
PhD-FSTM-2022-85
The Faculty of Science, Technology and Medicine

DISSERTATION

Defense held on 16/09/2022 in Luxembourg

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG
EN INFORMATIQUE

by

Alvaro Mario VEIZAGA CAMPERO
Born on 28 July 1985 in Cochabamba, Bolivia

MODEL-BASED SPECIFICATION AND ANALYSIS OF
NATURAL LANGUAGE REQUIREMENTS IN THE

FINANCIAL DOMAIN

Dissertation defense committee
Dr. Lionel BRIAND, Dissertation Supervisor
Professor, University of Luxembourg

Dr. Domenico BIANCULLI, Chairman
Professor, University of Luxembourg

Dr. Seung Yeob SHIN, Vice Chairman
Research Scientist, University of Luxembourg

Dr. Alessio FERRARI, Member
Research Scientist, National Research Council of Italy (CNR)

Dr. Fabiano DALPIAZ, Member
Professor, Utrecht University, the Netherlands

Acknowledgement

It is a genuine pleasure to express my gratitude to my supervisor Prof. Dr. Lionel Briand, for ac-

cepting me into his research group and for teaching, guiding, and leading me in this process with such

dedication and patience. I am honored to have had the opportunity to learn from his academic excellence

and his remarkable experience.

I would like to thank my co-supervisor Seung Yeob Shin, for his insights, guidance, and valuable

feedback while developing our research work. All the things I have learned from him, professionally and

personally, have had a valuable impact on my persona.

A particular acknowledgment to my former co-advisors Prof. Dr. Mehrdad Sabetzadeh, Dr. Mauricio

Alferez and Dr. Damiano Torre for the support they gave me throughout the process of my doctoral

research.

I would like to thank Dr. Alessio Ferrari, Prof. Dr. Fabiano Dalpiaz, and Prof. Dr. Domenico Bianculli

for having accepted to be part of the jury that evaluated my doctoral thesis.

I would also like to express my gratitude to the Investment Fund Services team of Clearstream

Luxembourg for their valuable feedback to the research work and for providing information to develop

case studies.

A special thank you goes to my parents, Zunilda and Mario, for being my strongest motivation and

source of strength, not only for developing this doctoral thesis but also for my personal and professional

growth. I thank my sister, Adriana, for her unconditional help and support.

Finally, I would like to thank my research group, Software Verification and Validation, for the friendly

working environment. Thank you for the helpful advice, support, feedback and exchanges received from

Jaekwon, Angelo, Fitash, and my other colleagues.

Abstract

Software requirements form an important part of the software development process. In many software

projects conducted by companies in the financial sector, analysts specify software requirements using

a combination of models and natural language (NL). Neither models nor NL requirements provide a

complete picture of the information in the software system, and NL is highly prone to quality issues, such

as vagueness, ambiguity, and incompleteness. Poorly written requirements are difficult to communicate

and reduce the opportunity to process requirements automatically, particularly the automation of tedious

and error-prone tasks, such as deriving acceptance criteria (AC). AC are conditions that a system must

meet to be consistent with its requirements and be accepted by its stakeholders. AC are derived by

developers and testers from requirement models. To obtain a precise AC, it is necessary to reconcile the

information content in NL requirements and the requirement models.

In collaboration with an industrial partner from the financial domain, we first systematically developed

and evaluated a controlled natural language (CNL) named Rimay to help analysts write functional

requirements. We then proposed an approach that detects common syntactic and semantic errors in NL

requirements. Our approach suggests Rimay patterns to fix errors and convert NL requirements into

Rimay requirements. Based on our results, we propose a semiautomated approach that reconciles the

content in the NL requirements with that in the requirement models. Our approach helps modelers enrich

their models with information extracted from NL requirements. Finally, an existing test-specification

derivation technique was applied to the enriched model to generate AC.

The first contribution of this dissertation is a qualitative methodology that can be used to systematically

define a CNL for specifying functional requirements. This methodology was used to create Rimay, a

CNL grammar, to specify functional requirements. This CNL was derived after an extensive qualitative

analysis of a large number of industrial requirements and by following a systematic process using lexical

resources. An empirical evaluation of our CNL (Rimay) in a realistic setting through an industrial case

study demonstrated that 88% of the requirements used in our empirical evaluation were successfully

rephrased using Rimay.

The second contribution of this dissertation is an automated approach that detects syntactic and

semantic errors in unstructured NL requirements. We refer to these errors as smells. To this end, we first

proposed a set of 10 common smells found in the NL requirements of financial applications. We then

derived a set of 10 Rimay patterns as a suggestion to fix the smells. Finally, we developed an automatic

approach that analyzes the syntax and semantics of NL requirements to detect any present smells and then

i

suggests a Rimay pattern to fix the smell. We evaluated our approach using an industrial case study that

obtained promising results for detecting smells in NL requirements (precision 88%) and for suggesting

Rimay patterns (precision 89%).

The last contribution of this dissertation was prompted by the observation that a reconciliation of the

information content in the NL requirements and the associated models is necessary to obtain precise AC.

To achieve this, we define a set of 13 information extraction rules that automatically extract AC-related

information from NL requirements written in Rimay. Next, we propose a systematic method that generates

recommendations for model enrichment based on the information extracted from the 13 extraction rules.

Using a real case study from the financial domain, we evaluated the usefulness of the AC-related model

enrichments recommended by our approach. The domain experts found that 89% of the recommended

enrichments were relevant to AC, but absent from the original model (precision of 89%).

Contents

Abstract i

Contents iii

List of Figures vi

List of Tables vii

1 Introduction 1
1.1 Context and Motivation . 1

1.2 Research Contributions . 2

1.3 Dissertation Outline . 3

2 Background 5
2.1 Controlled Natural Languages . 5

2.2 Natural Language Processing . 5

2.2.1 UML . 8

2.2.2 Acceptance Testing . 8

3 On Systematically Building a CNL for Functional Requirements 11
3.1 Motivations and Contributions . 11

3.2 Related Work . 14

3.3 Qualitative Study . 17

3.3.1 Research Question . 17

3.3.2 Study Context and Data Selection . 18

3.3.3 Analysis Procedure . 19

3.4 Controlled Natural Language for Functional Requirements 29

3.4.1 Condition Structures . 30

3.4.2 Conditions . 31

3.4.3 System Response . 34

3.5 Empirical Evaluation . 35

iii

3.5.1 Case Study Design . 36

3.5.2 Data Collection . 38

3.5.3 Collecting Evidence and Results . 39

3.5.4 Analysis of Collected Data . 40

3.6 Threats to Validity . 43

3.6.1 Construct Validity . 43

3.6.2 Internal Validity . 44

3.6.3 External validity . 44

3.6.4 Reliability Validity . 44

3.7 Practical Considerations . 45

3.8 Conclusions . 46

4 Quality Assurance on Requirements 49
4.1 Introduction . 49

4.2 Requirements Smells and Rimay Patterns . 50

4.2.1 Requirements Smells . 51

4.2.2 Rimay Patterns . 51

4.3 Approach . 53

4.3.1 Step 1: Preprocess Requirements . 55

4.3.2 Step 2: Separate Requirement into Segments 55

4.3.3 Step 3: Identify Smells . 59

4.3.4 Step 4. Suggesting Rimay Patterns . 61

4.4 Evaluation . 62

4.4.1 Case Study Design . 63

4.4.2 Data Collection and Preparation . 63

4.4.3 Collecting Evidence and Results . 64

4.4.4 Analysis of Collected Data . 65

4.5 Discussion . 67

4.5.1 Approach Performance . 67

4.5.2 Lack of Testing Data . 69

4.6 Threats to Validity . 69

4.7 Related Work . 69

4.8 Conclusions . 70

5 Leveraging Natural-language Requirements for Deriving Better Acceptance Criteria from
Models 73
5.1 Motivations and Contributions . 73

5.2 Background . 76

5.2.1 Writing NL Requirements in Rimay. 76

5.2.2 Automated Generation of AC . 76

5.3 Approach Overview . 77

5.4 Information Extraction Approach for Deriving better AC 80

5.4.1 Step 1. Extract Information . 80

5.4.2 Step 2. Identify Model Elements to Enrich . 82

5.4.3 Step 3. Create Recommendations . 83

5.4.4 Step 4. Enrich Model . 83

5.4.5 Step 5. Generate Acceptance Criteria . 84

5.5 Empirical Evaluation . 84

5.5.1 Objectives and Design . 85

5.5.2 Preparation for Data Collection . 85

5.5.3 Collecting Evidence and Results . 85

5.5.4 Analysis of Collected Data . 86

5.6 Threats to Validity . 87

5.7 Related Work . 88

5.8 Conclusions . 89

6 Conclusions & Future Work 91
6.1 Summary . 91

6.2 Future Work . 92

A Action Phrases in Rimay 93

Bibliography 101

List of Figures

2.1 Example of a syntax tree and summary of Tregex operators 6

2.2 Software development activities and testing levels – the “V Model” [3] 8

3.1 Overview of our analysis procedure . 20

3.2 Identify codes (Step 2) . 22

3.3 Obtaining CNL grammar rules from requirements related to the VerbNet code Send 11.1 . . 27

3.4 Examples of condition structures and system responses . 33

3.5 Screenshot of the requirements entry dialog box in the Rimay editor 35

3.6 Case study design . 37

3.7 Data model of the collected requirements . 38

4.1 Rimay conceptual model . 53

4.2 Approach overview . 55

4.3 Detection smells and suggested Rimay patterns . 56

4.4 Example Tregex pattern to match conditions after system response 58

5.1 Example of a (requirements) model . 74

5.2 The generated AC . 74

5.3 Approach overview . 77

5.4 Model excerpts . 79

5.5 Illustration of information extraction applied to requirement R1 from Table 5.1 82

5.6 Enriched model and the mapping of new elements to the extraction rules of Table 5.3 84

5.7 Example acceptance criterion related to the model of Figure 5.6 84

vi

List of Tables

2.1 WordNet entry for the verb create . 7

3.1 Summary of related work . 15

3.2 Three requirements extracted from a SRS during Step 1 of Figure 3.1 20

3.3 Senses and synonyms of the verb regenerate retrieved from WordNet. 23

3.4 VerbNet codes identified during our qualitative study . 25

3.5 Codes proposed during the qualitative study . 26

3.6 Grammar rule: OBTAIN_13_5_2 . 34

3.7 Percentage of representable requirements and frequencies of causes for non-representable

requirements . 39

3.8 VerbNet codes identified during our empirical evaluation 40

3.9 Codes proposed during our empirical evaluation . 40

3.10 Z-tests inputs . 42

3.11 Z-test results . 43

4.1 Catalogue of 10 smells . 52

4.2 Rimay patterns . 54

4.3 Tregex patterns to identify segments in requirements . 57

4.4 Information content characterizing the requirement segments 58

4.5 Structural patterns for smell detection . 60

4.6 Tregex pattern to detect incomplete conditions . 61

4.7 Rimay patterns by segment frequency . 62

4.8 S batch distribution . 63

4.9 Smells - Annotation results for set S . 64

4.10 Rimay patterns - Annotation results for set S . 65

4.11 Smell detection - Performance on set S . 66

4.12 Performance pattern suggestion dataset S . 67

4.13 Example of missed and misclassified annotations. 68

5.1 Example NL requirements . 78

5.2 Traceability matrix . 79

vii

5.3 Information extraction rules for NL requirements written in Rimay and the associated model-

enrichment recommendations . 81

5.4 Recommendations to enrich the model of Figure 5.4 . 83

5.5 Questionnaire answers . 85

5.6 Comparison of the original and enriched models . 86

5.7 Comparison between the original AC (Original) and the AC derived from the enriched model

(Augmented) . 86

5.8 Accuracy metrics for our recommendations . 87

5.9 Summary of related work . 88

A.1 Types of action phrase rules in Rimay (from Qualitative Study). 93

A.1 (continued) Types of action phrase rules in Rimay (from Qualitative Study). 94

A.1 (continued) Types of action phrase rules in Rimay (from Qualitative Study). 95

A.1 (continued) Types of action phrase rules in Rimay (from Qualitative Study). 96

A.1 (continued) Types of action phrase rules in Rimay (from Qualitative Study). 97

A.1 (continued) Types of action phrase rules in Rimay (from Qualitative Study). 98

A.2 Types of action phrase rules in Rimay (from Empirical Evaluation). 99

Chapter 1

Introduction

1.1 Context and Motivation

Software requirements have emerged as powerful instruments for software development. Requirements

describe the functional capacities, features, qualities, and operational constraints of a system [65, 51].

Defining and identifying software requirements is an evolving process that occurs repeatedly throughout

the lifecycle of a project until a consensus is reached among all interested parties.

The quality of software requirements has a great influence on the quality of a software system.

Previous studies have established that poorly written requirements are one of the main causes of software

project failures in the industry. Poorly written requirements are characterized as unclear, ambiguous, or

incomplete and are difficult to communicate among project stakeholders [1, 28, 69]. In addition, it is

well known that the cost of fixing problems related to requirements increases as the life cycle of software

development progresses [11]. Therefore, it is paramount that requirement problems be identified in the

early stages of a software development project.

In practice, analysts from companies in the financial sector express software requirements using natural

language (NL), along with models usually represented in some type of unified modeling language (UML)

language [45]. Requirement models, such as activity diagrams, class diagrams, and use-case diagrams,

are used to describe the functionalities of a software system. NL requirements often provide fine-grained

details about the software system that would not normally be included in the requirements models.

NL has been widely used to express software requirements. Existing research indicates that most

users (61%) prefer to express requirements using NL [32] and 52% of software requirements are written

in NL [45]. Despite the popularity of NL, common problems arise when using it to specify software

requirements. These problems include poor testability, inappropriate implementation, wordiness, under-

specification, incompleteness, duplication, omission, complexity, vagueness, and ambiguity [42, 22].

Requirement models have been increasingly used by large financial institutions, where requirements

are modeled and expressed using UML language. In this process, analysts specify system behaviors

using activity diagrams. The types and properties of data or objects manipulated in activity diagrams are

1

CHAPTER 1. INTRODUCTION

described using class diagrams. Analysts then define the actors in the use-case diagrams. These actors

perform the actions described in the activity diagrams.

In this dissertation, we seek to address the barriers encountered by the financial sector when writing

requirements. The current practice of companies in this sector is to write NL requirements using a general-

purpose text editor without enforcing any requirement structure. The lack of structured requirements

poses major difficulties in automating certain tasks in the software development process (e.g., generating

acceptance criteria [AC]). AC are conditions derived by developers and testers based on requirement

models, which a system must meet to be consistent with its requirements. To obtain precise AC, it is

necessary to reconcile the information content of both NL requirements and models. To our knowledge,

there is no existing approach that considers the above challenges as observed in companies in the financial

domain. Existing approaches are currently limited to addressing these challenges in other domains.

