering of eggs generally results in a continuum of appearance and 

consistency, ranging from polypoid patch, to a fibrous patch, to a sandy patch (Sadun et al. 1970), and 

results in heterogeneity of fibrosis within and between individuals (Smith et al. 1986). 

The most characteristic symptom of S. haematobium infection is haematuria (van der Werf et al. 

2003b; Barsoum et al. 2013; Colley et al. 2014a) which is also usually the first sign of infection in children 

(WHO 1987). This is generally caused by granulomatous lesions of the bladder resulting in ulceration 
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(Farid et al. 1968), but could be caused by the parasites themselves since adult worms lay eggs as near 

as possible to the bladder (Barsoum et al. 2013). Dysuria and increased micturition are also common 

clinical presentations that are associated with haematuria (King et al. 1988; Barsoum 2013).  

Deposition of S. haematobium eggs in the submucosa of the urinary bladder leads to 

inflammation, ulceration, and fibrosis in the inner surface of the bladder wall (Pollack et al. 1981) and 

thickening of the bladder wall (Degremont et al. 1985; Abdel-Wahab et al. 1992a; Abdel-Wahab et al. 

1992b; Medhat et al. 1997). Bladder polyps, a more pronounced pathology caused by large, localized 

egg burdens, have been associated with S. haematobium infection (Edington et al. 1970; Sadun et al. 

1970; von Lichtenberg et al. 1971; Lehman et al. 1973; Smith et al. 1974; Smith et al. 1975; Smith et al. 

1977b) during chronic infection (Sadun et al. 1970) or infections with rapidly accumulating egg burdens 

(Smith et al. 1975). Early radiography studies found a direct association between the prevalence of these 

pathologies and intensity of infection (Forsyth et al. 1964; Forsyth et al. 1965; Forsyth et al. 1966; 

Cheever et al. 1975; Pugh et al. 1979; Warren et al. 1979).  

Ureters are also a focal point for S. haematobium morbidity (Edington et al. 1970; Lehman et al. 

1973; Smith et al. 1974; Cheever et al. 1978; Elem 1984). Egg accumulation in the ureters is asymmetric 

and generally highest where the ureter meets the bladder (Smith et al. 1974; Smith et al. 1977a; Christie 

et al. 1986a; Christie et al. 1986b). Problems occur when stenoses form as a result of fibrosis and 

scarring of the ureters (Lehman et al. 1973; Smith et al. 1974; Smith et al. 1977a; Cheever et al. 1978) 

and the resulting strictures can result in hydroureter and, with continued progression, to 

hydronephrosis (Edington et al. 1970; Smith et al. 1974; Cheever et al. 1977). Pain can occur due to the 

back of up of urine in the ureter as well as chronic bacterial infections (Carter et al. 1970). Renal failure 

is possible (Kardorff et al. 1994). 
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Genital schistosomiasis, which affects females (Christinet et al. 2016) and males (Kayuni et al. 

2019), is caused when ova become lodged in the reproductive organs. S. haematobium causes the 

majority of genital schistosomiasis, though disease can be obtained from all species (WHO 2020a). 

Genital schistosomiasis was characterized over a century ago for both sexes (Madden 1899; 1911). Every 

female reproductive organ (Christinet et al. 2016) and most male genital organs (Kayuni et al. 2019) can 

be affected by schistosomiasis. Uterine pathology (Attia 1962) and cervical schistosomiasis (Kjetland et 

al. 2005; Kjetland et al. 2012; Kjetland et al. 2014; Randrianasolo et al. 2015) are the most common 

pathologies in female genital schistosomiasis (FGS) though pathology is likely underreported (Christinet 

et al. 2016). Pathology for male genital schistosomiasis (MGS) is less well-established. 

Chronic urogenital schistosomiasis has been associated with bladder cancer (Mostafa et al. 

1999; Gouda et al. 2007) which is hypothesized to be a result of chronic inflammation that promotes the 

development of bladder cancer (Rosin et al. 1994; Nesi et al. 2015). Novel studies in mice suggest pre-

cancerous conditions may develop (Fu et al. 2012) and potential molecular markers have been identified 

(Koonrungsesomboon et al. 2015). It appears as though schistosomiasis is not a sole cause of bladder 

cancer but probably contributes to carcinogenesis (Ishida et al. 2018). 

1.5.2 Pathology and morbidity due to intestinal schistosomiasis 
After pairing in the liver, S. mansoni male and female worms travel to the hepatic portal system 

(Miller et al. 1980) about one month after infection and oviposition begins. S. mansoni worms seem to 

favour laying eggs in the colon (Cheever et al. 1977), but tend to move around the mesenteric veins and 

lay eggs throughout the entire system (Pellegrino et al. 1978), resulting in widespread dissemination of 

lesions. Eggs deposited in the intestinal tract results in thickening of the intestinal wall as a normal 

reaction of the intestine to inflammation (Dittrich et al. 1994). Colonic polyps can form, which can 

present as blood in stool (Nash et al. 1982) and patients with severe cases may lose significant blood, 

fluid, and protein (Lehman et al. 1970). 
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Because blood in the hepatic system flows toward the liver, eggs can become lodged in the 

presinusoidal capillary venules where they form granulomas. After egg deposition in the hepatic portal 

system, gradual enlargement of the liver may occur (Prata et al. 1968) along with non-specific symptoms 

such as abdominal pain, diarrhoea, blood in stools, and fatigue (Lambertucci et al. 2000). The immune 

system’s repeated granulomatous response to trapped eggs causes the accumulation of collagen 

(Warren 1984) which advances to fibrosis (Phillips et al. 1986; Dunne et al. 1999; Cheever et al. 2000; 

Pearce et al. 2002; Colley et al. 2014b) and eventually to extensive destruction to the hepatic blood 

vessels (Andrade et al. 1971). Periportal fibrosis, also referred to as Symmers’ clay pipestem fibrosis 

(Symmers 1904; Cheever et al. 1967), can extend throughout the portal veins (Nash et al. 1982) and 

impede blood flow, leading to portal hypertension and hepatosplenic disease (Cheever et al. 1967; 

Coutinho 1968; Andrade et al. 1971).  

Persons with hepatosplenic disease can develop esophageal varices, potentially resulting in 

ischemic necrosis from repeated bleeding (Andrade et al. 1962). Variceal ruptures can cause esophageal 

and gastrointestinal bleeding and, potentially fatal exsanguination (Rodriguez et al. 1955; Cheever et al. 

1967; De Cock 1986; Richter et al. 1998). 

In later stages of hepatic disease, portal hypertension combined with low albumin levels can 

cause ascites, the accumulation of fluid in the peritoneal cavity (Dunn et al. 1981). Ascites can also occur 

after intestinal bleeding (El-Rooby 1985). The prevalence of ascites can vary substantially, especially 

geographically (WHO 1988). Patients with heavy worm burdens may form portosystemic collaterals in 

the intestines causing eggs to circulate and become lodged and induce granulomas in the lungs and 

heart, causing cardiopulmonary schistosomiasis (Clark et al. 1935; Cheever 1968; Andrade et al. 1970). 

Hepatosplenic patients can suffer from portal vein thrombosis (Cheever et al. 1967; Andrade et al. 1971) 

and glomerulonephritis (Andrade et al. 1979). 
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Severe manifestations of chronic intestinal schistosomiasis usually do not occur until many years 

of infection and accumulated inflammatory response to eggs (Cook et al. 1974; Arap Siongok et al. 1976; 

Lehman et al. 1976; Andrade et al. 1979; Homeida et al. 1988a; Gonçalves et al. 1995; Lambertucci et al. 

2000; Caldas et al. 2008) although periportal fibrosis has been observed in children as young as six 

(Doehring-Schwerdtfeger et al. 1992a). Severe morbidity only presents in a small proportion of 

chronically infected people and correlates with infection intensity (Arap Siongok et al. 1976; Omer et al. 

1976; Gryseels et al. 1987; Kardorff et al. 1997), meaning people with lower intensity infections are less 

likely experience these symptoms.  

The course of infection and morbidity from other intestinal Schistosoma species is similar, 

though some differences exist. Egg-laying patterns differ for S. japonicum (von Lichtenberg et al. 1973). 

S. japonicum worms also tend to lay eggs throughout the mesenteries, but oviposition tends to be more 

focal and worms cluster together resulting in more focal lesions of greater severity (Cheever et al. 1980; 

Cheever et al. 1982) and more disease severity (von Lichtenberg et al. 1973). Although Schistosoma 

infections of the brain are rare, S. japonicum infections are more likely to involve the brain compared to 

S. mansoni (Kane et al. 1948). Pathology for S. mekongi has largely resembled S. japonicum (Muth et al. 

2010), with portal hypertension, hepatosplenomegaly, and ascites all noted (Biays et al. 1999). S. 

intercalatum pathology is less severe than S. japonicum or S. mansoni while infections with other species 

are too rare to fully understand their pathology (King 2001). 

1.5.3 Decreasing severe pathology 
Reversibility of pathology has been noted both in the short term (Pugh et al. 1979; Doehring et 

al. 1986; Hatz et al. 1998) and long term (Subramanian et al. 1999; Richter 2003; King et al. 2005; Ouma 

et al. 2005; Kjetland et al. 2008; Mduluza et al. 2017; Miller-Fellows et al. 2017). The expansion of mass 

treatment leads to fewer people with severe pathology and more with light infections (Richter 2003; 

Mutapi et al. 2017; Wilson 2020), meaning less severe schistosomiasis manifestations have become 
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more common. These less clinically severe manifestations, which can occur with light infections and are 

common in children, have a greater impact on DALYs lost compared to the most severe pathologies 

(King et al. 2005). Evidence and recognition that any Schistosoma infection can lead to unfavourable 

health outcomes is growing (King et al. 2008b; King 2009; 2015; King et al. 2020b). Paediatric and 

maternal populations (Bustinduy et al. 2017a; Freer et al. 2018) and school-aged children (Musuva et al. 

2017; Ezeamama et al. 2018) are especially vulnerable. 

1.5.4 Measurement of pathology 
Ultrasonographic evaluation of schistosomiasis is the standard for measuring pathology. First 

proposed in the late 1970’s (Abdel-Wahab et al. 1978), the value of ultrasound grew as it was shown to 

be as good as or better than a radiograph or bladder scope for detecting S. haematobium urinary tract 

lesions. Ultrasonography detects bladder fibrosis and urinary tract lesions associated with  S. 

haematobium (Degremont et al. 1985; Burki et al. 1986) as well as periportal fibrosis (Hussain et al. 

1984) and portal hypertension associated with S. mansoni and S. japonicum infections (Abdel-Latif et al. 

1981). The WHO Special Programme for Research and Training in Tropical Diseases and the Swiss 

Tropical Institute organized a workshop in 1990 to develop standardized ultrasonography approaches. 

The meeting resulted in the Cairo protocol (WHO 1991; The Cairo Working Group 1992) which contained 

a set of standardized examinations and reporting practices. The protocol contained annexes for S. 

mansoni, S. haematobium, and S. japonicum. Each annex contained modules for placing the scanner to 

obtain the various views of the abdomen, descriptions and scoring for each abnormality, and a recording 

sheet. A second workshop was convened in Niamey, Niger in 1996 and a third in Belo Horizonte, Brazil in 

1997 to review field tests of the Cairo protocol and revise the standards. A White Paper Report was then 

written to summarize the discussions and conclusions from both workshops, which has come to be 

known as the Niamey or Niamey-Belo Horizonte protocol (Richter et al. 2000). Both Cairo and Niamey 

protocols worked from the criteria that the evaluation be suitable for field use, short (5-10 minutes), 
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consist of abnormalities which specifically indicate schistosomiasis, have unambiguous template images, 

and collect data in a quantitative form (Richter et al. 2000). In addition, indicators collected should be 

ones which are indicative of chronic infection, suggest development into severe condition, and should 

change with treatment. Revisions to the protocol primarily centered around grading and scoring, quality 

control measures, and some additional data collection standardization for the S. mansoni exam. The S. 

japonicum annex was dropped due the proposal to have a meeting specifically on Asian schistosomiasis; 

unfortunately, that meeting does not appear to have happened. 

The Niamey protocol has been the standard since its publication. Training clinicians is 

reasonably quick; after five sessions, most reach proficiency (Bonnard et al. 2011). The urogenital 

schistosomiasis exam consists of two intermediate scores which are then summed together to create a 

global score. The urinary bladder intermediate score comprises measurements of irregular bladder 

shape, irregularities in the bladder wall, thickening of the bladder wall, localized bladder masses, and 

the number of pseudopolyps. Second is the urinary bladder intermediate score which consists of 

measurements of whether the left and right ureters are dilatated and whether the kidneys have 

moderate or severe dilatation. Additional investigations include evaluating whether there is calcification 

of the bladder wall or residual urine in the bladder.  

Evaluations of S. mansoni pathology aggregate three scores: hepatic image pattern, periportal 

thickening, and portal hypertension. The image pattern score is concerned with measuring 

abnormalities in the liver parenchyma, i.e., if periportal fibrosis is present. Pattern A denotes no 

abnormalities, B is an indeterminate pattern, and C through F are abnormal patterns in the liver due to 

observable fibrosis. Image pattern B (IPB) has been considered to be an intermediate stage of hepatic 

fibrosis due to schistosomiasis, but IPB has been associated with malaria infection suggesting IPB is not 

exclusively caused by schistosomiasis (Samuels et al. 2012; Davis et al. 2015). Periportal thickening (PT) 

is measured via a two-step process where, first, the technician decides if PT is suspected. If so, the liver 
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wall thickness is measured at multiple places and the mean is compared to a reference table based on 

body height to determine if it is in normal range or at increased thickness. For portal hypertension, the 

diameter between the inner walls of the portal vein is compared against a height-based standard to 

determine whether dilatation is present. These scores are them summed to create an aggregate score 

and the protocol includes guidance on interpretation. Apart from the scoring section, there are 

instructions on investigating splenomegaly and gall-bladder wall thickening. 

1.6 Diagnosis of schistosomiasis 

1.6.1 Parasitological 
The primary method for schistosomiasis diagnosis has been microscopic examination of urine or 

stool for the presence of ova. For S. haematobium, the primary technique is the filtration of urine 

through a nucleopore filter (Peters et al. 1976b). Typically, 10 ml of urine is pressed through a filter that 

captures S. haematobium ova that were expelled in the urine sample. The filter is then dried and stored 

until it can be transported back to the laboratory for examination. Microscopic examination of stained 

filters for the presence of eggs is WHO’s recommended method.  

The thick smear technique for evaluating intestinal species was first proposed by Kato and Miura 

in 1954 (Kato et al. 1954). The Kato technique underwent modifications (Komiya et al. 1966; Martin et 

al. 1968) until Katz and colleagues in the early 1970s proposed a version which has remained in usage 

(Katz et al. 1972). The Kato-Katz thick smear technique involves sieving 41.7 mg of faeces onto paper 

and wet mounting them to a cellophane strip. The stool is then pressed against a microscope slide to 

evenly spread out the fecal material. The slide is then examined under a microscope and the eggs 

counted. 

The main shortcoming of both approaches is a lack of sensitivity. Urine filtration has day-to-day 

variability (Vinkeles Melchers et al. 2014) that can have a large effect in low prevalence settings 

(Kosinski et al. 2011). Other diagnostic tests are likely to estimate a higher prevalence. For example, in a 
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low prevalence setting, an antigen test had two to three times higher prevalence than urine filtration 

(Knopp et al. 2015). The same is true for Kato-Katz thick smear tests for intestinal infections where a 

single Kato-Katz thick smear underestimated prevalence in a modelling study by 50% (de Vlas et al. 

1992a) while an empirical study found a similar upper bound of around 40% (Lamberton et al. 2014). As 

with urine filtration, the Kato-Katz thick smear also has significant day-to-day variability (Engels et al. 

1996; Yu et al. 1998), though the intra-specimen variation of egg counts was shown to be 4.3 times 

higher than the day-to-day variability (Utzinger et al. 2001). This may partially be due to heterogeneity in 

the spatial distribution of eggs in a fecal sample, but this has only been shown for S. japonicum (Yu et al. 

1998) and not for S. mansoni (Krauth et al. 2012). The sensitivity of detecting an infection increases with 

multiple evaluations and the infection intensity (Lamberton et al. 2014; Bärenbold et al. 2017).  

1.6.2 Circulating antigen 
Experiments looking for circulating antigens in animals for S. mansoni date back to the 1960s 

(Berggren et al. 1967). Glycosaminoglycan-like carbohydrates circulating cathodic antigen (CCA) and 

circulating anodic antigen (CCA) produced in the vomitus of adult schistosome worms could be detected 

in mice, hamsters, and humans with S. mansoni infections (Deelder et al. 1980). Like egg excretion, the 

advantage of antigen detection with CCA and CAA as compared to antibody tests is they can delineate 

individuals with active infections from those who have been cured but continue to have antibodies 

circulating.  

Commercially available, point-of-care (POC) CCA-based tests have been evaluated in multiple 

field trials and shown to be at least as accurate as Kato-Katz thick smear performed in triplicate 

(Coulibaly et al. 2011; Shane et al. 2011; Tchuem Tchuenté et al. 2012), though there is some debate 

about the accuracy in low prevalence settings (Foo et al. 2015). POC-CCA may also be able to diagnose 

Asian schistosome species but more research is needed (van Dam et al. 2015). This gave rise to the hope 

that the POC-CCA test may be able to supplant Kato-Katz thick smear testing in control programmes for 
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S. mansoni (Bärenbold et al. 2018). A more complete, multi-country assessment found the test was 

sufficiently sensitive and specific compared to Kato-Katz thick smear for disease mapping but the test 

was not accurate enough to support elimination (Colley et al. 2013). Sadly, recent batches of the POC-

CCA test have given conflicting results (Colley et al. 2020c). This could be due to changes in the test 

(Colley et al. 2020c), different batches of components (Cavalcanti et al. 2019), or different levels of 

quality control in different locations (Viana et al. 2019). Regardless of the reason, this suggests the test 

may not be reliable enough yet.  

Unfortunately, POC-CCA has not been able to consistently detect S. haematobium infections 

(Stothard et al. 2009b; Ashton et al. 2011; Sanneh et al. 2017; Rubaba et al. 2018). Other point-of-care 

tests for S. haematobium have been proposed but appear to be at a proof-of-concept stage (Nausch et 

al. 2014; Holmström et al. 2017; Panic et al. 2019). 

CAA is measured in an upconverting particle-lateral flow circulating anodic antigen (UCP-LF CAA) 

assay that can detect a single worm pair in experimental non-human primate infections (Corstjens et al. 

2020). Recent advancements include making the UCP-LF CAA test more user friendly (van Dam et al. 

2013). Field tests of the urine circulating anodic antigen 2000 (UCAA2000) test have been performed in 

an S. haematobium elimination setting (Knopp et al. 2015) and in multiple S. mansoni locations 

(Clements et al. 2018; Gaspard et al. 2020; Ruberanziza et al. 2020). For any of the CAA-based tests to be 

programmatically useful, a POC version is needed and the assay will need to be commercialized. 

1.6.3 Antibody 
Measuring host antibody production to schistosome antigens is highly sensitive. Most tests detect 

antibodies reactive with preparations of soluble egg antigen (SEA). However, programmatic use of 

antibody detection is challenging for two primary reasons. First, the antibody response to SEA lasts long 

after active infection has cleared, making it ineffective for monitoring and evaluation of control 

programmes as it is challenging to know whether a positive response to an antibody test is due to 
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current or past infection. Second, the process of isolating eggs to produce SEA has remained largely 

unchanged since being introduced (Coker et al. 1956). This process cannot be standardized meaning 

variability is highly likely between laboratories and potentially between batches from the same 

laboratory. Therefore, detection of antibodies against SEA has largely been used to measure the impact 

of control programmes at an aggregate level. Such studies have shown promise by demonstrating 

reductions in SEA for pre-school-aged children in areas where interventions have been implemented 

(Won et al. 2017; Arnold et al. 2020).  

1.7 Treatment 
Treatment against all Schistosoma species is predominantly done with praziquantel. Prior to 

praziquantel, metrifonate for S. haematobium and oxamniquine for S. mansoni were used as 

chemotherapy. While both were well-tolerated and effective, they were only effective against a single 

species and had shown potential mutagenic activity (Batzinger et al. 1977). Early phase results of 

praziquantel demonstrated it was well tolerated by animals (Murmann et al. 1976) and effective against 

all schistosome species (Gönnert et al. 1977; Thomas et al. 1977; Webbe et al. 1977) with no known 

mutagenic activity (Obermeier et al. 1977; Bartsch et al. 1978; Machemer et al. 1978). Multicenter 

randomized controlled clinical trials demonstrated the therapeutic efficacy of praziquantel (Davis et al. 

1979a; Davis et al. 1979b; Ishizaki et al. 1979; Katz et al. 1979; Santos et al. 1979; Davis et al. 1981; El-

Alamy et al. 1981; Omer 1981).  

The mechanism of how praziquantel works is unknown and many potential theories exist 

(Thomas et al. 2018). Regardless of the exact mechanism, praziquantel paralyzes adult worms making 

them susceptible to destruction by the immune system or some other process (Harnett 1988). The 

efficacy of praziquantel is dependent on the maturity of the worm. In experimental mice, the 

relationship between mortality and week of infection appears to be U- or V-shaped (Sabah et al. 1986). 

Initially, larval worms have some susceptibility to praziquantel, but this drops to a nadir at 
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approximately week 3 or 4 and increases after that. The median effective dose of praziquantel for 4-

week old worms is 30 times that of 7-week old worms (Pica-Mattoccia et al. 2004).  

Praziquantel is a useful drug for multiple reasons. First, a single dose is effective. A meta-analysis 

of praziquantel cure rates based on egg excretion found that a single dose of praziquantel 40 mg/kg 

achieved high cure rates for multiple species (Zwang et al. 2014), though cure rates for S. mansoni when 

using the POC-CCA antigen test were only 41.6% (31.1-52.9) 10 weeks after a single treatment in a 

randomized controlled trial (Hoekstra et al. 2020). Treatment usually consists of a single dose of 40 

mg/kg for S. haematobium and S. mansoni and 60 mg/kg for S. japonicum and S. mekongi. For children, 

the dose is determined by height as a proxy for weight (Montresor et al. 2001; Sousa-Figueiredo et al. 

2012b). No paediatric formulation exists (Bustinduy et al. 2016), meaning pills need to be crushed, 

which is not feasible in mass treatment programmes. Treatment has had lower effectiveness in pre-

school-aged children, possibly due to dosing difficulty or biologic reasons (Sousa-Figueiredo et al. 2012a; 

Coulibaly et al. 2017). Second, the drug has low toxicity (Montero et al. 1997; Dayan 2003) and is well 

tolerated (Cioli et al. 2003; Utzinger et al. 2004; Caffrey 2007; Doenhoff et al. 2008) with only minor side 

effects (Zwang et al. 2014) that may be associated with intensity of infection (Cioli et al. 2003) or not 

(Midzi et al. 2008). In addition, praziquantel has been shown to be safe in pre-school aged children 

(Coulibaly et al. 2017; Olliaro et al. 2020) and pregnant women (Olveda et al. 2016b). Finally, the cost of 

praziquantel has decreased significantly. Initial excitement regarding praziquantel effectiveness was 

tempered by the high cost (Anonymous 1980), but by the late 1980s, a tablet cost approximately USD 1 

per 600 mg tablet (Stothard et al. 2009a) or between USD 2-5 for a treatment (King et al. 1989). Drug 

costs are now approximately USD 0.56 per treatment with an total of all costs per person averaging USD 

1.37 (standard deviation=USD 1.14) (Salari et al. 2020).  
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1.8 Interventions 
Broadly, interventions for schistosomiasis can be categorized into four groups which try to break 

the life cycle at three different places. Ecologic interventions primary attempt to stop transmission in 

the environment. Pharmaceutical interventions try to stop transmission by reducing the number of 

worms in humans and, in turn, reduce the number of ova that reach freshwater bodies. Two groups of 

other interventions, educational interventions and water, sanitation, and hygiene (WASH) interventions 

attempt to stop transmission by keeping humans out of infected water sources.  

1.8.1 Ecologic Interventions 
The predominant ecological intervention for schistosomiasis is snail control through the 

application of molluscicides. Mollusciciding has the advantages of directly interrupting transmission and 

reasonably simple implementation while the disadvantages are the need for repeat application, 

increased effort compared to chemotherapy interventions, costly labor, delayed impact, difficulty 

achieving wide coverage, and collateral damage to other wildlife (King et al. 2015a).  

Early control activities focused on molluscicides before the development of chemotherapy 

interventions. Up until the early 1960s many compounds were utilized (WHO 1965). By 1980, the 

compounds in use effectively shrunk to only one, niclosamide (Foster et al. 1960), as it was the only one 

produced commercially without the need of a large order (McCullough et al. 1980). The shift to 

niclosamide, sold as Bayluscide, Fenasal, Nicloside, and others (National Center for Biotechnology 

Information 2020) were due to its low toxicity and ability to kill snails, snail eggs, and cercariae at low 

concentrations (McCullough et al. 1980; King et al. 2015a).  

Despite niclosamine application proving to be a component of successful control programmes, 

such as in St. Lucia (Ivy et al. 2018), new pharmaceutical treatment options decreased the interest in 

snail control strategies. Recently, there has been a resurgence in the recognition that snail control is an 

important component of schistosomiasis control, especially in efforts to interrupt transmission (King et 
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al. 2015a; Shiff 2017; French et al. 2018; Sokolow et al. 2018). A recent meta-analysis demonstrated that 

application of niclosamide significantly reduced the odds of infection alone and when used in 

conjunction with chemotherapy (King et al. 2015b). This approach has been estimated to be cost 

effective (Lo et al. 2018) despite the high cost of mollusiciciding. 

Other snail control approaches include the introduction of snail predators into the environment 

(Slootweg et al. 1994; Gashaw et al. 2008; Duval et al. 2015; Sokolow et al. 2015; Younes et al. 2017) and 

introduction of competitor snails (Pointier et al. 2000; Gashaw et al. 2008). 

1.8.2 Pharmaceutical Interventions 
Since the development of praziquantel, preventive chemotherapy has become the favoured 

intervention of WHO and control programmes given the high cure rates, effectiveness in a single dose, 

low toxicity and high tolerability, and low cost. In addition, large donations of praziquantel from Merck 

KGaA have made treatments available to control programmes. Initial grants from The Bill and Melinda 

Gates Foundation allowed the Schistosomiasis Control Initiative (SCI) to purchase generic praziquantel 

for use in six country control programmes (Fenwick et al. 2009). Merck KGaA initially committed to 

donating 20 million tablets annually between 2007 and 2010. Calls to increase this donation (Hotez et al. 

2010) were heeded and in 2010 Merck KGaA committed to ramp up donations to 250 million tables by 

2016 (Fenwick et al. 2016). The drug was given to 98.7 million people in 2017, nearly a 10-fold increase 

over of the number of people treated in from 2006 (WHO 2018).  

In large part, these donations have been distributed to people via preventive chemotherapy 

campaigns, also known as mass drug administrations (MDAs). For most of sub-Saharan Africa, the only 

active control intervention after Merck KGaA began donating treatments has been preventive 

chemotherapy (French et al. 2018). Control programmes have demonstrated effectiveness of the 

expanded use of praziquantel by noting decreases in infections and morbidity levels with annual 

treatments (Fenwick et al. 2009; Deol et al. 2019; Mduluza et al. 2020).  
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Currently, guidelines recommend that praziquantel be distributed in schools to school-aged 

children (Montresor et al. 2002; WHO 2002; 2011b). Debate is ongoing regarding whether preventive 

chemotherapy should be expanded to include the entire community. The burden to pre-school aged 

children is high (Kalinda et al. 2021) and modeling suggests this expansion would be cost effective (Lo et 

al. 2015). In trials of treatment delivery schedules, community delivery reduced infection levels in adults 

and pre-school aged children while school-based delivery to school-aged children did not (King et al. 

2020c) except for one study were reductions were found regardless of delivery (Secor et al. 2020). 

Reviews have also come to different conclusions with one suggesting that combining the two 

approaches would be beneficial because it would improve coverage (Burnim et al. 2017) while another 

found that school- and community-based dissemination have similar effectiveness at reducing infections 

(Cribb et al. 2019).  

Disappointingly, when community treatment has been implemented, coverage has generally 

been lower than hoped. Lack of understanding of MDAs and general health education as well as drug 

stock outs have contributed to the lack of coverage (Tuhebwe et al. 2015). Popular reasons for failing to 

participate have included being away from home when volunteers visited (Knopp et al. 2016) and failure 

to be offered treatment (Adriko et al. 2018). Receipt of treatment has been shown to vary by ethnicity 

(Dabo et al. 2013; Chami et al. 2016), sex (Inobaya et al. 2018), poverty status (Chami et al. 2016), and 

type of employment (Coulibaly et al. 2018). Similar uptake has been noted in school-aged children in 

both school and community distribution (Binder et al. 2020). 

Preventive chemotherapy has demonstrated short term effectiveness, but sustainability and the 

impact over the long term is mixed since usually transmission does not get interrupted (Olveda et al. 

2016a). Initial evaluations suggested that annual administration of praziquantel through ministries of 

health could achieve morbidity control (Fenwick et al. 2009). Many have noted that annual preventive 

chemotherapy without other interventions is unlikely to interrupt schistosomiasis transmission (Knopp 
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et al. 2013; Njenga et al. 2014; Ross et al. 2015a; Ross et al. 2015b; Secor 2015; King et al. 2020c) and 

there is a need to supplement pharmaceutical interventions. In addition, there is the potential of 

reduced effectiveness of praziquantel after repeated applications (Crellen et al. 2016). 

1.8.3 Educational 
Health education has long been incorporated into schistosomiasis control programmes (Kloos 

1995). The motivation behind educational interventions is to increase people’s knowledge of the causes, 

transmission, symptoms, and morbidity of schistosomiasis (Mwanga et al. 2013) and reduce 

misconceptions of the disease (Musuva et al. 2014; Person et al. 2016a), which in turn help reduce 

disease transmission and prevalence. These interventions can have other goals which may also reduce 

disease indirectly, such as increasing treatment compliance (Omedo et al. 2014). Health education 

programmes may increase people’s attitudes and practices (Sacolo et al. 2018) and have been 

associated with decreases in S. japonicum prevalence (Zhou et al. 2013). For educational programmes to 

make sizable gains, it is recognized that they must be accompanied by infrastructure changes such as 

improved water and sanitation opportunities (Kabatereine et al. 2014; Dawaki et al. 2015). For instance, 

Senegalese survey participants knew schistosomiasis was transmitted in fresh water but continued to 

engage in risky behaviours because no clean water options existed (Lund et al. 2019). Finally, inadequate 

consideration of the sociological context in which an intervention is applied can lead to failure (Hubley 

1986; Kloos 1995; Secor 2014; Grimes et al. 2015; Mwanga et al. 2020). 

1.8.4 Water, Sanitation, and Hygiene (WASH) 
Living or working in close proximity to infectious water increases one’s risk of schistosomiasis 

(Karanja et al. 2002; Steinmann et al. 2006; Kapito-Tembo et al. 2009; Woodhall et al. 2013; Won et al. 

2017) since transmission is entangled into the environmental, sociological, and physical structure of a 

community (Grimes et al. 2015). WASH-based programmes are generally designed to reduce people’s 

contact with infectious water (Secor 2014). This can be done via behavioral interventions or by 
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improving people’s access to clean water and improved sanitation. Access to clean water and adequate 

sanitation have both been associated with lower odds of schistosomiasis (Grimes et al. 2014). As a 

result, it is argued that WASH is an important and potentially necessary component of control 

programmes (Campbell et al. 2014; Grimes et al. 2015; Campbell et al. 2018). 

The most common activities associated with increased exposure to infectious water are laundry, 

bathing, and swimming (Grimes et al. 2015). Facilities such as sinks, showers, and swimming pools can 

address each one of these exposure points and provide people with clean water access. Specific needs 

depend on the social context. Comprehensive plans which address all exposures simultaneously have 

the greatest chance of success (Person et al. 2016b). 

There is debate on the beneficial effect of latrines for interrupting schistosomiasis transmission. 

Adequate latrines may be able to prevent contamination of fresh water with eggs, but this does not 

guarantee they always will be used and eggs may still enter water bodies during bathing, from soiled 

clothing, from animal reservoir hosts, or via flooding (Grimes et al. 2015).  

1.9 Monitoring and evaluation goals and framework 

1.9.1 Programme goals 
The successes of praziquantel distribution, steady increases in the number of people treated 

with preventive chemotherapy, and achievement of 21 country programmes with over 75% national 

coverage in school-aged children (WHO 2018) fueled discussion of interrupting transmission of 

schistosomiasis (King 2009; Gray et al. 2010; Fenwick et al. 2011; Hotez 2011; Zhang et al. 2011). This led 

to the 2012 London Declaration (London Declaration on Neglected Tropical Diseases 2012) and the 2012 

World Health Assembly (WHA) calling for countries to initiate elimination campaigns, “where 

appropriate” (World Health Assembly 2012) and excitement about preparing for elimination (Rollinson 

et al. 2013).  
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While this enthusiasm is important, there is a recognition of the large challenges facing 

schistosomiasis elimination (Rollinson et al. 2013; Ross et al. 2013; Ross et al. 2015a; Fenwick et al. 

2016; Tchuem Tchuenté et al. 2017). The WHO has stated since the early 2000s that the primary goal of 

schistosomiasis control programmes is morbidity reduction (WHO 2002; 2011b). Those goals remain in 

place today and the latest NTD Roadmap (WHO 2020b) includes the target of reducing morbidity to a 

locally-acceptable level.  

1.9.2 Framework 

The current monitoring and evaluation framework for schistosomiasis involves setting up a 

network of sentinel sites (usually schools since data are typically collected from 9-12 year old children) 

across homogeneous ecological zones, where a zone will typically cover several districts (WHO 2011b). A 

stratified random sample of schools, where ecologic zones serve as strata, is administered. A school is 

picked for every 200,000 to 300,000 targeted children and a random selection of 50 children are 

examined in each school. Those children then provide a sample of urine (for S. haematobium) or stool 

(for S. mansoni and S. japonicum) which is saved and transported back to a laboratory to examine under 

a microscope. Alternatively, for S. haematobium, a dipstick or reagent strip can be used to detect the 

presence of microhaematuria due to the long history of correlation between haematuria and urogenital 

infection (Savioli et al. 1990; Krauth et al. 2015) and good test characteristics when compared to egg 

detection across different locations and subgroups (King et al. 2013). The results from each participant’s 

test are recorded, aggregated, and analyzed to determine whether a target population is deemed to 

have controlled schistosomiasis or eliminated schistosomiasis as a public health problem. 

1.9.3 Intensity categories 
Programme evaluation of schistosomiasis after preventive chemotherapy has been based on 

two categorizations. First, are categories for the intensity of a schistosome infection. S. haematobium 

infection intensity has consistently been characterized by the number of schistosome eggs per 10 ml of 
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urine with 1-49 eggs per 10 ml of urine defining a light infection and ≥ 50 eggs per 10 mL of urine 

indicating a heavy infection (WHO Expert Committee on the Control of Schistosomiasis 1985; WHO 

2002).  

For S. mansoni, infection intensity is measured as the number of schistosome eggs per gram 

(EPG) of stool. Different categorizations have appeared in WHO documents (WHO Expert Committee on 

the Control of Schistosomiasis 1985; Dixon 1987), but infection intensity is now commonly split into 

three categories: 1-99 EPG for a light infection; 100-399 EPG signifying a moderate infection; and ≥ 400 

EPG for a heavy infection (Montresor et al. 1998; WHO 2002).  

1.9.4 Control and elimination as a public health problem categories 
The second categorization utilized for programme evaluation are the targets for determining 

whether a geographic area has controlled schistosomiasis morbidity or eliminated schistosomiasis as a 

public health problem (WHO 2013). These categories utilize the prevalence of heavy-intensity infections 

(PHI) and state that a country or smaller geographic area with a PHI less than 5% across communities 

has controlled schistosomiasis morbidity, with the caveat that a single community can be treated as a 

separate implementation unit if this allows the remaining implementation units to achieve control. A 

country is considered to have eliminated schistosomiasis as a public health problem when all 

communities have less than 1% PHI. These categories are based on multiple studies prior to the mid-

1980s that demonstrated an association between severe schistosomiasis morbidities and the infection 

intensity (WHO 1973; 1987; 1988) and the belief that only heavy-intensity infections cause disease 

(Mott 2004). Plus, the high cost and limited availability of praziquantel at that time meant policymakers 

focused on the most severe morbidities caused by schistosomiasis. 

1.9.5 Monitoring and evaluation shortcomings 
The foundational research for the monitoring and evaluation framework was performed in the 

1970s and 1980s (WHO 1987; 1988) and the framework was developed after the turn of the century 
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(WHO 2002; 2011b; 2013). There is a growing recognition that the framework needs to be changed. For 

instance, there have been calls to focus control on morbidity (Lo et al. 2017; French et al. 2018) and to 

include people other than school-aged children in assessments (Stothard et al. 2011; Lo et al. 2017; Toor 

et al. 2018b). Early programme review and targeted interventions could help achieve goals quicker (Li et 

al. 2019). Incorporating geostatistical analysis into study planning could result in more efficient 

preventive chemotherapy distribution (Fornace et al. 2020) and integration with other programmes 

could be beneficial (Lammie et al. 2006; Baker et al. 2010) potentially utilizing serologic data (Lammie et 

al. 2012; Arnold et al. 2018; Arnold et al. 2020; Njenga et al. 2020). 

Though, no evaluations exist of WHO’s intensity categories and PHI targets. These targets for 

control of morbidity and elimination as a public health problem are utilized by control programmes to 

determine success (Deol et al. 2019) and in predictive modelling studies (Toor et al. 2018a; Toor et al. 

2018b; Kura et al. 2019; Li et al. 2019; Coffeng et al. 2020; Kura et al. 2020; Toor et al. 2020). There is no 

evidence that these targets were developed based on specific morbidity levels, only general trends 

observed in systematic reviews (WHO 1987; 1988). 
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2 Goals and objectives 

2.1 Rationale 
No thorough assessment of the relationship between morbidity and the current targets for 

elimination as a public health problem (1% PHI) and morbidity control (5% PHI) has been performed. If 

these targets do not appear to associate with morbidity levels, then these targets should be changed to 

establish, evidence-based targets that are grounded in morbidity control. This would bring the targets in 

line with WHO’s goal for schistosomiasis control programmes, specifically to reduce morbidity to a 

locally acceptable level (WHO 2020b). Since elimination is not currently a realistic target for 

schistosomiasis, it is important to refocus schistosomiasis control programmes on morbidity reduction 

(French et al. 2018). A target that identifies the point at which schistosomiasis is eliminated as a public 

health problem would be useful immediately since there is an expectation to rapidly validate countries 

as having eliminated schistosomiasis as a public health problem (WHO 2020b). 

One modeling study explored the best criteria for predicting the elimination of S. mansoni after 

stopping MDA and found that using a threshold of 1% Kato-Katz thick smear prevalence would provide 

slightly over 90% power that, two years after stopping MDA, elimination will occur (Toor et al. 2019). 

Using 2% and 5% thresholds drop that certainly to around 85% and 75%, respectively. Though, the 

prevalence threshold was based on elimination of transmission and not on morbidity levels.  