Our industrial partner is Clearstream Services SA Luxembourg, a post-trade services provider owned

by Deutsche Borse AG. Clearstream reported the following issues to us: (1) communication problems

and delays in the software development process are caused by poorly expressed requirements; and (2)

Clearstream wishes to leverage NL requirements information to enable automation of abstract test case

generation.

Throughout this dissertation, we provide effective solutions to tackle the aforementioned needs. More

concretely, we present solutions that improve the quality of requirements. High-quality requirements can

enable task automation for tedious and error-prone activities performed on software development process

requirements (e.g., the generation of AC). We believe that this dissertation makes a major contribution to

research in the field of requirements engineering. In the following section, we describe our contributions

in detail.

1.2 Research Contributions

In this dissertation, we propose solutions to improve the quality of NL requirements. Furthermore, we

introduce a methodology that aims to reconcile the information content present in NL requirements and

requirement models. Our solutions have been developed and empirically evaluated in close collaboration

with our industrial partner, Clearstream. In this dissertation, we make several contributions.

Concerning the systematic building of a controlled NL for functional requirements, we developed and

evaluated a controlled natural language (CNL) named Rimay to help analysts write functional requirements.

We relied on Grounded Theory to build Rimay and followed well-known guidelines for conducting and

reporting industrial case study research. The main contributions of this chapter are as follows: (1)

a qualitative methodology to systematically define a CNL for functional requirements (intended for

general use across information-system domains), (2) a CNL grammar to represent functional requirements

(derived from our experience in the financial domain but applicable, possibly with adaptations, to other

information-system domains), and (3) an empirical evaluation of our CNL (Rimay) through an industrial

case study. These contributions have already been published [71] and are presented in Chapter 3.

In terms of requirement quality assurance, we proposed a set of 10 smells that represent the most

common syntactic and semantic errors found in the NL requirements of some financial applications.

We then derived 10 Rimay patterns. These patterns assist analysts in fixing the smells found in NL

requirements. Our results led us to propose an automated approach that automatically detects the 10

smells in NL requirements and suggests Rimay patterns to analysts to improve the overall quality of NL

2

1.3. DISSERTATION OUTLINE

requirements. The results of a case study to assess the accuracy of the results obtained by our approach,

as well as the aforementioned contributions, are outlined in Chapter 4.

Finally, concerning efforts to leverage NL requirements with the goal of deriving better acceptance

criteria from models, our work was prompted by the observation that a reconciliation of the information

content in NL requirements and models is necessary to obtain precise AC. We performed this reconciliation

by devising an approach that automatically extracts AC-related information from NL requirements and

helps modelers enrich their models with the extracted information. An existing AC derivation technique

was then applied to the model, which has now been enriched by the information extracted from the NL

requirements. Using a real case study from the financial domain, we evaluated the usefulness of the

AC-related model enrichments recommended by our approach. These contributions have been published

as a conference paper [72] and are presented in Chapter 5.

1.3 Dissertation Outline

Chapter 2 provides some fundamental background on controlled natural languages, natural language

processing techniques, acceptance criteria, and the Unified Modeling Language.

Chapter 3 presents our methodology for defining controlled natural languages and describes the creation

of our CNL called Rimay for writing functional requirements.

Chapter 4 introduces our smell detector tool that finds common syntactic and semantic errors in natural

language requirements and guides analysts to fix the errors.

Chapter 5 describes our methodology that supports the model-based derivation of acceptance criteria

(AC) by enriching requirements models with AC-related information in NL requirements.

Chapter 6 summarizes the dissertation contributions and discusses perspectives on future works.

3

Chapter 2

Background

This chapter introduces the technical background necessary to understand the work carried out in this

dissertation. First, we introduce the notion of controlled natural languages (CNL). Next, we provide an

analysis of natural language processing (NLP) techniques and lexical resources. Finally, we provide a

background on the generation of acceptance criteria (AC) and the Unified Modeling Language (UML).

2.1 Controlled Natural Languages

A CNL is engineered to define a restricted natural language for a specific domain. Such languages restrict

grammatical structures and provide language constructs that allow analysts to define precisely the syntax

and semantics of a language [51]. A CNL is made up of (1) a set of predefined sentence structures that

restrict the syntax of NL and precisely define the semantics of the statements written using this language,

and (2) a lexicon that contains the allowed set of words and the domain terminology to be used in the

language [51, 36].

CNLs are intended to solve communication gaps between stakeholders by using standard structures

and terminology. These gaps often include misunderstandings about aspects of the underlying domain.

However, CNLs tend to reduce the expressiveness of a language by imposing restrictions on structure and

vocabulary. Furthermore, to apply CNLs, stakeholders need training to become familiar with the structures

and terminology used by the language [51]. In requirements engineering, requirements written using

CNLs have the following advantages when compared to requirements written using a natural language

(NL) [51, 59]: (1) requirements are easy to understand, (2) requirements are less ambiguous because

they have simplified grammar and predefined vocabulary with exact semantics, and (3) requirements are

semantically verifiable due to formal grammar and predefined terms.

2.2 Natural Language Processing

NLP is a field of artificial intelligence that aims to understand, analyze, manipulate, and produce NL

through computational techniques [40]. NLP techniques execute a pipeline to carry out multiple analyses,

5

CHAPTER 2. BACKGROUND

such as tokenization, syntax analysis, and semantic analysis. These techniques have been widely used

and are at the core of many applications that we use on a daily basis (e.g., chatbots, text translation, and

speech-to-text conversion). In requirements engineering, NLP techniques have enabled, to some extent,

the automation of several tasks, such as test automation [72, 2] and model derivation [5]. The following is

a short description of NLP techniques and lexical resources used in this dissertation.

Constituency Parser

The constituency parser is a statistical parser that maps NL sentences into a constituency structure. The

latter is a syntactic representation that recursively breaks down a sentence into smaller segments. These

segments are classified, based on their internal structure, into noun phrases, verb phrases, etc. [30].

Constituency structures are normally represented using syntax trees. Figure 2.1 shows an example of a

constituent structure for a requirement written in English.

S

VP

VBZ NP

the

clicks DTI VB

Save

NP

The User

DT NN

NN

Button
A >: B A is the only child of B

A is the first child of BA >, B

A is the parent of B

A is an ancestor of B

B is the first child of A

A << B

A <, B

A < B

MeaningSymbol

Figure 2.1: Example of a syntax tree and summary of Tregex operators

Syntax Tree

A syntax or a parse tree represents the syntactic structure of a grammatical sentence. It contains all the

steps of sentence derivation from the root node. Figure 2.1 shows an example of a syntax tree. The tree

has a top-down structure that displays the root of the tree at the top and the leaves at the bottom. All tree

nodes are connected by links called edges, which capture the relationships between the nodes.

Tregex

Tregex is a tree query language used to define patterns that match the content of tree nodes with their

hierarchical relationships [38]. The content of the tree nodes includes lemmas, POS tags, and characters.

Figure 2.1 shows an excerpt of the Tregex operators provided by Tregex, along with an example of a

syntax tree. In this example, the Tregex pattern "VP <, VBZ" matches the content "clicks" of the syntax

tree example. The verb "clicks" is the first child of the verb phrase VP.

Part-of-Speech Tagging

Part-of-Speech (POS) Tagging is an NLP process in which the text is analyzed so that each word and

other tokens of the text can be labeled with the correct part of speech [70]. Parts of speech include nouns,

verbs, adjectives, and so on. The tag is assigned according to the definition of the word and its context.

The POS tags used in this dissertation follow the Penn Treebank tag set [41].

6

2.2. NATURAL LANGUAGE PROCESSING

Lexical Resources

WordNet

WordNet [46] is a domain-independent linguistic resource which provides, among several other things,

more than 117000 synsets. Synsets are synonyms –words that denote the same concept and are inter-

changeable in many contexts– grouped into sets. Each synset contains (a) a brief definition (“gloss”), (b)

the synset members, and, in most cases, (c) one or more short sentences illustrating the use of the synset

members. Each synset member is a synonym sharing the same sense of the other members of the synset.

Synset members use the format word#sense number. For example, Table 2.1 shows the WordNet entry

for the verb create. This entry has six synsets. The sixth synset contains the following information: (a)

gloss, “create or manufacture a man-made product”, (b) three synset members, produce#2, make#6, and

create#6 and (c) an example of how to use the synset member produce#2, “We produce more cars than we

can sell”.

Table 2.1: WordNet entry for the verb create

Gloss Synset Example
Members

1 Make or cause to be or to become make#3, “make a mess in one’s office”
create#1

2 Bring into existence create#2 “He created a new movement
in painting”

3 Pursue a creative activity create#3 “Don’t disturb him–he is creating”

4 Invest with a new title, office, or rank create#4 “Create one a peer”

5 Create by artistic means create#5, “Schoenberg created twelve-tone
make#9 music”

6 Create or manufacture a man-made produce#2 “We produce more cars than we
product make#6, can sell”

create#6

VerbNet

VerbNet [33] is a domain-independent, hierarchical verb lexicon of approximately 5800 English verbs. It

clusters verbs into over 270 verb classes, based on their shared syntactic behaviors. Each verb in VerbNet

is mapped to its corresponding synsets in WordNet, if the mapping exists. In VerbNet, a verb is always

a member of a verb class and each verb class is identified by a unique code composed of a name and a

suffix. The suffix reveals the hierarchical level of a verb class, e.g., two of the sub-classes of the root class

multiply-108 are multiply-108-1 and multiply-108-2. In VerbNet, the sub-classes inherit features from

the root class and specify further syntactic and semantic commonalities among their verb members. For

example, each of the sub-classes of multiply-108 uses the same syntactic structure which is defined as

a noun phrase followed by a verb, a noun phrase, and a prepositional phrase. However, each sub-class

uses different prepositions in the prepositional phrase. In particular, the subclass multiply-108-1 has the

verb members divide and multiply and uses the preposition by as in the phrase “I multiplied x by y". The

subclass multiply-108-2 has verb members such as deduct, factor, and subtract and uses the preposition

7

CHAPTER 2. BACKGROUND

from as in the phrase “I subtracted x from y". Note that the verb subtract has no semantic similarity

with the verb multiply that appears in the subclass name multiply-108-2. However, the verb subtract is a

member of the subclass as they share syntactic behavior with the verbs deduct and factor.

2.2.1 UML

Unified Modeling Language (UML) is a general-purpose graphical language used to visualize, specify,

construct, and document the artifacts of a software-intensive system. UML provides a standard way to

write the blueprints of a system. This includes conceptual aspects such as business processes, system

functions, and more concrete aspects such as programming language statements, database schemas,

and reusable software components [49]. Diagrams modeled using UML can be divided into structural

and behavioral types. Structural diagrams model the elements present in the software system, whereas

behavioral diagrams describe various aspects of the system behavior. In this dissertation, we make use of

three UML diagrams: activity, class, and use case diagrams.

Activity diagrams describe the behavior of a system. These diagrams provide a view of the workflows

of the activities in the system. The activities of the activity diagram can be decomposed into sub-activities.

Atomic activities are called actions.

Class diagrams provide a structural view of a software system by describing a system’s classes, objects,

interfaces, attributes and operations, as well as the relationships between the classes [24].

Use case diagrams are widely used to capture the functional requirements of a system. They provide

a description of the usage of the system by describing the interactions between the system and the

users of the system. The information described in the use case includes the name of the use case,

description, precondition(s), actors, dependencies, the flow of events, basic and alternative flows, and

post-condition(s) [24].

2.2.2 Acceptance Testing

Acceptance testing is designed to determine whether completed software meets the needs of the customer.

To do so, acceptance testing assesses software against requirements elicited in the early stage of the

software development process (i.e., the requirements analysis phase). Requirements describe the functional

capacities, features, qualities, and operational constraints of a system [65, 51]. Acceptance testing begins

after conducting the system testing and involves stakeholders who have strong domain knowledge [3].

Figure 2.2 depicts the software development activities and testing levels.

Requirements
Analysis

Architectural
Design

Subsystem
Design

Detailed
Design

Implementation Unit Test

Module
Test

Integration
Test

System
Test

Acceptance
Test

Test

Design
Information

Figure 2.2: Software development activities and testing levels – the “V Model” [3]

8

2.2. NATURAL LANGUAGE PROCESSING

Acceptance Criteria The definition of Acceptance Criteria (AC) is an important step in acceptance

testing. AC distinguish the incorrect behaviors of the system from the correct ones. NL has been largely

used to specify AC because it can be understood by all stakeholders (e.g., the development team, clients,

and project management). In Behavior-Driven Development (BDD), AC are commonly expressed using

the Gherkin language [76]. This language uses a Given-When-Then structure where Given describes the

initial context, When describes an event or action, and Then describes the expected result. Here is an

example Gherkin scenario: “Given order does not exist in System-A When System-A performs Create

Order Then order exists in System-A”. Furthermore, the syntax of the Gherkin language enables engineers

to generate executable test cases by matching AC text to application programming interfaces (APIs) [76].

9

Chapter 3

On Systematically Building a CNL for
Functional Requirements

3.1 Motivations and Contributions

Requirements are considered as one of the fundamental pillars of software development. For many

systems in industry, requirements are predominantly expressed in natural language (NL). Natural lan-

guage is advantageous in that it can be used in all application domains and understood virtually by all

project stakeholders [51]. Supporting this statement, a study reported that 52% of software requirements

specifications (SRSs) are written in NL [45]. Furthermore, Zhao et al. [82] posit that NL will continue to

serve as the lingua franca for requirements in the future. Despite its pervasive use, undisciplined use of

NL can bring about a variety of quality issues. Common problems with NL requirements include: poor

testability, inappropriate implementation, wordiness, under-specification, incompleteness, duplication,

omission, complexity, vagueness, and ambiguity [42, 22].

Further, requirements often change throughout a project’s lifespan until a consensus is reached among

stakeholders. Requirements changes lead to significant additional costs that vary according to the project

phase [28]; it has long been known that the cost of fixing problems related to requirements increases

rapidly when progressing through the software development phases [11].

The ultimate quality of a software system greatly depends on the quality of its requirements. Empirical

evidence shows that the state of practice for acquiring and documenting requirements is still far from

satisfactory [57, 63, 77]. Different studies have reported that one of the main causes of software project

failures in industry is related to poorly written requirements, i.e., requirements that are unclear, ambiguous,

or incomplete [1, 28, 69]. Poorly written requirements are difficult to communicate and reduce the

opportunity to process requirements automatically, for example, to extract models [5] or derive test

specifications [2].

The problem we address in this chapter was borne out of a practical need observed across many indus-

trial domains. For example, in the financial domain, the current practice is to write system requirements

11

CHAPTER 3. ON SYSTEMATICALLY BUILDING A CNL FOR FUNCTIONAL REQUIREMENTS

using a general-purpose text editor without enforcing any requirement structure. This is the case for

our industrial partner, Clearstream Services SA Luxembourg – a post-trade services provider owned by

Deutsche Borse AG. Clearstream reported that several communication problems and delays arise from

requirements that are not stated precisely enough, particularly in situations where the project development

tasks are divided across several teams in different countries. This problem is compounded by the fact

that Clearstream typically has to deal with SRSs written in NL that are created by domain experts (from

now on, we refer to them as “financial analysts”), who do not necessarily possess sufficient expertise in

requirements elicitation and definition.