2.2 Goals 
The overall goal of the PhD thesis is to improve the monitoring and evaluation framework for 

schistosomiasis with the following objectives: 

• To further the evidence of the association between morbidity and infection; 

• To determine whether the current monitoring and evaluation demonstrates that schistosomiasis 

morbidity is eliminated as a public health problem; 
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• To suggest programmatic targets that are linked to morbidity indicators and are measurable by 

schistosomiasis control programmes; and 

• To promote the use of novel technologies in monitoring and evaluation. 

2.3 Specific objectives 
The specific aims are: 

• To assess changes in morbidity levels in cohorts of participants receiving preventive 

chemotherapy; 

• To summarize the morbidity research from the SCORE project; 

• To evaluate the association between current intensity categories for schistosomiasis and 

morbidity levels; 

• To evaluate the association between control of morbidity and elimination as a public health 

problem targets and morbidity levels; 

• To develop an empirically based elimination of a public health problem target for morbidity 

indicators that possess a strong association with infection levels; and 

• To demonstrate the utility of a tablet-based ultrasound system for evaluating schistosomiasis 

morbidity. 
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3.1 Abstract 
The WHO recommends mass treatment with praziquantel as the primary approach for 

Schistosoma mansoni-related morbidity control in endemic populations. The Schistosomiasis 

Consortium for Operational Research implemented multi-country, cluster-randomized trials to compare 

effectiveness of community-wide and school-based treatment regimens on prevalence and intensity of 

schistosomiasis. To assess the impact of two different treatment schedules on S. mansoni-associated 

morbidity in children, cohort studies were nested within the randomized trials conducted in villages in 

Kenya and Tanzania having baseline prevalence >25%. Children ages 7-8 years were enrolled at baseline 

and followed to ages 11-12.  Infection intensity and odds of infection were reduced both in villages 

receiving four years of annual community-wide treatment (CWT) and those that received biennial 

school-based treatment (SBT) over four years. These regimens were also associated with reduced odds 

of undernutrition and reduced odds of portal vein dilation at follow-up. However, neither hemoglobin 

levels nor the prevalence of the rare abnormal pattern C liver scores on ultrasound improved. For the 

combined cohorts, growth stunting worsened in the areas receiving biennial SBT, and maximal oxygen 

uptake as estimated by fitness testing scores declined under both regimens. After adjusting for 

imbalance in starting prevalence between study arms, children in villages receiving annual CWT had 

significantly greater decreases in infection prevalence and intensity than those villages receiving biennial 

SBT. Although health-related quality-of-life scores improved in both study arms, children in the CWT 

villages gained significantly more. We conclude that programs utilizing annual CWT are likely to achieve 

better overall S. mansoni morbidity control than those implementing only biennial SBT. 

3.2 Introduction  
 Schistosomiasis remains a major public health problem in much of Africa. The clinical 

consequences of S. mansoni infections result from tissue damage and blood loss caused by schistosome 

eggs trapped in host tissues (Colley et al. 2014a). Chronic immunologic reactions to the eggs cause 

granuloma formation in intestines, liver, and spleen, and can progress to cause hepatic and splenic 
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enlargement, periportal fibrosis, portal hypertension, and esophageal varices (Bustinduy et al. 2014). 

Other impacts of infection, particularly in children, include anemia, malnutrition, impaired growth, 

impaired cognitive development, and generalized body weakness (Colley et al. 2014a; Ezeamama et al. 

2018). 

 Current World Health Organization (WHO) guidelines call for mass treatment with praziquantel 

in endemic communities to achieve morbidity control (WHO 2002; 2006; 2013). However, questions 

remain about optimal programmatic implementation of mass drug administration (MDA). 

 The overall goal of the Schistosomiasis Consortium for Operational Research and Evaluation 

(SCORE) project (https://score.uga.edu/) is to provide an evidence base for programmatic decision-

making related to control and elimination of schistosomiasis (Ezeamama et al. 2016). Among the studies 

in the SCORE portfolio were multi-arm, multi-year, randomized intervention trials that assessed changes 

in prevalence and intensity of schistosomiasis in children aged 9-12 years in villages receiving MDA using 

different strategies over a four-year intervention period (Ezeamama et al. 2016). The results from the 

randomized trials in Kenya and Tanzania have been reported elsewhere (Wiegand et al. 2017; Olsen et 

al. 2018).  

 These longitudinal studies also provided an opportunity to explore the impact of MDA on 

schistosomiasis-associated morbidity in children (Shen et al. 2017).  Therefore, SCORE nested cohort 

studies of morbidity within intervention trials in Kenya and Tanzania that were occurring in villages that 

had prevalence of > 25% S. mansoni infection during village eligibility testing (Shen et al. 2017). The 

treatment regimens in the two study arms that included cohorts were either: i) four years of annual 

community-wide treatment (CWT); or ii) every-other-year school-based treatment (SBT) (Figure 3.1). In 

the present analysis, we combined the data from the S. mansoni cohorts in Kenya and Tanzania to assess 

https://score.uga.edu/
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and compare the impact of the two regimens on a range of infection-associated morbidity markers. 

While results of analysis of the Kenya cohort (Sircar et al. 2018) and the baseline data from the Tanzania 

cohort (Kinung’hi et al. 2016) have been previously published, the present secondary analysis, 

combining the Kenya and Tanzania data, increases the statistical power to detect significant differences 

between CWT and SBT treatment regimens. The current paper describes changes in anthropometric 

growth indices, hemoglobin (Hb) levels, measures of physical fitness, and quality of life, as well as the 

liver abnormalities and portal vein findings among study cohort children (aged 7-8 years at baseline) at 

the end of their four-year study participation (Shen et al. 2017). Our hypothesis was that annual CWT 

with praziquantel could provide incremental health benefits in terms of reductions in observed 

morbidity when compared with the effects of every-other-year treatment administered in a school-

based program (Shen et al. 2017). 

3.3 Materials and Methods  

3.3.1 Ethics statement on subject recruitment 
Approval for the SCORE in Kenya and Tanzania intervention studies (the “gaining control” 

studies) and their related cohort studies was obtained from Institutional Review Boards at the Kenya 

Medical Research Institute (Nairobi, Kenya), the Centers for Disease Control and Prevention (Georgia), 

 

Figure 3.1. Flow diagram of the cohort study. In the upper arm, children lived in communities randomized to 
receive annual community-wide mass drug administration treatment (CWT). The children in the lower study 
arm lived in communities randomized to receive only biennial (every other year) school-based treatment 
(SBT), with drug “holidays” in Year 2 and in Year 4. Final assessment for both groups was performed in Year 
5 of the study. 
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and the Medical Research Coordination Committee of the National Institute for Medical Research 

(Tanzania). Trials Registration numbers are ISRCT 16755535 (Kenya) and ISRCT 95819193 (Tanzania) 

(Ezeamama et al. 2016). Only children who assented to participate and had written informed consent 

from parents or their legally authorized representatives were eligible for inclusion. Before examination 

and sample collection, the reason for the survey and the procedures for sample collection were 

explained to the children and the adult population in the communities, as well as local leaders, school 

administrators, teachers, and health and education personnel. 

3.3.2 Study area and population 
The results reported here are a secondary analysis of data combined from parallel cohort 

studies that took place in the Nyanza region (Siaya, Kisumu, and Homa Bay Counties) of Kenya (Onkanga 

et al. 2016) and the Mwanza region (Misungwi and Sengerema Districts) of Tanzania (Olsen et al. 2018), 

both of which have high prevalence of S. mansoni. All study villages were located on or near the Lake 

Victoria shoreline.  

 The cohort study design is described in detail in earlier articles (Samuels et al. 2012; Kinung’hi et 

al. 2016; Shen et al. 2017). Briefly, the cohort studies were nested in larger intervention trials on gaining 

control of schistosomiasis mansoni in moderate- to high-risk communities. In these parent SCORE 

intervention trials, 150 villages per country were randomized to one of six treatment arms and given 

MDA using different approaches (CWT versus SBT) at different frequencies (either two or four 

treatments) over a four-year period (Ezeamama et al. 2016). Villages for inclusion in the nested cohort 

studies reported came from the 25 villages in the treatment arm with annual CWT (the most intense 

treatment arm) and the 25 villages with every-other-year SBT (a less intense treatment arm) (see Figure 

3.1 for flow diagram) (Shen et al. 2017). To achieve the target of enrolling 800 seven-to-eight-year-old 

children in each country, Tanzania included three of the 25 villages in the annual CWT arm and four of 

the 25 in the biennial SBT arm, whereas Kenya included six villages from each arm (Shen et al. 2017). 
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Parasitologic and morbidity parameters were measured at baseline and in Year 5, and although some 

measures were made in Year 3, these were not uniform between sites and are not included in the 

present analysis. In years when villages were scheduled to receive treatment, the protocol called for 

efforts to treat all village school-age children, whether in school or not, and irrespective of their egg-

positive or egg-negative status. In CWT villages, schools were used as a supplemental venue to locate 

children not found at home. In SBT villages, community mobilization teams were used to encourage 

parents to have their children who were not attending school come to receive treatment at the school 

on a subsequent day. During praziquantel drug holiday years, children having symptoms could seek 

evaluation and treatment at health facilities, which sometimes were able to provide individual 

praziquantel treatment. However, few, if any children received treatment during drug holiday years. 

There was no untreated comparison group. Only those children who participated in both Year 1 and 

Year 5 are included in the analyses presented in this article.  

3.3.3 Data on parasitology and morbidity 
The methods for the collection of cohort data are described in detail elsewhere (Samuels et al. 

2012; Kinung’hi et al. 2016), but are briefly presented in the following paragraphs. 

 Stool sample collection and examination. Participants provided stool specimens on each of three 

consecutive days. Duplicate Kato-Katz thick smears were made with a 41.7 mg template (Katz et al. 

1972) from each specimen and examined for S. mansoni eggs by trained microscopists.  

 Blood collection and Hb assessment. A 5 mL tube was used to collect a 2-3 mL sample of venous 

blood sample (Kenya) or a finger-prick blood sample (Tanzania) was collected from each individual, and 

Hb was measured using a portable HemoCue photometer (HemoCue, Inc., Ängelholm, Sweden). The Hb 

level was reported in gm/dL and final values used in analysis were adjusted for altitude (ca. 1,000 m) by 

subtracting 2 gm/dL from the raw values for both study sites (WHO 2011a). Anemia was defined as Hb 
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values < 11.5 gm/dL for children aged below 12 years and Hb < 12.0 gm/dL for children of 12 years and 

above but below 15 years, according to World Health Organization guidelines (Sullivan et al. 2008).  

 Anthropometric measurements. Height was measured for barefoot children using a wooden 

stadiometer. The child looked straight ahead while standing on the base of the stadiometer with their 

heels, buttocks, shoulder blades, and back of the head touching the vertical backboard. Once the child 

was correctly positioned, the stadiometer head plate was lowered and the height measured in 

centimeters to one decimal place. Weight was measured on a digital scale in kilograms to one decimal 

place on barefoot children after excess clothing was removed. Height and weight were measured twice 

by the same examiner and the mean value recorded. Z-scores were calculated using the WHO 

AnthroPlus software (available at https://www.who.int/growthref/tools/en/) based on the WHO growth 

reference data tables for 5-19 year old children (WHO Multicentre Growth Reference Study Group et al. 

2006). In Tanzania, the exact birthdays of some children (and hence, their exact age in days) were not 

known. For such cases, the midpoint of the Z-score limits was used, for example, for children reported to 

be 7 years old, the Z-score for children aged 7 years and 6 months was used. Wasting was defined as a 

body mass index-for-age Z-score of ≤ -2 and stunting as a height-for-age Z-score ≤ -2. 

 Physical fitness. Physical fitness was assessed using the 20 m shuttle run fitness test (20mSRT) as 

described by Bustinduy et al. (Bustinduy et al. 2011) In brief, during the test, children run continuously 

between two lines that are 20 m apart (Léger et al. 1984; Léger et al. 1988). A run from one line to the 

other is considered a shuttle. There are 21 levels in the test, and the higher the level, the greater the 

number of shuttles and faster the pace required to complete it. The running field was prepared in the 

school compound and runners were laterally separated by at least 1 m. Recorders were placed at each 

end of the field, and every recorder was responsible for monitoring three to five children. The recorder 

noted the level at which the test subject stopped and how many shuttles the child had completed within 

that level. These numbers were converted to a maximal oxygen uptake, the VO2max (maximal oxygen 

https://www.who.int/growthref/tools/en/
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uptake as estimated by fitness testing), in mL/kg/minute, as previously described (Léger et al. 1982; 

Müller et al. 2011). 

 Quality of life. Quality of life was assessed using the previously validated Pediatric Quality of Life 

Inventory instrument (PedsQL) for children (Varni et al. 1999; Varni et al. 2006; Samuels et al. 2012; 

Terer et al. 2013; Kinung’hi et al. 2016). Kenya used a 23-question version of the PedsQL survey 

(Samuels et al. 2012), and Tanzania used a 16-question version, but discarded the last question due to 

irrelevance to the local setting (Kinung’hi et al. 2016; Shen et al. 2017). The PedsQL questionnaire is 

divided into four parts, with three to six questions in each section. The four parts describe four 

dimensions of functioning: 1) problems with physical activity (physical), 2) problems with feelings 

(emotional), 3) problems with getting along with others (social), and 4) problems with keeping up in 

school (school). The answers are scored on a Likert-like scale from 0 to 4, where 0 is never, 1 is almost 

never, 2 is sometimes, 3 is often, and 4 is almost always. Responses are transformed to scores that 

range from 0 to 100, with higher scores indicating a better perceived quality of life. 

 Abdominal ultrasonography. Abdominal ultrasound was performed using portable ultrasound 

machines (Aloka Sonocamera SSD-500 with a 3.5 MHz curvilinear probe, Hitachi Aloka Medical America, 

Wallingford, CT) in both Kenya and Tanzania. The examinations were performed according to the WHO’s 

Niamey protocol for imaging of schistosomiasis (Richter et al. 2000) by senior sonographers with 

extensive experience in the field of ultrasonography of S. mansoni-infected individuals. Children were 

examined while lying on their backs on an examination table with their legs extended. Measurements 

included: length of the left liver lobe (mm), spleen length (mm), portal branch thickness, and portal-vein 

diameter. The liver image was scored as one of six patterns, A-F, as described in the WHO protocol 

(Richter et al. 2000). Image patterns A and B are considered normal or non-specific. Image patterns C 

and D are considered characteristic of mild and moderate S. mansoni infection-related fibrosis, 

respectively, while liver patterns E and F indicate advanced infection-related liver fibrosis. Increased 
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portal vein diameter was defined as 2 SD above standard reference measurements developed from 

healthy, uninfected children of corresponding height in other endemic countries (Richter et al. 2000; 

Vennervald et al. 2004).  

3.3.4 Statistical analysis 
Subjects were considered positive for infection if at least one egg was found on any of the Kato-Katz 

slides prepared from their stool specimens. The mean egg count for the six slides was calculated and 

multiplied by 24 to estimate the child’s infection intensity in eggs per gram of stool (epg). In Kenya, egg 

counts were truncated at 42 eggs per slide, indicating a heavy infection having > 1,000 epg. In cases 

where specimens were missing, the calculation was performed using data from the available slides for 

each affected child. Consistent with WHO guidelines (WHO 2002), infected individuals with <100 epg 

were considered to have light infections, those with 100–399 epg to have moderate intensity infections, 

and individuals with ≥400 epg to have severe infections. For the present analysis, group-wise infection 

intensity is reported in two different ways: 1) as the arithmetic mean of epg for all tested persons, 

including those with epg = zero (mean intensity for the entire cohort), and 2) as the mean of epg only for 

those children found to be egg positive (mean intensity among those infected). Absolute change in 

prevalence from Year 1 to Year 5 was calculated as (prevalence in Year 5 minus prevalence in Year 1). 

For example, a 20% decrease in prevalence in a location having a starting prevalence of 40% means a 

decline to 20% prevalence, whereas in a location with a starting prevalence of 80%, 20% prevalence 

reduction would result in a prevalence of 60%. Relative percent change in prevalence from Year 1 to 

Year 5 was calculated as ([prevalence in Year 5 minus prevalence in Year 1/prevalence Year 1] × 100). 

This would determine the relative percent change in prevalence, regardless of starting prevalence. Using 

this method, the starting prevalence would influence the level of decline, such that going from 80% to 

60% would be a 25% drop in prevalence, whereas going from 40% to 20% would be classified as a 50% 

decline in prevalence. 
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 Summary statistics were calculated to compare the characteristics of the combined cohort in 

terms of demography, infection status, and morbidity markers, and to compare those who had only Year 

1 data (i.e., those lost to follow up) to those who remained in the cohort at Year 5. Following the SCORE 

project’s a priori statistical analysis plan, linear or generalized linear mixed effect models adjusting for 

village-level clustering effects, and, where appropriate, age and sex were used to obtain odds ratios (for 

binary outcomes) and group-wise differences (for continuous outcomes) for comparisons between study 

arms. The ability to detect differences by treatment arm at Year 5 was diminished as a consequence of 

the parent SCORE studies’ village-level cluster randomization design and resultant imbalances in 

baseline infection factors between study arms. Even though all villages in the Kenyan and Tanzanian 

locations were selected based on having a baseline school age prevalence of infection of ≥25%, because 

of the village-level cluster randomization design, there were resultant imbalances in baseline infection 

factors (average prevalence and intensity) between study arms. As a result, our ability to detect 

differences by treatment arm at Year 5 was diminished. To compensate for these starting imbalances 

and to better detect differences between the two arms from Year 1 to Year 5, we also studied the 

interaction effects of survey year with study arm on relative changes in results for infection, infection 

intensity, and morbidity markers, although adjusting for gender. For outcome variables missing in 10% 

or more children from the entire cohort, analyses initially conducted for complete cases were later 

repeated with missing data imputed using multiple imputation procedures (Rubin 2004; Shen et al. 

2017). Results obtained from the multiply-imputed datasets were compared with those generated from 

the original dataset. Statistical analyses were performed using SAS version 9.4 (SAS Institute Inc., Cary, 

NC). An α = 0.05 level was used for significance of all statistical tests and for the confidence interval 

calculations. 
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3.4 Results  

3.4.1 Combined cohort characteristics  
Table 3.1 describes the characteristics of participants in Year 1 at baseline, and in Year 5 after four years 

of intervention. Of 1,374 individuals who were enrolled at baseline in the combined cohort, 891 (64.5%) 

participated in Year 5 data collection. In aggregate, females comprised 55% of participants in the annual 

CWT arm and 50% of participants in the biennial SBT arm at both baseline and Year 5 (difference not 

Table 3.1. Baseline and Year 5 characteristics of cohort participants (children with data both in Year 1 and 
Year 5), and baseline characteristics of those lost to follow-up, by arma 

 Year 1, cohort 
children 

Year 5, cohort children Year 1 data for children lost 
to follow-up in Year 5 

 Annual 
CWT 
armb  

Biennial 
SBT armb  

Annual 
CWT arm 

Biennial 
SBT arm 

Annual 
CWT arm 

Biennial SBT arm 

Number of children 450 441 450 441 220 263 

Percent female  54.9% 49.7% 54.9% 49.7% 54.1% 50.2% 

Age in years (SD) 7.4 (0.5) 7.6 (0.5) 11.5 (0.5) 11.6 (0.5) 7.5 (0.5) 7.6 (0.5) 

No. tested for 
schistosomiasis 

446 438 406 413 217 252 

No. infected  320 248 175 199 154 122 

Prevalence  72.1% 56.6% 43.1% 48.2% 71.0% 48.4% 

Full cohort arithmetic 
mean infection 
intensity (epg)  

148.4 109.7 41.0 59.9 144.9 113.8 

Egg-positive children’s 
mean infection 
intensity (epg) 

206.0 193.7 95.1 124.2 204.1 235.0 

aAbbreviations: CWT, community-wide treatment; SBT, school-based treatment; SD, standard deviation; epg, 

S. mansoni eggs per gram feces 

bAfter the baseline (Year 1) survey, communities in the annual CWT arm received community-wide 

praziquantel treatment every year for four years; communities in the biennial SBT arm received school-

based treatment every other year.  
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significant (NS), P = 0.118). At baseline (Year 1), 72% of participants in the annual CWT arm and 57% in 

the biennial SBT arm were infected (Figure 3.2), and this difference was statistically significant (P < 

0.0001). Mean intensities for the entire cohort at baseline were 148 epg for children in the annual CWT 

arm, significantly higher than the 110 epg for those in the biennial SBT arm (Figure 3.3). Baseline 

individual-level intensity, including only those children who were egg-positive, was 206 epg in the 

annual CWT arm and 194 epg in the biennial SBT arm (difference NS).   

By Year 5, prevalence had declined to 43% in the annual CWT arm and 48% in the biennial SBT arm 

(difference NS, Figure 3.2). Both cohort-level and individual-level infection intensities declined in both 

arms, with relatively higher egg-reduction rates in the annual CWT arm (Figure 3.3). Baseline 

 

Figure 3.2. Comparison of Year 1 and Year 5 Schistosoma mansoni prevalence for participating children in 
each of the combined cohort study arms (annual community-wide treatment (CWT) vs. biennial school-
based treatment [SBT]). Dark circles indicate baseline and Year 5 prevalence values for the annual CWT 
arm. Open squares indicate corresponding prevalence values for the children in the biennial SBT arm. 
Error bars indicate 95% CI. 
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characteristics of lost-to-follow-up subjects were similar to those of children who had remained in the 

study through Year 5 (Table 3.1).  

The absolute differences in prevalence between Year 5 and Year 1 in the annual CWT arm and in the 

biennial SBT arm were 29.0 (CI95% = 22.6-35.3) and 8.4 (CI95% = 1.8-15.1) percentage points, and the 

relative changes in prevalence for the two arms were 40.2% and 14.8% reductions, respectively. 

Absolute differences for full cohort mean intensity for treatment subgroups were 107.4 (CI95% = 76.2-

138.6) epg in the annual CWT arm, and 49.8 (CI95% = 18.4-81.3) epg in the biennial SBT arm, with 

corresponding relative reductions of 72.4% and 45.4%. Absolute changes in individual-level intensity of 

 

Figure 3.3. Comparison of Year 1 and Year 5 Schistosoma mansoni infection intensities by cohort study 
arm. Shown are Year 1 baseline intensity values (dark bars) and 95% CI for participating children in the 
two study arms receiving either annual community-wide treatment (CWT) or biennial school-based 
treatment (SBT), calculated either as arithmetic mean intensity for egg-positive children (individual-level 
intensity, left side), or as mean intensity for all children, including those with zero egg counts (cohort-
level intensity, right side). Corresponding values for participating children in Year 5, after MDA, are 
shown by the light bars. 
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egg-positive children in the two arms were 110.8 (CI95% = 57.7-163.9) epg and 69.5 (CI95% = 13.0-126.0) 

epg, and their relative changes were 53.8% and 35.9%, respectively. In each category, the annual CWT 

arm subjects had greater declines in these measures. Between Year 1 and Year 5, prevalence of heavy 

infections declined from 11.1% to 1.7% in the annual CWT arm, and from 8.9% to 2.6% in the biennial 

SBT arm. After adjustment for village-level clustering effects, these between arm differences in heavy 

intensity prevalence were not significant (Rao-Scott χ2 = 0.116, P = 0.73 for between-arm difference in 

Year 1; χ2 = 1.07, P = 0.30 for between arm difference in Year 5).  

We observed a significant increase in stunting among children in the biennial SBT arm, and 

significant decreases in wasting prevalence in both arms over the course of the study (Table 3.2). 

Hemoglobin levels did not change significantly during the study period. The prevalence of anemia 

remained roughly stable between Year 1 and Year 5 in the annual CWT arm and declined slightly, but 

not significantly, in the biennial SBT arm. Maximal oxygen uptake as estimated by fitness testing scores 

dropped in both arms from Year 1 to Year 5. Among PedsQL outcomes, the total score, as well as scores 

on the physical, emotional, and school sub-domains, increased over time in both study arms. There were 

significant Year 1 to Year 5 declines in the percentage of children with elevated portal vein diameter in 

both study arms. Abnormal liver pattern (Pattern C or higher) was rare, and no significant changes were 

noted for this finding in either arm between Year 1 and Year 5. 

3.4.2 Comparison of infection and morbidity markers between Year 1 and Year 5 

Table 3.3 presents prevalence, intensity, and the morbidity markers with statistically significant changes 

between Year 1 to Year 5 for all children in the combined cohorts, regardless of arm assignment (N = 

891). All comparisons use Year 1 as the reference group. For the combined groups, overall prevalence 

declined significantly from Year 1 to Year 5, as did the prevalence of heavy infections and infection 

intensity. Wasting was significantly less common, but stunting was significantly more common in Year 5 
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relative to Year 1. In addition, the percentage of children with elevated portal vein diameter values 

declined significantly from Year 1 to Year 5. Maximal oxygen uptake as estimated by fitness testing max 

Table 3.2. Summary results for morbidity markers, by arm, by yeara 

 Annual CWT arm Biennial SBT arm 

 Year 1 Year 5 Year 1 Year 5 

BMI: average Z score (SD) -1.3 (1.1) -0.9 (1.1) -1.0 (1.0) -0.3 (1.0) 

Prevalence of stunting (CI95%) 
9.9% (7.1, 

12.7%) 
11.5% (8.4, 

14.6%) 
5.1% (3.0, 

7.1%) 
10.8% (7.9, 

13.8%) 

Prevalence of wasting (CI95%) 
24.9% (20.9, 

29.0%) 
12.7% (9.5, 
15.9%) 

13.2% (10.0, 
16.4%) 

3.9% (2.0, 
5.7%) 

Mean hemoglobin gm/dL (SD) 12.0 (2.3) 11.7 (1.8) 11.9 (2.1) 12.1 (1.8) 

Prevalence of anemia (CI95%) 
42.6% (37.9, 

47.2%) 
45.8% (40.8, 

50.7%) 
42.9% (38.2, 

47.6%) 
37.9% (33.3, 

42.6%) 

Mean VO2 max score (SD) 49.2 (3.3) 43.5 (6.2) 49.2 (3.4) 44.4 (5.8) 

Mean PedsQL scores     

Total score (SD) 83.6 (12.4) 91.9 (11.6) 85.0 (14.3) 90.7 (11.8) 

Physical (SD) 88.9 (14.9) 94.5 (11.2) 88.2 (19.7) 93.2 (15.1) 

Emotional (SD) 71.9 (15.1) 89.8 (16.1) 77.1 (16.8) 87.1 (18.2) 

Social (SD) 90.4 (16.4) 91.9 (16.4) 91.3 (18.6) 93.1 (14.1) 

School (SD) 80.0 (16.3) 90.7 (13.7) 81.6 (18.6) 89.2 (14.0) 

Prevalence of increased portal 
vein diameter (CI95%) 

10.8% (7.9, 
13.7%) 

1.7% (0.4, 
2.9%) 

9.0% (6.3, 
11.7%) 

1.2% (0.2, 
2.2%) 

Ultrasound Pattern Prevalence     

Pattern B (CI95%) 

 

16.6% (13.0, 
20.1%) 

11.4% (7.5, 
13.4%) 

8.9% (6.2, 
11.6%) 

11.7% (7.8, 
13.7%) 

Pattern C or higher (CI95%) 
0.7% (0.1, 

2.0%) 
0.5% (0.0, 

1.7%) 
0.9% (0.3, 

2.4%) 
0.7% (0.1, 

2.0%) 

aAbbreviations:  BMI, body mass index; CI, confidence interval, CWT, community-wide treatment; dL, 

deciliter; SBT, school-based treatment; SD, standard deviation; VO2max, maximal oxygen uptake as 

estimated by fitness testing. 
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decreased significantly from Year 1 to Year 5. By contrast, all the PedsQL measures increased 

significantly from Year 1 to Year 5.  

 

Table 3.3. Outcomes with significant changes from Year 1 to Year 5, for both study arms combineda 

 Odds Ratio (Reference 
= Year 1) 

CI95% P-value 

Infection prevalence 0.36 0.28, 0.47 <0.0001 

Prevalence of heavy 
infections 

0.22 0.14, 0.36 <0.0001 

Wasting 0.37 0.27, 0.50 <0.0001 

Stunting  1.56 1.10, 2.21 0.02 

    

Elevated portal vein 
diameter 

0.13 0.07, 0.25 <0.0001 

 Average Change CI95% P-value 

VO2 (mL/kg/min) -5.5 -5.9, -5.2 <0.0001 

PedsQL    

Total score 8.0 7.0, 9.1 <0.0001 

Physical 6.2 4.8, 7.6 <0.0001 

Emotional 14.8 13.3, 16.3 <0.0001 

Social 2.9 1.5, 4.3 <0.0001 

School 10.1 8.7,11.5 <0.0001 

 Coefficient CI95% P-value 

Mean cohort-level 
infection intensity 
(epg) 

-0.92 -0.93, -0.91 <0.0001 

aAbbreviations: CI, confidence interval; epg, S. mansoni eggs per gram feces; VO2max, maximal 

oxygen uptake as estimated by fitness testing. 
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3.4.3 Age-, and sex-adjusted comparisons between study arms, accounting for village-level 

intra-class correlation 
In this first-stage modeling analysis of the SCORE project’s a priori statistical analysis plan, no 

significant differences were observed between the two study arms across the range of measured 

infection and morbidity markers (Table 3.4).  

Table 3.4. Age- and sex-adjusted CWT-arm participant odds for study morbidity at Year 5, using the SBT-
arm participants as referencea 

 Odds Ratio 

 (Reference = the biennial 
SBT arm) 

CI95% P-value 

Infection prevalence 0.77 0.19, 3.06 0.70 

Wasting 2.73 0.94, 7.90 0.06 

Stunting 1.19 0.57, 2.47 0.65 

Anemia 1.26 0.51, 3.12 0.62 

Increased PVD 1.40 0.25, 7.72 0.70 

 Arm Difference CI95% P-value 

VO2 (mL/kg/min) -0.5 -4.8, 3.7 0.80 

PedsQL    

Total score 0.7 -7.1, 8.5 0.86 

Physical 0.7 -5.6, 7.0 0.82 

Emotional 1.8 -9.6, 13.2 0.76 

Social -1.4 -9.3, 6.6 0.73 

School 1.4 -6.2, 8.9 0.73 

 Coefficient CI95% P-value 

Mean cohort-level 
intensity (epg)  

-0.1 -1.9, 1.7 0.92 

aAbbreviations: CI, confidence intervals; CWT, community-wide treatment; epg, S. mansoni eggs per gram 

feces; SBT, school-based treatment; PVD, portal vein diameter; VO2max, maximal oxygen uptake as 

estimated by fitness testing. 
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To account for the imbalances in baseline disease status, we next studied the interaction effects of 

survey year (Year 5 vs. Year 1) and study arm (CWT vs. SBT) on relative changes in results for the cohort 

indicators of infection and morbidity, adjusting for sex, village-level clustering effects, and individual 

year 1 starting values (Table 3.5). By this analysis, prevalence and intensity dropped significantly more 

by Year 5 in the annual CWT arm, as compared to the SBT arm. Maximal oxygen uptake as estimated by 

fitness testing max levels declined in both arms, but decreased significantly more in the annual CWT arm 

than in the biennial SBT arm. By contrast, changes of total PedsQL score and its emotional and school 

subdomains were all significantly positive from Year 1 to Year 5 for both arms, but children in the annual 

CWT arm gained more. Not shown, changes in prevalence of anemia, wasting, stunting, or increased 

PVD were not statistically different between arms (see Supplemental Table 3.1). 

3.4.4 Sensitivity analysis for effects of missing data using multiple imputation 
The potential impact of missing data was investigated and the result from the imputed datasets did 

not differ significantly. 

3.5 Discussion 
 This combined cohort analysis of morbidity outcomes in Kenya and Tanzania (Samuels et al. 

2012; Kinung’hi et al. 2016; Shen et al. 2017) demonstrates that regular treatment of schoolchildren is 

associated with reductions in both S. mansoni infection and infection intensity. For schoolchildren who 

were followed to 11-12 years of age, participation in either annual CWT or biennial SBT programs was 

also associated with reductions in the prevalence of wasting and portal vein dilation. Health-related 

quality-of-life scores improved in both treatment groups. These findings suggest cumulative benefits 

from regular preventive treatment (whether CWT or SBT) for S. mansoni-endemic communities that are 

similar to those included in this study. Reduction in portal vein dilation, the study pathology most closely 

tied to adverse outcomes from intestinal schistosomiasis, is of particular importance. In the absence of 

an untreated concurrent control group, we cannot definitively ascribe these benefits to treatment 
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Table 3.5. Sex-adjusted comparison of arm-specific changes in infection and morbidity outcomes from Year 1 
to Year 5, including interaction term added to account for differences in starting values between groupsa 

Outcomes Predictors Coefficient CI95% P-value 

Infection Prevalence Year 5 -0.4 -0.8, -0.1 0.01 

 Annual CWT  0.6 -0.7, 1.9 0.35 

 Annual CWT x Year 5 -1.1 -1.5, -0.6 <.0001 

     

Intensity (epg) Year 5 -0.59 -0.61, -0.58 <.0001 

 Annual CWT  0.7 -1.1, 2.6 0.41 

 Annual CWT x Year 5 -0.68 -0.70, -0.65 <.0001 

     

VO2 max Year 5 -5.0 -5.5, -4.5 <.0001 

 Annual CWT  0.4 -2.6, 3.4 0.81 

 Annual CWT x Year 5 -1.0 -1.7, -0.3 0.004 

     

PedsQL Total Year 5 6.1 4.6, 7.6 <.0001 

 Annual CWT  -2.6 -8.9, 3.6 0.40 

 Annual CWT x Year 5 3.9 1.8, 6.0 0.0003 

     

PedsQL Emotional Year 5 10.2 8.1, 12.3 <.0001 

 Annual CWT -6.6 -13.2, -0.1 0.05 

 Annual CWT x Year 5 9.4 6.4, 12.4 <.0001 

     

PedsQL School Year 5 7.7 5.8, 9.7 <.0001 

 Annual CWT -2.7 -9.3, 3.9 0.43 

 Annual CWT x Year 5 4.9 2.1, 7.7 0.0007 

aAbbreviations: CWT, community-wide treatment; epg, S. mansoni eggs per gram feces; VO2max, maximal 

oxygen uptake as estimated by fitness testing;  
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intervention. However, prolonged nontreatment was considered to be an unethical choice at the time of 

study design (Ezeamama et al. 2016). It is thus possible that unmeasured confounding factors such as 

food insecurity and intercurrent infections or reinfections may have influenced the observed study 

outcomes. 

Because the overall research trial used cluster-based random assignment of villages to 

treatment regimens, there were differences in baseline S. mansoni prevalence and infection intensity 

between the two arms in our analysis and this initially obscured the significance of between-arm 

differences in outcomes, that is between children in villages receiving annual CWT and those receiving 

biennial SBT. After adjusting for the higher starting prevalence and intensity, it was noted that annual 

CWT led to significantly greater decreases in infection prevalence and intensity than did biennial SBT. In 

addition, children in annual CWT villages gained significantly more in emotional well-being and school 

satisfaction.   

The reasons for persistent morbidity despite MDA are likely to be multifactorial. Location-

related variations in reinfection risk, in growth indices, in anemia, and in fitness have been previously 

demonstrated between the Kenyan and Tanzania areas included in this study. There were also 

significant differences in sanitation knowledge and practices, and in intake of high-quality protein foods 

(Mohamed et al. 2018). Unfortunately, as children grow up in resource-limited areas, cumulative growth 

deficits are a common finding (LaBeaud et al. 2015; Nayakwadi Singer et al. 2017) and our combined 

studies’ outcomes are in accord with that frequent observation. 

Twenty-meter SRT–based VO2 scores have been shown to decline as children age into 

adolescence, with girls more affected than boys (Léger et al. 1988; Bustinduy et al. 2011). The higher 

prevalence of stunting and wasting in the annual CWT arm, both at baseline and in Year 5, may have 

contributed to the observed between-arm difference in VO2 max results, which are affected both by 
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stature and muscle mass. Although socioeconomic status can affect PedsQL scores (Varni et al. 2006), 

the average scoring does not appear to change as a function of age, either for healthy or chronically ill 

children and adolescents (Varni et al. 2006). The improvements reported in our cohort analysis are thus 

unlikely to reflect an age effect and may more likely reflect the impact of continued participation in 

preventive treatment of chronic schistosomiasis (WHO 2006). 

 There are several limitations to our study. Our study populations live in areas highly endemic for 

malaria and soil-transmitted helminths, which likely had an impact on anemia outcomes through blood 

loss, anemia of chronic inflammation (Righetti et al. 2013), and intermittent episodes of symptomatic 

malaria associated with hemolysis (Samuels et al. 2012; Mohamed et al. 2018). Although both the 

Kenyan and Tanzanian sites tested for the presence of co-infection with malaria, the sensitivity of the 

techniques they used (blood smear vs. rapid diagnostic tests) and timing of their testing (Y5 versus Y3) 

were sufficiently different so that we were unable to estimate the impact of malarial infection across the 

combined cohort. Perhaps the most critical study limitation was the parent studies’ village-level cluster 

randomization design, which provided only a limited number of evaluation units (i.e., villages) available 

for analysis (Shen et al. 2017). Village-to-village variation in response to MDA schedules proved to be 

much higher than anticipated in the initial design of the SCORE studies (Kittur et al. 2017; Sircar et al. 

2018), which likely obscured the differences in MDA impact by study arm (Olsen et al. 2018; Sircar et al. 

2018). Therefore, a relative strength of our analysis is the inclusion of a somewhat larger number of 

study locations, with extended analysis to adjust for differing baseline prevalence between the two 

study arms. Measurement of infection status only in Year 1 and in Year 5 may not have adequately 

captured cumulative parasite exposure. A child who tested negative at baseline and in Year 5 could still 

have spent several years repeatedly infected with S. mansoni between the beginning and end of the 

study, despite periodic MDA treatments, and could have accrued significant residual morbidity without 

evidence of active infection in Year 5.  
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 The current WHO strategy for reduction of schistosomiasis morbidity is based on achieving 

reductions in the community-level prevalence of heavy infections among school-age children (WHO 

2013). Few children in our cohorts had heavy infections by the WHO definition (≥ 400 epg in feces), so 

we could not assess whether reduction of intensity changed individual morbidity risk. Nevertheless, 

even though most of the combined cohort children were not heavily infected, in aggregate, they were 

found to benefit significantly from their community’s participation in MDA. It is not clear, however, 

whether these improvements will remain in effect if MDA is stopped and exposure to infection 

continues. 