Furthermore, other stakeholders at different levels of the organization, e.g., customer service, also

need to be able to process the requirements and validate them according to their specific needs [17]. As

a result, there is a tension between the pressure to use NL in practice and the need to be more precise

and resorting to formal languages [78]. Controlled natural languages (CNLs) strike a balance between

the usability of NL on the one hand and the rigour of formal methods on the other. A CNL is a set of

predefined sentence structures that restrict the syntax of NL and precisely define the semantics of the

statements written using these predefined structures [51].

In this chapter, we concern ourselves with developing a CNL for writing requirements for financial

applications. We have named our CNL Rimay, which means “language" in Quechua. We focus on

functional requirements, noting that the vast majority of the requirements written by our industrial partner

are functional, and that financial analysts find most of the ambiguity and imprecision issues in functional

requirements. The functional requirements produced by Rimay are intended to replace unrestricted

requirements and, as a result, enable the automation of certain tasks, such as the generation of acceptance-

test criteria [72]. In our context, a functional requirement specifies what system response an actor is

expected to receive when providing certain inputs, if certain conditions are met. We consider every other

type of requirement to be non-functional.

While Rimay is grounded in requirements for financial applications, it also overlaps with other

Requirements Engineering ontologies such as the Core Ontology for REquirements (CORE) [31], whose

development was inspired by the work of Zave and Jackson [81]. In short, CORE aims to cover all

the basic concerns that stakeholders communicate during the requirements elicitation process (beliefs,

desires, intentions, and evaluations) by introducing a set of concepts (Goal, Plan, Domain assumption,

and Evaluation). Each concept, except Plan, has subcategories. For instance, the goal concept has three

subcategories in CORE: Functional goal, Quality constraint, and Softgoal. The condition structure and

system response of Rimay correspond to the Functional goal concept of CORE.

Finally, although our work draws on the requirements of financial applications, this domain shares sev-

eral common characteristics with other domains where (data-centric) information systems are developed.

We therefore anticipate that our results, including our methodology, lessons learned, and Rimay itself, can

be a useful stepping stone for building CNLs in other related domains. This said, we acknowledge that

additional empirical work remains necessary to substantiate claims about usefulness beyond our current

domain of investigation, i.e., finance.

Our investigation is guided by the following research questions (RQs):

- RQ1: What information content should one account for in the requirements for financial appli-
cations? In this RQ, we want to identify, in the requirements provided by our industrial partner, the

12

3.1. MOTIVATIONS AND CONTRIBUTIONS

information content used by financial analysts. This information is a prerequisite for the design of the

Rimay grammar.

- RQ2: Considering the stakeholders, how can we represent the information content of requirements
for financial applications? After we identify the information content used by our industrial partner

to represent requirements, we want to find out the structures of the requirements that our CNL should

support. These structures follow recommended syntactic structures and define mandatory and optional

information.

- RQ3: How well can Rimay express the requirements of previously unseen documents? After

building our CNL grammar, we need to determine how well it can capture requirements in unseen SRSs.

- RQ4: How quickly does Rimay converge towards a stable state? Rimay reaches a stable state when

it does not need to continuously evolve (i.e., no addition of new rules and no updates to the existing

rules) in response to the analysis of new (unseen) SRSs. To assess stability, we use the notion of

saturation. Saturation occurs, in a qualitative study, when no new information seems to emerge during

coding.

In this chapter, we use a total of 15 SRSs written by financial analysts at Clearstream. These SRSs describe

different projects that cover a range of activities: nine discuss the updating of existing applications, two

concern the compliance of the applications with new regulations, two describe the creation of new

applications, and the last two describe the migration of existing applications to more sophisticated

technologies. Of the 15 SRSs, 11 are used in our qualitative study to answer RQ1 and RQ2, and the other

four in our empirical evaluation to answer RQ3 and RQ4.

We use a combination of Grounded Theory and Case Study Research to address the four research

questions posed above. The main contributions of this work can be summarized as follows:

(1) A qualitative methodology aimed at defining a CNL for functional requirements (RQ1). We

rely on Grounded Theory for developing Rimay. Grounded Theory is a systematic methodology for

building a theory from data. The goal of Grounded Theory is to generate theory rather than test or validate

an existing theory [67]. Our methodology is general and can serve as a good guiding framework for

building CNLs systematically. We rely on an analysis procedure named protocol coding [58], which aims

at collecting qualitative data according to a pre-established theory, i.e., set of codes. Protocol coding

allows additional codes to be defined when the set of pre-established codes is not sufficient. A code

in qualitative data analysis is most often a word or short phrase that symbolically assigns a summative,

salient, essence-capturing, and/or evocative attribute for a portion of language-based or visual data [58].

In the context of our chapter, a code identifies a group of verbs that share the same information content in

an NL requirement. As explained in Section 3.3.3, most of the codes are pre-existing verb-class identifiers

available in a well-known lexicon named VerbNet1. In addition, we use WordNet2 to verify the verb

senses of the requirements. The fact that we use domain-independent lexical resources and include no

keywords specific to the financial domain in Rimay, makes our approach more likely to have wider

applicability to information systems in general. We conduct our qualitative study on 11 SRSs that contain

2755 requirements in total.

1https://verbs.colorado.edu/verbnet/ (last access on 17 August 2022)
2https://wordnet.princeton.edu/ (last access on 17 August 2022)

13

https://verbs.colorado.edu/verbnet/
https://wordnet.princeton.edu/

CHAPTER 3. ON SYSTEMATICALLY BUILDING A CNL FOR FUNCTIONAL REQUIREMENTS

(2) A CNL grammar (RQ2) targeting financial applications in particular and information
systems in general. We apply restrictions on vocabulary, grammar, and semantics. The Rimay grammar

accounts for a large variety of system responses and conditions, while following recommended syntactic

structures for requirements (e.g., the use of active voice). Also, the Rimay grammar defines mandatory

information content to enforce the completeness of functional requirements. In addition to the grammar,

we generate a user-friendly and full-featured editor using the language engineering framework Xtext 3.

(3) An empirical evaluation of Rimay (RQ3 and RQ4). We report on a case study conducted within

the financial domain. We evaluate Rimay on four SRSs containing 460 requirements to demonstrate the

feasibility and benefits of applying Rimay in a realistic context. We use saturation to find the point in our

evaluation where enough SRS content has been analyzed to ensure that Rimay is stable for specifying

requirements for the financial domain. Furthermore, we use a z-test for differences in proportions to

confirm that additional enhancements to Rimay are unlikely to bring significant benefits.

The chapter is structured as follows: Section 3.2 introduces the related work. Section 3.3 presents a

qualitative study aimed at analyzing the information content in the requirements provided by Clearstream

(our industrial partner). In Section 3.4, we describe the details of Rimay. Section 3.5 describes a case

study that evaluates Rimay. Threats to the validity of our results are discussed in Section 3.6. Section 3.7

discusses practical considerations and, finally, our conclusions are provided in Section 3.8.

3.2 Related Work

Numerous studies have been conducted with a focus on NL requirements quality improvement. Pohl [51]

presents three common techniques for improving the quality of NL requirements by reducing vagueness,

incompleteness and ambiguity:

Glossaries. Requirements glossaries make explicit and provide definitions for the salient terms in a SRS.

Requirements glossaries may further provide information about the synonyms, related terms, and example

usages of the salient terms [7].

Patterns. They are pre-defined sentence structures that contain optional and mandatory components.

Patterns restrict the syntax of the text and are meant to help stakeholders in writing more standardized NL

requirements and thus circumventing frequent mistakes.

Controlled natural languages. They are considered an extension of the pattern category which, in

addition to restricting the syntax (the grammatical structures), also provide language constructs with

which it is possible to precisely define the semantics of NL requirements.

In this chapter, we build a CNL to represent functional requirements in the financial domain. However,

given that Rimay does not rely on any domain-specific constructs (Sections 2.2 and 3.3), it could also be

applied to other (data-centric) information systems in different domains.

Given our objective, we focus here on approaches and studies related to CNLs and patterns for

expressing NL requirements. We searched relevant approaches and studies in four well-known digital

libraries: ACM, IEEE, Springer, and ScienceDirect. In addition, we considered relevant surveys that

discuss CNLs and patterns for expressing NL requirements. We selected 11 studies, directly relevant to our

work, that focus on improving NL requirements through the use of patterns or CNLs. Table 3.1 outlines

the main characteristics of these studies. The first column of the table provides a reference to each study.

3https://www.eclipse.org/Xtext/ (last access on 17 August 2022)

14

https://www.eclipse.org/Xtext/

3.2. RELATED WORK

The second column indicates the type of the approach, i.e., Pattern or CNL. In order to obtain a more

thorough picture of the literature, although our work is focused on functional requirements, our analysis

of the related work does not exclude references that exclusively address non-functional requirements. The

third column shows the type of the requirements that the approach supports: Functional Requirements

(FR), Non-Functional Requirements (NFR), or both. Additionally, the third column includes the domain

in which the patterns and CNLs were created. There are two strands of work: domain-independent and

domain-specific (i.e., automotive, business, healthcare, performance, embedded systems, and data-flow

reactive systems).

The fourth column indicates whether an empirical study was conducted and evaluated in a systematic

manner. The fifth column shows whether the proposed CNL or pattern was somehow evaluated. Finally,

the sixth column reports on whether tool support was provided. We discuss the selected studies next.

Table 3.1: Summary of related work

Study Type of Type of Systematic Evaluation Tool
Reference Approach Requirements Study Support

Pohl and Rupp [52] Pattern FR (Domain - No No No
Independent)

Mavin et al. [44] Pattern FR (Domain - No Yes Yes
Independent)

Withall [74] Pattern Both (Business) No No No

Riaz et al. [55] Pattern NFR No No Yes
(Healthcare)

Eckhardt et al. [19] Pattern NFR Yes Yes No
(Performance)

Denger et al.[16] Pattern FR (Embedded
Systems)

No Yes No

Konrad and Cheng [35] CNL NFR No Yes Yes
(Automotive)

Fuchs et al. [25] CNL Both (Several) No No Yes

Post et al. [54] CNL FR No Yes Yes
(Automotive)

Crapo et al. [15] CNL FR (Domain - No No Yes
Independent)

Carvalho et al. [13] CNL Both (Data - No No Yes
Flow Reactive
systems)

Autili et al. [8] CNL

15

CHAPTER 3. ON SYSTEMATICALLY BUILDING A CNL FOR FUNCTIONAL REQUIREMENTS

Patterns

Pohl and Rupp [52] discuss a single pattern to specify functional requirements. The authors claim that the

requirements that comply to this pattern are explicit, complete and provide the necessary details to test

such requirements.

Mavin et al. [44] define the Easy Approach to Requirements Syntax (EARS), which is a set of five

patterns enabling analysts to describe system functions. The authors demonstrate, through a case study in

the aviation domain, that using EARS leads to requirements which are easier to understand and which

exhibit fewer quality problems, particularly in relation to ambiguity. Tool support for the EARS patterns

was presented in a follow-up paper [39].

Withall [74] identifies 37 patterns to specify structured functional and non-functional requirements for

the business domain. The study provides insights regarding the creation and extension of the patterns.

Riaz et al. [55] define a set of 19 functional security patterns. They provide a tool that assists the user

in selecting the appropriate pattern based on the security information identified in the requirements.

Eckhardt et al. [19] propose patterns to specify performance requirements. The patterns were derived

from a content model built from an existing performance classification. Eckhardt et al. [19] define the

content elements that a performance requirement must contain to be considered complete.

Denger et al. [16] propose a set of patterns to describe requirements for embedded systems. The

patterns were derived from a metamodel that captures several types of embedded-system requirements.

The authors validate their patterns through a case study.

In contrast to the other four studies, Riaz et al. [55] and Mavin et al. [44] provide tool support to guide

analysts in defining requirements. Eckhardt et al. [19] follow a systematic process to develop a framework

for the creation of performance requirements patterns, and presented a well-defined evaluation of their

approach.

Controlled Natural Languages

Konrad and Cheng [35] provide a restricted natural language for the automotive and appliance domains,

enabling analysts to express precise qualitative and real-time properties of systems. They evaluated their

approach through a case study and introduced their tool in a follow-up paper [34]. In recent work, Autili

et al. [8] extended the language proposed by Konrad and Cheng [35], including 40 new patterns that allow

users to specify real-world system properties.

The approach described by Fuchs et al. [25] was identified from the survey and classification of CNLs

conducted by Kuhn [36].

Fuchs et al. [25] propose the Attempto Controlled English, which is a CNL that defines a subset of

the English language intended to be used in different domains, such as software specification and the

Semantic Web. Attempto can be automatically translated into first-order logic.

Post et al. [54] identify three new rules that extend the approach proposed by Konrad and Cheng [35]

to express requirements in the automotive domain. They validated their rules through a case study, and

described their tool in another paper [53].

Crapo et al. [15] propose the Semantic Application Design Requirements Language which is a

controlled natural language in English for writing functional requirements. Their language supports the

mapping to first-order logic. Carvalho et al. [13] propose a CNL called SysReq-CNL that allows analysts

16

3.3. QUALITATIVE STUDY

to describe data-flow requirements. Their sentence rules are nonetheless not mapped onto any formal

semantics. None of the above approaches have been empirically evaluated.

To summarize, no previous strand of work describes a systematic process to build CNL grammar rules.

However, all the above approaches provide tool support to assist analysts with specifying requirements.

Differences Between the Related Work and Our Approach

No other work, in our knowledge, follows a systematic process for creating and evaluating a CNL to

specify functional requirements, either in the financial domain (the main focus of our investigation) or

any other domain. More precisely, our work differs from the existing work in the following respects: (a)

we derive Rimay from the analysis of a large and significant number of requirements from the financial

domain; (b) we create Rimay by following a rigorous and systematic process; (c) we evaluate Rimay

through a case study based on industrial data while following empirical guidelines for conducting Case

Study Research [56]; and (d) we fully operationalize Rimay through a usable prototype tool.

3.3 Qualitative Study

In this section, we report on a qualitative study aimed at characterizing the information content found

in the functional NL requirements provided by Clearstream. In the following, every time we speak of

“requirements”, we mean functional NL requirements.

Other techniques, such as grammar induction [66], could have been used to learn the syntax of the

functional requirements in an automated manner. However, we believe that the limited number of available

requirements would not have resulted in a reliable learning model. Therefore, we opted to conduct a

qualitative study to build a semi-automated strategy enabling the creation of the grammar rules in a precise

manner.

First, we describe the context of the qualitative study along with the criteria used to select SRSs. Then,

we present the analysis procedure of our qualitative study where we show the codes that identify different

groups of requirements. Each group of requirements is characterized by different information content. In

this work, information content refers to the meaning assigned to the text of the requirements.