 Larger studies are currently being designed to better define the community-level infection 

prevalence and intensity levels below which morbidity associated with schistosomiasis cannot be 

detected. These studies will more fully measure the spectrum of schistosomiasis-related morbidities, 

and control for cofactors that contribute to their occurrence. Such additional data should be extremely 

helpful as WHO refines its global programmatic guidelines for control of Schistosoma infection-related 

morbidity. 
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3.10 Supporting information 

 

Supplemental Table 3.1. Non-significant differences in arm-specific changes from Year 1 to Year 5 
when the interaction of study arm by survey year is considereda 

Outcomes Predictors Coefficient CI95% P-value 

Stunting Year 5 0.8 0.3, 1.4 0.002 

 Annual CWT 0.6 -0.2, 1.5 0.14 

 Annual CWT x Year 5 -0.6 -1.3, 0.1 0.08 

     

Wasting Year 5 -1.4 -2.0, -0.8 <.0001 

 Annual CWT 0.7 0, 1.4 0.05 

 Annual CWT x Year 5 0.5 -0.1, 1.2 0.12 

     

Anemia Year 5 -0.2 -0.5, 0.1 0.17 

 Annual CWT 0 -0.6, 0.5 0.87 

 Annual CWT x Year 5 0.3 -0.1, 0.7 0.12 

     

Increased PVD Year 5 -2.1 -3.1, -1.2 <.0001 

 Annual CWT 0.1 -0.5, 0.8 0.67 

 Annual CWT x Year 5 0.1 -1.1, 1.4 0.83 

     

PedsQL Physical Year 5 5.4 3.4, 7.3 <.0001 

 Annual CWT -0.6 -6.6, 5.4 0.85 

 Annual CWT x Year 5 1.7 -1.1, 4.5 0.23 

     

PedsQL Social Year 5 2.5 0.5, 4.4 0.01 

 Annual CWT -2.1 -10.1, 5.8 0.60 

 Annual CWT x Year 5 0.9 -1.9, 3.6 0.54 

aAbbreviations: CI, confidence interval; CWT, community-wide treatment; SBT, school-based 

treatment; PVD, portal vein diameter; VO2max, maximal oxygen uptake as estimated by fitness 

testing; epg, S. mansoni eggs per gram feces 
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4.1 Abstract 
 The Schistosomiasis Consortium for Operational Research (SCORE) was funded in 2008 to 

improve the evidence base for control and elimination of schistosomiasis—better understanding of the 

systemic functional morbidities experienced by children in schistosomiasis-endemic areas, and the 

response of these morbidities to treatment, being essential for updating WHO guidelines for mass drug 

administration (MDA) in endemic areas. This article summarizes the SCORE studies that aimed to gauge 

the impact of MDA-based treatment on schistosomiasis-related morbidities. Morbidity cohort studies 

were embedded in the SCORE’s large field studies of gaining control of schistosomiasis in Kenya and 

Tanzania. Following MDA, cohort children had less undernutrition, less portal vein dilation, and 

increased quality of life in Year 5 compared with baseline. We also conducted a pilot study of the 

Behavioral Assessment System for Children (BASC-2) in conjunction with the Kenya Gaining Control 

Study, which demonstrated beneficial effects of treatment on classroom behavior. In addition, the 

SCORE’s Rapid Answers Project (RAP) performed systematic reviews and meta-analysis of previously 

available data, providing two meta-analyses related to morbidity. The first documented children’s 

infection-related deficits in school attendance and achievement and in formal tests of learning and 

memory. The second showed that greater reductions in egg output following drug treatment correlates 

significantly with reduced odds of most morbidities. Overall, these SCORE morbidity studies provided 

convincing evidence to support the use of MDA to improve the health of school-age children in endemic 

areas. However, study findings also support the need to use enhanced metrics to fully assess and better 

control schistosomiasis-associated morbidity.    

4.2 Overview 
 The Schistosomiasis Consortium for Operational Research (SCORE) was funded in 2008 to 

improve the evidence base for control and elimination of schistosomiasis (Colley et al. 2020b). As part of 

its mission, the SCORE sought to develop a better understanding of the anatomic and systemic 

functional morbidities experienced by people at risk in schistosomiasis-endemic areas and their 
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response to antischistosomal praziquantel treatment. Such data are essential for updating WHO 

guidelines for schistosomiasis control and making the case for mass drug administration (MDA) in 

endemic areas. This article reviews and summarizes the results of SCORE-supported projects that 

detailed specific human health impacts of Schistosoma infection and their response to treatment. 

 Persons living in schistosomiasis-endemic areas may spend one-third to a half of their lives 

carrying Schistosoma parasitic worms because their continuing environmental exposure leads to 

overlapping schistosome infections (King et al. 2011). Morbidity associated with schistosomiasis is 

caused by parasite eggs that are deposited daily into the human host’s organs, creating thousands of 

foci of granulomatous inflammation, particularly in the bowel and liver (Schistosoma mansoni, 

Schistosoma mekongi, and Schistosoma japonicum) or urogenital organs (Schistosoma haematobium). 

Although these granulomas can cause critical dysfunction of the affected organs, more frequently, the 

granuloma’s chronic inflammation contributes to multiple systemic deficits, including chronic pain (King 

et al. 2005; Galappaththi-Arachchige et al. 2018), diarrhoea (King et al. 2005), fatigue (Kvalsvig 1986; 

Whitty et al. 2000), reduced quality-of-life (Terer et al. 2013; Kinung’hi et al. 2016), anemia of chronic 

inflammation (Leenstra et al. 2006), impaired childhood growth and development (Stephenson et al. 

1989; Assis et al. 1998), blunted response to childhood vaccines (Malhotra et al. 2018; Ondigo et al. 

2018), and impaired school performance (Musuva et al. 2017; Ezeamama et al. 2018). The disease 

impact can become permanent, persisting even after the active infection has resolved (Giboda et al. 

1999). Often overlooked as part of S. haematobium-associated morbidity, genital schistosomiasis with 

pain, bleeding (Leutscher et al. 2008), and subfertility (Miller-Fellows et al. 2017) can result in increased 

rates of HIV transmission (Wall et al. 2018).  

 Current WHO strategies for schistosomiasis morbidity control focus on regular delivery of 

antischistosomal drugs to at-risk populations as a form of “preventive chemotherapy” to limit (or even 

reverse) the impact of active infection and to prevent new disease sequelae from developing (WHO 
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2006; 2013). Prioritization for control of neglected tropical diseases such as schistosomiasis is often 

done using disability-adjusted life-years (DALYs) within international governmental and non-

governmental programs (Murray et al. 1996; Hotez et al. 2014). The DALY construct is based on the 

perceived disability and persistence of a condition and is used to rank the relative contribution of 

different disabling conditions to the overall global burden of disease,(WHO 2013; GBD 2017 

Collaborators 2017). The DALY rankings are sometimes assumed to reflect the importance of a given 

disease to world health (Jamison et al. 2006). The DALYs attributed to schistosomiasis are derived 

primarily on the prevalence of classic organ-specific chronic anatomic pathologies of schistosomiasis 

(hepatosplenic disease, bladder fibrosis) observed in the most severe chronic infections, and not on the 

systemic functional conditions that are also related to Schistosoma infection. In response, SCORE 

researchers decided to use an expanded set of metrics for morbidity appraisals during the course of 

their MDA trials. These included nutrition and growth assessments, anemia testing, exercise capacity, 

and formal measurement of school behavior and of health-related quality of life before and after 

treatment (Shen et al. 2017). The impact of disease-associated stigma and depression (Hofstraat et al. 

2016), especially related to female and male genital schistosomiasis is undoubtedly part of the disabling 

impact of schistosomiasis. Unfortunately, SCORE resources did not allow for study of these latter effects 

nor was there a sufficient timeline to evaluate the link between Schistosoma infection and long-term 

focal and systemic pathologies that persist beyond the period of active infection (Bustinduy et al. 2009).  

 Underlying all SCORE projects was the goal of providing data that would provide evidence to 

help program managers make decisions related to controlling and eliminating schistosomiasis. A related 

issue was providing evidence that would convince ministers in endemic countries to prioritize 

schistosomiasis treatment and prevention. Given the underestimation of DALYs related to 

schistosomiasis, in part related to the lack of high-quality data on the impact of lower-intensity 

infections and the lifetime consequences, the SCORE saw the need to revisit and contribute data to help 
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redefine schistosomiasis “morbidity” based on newer developments in the field. Its specific aim was to 

reevaluate how regular MDA could improve the health of school-age children in schistosomiasis 

endemic areas (Shen et al. 2017). As a result, the SCORE portfolio related to morbidity and its control 

included separate longitudinal cohort studies, a school behavioral assessment study, and two systematic 

reviews and meta-analyses of infection-related morbidity outcomes.    

4.3 Schistosomiasis Consortium for Operational Research Longitudinal Cohort Studies 
Because there were few clinical research studies evaluating the long-term benefits of praziquantel in 

terms of prevention of new disease or amelioration of existing disease, SCORE partners incorporated 

nested comparison studies of the impact of MDA on Schistosoma infection-associated morbidity in 

school age children in each of the SCORE prospective randomized gaining control studies (Shen et al. 

2017).  

The gaining control studies were large, cluster-randomized studies, with communities randomized 

to receive either two or four MDAs during the four-year intervention period, with a follow up 

assessment in Year 5 (King et al. 2020c). The morbidity cohort studies discussed here were conducted in 

the gaining control studies in Kenya and Tanzania and included four to six communities from the study 

arm receiving the most intensive treatment (four years of MDA through community-wide treatment 

[CWT]) compared to four communities from an arm receiving standard every-other-year MDA through 

school-based treatment (SBT) (Shen et al. 2017). Morbidity studies were also initiated in the gaining 

control studies in Niger and Mozambique, but these were discontinued after baseline data were 

collected because of a failure to appropriately randomize communities in Niger (resulting in dramatically 

different starting prevalences among study arms) and to extremely high loss to follow-up rates in 

Mozambique related to very low school attendance there. 

One hundred 7- to 8-year-old children per community were targeted for enrollment at baseline 

(Year 1) for the cohort studies, with a goal of having 800 children prospectively monitored in each 
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country (Shen et al. 2017). The decision to focus on this age-group was based on their greater likelihood 

of availability for follow up throughout the five-year study period. 

After considering 17 different types of morbidity-related markers, the outcomes chosen for 

measurement in the planned five-year longitudinal cohort studies were as follows (Shen et al. 2017): 

1. anthropometric measures: age-standardized height, weight, body mass index (BMI), mid-

upper arm circumference (MUAC) (Stephenson et al. 1989; Parraga et al. 1996; Bustinduy et 

al. 2013), 

2. blood hemoglobin (King et al. 2005; Leenstra et al. 2006; Ezeamama et al. 2008; Righetti et 

al. 2013), 

3. exercise tolerance measured by the 20-m shuttle run (beep) test (Léger et al. 1982; Léger et 

al. 1984; Léger et al. 1988), 

4. health-related quality-of-life, measured by the standardized Pediatric Quality of Life 

(PedsQL) survey instrument (Varni et al. 2003; Terer et al. 2013), 

5. ultrasonography of the abdomen and liver (for S. mansoni) or of the kidneys and bladder 

(for S. haematobium), using standardized WHO protocols (Richter et al. 2000; Andrade et al. 

2017). 

 At baseline, 62% of children in the selected S. mansoni communities in Kenya and Tanzania had 

detectable eggs in their stool, and 10% had heavy infections (≥400 eggs/g feces). Heavy S. mansoni 

infections were associated with increased baseline prevalence of anemia, although children with 

moderate or heavy intensity infections had lower odds of having physical wasting.  

 Prevalence of egg-positive infection in the combined S. haematobium communities in 

Mozambique and Niger was 27%, with 5% of individuals having heavy infection (≥50 eggs/10 mL urine). 

In contrast to the findings at the S. mansoni study sites, at baseline, it was light intensity S. 
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haematobium infections that were significantly associated with anemia. They were also associated with 

lower scores in the social domain of the standardized PedsQL inventory survey. Individual country-level 

baseline findings for Kenya and Tanzania have been published elsewhere (Samuels et al. 2012; Kinung’hi 

et al. 2016), and the baseline results from the four countries that initiated subtle morbidity studies have 

been summarized by country in tabular form by Shen and colleagues (Shen et al. 2017). 

The Kenya and Tanzania gaining control studies were able to successfully complete their Year 3 

and Year 5 cohort re-examinations (Mohamed et al. 2018; Sircar et al. 2018; Olsen et al. 2020). In a 

secondary analysis of their pooled S. mansoni longitudinal data, overall infection intensity and odds of 

infection were significantly reduced in both treatment arms of the study (Shen et al. 2019). 

Furthermore, both annual CWT and every-other-year SBT were associated with reduced odds of 

undernutrition in Year 5 (at the time the children were 12-13 years old). They also had reduced odds of 

portal vein dilation on ultrasound, as compared to their baseline when they were 7 or 8 years old. 

Although the prevalence of anemia did not improve significantly, this may have been confounded by 

increased malaria prevalence in the years following baseline examination in Kenya; malaria was not 

assessed in Tanzania. For the combined Kenya and Tanzania cohorts, growth stunting worsened in the 

areas receiving biennial SBT, and VO2max scores declined under both CWT and SBT regimens. 

 After adjusting for imbalance in starting prevalence between the two study arms (Shen et al. 

2019; King et al. 2020d), children in communities receiving annual CWT were found to have had 

significantly greater reductions in infection prevalence and intensity than those in communities 

receiving only biennial SBT. Although health-related quality-of-life scores improved in both study arms, 

children in the CWT communities gained significantly more. In aggregate, these SCORE findings 

suggested that programs implementing annual CWT are likely to achieve better overall S. mansoni 

morbidity control than those implementing biennial SBT alone (Shen et al. 2019). 
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4.4 School Behavioral Assessment Study 
 There has been ongoing controversy about the public health benefits of “deworming” via MDA 

and whether regular treatments of school-aged children can improve their school performance and 

contribute to greater educational achievement (Majid et al. 2019). The SCORE investigators in Kenya 

attempted to rigorously investigate this issue by using a validated multidimensional survey instrument, 

the Behavioral Assessment System for Children (BASC-2), to assess emotional and behavioral problems 

among children in grades two through six (Musuva et al. 2017). Thirty-six children in six schools within S. 

mansoni-endemic communities near Lake Victoria were assessed both parasitologically and with the 

BASC-2 Teacher Rating Scale, both before and three weeks after MDA delivery. Teachers were blinded to 

the infection status of these participating children. Following this initial assessment of behavior using 

the BASC-2, study children were given praziquantel by MDA using a standard SBT approach, along with 

all other children in their schools. Then the BASC-2 was repeated for the same children who had 

completed the pre-MDA BASC-2 assessment.  

 Participating children’s BASC-2 scores improved significantly after treatment in each of the 

“problem” behavioral categories, with fewer externalizing problems (hyperactivity, aggression, and 

conduct problems that are disruptive in nature), internalizing problems (anxiety, depression, 

somatization, atypicality, and withdrawal), and school problems (academic difficulties, attention 

problems and learning problems) (Musuva et al. 2017). Changes in BASC scores were seen in both egg-

positive and egg-negative children.  

 A high level of heterogeneity in behavior score changes was observed among children who were 

egg-negative, with posttreatment scores not changing much for some egg-negative children but 

changing dramatically for others. This could reflect the fact that because of its limited diagnostic 

sensitivity, a negative Kato-Katz stool examination in an S. mansoni-endemic zone does not exclude the 

presence of symptomatic low-level chronic infection (Verani et al. 2011; Mwinzi et al. 2015a; Bustinduy 
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et al. 2016; Kittur et al. 2016). Because such low intensity infections often go undetected by stool 

testing, our posttreatment behavioral findings among egg-negative children suggests that their 

praziquantel MDA likely had a treatment-specific impact on their performance. It supports the concept 

that MDA can improve school performance and have a greater effect in endemic areas than that 

measured by only focusing on treatment impacts for S. mansoni egg-positive children. 

 

4.5 Meta-analysis of Cognition and School Performance Outcomes 
The SCORE’s Rapid Answers Project initiative (King et al. 2020a) used systematic reviews and 

meta-analysis of available data to answer other policy-relevant questions about schistosomiasis 

morbidity control. Two of these projects involved assessment of the impact of active infection and its 

drug therapy on risk of morbidity due to Schistosoma infections (Andrade et al. 2017; Ezeamama et al. 

2018). Brief graphical summaries of their findings are provided in the supplementary figures. 

First, in developing a meta-analysis of the effects of infection and treatment on children’s 

cognition and school performance, we performed a systematic review of the available published data 

prior to 2016 (Ezeamama et al. 2018). Although there was a relatively large body of published reports 

and studies on childhood cognitive development and school performance, the variability in study quality 

necessitated a critical synthesis of their aggregate findings. A SCORE-affiliated team headed by Dr. 

Amara E. Ezeamama performed a systematic review of over 2900 articles and produced a meta-analysis 

of 30 relevant studies (Ezeamama et al. 2018). 

 Our findings from the meta-analysis indicated that, compared with uninfected children or with 

children who received praziquantel treatment, children who had active Schistosoma infection or who 

had not been treated had significant deficits in school attendance and scholastic achievement and 

deficits in formal tests of learning and memory (Ezeamama et al. 2018). By contrast, there were no 

significant differences between the two groups in tests of reaction time or of innate intelligence. 
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Schistosoma infection-related deficits in learning and memory tests, but not scholastic achievement, 

were invariant across the range of observational and interventional studies included in the meta-

analysis. 

4.6 Meta-analysis of Drug-mediated Reduction in Schistosoma Infection Intensity and its 

Effects on Infection-associated Morbidity 
 Praziquantel treatment is not completely curative for Schistosoma infections, particularly when 

heavy infection is present (Picquet et al. 1998). Furthermore, praziquantel does not protect against rapid 

reinfection of those who live in high-risk environments (Gryseels et al. 2001; Satayathum et al. 2006). 

However, most individuals do experience a considerable reduction in the intensity of their Schistosoma 

infections after treatment, which has often been assumed to be a proxy for decreased overall morbidity. 

 Our second morbidity-related meta-analysis evaluated the actual scale of morbidity reduction 

when treatment reduces intensity of infection, even in the absence of cure (Andrade et al. 2017). The 

SCORE also wished to determine whether there is a way to translate commonly reported “egg reduction 

ratios (ERRs)” into a quantifiable morbidity reduction benefit. The aim was to provide a conversion 

factor to capture “morbidity control” for later cost-effectiveness studies that would compare different 

schistosomiasis control strategies (Lo et al. 2018). 

 The SCORE partners, led by Dr. Gisele N. Andrade, conducted a systematic review of 309 studies 

that recorded morbidity levels in affected individuals or populations before and after drug treatment 

interventions (Andrade et al. 2017). A technique called meta-regression was performed to correlate the 

observed reductions in parasite egg outputs with the posttreatment reductions in measured morbidity 

prevalence.  

 The study found that larger reductions in measured egg output following treatment were indeed 

correlated with lower odds of continuing to have most kinds of infection-associated morbidity. 

Specifically, for S. mansoni and S. japonicum, more profound reductions in egg output were linked with 
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less liver morbidity, and for S. haematobium, better treatment response in terms of egg output was 

linked to reduced odds of urinary tract bleeding and deformity (Andrade et al. 2017). Thus, despite 

posttreatment persistence of active infections, the meta-analysis results suggested that even if total 

elimination of egg output is not achievable in all patients within endemic areas, MDA can still result in 

significant reductions in Schistosoma-associated morbidity prevalence if average reductions of egg 

output ≥90% are achieved. 

4.7 Summary and Next Steps 
  There is a need to better define the impact of Schistosoma infection in early childhood and its 

effects on concurrent and cumulative scholastic achievement (Bustinduy et al. 2017b). Such loss of 

human capital may actually represent the bulk of schistosomiasis-related disability within endemic areas 

(Baird et al. 2016). 

The SCORE morbidity studies, by adding new markers for physical and psychological functioning, 

provided better focus on the impact of Schistosoma infection on human performance. However, the 

studies’ scope was still limited by available resources, and in some cases, the effects of treatment in 

reducing morbidity were smaller than expected. Now, in follow-up to our assessments of functional 

morbidities, we think that larger cohort studies, involving different age-groups, additional testing, and 

tracking of coinfections, diet, and other effect modifiers are clearly needed (Colley et al. 2020a). In 

follow up to the SCORE BASC-2 behavior study (Musuva et al. 2017), more extensive and more detailed 

psychological and behavioral studies will help to triangulate and refine estimates of the overall impact of 

Schistosoma infection on childhood scholastic performance. 

 

The analyses presented here reinforce the need for a complete reassessment of DALYs related 

to schistosomiasis. The number of morbidities included in DALY disability weighting needs to be 
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expanded, and the often subcurative effect of praziquantel needs to be considered in case count 

estimation. One of the approaches buttressing the calculation of DALYs in the Global Burden of Disease 

program is the “counterfactual,”, that is what global burden would be like if the disease came under 

control or were eliminated (Murray 1996)? Current DALY estimates based on Schistosoma-infection 

intensity assume that the prevalence of high-intensity infections are declining in the face of MDA 

implementation. This is not always true (Walker et al. 2016), and we suggest that newer estimates of 

persistent posttreatment infection be included in DALY calculations for schistosomiasis. These changes 

would provide a more realistic valuation of the schistosomiasis-associated DALYs that can be averted 

through MDA intervention.  

 Current WHO targets for control are primarily focused on reducing infection intensity (WHO 

2013). There is a clear need to redefine the required community-level prevalence targets for effective 

“morbidity control”. Large-scale initiatives such as the Morbidity Operational Research for Bilharziasis 

Implementation Decisions (MORBID) study (Neglected Tropical Diseases Support Center 2019) are being 

planned to more clearly demonstrate the level of post-MDA community infection prevalence and 

intensity that are associated with persistent disease, in terms of both anatomical and functional 

pathology. The use of newer more sensitive point-of-care rapid diagnostics (Corstjens et al. 2020) for 

both infection and morbidity will facilitate this assessment. Moving beyond the use of egg-counting 

diagnostics, which underestimate the prevalence of low intensity infections (Savioli et al. 1990; de Vlas 

et al. 1992a; de Vlas et al. 1997; Mwinzi et al. 2015a; Clements et al. 2018), should enhance our ability to 

determine the attributable role of Schistosoma infections in widely prevalent multicausal pathologies 

such as anemia, growth stunting, cognitive dysfunction, depression, and infertility. This expanded 

knowledge will be critical for accurate estimation of the actual worldwide disease burden of 

Schistosoma infections and for optimal decision-making regarding health policy investment and 

development (Colley et al. 2020a). 
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4.11 Supporting information 

4.11.1 SCORE Rapid Answers Project (RAP): Cognitive Deficits and Educational Loss in Children 

with Schistosome Infections 
 

Summary: Empirical evidence for cognitive or education benefits of treating Schistosoma infection in 

children is limited. In a study completed in 2016, we addressed this knowledge gap by synthesizing 

information from 30 relevant epidemiologic studies reporting on 38,992 children between 5-19 years of 

age from 14 countries. In those studies, children with Schistosoma infection, or those who had not 

received treatment, were compared to uninfected children or to children dewormed with praziquantel.  

Children with Schistosoma infection or who had not been de-wormed performed worse on psychometric 

tests of learning and memory. However, they performed similarly to the uninfected or dewormed 

children in tests of innate intelligence or reaction time. Infected or non-dewormed children had less 

school attendance and poorer scholastic achievement. Overall, the presence of Schistosoma infection or 

non-dewormed status was associated with educational, learning, and memory deficits in school-aged 

children. The combined evidence suggests that early treatment of children in Schistosoma-endemic 

regions could mitigate these deficits (Ezeamama et al. 2018). 
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Questions: 

1. Among school-aged children examined in the context of cross sectional or case-control studies, is 

Schistosoma infection associated with worse performance in neurocognitive tests, or with 

educational loss? 

2. Among school-aged children enrolled in prospective studies with specific treatment for 

Schistosoma infection, is lack of treatment with praziquantel associated with worse 

performance in neurocognitive tests, or with educational loss? 

Key Finding: Schistosoma infection/non-treatment was significantly associated with educational, 

learning, and memory deficits in school-aged children. 

Supplemental Table 4.1. Pooled standardized mean difference (SMD) estimates of Schistosoma 
infection/non-treatment effects on educational/cognitive loss – with evaluation of study heterogeneity 
and publication bias 

 # Studies SMD (95% CI)‡ HeterogeneityΨ I2 Publication bias P-
valueα 

Cognitive Domain     

Memory 8 -0.28 (-0.52, -0.04) 78.6 0.786 

Learning 6 -0.39 (-0.70, -0.09) 79.4 0.793 

Intelligence Quotient Based 
Assessments 

4 -0.25 (-0.57, 0.06) 74.8 0.450 

Reaction Time 6 -0.06 (-0.42, 0.30) 88.5 0.142 

Educational Loss Assessments     

Achievement 16 -0.58 (-0.96, -0.20) 97.9 0.595 

School Attendance 16 -0.36 (-0.60, -0.12) 98.7 0.991 
‡Standardized Mean Difference (SMD)<0 suggests a negative effect of infection/non-treatment on the indicated 

outcome; SMD>0 indicates a positive effect of infection on respective outcomes. Bold font indicates statistically 

significant differences. 

Ψ: measures the extent to which there is heterogeneity across studies in terms of underlying results. 

α: evaluates the tendency for increased publication of studies that show a statistically robust finding; a P < 0.05 

suggests presence of publication bias. 
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 The findings of infection-related cognitive deficits and educational loss reported here are 

clinically relevant and should become an essential pillar in the design of schistosomiasis-related health 

policy. They reinforce the need to treat children with schistosomiasis early in life, so as to reduce their 

cumulative cognitive and functional morbidities. 

 

An estimated 800 million persons in tropical and subtropical countries are at risk of infection by one of 

three main human Schistosoma parasites - S. mansoni, S. haematobium, and S. japonicum. 

Supplemental Figure 4.1. Examples of significant impact of Schistosoma infection - the gray boxes 
show estimates of SMDs and their 95% confidence intervals for individual studies that assessed 
learning and memory. Based on our meta-analysis, the blue diamonds indicate the overall 
summary estimates of the respective impacts of Schistosoma infection on measured learning and 
memory scores among affected children. 
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Findings 

• Schistosoma infection was associated with small-to-moderate deficits in psychometric tests of 

learning and memory. 

• Infection was also associated with lower school attendance and scholastic achievement. 

Average effects on scholastic achievement were substantially larger for infection with S. 

haematobium than with S. mansoni infection. 

• Deficits in learning and memory were clear both in analysis of observational studies and in 

longitudinal studies. Deficits related to educational achievement appeared robust among 

observational studies. They were less robust in the longitudinal studies, and risk of study bias 

was of potential concern. 

Implications for school-aged children 

Schistosoma infection often occurs in the context of malnutrition, coincident parasitic infections, and 

extreme poverty. Given the impacts of Schistosoma infection, increasing efforts to prevent or eliminate 

this disease are critical. If that is not yet possible, ensuring infected children receive treatment is 

important for their health and well-being. We hope that future studies of early childhood interventions, 

including treatment of schistosomiasis, will clarify to what extent the deficits we observed are 

reversible. 

Implications for pre-school-aged children 

Children from endemic areas are often infected by two years of age and remain chronically infected 

throughout their school-age years. These children may therefore suffer cumulative damage to their 

health and functioning that is currently not reflected in most short-term study outcomes. At present, 

there is no specific guidance for anti-Schistosoma drug treatment of pre-school children, partly because 

of the lack of a child-friendly pediatric formulation.  
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Given that we observed an adverse impact of Schistosoma infection on cognitive and educational 

domains in school-aged children, it is likely that the impact on younger children is at least as large or 

larger. Future longer-term studies should evaluate the impact of infection on pre-school children. These 

would provide important information for guiding decisions about preventive chemotherapy for and 

ensuring regular treatment of infected pre-school children. 

The small-to-moderate deficits we observed at the individual level may amount to large and important 

differences in population achievement at the community level. It is not currently possible to estimate 

what the lifetime impact might be for individuals, as relatively small decrements in cognition or 

educational attainment in childhood may have larger impact on personal performance in later adult life. 

4.11.2 SCORE Rapid Answers Project (RAP): The Decline in Infection-Related Morbidities 

Following Drug-Mediated Reduction in the Intensity of Schistosoma Infection 
 

Background: Since 1984, WHO has endorsed drug treatment to reduce Schistosoma infection and its 

consequent morbidity. Cross-sectional studies suggest pre-treatment infection intensity correlates with 

risk for Schistosoma-related pathology. However, other evidence suggests that even if drug treatment 

reduces intensity, morbidity may not be reversed because some morbidities occur at all levels of 

infection, and some reflect permanent tissue damage. The aim of this project was to systematically 

review evidence on the impact of drug-based control on schistosomiasis-related morbidities, and to 

develop a quantitative estimate of this impact (Andrade et al. 2017). 

Question: Does treatment of Schistosoma infection translate into reduced odds of infection-related 

morbidity? If so, by how much? 

The Problem: Schistosomiasis is the disease caused by infection with Schistosoma parasitic flukes. 

Infection can cause anemia, diarrhea, abdominal pain, difficulties with learning, and decreased physical 
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fitness. Depending on the infecting species, chronic Schistosoma infection can cause a variety of 

pathologies. S. mansoni and S. japonicum can cause liver and spleen enlargement, fibrosis and 

hypertension of the portal vein of the liver, and in some cases, death due to gastrointestinal bleeding. S. 

haematobium can cause bladder ulceration and kidney blockage, bladder cancer, and genital lesions 

that lead to fertility problems in both women and men. Approach: In our study, we quantified the 

reductions in prevalence of infection-related morbidities among populations with Schistosoma infection, 

as achieved by giving one or more drug treatments. We systematically reviewed 71 available reports of 

Schistosoma-related morbidity reduction and conducted a meta-analysis of the available data to 

quantify the odds of persisting morbidity after treatment in relation to the egg reduction rate, ERR, a 

measure of how much egg counts change from pre- to post-treatment. A higher ERR indicates a greater 

impact on infection intensity with drug treatment. 

Worldwide, schistosomiasis control is a constant challenge for public health services in endemic regions, 

mainly due to difficulties in preventing frequent reinfection during childhood and early adulthood. 

Chronic or recurrent infections lead to progressive inflammatory damage from parasite eggs that remain 

trapped in human tissues. 

Morbidities that Could be Evaluated by Meta-analysis 

For intestinal schistosomiasis caused by S. mansoni or S. japonicum: blood in stool, diarrhea, periportal 

fibrosis, portal vein dilation, splenomegaly, right-sided hepatomegaly, left-sided hepatomegaly, anemia 

For urogenital schistosomiasis caused by S. haematobium: upper urinary tract lesions, bladder lesions, 

proteinuria, hematuria, anemia 

 

Key Findings 
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Our meta-regression indicates that post-treatment reductions in egg burden are significantly correlated 

with decreased morbidity. In particular, larger ERRs, which indicate acute reductions in worm burden, 

are associated with reversal of most acute pathology. More advanced chronic pathologies appear less 

responsive to single rounds of treatment, even with adequate ERRs, multiple rounds of treatment may 

be necessary to improve those outcomes. Factors affecting the magnitude of morbidity reductions 

include Schistosoma species, population studied, age and infection status of study participants, and how 

long after treatment follow-up occurred. 

 

Supplemental Figure 4.2. Relative reduction in odds of diseases after treatment of Schistosoma infection. 
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The graphs below plot the relative odds of disease post-treatment against ERRs (Supplemental Figure 

4.4). The higher the ERR, the greater the impact of treatment on infection intensity. These plots show 

that higher ERRs are associated with lower odds for post-treatment disease. Meta-regression lines 

(center black lines) and their 95% confidence limits (upper and lower blue lines) are shown for urinary 

tract bleeding when subjects had S. haematobium infections (top panel), and for periportal fibrosis of 

the liver when subjects had S. mansoni or S. japonicum infections (bottom panel). 

Supplemental Figure 4.3. Examples of Meta-Regressions Showing Relations Between ERRs and Odds of 
Diseases Post-Treatment 
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Supplemental Figure 4.4. relative odds of disease post-treatment against ERRs. 
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Implications 

Our study shows that oral drug treatment reduces disease burden and supports continued efforts to 

reach populations at risk. Reducing all morbidity may require providing repeated treatment for people 

at risk for chronic and more intense infection. Because the reduction in egg output is significantly 

correlated with decreased morbidity, our estimates of the post-treatment odds of morbidity can be used 

to predict diminution in disease burden after successful program implementation. Nevertheless, our 

study was limited by gaps in the literature; additional well-designed and well-reported cohort studies 

are needed to strengthen the evidence base related to treatment impact on Schistosoma morbidity 

control. 
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5.1 Abstract 
Background: World Health Organization (WHO) guidelines for measuring global progress in 

schistosomiasis control classify individuals with Schistosoma spp. infections based on the concentration 

of excreted eggs. We assessed the associations between WHO infection intensity categories and 

morbidity prevalence for selected S. haematobium and S. mansoni morbidities in school-age children. 

Methodology: A total of 22,488 children aged 6-15 years from monitoring and evaluation cohorts in 

Burkina Faso, Mali, Niger, Tanzania, Uganda, and Zambia from 2003-2008 were analyzed using Bayesian 

logistic regression. Models were utilized to evaluate associations between intensity categories and the 

prevalence of any urinary bladder lesion, any upper urinary tract lesion, microhematuria, and pain while 

urinating (for S. haematobium) and irregular hepatic ultrasound image pattern (C-F), enlarged portal 

vein, laboratory-confirmed diarrhea, and self-reported diarrhea (for S. mansoni) across participants with 

infection and morbidity data. 

Principal findings: S. haematobium infection intensity categories possessed consistent morbidity 

prevalence across surveys for multiple morbidities and participants with light infections had elevated 

morbidity levels compared to negative participants. Conversely, S. mansoni infection intensity categories 

lacked association with prevalence of the morbidity measures assessed.  

Conclusions/significance: Current status infection intensity categories for S. haematobium were 

associated with morbidity levels in school-age children, suggesting urogenital schistosomiasis morbidity 

can be predicted by an individual’s intensity category. Conversely, S. mansoni infection intensity 

categories were not consistently indicative of childhood morbidity at baseline or during the first two 

years of a preventive chemotherapy control program.  

Financial support: The Schistosomiasis Control Initiative (now the SCI Foundation) was supported by the 

Bill and Melinda Gates Foundation (grant 13122). 
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5.2 Author Summary 
Infections with Schistosoma parasites are commonly classified by the presence and concentration of 

excreted Schistosoma eggs. Guidelines put forward by the World Health Organization (WHO) include 

classifications of S. haematobium infections assessed by urine filtration into light and heavy infections 

and S. mansoni infections assessed by Kato-Katz thick smears into light, moderate, and heavy infections. 

Past evidence has demonstrated an association between intensity of infection with morbidity for severe 

morbidities, but this was before recognition of the effect of light-intensity infections on morbidity and 

was done in treatment naïve populations. In these analyses, we assessed the associations between the 

WHO classifications for infection intensity and a wide array of S. haematobium and S. mansoni morbidity 

indicators in school-age children ascertained in monitoring and evaluation cohorts before and after 

initiation of deworming. Our analyses found a high correlation with S. haematobium intensity categories 

and morbidity indicators, especially microhematuria, but weaker correlation between S. mansoni 

intensity categories and morbidity indicators. The results indicate that, on the aggregate, the intensity 

categories represent a person’s S. haematobium-related morbidity but are poor at representing a 

person’s S. mansoni-related morbidity. 

5.3 Introduction 
Schistosomiasis is the disease caused infection with the blood fluke Schistosoma spp. Morbidity 

is caused by the host's response to parasite eggs. As part of the life cycle, eggs are excreted via urine (for 

Schistosoma haematobium) or stool (for S. mansoni and other species), but some eggs become lodged in 

host tissue and stimulate inflammation and granulomatous reactions, which are responsible for the 

pathology associated with the infection (Colley et al. 2014a). Chronic disease can manifest due to the 

accumulation of tissue damage by repeated infections or because schistosomes can survive in the 

human body and produce eggs for many years. Morbidity varies by species (King et al. 2005; Colley et al. 

2014a). S. haematobium infections affect the urogenital system and most often clinically present as 

hematuria (van der Werf et al. 2003b). Chronic infections can result in urinary tract fibrosis (Khalaf et al. 
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2012), female (Christinet et al. 2016) and male (Kayuni et al. 2019) genital schistosomiasis, and, in rare 

cases, bladder cancer (Ishida et al. 2018). S. mansoni infections affect the gastrointestinal tract and 

frequently are associated with abdominal pain and bleeding into the stool (van der Werf et al. 2003b). 

Longer term infections put patients at greater risk for periportal fibrosis (Colley et al. 2014a), which can 

lead to portal vein hypertension, hepatosplenic disease, and esophageal varices that can result in 

exsanguination into the digestive tract. 

Prior to the introduction of mass distribution of praziquantel as preventive chemotherapy, 

multiple studies in the 1970’s and early 1980’s found an association between the intensity of a 

schistosome infection and morbidity (WHO 1973; 1987; 1988). These studies became the basis for two 

important components of schistosomiasis morbidity control. First, they established the concept of 

infection intensity categorizations, now commonly used by the World Health Organization (WHO). S. 

haematobium infection intensity has consistently been characterized by the number of schistosome 

eggs per 10 ml of urine with 1-49 eggs per 10 ml of urine defining a light infection and ≥ 50 eggs per 10 

ml of urine indicating a heavy infection (WHO Expert Committee on the Control of Schistosomiasis 1985; 

WHO 2002). For S. mansoni, infection intensity is measured as the number of schistosome eggs per 

gram (EPG) of stool. Different categorizations have appeared in WHO documents (WHO Expert 

Committee on the Control of Schistosomiasis 1985; Dixon 1987), but infection intensity is now 

commonly split into three categories: 1-99 EPG for a light infection; 100-399 EPG signifying a moderate 

infection; and ≥400 EPG for a heavy infection (Montresor et al. 1998; WHO 2002). Second, they led to 

current WHO guidelines that use community-level prevalence of heavy-intensity infections as the basis 

for morbidity control (WHO 2013), even though it is recognized that light and moderate infections can 

cause considerable morbidity (King et al. 2005; King 2015).  

The primary objective of this study was to determine whether the intensity categories, i.e., a 

measure of someone’s current infection status, can differentiate between participants’ morbidity 
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prevalence for multiple, schistosomiasis-related morbidity indicators. For S. haematobium, we analyzed 

two aggregated ultrasound indicators, as well as microhematuria, and pain while urinating. For S. 

mansoni, we analyzed irregular liver image pattern, enlarged portal vein, laboratory-confirmed diarrhea, 

and self-reported diarrhea. We used data from preventive chemotherapy control programs in Burkina 

Faso (Koukounari et al. 2007; Touré et al. 2008; Garba et al. 2009), Mali (Koukounari et al. 2006; Garba 

et al. 2009), Niger (Garba et al. 2009), Uganda (Kabatereine et al. 2007), Tanzania (Kabatereine et al. 

2006), and Zambia (Kabatereine et al. 2006) between 2003 and 2008 supported by the Schistosomiasis 

Control Initiative (SCI) (Fenwick et al. 2009). To our knowledge, no thorough evaluation of the 

association between infection intensity categories and morbidity before and after the mass distribution 

of praziquantel has been performed.  

5.4 Methods 

5.4.1 Ethics statement 
The Imperial College Research Ethics Committee (ICREC_8_2_2, EC No. 03.36, R&D No. 03/SB/003E) and 

the ethical review boards of the Ministries of Health of the six countries included here provided ethical 

approval for use of these data. The Centers for Disease Control and Prevention (CDC) was determined to 

be a non-engaged research partner. 

5.4.2 Study design and data collection 
Data collection was performed as part of national control programs for schistosomiasis and soil-

transmitted helminthiasis. Details on country programs and development of SCI are presented 

elsewhere (Kabatereine et al. 2006; Koukounari et al. 2006; Kabatereine et al. 2007; Koukounari et al. 

2007; Touré et al. 2008; Fenwick et al. 2009; Garba et al. 2009). Briefly, all countries created a 

multifaceted, national program scale-up and initiated distribution of praziquantel and albendazole to 

target populations based on WHO guidance (Montresor et al. 2002). Schools were randomly selected 

from areas with various endemicity levels that were purposively selected. Countries created two 

monitoring and evaluation cohorts: a randomly selected group of children, aged 6-12 years in primary 
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education, were followed for two or more years; and a second cohort of communities were tracked with 

a random sample of participants ascertained each year. The first survey (baseline) was the first known 

year of preventive chemotherapy in the area. The subsequent years of follow-up are referred to as 

follow up 1 and follow up 2. Data were collected from communities which had been treated annually 

and measured approximately one year after treatment. Treatment was usually immediately following 

survey times, but occasionally lagged by a few months. Details on surveys included in the analyses and 

reasons for exclusions are included in the supplementary materials (Supplemental Table 5.1). 

Participants were required to be above 94 cm in height and not currently ill. Consent was obtained from 

parents or guardians and assent was obtained from children. Participants were surveyed and evaluated 

before receiving praziquantel (for schistosomiasis) and albendazole (for soil-transmitted helminthiasis). 

We pooled the monitoring and evaluation cohorts and limited the participants to 6-15 year-old children 

to include the largest number of participants possible and to align with the current monitoring and 

evaluation guidelines of sampling school-aged children (WHO 2011c). Datasets were created for each 

morbidity where participants were required to possess both infection and morbidity data. 



5 Associations Between Intensity Categories and Morbidity 

90 
 

5.4.3 Schistosoma infection data 
Each control program chose independently how to evaluate S. haematobium and S. mansoni 

infections (Table 5.1). Urine filtration was used to determine S. haematobium infection intensity. A 

single urine sample was used in Burkina Faso, Niger, Tanzania, and Zambia. All countries performed a 

single filtration except Niger which prepared two filtrations from one urine sample. In Mali, program 

officials took two urine samples from consecutive days and filtered each. A stained filter was 

microscopically examined for S. haematobium eggs after passing approximately 10 ml of urine through 

it. An individual’s infection intensity was calculated as the arithmetic mean of the number of eggs per 10 

ml of urine across all available samples. Participants were then grouped into three intensity infection 

categories: negative (0 eggs per 10 ml urine), light (1-49 eggs per 10 ml of urine), and heavy (≥ 50 eggs 

per 10 ml of urine) (WHO 2002).  

S. mansoni infection intensity was determined by the Kato-Katz technique. Mali, Niger, and the 

baseline Ugandan survey used a single stool with counting of two separately prepared Kato-Katz thick 

smears. Two stools from consecutive days with two slides each were used in Tanzania and all follow-up 

surveys in Uganda. Slides were microscopically examined for S. mansoni eggs. Individual intensity of 

infection was determined by calculating the arithmetic mean of the number of eggs on all available 

Table 5.1. Summary of Schistosoma infection data collection procedures by country, Schistosomiasis 
Control Initiative (SCI) supported monitoring and evaluation data, 2003-2008. 

Country S. haematobium 10 ml urine filtrations S. mansoni 41.7mg Kato-Katz (KK) slides 

Burkina Faso One One stool sample with two slides 

Mali 
Two from different samples taken on 
consecutive days 

One stool sample with two slides 

Niger Two from the same urine sample One stool sample with two slides 

Tanzania One  Two stool samples with two slides 

Uganda No evaluation 
Baseline: one stool sample with two slides 
Follow-up: two stool samples with two slides 

Zambia One  Two stool samples with two slides 
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slides multiplied by a factor of 24 to scale the measurement to eggs per 1 g of stool. Participants were 

classified into four intensity infection categories: negative (0 EPG), light (1-99 EPG), moderate (100-399 

EPG), and heavy (≥400 EPG) (WHO 2002). 

5.4.4 Morbidity data 
 Morbidity data were collected from the same participants as the infection data. S. haematobium 

ultrasound variables utilized in these analyses included all elements of an S. haematobium ultrasound 

evaluation (Richter 2003) performed in accordance to the standardized Niamey protocol (Richter et al. 

2000). These included a distorted bladder shape, the presence of irregularities in the bladder wall, 

detection of any bladder wall masses >10 mm in size, presence of pseudopolyps, a focal or diffuse 

thickening of the bladder wall, any dilation of the left or right pelvis, and any visualization of the left or 

right ureter. The first five indicators were aggregated into an outcome denoting whether a participant 

was positive for any urinary bladder lesion while the pelvic dilation and ureter visualization indicators 

were aggregated into an outcome denoting whether a participant was positive for any upper urinary 

tract lesion. Participants missing any of the S. haematobium ultrasound indicators were excluded from 

these analyses. Additionally, as a sensitivity analysis, a second approach utilized the number of positive 

indicators and the total number of indicators measured and are referred to as the urinary bladder rate 

and upper urinary tract rate. All participants with at least one indicator measured were included in the 

second analysis. Two additional morbidity indicators were also analyzed: microhematuria assessed with 

Hemastix dipsticks (French et al. 2007) and self-reported pain while urinating (Danso-Appiah et al. 2010).  

The analyses of individual morbidity indicators are included in the supplementary material. 

Four main morbidity variables were analyzed for S. mansoni. Two ultrasound indicators of S. 

mansoni infection, collected according to the Niamey protocol (Richter et al. 2000), were included in 

analyses: the presence of a hepatic image pattern of C or worse to measure where a participant has any 

echogenic fibrosis; and an enlarged portal vein, defined as a portal vein diameter with a score of > 2 
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standard deviations from the Senegalese population data used in the Niamey protocol. Unfortunately, 

other indicators were not consistently measured in all countries. The final two morbidity variables for S. 

mansoni were laboratory-confirmed and self-reported diarrhea (Polderman et al. 1984; Stelma et al. 

1994). Laboratory-confirmed diarrhea was indicated by the technician, while self-reported diarrhea was 

based on participants' responses when asked if they had experienced diarrhea in the last 2 weeks.  

Analyses of hepatic irregular image pattern B or worse, blood in stool, and abdominal pain for S. 

mansoni are included in the supplementary materials. 

5.4.5 Data analysis methods 
R version 4.0.3 (R Development Core Team 2018) and the tidyverse package (Wickham 2017) 

were used to prepare data for analyses. All analyses that required a level of significance used the 5% 

level. Analyses included in this report’s figures treated the data as a stratified (country level) and 

clustered (school level) sample via the survey package (Lumley 2019). Logistic regression was used to 

compare the relative odds of possessing a morbidity between categories within a survey. These models 

have the goal of comparing participants’ current infection status within the same survey and do not 

make comparisons between surveys or identify the best infection categories. 

The regression model contained fixed effects for countries to control for differences between 

control programs, age and sex of participants, survey year, intensity infection category, and the 

interaction between survey year and intensity category. A random intercept for each school was 

included to account for any correlation between children sampled from the same school. Participants 

who contributed data at multiple surveys had individual random intercepts, while those participants 

who contributed for a single year did not. All comparisons were estimated via contrast statements and 

reported as odds ratios (ORs) with 95% Bayesian credible intervals (BCIs) from the posterior 

distributions. Regression models were chosen via Markov chain Monte Carlo (MCMC) methods in JAGS 

(Plummer 2003) using the rjags package (Plummer 2019). Three chains were chosen with an adaptive 
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phase of 10,000 iterations and a total of 80,000 iterations per chain. The first 10,000 iterations were 

discarded. All fixed effect coefficients used have Cauchy prior distributions with a center of zero and a 

scale of 2.5 (Gelman et al. 2008). For S. haematobium-related morbidities, additional models were run 

without controlling for participants’ age and sex for comparison. 

In addition, we explored whether using three categories of S. mansoni infection intensity (rather 

than four levels) might show a stronger association with morbidity indicator prevalence. Multiple 

categorizations were used to define the new S. mansoni infection intensity categories, each with zero 

EPG of stool treated as negative and the remaining two categories were split at a new threshold. We 

chose thresholds of 100 EPG, 200 EPG, 300 EPG, and 400 EPG to split infected participants. Thus, for 

example, the threshold of 200 EPG, produced a categorization of 0 EPG, 1-199 EPG, and ≥200 EPG.  

5.5 Results 

5.5.1 S. haematobium 
A range of 8,615 to 11,948 school-age children were included at baseline depending on each 

morbidity’s missing data (Supplemental Table 5.2). This dropped to a range of 5,107 to 6,941 for follow-

up 1 and 3,599 to 3,672 for follow-up 2. The prevalence of any infection and heavy-intensity infection 

prevalence were demonstrably higher for participants sampled at baseline compared to those sampled 

at follow-up 1 as the confidence intervals did not overlap; however, infection levels did not differ 

between follow-up 1 and follow-up 2 (Figure 5.1, row A). Similarly, most morbidities were more 

prevalent among participants sampled at baseline compared to participants sampled at follow-up 1 or at 

follow-up 2 (Figure 5.1, row B; Supplemental Figure 5.1). 

With a few exceptions, infection intensity category prevalence estimates for S. haematobium-

related morbidity indicators were consistent across surveys (Figure 5.2). Microhematuria prevalence 

was almost identical in each intensity category across surveys. Participants in the heavy intensity 

category at follow up 2 had a much higher prevalence of any urinary bladder lesion and the prevalence 
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Figure 5.1. Line graphs of the percentage of 6-15 year-old children who were Schistosoma infection 
and heavy-intensity positive (row A), S. haematobium morbidity positive (row B), and S. mansoni 
morbidity positive (row C) at each survey year (baseline, BL; follow-up 1, FU1; follow-up2, FU2). S. 
haematobium estimates are from Mali, Niger, and Tanzania and are assessed by urine filtration. S. 
mansoni estimates are from Mali, Niger, Tanzania, and Uganda and are assessed by the Kato-Katz 
technique. 
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of pain while urinating; those morbidity indicators were consistent across surveys for the other intensity 

categories. The prevalence of any upper urinary tract lesion trended downward for participants in the 

heavy intensity infection category in each successive survey. Individual ultrasound indicators followed 

similar patterns but tended to have more variability (Supplemental Figure 5.2). 

ORs comparing participants in different intensity categories at each survey were roughly 

consistent for any urinary bladder lesions, any upper urinary tract lesions, microhematuria, and pain 

Figure 5.2. Line graphs of Schistosoma haematobium-related morbidity percentages, broken down 

by intensity category, across three surveys (baseline, BL; follow-up 1, FU1; follow-up2, FU2). 

Participants were enrolled between 2003 and 2008 in Mali, Niger, and Tanzania. Clustering by 

school accounted for in 95% confidence bands. Infections were assessed by urine filtration. 
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while urinating (Table 5.2). Compared to negative participants, participants with light infections were at 

increased odds for all morbidity indicators. The same was also true for participants with heavy 

infections, with the exception of the follow-up 2 survey for any upper urinary tract lesions. There was a 

lack of consistency between participants with heavy versus light infections for any upper urinary tract 

lesion, but differences were consistent at all timepoints for other morbidities. Similar results were found 

for binomial outcomes (Supplemental Table 5.3).

 

The differences in the odds of possessing a morbidity between intensity categories was 

dramatically different when age and sex were not controlled for in regression models (Table 5.3). When 

age and sex are not included, the OR estimates are more closely aligned with those found the raw data 

(Figure 5.2) than those in models with age and sex included (Table 5.2). 

 

 

Table 5.2. Odds ratios (ORs) and 95% credible intervals from Bayesian logistic regression models comparing 
morbidity positive proportions between intensity categories within surveys for S. haematobium-related 
morbidities. Bold font indicates the 95% Bayesian credible interval (BCI) does not contain one. Participants are 
school-age children (6-15 years) enrolled between 2003 and 2008 in Mali, Niger, and Tanzania.  

Morbidity Survey Light versus negative 
Heavy versus 
negative Heavy versus light 

Any urinary bladder Baseline 1.42 (1.22, 1.64) 1.76 (1.46, 2.11) 1.24 (1.04, 1.48) 

lesions Follow up 1 1.58 (1.33, 1.87) 1.39 (0.99, 1.94) 0.88 (0.62, 1.23) 

 Follow up 2 2.32 (1.85, 2.90) 2.73 (1.93, 3.85) 1.18 (0.84, 1.65) 

Any upper urinary tract Baseline 1.39 (1.02, 1.89) 1.74 (1.22, 2.48) 1.26 (0.92, 1.72) 
lesions Follow up 1 1.19 (0.81, 1.74) 1.67 (0.86, 3.02) 1.41 (0.72, 2.58) 

 Follow up 2 1.96 (0.96, 4.02) 1.88 (0.54, 5.29) 0.96 (0.28, 2.67) 

Microhematuria Baseline 2.11 (1.92, 2.33) 3.25 (2.88, 3.68) 1.54 (1.36, 1.73) 

 Follow up 1 2.19 (1.91, 2.53) 2.84 (2.17, 3.74) 1.29 (0.97, 1.73) 

 Follow up 2 2.00 (1.69, 2.38) 4.40 (3.27, 5.93) 2.19 (1.62, 2.98) 

Pain while urinating Baseline 1.19 (1.07, 1.34) 1.58 (1.38, 1.81) 1.32 (1.15, 1.52) 

 Follow up 1 1.02 (0.87, 1.20) 0.93 (0.67, 1.27) 0.91 (0.65, 1.27) 

 Follow up 2 1.27 (1.06, 1.54) 1.26 (0.90, 1.77) 0.99 (0.70, 1.40) 
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5.5.2 S. mansoni 
The sample sizes for S. mansoni analyses ranged from 5,158 to 13,483 school-age children at 

baseline, 4,881 to 11,484 for follow-up 1, and 3,901 to 6,216 for follow-up 2 (Supplementary Table 5.4). 

Although the prevalence of any infection and heavy-intensity infection prevalence was higher for 

participants sampled at baseline as compared to those sampled at follow-up 1, the declines were 

modest and confidence intervals overlap (Figure 5.1, row A; Supplemental Figure 5.3). S. mansoni-

related morbidities collected via ultrasound or in the laboratory and validated by a technician, also 

experienced decreases when participants at each follow-up survey were compared to baseline 

participants (Figure 5.1, row C; Supplementary Figure 5.4), though the confidence intervals often 

overlap. The prevalence of enlarged portal vein slightly increased for participants in follow up 1 

compared to baseline. Self-reported morbidities remained similar across the surveys. 

Table 5.3. Odds ratios (ORs) and 95% credible intervals from Bayesian logistic regression models comparing 
morbidity positive proportions between intensity categories within surveys for S. haematobium-related 
morbidities without controlling for age and sex. Bold font indicates the 95% Bayesian credible interval (BCI) does 
not contain one. Participants are school-age children (6-15 years) enrolled between 2003 and 2008 in Mali, Niger, 
and Tanzania. 

Morbidity Survey 
Light versus negative 

Heavy versus 
negative 

Heavy versus light 

Any urinary bladder Baseline 3.49 (2.98, 4.10) 10.15 (8.37, 12.34) 2.91 (2.46, 3.44) 

lesions Follow up 1 3.89 (3.15, 4.80) 13.10 (9.36, 18.36) 3.37 (2.42, 4.70) 

 Follow up 2 3.08 (2.47, 3.86) 10.07 (7.17, 14.23) 3.26 (2.34, 4.58) 

Any upper urinary tract Baseline 1.75 (1.30, 2.35) 3.35 (2.43, 4.63) 1.92 (1.46, 2.51) 
lesions Follow up 1 1.15 (0.66, 1.94) 2.77 (1.29, 5.46) 2.41 (1.08, 5.03) 

 Follow up 2 1.93 (0.99, 3.80) 1.63 (0.47, 4.43) 0.84 (0.25, 2.27) 

Microhematuria Baseline 23.75 (20.67, 27.35) 296.27 (229.36, 388.21) 12.47 (9.90, 15.95) 

 Follow up 1 14.45 (12.10, 17.29) 249.79 (143.44, 470.70) 17.28 (10.02, 32.37) 

 Follow up 2 29.17 (22.56, 38.24) 1165.70 (506.17, 3363.16) 39.82 (17.86, 112.05) 

Pain while urinating Baseline 1.41 (1.26, 1.58) 2.40 (2.10, 2.75) 1.70 (1.48, 1.94) 

 Follow up 1 1.59 (1.35, 1.86) 2.37 (1.77, 3.16) 1.49 (1.09, 2.03) 

 Follow up 2 1.58 (1.31, 1.91) 4.58 (3.31, 6.38) 2.89 (2.07, 4.06) 
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In contrast to S. haematobium, S. mansoni-related morbidities demonstrated no clear pattern and fewer 

associations with intensity categories (Figure 5.3; Table 5.4 and Supplementary Table 5.4). For instance, 

while baseline participants with heavy and moderate intensity infections were more likely to have an 

enlarged portal vein than their negative counterparts (moderate versus negative: OR=1.53, 95% 

BCI=1.09-2.13; heavy versus negative: OR=2.48, 95% BCI=1.86-3.30), these associations were much 

weaker at follow-up 1 (moderate versus negative: OR=1.31, 95% BCI=0.86-1.97; heavy versus negative: 

OR=1.25, 95% BCI=0.70-2.12), but then were much stronger at follow up 2 (moderate versus negative: 

OR=3.29, 95% BCI=1.91-5.47; heavy versus negative: OR=4.68, 95% BCI=2.24-9.18). Percentages of 

enlarged portal vein broken down by country (Supplementary Figure 5.5) showed very high estimates of 

enlarged portal vein for Nigerian and Zambian participants with no infection. This resulted in negative 

participants having a higher estimate of enlarged portal vein than other intensities at both follow up 

surveys (Figure 5.3). Though, since the modeled results took into account differences between countries 

and the age and sex of the participant, the ORs represent a more accurate comparison between the 

intensity categories (Table 5.4). Results for all S. mansoni morbidity indicators are included in the 

supplementary material (Supplementary Table 5.5). 

Under the consideration that the different patterns observed between S. haematobium and S. 

mansoni could be a statistical artifact of the number of intensity categories between species, we 

explored using three S. mansoni intensity categories instead of four. Using 200 EPG as the breakpoint 

between the light- and heavy-intensity categories, patterns similar to the four-category definition were 

seen (Figure 5.4). This was also true when 100 EPG, 300 EPG, and 400 EPG were utilized as the 

breakpoint between a light and heavy infection (Supplemental Figures 5.6-5.8). 
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Figure 5.3. Line graphs of Schistosoma mansoni-related morbidity percentages, broken down by 
intensity category, across three surveys (baseline, BL; follow-up 1, FU1; follow-up2, FU2). Participants 
were enrolled between 2003 and 2008 in Mali, Niger, Tanzania, and Uganda. Clustering by school 
accounted for in 95% confidence bands. Infections were assessed by Kato-Katz stool examination. 
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Table 5.4. Odds ratios (ORs) and 95% credible intervals from Bayesian logistic regression models comparing morbidity positive proportions 
between heavy-intensity prevalence categories within surveys for S. mansoni-related morbidities. Bold font indicates the 95% Bayesian credible 
interval (BCI) does not contain one. Participants are school-age children (6-15 years) enrolled between 2003 and 2008 in Mali, Niger, Tanzania, 
and Uganda.  

Morbidity Survey Light v. Negative 
Moderate v. 

Negative Heavy v. Negative 
Moderate v. 

Light Heavy v. Light 
Heavy v. 

Moderate 

Image pattern C-F Baseline 1.95 (0.79, 5.05) 2.08 (0.86, 5.39) 3.97 (1.67, 10.19) 1.06 (0.50, 2.29) 2.03 (0.97, 4.37) 1.91 (0.96, 3.85) 

 Follow up 1 1.13 (0.45, 2.90) 0.70 (0.22, 2.12) 0.43 (0.07, 1.81) 0.62 (0.21, 1.68) 0.38 (0.06, 1.47) 0.62 (0.09, 2.69) 

 Follow up 2 * * * * * * 

Enlarged portal  Baseline 0.98 (0.74, 1.27) 1.53 (1.09, 2.13) 2.48 (1.86, 3.30) 1.57 (1.06, 2.31) 2.55 (1.79, 3.63) 1.62 (1.11, 2.39) 

vein Follow up 1 1.18 (0.83, 1.65) 1.31 (0.86, 1.97) 1.25 (0.70, 2.12) 1.11 (0.68, 1.79) 1.06 (0.57, 1.91) 0.95 (0.49, 1.79) 

 Follow up 2 1.34 (0.81, 2.12) 3.29 (1.91, 5.47) 4.68 (2.24, 9.18) 2.46 (1.26, 4.82) 3.50 (1.52, 7.82) 1.42 (0.61, 3.23) 

Lab-confirmed  Baseline 1.32 (1.05, 1.66) 1.58 (1.23, 2.02) 1.69 (1.32, 2.15) 1.20 (0.89, 1.60) 1.28 (0.96, 1.71) 1.07 (0.80, 1.44) 

diarrhea Follow up 1 1.77 (1.38, 2.27) 1.76 (1.28, 2.40) 1.68 (1.14, 2.43) 0.99 (0.70, 1.40) 0.95 (0.63, 1.42) 0.96 (0.61, 1.48) 

 Follow up 2 1.47 (1.08, 1.97) 1.32 (0.80, 2.11) 0.86 (0.42, 1.60) 0.90 (0.52, 1.51) 0.59 (0.28, 1.13) 0.65 (0.28, 1.41) 

Self-reported Baseline 1.17 (1.03, 1.33) 1.56 (1.34, 1.83) 1.43 (1.23, 1.66) 1.34 (1.11, 1.61) 1.22 (1.02, 1.46) 0.91 (0.75, 1.11) 

diarrhea Follow up 1 1.14 (0.98, 1.33) 1.18 (0.96, 1.45) 1.29 (1.00, 1.66) 1.04 (0.82, 1.32) 1.13 (0.86, 1.49) 1.09 (0.80, 1.48) 

 Follow up 2 1.16 (0.97, 1.40) 1.29 (0.96, 1.73) 1.09 (0.76, 1.57) 1.11 (0.80, 1.54) 0.94 (0.64, 1.39) 0.85 (0.54, 1.33) 

* Due to the low prevalence of image pattern C-F, all comparisons between categories were unstable and possessed a large amount of error 

uncertainty; and therefore they were omitted from this table. 
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5.6 Discussion 
These analyses indicated that there were consistent associations between infection intensity categories 

and the prevalence of some morbidity indicators for children aged 6-15 years for S. haematobium, as measured 

prior to the initiation of preventive chemotherapy (the baseline survey) and before each subsequent round of 

Figure 5.4. Modification of Figure 5.3 where participants’ Schistosoma mansoni intensity is split 
into three categories: 0 EPG, 1-199 EPG, and ≥200 EPG. See Figure 5.3 description for more details. 
Data are from three surveys (baseline, BL; follow-up 1, FU1; follow-up2, FU2). 
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annual mass drug administration (follow-up 1 and follow-up 2 surveys). However, the same associations were 

not found for S. mansoni for the measures of morbidity that were collected. For the infection categories to 

effectively discriminate between morbidity directly associated with schistosomiasis, the odds of morbidity 

should be greater for a higher intensity category. ORs between S. haematobium infection intensity categories 

were largely consistent for most morbidity indicators before and after praziquantel administration. For example, 

across the three surveys, participants with light infection intensity infections had approximately two (or 15 to 30 

without controlling for age and sex) times higher odds of microhematuria compared to participants without S. 

haematobium eggs in their urine. Consistent ORs were also found for heavy versus negative intensity. For S. 

mansoni, there was no morbidity measure where ORs between infection intensity categories were consistent. 

When raw prevalence and confidence intervals were plotted (Figure 5.3 and Supplemental Figure 5.4), the 

categories are indistinguishable as confidence intervals overlap for almost all categories. This transpired in the 

context of effective preventive chemotherapy programs (Deol et al. 2019).  

Our analyses had some limitations. Only morbidity indicators that were measured in multiple countries 

were analyzed, meaning many indicators from the S. mansoni ultrasound protocol were omitted. Some of those 

indicators suffer from high intra-observer variability (Doehring-Schwerdtfeger et al. 1992b; Thomas et al. 1997; 

Sebastianes et al. 2010), which suggest that those measures may not have been as useful as anticipated. Of 

note, enlarged portal vein measurements were taken against the Senegalese population utilized in the Niamey 

protocol, which may not be an appropriate comparison given these data come from other countries. The 

collection of stools (for Kato-Katz thick smears) and urine (for urine filtrations) varied across countries. 

Furthermore, additional stool and urine samples would have provided a more accurate assessment of infection 

and infection intensity. Although similar data systems were used by most countries, there was variability in the 

data collected, meaning that only subsets of the SCI-supported countries appear in most analyses. While 

recommendations were made for an appropriate number of schools and participants per school to enroll, data 

collection was a part of monitoring and evaluation cohorts without specific hypotheses. In addition, control 

programs had the final say on sample sizes and utilized different approaches which were likely driven by 
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available financial and human resources in some countries. While we realize these sample size considerations 

influenced the analyses, we were limited in our ability to power these analyses appropriately given the context 

in which the data were collected. Finally, there is the potential for systematic selection bias in these analyses as 

the school-age children sampled from these communities may be consistently different from those who were 

not sampled. In addition, while some people were measured multiple times, others were not, meaning the loss 

to follow up is high in these data. Nevertheless, if the intensity categories, which are purported to measure a 

person’s current infection status, have a robust relationship with morbidity, then we should see a similar 

relationship regardless of whether selection bias, heterogeneous age distributions, and other potential biases 

are present. 

An important finding is that participants with light and moderate S. haematobium infections had 

elevated morbidity levels compared to their non-infected counterparts for ultrasound indicators and 

microhematuria. This appears to be at odds with the notion that morbidity is only caused by heavy-infections 

(Mott 2004) which has driven monitoring and evaluation goals for schistosomiasis (WHO 2002; 2011b; 2013). 

Our results add to the literature that morbidity is present in people with even light and moderate infections 

(King et al. 2005; King et al. 2008b) and strengthens the evidence-base that morbidity control should be based 

on any infection instead of heavy infections (King 2015).  

We explored some potential reasons for the stronger association between S. haematobium infection 

categories and morbidity as compared to the S. mansoni infection categories and morbidity. One consideration 

was whether the poorer performance could be due to S. mansoni possessing a fourth intensity category 

compared to three for S. haematobium. Additional analyses were performed to evaluate whether separating S. 

mansoni intensity into three categories would improve discrimination. None of the multiple thresholds chosen 

hinted at an improvement to the association between infection intensity categories and morbidity.  

Differences between species could be due to the diagnostic tests. Both the urine filtration and Kato-Katz 

techniques have considerable day-to-day variability (Utzinger et al. 2001; Vinkeles Melchers et al. 2014). 
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Separate studies of the day-to-day fluctuation in these tests using the intra-person correlation coefficient found 

reasonably similar estimates for S. haematobium in Gabon (0.81, 95% confidence interval (CI): 0.71-0.89) (Van 

Etten et al. 1997) and S. mansoni in Burundi (0.77, 95% CI: 0.66-0.85) (Polman et al. 1998). Though, the latter 

result differed from a study in Côte d’Ivoire where the intra-specimen variation of egg counts was 4.3 times 

higher than the day-to-day variability (Utzinger et al. 2001). A comparable analysis could not be found for S. 

mansoni egg counts, but this variation could explain the worse performance of the Kato-Katz technique. Finally, 

small changes in S. mansoni egg counts have a much larger effect on the final intensity measure than for S. 

haematobium. For a 10 ml sample of urine, 50 S. haematobium eggs are needed for a heavy-intensity infection. 

For a single Kato-Katz thick smear only 41.7mg of stool are utilized, and hence, 17 S. mansoni eggs on a slide are 

defined as a heavy-intensity infection. Thus, measuring an additional egg in a positive sample has a considerably 

larger effect in a Kato-Katz thick smear examination compared to a urine filtration test. 

The age at which these morbidity indicators commonly develop was shown to hugely influence the 

association between infection category and microhematuria and may have an impact with other morbidity 

indicators. Microhematuria and ultrasound-related morbidity associated with S. haematobium has been found 

to be more prevalent in children, as compared to adults (King et al. 1988; van der Werf et al. 2004). Conversely, 

multiple studies have shown the risk for S. mansoni morbidity indicators of periportal fibrosis to be higher in 

adults, as compared to children (Boisier et al. 2001; King et al. 2003; Booth et al. 2004). This could be due to S. 

haematobium ultrasound indicators being observable sooner than S. mansoni ultrasound indicators and with the 

availability of more practical ultrasound examination equipment (Straily et al. 2021), potential challenges such 

as this will need to be addressed if such a tool will be programmatically useful. Regardless, the likelihood of S. 

mansoni morbidity indicators in these school-age participants was much lower than the likelihood of S. 

haematobium indicators and likely contributed to the poorer associations between S. mansoni-related morbidity 

indicators and S. mansoni infection prevalence. In addition, the lower prevalence of S. mansoni morbidity 

indicators potentially created a floor effect where S. mansoni indicators had less chance to decline as compared 

to S. haematobium indicators. We conjecture that with the large sample size and analyses of ratios, we have 
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guarded against this. Exploring how age and sex moderate relationships between morbidity and intensity 

categories will require a thorough evaluation. 

Differences could also be due to variation in the effect of preventive chemotherapy. The follow-up time 

may not have been long enough for reductions in ultrasound to present at an aggregate level, especially for S. 

mansoni. For instance, past research suggested urinary tract pathology appears to reverse more rapidly than 

hepatic pathology (Richter 2003). More recent studies have suggested that S. haematobium-related morbidity 

improves in less than a year in school-aged children (Bocanegra et al. 2018) and in 1-2 years in adults (Magak et 

al. 2015), whereas liver pathologies have been shown to reduce in severity a year after initiation of treatment 

(Mohamed-Ali et al. 1991), but full resolution requires longer, approximately 2 years (Doehring-Schwerdtfeger 

et al. 1992a; Boisier et al. 1998).  

Bias or error in measurement was also possible for morbidity evaluations, though it is unclear how this 

affected the differences in results by species. Both S. haematobium and S. mansoni ultrasounds have had 

reliable inter-observer agreement (el Scheich et al. 2014; Akpata et al. 2015), though there have been some 

differences in portal branch measurements (el Scheich et al. 2014) and portable ultrasonographic devices may 

have reduced sensitivity to detect bladder wall abnormalities (Akpata et al. 2015). The reliability of reagent 

strips is good for detecting infection (Stothard et al. 2014), and a meta-analysis found that sensitivity and 

specificity were 81% and 89%, respectively, compared to measurement of eggs in urine (King et al. 2013).  

In addition, some morbidities presented here are not specific to schistosome infection. For ultrasonic 

measures, there is the possibility for other causes of morbidity. Indeed, hepatosplenic disease in the absence of 

periportal fibrosis in children has been observed (Vennervald et al. 2004; Davis et al. 2015) and associated with 

current or recent malaria infection (Samuels et al. 2012; Davis et al. 2015). This could be due to some organ 

enlargement being caused by malaria infection (Vennervald et al. 2004). There is potential that hepatitis C virus 

infection could lead to portal vein dilation (el Scheich et al. 2014), though this hypothesis is based on 

correlations at an aggregate level and may be due to different populations possessing different susceptibilities 
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to liver disease (Blanton et al. 2002). Hematuria, painful urination, blood in stool, diarrhea, and abdominal pain 

are not solely caused by schistosomiasis and may introduce bias into the results. Self-reported morbidity also 

has moderate diagnostic performance (Utzinger et al. 2000) and many sources of bias are possible from 

questionnaires (Delgado-Rodríguez et al. 2004). For these morbidities, reductions or lack thereof may not be 

wholly attributable to the decreases in infection and heavy-intensity infection observed after initiation of 

preventive chemotherapy. 

5.7 Conclusion 
 Schistosoma infection intensity categories are utilized to evaluate disease burden and associate with 

other outcomes. The current analyses found that the infection intensity categories correlated reasonably well 

for S. haematobium but not for S. mansoni. Control programs and researchers that utilize Schistosoma infection 

intensity categories based on egg count thresholds should be aware that the S. mansoni categories do not 

appear to align with the morbidity indicators used in this study and that, for both schistosome species, low-

intensity infections are not morbidity-free. These analyses show that heavy-intensity infections do not capture 

all morbidity in these school-age children. Control program infection thresholds for S. mansoni that utilize these 

intensity categories based on Kato-Katz thick smear examinations should be reconfigured in order to align with 

morbidity levels. 
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5.10 Supplemental Materials 

5.10.1 Statistical Methods 
Our outcome in all models was the presence of a morbidity, 𝑦𝑖, where 

𝑦𝑖 = {
 0, if negative
1, if positive

. 

We assume  

𝑦𝑖~Bernoulli(𝑝𝑖) 

where 𝑖 denotes an observation. 𝑝𝑖  is forced to be bounded on [0,1]. For the logistic model, we assume a logit 

transform of the linear predictor, specifically 

𝑝𝑖=
𝑒𝜂𝑖

1 + 𝑒𝜂𝑖
 

where 𝜂𝑖 is the linear predictor. The form of 𝜂𝑖  depends on whether participant was sampled in multiple waves. 

We had 𝑛 observations in the dataset, where 𝑖 = 1, . . . , 𝑛1 come from children who were only sampled once 

during these three surveys and 𝑖 = 𝑛1 + 1, . . . , 𝑛2 come from children who were only sampled more than once. 

For the Schistosoma haematobium model, with 𝑖 = 1, . . . , 𝑛1 , we used the following equations since there are 

three intensity categories 

𝜂𝑖 =  𝛽0 + 𝛽1 ∗ Light𝑖 + 𝛽2 ∗ Heavy𝑖 +  𝛽3 ∗ FU1𝑖 + 𝛽4 ∗ FU2𝑖  + 𝛽5 ∗ Light𝑖 ∗ FU1𝑖 + 𝛽6 ∗ Light𝑖 ∗ FU2𝑖 +  𝛽7

∗ Heavy𝑖 ∗ FU1𝑖 + 𝛽8 ∗ Heavy𝑖 ∗ FU2𝑖 + 𝛽91
∗ age1,𝑖 + ⋯ +  𝛽9𝑗

∗ age𝑗,𝑖 + 𝛽10 ∗ female𝑖 + 𝛽111

∗ country1,𝑖 + ⋯ + 𝛽11𝑗
∗ country𝑗,𝑖 + 𝛾1,𝑘 

and for 𝑖 = 𝑛1 + 1, . . . , 𝑛2 , 
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𝜂𝑖 =  𝛽0 + 𝛽1 ∗ Light𝑖 + 𝛽2 ∗ Heavy𝑖 +  𝛽3 ∗ FU1𝑖 + 𝛽4 ∗ FU2𝑖  + 𝛽5 ∗ Light𝑖 ∗ FU1𝑖 + 𝛽6 ∗ Light𝑖 ∗ FU2𝑖 +  𝛽7

∗ Heavy𝑖 ∗ FU1𝑖 + 𝛽8 ∗ Heavy𝑖 ∗ FU2𝑖 + 𝛽91
∗ age1,𝑖 + ⋯ +  𝛽9𝑗

∗ age𝑗,𝑖 + 𝛽10 ∗ female𝑖 + 𝛽111

∗ country1,𝑖 + ⋯ + 𝛽11𝑗
∗ country𝑗,𝑖 + 𝛾1,𝑘 + 𝛾2,𝑙 

For the S. mansoni model, there is the additional intensity category, meaning the model becomes 

𝜂𝑖 =  𝛽0 + 𝛽1 ∗ Light𝑖 + 𝛽2 ∗ Moderate𝑖 + 𝛽3 ∗ Heavy𝑖 + 𝛽4 ∗ FU1𝑖  + 𝛽5 ∗ FU2𝑖 + 𝛽6 ∗ Light𝑖 ∗ FU1𝑖 + 𝛽7

∗ Moderate𝑖 ∗ FU1𝑖 + 𝛽8 ∗ Heavy𝑖 ∗ FU1𝑖 + 𝛽9 ∗ Light𝑖 ∗ FU2𝑖 +  𝛽10 ∗ Moderate𝑖 ∗ FU2𝑖

+ 𝛽11 ∗ Heavy𝑖 ∗ FU2𝑖 + 𝛽121
∗ age1,𝑖 + ⋯ + 𝛽12𝑗

∗ age𝑗,𝑖 + 𝛽13 ∗ female𝑖 + 𝛽141
∗ country1,𝑖

+ ⋯ + 𝛽14𝑗
∗ country𝑗,𝑖 + 𝛾1,𝑘 

and for 𝑖 = 𝑛1 + 1, . . . , 𝑛2 , 

𝜂𝑖 =  𝛽0 + 𝛽1 ∗ Light𝑖 + 𝛽2 ∗ Moderate𝑖 + 𝛽3 ∗ Heavy𝑖 + 𝛽4 ∗ FU1𝑖  + 𝛽5 ∗ FU2𝑖 + 𝛽6 ∗ Light𝑖 ∗ FU1𝑖 + 𝛽7

∗ Moderate𝑖 ∗ FU1𝑖 + 𝛽8 ∗ Heavy𝑖 ∗ FU1𝑖 + 𝛽9 ∗ Light𝑖 ∗ FU2𝑖 +  𝛽10 ∗ Moderate𝑖 ∗ FU2𝑖

+ 𝛽11 ∗ Heavy𝑖 ∗ FU2𝑖 + 𝛽121
∗ age1,𝑖 + ⋯ + 𝛽12𝑗

∗ age𝑗,𝑖 + 𝛽13 ∗ female𝑖 + 𝛽141
∗ country1,𝑖

+ ⋯ + 𝛽14𝑗
∗ country𝑗,𝑖 + 𝛾1,𝑘 + 𝛾2,𝑙 

In these equations, 

• 𝛽’s are the coefficient estimates (on the log odds scale), 

• Light𝑖 is an indicator variable denoting whether observation 𝑖 has a light infection, 

• Moderate𝑖 is an indicator variable denoting whether observation 𝑖 has a moderate infection, 

• Heavy𝑖 is an indicator variable denoting whether observation 𝑖 has a heavy infection, 

• FU1𝑖 equals 1 when observation 𝑖 was ascertained in follow up 1, 

• FU2𝑖 equals 1 when observation 𝑖 was ascertained in follow up 2, 

• age𝑖 is an indicator variable for the age of the participant treated as a category with 6 as the reference 

category to ages 7 to 15, 

• female𝑖 is an indicator variable for whether participant is a female with male as the reference category, 
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• country𝑖 is an indicator variable for the country of the observation with 𝑗 countries in each model where 

𝑗 depends on the morbidity studied, and 

• 𝛾1,𝑘 and 𝛾2,𝑙 are random effects for school and person, respectively, where an observation is from school 

𝑘 and person 𝑙, with the latter only for 𝑖 = 𝑛1 + 1, . . . , 𝑛2. 

All 𝛽’s have Cauchy prior distribution with a center of zero and a scale of 2.5.(Gelman et al. 2008) For the 

random effect for school, 𝛾1,𝑘~Normal(0, 𝜏1) where 𝜏1 = 𝜌1
−2 and 𝜌1 is given a scaled Gamma prior with 1 

degree of freedom and a scale of 25. This is equivalent to the standard deviation being distributed as a half-t 

distribution.(Gelman 2006) The random effect for person follows similarly.  