The result of the analysis procedure is a grammar that defines the syntax of a CNL that is able to

specify all the information content found in the analyzed requirements. A grammar is a set of controlled

and structured syntax rules (also known as grammar rules) describing the form of the elements that

are valid according to the language syntax [10]. In our context, our grammar controls the structure of

functional requirements by applying syntax rules. Section 3.3.3 (Step 5.2) describes how we produce the

Rimay grammar rules, and Section 3.4 describes all the grammar rules of Rimay.

3.3.1 Research Question

The goal of this qualitative study is to answer the following research question: RQ1: What information
content should one account for in the requirements for financial applications? RQ1 aims to identify

the mandatory and optional information content used by Clearstream to describe requirements. This is

essential in order to design a CNL that will help financial analysts write requirements that are as complete

and as unambiguous as possible.

17

CHAPTER 3. ON SYSTEMATICALLY BUILDING A CNL FOR FUNCTIONAL REQUIREMENTS

3.3.2 Study Context and Data Selection

We conducted this study in collaboration with Clearstream Services SA Luxembourg, which is a securities

services company with 2500 customers in 110 countries. More concretely, we worked with the Investment

Fund Services (IFS) division. An Investment Fund is a capital that belongs to a number of investors and is

used to collectively invest in stocks and bonds. Among other tasks, the IFS division takes care of (a) the

development of new applications, (b) upgrading existing ones, and (c) the migration of applications to

more sophisticated technologies to provide their clients with state-of-the-art solutions that comply with

the regulations in force. The Clearstream units involved with IFS are project management, IFS and market

operations, design, functional and business analysis, development, and testing.

Clearstream performs the aforementioned tasks following a methodology grounded in best practices

and years of experience. For instance, financial analysts specify requirements using a combination of

UML models and natural language requirements following the Rupp template [52]. Clearstream follows a

carefully planned software development process [64] based on the V-Model, that is suitable for a heavily

regulated industry, such as finance.

Clearstream is continuously delivering new software projects in the financial domain and employs

English as the primary language for specifying requirements. Two members of our research team were

embedded in the Clearstream - IFS to get familiar with the company’s development process and its

organizational culture for over a month before starting the project described in this chapter. Our members

participated in training sessions and numerous meetings organized by Clearstream. Additionally, all the

research team members have been interacting, both electronically and through face-to-face meetings, with

the members of the IFS team for two years.

We validated our results and conclusions with a team of experts. The team was composed of eight

financial analysts: (a) two were senior financial analysts with more than 20 years of experience in

specifying requirements in the financial domain. Their areas of expertise are business analysis, functional

design, functional architecture, requirements engineering, and project management; (b) Four of them were

mid-career financial analysts with more than 10 (but less than 20) years of experience in business and

functional analysis in the financial domain. One of the mid-career analyst had software programming and

testing skills; and (c) two were junior financial analysts with two to five years of experience in business

analysis. This validation activity was performed over a year in an iterative and incremental manner with

face-to-face, bi-weekly sessions with the team of experts, with each of these sessions lasting between two

to three hours. This activity was concluded when the experts did not have any additional suggestions for

improving the clarity, completeness, or correctness of the requirements.

Among all those available in Clearstream, we selected SRSs which: (a) belong to recently concluded

projects, (b) contain at least 15 requirements, (c) contain requirements written in English, and (d) are

written by different financial analysts. The senior financial analysts from Clearstream selected 11

representative SRSs according to the four criteria defined above. Each one of the SRSs contained the

following types of information: business context, goals and objectives, project scope, current and future

overview, general information (e.g., glossary, related documentation, acronyms and abbreviations), and

Unified Modeling Language (UML) diagrams for the high-level functional decomposition of the systems

and requirements. In total, the 11 SRSs contained 2755 requirements.

18

3.3. QUALITATIVE STUDY

3.3.3 Analysis Procedure

Figure 3.1 shows an overview of our semi-automated analysis procedure. In Step 1, we first extracted

2755 requirements from 11 SRSs. In Step 2, we identified a dictionary of 41 codes from the extracted

requirements. For example, the code send_11.1 identifies five verbs used in the extracted requirements:

“return", “send", “forward", “pass", “export" and “import"(Table 3.4 and Table 3.5 shows the 41 codes

and verbs identified in our qualitative study and the evaluation). Our analysis procedure for identifying

the codes followed protocol coding [58], which is a method for collecting qualitative data according to a

pre-established theory, i.e., a set of codes. As explained later in this section, our pre-established set of

codes was identified from VerbNet. Using a coding system based on a predefined set of codes helps us

to save analysis time and mitigate coding bias. In Step 3, two annotators (first and second researchers)

labeled the extracted requirements with one or more of the codes discovered in the previous step. In

Step 4, we grouped the extracted requirements by their labels. The purpose of grouping requirements

is to ease the identification of common information content to create grammar rules. For example, all

the requirements that use the verbs members of the code send_11.1 share the semantic roles INITIAL

LOCATION (a place where an event begins or a state becomes true) and DESTINATION (a place that is

the end point of an action and exists independently of the event). In Step 5, we iteratively created and

integrated the grammar rules into Rimay. Each of the five steps in Figure 3.1 shows one or two icons

denoting whether a given step was carried out (1) automatically (i.e., the three gears icon), (2) manually

(i.e., the human icon), or (3) semi-automatically (i.e., both icons). The next subsections describe in details

Steps 1 to 5.

Extract Requirements (Step 1)

We read the 11 SRSs and extracted 2755 requirements. In our case, all the requirements were written in

tables in which all the requirements were clearly identified and distinguished from other information. The

structure of the SRSs clearly separates functional from non-functional requirements. Furthermore, we

checked that no functional requirement was mistakenly placed in the non-functional requirements section.

We verified that the content of the requirements presenting lists and tables was correctly captured by our

automatic extraction algorithm. If there was any error, we manually corrected it. This step was automated

using the Apache POI API 4, which is a well-known Java library for reading and writing files in Microsoft

Office formats.

Table 3.2 shows three requirements extracted from a SRS. The column “Id” identifies the requirements,

the column “Description" contains the original text of the requirements, and the column “Rationale"

presents the reasoning behind the creation of a given requirement.

Identify Codes (Step 2)

The coding approach is intended to (1) obtain a number of codes that allow the language to be expressive

enough for the financial domain, (2) be systematic to allow others to replicate the procedure, and (3) ensure

that Rimay remains as broadly applicable as possible by minimizing reliance on domain-specific terms.

The requirements specify the expected system behavior using verb phrases, e.g., “send a message" and

“create an instruction". We used the verb lexicon named VerbNet (Section 2.2) to identify the codes from

4https://poi.apache.org/ (last access on 17 August 2022)

19

https://poi.apache.org/

CHAPTER 3. ON SYSTEMATICALLY BUILDING A CNL FOR FUNCTIONAL REQUIREMENTS

Requirements

Labelled
Requirements

Identify Codes2

Label Requirements3

Group Requirements4

Create Grammar5

Extract Requirements1

Requirements
by Label

Rimay
Grammar

SRSs

Dictionary of
Codes

Figure 3.1: Overview of our analysis procedure

Table 3.2: Three requirements extracted from a SRS during Step 1 of Figure 3.1

Id Description Rationale
TNG.INPUT.010 If the message contains

“FISN", then the System must
ignore the message.

FISN is an official ISO Stan-
dard created to enhance the
quality of financial messag-
ing.

TRAN.0030 The System must regenerate
the outbound XML accord-
ing to the new XML specifi-
cation “SR2017".

The previously created or-
ders, which their status are
activated, must be changed
to comply with the new XML
specification.

Data.SAA.060 The data of the System older
than 13 months must be
archived for at least 10 years.

This requirement complies to
a legal rule.

20

3.3. QUALITATIVE STUDY

our SRSs. Subsection 3.3.3 will explain in details how, by using verb classes, we obtain the grammar

rules of Rimay.

We followed a semi-automated process to identify codes and their corresponding verbs. We automated

some of the sub-steps of Step 2 by using the NLTK5 library for Python. In the remainder of this section,

we describe in detail which sub-steps of Step 2 were automated. From the 41 codes that we proposed in

this qualitative study, 32 codes (78%) correspond to verb class ids from VerbNet (referred to thereafter as

VerbNet codes), and nine (22%) are codes that we proposed because they were missing from VerbNet but

were needed to analyze the requirements. We use below the following terms to describe this process:

• REQS: Set of requirements to analyze.

• LEMMAS: List of lemmas found in the action phrases of REQS.

• CODES: Dictionary of codes and their corresponding verb members found during our analysis

procedure. There are two types of codes: VerbNet codes and codes proposed by us.

• AUX: Auxiliary list of the lemmas that are not members of any code in CODES.

• SYNS: Dictionary of lemmas and their corresponding applicable synonyms.

• VN: Read-only dictionary of all the publicly available VerbNet codes and their corresponding verb

members.

In Figure 3.2, we show a running example of our process to identify the codes. The process steps are

as follows:

Extract lemmas (Step 2.1). We extracted the verbs of each requirement in REQS (upper-left corner of

Figure 3.2) to obtain lemmas. A lemma is the base form of the verb. For example, from “archived", the

lemma is “archive". We stored the resulting lemmas in LEMMAS.

Separate lemmas that do not belong to any VerbNet code (Step 2.2). We retrieved for every lemma

in LEMMAS its corresponding VerbNet codes from VN. We stored these VerbNet codes and their corre-

sponding lemmas (including their sense number, depicted as a number after the symbol #) in CODES. For

example, the key-value pair {engender-27, generate#1} in CODES of Figure 3.2 (Step 2.2) means that

the lemma generate (Step 2.1 of Figure 3.2) with the sense number one (i.e., “bring into existence") is a

member of the VerbNet code engender-27.

If a lemma in LEMMAS was not a member of any VerbNet code in VN, we added it to an auxiliary

list of lemmas named AUX. For example, in Figure 3.2 (Step 2.2) we added to AUX the lemmas ignore,

regenerate and synchronize that were not identified in VN, but were found in the analyzed requirements.

Identify new VerbNet codes by using synonyms (Step 2.3). We analyzed the synonyms and senses of

the lemmas in AUX to discover new VerbNet codes that can be added to CODES. We describe this process

in more details as follows:

5https://www.nltk.org/ (last access on 17 August 2022)

21

https://www.nltk.org/

CHAPTER 3. ON SYSTEMATICALLY BUILDING A CNL FOR FUNCTIONAL REQUIREMENTS

Codes Members

set#5set

synchronize#1,2,4,5synchronize

store#1keep-15.2

neglect#4neglect-75-1-1

engender-27 generate#1, regenerate#1

CODES: Verb members by code

Analyze remaining lemmas (Step 2.5)

synchronize, regenerate, set

AUX: Lemmas that do not belong to
any VerbNet class

Remove VerbNet codes (Step 2.4)

store#1keep-15.2

Codes

neglect#4neglect-75-1-1
engender-27

Members
generate#1

CODES: Verb Members by code

Identify new VerbNet codes
by using synonyms (Step 2.3)

synchronize, regenerate

AUX: Lemmas that do not belong to
any code

Remove lemmas (Step 2.3.3)

Add applicable synonyms
(Step 2.3.2)

neglect#4

keep-15.2

pocket-9.10

grow-26.2

force-59-1

set#22

judgment-33

archive#1

store#(1,2)

set#6

put-9.1-2

generate#(2,3)

Codes

snub#1

set#25

neglect-75-1-1

braid-41.2.2

generate#1

set#(7, 22)

set#(1,6,12,17)

image_impression-25.1

preparing-26.3-2

engender-27

Members

CODES: Verb members by code

Find applicable synonyms
(Step 2.3.1)

contemporize#1,
contemporize#2, sync#1synchronize

renew#1regenerate

cut#31, snub#1,
disregard#1, disregard#3,
neglect#4

Applicable synonyms
with their
corresponding senses

ignore

Lemma

SYNS: Applicable synonyms

ignore,
regenerate,
synchronize

AUX: Lemmas
that do not

belong to any
code

keep-15.2 store#(1,2)
archive#1pocket-9.10

set#22

force-59-1
image_impression
-25.1

engender-27
set#(1,6,12,17)

generate#(2,3)

Codes

set#6

preparing-26.3-2

set#(7, 22)

put-9.1-2

braid-41.2.2

Members

grow-26.2

set#25

generate#1

CODES:
Verb members by code

Separate lemmas that do not belong to any
VerbNet code (Step 2.2)

set, generate, ignore, regenerate, archive,
synchronize, store

LEMMAS: Lemmas found in REQS

Extract lemmas (Step 2.1)

 IFSIG must store all data for a configurable
retention periodDEP0020

VIS003
Oxygen must synchronize to Vestima+, the
current version of the time dependent
elements

Data.SAA.060 SAA data older than 13 months must be
archived for at least 10 years.

If the Message contains the keyword “FISN",
then the System must ignore the Message.

TRAN.0030

ID Description

Vestima must generate a new Clearstream
identifier using the current naming convention.

TNG.INPUT.010

V.ORDR.N.0040

When VertimaTango generates a settlement
instruction (not an allegement), the input
media field must be set to "Vestima”.

Vestima must regenerate the outbound TNP
XML based on the new SR2017 TNP XML
specification

TNG.CXID.010

REQS: Set of requirements

Figure 3.2: Identify codes (Step 2)

22

3.3. QUALITATIVE STUDY

Find applicable synonyms (Step 2.3.1). We used WordNet (Section 2.2) to retrieve all the synonyms

of each auxiliary lemma in AUX. We stored in SYNS only the synonyms whose senses match the sense of

an auxiliary lemma as used in REQS.

As an example, Table 3.3 shows the list of synonyms of the lemma regenerate, which is one of the

lemmas in AUX shown in Figure 3.2 (Step 2.2). The synonyms in Table 3.3 are grouped according to the

sense numbers of the lemma regenerate, namely 1, 3, 4 and 9 (according to WordNet, the verb regenerate

has nine senses, but Table 3.3 only shows the senses that have at least one synonym). From the four senses

in Table 3.3, we chose the ones that match the sense of the verb regenerate used in REQS. In this case, we

chose sense number 1 since it was the only sense that was applicable to the requirements. Finally, we

store in SYNS the synonyms and their chosen sense numbers. In the case of the lemma regenerate, we

only added renew#1 to SYNS.

Table 3.3: Senses and synonyms of the verb regenerate retrieved from WordNet.

Sense Sense Definition Synonyms and Chosen
Number Their Sense Number Sense?

1 Reestablish on a new, usually
improved, basis or make new or
like new

renew#1 Yes

3 Bring, lead, or force to abandon
a wrong or evil course of life,
conduct, and adopt a right one

reform#2, reclaim#3, rec-
tify#3

No

4 Return to life, get or give new
life or energy

restore#2, rejuvenate#4 No

9 Restore strength revitalize#1 No

Add applicable synonyms (Step 2.3.2). We retrieved, for every synonym in SYNS, its corresponding

VerbNet codes from VN. Then, we stored the retrieved VerbNet codes and the corresponding synonym

(including the sense number) in CODES. For example, given that the synonym neglect (Step 2.3.1 of

Figure 3.2) with sense number four (i.e., neglect#4) is a member of the VerbNet code neglect-75-1-1, we

created the key-value pair {neglect-75-1-1, neglect#4} in CODES (Step 2.3.2 of Figure 3.2). If none of the

synonyms of a lemma is a member of any code in VN, then we move the lemma from SYNS to AUX. For

example, if the synonym is renew#1 and it is not a member of any VerbNet code in VN, if it is a synonym

of regenerate we then move regenerate from SYNS to AUX.

Remove lemmas (Step 2.3.3). We updated AUX by removing the lemmas whose synonyms were added

to CODES in Step 2.3.2. In Figure 3.2, we removed the lemma ignore from AUX. Furthermore, the verb

synchronize was the only verb whose synonyms were not members of any VerbNet verb class in CODES.

Therefore, the verb synchronize remained in AUX.

Remove VerbNet codes (Step 2.4). In this step, our goal is to remove the VerbNet codes (from CODES)

that are either not relevant to the SRSs in the financial domain or redundant. We performed this step

during several offline validation sessions. Each session was attended by three to four financial analysts

with the presence of at least one senior and one mid-career financial analyst.

23

CHAPTER 3. ON SYSTEMATICALLY BUILDING A CNL FOR FUNCTIONAL REQUIREMENTS

At the end of Step 2.4 (Figure 3.2), we went from 11 to three VerbNet codes (i.e., a reduction of

72,7%). Considering all the VerbNet codes used during this qualitative study, not only the 11 VerbNet

codes shown in Step 2.4 in Figure 3.2, we decreased the number of VerbNet codes from 158 to 32 (i.e., a

reduction of 79,7%). The two strategies that we employed to reduce VerbNet codes are as follows:

• Strategy 1. Discard redundant verbs. For example, between the verbs archive and store, we discard

the verb archive because the verb store is more frequent and both verbs are semantically similar.

• Strategy 2. Discard verbs that do not have applicable senses. For example, the VerbNet code

image_impression-25.1 (Step 2.3.2 of Figure 3.2) involves only the member set#6 whose sense is

defined by WordNet as: “a relatively permanent inclination to react in a particular way". Since this

latter sense is not used in REQS, we finally discarded image_impression-25.1 from CODES. After

applying this strategy, if a verb was discarded from CODES, we added only its lemma to AUX for

further manual analysis as we explain next in Step 2.5. For example, given that the verb set was

discarded from CODES, we added its lemma (e.g., only the word set without sense#) to AUX.

Analyze remaining lemmas (Step 2.5). In this step, we manually checked in WordNet if the senses of

the remaining lemmas in AUX could be included in CODES. This step was carried out with the help of two

senior and two mid-career financial analysts from Clearstream. We updated CODES when we identified an

appropriate sense in WordNet that referred to one of the remaining lemmas. For example, in Figure 3.2,

we created the code set with a member set#5 whose sense is used in REQS, and updated the VerbNet code

engender-27 with the member regenerate#1.

Coding results. Tables 3.4 and 3.5 present the resulting codes identified during our qualitative study

described in Section 3.3.3 (“Identify Codes" (Step 2)). We finally obtained 41 codes, where 32 were

obtained from VerbNet and nine were proposed by us.

Table 3.4 provides the 32 VerbNet codes and their members. The first column of the table lists the

codes, where each code is composed of a class name and a hierarchy level (Section 2.2). Note that the

class names are not always verbs, e.g., reflexive appearance. The second column shows the verb members

related to the code. Table 3.5 shows the nine codes that we proposed. The first column of the table lists

the codes and the second column provides the verb members associated to the code.

Label Requirements (Step 3)

In Step 3 (Figure 3.1), two annotators (the first and second researchers) manually labeled the requirements

extracted in Step 1 with one or more of the codes identified in Step 2. The labeling process required

to (a) read the requirements and identify the verbs used in the system response of the requirements,

(b) attempt to match the identified verbs with members of the codes found in Step 2, and (c) when there

is a match, label the requirement with the corresponding code. This task required expert knowledge to

abstract the main action verbs of the requirement and assign the correct code(s) to it. Because this activity

can be challenging due to the polysemy of the main action verb, it was conducted by both annotators.

We divided the set of 2755 requirements, used in our qualitative study, into two equal parts. All the

requirements of the first part were annotated by the first annotator and reviewed by the second annotator

24

3.3. QUALITATIVE STUDY

Table 3.4: VerbNet codes identified during our qualitative study

Codes Members
Class name Hierarchy

Level
admit 65 exclude
advise 37.9-1 instruct
allow 64.1 allow, authorize
beg 58.2 request
begin 55.1-1 begin
concealment 16-1 hide
contribute 13.2 restore
create 26.4 compute, publish
enforce 63 enforce
engender 27 create, generate
exchange 13.6 replace
forbid 67 prevent
herd 47.5.2 aggregate
involve 107 include
keep 15.2 store
limit 76 limit, restrict, reduce
mix 22.1-2 add
mix 22.1-2-1 link
neglect 75-1-1 neglect, ignore
obtain 13.5.2 accept, receive, retrieve
other_cos 45.4 close
put 9.1 insert
reflexive appear-
ance

48.1.2 display, show

remove 10.1 extract, remove, delete
say 37.7-1 report, propose
see 30.1-1 detect
send 11.1 return, send, forward, pass
shake 22.3-2-1 concatenate
throw 17.1 discard
transcribe 25.4 copy
turn 26.6.1 convert, change, transform
use 105 apply

Total: 32

25

CHAPTER 3. ON SYSTEMATICALLY BUILDING A CNL FOR FUNCTIONAL REQUIREMENTS

Table 3.5: Codes proposed during the qualitative study

Codes Members
cancel cancel
enable disable enable, disable
get from download
interrupt interrupt
migrate migrate
select unselect select, unselect
synchronize synchronize
update update
validate validate, check

Total: 9

and vice versa. If there was disagreement between annotators, we consulted a financial analyst to reach an

agreement using a consensus-based decision-making strategy [12].

We describe below the three activities of the labeling process for requirement DEP0020 in REQS

shown in Figure 3.2:“IFSIG must store all data for a configurable retention period". Specifically, (a) we

identified that the verb used in the system response is store, (b) we detected that store matches one of

the members of the VerbNet code keep-15.2, and (c) we labeled the requirement with the VerbNet code

keep-15.2.

Group Requirements (Step 4)

In Step 4 (Figure 3.1), we grouped and copied the labeled requirements to different spreadsheets based

on their labels. The purpose of having the requirements grouped by label is to make it easier for us to

identify common information content among them.

Create Grammar (Step 5)

In Step 5 (Figure 3.1) we created the grammar of Rimay to capture relevant information content from

the requirements. Figure 3.3 shows the steps that we carried out to create grammar rules for the VerbNet

code Send 11.1 (Table 3.4). The box in the upper-right corner of Figure 3.3 shows four examples of

requirements related to the VerbNet code Send 11.1 that will be used to illustrate this step. The same

sub-steps (i.e., from 5.1 to 5.6) were carried out for the rest of the codes presented in Table 3.4 and

Table 3.5.

Identify content in the requirements (Step 5.1). In this step we identify semantic roles and keywords

in the requirements. VerbNet provides the syntax and the examples that show most of the semantic roles

and the keywords (e.g., the prepositions) related to the VerbNet codes in Table 3.4. For example, the box in

the upper-left corner of Figure 3.3 shows the syntax and examples related to the VerbNet code Send 11.1.

The syntax contains the prepositions from and to, and the semantic roles AGENT (a participant that

initiates an action), THEME (an entity which is moved by an action, or whose location is described),

INITIAL_LOCATION (a place where an event begins or a state becomes true) and DESTINATION (a

place that is the end point of an action and exists independently of the event).

26

3.3. QUALITATIVE STUDY

New Content: CHANNEL, QUANTIFIER, MODAL_VERB, ARTICLE, through, not, and

The System-A will pass all the instructions to the System-B
System-C must send a confirmation message and a settlement instruction to System-D
The System-E shall export one instruction from System-F to System-G and System-H
System-I shall not forward Inx1 of type Instruction to System-J through System-K

VERB_SEND_11_1: send | sends | forward | forwards | export | …

Nora sent the book
from Paris to London

Nora sent the
book from Paris

Example in VerbNet

Nora sent the
book to London

Nora sent the book

AGENT VERB THEME
to DESTINATION

AGENT VERB THEME

AGENT VERB THEME
from INITIAL_LOCATION

Syntax in VerbNet

AGENT VERB THEME
from INITIAL_LOCATION
to DESTINATION

Information from VerbNet
related to the VerbNet code Send 11.1

The System-E shall export one instruction from
System-F to System-G and System-H

The System-A will pass all the instructions to the System-B

…more requirements related to SEND 11.1

System-C must send a confirmation message and a
settlement instruction to System-D

System-I shall not forward Inx1 of type Instruction to
System-J through System-K

Group of requirements related to the VerbNet code
Send 11.1

ARTICLE: a, an, the,…

MODAL_VERB: shall, must, will

QUANTIFIER: all, none,…

ARTICLE? AGENT MODAL_VERB not? VERB_SEND_11_1
QUANTIFIER? ARTICLE? THEME (and QUANTIFIER? ARTICLE? THEME)?
(from INITIAL_LOCATION)? to ARTICLE? DESTINATION (and ARTICLE? DESTINATION)?
(through CHANNEL)?

New Content: CHANNEL, QUANTIFIER, MODAL_VERB, ARTICLE, through, not, and

Identify content in the requirements (Step 5.1)

Propose grammar rule (Step 5.2)

Add VerbNet code members (Step 5.3)

Create generic rules (Step 5.4)

Refine grammar rules (Step 5.6)
SYSTEM_RESPONSE: ARTICLE? ACTOR MODAL_VERB not? ACTION_PHRASE

ACTION_PHRASE: SEND_11_1 |... # Other rules for other codes will follow

SEND_11_1: VERB_SEND_11_1 QUANTIFIER? ARTICLE? INSTANCE|CLASS

 (and QUANTIFIER? ARTICLE? INSTANCE|CLASS)?
 (from ACTOR)? to ARTICLE? ACTOR (and ARTICLE? ACTOR)?

 (through ACTOR)?

SYSTEM_RESPONSE: ARTICLE? AGENT MODAL_VERB not? ACTION_PHRASE

ACTION_PHRASE: SEND_11_1 |... # Other rules for other codes will follow

SEND_11_1: VERB_SEND_11_1 QUANTIFIER? ARTICLE? THEME

 (and QUANTIFIER? ARTICLE? THEME)?
 (from ACTOR)? to ARTICLE? DESTINATION (and ARTICLE? DESTINATION)?

 (through CHANNEL)?

Decompose rules (Step 5.5)

Figure 3.3: Obtaining CNL grammar rules from requirements related to the VerbNet code Send 11.1

27

CHAPTER 3. ON SYSTEMATICALLY BUILDING A CNL FOR FUNCTIONAL REQUIREMENTS

In Figure 3.3, we use different colors to show the correspondence between the semantic roles and the

parts of the requirements that represent the semantic roles. When some content in the requirements was

not related to any VerbNet semantic role, we proposed a new semantic role to identify that content. For

example, in Step 5.1 of Figure 3.3, we proposed the new semantic role CHANNEL to identify the content

in the phrase “through System-K".

Propose grammar rule (Step 5.2). Based on the syntax provided by VerbNet, we defined the order of

appearance of the content, and its repetition in Rimay. The symbols ?, * and + indicate that the users

of Rimay can repeat what is before the symbol at most once, any number of times, and at least once,

respectively. Step 5.2 in Figure 3.3 shows that the grammar rule for the VerbNet code Send 11.1 contains

keywords such as (i) connectors (and and or), (ii) prepositions shown in the VerbNet syntax (from and to),

(iii) prepositions related to new content (through) and (iv) the negation of a modal verb (not).

Add VerbNet code members (Step 5.3). We added a complete list of all the members of each VerbNet

code related to its corresponding rule. For example, forward and send are two of the members of the

VerbNet code Send 11.1 that we added to its corresponding rule VERB_SEND_11_1. We also added the

conjugated forms of the verbs to the rule (e.g., forwards, sends).

Create generic rules (Step 5.4). We created the rules related to the generic English grammar, e.g., we

created the rules ARTICLE, MODAL_VERB, and QUANTIFIER.

Decompose rules (Step 5.5). We decomposed the grammar rules created in Step 5.2 to make them

easier to understand and reuse. For example, we decomposed the example rule in Step 5.2 into three rules:

SYSTEM_RESPONSE, ACTION_PHRASE, and SEND_11_1.

Refine grammar rules (Step 5.6). With the help of four financial analysts (including one senior and one

mid-career financial analyst), we replaced some of the semantic role names with other ones that were more

familiar to both financial analysts and engineers. In our case, financial analysts and engineers working for

Clearstream were familiar with the UML [49]. For example, in the grammar rules SYSTEM_RESPONSE

and SEND_11_1 (Step 5.4 in Figure 3.3), we chose to replace the role AGENT with ACTOR, because an

agent can be represented as an UML actor, i.e., a role played by a human user or a system who initiates

and carries out an event or action.

Method. The method that we used to create Rimay was iterative and incremental. This means that

we first followed Steps 5.1 to 5.6 in Figure 3.3 to create the grammar rules related to one of the groups

of requirements produced in Step 4 of Figure 3.1. Second, we generated a requirements editor using

Xtext. Third, we used the generated editor to rephrase the requirements in the first requirements group

to test the grammar and its corresponding editor. We tested that our grammar and the editor were

expressive enough to allow us to write all the information content for the first group of requirements. If the

grammar was not expressive enough, we analyzed and extended the grammar, regenerated the editor and

verified the requirements until there were no errors in all the rephrased requirements. For each remaining

requirements groups produced in Step 4 (Figure 3.1), we repeated Steps 5.1 to 5.6 as performed for the

first requirements group.

28

3.4. CONTROLLED NATURAL LANGUAGE FOR FUNCTIONAL REQUIREMENTS

Answer to RQ1: Following a systematic and repeatable process, we identified 41 codes, which in

our context, are groups of verbs that convey the same information in NL requirements. We created

grammar rules for all the codes identified, thus covering all the information content found in a large and

representative set of functional requirements in financial applications. We anticipate that our approach,

being general in nature, should be applicable to other domains as well, while acknowledging that more

empirical investigation is necessary to conclusively validate this claim.

3.4 Controlled Natural Language for Functional Requirements

In this section, we describe how a requirement is structured in Rimay in order to answer RQ2: “Consid-
ering the stakeholders, how can we represent the information content of requirements for financial
applications?".

In recent years, different patterns have been increasingly used by the industry to improve the quality

of the requirements. Patterns like EARS [44] and Rupp [52] provide general constructs and concepts to

specify requirements (Section 3.2). However, these templates are not amenable to the type of analyses

enabling task automation because they allow the introduction of unstructured text. On the other hand,

CNLs provide structures with more specialized concepts and constructs, enabling automated analysis. As

we report in our recent work, Rimay enables the generation of abstract test cases (Chapter 5). Since we

could not find any comparable work in the financial domain, we applied Grounded Theory analysis for

building Rimay. However, as we explain below, some constructs and concepts of Rimay are inspired by

the EARS template.