Binomial models are fit in the same way, except 𝑦𝑖~𝐵𝑛(𝑡𝑖, 𝑝𝑖) where 𝑦𝑖  is the number of morbidity indicators 

present and 𝑡𝑖 is the total number of morbidity indicator tests completed for observation 𝑖. 

Specific estimates for the intensity categories by survey are then estimated by contrast statements. 

5.10.2 Implementation 
Models were fit via Markov Chain Monte Carlo using JAGS (Plummer 2003) and CODA (Plummer et al. 2006) in R 

via the rjags package (Plummer 2019). Three chains were fit with an adaptive phase of 20,000 iterations per 

chain. For the final model, the iterations from the adaptive phase were discarded and each chain was run for 

another 100,000 iterations. After completing the 100,000 iterations, graphical displays of the trace and densities 

functions were used to determine if any chains or a subset of iterations should be discarded. Results were then 

summarized.  

5.10.3 JAGS model code for S. haematobium logistic model 
model { 
  for (i in 1:n.1) { 
    y.1[i] ~ dbin(p.bound.1[i], 1) 
    p.bound.1[i] <- max(0, min(1, p.1[i])) 
    logit(p.1[i]) <- y.hat.1[i]  
     
    y.hat.1[i] <- fixed.1[i] + random2.1[i] 
     
    random2.1[i] <- r2.b0[r2.cluster.i[i]] 
    fixed.1[i] <- inprod(b[1:P], X.1[i,1:P]) 
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  }   
   
  for (i in 1:n.2) { 
    y.2[i] ~ dbin(p.bound.2[i], 1) 
    p.bound.2[i] <- max(0, min(1, p.2[i])) 
    logit(p.2[i]) <- y.hat.2[i]  
     
    y.hat.2[i] <- fixed.2[i] + random1.2[i] + random2.2[i] 
     
    random1.2[i] <- r1.b0[r1.cluster.i[i]] 
    random2.2[i] <- r2.b0[r2.cluster.i[i]] 
    fixed.2[i] <- inprod(b[1:P], X.2[i,1:P]) 
  }     
   
  for (j in 1:r1.cluster.n) { 
    r1.b0[j] ~ dnorm(r1.b0.mu, r1.b0.tau) 
    r1.b0.hat[j] <- r1.b0.mu 
  }  
  r1.b0.mu <- 0 
  r1.b0.tau <- pow(r1.b0.noise, -2)  
  r1.b0.noise ~ dscaled.gamma(25, 1) 
   
  for (j in 1:r2.cluster.n) { 
    r2.b0[j] ~ dnorm(r2.b0.mu, r2.b0.tau) 
    r2.b0.hat[j] <- r2.b0.mu 
  } 
  r2.b0.mu <- 0 
  r2.b0.tau <- pow(r2.b0.noise, -2)  
  r2.b0.noise ~ dscaled.gamma(25, 1) 
   
  for (f in 1:P) {  
     b[f] ~ dt(0, pow(2.5,-2), 1)  
  } 
 
  c[1] <- b[4] 
  c[2] <- b[4] + b[6]  
  c[3] <- b[4] + b[7] 
  c[4] <- b[5] 
  c[5] <- b[5] + b[8] 
  c[6] <- b[5] + b[9] 
  c[7] <- b[5] - b[4] 
  c[8] <- b[5] + b[8] - b[4] - b[6] 
  c[9] <- b[5] + b[9] - b[4] - b[7] 
  c[10] <- b[2] 
  c[11] <- b[3] 
  c[12] <- b[3] - b[2] 
  c[13] <- b[2] + b[6] 
  c[14] <- b[3] + b[7] 
  c[15] <- b[3] + b[7] - b[2] - b[6] 
  c[16] <- b[2] + b[8] 
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  c[17] <- b[3] + b[9] 
  c[18] <- b[3] + b[9] - b[2] - b[8]  
 
  for (g in 1:P) {    
    pr.b[g] <- step(b[g])    
  } 
  for (h in 1:18) {    
    pr.c[h] <- step(c[h])    
  }  
} 

 

5.10.4 JAGS model code for S. mansoni logistic model 
model { 
  for (i in 1:n.1) { 
    y.1[i] ~ dbin(p.bound.1[i], 1) 
    p.bound.1[i] <- max(0, min(1, p.1[i])) 
    logit(p.1[i]) <- y.hat.1[i]  
     
    y.hat.1[i] <- fixed.1[i] + random2.1[i] 
     
    random2.1[i] <- r2.b0[r2.cluster.i[i]] 
    fixed.1[i] <- inprod(b[1:P], X.1[i,1:P]) 
  }   
   
  for (i in 1:n.2) { 
    y.2[i] ~ dbin(p.bound.2[i], 1) 
    p.bound.2[i] <- max(0, min(1, p.2[i])) 
    logit(p.2[i]) <- y.hat.2[i]  
     
    y.hat.2[i] <- fixed.2[i] + random1.2[i] + random2.2[i] 
     
    random1.2[i] <- r1.b0[r1.cluster.i[i]] 
    random2.2[i] <- r2.b0[r2.cluster.i[i]] 
    fixed.2[i] <- inprod(b[1:P], X.2[i,1:P]) 
  }     
   
  for (j in 1:r1.cluster.n) { 
    r1.b0[j] ~ dnorm(r1.b0.mu, r1.b0.tau) 
    r1.b0.hat[j] <- r1.b0.mu 
  }  
  r1.b0.mu <- 0 
  r1.b0.tau <- pow(r1.b0.noise, -2)  
  r1.b0.noise ~ dscaled.gamma(25, 1) 
   
  for (j in 1:r2.cluster.n) { 
    r2.b0[j] ~ dnorm(r2.b0.mu, r2.b0.tau) 
    r2.b0.hat[j] <- r2.b0.mu 
  } 
  r2.b0.mu <- 0 
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  r2.b0.tau <- pow(r2.b0.noise, -2)  
  r2.b0.noise ~ dscaled.gamma(25, 1) 
   
  for (f in 1:P) {  
     b[f] ~ dt(0, pow(2.5,-2), 1)  
  } 
  c[1] <- b[5] 
  c[2] <- b[5] + b[7] 
  c[3] <- b[5] + b[8] 
  c[4] <- b[5] + b[9] 
  c[5] <- b[6] 
  c[6] <- b[6] + b[10] 
  c[7] <- b[6] + b[11] 
  c[8] <- b[6] + b[12] 
  c[9] <- b[6] - b[5] 
  c[10] <- b[6] + b[10] - b[5] - b[7] 
  c[11] <- b[6] + b[11] - b[5] - b[8] 
  c[12] <- b[6] + b[12] - b[5] - b[9] 
  c[13] <- b[2] 
  c[14] <- b[3] 
  c[15] <- b[4] 
  c[16] <- b[3] - b[2] 
  c[17] <- b[4] - b[2] 
  c[18] <- b[4] - b[3] 
  c[19] <- b[2] + b[7] 
  c[20] <- b[3] + b[8] 
  c[21] <- b[4] + b[9] 
  c[22] <- b[3] + b[8] - b[2] - b[7] 
  c[23] <- b[4] + b[9] - b[2] - b[7] 
  c[24] <- b[4] + b[9] - b[3] - b[8] 
  c[25] <- b[2] + b[10] 
  c[26] <- b[3] + b[11] 
  c[27] <- b[4] + b[12] 
  c[28] <- b[3] + b[11] - b[2] - b[10] 
  c[29] <- b[4] + b[12] - b[2] - b[10] 
  c[30] <- b[4] + b[12] - b[3] - b[11] 
 
  for (g in 1:P) {    
    pr.b[g] <- step(b[g])    
  } 
  for (h in 1:30) {    
    pr.c[h] <- step(c[h])    
  }  
} 
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5.10.5 Supplemental Figures 

 

Supplemental Figure 5.1. Line graphs of the percentage of 6-15 year-old school children who were Schistosoma 
haematobium-related morbidity positive at each survey year (baseline, BL; follow-up 1, FU1; follow-up2, FU2). 
Estimates are from Mali, Niger, and Tanzania for all indicators. Data from Burkina Faso are included in 
laboratory and self-report indicators. Clustering by school accounted for in 95% confidence bands. 

 

Note: Aggregated ultrasound measures include both dilated left and right pelvis and both visualized left and 

right ureters, but results shown for dilated pelvis and visualized ureter combine the left and right indicators into 

a single, binary variable of present in either or not present in either. 
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Supplemental Figure 5.2. Line graphs of Schistosoma haematobium-related morbidity percentages 
including those for individual morbidity sub-scores not included in Figure 2 across three surveys (baseline, 
BL; follow-up 1, FU1; follow-up2, FU2). Participants were enrolled between 2003 and 2008 in Mali, Niger, 
and Tanzania. Clustering by school accounted for in 95% confidence bands. Infections were assessed by 
urine filtration.   

 

Note: Aggregated ultrasound measures include both dilated left and right pelvis and both visualized left 
and right ureters, but results shown for dilated pelvis and visualized ureter combine the left and right 
indicators into a single, binary variable of present in either or not present in either. 
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Supplemental Figure 5.3. Line graphs of the percentage of 6-15 year-old school children who were 
Schistosoma mansoni-related morbidity positive at each survey year (baseline, BL; follow-up 1, FU1; 
follow-up2, FU2). Estimates are from Mali, Niger, Tanzania, and Uganda. Clustering by school accounted 
for in 95% confidence bands. 
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Supplemental Figure 5.4. Line graphs of Schistosoma mansoni-related morbidity percentages including 
morbidity scores that were not included in Figure 5.3, across three surveys (baseline, BL; follow-up 1, FU1; 
follow-up2, FU2). Participants were enrolled between 2003 and 2008 in Mali, Niger, Tanzania, Uganda, 
and Zambia. Clustering by school accounted for in 95% confidence bands. Infections were assessed by 
Kato-Katz.  
 

 
 



5 Associations Between Intensity Categories and Morbidity 

117 
 

 

  

Supplemental Figure 5.5. Line graphs of enlarged portal vein percentage by intensity category by country 
across three surveys (baseline, BL; follow-up 1, FU1; follow-up2, FU2). Participants were enrolled between 
2003 and 2008. Clustering by school accounted for in 95% confidence bands. Infections were assessed by 
Kato-Katz thick smears.  
 

 
 

 



5 Associations Between Intensity Categories and Morbidity 

118 
 

Supplemental Figure 5.6. Modification of Figure 5.4 where participants’ Schistosoma mansoni intensity at each 

survey is split into three categories: 0 EPG, 1-99 EPG, and ≥100 EPG. See Figure 5 description for more details. 

Data are from three surveys (baseline, BL; follow-up 1, FU1; follow-up2, FU2). 
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Supplemental Figure 5.7. Modification of Figure 5.4 where participants’ Schistosoma mansoni intensity at each 

survey is split into three categories: 0 EPG, 1-299 EPG, and ≥300 EPG. See Figure 5 description for more details. 

Data are from three surveys (baseline, BL; follow-up 1, FU1; follow-up2, FU2). 
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Supplemental Figure 5.8. Modification of Figure 5.4 where participants’ Schistosoma mansoni intensity at each 

survey is split into three categories: 0 EPG, 1-399 EPG, and ≥400 EPG. See Figure 5 description for more details. 

Data are from three surveys (baseline, BL; follow-up 1, FU1; follow-up2, FU2). 

 

 

 

 

 

  



5 Associations Between Intensity Categories and Morbidity 

121 
 

5.10.6 Supplemental Tables 
Supplemental Table 5.1. Dates of participant ascertainment in monitoring and evaluation cohorts. Shading 
indicates surveys that were included in analyses. Treatment was usually immediately following survey times, but 
occasionally lagged by a few months. 

Country Site selection Baseline Follow up 1 Follow up 2 

Burkina Faso Highly endemic 
areas 

2004 No treatment and all 
schools removed from 
analyses 

All schools removed at 
prior follow up  

Mali Highly endemic 
areas 

March-April 2004 
(Ségou); May-July 
2004 (Bamako); June-
August 2004 
(Koulikoro) 

Two treatments during 
the year were 
performed in Ségou 
and those locations 
were dropped from 
further analyses; Other 
schools treated but not 
evaluated 

April-May and October 
2006 (Bamako); May 2006 
(Koulikoro) 

Niger Endemic areas (5 
schools); 
Integrated control 
areas with 
lymphatic filariasis 
and trachoma (3 
schools) 

October-November 
2004 and March-May 
2005 (5 schools); 
2008 (3 schools) 

October-December 
2005 and March-April 
2006 (5 schools); 2009 
(3 schools) 

November-December 2006 
and January, March, April, 
and May 2007 (5 schools); 
February 2010 (3 schools) 

Tanzania Coastal areas with 
high prevalence 

March-September 
2005 

March-September 
2006 

No treatment and no 
evaluation 

Uganda Eight districts with 
different 
transmission 
settings 

February-March, 
March-April, October 
November 2003 

February-March, 
March-April, October-
November 2004 

February-March, March-
April, October-November 
2005 

Zambia Areas at high risk 
of infection 

July-August 2005 and 
May-June 2006 

September 2006 and 
May-June 2007 

No treatment and no 
evaluation 
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Supplemental Table 5.2. Participants included in analyses of Schistosoma haematobium infection intensity 
categories. Numbers in parentheses indicate the number of schools from which participants were sampled. 

 Intensity category 

Morbidity Survey Negative Light Heavy 

     

Ultrasound: aggregated     

Any urinary bladder Baseline 5333 (70) 3126 (68) 1305 (60) 

lesions Follow up 1 4635 (37) 1374 (34) 264 (29) 

 Follow up 2 2313 (22) 1058 (22) 228 (17) 

Any upper urinary tract Baseline 5305 (69) 3118 (68) 1315 (60) 

lesions Follow up 1 4626 (37) 1374 (34) 264 (29) 

 Follow up 2 2316 (22) 1070 (22) 229 (18) 

Urinary bladder rate Baseline 5348 (70) 3139 (68) 1330 (60) 

 Follow up 1 4643 (37) 1376 (34) 264 (29) 

 Follow up 2 2324 (22) 1071 (22) 231 (18) 

Upper urinary tract rate Baseline 5337 (69) 3138 (68) 1329 (60) 

 Follow up 1 4642 (37) 1377 (34) 264 (29) 

 Follow up 2 2325 (22) 1072 (22) 231 (18) 

     

Ultrasound: urinary bladder    

Distorted bladder shape Baseline 5338 (70) 3134 (68) 1317 (60) 

 Follow up 1 4638 (37) 1374 (34) 264 (29) 

 Follow up 2 2317 (22) 1063 (22) 229 (17) 

Irregular bladder wall Baseline 5343 (70) 3138 (68) 1323 (60) 

 Follow up 1 4643 (37) 1376 (34) 264 (29) 

 Follow up 2 2320 (22) 1069 (22) 231 (18) 

Any bladder masses Baseline 5347 (70) 3138 (68) 1329 (60) 

 Follow up 1 4642 (37) 1376 (34) 264 (29) 

 Follow up 2 2320 (22) 1069 (22) 230 (18) 

Any pseudopolyps Baseline 5346 (70) 3135 (68) 1325 (60) 

 Follow up 1 4641 (37) 1376 (34) 264 (29) 

 Follow up 2 2320 (22) 1071 (22) 231 (18) 

Bladder wall thickening Baseline 5345 (70) 3135 (68) 1323 (60) 

 Follow up 1 4643 (37) 1376 (34) 264 (29) 

 Follow up 2 2320 (22) 1070 (22) 231 (18) 

     

Ultrasound: upper urinary tract    

Dilated left or right  Baseline 5312 (69) 3122 (68) 1324 (60) 

pelvis Follow up 1 4628 (37) 1375 (34) 264 (29) 

 Follow up 2 2318 (22) 1071 (22) 231 (18) 

Visualized left or right Baseline 5330 (69) 3134 (68) 1319 (60) 

ureter Follow up 1 4639 (37) 1376 (34) 264 (29) 

 Follow up 2 2320 (22) 1071 (22) 229 (18) 
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Laboratory and self-report    

Microhematuria Baseline 6221 (91) 3773 (88) 1954 (77) 

 Follow up 1 5285 (41) 1386 (36) 270 (31) 

 Follow up 2 2354 (22) 1084 (22) 234 (18) 

Pain while urinating Baseline 5973 (83) 3382 (80) 1703 (70) 

 Follow up 1 5258 (41) 1385 (36) 271 (31) 

 Follow up 2 2328 (22) 1076 (22) 233 (18) 
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Supplemental Table 5.3. Odds ratios and 95% confidence intervals from Bayesian logistic regression models 

comparing morbidity positive proportions between S. haematobium intensity categories that were not included 

in Table 2. Bold font indicates the 95% credible interval does not contain one. Participants are school-aged 

children, aged 6-15 years, enrolled between 2003 and 2008 in Mali, Niger, and Tanzania for all indicators and 

Burkina Faso, Mali, Niger, and Tanzania for laboratory and self-report indicators. S. haematobium assessed by 

urine filtration. 

Morbidity Survey Light v. Negative Heavy v. Negative Heavy v. Light 

     

Ultrasound: aggregated     

Urinary bladder rate Baseline 1.45 (1.29, 1.63) 1.65 (1.42, 1.90) 1.14 (1.00, 1.30) 

 Follow up 1 1.50 (1.31, 1.71) 1.42 (1.09, 1.83) 0.95 (0.73, 1.23) 

 Follow up 2 1.94 (1.59, 2.37) 2.59 (1.95, 3.42) 1.34 (1.01, 1.75) 

Upper urinary tract rate Baseline 1.32 (1.03, 1.69) 1.57 (1.18, 2.10) 1.19 (0.93, 1.52) 

 Follow up 1 1.45 (1.04, 2.00) 1.31 (0.74, 2.24) 0.91 (0.50, 1.58) 

 Follow up 2 2.09 (1.14, 3.87) 1.53 (0.50, 3.98) 0.73 (0.24, 1.87) 

     

Ultrasound: urinary bladder    

Distorted bladder shape Baseline 1.91 (1.28, 2.83) 2.39 (1.43, 3.94) 1.25 (0.77, 2.01) 

 Follow up 1 1.61 (0.78, 3.10) 2.59 (0.97, 5.89) 1.61 (0.54, 4.44) 

 Follow up 2 0.28 (0.02, 1.39) 1.43 (0.11, 7.29) 5.08 (0.29, 96.12) 

Irregular bladder wall Baseline 1.55 (1.21, 1.97) 1.93 (1.43, 2.58) 1.25 (0.95, 1.64) 

 Follow up 1 1.44 (1.04, 1.99) 1.58 (0.83, 2.80) 1.09 (0.56, 2.00) 

 Follow up 2 1.49 (0.99, 2.22) 1.27 (0.55, 2.58) 0.85 (0.36, 1.76) 

Any bladder masses Baseline 1.44 (1.13, 1.85) 1.28 (0.93, 1.75) 0.89 (0.66, 1.18) 

 Follow up 1 1.83 (1.42, 2.38) 1.96 (1.21, 3.06) 1.07 (0.66, 1.66) 

 Follow up 2 2.35 (1.60, 3.46) 3.04 (1.80, 5.06) 1.29 (0.79, 2.07) 

Any pseudopolyps Baseline 1.09 (0.61, 1.90) 1.49 (0.74, 2.86) 1.36 (0.68, 2.63) 

 Follow up 1 1.69 (0.86, 3.24) 1.03 (0.19, 3.48) 0.61 (0.11, 2.17) 

 Follow up 2 2.00 (0.57, 7.19) 6.38 (1.52, 25.48) 3.19 (0.74, 12.63) 

Bladder wall thickening Baseline 1.47 (1.23, 1.76) 1.88 (1.52, 2.33) 1.28 (1.05, 1.56) 

 Follow up 1 1.44 (1.19, 1.75) 1.16 (0.78, 1.69) 0.81 (0.54, 1.18) 

 Follow up 2 2.47 (1.84, 3.32) 3.54 (2.36, 5.29) 1.43 (0.97, 2.09) 

     

Ultrasound: upper urinary tract    

Dilated left or right  Baseline 1.35 (0.93, 1.95) 1.92 (1.26, 2.90) 1.42 (0.98, 2.06) 

pelvis Follow up 1 1.39 (0.87, 2.18) 1.85 (0.87, 3.61) 1.34 (0.62, 2.67) 

 Follow up 2 1.68 (0.70, 4.07) 0.69 (0.05, 3.34) 0.41 (0.03, 2.05) 

Visualized left or right  Baseline 1.36 (0.91, 2.03) 1.49 (0.92, 2.40) 1.10 (0.70, 1.69) 

ureter Follow up 1 1.43 (0.85, 2.38) 1.49 (0.56, 3.37) 1.04 (0.39, 2.40) 

 Follow up 2 1.91 (0.77, 4.86) 1.86 (0.43, 6.42) 0.97 (0.22, 3.30) 

     

Laboratory and self-report    

Pain while urinating Baseline 1.19 (1.07, 1.34) 1.58 (1.38, 1.81) 1.32 (1.15, 1.52) 

 Follow up 1 1.02 (0.87, 1.20) 0.93 (0.67, 1.27) 0.91 (0.65, 1.27) 
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Supplemental Table 5.4. Participants included in cross-sectional analyses of Schistosoma mansoni infection 

intensity categories. Numbers in parentheses indicate the number of schools from which participants were 

sampled. 

Morbidity Survey Negative Light Moderate Heavy 

      

Ultrasound      

Irregular image  Baseline 3590 (54) 648 (39) 433 (25) 487 (23) 

pattern (B-F or Follow up 1 4229 (51) 730 (37) 325 (27) 189 (24) 

C-F) Follow up 2 4009 (43) 348 (29) 150 (18) 80 (17) 

Enlarged portal  Baseline 3539 (51) 665 (37) 456 (25) 516 (23) 

vein Follow up 1 3820 (47) 541 (36) 326 (27) 194 (24) 

 Follow up 2 4015 (43) 349 (29) 150 (18) 81 (17) 

      

Laboratory      

Lab-confirmed  Baseline 10324 (108) 1373 (70) 858 (50) 928 (47) 

blood in stool Follow up 1 9417 (82) 1178 (52) 541 (38) 348 (37) 

 Follow up 2 5390 (40) 536 (34) 173 (21) 117 (20) 

Lab-confirmed  Baseline 8398 (96) 1358 (67) 857 (50) 926 (47) 

diarrhea Follow up 1 6778 (74) 1173 (50) 541 (38) 348 (37) 

 Follow up 2 2996 (35) 584 (33) 191 (23) 130 (22) 

      

Self-report      

Self-reported Baseline 11242 (121) 1603 (87) 999 (61) 1091 (55) 

diarrhea Follow up 1 9325 (80) 1157 (50) 524 (36) 339 (35) 

 Follow up 2 6137 (57) 700 (46) 251 (29) 151 (25) 

Abdominal pain Baseline 6229 (80) 1125 (62) 648 (48) 918 (43) 

 Follow up 1 5532 (46) 858 (37) 326 (27) 232 (27) 

 Follow up 2 6131 (57) 699 (46) 251 (29) 151 (25) 

 

 Follow up 2 1.27 (1.06, 1.54) 1.26 (0.90, 1.77) 0.99 (0.70, 1.40) 
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Supplemental Table 5.5. Odds ratios and 95% confidence intervals from Bayesian logistic regression models comparing morbidity positive 
proportions between intensity categories within surveys for S. mansoni-related morbidities that were not included in Table 5.3. Bold font 
indicates the 95% credible interval does not contain one. Participants are school-aged children, aged 6-15 years, enrolled between 2003 and 
2008 in Mali, Niger, Tanzania, and Uganda. 

Morbidity 
Intensity 
category Light v. Negative 

Moderate v. 
Negative Heavy v. Negative 

Moderate v. 
Light Heavy v. Light 

Heavy v. 
Moderate 

Image pattern B-F  Baseline 1.74 (1.30, 2.31) 1.59 (1.11, 2.24) 1.17 (0.84, 1.62) 0.91 (0.62, 1.34) 0.67 (0.46, 0.98) 0.74 (0.49, 1.11) 

 Follow up 1 1.19 (0.82, 1.69) 1.93 (1.23, 2.95) 2.16 (1.24, 3.60) 1.62 (0.97, 2.70) 1.82 (0.99, 3.25) 1.12 (0.59, 2.08) 

 Follow up 2 0.56 (0.31, 0.94) 0.38 (0.12, 0.91) 0.32 (0.06, 1.02) 0.67 (0.19, 1.90) 0.57 (0.10, 2.05) 0.85 (0.13, 4.27) 

Lab-confirmed  Baseline 2.46 (1.07, 5.23) 2.40 (0.88, 5.70) 3.53 (1.49, 7.83) 0.98 (0.33, 2.72) 1.44 (0.55, 3.74) 1.48 (0.52, 4.44) 

blood in stool Follow up 1 3.50 (1.54, 7.50) 3.67 (1.30, 8.92) 3.91 (1.14, 10.79) 1.05 (0.35, 2.82) 1.12 (0.31, 3.44) 1.07 (0.27, 3.82) 

 Follow up 2 4.29 (0.91, 17.42) 0.23 (0.00, 7.51) 0.34 (0.00, 11.21) 0.05 (0.00, 2.22) 0.08 (0.00, 3.27) * 

Abdominal pain Baseline 1.13 (0.98, 1.32) 1.14 (0.95, 1.38) 1.32 (1.12, 1.55) 1.01 (0.81, 1.26) 1.16 (0.95, 1.42) 1.15 (0.92, 1.44) 

 Follow up 1 1.08 (0.91, 1.29) 1.03 (0.80, 1.33) 0.90 (0.67, 1.21) 0.95 (0.72, 1.27) 0.83 (0.60, 1.15) 0.88 (0.61, 1.26) 

 Follow up 2 0.90 (0.75, 1.08) 1.11 (0.83, 1.47) 1.17 (0.82, 1.68) 1.23 (0.89, 1.69) 1.30 (0.89, 1.91) 1.06 (0.68, 1.64) 

 

* The odds ratio for this effect was highly variable due to the prevalence at both surveys being close to zero. We chose to omit this effect due to 

its instability.
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6.1 Abstract 
Background: Current World Health Organization guidelines utilize prevalence of heavy-intensity infections (PHI), 

i.e., ≥50 eggs per 10ml of urine for Schistosoma haematobium and ≥400 eggs per gram of stool for S. mansoni, to 

determine whether a targeted area has controlled schistosomiasis morbidity or eliminated schistosomiasis as a 

public health problem. The relationship between these PHI categories and morbidity is not well understood. 

Methods: School-age participants enrolled in schistosomiasis monitoring and evaluation cohorts from 2003-

2008 in Burkina Faso, Mali, Niger, Tanzania, Uganda, and Zambia were surveyed for infection and morbidity at 

baseline and after 1 and 2 rounds of preventive chemotherapy. Logistic regression was used to compare 

morbidity prevalence among participants based on their school’s PHI category. 

Findings: Microhematuria levels were associated with the S. haematobium PHI categories at all three time 

points. For any other S. haematobium or S. mansoni morbidity that was measured, PHI categories did not 

differentiate morbidity prevalence levels consistently.  

Interpretation: These analyses suggest that current PHI categorizations do not differentiate the prevalence of 

standard morbidity markers. A reevaluation of the criteria for schistosomiasis control is warranted. 

Funding: The Schistosomiasis Control Initiative (now the SCI Foundation) was supported by the Bill and Melinda 

Gates Foundation (grant 13122). 

 

6.2 Background 
Schistosomiasis was estimated to have caused 1.1 million years lived with disability in 2017, roughly a 

third of the disability years associated with tuberculosis and about three-quarters that of malaria (GBD 2017 

Disease and Injury Incidence and Prevalence Collaborators 2018). The disease is caused by Schistosoma spp. 

trematode worms which can survive in the human body for years to decades. Morbidity mainly occurs due to 

inflammation and scarring from parasite eggs that become lodged in the capillaries of either the urogenital 

system as a result of infection with Schistosoma haematobium or the liver and intestines from infection with S. 

mansoni and other schistosome species (King et al. 2005; Colley et al. 2014a). Urogenital schistosomiasis causes 

hematuria in children (van der Werf et al. 2003b). More chronic infections are characterized by fibrosis of the 
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urinary tract (Khalaf et al. 2012), obstruction of urine flow (Khalaf et al. 2012), female (Christinet et al. 2016), 

and male (Kayuni et al. 2019) genital schistosomiasis, and rarely, bladder cancer (Ishida et al. 2018). Intestinal 

species commonly cause abdominal pain, diarrhea, and blood loss in the stool (van der Werf et al. 2003b). 

Chronic infections can lead to scar tissue in the bowels, hepatosplenic disease, periportal fibrosis, and collateral 

circulation (Colley et al. 2014a), which can lead to exsanguination.   

The World Health Organization (WHO) has stated the primary goal of schistosomiasis control programs 

is to reduce morbidity (WHO 2002; 2011b; 2020b). Current WHO guidelines (WHO 2013) use heavy intensity 

infections (≥ 50 S. haematobium eggs per 10 mL of urine or ≥ 400 S. mansoni eggs per gram of stool (WHO 

2002)) to categorize a target population’s status. Target populations with a prevalence of heavy intensity 

infections (PHI) less than 5% are classified as having controlled schistosomiasis morbidity, and when a target 

population has less than 1% PHI, that population has eliminated schistosomiasis as a public health problem. 

These PHI thresholds are used despite treatment frequency being determined by the prevalence of any infection 

(WHO 2013). The selection of the PHI thresholds was based on correlations between infection intensity and 

severe pathology reported from limited data that were collected prior to 1990 (WHO 1987; 1988). Those studies 

demonstrated a statistically significant difference between non-infected and heavily infected participants, but 

not between non-infected and lightly infected participants. These findings, in an era in which treatment was 

limited and expensive, led to the development of program guidance focused on reducing heavy-intensity 

infections associated with the types of severe morbidity that are more common in older individuals (Mott 2004). 

More recent studies have found that less clinically severe manifestations, which can occur even with light 

infections and are common in school-age children, have a greater impact on population-level disability adjusted 

life years lost, i.e., an estimate of the years of life lost due to poor health, disability, or early death, compared to 

the most severe pathologies (King et al. 2005). Furthermore, the earlier guidelines failed to consider the 

limitations of a single stool or urine sample from study participants. As a result, lighter infections and their 

association with morbidity were likely underestimated (King 2015).  
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 Our search of the literature did not uncover a formal assessment of the relationship between morbidity 

and the 1% and 5% PHI thresholds. Therefore, in response to a recent call to update the WHO guidelines for 

monitoring morbidity control to evidence-based targets (French et al. 2018; Colley et al. 2020a), we evaluated 

the relationship between aggregate morbidity and the WHO heavy-intensity infection thresholds used to define 

control and elimination of schistosomiasis as a public health problem. Data from Schistosomiasis Control 

Initiative (SCI)-supported preventive chemotherapy programs collected between 2003 and 2008 in different 

African countries (Fenwick et al. 2009) were used to test for differences in morbidity levels in children between 

PHI categories before and after initiation of the mass drug administration (MDA) of praziquantel (Webster et al. 

2009). 

6.3 Methods 

6.3.1 Study design and data collection 
Data were collected as part of national programs for schistosomiasis and soil-transmitted helminthiasis 

control from 2003-2008 in six African countries (Burkina Faso, Mali, Niger, Tanzania, Uganda, and Zambia) 

supported by SCI (Koukounari et al. 2006; Kabatereine et al. 2007; Koukounari et al. 2007; Touré et al. 2008; 

Fenwick et al. 2009). Each country developed a control program for national scale-up, which involved prevalence 

mapping to determine at-risk populations, MDA of praziquantel (for schistosomiasis) and albendazole (for soil-

transmitted helminthiasis) to school-age children and, in some countries, adults in high-risk communities, and a 

monitoring and evaluation framework. Each country implemented praziquantel distribution to target 

populations at the frequency recommended by WHO guidance (Montresor et al. 2002). Countries maintained 

two types of monitoring and evaluation cohorts. The first was a cohort of children aged 6-12 years enrolled in 

primary school. These children were ascertained for infection and morbidity indicators at baseline and evaluated 

prior to receiving treatment. They were then followed and treated annually for two more years, with some 

exceptions: Zambia, where there was only one year of follow up; Mali, where some schools were treated twice 

between baseline and follow up 1 and others were treated annually but not followed up at follow up 1; and 

Tanzania, where schools were not treated between follow up 1 and 2. At the point when a school was not 

treated once annually, it omitted from that survey and subsequent surveys. The second was a community cohort 
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mostly of adults but included persons 4-88 years old. A random sample of the community was ascertained for 

infection and morbidity indicators and evaluated prior to treatment at each round. The small sample of children 

in this cohort were likely absent from school that day. Each community was followed up for the same number of 

years as the longitudinal cohort. In both cohorts, individuals feeling unwell or below 94 cm in height were 

ineligible for praziquantel treatment and excluded. Communities were randomly selected via stratified sampling. 

Strata were based on endemicity levels to provide a wide representation of different areas. For these analyses, 

we limited our analyses to 6-15 year-olds in either cohort with at least thirty participants in a school possessing 

infection and morbidity data. 

6.3.2 Infection data 
A single urine filtration to evaluate S. haematobium was used in Burkina Faso, Tanzania, and Zambia. 

Two filtrations from the same urine sample were used in Niger and two different urine samples from 

consecutive days were used in Mali. Uganda did not collect S. haematobium infection data. Urine filtration was 

performed by passing approximately 10 ml of urine through a filter that was then stained and microscopically 

examined for eggs. An individual’s intensity was calculated as the arithmetic mean number of eggs per 10 ml of 

urine across all available samples. Heavy-intensity infection was defined as ≥50 eggs per 10 mL of urine (WHO 

2002). 

For S. mansoni, the Kato-Katz technique with thick fecal smears microscopically examined for eggs was 

used. A single stool, with two different slides (each 41.7 mg) examined per stool, was used in Burkina Faso, Mali, 

Niger, and at baseline in Uganda. Tanzania, follow-up surveys in Uganda, and Zambia used two stools from 

consecutive days with two slides each per stool. Individual intensity was computed by multiplying the number of 

eggs per slide by 24 to calculate the eggs per gram of stool (EPG), then taking the arithmetic mean of all 

available samples measured for that child. Participants with ≥400 EPG were defined as having a heavy-intensity 

infection (WHO 2002). 

6.3.3 Morbidity data 
 Ultrasound exams were performed according to the Niamey protocol, which has standardized 

examinations and reporting practices S. haematobium and S. mansoni ultrasonic evaluations (Richter et al. 
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2000). S. haematobium ultrasounds were done in Mali, Niger, Tanzania, and Zambia, though in Zambia results 

were rare at baseline and are confined to follow up 1. Participants were evaluated by ultrasound for bladder 

abnormalities, defined as distorted bladder shape, irregular bladder wall, bladder wall masses, pseudopolyps, or 

thickening of the bladder wall, and for upper urinary tract abnormalities, defined as a dilated renal pelvis (left or 

right) or dilated ureter (left or right). For analyses, we deviated from the scoring system used in the Niamey 

protocol and categorized abnormalities in two ways. The first approach looked across indicators and coded a 

participant positive who had at least one ultrasound abnormality and coded a participant negative if the 

participant had no ultrasound abnormalities. Only participants with data for all ultrasound indicators were 

included in those analyses to ensure each participant possessed the same chance of possessing a positive 

ultrasound indicator. The second approach summed up the number of ultrasound abnormalities per person 

among participants with any available ultrasound data, which allowed all ultrasound data to be included. S. 

mansoni ultrasounds were performed in Mali, Niger, Tanzania, Uganda, and Zambia, with Zambian results only 

in follow up 1 as noted above. Participants were evaluated for enlarged portal vein and liver image patterns 

indicative of schistosomiasis-associated fibrosis. Under the Niamey protocol, image pattern A is considered 

normal, image pattern B as indeterminate, and image pattern C and above are considered indicative of 

schistosomiasis-associated fibrosis, where these correspond to small patches of rings and pipe stems throughout 

the liver parenchyma (pattern C), fibrosis around the main stem of the liver (D), more substantial fibrotic 

patches around the main stem (E), and extensive fibrosis throughout the parenchyma (F). Since the Niamey 

protocol scores a person with image pattern B with one point and, at a minimum, does not exclude the 

possibility of periportal fibrosis, we assessed frequency of both image patterns C-F and B-F as evidence of 

periportal thickening.  

Additional morbidities were collected in all six countries. These included microhematuria assessed with 

Hemastix dipsticks (French et al. 2007) and self-reported painful urination (Danso-Appiah et al. 2010) for S. 

haematobium and two measures confirmed by laboratorians (diarrhea and blood in stool) and two self-reported 
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measures from the last two weeks (diarrhea and abdominal pain (Polderman et al. 1984; Stelma et al. 1994)) for 

S. mansoni.   

6.3.4 Data analysis  
Data from all countries were harmonized and pooled for analyses in R version 4.0.3 (R Development 

Core Team 2018). The PHI was calculated per school and schools were split into three categories of PHI (PHI < 

1%; PHI ≥ 1% and < 5%; and PHI ≥ 5%). Individuals were analyzed based on the school’s category.  

Prevalence estimates were calculated in the survey package (Lumley 2019) after accounting for 

clustering at the school level and countries as strata. These analyses used the 5% level of significance. Bayesian 

logistic regression models were fit via Markov chain Monte Carlo (MCMC) methods in JAGS (Plummer 2003) for 

each indicator except for the sums of S. haematobium ultrasound indicators for which binomial models was 

used. Survey year, heavy-intensity infection category, and their interaction were included as fixed effects. 

Indicator variables for countries were added to control for differences between control programs. Random 

intercepts were included for schools and individuals to account for multiple observations sampled from the 

same school or individual, respectively. All comparisons are reported as odds ratios (OR) with 95% Bayesian 

credible intervals (BCI) from the posterior distributions. Full details of the models as well as results from the 

binomial models, individual ultrasound indicators, and other laboratory and self-reported morbidities are 

included in the supplementary materials. 

6.3.5 Patient consent statement 
The Imperial College Research Ethics Committee (ICREC_8_2_2, EC No. 03.36, R&D No. 03/SB/003E) and 

the ethical review boards of the Ministries of Health of the six countries provided ethical approval for use of 

these data. The US Centers for Disease Control and Prevention was determined to be a non-engaged research 

partner. In all countries, meetings were held with teachers and parents to inform them about participation in 

these programs. In Mali, verbal consent from community leaders was obtained as this was the most accepted 

form of consent at the time. In all other countries, written informed consent was obtained from head teachers 

at each school. Agreements from parents or guardians were obtained as well as assent from children. 
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6.3.6 Role of the funding sources 
The sponsors of this study played no role in the design, collection, analysis, interpretation, or composition of this 

report. All authors contributed to the decision to submit for publication. 

6.4 Results 

6.4.1 Schistosoma haematobium 
The numbers of schools and participants that contributed S. haematobium morbidity data ranged from 7 

to 59 schools and 861 to 7,766 participants per PHI category in a survey (Supplementary Table 6.1). Prevalence 

of infection and PHI decreased at follow-up surveys as compared to baseline (Figure 6.1, row A, left). Overall 

decreases in prevalence were also experienced for most morbidities (Figure 6.1, row B; Supplementary Figure 

6.1).  

Modeling results found that participants in schools with PHI<1% and 1-5% PHI had lower odds of most 

morbidities as compared to participants from schools with PHI≥5% (Table 6.1). For participants in schools with 

PHI<1% compared to participants in schools with PHI≥5%, odds were lower at each survey for any bladder 

lesion, microhematuria, and pain while urinating. For participants in schools with 1-5% PHI compared to 

participants from schools with PHI≥5%, odds were lower at each survey for microhematuria. Results were similar 

to other models (Supplementary Table 6.2). 

Participants in schools with PHI<1% had lower odds of microhematuria as compared to participants in 1-

5% PHI schools in all three surveys. For other measures, whether aggregated (Figure 6.2; Table 6.1) or 

individually (Supplementary Figure 6.2; Supplementary Table S2), the differences between morbidity in 

participants in schools with PHI<1% and participants in schools with 1-5% PHI schools was inconsistent, and for 

some urinary bladder indicators, morbidity was greater in participants in schools with PHI<1%. 

The raw results (Figure 6.2 and Supplementary Figure 6.2) differed at times from the modeled results, 

likely due to between country variability. For example, the prevalence of any urinary bladder lesion varied at 
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baseline between countries (Supplementary Figure 6.3). Regression models controlled for country-level 

differences which accounts for the differences between the raw and modeled results. 

Figure 6.1. Line graphs of the prevalence of 6-15 year-old school children who were Schistosoma infection 

and heavy-intensity positive (row A), S. haematobium morbidity positive (row B), and S. mansoni 

morbidity positive (row C) at each survey year (BL=baseline, FU1=follow up 1, FU2=follow up 2). S. 

haematobium infections were assessed by urine filtration and S. mansoni infections by Kato-Katz. Plots of 

individual ultrasound indicators for S. haematobium and additional morbidity indicators for both species 

are included in Supplementary Figures 6.1 and 6.2. 

* Periportal thickening as measured by irregular image patterns of C, D, E, or F.
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Figure 6.2. Line graphs of Schistosoma haematobium-related morbidity positive prevalence. Heavy-

intensity prevalence category determined at the school-level. Participants were enrolled between 2003-

2008 at each survey year (BL=baseline, FU1=follow up 1, FU2=follow up 2). Clustering by school accounted 

for in 95% confidence bands. Infections were assessed by urine filtration. Model-based tests comparisons 

are included in Table 6.1. Plots of individual indicators and model-based comparisons are included in 

Supplemental Figure 6.3 and Table 6.2, respectively. 
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6.4.2 S. mansoni 
For S. mansoni, the results from 5 to 65 schools with between 439 and 8,890 participants per PHI 

category were analyzed (Supplementary Table 6.3). Overall prevalence of S. mansoni was lower than S. 

haematobium, and, as with S. haematobium, infection prevalence decreased in follow up surveys, though this 

reduction was smaller than S. haematobium (Figure 6.1, row A, right); the prevalence of most S. mansoni 

morbidities experienced decreases during follow up surveys (Figure 6.1, row C; Supplementary Figure 6.4). 

As observed for S. haematobium, participants in schools with PHI<1% had lower odds of S. mansoni-

associated morbidities than participants in schools with PHI≥5% (Figure 6.3 and Supplementary Figure 6.5; Table 

6.2). At each survey, odds were lower for participants in schools with PHI<1% compared to participants in 

schools with PHI≥5% for laboratory-confirmed diarrhea. Periportal thickening (as measured by irregular image 

pattern C, D, E, or F) was lower at baseline, but not at the first follow up 1. There was more self-reported 

diarrhea in participants in schools with PHI≥5% compared to participants in schools with PHI<1% at baseline. In 

the unmodeled data, a greater proportion of children with an enlarged portal vein at the first follow up in 

participants in schools with PHI<1%, though this was largely driven by between country variability, especially the 

Table 6.1. Odds ratios and 95% credible intervals from Bayesian logistic regression models comparing morbidity 
positive proportions between heavy-intensity prevalence categories within surveys for S. haematobium-related 
morbidities.  

Morbidity Survey < 1% vs. ≥ 5% 1-5% v. ≥ 5% < 1% v. 1-5% 

Any urinary bladder Baseline 0.27 (0.21, 0.34) 0.43 (0.33, 0.54) 0.63 (0.47, 0.85) 

lesions Follow up 1 0.22 (0.18, 0.28) 0.52 (0.42, 0.63) 0.43 (0.34, 0.55) 

 Follow up 2 0.30 (0.22, 0.40) 0.31 (0.22, 0.43) 0.98 (0.67, 1.44) 

Any upper urinary tract Baseline 0.90 (0.56, 1.45) 0.77 (0.47, 1.22) 1.18 (0.67, 2.07) 

Lesions Follow up 1 0.67 (0.41, 1.10) 0.83 (0.51, 1.34) 0.81 (0.46, 1.42) 

 Follow up 2 0.61 (0.25, 1.36) 0.36 (0.09, 1.07) 1.68 (0.47, 7.52) 

Microhematuria Baseline 0.12 (0.10, 0.15) 0.27 (0.23, 0.31) 0.45 (0.37, 0.56) 

 Follow up 1 0.14 (0.11, 0.16) 0.77 (0.65, 0.92) 0.18 (0.15, 0.21) 

 Follow up 2 0.22 (0.18, 0.28) 0.40 (0.31, 0.51) 0.56 (0.43, 0.73) 

Pain while urinating Baseline 0.62 (0.52, 0.73) 0.67 (0.58, 0.78) 0.92 (0.77, 1.11) 

 Follow up 1 0.95 (0.80, 1.13) 1.28 (1.06, 1.55) 0.74 (0.62, 0.89) 

 Follow up 2 0.69 (0.56, 0.85) 0.70 (0.55, 0.90) 0.99 (0.77, 1.27) 

Notes: Bold font indicates the 95% Bayesian credible interval does not contain one. Participants are school-aged 

children, aged 6-15 years, and enrolled between 2003-2008. Plots of unmodeled estimates are included in Figure 6.2.
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much higher prevalence in Niger (Supplementary Figure 6.6). Since country level differences are accounted for in 

the modeling, the estimated odds of enlarged portal vein are lower in participants in <1% PHI schools than 

participants in schools with PHI≥5% (baseline: OR=0.41, 95% BCI=0.32-0.52; follow up 1: OR=0.61, 95% BCI=0.45-

Figure 6.3. Line graphs of Schistosoma mansoni-related morbidity percentages. Heavy-intensity prevalence 

category determined at the school-level. Participants were enrolled between 2003 and 2008 at each survey 

year (BL=baseline, FU1=follow up 1, FU2=follow up 2). Clustering by school accounted for in 95% confidence 

bands. Infections were assessed by Kato-Katz thick smears. Model-based tests comparisons are included in 

Table 6.2. Plots of additional indicators and model-based comparisons are included in Supplemental Figure 

6.4 and Supplemental Table 6.4, respectively.  

*Periportal thickening as measured by image pattern C-F.
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0.83; follow up 2: OR=0.57, 95% BCI=0.38-0.86). However, comparisons between participants in schools with 1-

5% PHI and participants in schools with PHI≥5% produced inconsistent conclusions across surveys. For example, 

as expected, participants in schools with 1-5% PHI were at lower odds of lab-confirmed diarrhea than 

participants in schools with PHI≥5% at baseline (OR=0.42, 95% BCI=0.33-0.54) and follow-up 1 (OR=0.63, 95% 

BCI=0.47-0.85). But at follow up 2, the relationship was reversed (OR=1.37, 95% BCI=0.97-1.94).  

Findings were also inconsistent when comparing participants in schools with PHI<1% to participants in 

schools with 1-5% PHI. Participants in schools with PHI<1% compared to participants in schools with 1-5% PHI 

were at lower odds of enlarged portal vein at baseline (OR=0.70, 95% BCI=0.51-0.96) but at increased odds at 

follow-up 2 though with considerable variability in the point estimate (OR=1.10, 95% BCI=0.66-1.94). For lab-

confirmed diarrhea, participants in schools with PHI<1% were at similar odds at baseline compared to 

participants in schools with 1-5% PHI (OR=1.01, 95% BCI=0.81-1.28) but at lower odds otherwise (follow-up 1: 

OR=0.61, 95% BCI=0.46-0.80; follow-up 2: OR=0.46, 95% BCI=0.34-0.62). 

Table 6.2. Odds ratios and 95% credible intervals from Bayesian logistic regression models comparing morbidity 
positive proportions between heavy-intensity prevalence categories within surveys for S. mansoni-related 
morbidities.  

Morbidity Survey < 1% vs. ≥ 5% 1-5% v. ≥ 5% < 1% v. 1-5% 

Image pattern C-F Baseline 0.02 (0.00, 0.28) 0.79 (0.29, 2.11) 0.03 (0.00, 0.37) 

 Follow up 1 0.20 (0.01, 1.79) 1.80 (0.72, 4.55) 0.11 (0.01, 1.06) 

 Follow up 2  Non-estimable*  

Enlarged portal vein Baseline 0.41 (0.32, 0.52) 0.59 (0.42, 0.82) 0.70 (0.51, 0.96) 

 Follow up 1 0.61 (0.45, 0.83) 0.82 (0.51, 1.28) 0.75 (0.48, 1.19) 

 Follow up 2 0.57 (0.38, 0.86) 0.51 (0.27, 0.94) 1.10 (0.66, 1.94) 

Laboratory-confirmed  Baseline 0.43 (0.35, 0.54) 0.42 (0.33, 0.54) 1.01 (0.81, 1.28) 

diarrhea Follow up 1 0.38 (0.30, 0.50) 0.63 (0.47, 0.85) 0.61 (0.46, 0.80) 

 Follow up 2 0.63 (0.45, 0.87) 1.37 (0.97, 1.94) 0.46 (0.34, 0.62) 

Self-reported diarrhea Baseline 0.73 (0.65, 0.82) 1.08 (0.95, 1.23) 0.68 (0.60, 0.77) 

 Follow up 1 0.87 (0.75, 1.00) 0.71 (0.60, 0.85) 1.22 (1.04, 1.43) 

 Follow up 2 0.93 (0.78, 1.11) 1.01 (0.81, 1.25) 0.92 (0.78, 1.10) 

Bold font indicates the 95% credible interval does not contain one. Participants are school-age children (6-15 

years) enrolled between 2003 and 2008. Plots of unmodeled estimates are included in Figure 6.3. 

* The odds ratios for image pattern C-F at follow up 2 were highly variable due to the prevalence being close to 

zero. We chose to omit this effect due to its instability. 
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6.5 Discussion 
In general, children in schools with PHI ≥5% displayed higher morbidity than children in schools with 

PHI<1% and 1-5% PHI, though the extent differed by species, and was generally non-linear where participants in 

schools with PHI≥5% had considerably higher rates. For S. haematobium, participants in schools with PHI<1% or 

1-5% PHI had consistently lower odds of morbidity compared to participants in schools with PHI≥5%. Thus, a 

targeted area with a prevalence of <5% S. haematobium heavy-intensity infections among school-age children is 

expected to have less morbidity than a targeted area with >5% heavy-intensity infections. For S. mansoni, while 

participants in schools with PHI<1% consistently had decreased odds of morbidity compared to participants in 

PHI≥5% schools, this was not true for participants in schools with 1-5% PHI compared to participants in schools 

with PHI≥5%. Participants in schools with 1-5% PHI sometimes had decreased odds of morbidity compared to 

participants in schools with PHI≥5% and sometimes had increased odds. Therefore, for the S. mansoni 

morbidities that we measured, only participants in schools with PHI<1% category have less morbidity than 

participants in schools with PHI≥5%.   

Microhematuria was the only morbidity for which there was a consistent difference between 

participants in schools with PHI 1-5% versus participants in schools with PHI<1%. These analyses underscore the 

correlation of microhematuria and S. haematobium infection. The WHO 2021-2030 neglected tropical disease 

roadmap (WHO 2020b) suggests defining an indicator for measuring morbidity of schistosomiasis as a critical 

action for achieving program goals within the next decade. Microhematuria, which has been used as a proxy for 

community-level S. haematobium prevalence for approximately 40 years (Krauth et al. 2015) due to the two 

measures being correlated (King et al. 2013), would appear to be an ideal candidate for that species specific 

indicator because reducing microhematuria to a prevalence consistent with non-schistosomiasis causes might 

indicate that urogenital schistosomiasis has been eliminated as a public health problem. 

Other differences in morbidity between participants in schools with 1-5% PHI and PHI<1% were rare and 

often inconsistent. Occasional ORs greater or less than one were detected, but these associations were not 
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realized at all surveys. There were also instances where participants in schools with PHI<1% had increased odds 

of morbidity compared to participants in schools with 1-5% PHI, such as the baseline presence of any upper 

urinary tract lesions for S. haematobium and follow-up 2 for periportal thickening for S. mansoni. Clearly, the PHI 

thresholds of 1% and 5% do not appear to correlate well with different levels of schistosomiasis morbidity across 

the two species for multiple morbidity indicators.  

These analyses have some limitations and shortcomings. First, a single urine or stool sample was used in 

multiple countries, meaning the potential for diagnostic misclassification was higher than if more samples had 

been taken (Lamberton et al. 2014). This is especially true for S. mansoni since the overall prevalence was lower, 

meaning a small number of missed heavy infections would have a greater impact on the PHI. This could explain 

some of the confusing results when comparing participants in schools with different PHI categories. In addition, 

our results are limited to morbidity in children. For some ultrasound-detectable morbidities, especially liver 

fibrosis for S. mansoni, substantial pathology does not appear until individuals have been infected for at least 

10-15 years. More work is needed to better understand morbidity control in adults, especially as recent 

modeling studies have found utility in collecting adult data for both species (Toor et al. 2018b; Kura et al. 2020). 

Reflecting the challenges associated with collecting field-based ultrasound data, many S. mansoni ultrasound 

components were not collected. A more complete ultrasound picture, especially including hepatomegaly and 

splenomegaly, would have allowed us to evaluate indicators of S. mansoni morbidity that are more common in 

children. Data for other schistosomiasis-associated morbidities often described for children, such as anemia, 

stunting, wasting, exercise intolerance and delay in cognitive development were not consistently collected by 

these control programs. If we had access to reliable data for these measures, we may have detected a 

relationship between PHI categories and morbidity in children. Another limitation was that for S. mansoni, most 

PHI≥5% schools were in Uganda, potentially causing bias for comparisons involving the PHI≥5% category. 

Although we cannot formally assess the bias, there is the potential that, if the prevalence of morbidity indicators 

among children in these PHI≥5% Ugandan schools are higher than for children in other PHI≥5% schools, 

differences between participants in PHI≥5% schools and those in PHI<5% schools are larger than they should be.  
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Our findings suggest the global effort to control and eliminate schistosomiasis would benefit from 

revisiting how these goals are defined and operationalized. Given the lack of precision of current morbidity 

tools, especially in the context of low schistosomiasis prevalence, changes are needed for monitoring and 

evaluating schistosomiasis. Having two programmatic thresholds for schistosomiasis does not appear to have an 

empirical basis and a single, elimination as a public health problem target for determining when to stop mass 

annual preventive chemotherapy, such as is done with trachoma (WHO 2017), would better suit schistosomiasis 

control programs. The recommended public health actions for countries that have controlled morbidity (1-5% 

PHI) are similar to countries that have not controlled morbidity (≥ 5% PHI) (WHO 2013). Only when a country is 

eligible for elimination as a public health problem (PHI<1%) do the public health actions change, which suggests 

the control of morbidity category (1-5% PHI) is redundant. This is reflected in the current road map which only 

mentions PHI<1% (WHO 2020b). In addition, most programs have initiated treatment or are currently below 5% 

PHI (Deol et al. 2019). Still, it is somewhat disappointing that PHI<1% and 1-5% PHI rarely show useful significant 

differences. 

A different measure is needed for morbidity control. Most programs only collect prevalence data for 

decision-making on frequency of preventive chemotherapy and do not calculate PHI. PHI is rarely utilized in 

practice and, since these results demonstrate a lack of association between PHI and morbidity indicator levels, 

morbidity categorization by PHI may be superfluous. Because morbidity may be experienced by people with all 

infection intensities (King et al. 2005; King 2015), utilizing prevalence of any infection may better predict the 

morbidity status of a school or community. 

Any new measure for morbidity control or elimination as a public health problem needs to have 

evidence-based targets that better align with actual morbidity (French et al. 2018) and hopefully new targets can 

be developed. Development of guidelines for elimination of schistosomiasis as a public health needs deeper 

thought into which morbidity indicators should be used and operationalized. There is a wide array of possible 

indicators, and it is unclear whether pegging program targets to a single indicator is optimal or whether an 

aggregate measure would provide greater utility. Chosen indicators should be tailored towards the specific age 
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groups sampled and be clinically meaningful, readily measured (preferably in the field), easily interpreted by 

control programs, and prevalent in the age groups that are sampled. A limiting factor in ultrasonic indicators is 

that they are difficult to collect in the field, but advances in technology are making ultrasound evaluations more 

practical (Straily et al. 2021) and may mean these indicators can be used to assess morbidity control.  

Finally, even though microhematuria appears as a good candidate for monitoring S. haematobium 

morbidity in school-age children, it is the sole example. This demonstrates the need for a comprehensive 

exploration of the associations between community-level infection and morbidity after initiation of MDA. Such 

explorations of measuring morbidity should be undertaken, with an emphasis on estimating the background 

levels of morbidity and quantifying the relationship between school and community infection and morbidity 

levels. One such pilot initiative has begun in an S. haematobium endemic area and an S. mansoni endemic area 

(Neglected Tropical Diseases Support Center 2019), but hopefully identical or similar study designs can be 

performed in different countries and ecologic archetypes, especially foci with mixed S. haematobium and S. 

mansoni infections and S. japonicum endemic areas, as well as different age groups. Finally, while some 

information exists on how an infected child’s ultrasound evaluation changes over time (Hatz et al. 1998), greater 

knowledge of people’s ultrasound indicator progression post-infection, especially in older age groups. 

6.6 Conclusion 
 The success of schistosomiasis programs is tied to the WHO categorizations for morbidity control. Those 

categories are based on PHI, which our analyses demonstrate, often have similar and overlapping levels of 

morbidity. Thus, the usefulness of PHI in defining control status is limited and indicates that, for the goal of 

elimination as a public health problem outlined in the WHO 2021-2030 neglected tropical disease roadmap 

(WHO 2020b) to be met, community measurements must be better aligned with schistosomiasis-related 

morbidity levels. A reconfiguration of these morbidity categories is warranted. 
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6.9 Supplemental Materials 

6.9.1 Statistical Methods 
Our outcome in all models was the presence of a morbidity, 𝑦𝑖, where 

𝑦𝑖 = {
 0, if negative
1, if positive

. 

We assume  

𝑦𝑖~Bernoulli(𝑝𝑖) 

where 𝑖 denotes an observation. 𝑝𝑖  is forced to be bounded on [0,1]. For the logistic model, we assume a logit 

transform of the linear predictor, specifically 

𝑝𝑖=
𝑒𝜂𝑖

1 + 𝑒𝜂𝑖
 

where 𝜂𝑖 is the linear predictor. The form of 𝜂𝑖  depends on whether participant was sampled in multiple waves. 

We had 𝑛 observations in the dataset, where 𝑖 = 1, . . . , 𝑛1 come from children who were only sampled once 

during these three surveys and 𝑖 = 𝑛1 + 1, . . . , 𝑛2 come from children who were only sampled more than once. 

For 𝑖 = 1, . . . , 𝑛1 , 

𝜂𝑖 =  𝛽0 + 𝛽1 ∗ COM𝑖 + 𝛽2 ∗ EPHP𝑖 + 𝛽3 ∗ FU1𝑖 + 𝛽4 ∗ FU2𝑖  + 𝛽5 ∗ COM𝑖 ∗ FU1𝑖 + 𝛽6 ∗ COM𝑖 ∗ FU2𝑖 + 𝛽7

∗ EPHP𝑖 ∗ FU1𝑖 + 𝛽8 ∗ EPHP𝑖 ∗ FU2𝑖 + 𝛽91
∗ age1,𝑖 + ⋯ +  𝛽9𝑗

∗ age𝑗,𝑖 + 𝛽10 ∗ female𝑖 + 𝛽111

∗ country1,𝑖 + ⋯ +  𝛽11𝑗
∗ country𝑗,𝑖 + 𝛾1,𝑘 
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and for 𝑖 = 𝑛1 + 1, . . . , 𝑛2 , 

𝜂𝑖 =  𝛽0 + 𝛽1 ∗ COM𝑖 + 𝛽2 ∗ EPHP𝑖 + 𝛽3 ∗ FU1𝑖 + 𝛽4 ∗ FU2𝑖  + 𝛽5 ∗ COM𝑖 ∗ FU1𝑖 + 𝛽6 ∗ COM𝑖 ∗ FU2𝑖 + 𝛽7

∗ EPHP𝑖 ∗ FU1𝑖 + 𝛽8 ∗ EPHP𝑖 ∗ FU2𝑖 + 𝛽91
∗ age1,𝑖 + ⋯ +  𝛽9𝑗

∗ age𝑗,𝑖 + 𝛽10 ∗ female𝑖 + 𝛽111

∗ country1,𝑖 + ⋯ +  𝛽11𝑗
∗ country𝑗,𝑖 + 𝛾1,𝑘 + 𝛾2,𝑙 

In these equations, 

• 𝛽’s are the coefficient estimates (on the log odds scale), 

• COM𝑖 is an indicator variable denoting whether observation 𝑖 is from a school that has PHI≤5% and 

PHI>1%, 

• EPHP𝑖 is an indicator variable denoting whether observation 𝑖 is from a school that has PHI≤1%, 

• FU1𝑖 equals 1 when observation 𝑖 was ascertained in follow up 1, 

• FU2𝑖 equals 1 when observation 𝑖 was ascertained in follow up 2, 

• age𝑖 is an indicator variable for the age of the participant treated as a category with 6 as the reference 

category to ages 7 to 15, 

• female𝑖 is an indicator variable for whether participant is a female with male as the reference category, 

• country𝑖 is an indicator variable for the country of the observation with 𝑗 countries in each model where 

𝑗 depends on the morbidity studied, and 

• 𝛾1,𝑘 and 𝛾2,𝑙 are random effects for school and person, respectively, where an observation is from school 

𝑘 and person 𝑙, with the latter only for 𝑖 = 𝑛1 + 1, . . . , 𝑛2. 

All 𝛽’s have a Cauchy prior distribution with a center of zero and a scale of 2.5.(Gelman et al. 2008) For the 

random effect for school, 𝛾1,𝑘~Normal(0, 𝜏1) where 𝜏1 = 𝜌1
−2 and 𝜌1 is given a scaled Gamma prior with 1 

degree of freedom and a scale of 25. This is equivalent to the standard deviation being distributed as a half-t 

distribution.(Gelman 2006) The random effect for person follows similarly.  
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Binomial models are fit in the same way, except 𝑦𝑖~𝐵𝑛(𝑡𝑖, 𝑝𝑖) where 𝑦𝑖  is the number of morbidity indicators 

present and 𝑡𝑖 is the total number of morbidity indicator tests completed for observation 𝑖. 

Specific estimates for the three PHI categories (PHI < 1%; PHI ≥ 1% and < 5%; and PHI ≥ 5%) by survey are then 

estimated by contrast statements. 

6.9.2 Implementation 
Models were fit via Markov Chain Monte Carlo using JAGS (Plummer 2003) and CODA (Plummer et al. 2006) in R 

via the rjags package (Plummer 2019). Three chains were fit with an adaptive phase of 20,000 iterations per 

chain. For the final model, the iterations from the adaptive phase were discarded and each chain was run for 

another 100,000 iterations. After completing the 100,000 iterations, graphical displays of the trace and densities 

functions were used to determine if any chains or a subset of iterations should be discarded. Results were then 

summarized.  

6.9.3 JAGS model code for logistic model 
model { 
  for (i in 1:n.single) {    
    y.1[i] ~ dbin(p.bound.1[i], 1) 
    p.bound.1[i] <- max(0, min(1, p.1[i])) 
    logit(p.1[i]) <- eta.1[i]  
     
    eta.1[i] <- inprod(b[1:P], X.1[i,1:P]) + gamma1[school[i]]     
  }   
   
  for (i in 1:n.multi) { 
    y.2[i] ~ dbin(p.bound.2[i], 1) 
    p.bound.2[i] <- max(0, min(1, p.2[i])) 
    logit(p.2[i]) <- eta.2[i]  
     
    eta.2[i] <- inprod(b[1:P], X.2[i,1:P]) + gamma1[school[i]] + gamma2[multi.person[i]] 
  }     
   
  # setting up random effect 1 
  for (j in 1:n.school) { 
    gamma1[j] ~ dnorm(0, tau1) 
  }  
   
  tau1 <- pow(rho1, -2)  
  rho1 ~ dscaled.gamma(25, 1) 
   
  # setting up random effect 2 
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  for (j in 1:n.multi.person) { 
    gamma2[j] ~ dnorm(0, tau2) 
  } 
   
  tau2 <- pow(rho2, -2)  
  rho2 ~ dscaled.gamma(25, 1) 
   
  
  # priors for fixed effects 
  for (f in 1:P) {  
     b[f] ~ dt(0, pow(2.5,-2), 1)  
  } 
 
  # contrasts 
  c[1] <- b[4] 
  c[2] <- b[4] + b[6] 
  c[3] <- b[4] + b[7] 
  c[4] <- b[5] 
  c[5] <- b[5] + b[8] 
  c[6] <- b[5] + b[9] 
  c[7] <- b[5] - b[4] 
  c[8] <- b[5] + b[8] - b[4] - b[6] 
  c[9] <- b[5] + b[9] - b[4] - b[7] 
  c[10] <- b[2] 
  c[11] <- b[3] 
  c[12] <- b[3] - b[2] 
  c[13] <- b[2] + b[6] 
  c[14] <- b[3] + b[7] 
  c[15] <- b[3] + b[7] - b[2] - b[6] 
  c[16] <- b[2] + b[8] 
  c[17] <- b[3] + b[9] 
  c[18] <- b[3] + b[9] - b[2] - b[8] 
 
  # exceedence probabilities 
  for (g in 1:P) {    
    pr.b[g] <- step(b[g])    
  } 
  for (h in 1:18) {    
    pr.c[h] <- step(c[h])    
  }  
} 
 

6.9.4 JAGS model code for binomial model 
model { 
  for (i in 1:n.1) { 
    y.1[i] ~ dbin(p.1[i], n.tests.1[i]) 
    logit(p.1[i]) <- eta.1[i]  
model { 
  for (i in 1:n.single) {    
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    y.1[i] ~ dbin(p.1[i], t.1[i]) 
    logit(p.1[i]) <- eta.1[i]  
     
    eta.1[i] <- inprod(b[1:P], X.1[i,1:P]) + gamma1[school[i]]     
  }   
   
  for (i in 1:n.multi) { 
    y.2[i] ~ dbin(p.2[i], t.2[i]) 
    logit(p.2[i]) <- eta.2[i]  
     
    eta.2[i] <- inprod(b[1:P], X.2[i,1:P]) + gamma1[school[i]] + gamma2[multi.person[i]] 
  }     
   
  # setting up random effect 1 
  for (j in 1:n.school) { 
    gamma1[j] ~ dnorm(0, tau1) 
  }  
   
  tau1 <- pow(rho1, -2)  
  rho1 ~ dscaled.gamma(25, 1) 
   
  # setting up random effect 2 
  for (j in 1:n.multi.person) { 
    gamma2[j] ~ dnorm(0, tau2) 
  } 
   
  tau2 <- pow(rho2, -2)  
  rho2 ~ dscaled.gamma(25, 1) 
   
  
  # priors for fixed effects 
  for (f in 1:P) {  
     b[f] ~ dt(0, pow(2.5,-2), 1)  
  } 
 
  # contrasts 
  c[1] <- b[4] 
  c[2] <- b[4] + b[6] 
  c[3] <- b[4] + b[7] 
  c[4] <- b[5] 
  c[5] <- b[5] + b[8] 
  c[6] <- b[5] + b[9] 
  c[7] <- b[5] - b[4] 
  c[8] <- b[5] + b[8] - b[4] - b[6] 
  c[9] <- b[5] + b[9] - b[4] - b[7] 
  c[10] <- b[2] 
  c[11] <- b[3] 
  c[12] <- b[3] - b[2] 
  c[13] <- b[2] + b[6] 
  c[14] <- b[3] + b[7] 
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  c[15] <- b[3] + b[7] - b[2] - b[6] 
  c[16] <- b[2] + b[8] 
  c[17] <- b[3] + b[9] 
  c[18] <- b[3] + b[9] - b[2] - b[8] 
 
  # exceedence probabilities 
  for (g in 1:P) {    
    pr.b[g] <- step(b[g])    
   } 
  for (h in 1:18) {    
    pr.c[h] <- step(c[h])    
  }  
} 
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6.9.5 Supplemental Figures 
Supplemental Figure 6.1. Line graphs of the percentage of 6-15 year-old school children who were Schistosoma 
haematobium-related morbidity positive at each survey year (BL=baseline, FU1=follow up 1, FU2=follow up 2) 
not included in Figure 6.1, row B. Clustering by school accounted for in 95% confidence bands. 

 

Note: Aggregated ultrasound measures include both dilated left and right pelvis and both dilated left and right 

ureters, but results shown for dilated pelvis and dilated ureter combine the left and right indicators into a single, 

binary variable of present in either or not present in either. 
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Supplemental Figure 6.2. Line graphs of Schistosoma haematobium-related morbidity percentages not included 
in Figure 6.1. Heavy-intensity prevalence category determined at the school-level. Participants were enrolled 
between 2003 and 2008 at each survey year (BL=baseline, FU1=follow up 1, FU2=follow up 2). Clustering by 
school accounted for in 95% confidence bands. Infections were assessed by urine filtration. Model-based tests 
comparisons are included in Supplemental Table 6.2. Plots of aggregated indicators, microhematuria, and self-
reported pain while urinating are included in Figure 6.2. 

 

Note: Aggregated ultrasound measures include both dilated left and right pelvis and both dilated left and right 

ureters, but results shown for dilated pelvis and dilated ureter combine the left and right indicators into a single, 

binary variable of present in either or not present in either. 
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Supplemental Figure 6.3. Line graphs of any urinary bladder lesion percentage by heavy intensity prevalence 
category by country across three surveys (baseline, BL; follow-up 1, FU1; follow-up2, FU2). Participants were 
enrolled between 2003 and 2008. Clustering by school accounted for in 95% confidence bands. Infections were 
assessed by urine filtration. 
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Supplemental Figure 6.4. Line graphs of the percentage of 6-15 year-old school children who were Schistosoma 
mansoni-related morbidity positive at each survey year (BL=baseline, FU1=follow up 1, FU2=follow up 2). 
Clustering by school accounted for in 95% confidence bands. Selected indicators here are included in Figure 6.1, 
row C. 

 

 

**Periportal thickening is measured by any one of image pattern B, C, D, E, or F. 
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Supplemental Figure 6.5. Line graphs of Schistosoma mansoni-related morbidity percentages. Heavy-intensity 
prevalence category determined at the school-level. Participants were enrolled between 2003 and 2008 at each 
survey year (BL=baseline, FU1=follow up 1, FU2=follow up 2). Clustering by school accounted for in 95% 
confidence bands. Infections were assessed by Kato-Katz thick smears. Model-based tests comparisons are 
included in Supplemental Table 6.4. Plots of other indicators are included in Figure 6.3. 

 

 

**Periportal thickening is measured by any one of image pattern B, C, D, E, or F. 
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Supplemental Figure 6.6. Line graphs of enlarged portal vein percentage by heavy intensity prevalence category 
by country across three surveys (baseline, BL; follow-up 1, FU1; follow-up2, FU2). Participants were enrolled 
between 2003 and 2008. Clustering by school accounted for in 95% confidence bands. Infections were assessed 
by Kato-Katz thick smears.  
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6.9.6 Supplemental Tables 
Supplemental Table 6.1. Sample sizes of schools and participants in S. haematobium analyses. 

Frequencies are broken down by morbidity and heavy-intensity prevalence category. Cells contain the 

number of schools with the number of participants in parentheses. Participants are school-age children, 

with morbidity and infection data, 6-15 years, and enrolled between 2003 and 2008. 

 Schools (Participants) 

Morbidity Survey 

Heavy-intensity 
prevalence < 1% 

Heavy-intensity 
prevalence ≥ 
1% and < 5% 

Heavy-intensity 
prevalence ≥ 5% 

     

Ultrasound: aggregated     

Any urinary bladder Baseline 12 (1635) 12 (1887) 44 (6186) 

lesions Follow up 1 16 (2704) 9 (1586) 11 (1957) 

 Follow up 2 7 (1395) 8 (861) 7 (1343) 

Any upper urinary tract Baseline 12 (1628) 12 (1882) 44 (6172) 

lesions Follow up 1 16 (2692) 9 (1589) 11 (1957) 

 Follow up 2 7 (1398) 8 (867) 7 (1350) 

Urinary bladder rate Baseline 12 (1752) 12 (1909) 44 (6275) 

 Follow up 1 16 (2814) 9 (1660) 11 (1980) 

 Follow up 2 7 (1420) 8 (875) 7 (1363) 

Upper urinary tract rate Baseline 12 (1752) 12 (1904) 44 (6267) 

 Follow up 1 16 (2813) 9 (1662) 11 (1980) 

 Follow up 2 7 (1421) 8 (876) 7 (1363) 

     

Ultrasound: urinary bladder    

Distorted bladder shape Baseline 16 (2707) 9 (1586) 11 (1957) 

 Follow up 1 7 (1400) 8 (864) 7 (1345) 

 Follow up 2 12 (1641) 12 (1892) 44 (6213) 

Irregular bladder wall Baseline 16 (2708) 9 (1592) 11 (1957) 

 Follow up 1 7 (1400) 8 (865) 7 (1355) 

 Follow up 2 12 (1642) 12 (1894) 44 (6219) 

Any bladder masses Baseline 16 (2707) 9 (1592) 11 (1957) 

 Follow up 1 7 (1399) 8 (865) 7 (1355) 

 Follow up 2 12 (1641) 12 (1893) 44 (6213) 

Any pseudopolyps Baseline 16 (2706) 9 (1592) 11 (1957) 

 Follow up 1 7 (1400) 8 (866) 7 (1356) 

 Follow up 2 12 (1642) 12 (1893) 44 (6210) 

Bladder wall thickening Baseline 16 (2708) 9 (1592) 11 (1957) 

 Follow up 1 7 (1400) 8 (865) 7 (1356) 

 Follow up 2 16 (2707) 9 (1586) 11 (1957) 

     

Ultrasound: upper urinary tract    
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Dilated left or right  Baseline 12 (1629) 12 (1886) 44 (6187) 

pelvis Follow up 1 16 (2692) 9 (1592) 11 (1957) 

 Follow up 2 7 (1400) 8 (867) 7 (1353) 

Dilated left or right Baseline 12 (1641) 12 (1888) 44 (6195) 

Ureter Follow up 1 16 (2705) 9 (1591) 11 (1957) 

 Follow up 2 7 (1400) 8 (867) 7 (1353) 

     

Laboratory and self-report    

Microhematuria Baseline 15 (1963) 14 (2147) 59 (7766) 

 Follow up 1 19 (3221) 10 (1725) 11 (1969) 

 Follow up 2 7 (1409) 8 (894) 7 (1369) 

Pain while urinating Baseline 15 (1953) 14 (2130) 49 (6918) 

 Follow up 1 19 (3208) 10 (1719) 11 (1961) 

 Follow up 2 7 (1403) 8 (869) 7 (1365) 
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Supplemental Table 6.2. Odds ratios and 95% credible intervals from Bayesian logistic regression models 
comparing morbidity positive proportions between heavy-intensity prevalence categories within surveys 
for S. haematobium-related morbidities not presented in Table 6.1. Bold font indicates the 95% credible 
interval does not contain one. Participants are school-age children (6-15 years) enrolled between 2003 
and 2008. Corresponding plots of unmodeled morbidity prevalence are in Figure 6.2 and Supplemental 
Figure 6.3. 

 

Morbidity Survey < 1% vs. ≥ 5% 1-5% v. ≥ 5% < 1% v. 1-5% 

     

Ultrasound: aggregated     

Urinary bladder rate Baseline 0.42 (0.35, 0.51) 0.65 (0.53, 0.79) 0.65 (0.52, 0.82) 

 Follow up 1 0.43 (0.37, 0.51) 0.75 (0.64, 0.88) 0.58 (0.48, 0.69) 

 Follow up 2 0.36 (0.28, 0.46) 0.41 (0.31, 0.53) 0.89 (0.64, 1.22) 

Upper urinary tract rate Baseline 1.43 (0.97, 2.10) 1.30 (0.90, 1.86) 1.10 (0.72, 1.67) 

 Follow up 1 0.61 (0.41, 0.90) 1.01 (0.68, 1.49) 0.61 (0.39, 0.95) 

 Follow up 2 0.38 (0.18, 0.77) 0.61 (0.30, 1.15) 0.63 (0.26, 1.50) 

     

Ultrasound: urinary bladder    

Distorted bladder shape Baseline 0.22 (0.13, 0.36) 0.48 (0.32, 0.73) 0.46 (0.25, 0.81) 

 Follow up 1 0.29 (0.16, 0.52) 0.46 (0.25, 0.81) 0.64 (0.32, 1.26) 

 Follow up 2 0.43 (0.10, 1.64) 0.61 (0.14, 2.33) 0.70 (0.13, 3.87) 

Irregular bladder wall Baseline 0.36 (0.24, 0.53) 0.52 (0.35, 0.75) 0.70 (0.43, 1.12) 

 Follow up 1 0.41 (0.27, 0.61) 0.87 (0.61, 1.24) 0.47 (0.31, 0.71) 

 Follow up 2 0.49 (0.31, 0.77) 0.37 (0.20, 0.63) 1.35 (0.73, 2.56) 

Any bladder masses Baseline 0.40 (0.26, 0.60) 0.62 (0.41, 0.94) 0.64 (0.39, 1.06) 

 Follow up 1 0.20 (0.13, 0.29) 0.34 (0.23, 0.48) 0.59 (0.37, 0.93) 

 Follow up 2 0.31 (0.18, 0.50) 0.40 (0.22, 0.69) 0.77 (0.38, 1.58) 

Any pseudopolyps Baseline 0.35 (0.14, 0.76) 0.30 (0.11, 0.69) 1.18 (0.38, 3.79) 

 Follow up 1 0.20 (0.08, 0.43) 0.39 (0.18, 0.79) 0.51 (0.18, 1.34) 

 Follow up 2 0.00 (0.00, 0.16) 0.15 (0.01, 0.75) 0.02 (0.00, 2.32) 

Bladder wall thickening Baseline 0.24 (0.18, 0.32) 0.48 (0.36, 0.63) 0.50 (0.35, 0.70) 

 Follow up 1 0.28 (0.22, 0.37) 0.64 (0.50, 0.81) 0.45 (0.33, 0.59) 

 Follow up 2 0.27 (0.18, 0.39) 0.25 (0.15, 0.40) 1.05 (0.60, 1.89) 

     

Ultrasound: upper urinary tract    

Dilated left or right Baseline 0.69 (0.38, 1.24) 0.72 (0.43, 1.17) 0.97 (0.49, 1.87) 

pelvis Follow up 1 0.62 (0.35, 1.09) 0.63 (0.34, 1.12) 1.00 (0.51, 1.97) 

 Follow up 2 0.88 (0.28, 2.47) 0.90 (0.25, 2.72) 0.98 (0.24, 4.11) 

Dilated left or right  Baseline 1.10 (0.63, 1.93) 0.67 (0.36, 1.19) 1.65 (0.84, 3.31) 

ureter Follow up 1 0.69 (0.36, 1.31) 0.80 (0.42, 1.51) 0.86 (0.41, 1.81) 

 Follow up 2 0.27 (0.06, 0.85) 0.01 (0.00, 0.28) * 
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* The odds ratio for this effect was highly variable due to the prevalence at both surveys being close to 

zero. We chose to omit this effect due to its uncertainty. 
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Supplemental Table 6.3. Sample sizes of schools and participants in S. mansoni analyses. Frequencies are 
broken down by morbidity and heavy-intensity prevalence category. Cells contain the number of schools 
with the number of participants in parentheses. Participants are school-age children, with morbidity and 
infection data, aged 6-15 years, and enrolled between 2003 and 2008.  