The rule REQUIREMENT shown in Listing 3.1 provides the overall syntax for a requirement in Rimay.

The rule shows that the presence of the SCOPE and CONDITION_STRUCTURES is optional, but the

presence of an ACTOR, MODAL_VERB and a SYSTEM_RESPONSE is mandatory in all requirements.

REQUIREMENT: SCOPE? CONDITION_STRUCTURES? ARTICLE? ACTOR MODAL_VERB not? SYSTEM_RESPONSE.

CONDITION_STRUCTURES: CONDITION_STRUCTURE (,? (and|or) CONDITION_STRUCTURE)*, then?

Listing 3.1: Overall syntax of Rimay

In a requirement, an actor is expected to achieve a system response if some conditions are true. An actor

is a role played by an entity that interacts with the system by exchanging signals, data or information [49].

Moreover, requirements written in Rimay may have a scope to delimit the effects of the system response.

One example of a requirement in Rimay is: “For all the depositories, System-A must

create a MT530 transaction processing command". The requirement has a scope (For

all the depositories), does not have any conditions, and has an actor (System-A) and a

system response (create a MT530 transaction processing command).

Throughout this section, we simplify the description of Rimay by considering that the keywords are not

case-sensitive. Also, we use grammar rules that are common in English such as MODAL_VERB (e.g., shall,

must) and MODIFIER that includes articles (e.g., a, an, the) and quantifiers (e.g., all, none, only one, any).

Subsections 3.4.1 and 3.4.3 will explain the CONDITION_STRUCTURES and SYSTEM_RESPONSE,

respectively.

29

CHAPTER 3. ON SYSTEMATICALLY BUILDING A CNL FOR FUNCTIONAL REQUIREMENTS

3.4.1 Condition Structures

The grammar rule named CONDITION_STRUCTURE shown in Listing 3.2 defines different ways to

use system states, triggering events, and features, to express conditions that must hold for the system

responses to be triggered.

CONDITION_STRUCTURE: WHILE_STRUCTURE|WHEN_STRUCTURE|WHERE_STRUCTURE|IF_STRUCTURE|

TEMPORAL_STRUCTURE

WHILE_STRUCTURE: While PRECONDITION_STRUCTURE

WHEN_STRUCTURE: When TRIGGER

WHERE_STRUCTURE: Where TEXT #TEXT is a feature expression

IF_STRUCTURE: If PRECONDITION_STRUCTURE|TRIGGER

TEMPORAL_STRUCTURE: (Before|After) TRIGGER

Listing 3.2: Condition structures

The condition structures WHILE, WHEN, WHERE and IF that we use in our grammar are inspired

by the EARS template [44]. EARS is considered by practitioners as beneficial due to the low training

overhead and the quality and readability of the resultant requirements [43]. Additionally, we proposed

the rule TEMPORAL_STRUCTURE to be used when the system responses are triggered before or after a

triggering event. Below, we describe the types of CONDITION_STRUCTURE used in Rimay:

• The WHILE_STRUCTURE is used for system responses that are triggered while the system is in

one or more specific states.

• The WHEN_STRUCTURE is used when a specific triggering event is detected at the system boundary.

• The WHERE_STRUCTURE is used for system responses that are triggered only when a system

includes particular features. In our context, a feature is a unit of the functionality of the system [4].

The features are described in free form using the rule TEXT.

• The IF_STRUCTURE is used when a specific triggering event happens or a system state should be

hold at the system boundary before triggering any system responses.

The rule CONDITION_STRUCTURE shown in Listing 3.2 allows combining condition structures

using logical operators. We can, for example, combine the IF and WHEN structures using the operator

and in the structure “If PRECONDITION_STRUCTURE and when TRIGGER" to separate the

conditions in which the requirement can be invoked (i.e., the preconditions) and the event that initiates the

requirement (i.e., the trigger).

Figure 3.4 depicts examples of the WHEN_STRUCTURE, TEMPORAL_STRUCTURE, and

IF__STRUCTURE.

Listing 3.3 shows the grammar rules TRIGGER and PRECONDITION_STRUCTURE referenced in

Listing 3.2.

The rule TRIGGER in Listing 3.3 defines that a triggering event is always caused by an ACTOR that per-

forms some actions. The actions performed by the actor are defined by the rule ACTIONS_EXPRESSION

which enables the combination of any number of actions using logic connectors to express complex system

events. The WHEN_STRUCTURE in Figure 3.4 shows an example of a trigger composed of an actor and

an action expression: “System-B receives an email alert from System-A".

30

3.4. CONTROLLED NATURAL LANGUAGE FOR FUNCTIONAL REQUIREMENTS

TRIGGER: MODIFIER? ACTOR ACTIONS_EXPRESSION

ACTIONS_EXPRESSION: ACTION ((,|,and|and) ACTION)+

ACTION: ((do|does) not)? ACTION_PHRASE

PRECONDITION_STRUCTURE: ITEMIZED_CONDITIONS | CONDITIONS_EXPRESSION

ITEMIZED_CONDITIONS: the following conditions are satisfied:

HYPHEN CONDITION((,|,and|and) HYPHEN CONDITION)+

CONDITIONS_EXPRESSION: CONDITION((,|, and|, or|and|or)? CONDITION)+

Listing 3.3: Trigger and precondition structure

The rule PRECONDITION_STRUCTURE in Listing 3.3 gives freedom for the users to decide how

to describe conditions. The rule ITEMIZED_CONDITIONS (Listing 3.3) is appropriate for writing

long lists of conditions that must evaluate to True. Conversely, the rule CONDITIONS_EXPRESSION

(Listing 3.3) is suitable for only one condition, multiple conditions combined with logical operators, or

parentheses that denote priority in the evaluation order of operations. The IF_STRUCTURE in Figure 3.4

shows examples of non-itemized and itemized conditions.

3.4.2 Conditions

In the previous subsection, we introduced the rule PRECONDITION_STRUCTURE to specify conditions.

This rule is composed of operands and operators which are described as follows.

Operands

The operands are represented by the rules ACTOR, CLASS, PROPERTY, INSTANCE, ELEMENT and

TEXT. The meaning of the operands is the same as in the UML [49], therefore an Actor specifies a role

played by the user or another system that interacts with our system. The Class represents a domain

concept (e.g., Instruction). A Property represents the attributes of the Class. An Instance represents a

specific realization of a Class and an Element is a constituent of a model.

The users of Rimay can use the dot notation to refer to a property of a class, e.g.,“Instruction

.Settlement_Date". In the cases where there is only one instance of a class in a requirement, the

users do not need to declare any instance. For example, given that in Figure 3.4 there is only one instance

of an instruction, we used “Instruction" instead of “Inx1 of type Instruction".

Operators

Rimay uses the following families of operators and its negative forms:

- COMPARE, such as “equals to", “less or equal to", etc.,

- CONTAINS such as “has", “contains", etc.,

- OTHER OPERATORS such as “is available"

An example of a condition that conforms to Rimay is: “Inx1 of type

Settlement_Instruction has Status and Status is equal to Valid". This

condition uses operators of type CONTAINS and COMPARE.

31

CHAPTER 3. ON SYSTEMATICALLY BUILDING A CNL FOR FUNCTIONAL REQUIREMENTS

Condition Rule

The operators and operands defined in the previous subsections are used in the five grammar rules shown

in Listing 3.4 conditions such as the ones shown in Figure 3.4.

The types of conditions are described as follows:

(1) INSTANCE OR CLASS HAS PROPERTIES evaluates if the instance of a class, or a class

itself defines one or more specific properties. The properties can be defined in a document (e.g.,

“Instruction has the properties described in the Section 1.b"), or directly

in the requirement (e.g., “Instruction has the properties: Owner, Status and

Settlement_Date").

(2) CONVENTION checks if a property conforms to a format or standard, e.g., “Instruction.

Settlement_Date conforms to the standard ISO-8601".

(3) CLASS OR PROPERTY OPERATOR VALUE is a condition composed of an operand-1, an

operator and an operand-2. The operand-1 is a reference to a CLASS or PROPERTY. The auxiliary

rule OPERATOR VALUES EXPR defines the operator and the operand-2 of the condition, e.g., “the

Transaction.Amount is less than or equal to 20000 Euros”. The operand-2 is

any type of operand described in Section 3.4.2.

(4) INSTANCE OR PROPERTY OPERATOR VALUE is an operand-operator-value condition. The

operand is a reference to an INSTANCE or PROPERTY and the value represent any literal or number.

An example of this type of condition is: “Transaction Type of Settlement Request is

equal to Z-Value".

(5) UI COMPONENT INSTANCE OPERATOR ELEMENT is a condition composed by an operand-

1, operator, and operand-2 for a requirement related to the user interface (UI). The operand-1 is an instance

of a UI component identified by a free form TEXT followed by a reference to the type of UI COMPONENT.

Rimay contains a list of common UI component types to help the user to create the requirements (e.g., tab,

page, bar, field, calendar, checkbox, menu, message). The auxiliary rule OPERATOR VALUES EXPR

defines the operator and the operand-2 of the condition. An example that displays this type of condition is:

“the Account Number field contains 0000".

INSTANCE_OR_CLASS_HAS_PROPERTIES: MODIFIER? (INSTANCE|CLASS) CONTAINS (the properties

described in TEXT)|(the (property|properties): PROPERTIES)

CONVENTION: ((TEXT (of CLASS)? | PROPERTY) (conforms|conform|comply|complies) (to|with)

MODIFIER? (format|convention|standard) TEXT

CLASS_OR_PROPERTY_OPERATOR_VALUE: MODIFIER? CLASS|PROPERTY OPERATOR_VALUES_EXPR

INSTANCE_OR_PROPERTY_OPERATOR_VALUE: MODIFIER? TEXT OF_CLASS_OR_REFERENCE_TO_LABEL? Label?

OPERATOR_VALUES_EXPR

UI_COMPONENT_INSTANCE_OPERATOR_ELEMENT: MODIFIER? TEXT UI_COMPONENT OPERATOR_VALUES_EXPR

OPERATOR_VALUES_EXPR: (COMPARE|CONTAINS|OTHER_OPERATORS) MODIFIER? MULTI_VALUES_EXPR TEXT?

Listing 3.4: Conditions rules

32

3.4. CONTROLLED NATURAL LANGUAGE FOR FUNCTIONAL REQUIREMENTS

If
 t

he
 f

ol
lo

wi
ng
 c

on
di

ti
on

s
ar

e
sa

ti
sf

ie
d:

-

 t
he

 "
In

st
ru

ct
io

n"
 h

as
 t

he
 p

ro
pe

rt
ie

s
de

sc
ri

be
d
in

 "
Se

ct
io

n
Y"
,

#I
NS

TA
NC

E_
OR

_C
LA

SS
_H

AS
_P

RO
PE

RT
IE

S
-

 t
he

 "
In

st
ru

ct
io

n"
 h

as
 t

he
 p

ro
pe

rt
ie

s:
 "

Ow
ne

r,
 S

ta
tu

s
an

d
Se

tt
le

me
nt

 D
at

e"
,

#I
NS

TA
NC

E_
OR

_C
LA

SS
_H

AS
_P

RO
PE

RT
IE

S
-

 t
he

 I
ns

tr
uc

ti
on

.S
et

tl
em

en
t_

Da
te
 c

on
fo

rm
s

to
 t

he
 s

ta
nd

ar
d
"I

SO
86

01
",
 #

CO
NV

EN
TI

ON
-

 t
he

 T
ra

ns
ac

ti
on

.A
mo

un
t
is

 l
es

s
th

an
 o

r
eq

ua
l
to

 "
Y

Va
lu

e"
,

#C
LA

SS
_O

R_
PR

OP
ER

TY
_O

PE
RA

TO
R_

VA
LU

E
-

 t
he

 "
Tr

an
sa

ct
io

n
Ty

pe
"
of

 S
et

tl
em

en
t_

Re
qu

es
t
is

 e
qu

al
 t

o
"Z

 V
al

ue
"
an

d
#I

NS
TA

NC
E_

OR
_P

RO
PE

RT
Y_

OP
ER

AT
OR

_V
AL

UE
-

 t
he

 "
Ac

co
un

t
Nu

mb
er

"
fi

el
d

 c
on

ta
in

s
"0

00
0"

 #
UI

_C
OM

PO
NE

NT
_I

NS
TA

NC
E_

OP
ER

AT
OR

_E
LE

ME
NT

IF
 S

TR
UC

TU
RE
:

(I
TE

MI
ZE

D)
CO

ND
IT

IO
N

HY
PH

EN

WH
EN

 S
TR

UC
TU

RE
:
Wh

en
 S

ys
te

mB
 r
ec

ei
ve

s
an

 "
em

ai
l

al
er

t"
 f

ro
m

Sy
st

em
A

TR
IG

GE
R

AC
TO

R
AC

TI
ON

S_
EX

PR
ES

SI
ON

TE
MP

OR
AL

 S
TR

UC
TU

RE
:
Be

fo
re
 S

ys
te

mA
 s
en

ds
 a

n
"I

ns
tr

uc
ti

on
"
to

 S
ys

te
mB

TR
IG

GE
R

CO
ND

IT
IO

N
CO

ND
IT

IO
N

IF
 S

TR
UC

TU
RE
:

(N
ON

 I
TE

MI
ZE

D)

Th
e

Sy
st

em
A
mu

st
 d

o
th

e
fo

ll
ow

in
g
ac

ti
on

s
in

 s
eq

ue
nc

e:

1
 c

re
at

e
an

 "
In

st
ru

ct
io

n"

2
 s

en
d
"I

ns
tr

uc
ti

on
"
to

 S
ys

te
mB

Th
e

Sy
st

em
A
mu

st
 c

re
at

e
an

 "
Co

nf
ir

ma
ti

on
 M

es
sa

ge
"(
re

fe
rr

ed
 t

o
as

 M
sg

I)
 a
nd

 s
en

d
Ms

gI
 t
o

Sy
st

em
B

IN
T

SY
ST

EM
 R

ES
PO

NS
E

SY
ST

EM
 R

ES
PO

NS
E

EX
PR

ES
SI

ON
:

Th
e

Us
er

 m
us

t
up

lo
ad
 t

he
 "

ex
ce

l
fi

le
"
to

 t
he

 "
Sy

st
em

A"

AC
TO

R

AC
TO

R

AC
TO

R

SY
ST

EM
 R

ES
PO

NS
E

SY
ST

EM
 R

ES
PO

NS
E

AT
OM

IC
 S

YS
TE

M
RE

SP
ON

SE
:

RE
SP

ON
SE

 B
LO

CK

IT
EM

IZ
ED
:

If
 I

ns
tr

uc
ti

on
.d

es
cr

ip
ti

on
 c
on

ta
in

s
a

"K
ey

wo
rd

"
or

 I
ns

tr
uc

ti
on

.r
ec

or
d
is

 "
Li

ve
"

#C
LA

SS
_O

R_
PR

OP
ER

TY
_O

PE
RA

TO
R_

VA
LU

E

CO
ND

IT
IO

NS
_E

XP
RE

SS
IO

N

Fi
gu

re
3.