Morbidity Survey 

Heavy-intensity 
prevalence < 1% 

Heavy-intensity 
prevalence ≥ 
1% and < 5% 

Heavy-intensity 
prevalence ≥ 5% 

     

Ultrasound     

Image pattern Baseline 24 (3225) 5 (429) 16 (1423) 

 Follow up 1 22 (3889) 7 (537) 12 (959) 

 Follow up 2 24 (3631) 6 (434) 7 (454) 

Enlarged portal vein Baseline 24 (3164) 5 (464) 16 (1501) 

 Follow up 1 19 (3296) 7 (537) 12 (960) 

 Follow up 2 24 (3637) 6 (435) 7 (456) 

     

Laboratory     

Lab-confirmed blood in Baseline 57 (8080) 17 (2421) 22 (2718) 

stool Follow up 1 50 (8166) 12 (1400) 17 (1871) 

 Follow up 2 26 (4731) 6 (709) 8 (776) 

Lab-confirmed diarrhea Baseline 46 (6290) 17 (2418) 22 (2715) 

 Follow up 1 42 (5537) 12 (1400) 17 (1858) 

 Follow up 2 18 (2213) 7 (847) 9 (815) 

     

Self-report     

Self-reported diarrhea Baseline 65 (8890) 20 (2627) 29 (3319) 

 Follow up 1 50 (8111) 12 (1368) 17 (1840) 

 Follow up 2 36 (5355) 8 (890) 11 (946) 

Abdominal pain Baseline 35 (4457) 15 (1685) 25 (2724) 

 Follow up 1 24 (4597) 9 (986) 13 (1365) 

 Follow up 2 36 (5349) 8 (889) 11 (946) 
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Supplemental Table 6.4. Odds ratios and 95% credible intervals from Bayesian logistic regression models 
comparing morbidity positive proportions between heavy-intensity prevalence categories within surveys 
for S. mansoni-related morbidities not presented in Table 6.2. Bold font indicates the 95% credible 
interval does not contain one. Participants are school-age children (6-15 years) enrolled between 2003 
and 2008. Corresponding plots of unmodeled morbidity prevalence are in Figure 6.3 and Supplemental 
Figure 6.4. 

* The odds ratio for this effect was highly variable due to the prevalence at both surveys being close to 

zero. We chose to omit this effect due to its uncertainty. 

 

Morbidity Survey < 1% vs. ≥ 5% 1-5% v. ≥ 5% < 1% v. 1-5% 

     

Ultrasound     

Image pattern C-F Baseline 0.12 (0.03, 0.38) 0.00 (0.00, 0.18) 0.00 (0.00, 0.02) 

 Follow up 1 0.20 (0.05, 0.61) 0.31 (0.02, 2.62) 0.06 (0.00, 0.43) 

 Follow up 2 0.00 (0.00, 0.28) Non-estimable* 0.01 (0.00, 0.07) 

Image pattern B-F Baseline 0.48 (0.35, 0.64) 0.28 (0.15, 0.48) 1.72 (0.99, 3.11) 

 Follow up 1 0.32 (0.23, 0.45) 1.06 (0.70, 1.58) 0.30 (0.20, 0.46) 

 Follow up 2 0.62 (0.41, 0.93) 0.18 (0.07, 0.37) 3.52 (1.74, 8.22) 

Enlarged portal vein Baseline 0.31 (0.25, 0.39) 0.52 (0.37, 0.71) 0.60 (0.46, 0.80) 

 Follow up 1 0.75 (0.58, 0.98) 0.88 (0.57, 1.34) 0.85 (0.58, 1.28) 

 Follow up 2 0.95 (0.63, 1.46) 1.82 (0.99, 3.31) 0.52 (0.32, 0.87) 

     

Laboratory     

Lab-confirmed blood in Baseline 0.32 (0.15, 0.67) 0.37 (0.14, 0.88) 0.88 (0.38, 2.26) 

stool Follow up 1 0.12 (0.04, 0.32) 1.44 (0.58, 3.60) 0.08 (0.03, 0.22) 

 Follow up 2 0.06 (0.02, 0.17) 0.10 (0.00, 0.64) 0.57 (0.07, 16.69) 

Lab-confirmed diarrhea Baseline 0.74 (0.59, 0.92) 0.50 (0.39, 0.64) 1.48 (1.17, 1.88) 

 Follow up 1 0.32 (0.25, 0.42) 0.66 (0.48, 0.89) 0.49 (0.37, 0.65) 

 Follow up 2 0.33 (0.24, 0.44) 1.41 (1.01, 1.95) 0.23 (0.17, 0.32) 

     

Self-report     

Self-reported diarrhea Baseline 0.51 (0.45, 0.58) 0.97 (0.84, 1.11) 0.53 (0.47, 0.60) 

 Follow up 1 1.06 (0.92, 1.23) 1.18 (0.99, 1.40) 0.90 (0.78, 1.05) 

 Follow up 2 0.88 (0.75, 1.02) 1.23 (1.00, 1.50) 0.71 (0.60, 0.85) 

Abdominal pain Baseline 0.68 (0.59, 0.78) 0.70 (0.60, 0.82) 0.97 (0.84, 1.12) 

 Follow up 1 1.56 (1.33, 1.83) 0.79 (0.65, 0.96) 1.97 (1.66, 2.34) 

 Follow up 2 1.31 (1.10, 1.56) 1.51 (1.22, 1.86) 0.87 (0.73, 1.04) 
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7.1 Abstract 
Background: Recent research suggests that schistosomiasis targets for morbidity control and elimination 

as a public health problem could benefit from a reanalysis. These analyses would define evidence-based 

targets that control programs could use to confidently assert that they had controlled or eliminated 

schistosomiasis as a public health problem. We estimated how low Schistosoma haematobium infection 

levels diagnosed by urine filtration in school-age children should be decreased so that microhematuria 

prevalence was at or below a “background” level of morbidity. 

Methodology: Data obtained from school-aged children in Burkina Faso, Mali, Niger, Tanzania, and 

Zambia who participated in schistosomiasis monitoring and evaluation cohorts were reanalyzed before 

and after initiation of preventive chemotherapy. Bayesian models estimated the infection level 

prevalence probabilities associated with microhematuria thresholds ≤ 10%, 13%, or 15%.  

Principal findings: An infection prevalence of 5% could be a sensible target for urogenital 

schistosomiasis morbidity control in children as microhematuria prevalence was highly likely to be below 

10% in all surveys. Targets of 8% and 11% infection prevalence were highly likely to result in 

microhematuria levels less than 13% and 15%, respectively. By contrast, measuring heavy-intensity 

infections only achieves these thresholds at impractically low prevalence levels. 

Conclusions/significance: A target of 5%, 8%, or 11% urogenital schistosomiasis infection prevalence in 

school-aged children could be used to determine whether a geographic area has controlled or 

eliminated schistosomiasis as a public health problem depending on the local background threshold of 

microhematuria.  

Funding: The Schistosomiasis Control Initiative was supported by the Bill and Melinda Gates Foundation 

(grant 13122). 
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7.2 Author Summary 
For urogenital schistosomiasis, targets for morbidity control and elimination as a public health problem 

are based on the percentage of school-age children with a heavy intensity infection in a set of sentinel 

schools. These targets are not tied to specific morbidity indicators and should be reevaluated due to the 

recognition that all infections have an impact on people’s health. Multiple studies have shown a strong 

association between urogenital schistosomiasis infection and microhematuria. In these analyses, data 

from children aged 6-15 years in monitoring and evaluation cohorts from five African countries were 

used to determine whether infection and heavy intensity infection targets could be developed based on 

a prevalence of microhematuria in a school without schistosomiasis infections before and after initiation 

of a deworming program. Results indicate that targets of 5%, 8%, or 11% urogenital schistosomiasis 

infection prevalence in school-aged children can be used to reliably conclude that a school is below a 

microhematuria prevalence of 10%, 13%, or 15%, respectively. These targets could be used by control 

program managers as guide to determine whether morbidity has been controlled or eliminated as a 

public health problem. 

7.3 Introduction 
The primary goal of the World Health Organization (WHO) schistosomiasis control program 

guidelines since the early 2000’s has been to reduce morbidity (WHO 2002). For most of sub-Saharan 

Africa, the primary control intervention currently employed is the distribution of praziquantel as 

preventive chemotherapy (French et al. 2018). Due to limited praziquantel availability when the 

guidelines were developed, WHO focused on reducing the most severe morbidities caused by 

schistosomiasis. Based on limited data showing associations between severe morbidities and heavy 

intensity infections (≥ 50 Schistosoma haematobium eggs per 10 ml of urine) (WHO 1987), control of 

morbidity was defined as a <5% prevalence of heavy intensity infections (PHI) and elimination of 

schistosomiasis as a public health problem was defined as <1% PHI (WHO 2013). Recent analyses 

suggest the prevalence of morbidity associated with these PHI targets for morbidity control and 
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elimination as a public health problem may not be distinguishable from each other (Chapter 6), drawing 

into question their programmatic usefulness. Furthermore, WHO guidance for frequency of preventive 

chemotherapy is based on infection prevalence (WHO 2002). This results in most country programs only 

measuring prevalence and creates a disconnect between the stated program goals and implementation 

of interventions to achieve them. 

Praziquantel donations from Merck KGaA have increased the number of people treated globally 

nearly 10-fold from 2006 to 2017 (WHO 2018). Concurrently, there has been an increased appreciation 

of more subtle manifestations of schistosomiasis morbidity (King et al. 2005; King 2015; Freer et al. 

2018). Thus, there is interest in refocusing schistosomiasis guidelines on morbidity control (French et al. 

2018) with calls to create more detailed and specific targets (Lo et al. 2017). A robust, evidence-based 

target that identifies the point at which schistosomiasis is eliminated as a public health problem will be 

crucial to meet the goal to approximately double the number of countries validated as having eliminated 

schistosomiasis as a public health problem by 2023 (WHO 2020b).  

Microhematuria is strongly associated with S. haematobium infections and has been used in place 

of egg detection to estimate community-level prevalence (Krauth et al. 2015). A meta-analysis of the use 

of dipstick-detected microhematuria for the diagnosis of S. haematobium infection found 81% (95% 

confidence interval (CI) 79-83%) sensitivity and 89% (95% CI 87-92%) specificity across different 

locations and subgroups (King et al. 2013). Analyses of data from multiple, national schistosomiasis 

control programs found microhematuria prevalence correlated well with PHI (Chapter 5) and WHO’s 

infection intensity categories (Chapter 6). Therefore microhematuria would appear to be a strong 

candidate as a morbidity indicator that can be reduced to a threshold level that is locally acceptable 

(WHO 2020b).  
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Because identifying an indicator for eliminating schistosomiasis as a public health problem is 

critical to the success of control programs for the next 10 years (WHO 2020b), we investigated S. 

haematobium infection prevalence levels and their likelihood to be the same as or lower than 

“background” microhematuria levels, i.e., the prevalence of microhematuria in an area with no cases of 

schistosomiasis. We utilized literature on the expected background prevalence of microhematuria 

(Krauth et al. 2015; Ochodo et al. 2015) to determine potential threshold levels. Evaluations were 

performed using control program data before and after one and two years of annual preventative 

chemotherapy with praziquantel from five African countries supported through the Schistosomiasis 

Control Initiative (SCI) (Fenwick et al. 2009).  

7.4 Methods 

7.4.1 Ethics statement 
The Imperial College Research Ethics Committee (ICREC_8_2_2, EC No. 03.36, R&D No. 03/SB/003E) and 

each country’s ethical review boards located in the Ministries of Health approved the use of these data. 

The US Centers for Disease Control and Prevention (CDC) was determined to be a non-engaged research 

partner. Meetings were held with teachers and parents to inform them about participation in these 

programs. Verbal consent from community leaders in Mali was given since this was the standard 

consent at the time. For the other countries, head teachers provided written informed consent. Parents 

or guardians provided consent and children provided assent. Patients and the public were not involved 

in the design, conduct, reporting, or dissemination plans of this research. 

7.4.2 Study design and data collection 
Data for these analyses come from national control programs for schistosomiasis and soil-

transmitted helminthiasis in Burkina Faso (Koukounari et al. 2007; Garba et al. 2009), Mali (Garba et al. 

2009), Niger (Garba et al. 2009), Tanzania (Kabatereine et al. 2006), and Zambia (Kabatereine et al. 

2006). Briefly, countries began a national program scale-up including distribution of praziquantel (for 

schistosomiasis) and albendazole (for soil-transmitted helminthiasis) to treat endemic populations based 
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on WHO guidance (Montresor et al. 2002). Two monitoring and evaluation cohorts were used in these 

analyses. First, a longitudinal cohort of children aged 6-12 years in primary schools that were randomly 

selected from various endemic settings. Schools were treated every year and followed for two more 

years with the following exceptions: Burkina Faso did not treat schools between baseline and follow-up 

1; some schools in Mali were treated twice between baseline and follow up 1 and some schools were 

treated annually but no data were collected at follow-up 1; Tanzanian schools were not treated between 

follow-up 1 and 2; and Zambia did not collect data after follow up 1. When a school failed to be treated 

once annually, that school was removed from subsequent surveys We also included any children aged 6-

15 years from a second community cohort and pooled with the children from the longitudinal cohort for 

school-level estimates. The second cohort mostly contained adults, but had a range of persons aged 4-

88 years.  

Both cohorts were sampled for the same number of years at approximately the same time. 

These surveys were performed approximately one year apart and are referred to as baseline, follow-up 

1, and follow-up 2. Participants were required to be above 94 cm in height and not currently ill. 

Praziquantel and albendazole were distributed to consenting participants each year. The baseline survey 

occurred pre-treatment; the two follow-up surveys each occurred immediately before the annual 

praziquantel dose. 

7.4.3 Infection and microhematuria data 
The presence of S. haematobium was determined by urine filtration. School-age children from 

Burkina Faso, Tanzania, and Zambia were evaluated with a single urine sample and single filtration; 

Nigerien school-age children were evaluated by two filtrations from a single urine sample. In Mali, 

school-age children were evaluated with single filtrations of two urine samples collected on consecutive 

days. Approximately 10 ml of urine were passed through a filter, stained, and microscopically examined 

for S. haematobium eggs. If any eggs were detected in a urine sample, that participant was deemed 
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positive. School-age children with 50 or more S. haematobium eggs per 10 ml of urine were deemed to 

have a heavy intensity infection. Microhematuria was assessed with Hemastix (Bayer Diagnostics; 

Basingstoke, United Kingdom) dipsticks according to manufacturer instructions. School-age children with 

a positive or trace-positive (hemolyzed or non-hemolyzed) reading were considered positive. 

7.4.4 Data analysis methods 
R version 4.0.3 was used for analyses. A binomial, Bayesian, errors in variables (Durbin 1954; 

Carroll et al. 1984) model was used to assess the relationship between infection and microhematuria 

prevalence. This approach accounts for uncertainty in the prevalence of microhematuria and prevalence 

of infection by assuming both are binomially distributed. For each microhematuria prevalence 

threshold, infection measurement (all infection prevalence or PHI), and survey, four models were fit. 

The first three models used linear, quadratic, and cubic functions of infection prevalence, respectively, 

to predict morbidity prevalence. The fourth used a function utilized by van der Werf and de Vlas (van 

der Werf et al. 2004) for associating community infection prevalence and morbidity indicator 

prevalence. Models were fit via Markov chain Monte Carlo (MCMC) methods using the rjags package 

(Plummer 2019). Full details on the statistical and MCMC methods are included in the supplemental 

materials along with results from all models. Best fitting models were determined by the smallest 

deviance information criterion (DIC) (Plummer 2002) (Supplemental Table 7.1). 

We explored three microhematuria prevalence thresholds. Thresholds of 13% and 15% were 

based on the results of Krauth and colleagues (Krauth et al. 2015) who found the prevalence of 

microhematuria unrelated to S. haematobium infection to be approximately 13% or 15-20% after 

incorporating data from a systematic review (Ochodo et al. 2015). They estimated about 3.4% of those 

infections to be missed infections post-treatment, suggesting 10% could be a more appropriate 

estimate. 
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Results are presented as the percent chance that a school’s S. haematobium infection 

prevalence had a microhematuria prevalence less than the threshold of 10%, 13%, or 15%. A depiction 

of the relationship between infection prevalence, microhematuria prevalence, and the percent chance is 

included in the supplement (Supplemental Figure 7.1). From these curves, one chooses an appropriate 

percent chance to determine the infection prevalence. The highest infection prevalence that is predicted 

to result in a microhematuria prevalence below the morbidity threshold is then referred to as the target 

prevalence. The same approach was used for modeling PHI, where the results are reported as the 

percent chance that a school with a given PHI target is below the threshold. 

7.5 Results 
A total of 91 schools were analyzed at baseline, 41 at follow-up 1, and 22 at follow-up 2. The 

median (and range) for S. haematobium infection prevalence was 44.4% (0.0-99.0%) at baseline, 11.3% 

(0.0-83.5%) at follow-up 1, and 31.2% (2.8-89.2%) at follow-up 2. For microhematuria prevalence, the 

median and range was 38.5% (0.8-94.7%) at baseline, 11.3% (0.0-60.4%) at follow-up 1, and 14.8% (4.0-

71.6%) at follow-up 2. 

A grid of scatter plots with each model fit shows only slight differences in the models (Figure 7.1), 

which was also true when considering the fit statistics (Supplemental Table 7.1) and the model 

predictions in the range most relevant to these analyses (Supplemental Figure 7.2).  

Best fitting curves of infection prevalence and the percent chance of a school falling below the 

three microhematuria thresholds were largely similar across surveys, with the baseline curve falling 

between the two follow-up curves (Figure 7.2). Curves from all models were largely consistent, though 

at follow up 2 the function utilized by van der Werf and de Vlas (van der Werf et al. 2004) failed to reach 

a 90% chance of achieving the microhematuria threshold (Supplemental Figure 7.3). In best fitting 

models, infection prevalence targets ≤ 5%, 8%, and 11% provided a 90% chance that the microhematuria 
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Figure 7.1. Scatter plots of Schistosoma haematobium infection prevalence and microhematuria 
prevalence of children aged 6-15 years from Burkina Faso, Mali, Niger, Tanzania, and Zambia 
participating in schistosomiasis control program activities between 2003 and 2008. Points are scaled 
based on the number of school-age children with S. haematobium infection data. Black line indicates 
model fits and gray shading indicates 95% Bayesian credible intervals (BCIs) from errors in variables 
model. The dashed line denotes 10% microhematuria prevalence. 
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Figure 7.2. Line plots by survey of the percent chance a school with a given Schistosoma haematobium infection prevalence is below the 
microhematuria threshold. Panel A is for a 10% microhematuria threshold ; panel B for 13%; and panel C for 15%. Estimates utilized children 
aged 6-15 years from Burkina Faso, Mali, Niger, Tanzania, and Zambia participating in schistosomiasis control program activities between 2003 
and 2008. Full description of the methods is in the supplementary materials. The dashed line indicates a 90% chance of being below the 
threshold. 

 

 



 

 

thresholds of 10%, 13%, and 15%, respectively, would be met. The 8% and 11% were very close to having a 95% chance 

of reaching the 10% and 15% thresholds, respectively, but the percent chance estimate at follow up 1 was slightly less 

than 95% (94.0% for the 8% target and 94.8% for the 11% target; Supplemental Table 7.2).  

The median and range of PHI in schools studied was 9.1% (0.0-79.8%) at baseline, 1.5% (0.0-20.7%) at follow up 1, 

and 1.8% (0.0-33.8%) at follow up 2. Model fits differed some at the low end (Supplemental Figure 7.4) and high end 

(Figure 7.3) at baseline but were largely similar for the follow up surveys. At baseline, PHI targets of 0%, 1%, and 2% 

provided a 97.2%, 98.3%, and 96.0% chance, respectively, that the microhematuria thresholds of 10%, 13%, and 15% 

would be met (Figure 7.4; Supplemental Table 7.3). At follow up 1, no PHI-based target was able to achieve above a 

16.4% chance of reaching any of the thresholds. At follow up 2, a PHI target of 0% was estimated to have a 92.0% chance 

of reaching the 15% threshold. 

7.6 Discussion 
Our study examined the relationship between microhematuria and S. haematobium infection prevalence. The 

results suggest different infection prevalence targets that are realistic and measurable for evaluating whether 

microhematuria has reached or passed below a background level threshold and therefore schistosomiasis is eliminated 

as a public health problem. Based on these results, national control programs could choose one of the three 

microhematuria thresholds (10%, 13%, or 15%) and a percent chance of achieving it to determine an infection 

prevalence target based on the follow-up survey results. We presented targets of 5%, 8%, and 11% infection prevalence 

since these had a high (90%) chance that they would result in a school possessing a microhematuria prevalence below 

the thresholds of 10%, 13%, and 15%, respectively. Though, programs could choose a different certainty. For instance, a 

15% threshold with an 80% chance of achieving the threshold suggests an infection prevalence target of ≤ 12%.  

The results were largely consistent across the three surveys, which gave us confidence in the robustness of these 

target values. The consistency was especially true at the lower prevalence targets when certainty was high. This could be 

due to the inclusion of schools from five countries with different ecologic archetypes, thus, giving us a broad 

representation of different endemic areas. There were some differences between the baseline and follow-up surveys. 

For instance, as the infection prevalence target increased at follow-up 1, the percent chance tended to decrease much  
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Figure 7.3. Scatter plots of Schistosoma haematobium prevalence of heavy intensity infections (PHI) and microhematuria 
prevalence of children aged 6-15 years from Burkina Faso, Mali, Niger, Tanzania, and Zambia participating in 
schistosomiasis control program activities between 2003 and 2008. Points are scaled based on the number of school-age 
children with S. haematobium infection data. Black line indicates model fits and gray shading indicates 95% Bayesian 
credible intervals (BCIs) from errors in variables model. The dashed line denotes 10% microhematuria prevalence. 
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Figure 7.4. Line plots by survey of the percent chance a school with a given Schistosoma haematobium prevalence of heavy intensity infections is below the 
microhematuria threshold. Panel A is for a 10% microhematuria threshold, panel B for 13%, and panel C for 15%. Estimates utilized children aged 6-15 years 
from Burkina Faso, Mali, Niger, Tanzania, and Zambia participating in schistosomiasis control program activities between 2003 and 2008. Full description of the 
methods is in the supplementary materials. The dashed line indicates a 90% chance of being below the threshold. 
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quicker. At a 9% infection prevalence target, the percent chance of falling below the 10% microhematuria threshold was 

81% at baseline and 97.2% at follow-up 2 but only 54.5% at follow-up 1. Typically, the follow-up 2 survey consistently 

had higher certainty. Some of this difference could be attributed to changes in the distributions of infection and 

microhematuria prevalence post-preventive chemotherapy administration, though bias may have been introduced since 

many schools were lost to follow-up or excluded due to not being treated once in the preceding year. The heterogeneity 

between schools was much larger at baseline since far more schools had higher infection prevalence and 

microhematuria percentages (Figure 7.1).  

By contrast, PHI-derived targets provided minimal adaptability and could be prone to misclassification. For 10% 

microhematuria, there was at least a 90% chance that a school was below the morbidity threshold only at baseline, 

when PHI was 0%. No prevalence could achieve a 99% chance of meeting the 10% threshold. This includes the current 

WHO target of 1% PHI, which was unable to reach a 90% chance of meeting the 10% threshold in any survey. For 

baseline and follow-up 2, there was a steep drop in the percent chance of meeting the threshold usually after 2%, 

suggesting a small number of missed heavy-intensity infections could easily cause a misclassification. 

The overarching goal of this study was to discover readily measurable and well-defined program targets for 

urogenital schistosomiasis in school-age children. An evidence-based target is crucial for schistosomiasis programs to 

achieve elimination as a public health problem, which is the stated goal of the WHO 2021-2030 neglected tropical 

disease (NTD) roadmap (WHO 2020b). Other NTDs have based their validation process around countries falling below 

defined prevalence targets (WHO 2016; 2017). Defined targets are necessary for program managers as they allow them 

to determine the efficacy of control efforts, identify when problematic issues such as poor coverage or infection 

"hotspots" occur, or when to consider switching goals from elimination as a public health problem to interruption of 

transmission. Current PHI-based targets are unable to ensure that microhematuria is reduced to a background level and 

are highly sensitive to small changes, whereas the targets proposed here appear robust and can be adapted to different 

situations. 
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Our results are specific to S. haematobium infections in school-age children and may not be appropriate for 

older age groups. However, because the prevalence and intensity of schistosome infections are highest in this 

population and most national programs are based on preventive chemotherapy of school-age children, we believe these 

targets provide great value for schistosomiasis morbidity control. Furthermore, because the more severe manifestations 

of schistosomiasis morbidity result from multiple years of infection, effective programs for this school-age group will 

eventually reduce S. haematobium infection-associated morbidity in older individuals as well. For example, Kenyan 

adults who had received preventive chemotherapy as children demonstrated an 11-fold reduction of bladder wall 

pathologies compared to previously untreated individuals despite having similar infection levels as adults (Subramanian 

et al. 1999). 

Our results are limited by a few factors. There are individual-level factors which influence the background level of 

microhematuria, such as the age of first menses in girls. Our assumption is that evaluations of morbidity control and 

elimination as a public health problem are done at an aggregate level and that a random sample, i.e., one that draws 

children across sexes and ages, is ascertained. The effect of deviations from a random sample should be studied so the 

effect on the evaluation is known. The level of certainty of our results may vary by location due to the wide variability of 

microhematuria prevalence previously noted (Krauth et al. 2015). This could be due to measurement error or variations 

in the presence of other concomitant phenomena such as menses or concurrent conditions such as urinary tract 

infections (van der Werf et al. 2004; King et al. 2013). An evaluation’s sample size and design could also play a role in an 

appropriate target. The target may also depend on the dipstick manufacturer utilized. Data in these analyses used 

Hemastix dipsticks, the same that were used in the study by Krauth and colleagues (Krauth et al. 2015). These results are 

also not immediately applicable to programs focused on control of S. mansoni and new research is still needed to 

identify a robust morbidity indicator for intestinal schistosomiasis species (Chapter 6). In addition, further work will be 

necessary to identify target infection levels in other age groups as morbidity can manifest differently in older individuals 

with more chronic infections. Efforts to identify species-specific morbidity markers are underway (Neglected Tropical 

Diseases Support Center 2019).  
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We believe our modeling approach provides a useful framework for defining morbidity-related targets. This 

modeling approach can be utilized for other diseases which need to set a target based on a morbidity marker. For 

schistosomiasis, this method can be used again when a suitable intestinal schistosomiasis marker is identified or when 

improved diagnostics become available and targets need to be recalibrated. Since different thresholds can be evaluated 

simultaneously and the Bayesian methodology allows for the computation of probability-based measures, this allows for 

targets to be computed for locations based on program needs. 

7.7 Conclusion 
These analyses present empirically-based infection targets for urogenital schistosomiasis that utilize the 

association between infection prevalence and microhematuria prevalence. Our findings can be used by schistosomiasis 

control programs as targets to reduce microhematuria prevalence below an established background level, and could be 

adopted to meet the goals in the current road map (WHO 2020b). Current targets based on PHI are not set low enough 

for control of schistosomiasis-related microhematuria and cannot be reliably used by control programs for this purpose. 
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7.10 Supplemental Materials 
The goal of this modeling is to identify a Schistosoma haematobium infection target or heavy-intensity infection 

prevalence target where microhematuria prevalence is kept below a level that is assumed to represent when 

schistosomiasis is eliminated as a public health problem. 
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In these analyses, the term “threshold” refers to the microhematuria prevalence which is assumed to represent 

when schistosomiasis is eliminated as a public health problem. From previous research (Krauth et al. 2015; Ochodo et al. 

2015), 10%, 13%, or 15% where chosen as potential targets. The term “target” defines the S. haematobium infection 

prevalence or prevalence of heavy intensity infection (PHI), where the percent chance of reaching the target is above an 

accepted percent change (or probability). In these analyses, all integer infection prevalence values from 0% to 100% 

were considered. 

Since each school or community will have different numbers of people ascertained, a binomial distribution was a 

natural choice for describing the variation in microhematuria prevalence. Since the prevalence of infection or PHI will 

also follow a binomial distribution, an errors in variables model (Durbin 1954; Carroll et al. 1984) was used. Bayesian 

methods were chosen since direct estimates of the percent chance that microhematuria prevalence falls below the 

target is desired. 

7.10.1 Model Details 
We aggregated all individual data to the school or community level. This largely concurs with programmatic 

schistosomiasis evaluations since usually no individual level covariates are included in analyses. If the inclusion of 

individual level covariates is desired, then a different modeling approach is needed. Nevertheless, with data aggregated 

to the school or community level, we assume the frequency of the morbidity indicator, y, is binomially distributed in the 

following way 

𝑦𝑖~𝐵𝑛(𝑛𝑖, 𝑝𝑖) 

where i denotes a school or community, 𝑛𝑖 is the number of participants evaluated for the morbidity, and 𝑝𝑖  is the 

probability a participant has microhematuria. The probability of microhematuria is assumed to be Beta distributed 

where 

𝑝𝑖~Beta(𝜙𝜇𝑖, 𝜙[1 − 𝜇𝑖]). 
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The parameter 𝜙 is used to control the spread of the Beta distribution. Based on testing with the microhematuria data, 

𝜙 was given a Gamma(20,1) prior for all analyses. Finally, 𝜇𝑖 is the estimate from the standard logit transform. For the 

cubic model, 

𝜇𝑖=
𝑒𝛽𝑜+𝛽1𝑟𝑖+𝛽2𝑟𝑖

2+𝛽3𝑟𝑖
3+𝛽41country1+⋯+𝛽4𝑘

country𝑘

1 + 𝑒𝛽𝑜+𝛽1𝑟𝑖+𝛽2𝑟𝑖
2+𝛽3𝑟𝑖

3+𝛽41country1+⋯+𝛽4𝑘
country𝑘

 

where the 𝛽’s are estimated by the model and all have Cauchy prior distributions with a center of zero and a scale of 2.5 

(Gelman et al. 2008). 𝛽0 is the intercept and the others are the coefficients for each power of the predictor variable, 𝑟𝑖. 

𝑟𝑖 is the true infection risk of participants with a S. haematobium infection (or when heavy-intensity infections are used, 

the proportion of participants with a heavy intensity infection). The quadratic and linear functions utilize the same 

approach but remove the cubic (for quadratic) and cubic and quadratic (for linear) terms to estimate 𝜇𝑖. Indicator 

variables are included for each of the k countries included in each analysis. The observed frequency 𝑥𝑖 is the number of 

participants with an S. haematobium infection in school or community i where a total of 𝑚𝑖 participants were evaluated 

for S. haematobium. Thus,  

𝑥𝑖~𝐵𝑛(𝑚𝑖, 𝑟𝑖) 

and 𝑟𝑖 has 𝒰(0,1) distribution. The inclusion of 𝑟𝑖 instead of using 
𝑥𝑖

𝑚𝑖
⁄  allows the proportion to vary in the Markov 

Chain Monte Carlo (MCMC) simulations according to the size of 𝑚𝑖. 

We also used a function utilized by van der Werf and colleagues (van der Werf et al. 2002; van der Werf et al. 

2003b; van der Werf et al. 2004) to associate community prevalence of S. haematobium with the prevalence of 

morbidity indicators, specifically 

𝜇𝑖 =
𝑎 + 𝑏 ∗ 𝑟𝑖

𝑐 + 𝛽1country1 + ⋯ + 𝛽𝑘country𝑘

1 + 𝑏 ∗ 𝑟𝑖
𝑐

, 

where 0 ≤ 𝑎 ≤ 1, 𝑏 > 0 and 𝑐 > 1. In this function, 𝑎 is the morbidity prevalence due to other diseases, and 𝑏 and 𝑐 

describe the association between  𝑟𝑖 and 𝜇𝑖. Prior distributions for these parameters followed these bounds where 
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𝑎~𝒰(0.001,1), 𝑏~𝒰(0.01,100), 𝑐~𝒰(1.01,100), and 𝛽𝑗~Cauchy(0, 2.5). As before, 𝜇𝑖  is used to estimate the 

proportion of participants with the morbidity in question through the Beta distribution. 

7.10.2 Model Implementation 
Models were fit via MCMC using JAGS (Plummer 2003) and CODA (Plummer et al. 2006) in R via the rjags 

package (Plummer 2019). Three chains were fit with an adaptive phase of 20,000 iterations per chain. The iterations 

from the adaptive phase were discarded and each chain was run for another 100,000 iterations.  

After completing the 100,000 iterations, graphical displays of the trace and densities functions were used to 

determine if any chains or a subset of iterations should be discarded. The deviance information criterion (DIC) as defined 

by Plummer (Plummer 2002), was used to evaluate model fit and the model with the smallest value was chosen as the 

final model (Supplemental Table 7.1). Predicted values are calculated as the median of the posterior distribution and 

95% credible intervals are the 2.5% and 97.5% percentiles of the posterior distribution. Finally, we calculated the 

percentage of empirically sampled values below the microhematuria threshold at each chosen infection prevalence 

target. A graphical example of this calculation is included in the supplementary figures for infection prevalence 

thresholds with a threshold of 10% (Supplemental Figure 7.1). These are the posterior distributions from a cubic model 

of infection prevalence from the baseline survey. Each infection prevalence has its own posterior distribution and the 

shading indicates the percentage of the distribution that is below the threshold of 10% (blue) and the proportion that is 

above the threshold of 10% (red). The more the distribution is colored blue, the greater the likelihood that a school at 

that infection prevalence will fall below the threshold. The solid black lines at the middle of the distribution indicate the 

median. If the points at the bottom of the median line were connected, this is the curve that appears in panel C of Figure 

S2 and shows the connection between the plots in Supplemental Figures 7.2 and 7.3 to Figure 7.1.  

7.10.3 JAGS model code for cubic function 
model{ 
  for (i in 1:N){ 
    # Likelihood 
    x[i] ~ dbinom(r[i], m[i]) 
    r[i] ~ dunif(0, 1) 
     
    y[i] ~ dbinom(p[i], n[i]) 
    p[i] ~ dbeta(alpha[i], beta[i]) T(0.001,0.999) 
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    alpha[i] <- phi * mu[i] 
    beta[i] <- phi * (1 - mu[i]) 
     
    logit(mu[i]) <- b[1] + b[2] * r[i] + b[3] * r[i]^2 + b[4] * r[i]^3 + inprod(cty[1:Q], X[i,1:Q]) 
     
    resid[i] <- y[i]/n[i] - p[i] 
    residp[i] <- step(resid[i]) 
  } 
   
  # priors 
  for (f in 1:P) {  
     b[f] ~ dt(0, pow(2.5,-2), 1)  
  } 
  for (g in 1:Q) {  
      cty[g] ~ dt(0, pow(2.5,-2), 1)  
   } 
  phi ~ dgamma(20, 1) 
   
  # predicted prevalence and exceedance prob 
  for (j in 1:n.pred.x) { 
    pred[j] <- ilogit(b[1] + b[2] * pred.x1[j] + b[3] * pred.x2[j] + b[4] * pred.x3[j]) 
    exprob10[j] <- step(.1-pred[j]) 
  }  
} 
 

7.10.4 JAGS model code for van der Werf and colleagues’ function 
model{ 
  for (i in 1:N){ 
    # Likelihood 
    x[i] ~ dbinom(r[i], m[i]) 
    r[i] ~ dunif(0, 1) 
     
    y[i] ~ dbinom(p[i], n[i]) 
    p[i] ~ dbeta(alpha[i], beta[i]) T(0.001,0.999) 
    alpha[i] <- phi * mu[i] 
    beta[i] <- phi * (1 - mu[i]) 
     
    mu[i] <- (a + b * (r[i]^c) + inprod(cty[1:Q], X[i,1:Q])) / (1 + b * (r[i]^c)) 
     
    resid[i] <- y[i]/n[i] - p[i] 
    residp[i] <- step(resid[i]) 
  } 
   
  # priors 
  a ~ dunif(0.001, 1) 
  b ~ dunif(0.01, 1) 
  c ~ dunif(1.01, 10) 
  for (g in 1:Q) {  
     cty[g] ~ dt(0, pow(2.5,-2), 1)  
  } 
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  phi ~ dgamma(20, 1) 
   
  # predicted prevalence and exceedance prob 
  for (j in 1:n.pred.x) { 
    pred[j] <- (a + b * (((j-1)/100)^c)) / (1 + b * (((j-1)/100)^c)) 
    exprob10[j] <- step(.1-pred[j]) 
  }  
} 
 

7.10.5 Supplemental Tables 
Supplemental Table 7.1. Deviance information criterion (DIC) values for all models fit. Bold font indicates lowest DIC 
value for a dataset and infection prevalence measure (any infection or heavy-intensity infection). 

Model Linear Quadratic Cubic v.d. Werf 

Microhematuria and any infection 

Baseline 1146.871 1147.571 1143.903 1164.832 

Follow up 1 502.5347 498.2412 497.9989 497.8581 

Follow up 2 287.6194 287.669 287.883 288.2922 

Microhematuria and heavy-intensity infection 

Baseline 1115.552 1108.235 1106.894 1098.904 

Follow up 1 447.5615 446.4221 446.3236 441.1899 

Follow up 2 245.8518 245.6101 245.6344 242.9806 
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Supplemental Table 7.2. Estimated percent chance of falling below 10%, 13% and 15% microhematuria thresholds for 

infection prevalence targets between 0 and 25% percent. Values in this table are plotted in Figure 7.1. 

 

 10% microhematuria threshold 13% microhematuria threshold 15% microhematuria threshold 
Infection 

Prevalence 
(%) 

Baseline 
Follow 

up 1 
Follow 

up 2 
Baseline 

Follow 
up 1 

Follow 
up 2 

Baseline 
Follow 

up 1 
Follow 

up 2 

0 99.92 98.81 99.83 100 99.84 100 100 99.97 100 

1 99.86 98.51 99.77 100 99.79 100 100 99.95 100 

2 99.75 97.91 99.69 100 99.69 100 100 99.93 100 

3 99.54 96.88 99.58 100 99.54 99.99 100 99.89 100 

4 99.12 95.14 99.41 99.99 99.30 99.99 100 99.83 100 

5 98.31 92.35 99.21 99.98 98.86 99.99 100 99.70 100 

6 96.69 87.84 98.90 99.95 98.02 99.98 100 99.51 100 

7 93.71 80.51 98.50 99.88 96.56 99.97 100 99.15 100 

8 88.77 69.30 97.95 99.69 94.03 99.95 99.99 98.46 100 

9 81.28 54.50 97.19 99.26 89.77 99.93 99.96 97.17 100 

10 71.02 38.50 96.19 98.35 82.67 99.89 99.85 94.81 100 

11 58.91 24.45 94.83 96.39 71.90 99.85 99.61 90.73 99.99 

12 46.16 13.97 93.10 92.85 57.97 99.77 99.07 83.97 99.98 

13 34.35 7.14 90.82 87.20 42.75 99.67 97.89 73.66 99.97 

14 24.19 3.31 87.98 79.27 28.61 99.49 95.54 60.36 99.96 

15 16.03 1.41 84.38 69.31 17.46 99.24 91.60 45.58 99.93 

16 10.07 0.57 80.05 58.32 9.60 98.88 85.74 31.37 99.90 

17 5.97 0.20 74.92 46.97 4.80 98.35 77.81 19.81 99.85 

18 3.34 0.06 69.01 36.25 2.20 97.58 68.40 11.36 99.75 

19 1.74 0.02 62.41 26.68 0.95 96.48 58.21 5.91 99.61 

20 0.84 0.01 55.23 18.70 0.38 94.93 47.62 2.84 99.37 

21 0.38 0 47.70 12.42 0.14 92.80 37.33 1.27 99.01 

22 0.17 0 40.20 7.85 0.05 89.96 28.04 0.53 98.49 

23 0.08 0 32.86 4.65 0.01 86.29 20.09 0.21 97.67 

24 0.03 0 26.10 2.57 0 81.67 13.65 0.07 96.49 

25 0.01 0 20.05 1.31 0 76.08 8.81 0.02 94.77 
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Supplemental Table 7.3. Estimated percent chance of falling below 10%, 13% and 15% microhematuria thresholds for 
heavy intensity infection prevalence (PHI) targets between 0 and 5% percent. Values in this table are plotted in Figure 
7.2. 

 10% microhematuria threshold 13% microhematuria threshold 15% microhematuria threshold 

PHI (%) Baseline 
Follow 

up 1 
Follow 

up 2 
Baseline 

Follow 
up 1 

Follow 
up 2 

Baseline 
Follow 

up 1 
Follow 

up 2 

0 97.24 0.86 47.82 99.67 6.20 79.42 99.94 16.44 91.97 

1 88.34 0.11 32.41 98.27 1.82 72.74 99.63 7.13 89.71 

2 51.58 0 9.69 86.58 0.23 48.37 95.96 1.49 77.07 

3 10.94 0 1.57 46.35 0.01 18.80 72.88 0.17 45.98 

4 0.80 0 0.24 10.52 0 5.37 29.32 0.01 18.89 

5 0.02 0 0.05 1.03 0 1.52 5.42 0 6.74 
 

7.10.6 Supplemental Figures 
Supplemental Figure 7.1. Posterior distributions of each infection prevalence at the baseline survey as determined by a 
cubic model with shading for the proportion of the distribution which falls above and below the microhematuria 
threshold of 10%. Blue indicates the proportion that is above the threshold. The medians correspond to the curve in 
panel C of Supplemental Figure 7.2. 
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Supplemental Figure 7.2. Focused version of Figure 7.2 with only model fits confined to the range 0-20% infection intensity prevalence. Best fitting models (see 
Supplemental Table 7.1 for DIC values which were used to determine best fitting) are represented by thicker line and shaded bands representing 95% credible 
intervals. 
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Supplemental Figure 7.3. Line plots of the percentage chance a school with a given Schistosoma haematobium infection prevalence will fall below a microhematuria threshold 

for all models considered. Thresholds of 10%, 13%, and 15% were considered. Estimates utilized children age 6-15 years from Burkina Faso, Mali, Niger, Tanzania, and Zambia 
participating in schistosomiasis control program activities between 2003 and 2008. Predictions were based on errors in variable Bayesian models. Models were fit separately for 
each survey 

. 
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Supplemental Figure 7.4. Focused version of Figure 7.4 with only model fits confined to the range 0-5% prevalence of heavy intensity infections. Best fitting 
models are represented by thicker line and shaded bands representing 95% credible intervals. 
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Supplemental Figure 7.5. Line plots of the percentage chance a school with a given Schistosoma haematobium prevalence of heavy intensity infections will fall 
below a microhematuria threshold for all models considered. Thresholds of 10%, 13%, and 15% were considered. Estimates utilized children aged 6-15 years 
from Burkina Faso, Mali, Niger, Tanzania, and Zambia participating in schistosomiasis control program activities between 2003-2008. Predictions were based on 
errors in variable Bayesian models. Models were fit separately for each survey. 
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8.1 Abstract 
Chronic intestinal schistosomiasis can cause severe hepatosplenic disease and is a neglected 

tropical disease of public health importance in sub-Saharan Africa, including Kenya. Although the goal of 

control programs is to reduce morbidity, milestones for program performance focus on reductions in 

prevalence and intensity of infection, rather than actual measures of morbidity. Using ultrasound to 

measure hepatosplenic disease severity is an accepted method of determining schistosomiasis-related 

morbidity; however, ultrasound has not historically been considered a field-deployable tool because of 

equipment limitations and unavailability of expertise. A point-of-care tablet-based ultrasound system 

was used to perform abdominal ultrasounds in a field investigation of schistosomiasis-related morbidity 

in western Kenya; during the study, other pathologies and pregnancies were also identified via 

ultrasound, and participants referred to care. Recent technological advances may make it more feasible 

to implement ultrasound as part of a control program and can also offer important benefits to the 

community. 

8.2 Short Report 
Intestinal schistosomiasis, caused by Schistosoma mansoni, is estimated to affect 54 million 

persons in sub-Saharan Africa, with more than 50% of the resultant morbidity found around the great 

African Lakes, including in Kenya (van der Werf et al. 2003b). Adult S. mansoni worms reside in the 

mesenteric venules in infected humans; female worms release eggs that become trapped in the tissues, 

primarily the liver, where their presence elicits a granulomatous inflammatory reaction that can result in 

morbidity. Severe morbidity due to intestinal schistosomiasis is characterized by hepatosplenic disease, 

including periportal fibrosis, and develops over 5–15 years of infection (Colley et al. 2014a). Advanced 

periportal fibrosis and resultant portal hypertension can lead to development of esophageal varices, 

which are rapidly fatal when ruptured. Although the WHO’s goal for control programs is to reduce 

morbidity, evaluation measures focus on reductions in prevalence and infection intensity, rather than 

actual measures of morbidity (WHO 2013). This is largely because of challenges in measuring severe 
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morbidity in the field and because symptoms associated with less severe schistosomiasis morbidity can 

result from other causes (King et al. 2008b). Country control programs need morbidity indicators that 

can be reliably measured, and the WHO has designated identification of these markers as a critical 

action to achieve elimination of schistosomiasis as a public health problem (WHO 2020b). In 2019, the 

Morbidity Operational Research for Bilharziasis Implementation Decisions (MORBID) pilot study was 

launched in an S. mansoni-endemic area of western Kenya to identify better methods to detect 

morbidity for control programs. Morbidity was assessed by several methods, one of which was 

ultrasound of the liver and spleen. The full project, including methods and results, will be further 

described in a future manuscript.  

Ultrasound is a useful diagnostic modality to directly visualize the liver and spleen. It is 

noninvasive, relatively simple to perform, generally has high community acceptance, rapidly provides 

results, and can distinguish between fibrosis caused by S. mansoni infection and other causes of hepatic 

disease (e.g. cirrhosis or viral hepatitis) (Cerri et al. 1984; Fataar et al. 1984; Homeida et al. 1988a; 

Homeida et al. 1988b; Abdel-Wahab et al. 1989; Kariuki et al. 2001). However, ultrasound has not been 

considered a feasible, field-deployable tool for routine use in control programs because of costs and 

limitations of machines and availability of ultrasonographic expertise. Older models of ultrasound 

machines were heavy, bulky, and required an external power source, i.e., a generator and fuel, which 

greatly affected transportation needs, personnel, logistics and costs. For example, during the 

Schistosomiasis Control Operational Research and Evaluation (SCORE) morbidity studies, the ultrasound 

machine used in Kenya was a refurbished Aloka SSD-900 portable model1 (Aloka, Tokyo, Japan) (Sircar et 

al. 2018). It weighed approximately 14.5kg and required a generator and gasoline for field use. That 

model could not store images electronically, so they were printed on special thermal paper after each 

 
1 Use of trade names and commercial sources is for identification only and does not constitute endorsement by the 
Centers for Disease Control and Prevention or the US Department of Health and Human Services. 
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examination for further study and review; however, the thermal paper images faded quickly, making 

them nearly impossible to evaluate retrospectively (Secor 2020b). When the Aloka unit was purchased 

in 2011, it cost $11,000 USD with an additional $800 USD for the printer (not including cost of shipping 

unit to Kenya). Updated clinical machines with equivalent features now cost anywhere from $22,000 to 

$36,0002 putting them financially out of reach of many country control programs or field studies.  

Very recently, tablet-based ultrasound systems consisting of a transducer connected to a 

compatible smart device have become available. We evaluated whether such a system would be useful 

to assess hepatosplenic disease related to intestinal schistosomiasis in a field study setting. We used the 

Lumify system by Philips Medical Imaging1 (Bothell, WA, USA), consisting of the C5-2 MHz broadband 

curved array transducer and compatible Android tablets with the Lumify app installed. The Lumify 

system is ideal for field applications:  it consists simply of the transducer and tablet and is therefore 

light, easily transportable, and does not require an external power source to perform the ultrasound. 

The display has excellent resolution, comparable to that of a clinical ultrasound machine. High-definition 

images and short videos can be saved on the tablet for later review. The transducers can be leased for a 

period of time, which reduces costs. For the Kenya MORBID pilot study, four broadband curved array 

transducers were leased and four compatible tablets were purchased.   

The MORBID sonographers were recent graduates of a medical imaging training program in 

Nairobi, Kenya. They were proficient in conducting ultrasound exams but needed additional training to 

identify different patterns of schistosomiasis-specific hepatosplenic disease as standardized by WHO 

(Richter et al. 2000). In June of 2019, the team traveled to the Kabatereine Schistosomiasis Research 

Centre at Bugoigo Field Station in Buliisa District, Uganda to undergo an intensive three-day training in 

schistosomiasis-specific ultrasonography based on the Niamey protocol (Richter et al. 2000). Bugoigo 

Field Station is situated close to Lake Albert where intestinal schistosomiasis is endemic and morbidity is 

 
2 Price as of 8/21/2020 when quote was obtained. 
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common, enabling the trainees to observe ultrasound patterns associated with advanced 

schistosomiasis.  

The MORBID study protocol was reviewed and approved by the Institutional Review Board of 

Maseno University, Kisumu, Kenya (Protocol # MSU/DRPI/MUERC/00675/19), and by the Office of the 

Associate Director for Science in the Center for Global Health, CDC, CDC investigators were considered 

to be nonengaged with human subjects. The MORBID study was conducted in 45 villages with 

approximately 200 residents recruited from each village. In total 6,483 participants received an 

abdominal ultrasound. Between 20-25 participants were examined each day. Images were viewed in 

real time and saved electronically to the tablet. Each afternoon, upon returning from the field, images 

were downloaded and saved onto an external hard drive and the tablets recharged. Images were 

reviewed and scored for schistosomiasis-related hepatosplenic pathology according to standardized 

guidelines (Figure 1) (Richter et al. 2000). Study morbidity findings will be summarized elsewhere 

(Odiere et al. 2021)   

Although the study’s objective was to identify hepatosplenic pathologies associated with 

schistosomiasis, each participant was given a complete abdominal ultrasound examination. In addition, 

non-schistosomiasis-associated pathologies were thereby identified, including uterine fibroids, 

polycystic kidney disease, hydronephrosis, prostatic hypertrophy, fatty liver, and liver cysts. Many areas 

of Kenya lack this type of advanced imaging capability, and these pathologies may otherwise have gone 

undiagnosed. Where further evaluation by a physician was needed, the sonographer generated a report 

and worked with local community health volunteers to refer the participant to a local hospital. For 

example, an adult male participant with severe lower limb edema was found to have advanced prostatic 

hyperplasia causing venous occlusion. He reported that he had been variously treated for other 

potential causes of his lower limb edema but had never received any imaging studies. Twenty-one 

pregnancies were diagnosed in women, some of whom were not aware that they were pregnant; the 
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sonographers were able to determine gestational age, expected delivery date, and fetal sex. Participants 

taking medication for an abdominopelvic condition were able to receive feedback, for example, whether 

the condition was resolving, and were provided a report to take to their physician. One participant was 

identified with situs inversus, a rare congenital condition whereby the major visceral organs are 

reversed from their normal positions; this individual displayed no symptoms or complications. 

A tablet-based ultrasound system offers several advantages over a standard ultrasound machine 

for assessing schistosomiasis morbidity. The battery life was sufficient to perform 25 ultrasounds per 

day (the number of abdominal ultrasounds that one sonographer could comfortably perform) and did 

not require recharging while in the field. The images were stored electronically on the device, negating 

the need to print the images at the time of the exam as was carried out in previous studies. The device’s 

memory was sufficient to store the images for all study participants examined that day. The tablet and 

transducer were very easy to transport to, from, and within field sites. This system is also significantly 

Figure 8.1. Examples of schistosomiasis-related ultrasound liver texture patterns, as defined by WHO’s 
Niamey protocol (Richter et al. 2000), observed during the Morbidity Operational Research for 
Bilharziasis Implementation Decisions study. (A) normal liver parenchyma; (B) “starry sky”; (C) “rings” 
(seen here) and “pipe stems”, which correspond to the “rings” seen in a scan perpendicular to the one 
where pipe stems are seen; (D) highly echogenic “ruff” seen around the portal bifurcation and main 
stem; (E) highly echogenic “patches” extending from main portal vein and branches into parenchyma. 
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more affordable than a standard ultrasound machine. To rent four Lumify transducers for 6 months 

($1,200 USD) and purchase four tablets ($15,000 KES without VAT or $140 USD each) was about half the 

cost of purchasing the Aloka in 2011 for the SCORE studies. The Lumify system includes the transducer, 

app, and access to technical support and telemedicine capabilities, but not a smart device. A comparable 

standard ultrasound machine retails for $22,000-36,000 USD3 and still requires an external power source 

to perform the examination. Another limitation of performing ultrasound in the field is the expertise 

needed to conduct the examination and interpret the images. We found that contracting recent 

graduates of a medical imaging training program and providing them with additional training necessary 

to identify schistosomiasis-specific pathologic changes was an effective solution for meeting this need. 

Another potential strategy is to develop focused point-of-care ultrasound applications which target only 

specific findings necessary for diagnosis and treatment decisions and provide training to clinicians 

already working in affected communities (Bélard et al. 2016). 

Measuring severity of hepatosplenic disease is an accepted method of determining 

schistosomiasis-related morbidity. Recent advances in ultrasound technology make it more feasible to 

incorporate this technology into a country control program and can also offer significant ancillary 

benefits to the community, such as the potential to identify other pathologies and refer people to care, 

as described here. Integrating ultrasound into control programs will help countries both reduce 

schistosomiasis morbidity and achieve WHO’s vision of universal health coverage by providing 

communities with access to advanced health services (WHO 2020b).  

 
3 Price as of 8/21/2020 when quote was obtained. 
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9 Discussion 
The thinking of policy makers in the late 1980s and early 1990s was to focus on treating the 

worst infections. At that time, treatment with praziquantel was too expensive for preventive 

chemotherapy (King et al. 1989; Stothard et al. 2009a). To achieve morbidity control, this was a sensible 

strategy, especially given the demonstrated correlation between intensity and severe morbidity (WHO 

1987; 1988). Nevertheless, despite the effectiveness of distribution of praziquantel via field trials 

(Kardaman et al. 1983; King et al. 1992; Kitange et al. 1993), praziquantel was not being widely used and 

the schistosomiasis burden continued to increase as few infected people were being treated with an 

effective and save medicine despite the cost of that medicine dropping to as little as USD 0.08 per tablet 

(Hotez et al. 2009a). The situation looked bleak in the late 2000’s (Hotez et al. 2010). 

Since then, much has changed with schistosomiasis and other neglected tropical diseases 

(Molyneux et al. 2017; Hotez et al. 2018). DALYs for NTDs were beginning to drop in the mid 2000’s and 

have continued to do so for over a decade (Global Burden of Disease Collaborative Network 2020). 

Praziquantel costs have remained low and increases in donations from Merck KGaA have continued. 

National control programmes were formed and have contributed significantly to this success (Deol et al. 

2019). Extensive work in the People’s Republic of China has brought S. japonicum infection largely under 

control (Xu et al. 2016). Economic development in Caribbean has meant that schistosomiasis in the 

region has likely been eliminated in many countries though this has yet to be certified (Secor et al. 2018; 

Hewitt et al. 2019). Global elimination has crept into the discussion (Fenwick et al. 2016). 

Unfortunately, these changes have not been reflected in schistosomiasis guidelines. Our 

knowledge of schistosomiasis has advanced since the initial research suggested morbidity is only caused 

by heavy-intensity infections (WHO 1987; 1988; 1989). The conclusions drawn (Mott 2004) and 

frameworks developed (WHO 2002; 2011b; 2013) from those reports are now outdated.  
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The goals of this PhD thesis were to improve components of the monitoring and evaluation 

framework for schistosomiasis. To that end, this thesis achieved the following: 

• Furthered the knowledge that praziquantel-mediated declines in S. mansoni and S. 

haematobium infections are associated with declines in children in schistosomiasis-

associated and some non-specific morbidity indicators as well as increases in self-

reported quality-of-life; 

• Provided initial evidence that preventive chemotherapy is associated with improved 

behaviour at school for egg-positive and egg-negative children; 

• Aggregated available evidence to show that untreated children or children with active 

infection had lower attendance and achievement compared to children treated with 

praziquantel or uninfected children; 

• Evaluated the WHO’s infection intensity categories to show that S. haematobium 

categories have different levels of morbidity across a range of indicators whereas S. 

mansoni categories do not; 

• Demonstrated that, for S. haematobium, children in schools below the elimination as a 

public health problem threshold (<1% PHI) and those with below the control of 

morbidity threshold (<5% PHI) had lower morbidity levels than children in schools above 

the control of morbidity threshold (≥5% PHI) but did not have different levels of 

morbidity between them, except for microhaematuria; 

• Showed that, for S. mansoni, children in schools below the elimination as a public health 

problem threshold (<1% PHI) had consistently lower morbidity levels compared to 

children in schools above the control of morbidity threshold (≥5% PHI) for observable 

fibrosis and laboratory-confirmed diarrhea but not for other indicators and not between 
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children in schools who have supposedly controlled morbidity (<5% PHI) and those that 

have not (≥5% PHI); 

• Found robust S. haematobium prevalence targets that control microhaematuria; and 

• Demonstrated that a tablet-based ultrasound system could allow control programmes 

to collect morbidity indicators more easily. 

The findings in this thesis contribute to schistosomiasis control efforts by utilizing innovative 

approaches to address monitoring and evaluation questions, validating research findings in real world 

monitoring and evaluation programmes, learning how the application of established interventions 

affects morbidity, and suggesting the application of new approaches can better evaluate the effect of 

control programs (Table 9.1). 

9.1 Implications for monitoring & evaluation programmes 

There are many potential improvements that could be made to the monitoring and evaluation 

framework and this section will summarize the potential improvements evaluated in this dissertation. 

9.1.1 Heavy-intensity prevalence targets are inadequate for control and elimination as a public 

health problem 
The analyses carried out in chapter 3 demonstrated that, on average, children infected with S. 

mansoni in areas undergoing preventive chemoprophylaxis experience reductions in a wide array of 

morbidity indicators regardless of whether treatment was annual or every two years. Wasting and 

elevated portal vein diameter were significantly decreased from year 1 to year 5. Mean scores on the 

PedsQL measure increased on every domain and overall. Though, there were conflicting results with 

stunting and VO2 max which increased and decreased, respectively, on the aggregate, though the effect 

for VO2 max was moderated by arm. In addition, a meta-analysis summarized in chapter 4 showed 
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aggregate decreases in morbidity levels associated with drug treatment. Other studies from the SCORE 

project summarized in chapter 4 demonstrated that infections are associated with worse learning 

outcomes and that treatment can improve some of these deficits.  

Though, the reductions realized in chapter 3 were in a sample of children who largely had light 

and moderate infections. Using weighted averages from multiply imputed datasets, 64.4% of children 

were egg positive at year 1 with 10.0% of those children possessing heavy-intensity infections. At year 5, 

Table 9.1. Contributions based on the Swiss Tropical and Public Health Institute principles. 

Chapter Manuscript Innovation Validation Application 

3 

Five-Year Impact of 
Different Multi-Year Mass 
Drug Administration 
Strategies 

Tested whether morbidity 
indicators change over 
time in a cohort  

  

4 
SCORE Studies on the 
Impact of Drug Treatment 
on Morbidity  

 

Summary of SCORE 
studies which measured 
the impact of 
preventative 
chemotherapy on 
morbidity  

 

5 

Associations between 
infection intensity 
categories and morbidity 
prevalence 

Evaluated the associations 
between intensity 
categories and morbidity 
indicator levels 

Strong associations for S. 
haematobium, but a lack 
of association for S. 
mansoni 

 

6 

Control and elimination of 
schistosomiasis as a public 
health problem 
thresholds fail to 
differentiate 
schistosomiasis morbidity 
prevalence in children 

Evaluated the associations 
between program targets 
and morbidity indicator 
levels 

Very strong association 
between S. haematobium 
and microhaematuria, 
but not for other 
morbidity indicators; lack 
of associations for S. 
mansoni 

Microhematuria 
levels could be used 
to determine 
infection targets 

7 

Urogenital 
schistosomiasis infection 
prevalence threshold for 
elimination as a public 
health problem 

Determined the 
probability that a school-
based infection prevalence 
will reduce morbidity to 
background level 

Infection prevalence 
provides a more robust 
and sensitive target than 
heavy-infection 
prevalence 

Once a location 
decides on the 
certainty with which 
they want to reduce 
to background 
morbidity, a 
threshold can be 
determined 

8 
Use of a tablet-based 
system to perform 
abdominal ultrasounds 

Provided a proof-of-
concept that a tablet-
based ultrasound system 
could be used in the field 
by control programs. 

 
Utilized the 
technology for the 
MORBID study 
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those weighted averages dropped to 45.6% and 2.1%. Infection levels dropped by about a third while 

heavy infection levels dropped by approximately three-fourths. S. mansoni specific ultrasound-derived 

measures were at low levels by year 5. Based on the WHO’s targets for morbidity control and 

elimination as a public health problem, the two communities in chapter 3 would be considered to have 

controlled morbidity because they fell below the 5% PHI target. This is despite over 45% of children 

being egg positive after five years of observation.  

The PHI targets in WHO’s guidelines were directly assessed in chapter 6. The only morbidity 

indicator for which PHI targets had consistently different levels of morbidity was microhaematuria for S. 

haematobium. There were some general trends, but the PHI categories could not reliably and 

consistently differentiate morbidity levels for any other indicator.  

Finally, the relationship between microhaematuria prevalence and PHI categories was analyzed in 

further depth in chapter 7 to determine whether a target PHI that aligned with microhaematuria 

prevalence could be estimated. For the microhaematuria thresholds of 10%, 13%, and 15%, a target of 

0% PHI had percent chances of 97.2%, 99.7%, and 99.9% at baseline, respectively, but results differed at 

follow up surveys.  At follow up 1, the target of 0% PHI had percent chances of 0.9%, 6.2%, and 16.4%. 

These same percent chances increased at follow up 2 to 47.8%, 79.4%, and 92.0%, respectively. Some of 

this volatility may be caused by schools dropping out of the study, but the same schools dropped out in 

the infection prevalence analyses and those targets were much more robust than for PHI. 

These chapters suggest that the prevalence of heavy-intensity infections is not a good 

representation of the morbidity status of a group of children. One reason for this from a statistical 

perspective, is the WHO’s interpretation of the aggregation of research up to the mid-1980s (WHO 

1987; 1988; 1989), which considered a nonsignificant statistical test to prove similarity, an incorrect 

interpretation. Concluding similarity from a nonsignificant superiority test is incorrect (Altman et al. 
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1995). Superiority tests have a null hypothesis of no difference and an alternate hypothesis of a 

difference. Proper testing to support the WHO’s conclusion would have flipped the null and alternate 

hypotheses, meaning the alternate hypothesis should be of no difference. Only with equivalence or non-

inferiority testing could their conclusion been achieved. In addition, significance tests do not take into 

account the practical importance of such a difference (Gelman et al. 2006).  

Another flaw in WHO’s misinterpretations of the historical results was not taking into account 

the insensitivity of the diagnostic tests (King 2015). Those studies largely used one stool or urine 

specimen. Since both urine filtration and Kato-Katz thick smear tests have the likelihood of missing light 

intensity infections, many of the participants deemed negative may have had light infections, possibly as 

many as 20-40% (King 2015; Bärenbold et al. 2017). As a result, no eggs may be found from a single 

filtration or stool examination taken from a person with a light or potentially moderate infection. Thus, 

the lack of difference observed by WHO may be because people with light or even moderate infections 

were misclassified as uninfected, thus inflating the morbidity estimate for uninfected people and 

contributing to the non-significant findings (King 2015). 

As mentioned in the introduction, treatment leads to less pathology (King et al. 2005), especially 

severe pathology (Richter 2003; Mutapi et al. 2017; Wilson 2020). Since defining the control and 

elimination as a public health problem thresholds by PHI, studies have found that less clinically severe 

manifestations, which can occur even with light infections and are common in children, have a greater 

impact on DALYs lost compared to the most severe pathologies (King et al. 2005). Since any Schistosoma 

infection can cause morbidity (King et al. 2008b; King 2009; 2015; King et al. 2020b), focusing on severe 

pathologies does not address most of the disease burden experienced around the world and, 

potentially, ignores the populations most vulnerable to the effects of Schistosoma infections. 
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9.1.2 Targets based on morbidity 
In chapter 7 we used the results from chapter 6 to determine whether, via statistical modelling, a 

robust infection prevalence could be estimated for microhaematuria. Microhaematuria was the 

indicator which showed the most promise for defining a target because of the strong association with 

PHI-based categories. Also, given the long history of reporting on the relationship between 

microhaematuria and S. haematobium infection, there is empirical evidence of the proportion of 

microhaematuria that is not caused by S. haematobium infection. We utilized that information to set 

threshold levels of microhaematuria to estimate potential targets. Our results were largely consistent 

across surveys, where egg positive prevalence targets of ≤ 5%, 8%, and 11% provided a chance of 95% or 

more that a school would fall below the microhaematuria thresholds of 10%, 13%, and 15%, 

respectively.  

These analyses were successful at determining a robust target for control programmes, but it 

remains unclear whether this target will control other pathology. Other morbidities, such as bladder 

fibrosis or female genital schistosomiasis, may also be controlled or become control at such prevalence 

levels, but further evaluation is needed. In addition, background levels for those pathologies or other 

morbidity indicators are not well established and are needed for such an analytic approach. 

The lack of knowledge regarding background levels of morbidity for other morbidity indicators 

means defining morbidity targets is challenging. Taking the results from chapter 3 as an example, the 

two communities in chapter 3 would have controlled morbidity because they fell below WHO’s 5% PHI 

target. Stunting (11.2%), wasting (8.3%), and anemia (41.9%) remained high at year 5, though 

schistosomiasis is not the only cause of growth retardation and anemia. Since confounding factors could 

be causing the elevated levels, it’s not possible to determine whether all morbidity due to 

schistosomiasis has been removed. Ultrasonic measures considered to be S. mansoni specific were at 

low levels by year 5. The prevalence of enlarged portal vein diameter decreased from 9.9% in year 1 to 
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1.4% by year 5 while hepatic fibrosis as measured by image pattern C or worse was consistent from 

baseline to endline. Research is needed to establish how much morbidity is caused by schistosomiasis 

and determine appropriate thresholds which are aligned with these background levels. 

Once background levels are established, analyses like those done in chapter 7 can be performed 

on multiple morbidity targets. That way, targets can be established based on a suite of morbidity 

indicators instead of a single indicator. The severity and typical onset could also be factored into the 

calculation as well using a decision theoretic approach. 

9.1.3 Changes are needed for S. mansoni assessment 
The analyses in chapter 5 found minimal correlation between an individual’s morbidity and 

infection intensity categories across the three surveys. In chapter 6, analyses of school-level PHI 

categories found morbidity levels overlapped between the PHI categories, especially for children in 

schools between 1 and 5% PHI and schools ≥5% PHI. These chapters suggest a reassessment of S. 

mansoni evaluation is needed. Currently, a robust target based on morbidity cannot be determined 

since associations between morbidity levels and infection are lacking.  

As mentioned in chapter 6, there are many potential reasons for the lack of association. Analyses 

in chapter 6 explored the possibility of reducing the number of intensity categories to three instead of 

four, but those analyses did not see improvement in the association. Other reasons might be the 

variability in fecal count measures (Polman et al. 1998; Utzinger et al. 2001), age of the participants 

(Boisier et al. 1998; King et al. 2003; Booth et al. 2004), or reversion of morbidity due to a long period 

post-treatment (Doehring-Schwerdtfeger et al. 1992a; Boisier et al. 1998). In addition, since prolonged 

treatment will result in less severe pathology (Richter 2003; Mutapi et al. 2017; Wilson 2020), the severe 

complications of hepatosplenic disease will become increasingly rare. 
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A reassessment may involve sampling from a different population to better assess the presence of 

morbidity. In addition, a deeper look at the reversion of pathology while under treatment may be 

beneficial. For subtle pathology, treatment for many years may be needed for symptoms to disappear. 

Potentially, cohorts may be more useful to track changes in morbidity over time and determine 

treatment effectiveness. Other morbidity indicators may hold greater utility than those indicative of 

severe pathology. Potentially, self-reported data could be utilized (Brooker et al. 2001; Lengeler et al. 

2002a; 2002b). This has been popular with urogenital schistosomiasis (Ansell et al. 1997; Poggensee et 

al. 2000; Lengeler et al. 2002a; Clements et al. 2008; Bogoch et al. 2012; Okeke et al. 2014) likely 

because responses for S. haematobium have better reliability than for S. mansoni (Lengeler et al. 

2002b).  

9.1.4 Lack of incentives to collect heavy-intensity infection data 
Since prevalence dictates the preventive chemotherapy frequency (WHO 2011b) and the 

differences in recommended interventions are vague for control of morbidity and elimination as a public 

health problem categories (WHO 2013), there is little incentive to collect quantitative egg counts. Also, 

collecting a binary positive or negative value likely saves time. For Kato Katz, a trained microscopist may 

take approximately 15 minutes per slide to count all eggs but this could be as short as 30 seconds to 

determine positive or negative (Secor 2020a). 

9.1.5 Use of technology to improve programme goals 
Ultrasonic evaluation is considered the standard for measuring pathology that is specific to 

Schistosoma infection. Unfortunately, ultrasound use is laborious and cumbersome due to the 

portability challenges. This is possible for research studies, such as SCORE (Sircar et al. 2018), but 

impractical for programmes.  

In chapter 8, a new instrument incorporating a tablet and a special probe was described. This 

instrument increases the portability of ultrasound by negating the need for transporting a large 
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machine, generator, and fuel to study locations. In addition, the tablet allows the operator to save 

images for future review. Study staff were able to review 20-25 participants per day, suggesting that 

multiple probes and teams may allow for comprehensive assessment in an area within a short period of 

time. 

Any new technology needs to be affordable, usable, and ethical to be beneficial for control 

programmes. Costing will need to be studied to determine whether tablets and the specialized probes 

are economically viable for programmes. Training will be required for staff to administer and read 

ultrasound images, which may require specialized training. For instance, geospatial techniques have 

been used extensively for schistosomiasis (Raso et al. 2005; Clements et al. 2006; Brooker 2007; Schur et 

al. 2011; Schur et al. 2012; Woodhall et al. 2013; Chammartin et al. 2014; Scholte et al. 2014; Lai et al. 

2015; Manyangadze et al. 2015) and other NTDs, but their use remains largely confined to research 

studies and rarely by in country control programmes. Using drones to map snail habitats could be useful 

for targeting interventions (Chamberlin et al. 2021), but, similarly, use is led by research organizations. 

More demonstrations and more detailed analysis of the tablet-based ultrasound data are needed to 

fully characterize the usefulness of this technology and how it compares to traditional ultrasound. 

Finally, ethical guidelines need to be developed to protect participants against harm. Ultrasound can 

detect other pre-existing conditions and control programmes will need clear guidance on handling these 

situations. 

9.2 Limitations 
Participants in all studies were from areas endemic for multiple NTDs, which have the potential to 

confound relationships between schistosomiasis and morbidity markers. Efforts were made to focus on 

schistosomiasis-specific morbidity indicators, but these are difficult to collect, may not present the 

entire range of morbidity caused by Schistosoma infection, and may have associations with other 
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diseases (Davis et al. 2015), which could lead to measurement error of Schistosoma morbidity 

indicators. 

The possibility of measurement error of Schistosoma infections is highly likely given the varied 

number of urine samples or stools evaluated. S. mansoni data included in chapters 3 and 4 used multiple 

stool samples, but those in chapters 5, 6, and 7 used one or two stool samples. Although modelling 

suggests that single-slide Kato-Katz thick smear testing may be sufficient for monitoring in moderate- 

and high-prevalence areas (Coffeng et al. 2020), there is a recognition that current diagnostics will not 

be sufficient after the initiation of a control programme (Stothard et al. 2014; Utzinger et al. 2015; 

Knopp et al. 2018). Once a schistosomiasis control programme becomes a late-stage control 

programme, the sensitivity and specificity will need to be at least 99% (Utzinger et al. 2015; King et al. 

2020d), neither of which are achieved with a single urine filtration or Kato-Katz thick smear. Approaches 

to improve this, such as multiple samples over multiple days (Lamberton et al. 2014; Utzinger et al. 

2015), incorporating multiple tests (Joseph et al. 1995), or adjusting the prevalence for the diagnostic 

test characteristics (Reiczigel et al. 2010; Diggle 2011) are not feasible for control programmes. 

 In addition, multiple datasets did not include evaluations of the more severe manifestations of 

S. mansoni infections, such as hepatomegaly and splenomegaly. This did not enable us to evaluate the 

utility of these indicators. Though, as endemic areas receive more rounds of preventive chemotherapy, 

the likelihood of severe disease manifestations will decrease, suggesting these indicators may not be as 

useful in the future. 

9.3 Future directions 

9.3.1 Correlations between prevalence in 9-12 year olds and adults post-treatment 
Currently, the treatment strategy for schistosomiasis is determined by the prevalence in school-

age children (WHO 2013). High-risk adults are also to be treated in high- and moderate-risk 

communities, but they do not contribute data to the assessment. A modelling study demonstrated that, 
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in areas with a high-prevalence of school-aged children, the optimal treatment strategy depends on the 

prevalence of adults (Toor et al. 2018b), suggesting that the evaluation of adults is needed to optimize 

the treatment strategy. Inclusion of adults has also shown to be a beneficial adaptation for meeting 

program goals in some S. haematobium scenarios (Kura et al. 2020). Though, a prior study explored the 

correlations between 9-12 year old, 5-8 year old, and adult participants at one SCORE site prior to the 

initiation of praziquantel dissemination and found reasonably good correlation between community 

level 9-12 year old prevalence and adult prevalence (Mwinzi et al. 2015b). If this association holds and is 

strong post-treatment, then there may not be a need to collect information from adults. 

9.3.2 Longitudinal correlations between macrohaematuria and microhaematuria 
 Self-reported macrohaematuria provides similar diagnostic performance to microhaematuria 

evaluated via reagent strips (van der Werf et al. 2004) or when used in combination to improve the 

diagnosis for urogenital schistosomiasis (Bassiouny et al. 2014; Okeke et al. 2014). Self-reporting of 

macrohaematuria does not appear to be affected by the recall period (van der Werf et al. 2003a) and 

has been shown to be a cost-effective tool for identifying high-risk schools (Ansell et al. 2002). Though, 

none of these studies evaluated self-reported macrohaematuria and microhaematuria longitudinally to 

see if the correlation changes pre- and post-initiation of praziquantel treatment or if remains consistent 

for those with and without urogenital schistosomiasis infection. 

9.3.3 Microhaematuria targets by age 
 Chapter 7 found infection prevalence targets that could keep microhaematuria below particular 

thresholds. Those analyses controlled for age and sex since microhaematuria prevalence varies by age 

and sex in school-aged children in areas with (Akinneye et al. 2018) and without (Dodge et al. 1976) 

endemic schistosomiasis. Though, these targets should be explored further to determine if targets 

should be adjusted to match the age and sex distribution of the sample. 
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9.3.4 Individual intensity level that reduces microhaematuria to a background level 
 The focus of chapter 7 was on school-level infection and microhaematuria prevalence. A 

different approach could be to determine the best estimate of the intensity level that reduces 

microhaematuria to a background level. 

9.3.5 Ultrasound scoring utility and longitudinal changes 
A body of literature exists on the evolution of ultrasound-measured pathology in school-aged 

children (Richter 2000), though a deeper understanding of changes in specific pathology may be 

warranted, especially related to the ultrasound scoring. Although a scoring system is included in the 

schistosomiasis ultrasound guidelines (Richter et al. 2000), it does not appear to be widely used. A 

better understanding of the scale and especially changes over time may facilitate the interpretation of 

the scale and promote its utility. 
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10 Conclusions 
WHO’s 2021-2030 NTD Roadmap is targeting an increase in the number of countries validated for 

elimination as a public health problem from 26 in 2020 to 49 in 2023, 69 in 2025, and 78 in 2030 (WHO 

2020b). To achieve these goals, a robust monitoring and evaluation framework is needed to measure 

progress and validate whether geographic areas have eliminated schistosomiasis as a public health 

problem. The research presented in this thesis provides some evidence of potential improvements to 

the schistosomiasis monitoring and evaluation framework, specifically: 

• S. mansoni infection intensity categories do not align with morbidity indicators and are a poor 

summary of the morbidity afflicting a sample of children; 

• S. haematobium infection intensity categories are associated with the prevalence of morbidity 

indicators and provide a good summary of the morbidity afflicting a sample of children; 

• Existing targets for control of morbidity and elimination as a public health problem based on the 

prevalence of heavy-intensity infections do not consistently correlate with morbidity levels 

except for microhaematuria for S. haematobium infections; 

• S. haematobium infection targets based on controlling microhaematuria prevalence to a 

prespecified level provide a high likelihood of success and are sensitive to changes; 

• S. haematobium heavy-intensity infection targets based on controlling microhaematuria do not 

provide the same level of certainty as any infection targets and are not sensitive enough to 

detect slight changes in microhaematuria status; 

• Control of morbidity and elimination as a public health problem targets based on the prevalence 

of heavy-intensity S. mansoni infections do not associate with morbidity indicators; 

• There are a lack of incentives to collect heavy-intensity data; and 

• Control programmes should explore the use of technology, especially tablet-based ultrasound 

systems, to collect data on schistosomiasis morbidity. 
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