4:
E

xa
m

pl
es

of
co

nd
iti

on
st

ru
ct

ur
es

an
d

sy
st

em
re

sp
on

se
s

33

CHAPTER 3. ON SYSTEMATICALLY BUILDING A CNL FOR FUNCTIONAL REQUIREMENTS

3.4.3 System Response

The rule SYSTEM_RESPONSE in Listing 3.5 allows the user to express the behavior of the

system in two manners using the rules: (a) RESPONSE_BLOCK_ITEMIZED, that is suit-

able for writing lists of actions; and (b) SYSTEM_RESPONSE_EXPRESSION, that is ap-

propriate for writing one or multiple actions combined with logical operators, or paren-

theses that denote the priority of the actions. The previous rules include the rule

ATOMIC_SYSTEM_RESPONSE and logical operators. Each ATOMIC_SYSTEM_RESPONSE con-

tains an ACTION_PHRASE and optionally, a frequency (e.g., every 3 seconds). Figure 3.4 de-

picts examples of the ATOMIC_SYSTEM_RESPONSE as well as more complex examples, such as

SYSTEM_RESPONSE_EXPRESSION and RESPONSE_BLOCK_ITEMIZED.

SYSTEM_RESPONSE: SYSTEM_RESPONSE_EXPRESSION | RESPONSE_BLOCK_ITEMIZED

SYSTEM_RESPONSE_EXPRESSION: ATOMIC_SYSTEM_RESPONSE ((,|, and|, or|and|or)?

ATOMIC_SYSTEM_RESPONSE)*
ATOMIC_SYSTEM_RESPONSE: ACTION_PHRASE (every TEXT)?

RESPONSE_BLOCK_ITEMIZED: do the following actions (in sequence)? :

BULLET ATOMIC_SYSTEM_RESPONSE ((,|, and|, or|and|or)? BULLET ATOMIC_SYSTEM_RESPONSE)*

Listing 3.5: System response

All the types of ACTION_PHRASE rules are available in Appendix A. The rule OBTAIN_13_5_2

in Table 3.6 is one type of ACTION_PHRASE rule. The column “Grammar Rule Name" shows the name

of the grammar rule related to the code obtain 13.5.2 that we discovered during the qualitative study

(Tables 3.4 and 3.5). The column “Grammar Rule Summary" describes the syntax of OBTAIN_13_5_2,

and the column “Examples" shows requirements that conform to that syntax.

Table 3.6: Grammar rule: OBTAIN_13_5_2

Grammar Grammar Rule Summary Examples
Rule Name
OBTAIN_13_5_2 accept|receive|retrieve|reject

MODIFIER? INSTANCE | CLASS

(from ELEMENTS)?

(through ACTORS)?

(in compliance with TEXT

(described in TEXT)?)?

Example 1: receive a

DA_file from CFCL_IT

Example 2: reject

the "Message" in

compliance with

"current validation

rules"

Rimay Editor

We developed the Rimay editor using the Xtext language engineering framework [10] which enables

the development of textual domain-specific languages. We integrated the Rimay editor into an existing

and widely known modeling and code-generation tool: Sparx Systems Enterprise Architect6. Enterprise

Architect was already being used at Clearstream. In particular, we created a form composed of the Rimay

editor, and fields related to key properties of a requirement, such as “Requirement ID", “Rationale", and

“Examples". Figure 3.5 shows a screenshot of the form.

6https://sparxsystems.com/products/ea/ (last access on 26 January 2021)

34

https://sparxsystems.com/products/ea/

3.5. EMPIRICAL EVALUATION

To operationalize our technology-independent grammar (created in Step 5), we need to enhance it

with some additional information. In particular, Xtext requires one to declare the name of the language,

and further, import reusable terminals such as INT, STRING and ID for the syntax of integers, text, and

identifiers, respectively.

The input that we provided to Xtext is an EBNF-like grammar composed of rules that are similar

to the ones that we discussed in this section. Xtext automatically generates a web-based editor with

the following helpful features [10]: (a) syntax highlighting, it allows to have the requirements colored

and formatted with different visual styles according to the elements of the language; (b) error markers,

when the tool automatically highlights the parts of the requirements indicating errors; and (c) content

assist, a feature that automatically, or on demand, provides suggestions to the financial analysts on how to

complete the statement/expression. In practice, these features are important to facilitate the adoption of

Rimay by financial analysts. The implementation of our grammar and its editor are available online 7.

Figure 3.5: Screenshot of the requirements entry dialog box in the Rimay editor

Answer to RQ2: We operationalized the grammar of Rimay developed in Section 3.3 into a full-featured

editor using Xtext. Nevertheless, Rimay is independent of any language engineering framework. Our

grammar offers broad coverage of system response and condition types, following recommended syntactic

structures for requirements (e.g., the use of active voice).

3.5 Empirical Evaluation

In this section, we describe a case study that evaluates Rimay developed in Sections 3.3 and 3.4. Through-

out the section, we follow best practices for reporting on Case Study Research in Software Engineering [56].

7https://gitlab.uni.lu/aveizaga/dsl_rimay/ (last access on 17 August 2022)

35

https://gitlab.uni.lu/aveizaga/dsl_rimay/

CHAPTER 3. ON SYSTEMATICALLY BUILDING A CNL FOR FUNCTIONAL REQUIREMENTS

3.5.1 Case Study Design

As stated in the introduction, our evaluation aims to answer the following research questions:

• RQ3: How well can Rimay express the requirements of previously unseen documents?

• RQ4: How quickly does Rimay converge towards a stable state?

Figure 3.6 shows the iterative process that we follow in order to answer these two questions. To evaluate our

approach, we needed to collect new SRSs that had not been used for the construction of Rimay. We applied

the four steps presented in Figure 3.6 to collect new SRSs and examine the expressiveness and stability of

Rimay using them: (Step 1) The financial analysts, on an opportunistic basis, gave us a new SRS that

we had not seen before; we extracted from the given SRS its NL requirements (“Extract Requirements",

Section 3.5.1). (Step 2) We attempted to rephrase the extracted requirements using the rules of Rimay,

keeping the intent of the original requirements and ensuring that we did not lose any information content.

In this step, we had to keep track of the requirements, if any, that were non-representable as well as

the causes for such limitations (“Rephrase Requirements Using Rimay", Section 3.5.1). (Step 3) We

analyzed the requirements that were marked as non-representable and enhanced Rimay to make these

requirements representable (“Improve Rimay", Section 3.5.1). (Step 4) We checked whether there was a

significant change in Rimay’s ability to capture previously unseen content. As we argue in Section 3.5.4,

it turned out that with four SRSs (i.e., four iterations of the process in Figure 3.6), we were able to reach

saturation. At that point, we stopped analyzing more SRSs (“Check Rimay’s Stability", Section 3.5.1). In

the remainder of this section, we will not repeatedly be stating that these four SRSs were collected and

analyzed iteratively and in a sequence. Instead, for succinctness, we refer to these four SRSs collectively

when it is more convenient to do so.

With regard to our research questions, Step 1 and Step 2 of the process in Figure 3.6 answer RQ3, as

these two steps provide information about the expressiveness of Rimay, i.e., the requirements that were

representable or non-representable with Rimay. Step 3 and Step 4 of the process address RQ4, as these

steps provide information about the improvements necessary for maturing Rimay to a stable state.

Extract Requirements (Step 1 of Figure 3.6)

In Step 1 of Figure 3.6, we extract the requirements from our four new, previously unseen SRSs. These

SRSs were selected by senior financial analysts from Clearstream according to the criteria described

in Section 3.3.2. The selected SRSs did not contain any requirement that was already analyzed while

building Rimay’s grammar in the qualitative study of Section 3.3.

Rephrase Requirements Using Rimay (Step 2 of Figure 3.6)

This rephrasing activity was performed in an iterative manner. Rephrasing the requirements of the four

SRSs into Rimay took four iterations over two months, with each iteration requiring approximately two

weeks. Each iteration was interleaved with a face-to-face session of two to three hours with at least

six financial analysts (including one senior and one mid-career financial analyst). During the face-to-

face validation sessions, the financial analysts checked that the intent of the requirements expressed

in Rimay did not deviate from their original intent. A team composed of two annotators (the first and

second researchers) rephrased the requirements using Rimay. Both annotators rephrased together the

36

3.5. EMPIRICAL EVALUATION

Non-Representable
Requirements

Extract Requirements1

Rephrase Requirements
Using Rimay2

Improve Rimay 3
Improved Rimay

New SRS

Requirements

Check Rimay’s Stability4

Stable Rimay

Rimay is not stable

Figure 3.6: Case study design

first 20% of the requirements (i.e., 92 requirements) in order to internalize a clear procedure for (1)

rephrasing a requirement into Rimay and (2) collecting the appropriate data from each requirement

(i.e., representability of a requirement and possible causes of non-representability). Having a systematic

procedure for rephrasing the requirements alongside the experience that the annotators had already gained

while conducting our qualitative study helped ensure the quality of the rephrasing activity over the

remaining 80%, i.e., the 368 (460-92) of the requirements that were rephrased by the first annotator.

A requirement can be composed of a scope, pre-conditions, an actor, and a system response. The

scope and pre-conditions are optional, but the presence of at least one system response and one actor is

mandatory.

Step 2 considers a requirement to be non-representable when some information content of the

requirement cannot be captured using Rimay. A requirement is considered representable, otherwise. A

requirement that is non-representable is annotated with one of following three causes:

• Cause 1. The requirement contains a verb that is not supported by Rimay rules. Therefore, we can

either extend a Rimay rule with the verb or create a new rule.

• Cause 2. Part of the requirement (excluding the verb) includes information content that is not

supported by Rimay. For example, the rule Send 11.1 initially defines the following information

content: an AGENT who can move a THEME (e.g., data) from an INITIAL LOCATION to

a DESTINATION. If a given requirement involves some information content not considered

37

CHAPTER 3. ON SYSTEMATICALLY BUILDING A CNL FOR FUNCTIONAL REQUIREMENTS

by Send 11.1 (e.g., the CHANNEL through which the THEME is sent), then we consider that

requirement to not be representable according to Cause 2.

• Cause 3. The meaning of the requirement is unclear and no financial analyst could clarify it.

Improve Rimay (Step 3 of Figure 3.6)

To improve Rimay, we analyzed the causes for requirements marked as non-representable. Concretely, we

enhanced Rimay grammar by: (a) creating a new grammar rule when such requirement was marked with

Cause 1. To create a new grammar rule, we first identified, for each requirement, the codes according to

the steps described in Section 3.3.3. The resulting codes were either identified from VerbNet or proposed

by us. We then created the grammar rules following the steps described in Section 3.3.3; and (b) updating

an existing grammar rule created in Section 3.3 to include either a new verb of a requirement labeled with

Cause 1 or missing content of a requirement labeled with Cause 2.

Requirements labeled with Cause 3 were not addressed in Rimay. We discuss such requirements in

Section 3.6, dedicated to threats to validity.

Check Rimay’s Stability (Step 4 of Figure 3.6)

This step verifies whether there was a significant change in Rimay’s capacity to capture the content

of previously unseen NL requirements. If there is no significant change, we say that Rimay is stable,

and we stop the evaluation process. Otherwise, we iterate over Step 1 to Step 4 using a new SRS until

Rimay becomes stable. We refer to the notion of saturation to determine the point where Rimay is stable.

Saturation is defined mathematically for capturing, in a simple way, when to stop our evaluation. In

other words, we stop our evaluation when Rimay is expressive enough to capture all the verbs in the NL

requirements of a SRS (i.e., the number of errors due to Cause 1 is zero). In our case study, we reached

the saturation point during the evaluation of SRS 4.

3.5.2 Data Collection

We answered RQ3 and RQ4 by collecting data from the execution of the four steps described in

Section 3.5.1. Figure 3.7 shows the data model of the requirements collected during the empiri-

cal evaluation. In our data model, a Requirement has an Id which is a unique code assigned

to each requirement, an Original_Description and a Rationale. A requirement is either

Representable or Non_Representable. If the requirement is Representable, we recorded

its Rephrased_Description. If the requirement is Non_Representable, we recorded the

CAUSE (i.e., Cause_1, Cause_2 or Cause_3).

Figure 3.7: Data model of the collected requirements

Non_Representable

Cause: CAUSE

Requirement

Id: string {id}
Original_Description: string
Rationale: string

Representable

Rephrased_Description: string

«enumeration»
CAUSE

Cause_1
Cause_2
Cause_3

38

3.5. EMPIRICAL EVALUATION

In total, we collected 460 requirements from the four SRSs used in our evaluation. We improved the

grammar rules after rephrasing one SRS and assessed the improved grammar on the next.

3.5.3 Collecting Evidence and Results

This section describes the execution and the raw data collected from our case study. The case study

required the work of two annotators for two months, adding up to approximately 200 person-hours. In

Section 3.5.1, we describe how the two annotators performed this task.

Table 3.7 provides the data for each of the four SRSs. For each SRS, we present the number of

requirements that can and cannot be represented using Rimay. For example, the second row of Table 3.7

shows that 65 (74,7%) out of 87 of the requirements of the first SRS are representable in Rimay.

Table 3.7: Percentage of representable requirements and frequencies of causes for non-representable
requirements

Requirements SRS Total1 2 3 4
Representable and Non-representable 87 113 192 68 460
Representable 65 96 180 64 405
Non-representable 22 17 12 4 55
Non-representable - Cause 1 11 6 2 - 19
Non-representable - Cause 2 9 8 7 4 28
Non-representable - Cause 3 2 3 3 - 8

Table 3.7 shows, for the four SRSs, the frequency of the three causes (described in Section 3.5.1) in

the requirements labeled as non-representable. For example, the second column of Table 3.7, for SRS 1,

shows that for 11 requirements, the verb was not supported by Rimay (Cause 1). For nine requirements,

some other content was not supported by Rimay (Cause 2). Two requirements were unclear and no

financial analyst could clarify them (Cause 3). In total, 22 out of 87 requirements (25,3%) in SRS 1 were

non-representable.

Next, we provide examples of non-representable requirements for each of the causes described above.

• Cause 1 - SRS 2: “On receipt of a request from System-A to update positions, System-B must

recalculate all positions impacted by the confirmed order". Rimay does not have any grammar rule

that has the verb recalculate.

• Cause 2 - SRS 1: “When the Market Calendar does not exist in the System, the System must add a

record about the missing Market Calendar to the exception log". The grammar rule Mix-22.1-2,

that contains the verb “add" does not support the following information content “about missing

market calendar".

• Cause 3 - SRS 3: “System-A must be able to process System-B´s instructions with input media

INPUT". The requirement is vague since the verb “process" is not precise enough [20].

Finally, we improved Rimay by addressing the non-representable requirements labeled with Causes 1

and 2, as explained in Section 3.5.1.

39

CHAPTER 3. ON SYSTEMATICALLY BUILDING A CNL FOR FUNCTIONAL REQUIREMENTS

Coding Results.

Tables 3.8 and 3.9 show the codes and their verb members identified during our empirical evaluation.

Recall from Section 3.3 that a code represents a group of verbs that convey the same information in NL

requirements. The structures of Table 3.8 and Table 3.9 are the same as the structures of Table 3.4 and

Table 3.5 reporting the coding results of our qualitative study discussed in Section 3.3.

Seven out of 13 codes in Tables 3.4 and 3.5 were found during our empirical evaluation. We placed the

symbol “*" before the seven new codes to differentiate them from the codes that we had already identified

in the qualitative study. For each new code, we created a new grammar rule. Considering that, in total, we

found 48 codes during the qualitative study and the empirical evaluation, the seven (14,6%) new codes

found in the empirical evaluation did not prompt drastic modifications to Rimay.

Table 3.8: VerbNet codes identified during our empirical evaluation

Codes Members
Class name Hierarchy Level
begin 55.1-1 start
∗establish 55.5-1 establish
other_cos 45.4 reverse
remove 10.1 deduct
∗search 35.2 search
send 11.1 export
∗stop 55.4 stop
use 105 use

Total: 8

Table 3.9: Codes proposed during our empirical evaluation

Codes Members
∗calculate calculate, recalculate
∗split split
∗subscribe subscribe
∗upload upload
update set

Total: 5

3.5.4 Analysis of Collected Data

In this section, we analyze the collected data and answer RQ3 and RQ4.

Performance of Rimay on Previously Unseen SRSs (RQ3)

Table 3.7 shows that 405 out of 460 requirements (88%) across all four SRSs can be expressed using

Rimay. For SRS 1, we use the version of Rimay resulting from our qualitative study while, for the

following SRSs (second to fourth), we use a version of Rimay that includes the improvements made based

on the previous SRS(s).

With regard to SRS 1, we note that we found five occurrences of a new verb, “use", which we had not

encountered during our qualitative study. The relatively low expressiveness in this first SRS is largely

40

3.5. EMPIRICAL EVALUATION

explained by the high frequency of appearance of this single verb. As one can see from Table 3.7, most

requirements can be represented in Rimay across all SRSs. The improvements to the expressiveness of

Rimay are brought about by small changes to Rimay. In other words, while the expressiveness of our

grammar did improve as the result of analyzing more SRSs, we did not have to make major changes to the

grammar. Our changes involved only the introduction of a few new verbs (as shown in Tables 3.8 and 3.9),

and the enhancements of a small number of grammar rules created during our qualitative study (Section

3.3).

The most common causes for a requirement to be non-representable, in order of prevalence, are

Cause 2 with 28 occurrences (50.9%), followed by Cause 1 with 19 occurrences (34.5%), and, finally

Cause 3 with 8 occurrences (14.5%). We conjecture that the main reason why Cause 2 turns out to

be the most frequent cause is that VerbNet – the lexicon we use for deriving our grammar rules – is

domain-independent and may not contain certain information content that is specific to the financial

domain. During our qualitative study, we identified some new content and extended the grammar rules

accordingly. For example, the syntax for the rule Send_11.1 in VerbNet specifies that an AGENT

can move a THEME (e.g., data) from an INITIAL_LOCATION to a DESTINATION. Then, during the

qualitative study, we identified new information content such as the temporal structure (e.g., “Before

1h00 CET") used at the beginning of requirements. Furthermore, in the evaluation, we identified ex-

tra information content such as a valid channel to send the THEME (e.g., a subsystem that encrypts the data).

Answer to RQ3: Rimay performed well in expressing the requirements of unseen SRSs. In particular,

405 out of the 460 requirements (i.e., 88%) used in our empirical evaluation were successfully rephrased

using Rimay. The expressiveness of Rimay did steadily improve and converged to 94% in the last SRS.

The rephrased requirements maintained their original intent with no information loss. We observed that

improving the expressiveness of Rimay involved only small changes to its grammar. This suggests that

the version of Rimay obtained from our qualitative study (Section 3.3) did not require drastic changes to

maximize expressiveness.

Ensuring the Stability of Rimay (RQ4)

We refer to the notion of saturation to determine the point in our evaluation where we have been through

enough SRSs to be confident that the updated version of Rimay is as expressive as possible to specify

requirements for the financial domain. To determine if a statistically significant change is observed

in the percentage of representable requirements, we conduct z-tests for differences in proportions of

representability across different SRSs.

Saturation. Usually, saturation is reached in a qualitative study when “no new information seems to

emerge during coding, i.e., when no new properties, dimensions, conditions, actions/interactions, or

consequences are seen in the data" [27]. In our evaluation, the saturation point is reached when all

the verbs analyzed in a SRS are already considered by Rimay (i.e., when Cause 1 is not triggered).

Specifically, as shown in Table 3.7, SRS 4 was the only SRS where no requirement was classified as

non-representable due to Cause 1.

As can be seen from Table 3.7, the increment in the percentage of requirements that can be written in

Rimay is tangible evidence that the changes made to Rimay were beneficial (although not extensive).

41

CHAPTER 3. ON SYSTEMATICALLY BUILDING A CNL FOR FUNCTIONAL REQUIREMENTS

Z-test. The z-test is a standard statistical test used for checking the difference between two propor-

tions [18]. We run one-tailed z-tests to check if the proportion (p1) of representable requirements in one

SRS (SRS i) is larger than or equal to the proportion (p2) of representable requirements in another SRS

(SRS j) analyzed thereafter. Our null and alternative hypotheses are as follows:

H0 : p1 ≥ p2

H1 : p1 < p2

• H0 : The percentage of representable requirements does not increase from SRS i to SRS j.

• H1 : The percentage of representable requirements increases from SRS i to SRS j.

Each sample contains more than 30 independent data points and, though sample sizes are not equal, they

are not drastically different, thus allowing the use of z-tests [83]. In total, we run six z-tests, at a level of

significance of 0.05. The SRS pairs covered by these tests, alongside their corresponding proportions,

are shown in Table 3.10. For example, the first row of Table 3.10 shows the input for performing a z-test

over the (SRS 1, SRS 2) pair. SRS 1 contains 65 requirements that are representable with Rimay out

of 87 requirements, and SRS 2 contains 96 requirements that are representable with Rimay out of 113

requirements.

Test

Input
Document Pair Sample Sample Representable Representable
SRS i, SRS j Size in Size in Requirements Requirements

SRS i SRS j in SRS i in SRS j
(p1) (p2)

1 SRS 1, SRS 2 87 113 65 96
2 SRS 1, SRS 3 87 192 65 180
3 SRS 1, SRS 4 87 68 65 64
4 SRS 2, SRS 3 113 192 96 180
5 SRS 2, SRS 4 113 68 96 64
6 SRS 3, SRS 4 192 68 180 64

Table 3.10: Z-tests inputs

The z-scores and p-values for the z-tests are shown in Table 3.11. We conclude that the null hypothesis,

H0, is rejected in the first five z-tests. Therefore, there is significant evidence to claim that proportion p1

is less than proportion p2 at the 0.05 significance level for the first five document pairs. Concretely, this

means that the proportion of representable requirements in SRS 2, SRS 3, and SRS 4 are significantly

better than that of SRS 1. Similarly, the proportion of representable requirements in SRS 3 and SRS 4 are

significantly better than that of SRS 2. However, the null hypothesis cannot be rejected in the last z-test.

Therefore, the proportion of representable requirements in SRS 4 is not significantly better than that of

SRS 3. We therefore concluded our analysis of new SRSs after completing SRS 4.

Answer to RQ4: We reached a stable version of our grammar after analyzing SRS 3 in our evaluation

set. During the analysis of SRS 4, no new verbs emerged; we therefore concluded that we had reached

saturation. Statistical tests confirmed that, after analyzing SRS 3, changes to Rimay did not bring about

significant improvements in expressiveness.

42

3.6. THREATS TO VALIDITY

Test Document Pair z p − value
SRS i, SRS j

1 SRS 1, SRS 2 −1,81 0,03
2 SRS 1, SRS 3 −4,50 3,35 E-06
3 SRS 1, SRS 4 −3,21 6,67 E-4
4 SRS 2, SRS 3 −2,53 0,01
5 SRS 2, SRS 4 −1,86 0,03
6 SRS 3, SRS 4 −0,11 0,46

Table 3.11: Z-test results

3.6 Threats to Validity

In the following subsections, we analyze potential threats to the validity of our empirical work according

to the categories suggested by Wohlin et al. [75] and adapted by Runeson et al. [56] for case studies in

software engineering.

3.6.1 Construct Validity

Construct validity reflects to what extent the operational measures that are studied really represent what

the researcher has in mind and what is investigated according to the research questions [56].

We measured the percentages of the requirements that can be represented with Rimay according to the

grammar rules we identified. If the criteria that we used to assess whether a requirement is representable

are incomplete or too strict, this could constitute a threat. We therefore proposed three criteria (named

Causes) that alleviate the risk of introducing inadequate information content into Rimay. We analyzed

the Causes of the requirements marked as non-representable in order to enhance the Rimay grammar

by (a) creating new grammar rules (i.e., Cause 1); (b) updating grammar rules to include some missing

content (i.e., Cause 1 and Cause 2), and (c) not considering incomplete, ambiguous or unclear information

content (i.e., Cause 3). Cause 1 and Cause 2 are meant to capture missing parts that need to be included

in the Rimay grammar. On the other hand, Cause 3 focuses on the requirements that describe incorrect

information content that we do not want to include in Rimay. To be sure that no important information

was excluded from Rimay, we looked at the eight non-representable requirements labelled with Cause 3

(Table 3.7) with the senior financial analysts from Clearstream, who agreed with our decision to discard

them.

A second threat to construct validity is related to potential biases in the interpretation of requirements

and the application of the qualitative codes while conducting Step 3 (i.e., Label Requirements) in

Section 3.3. Ideally, to prevent biases in the coding process, one could have involved third parties in

carrying out the step. However, we did not do so for two main reasons: (1) the confidentiality agreement

with our industrial partner did not allow us to share the requirements with external parties, and (2) it was

infeasible to identify third parties that had the specialized knowledge required for the coding process

driven by linguistic resources, notably, VerbNet and WordNet. Despite not having third parties involved in

this activity, we were able to mitigate potential biases and ensure the quality of the results by primarily

relying on linguistic resources (VerbNet and WordNet, as noted above). Furthermore, whenever we were

unable to conclusively interpret a requirement, we escalated the case to our collaborating financial analysts

for deciding about the interpretation.

43

CHAPTER 3. ON SYSTEMATICALLY BUILDING A CNL FOR FUNCTIONAL REQUIREMENTS

3.6.2 Internal Validity

Internal validity is of concern when causal relations are examined [56].

The results and the conclusions of our study strongly rely on two key activities that were performed

manually: (1) the identification of codes (carried out by using protocol coding) and their members, and

(2) the transformation process of requirements into Rimay. This can represent an important threat to

the internal validity of our study. To mitigate biases, these two activities were systematically performed

by a pair of researchers (the first and second researchers). Afterward, a third researcher reviewed and

challenged some of the results of these activities. We finally improved steps (1) and (2) upon reaching an

agreement between these three researchers.

Another threat to the internal validity is related to the assumption that all the requirements in SRSs

should be used to create Rimay. If all the requirements in SRSs are used, incomplete and unclear

requirements might be easily misinterpreted and as a consequence, incorrect information content might be

included in Rimay. To tackle this threat, in Step 2 “Rephrase Requirements Using Rimay " (Figure 3.6),

we first classified as non-representable due to Cause 3 the requirements that contained either incomplete

or unclear information and we then discarded those requirements.

3.6.3 External validity

External validity is concerned with the extent to which it is possible to generalize the study findings, and

to what extent the findings are of interest to other people outside the investigated case [56].

The generalizability of our results is subject to certain limitations. For instance, by design, Rimay is

focused on and applicable to functional requirements in the financial domain. In addition, overfitting is a

potential threat because of the similarity in background among the eight financial analysts involved in

the creation and validation of Rimay (Section 3.3.2). To mitigate this threat, we designed our analysis

procedure (Section 3.3.3) by minimizing reliance on domain-specific terms from the financial domain. In

particular, the fact that our procedure is rooted in domain-independent lexical resources (i.e., VerbNet and

WordNet) significantly reduces the risk of overfitting. For this reason, we conjecture that many of our

findings can be generalized to information systems in other similar domains.

A company who would want to reuse Rimay should first assess how complete Rimay is in capturing

all their requirements; second, it should identify the changes required to our methodology to achieve a

satisfactory degree of completeness in their given domain.

3.6.4 Reliability Validity

Reliability validity is concerned with the extent to which the data and the analysis are dependent on

the specific researchers involved [56]. In order to achieve acceptable reliability, research steps must be

repeatable, i.e., other researchers have to be able to replicate our results [9].

It is impossible to build a CNL that is able to represent all software requirements, and as we already

acknowledged, some requirements could not be represented with Rimay. The main issues that may

constitute a threat to reliability are related to how we built our CNL to be as expressive as possible. To

mitigate this threat, we described in details the steps of our qualitative study and empirical evaluation

following a systematic process. This process was performed by the first and second researchers and

monitored by the other researchers.

44

3.7. PRACTICAL CONSIDERATIONS

3.7 Practical Considerations

In this section, we present some practical considerations for the different audiences who may be interested

in the work reported in this chapter. These considerations are based on both our experience and our

interactions with our industrial partner.

Considerations for CNL builders. The creation of a language editor entails a significant level of

effort because there are many tasks to support, such as auto-completion and syntax highlighting. Mature

language engineering frameworks make these tasks less complicated or even fully automated. For instance,

we used Xtext to generate a basic editor based only on the grammar of Rimay. For us, the most challenging

part of defining a grammar was to understand how to model nested expressions. The effort to customize

the generic behavior of the editor generated by Xtext should be considered. In our case, we use the generic

editor for our evaluation, but we are in the process of customizing the editor to further improve usability.

In particular, we are simplifying the error messages shown by Rimay’s editor, since they are difficult to

understand for people without technical knowledge.

Considerations for companies investing into a CNL. Additional effort is to be anticipated for

integrating a CNL with existing software development tools. In our case, our industrial partner uses

Sparx Systems Enterprise Architect for modeling UML Use Case, Class, and Activity Diagrams. A key

consideration for our partner was therefore to be able to reference (from requirements) the elements of

UML models in Enterprise Architect. To provide such functionality, Rimay’s editor dynamically tracks the

model elements that need to be referenceable from requirements. This allows Rimay’s editor to provide

context-sensitive auto-completion assistance as analysts type in their requirements. Furthermore, if an

analyst introduces in a requirement an element that does not already exist in the UML model, our editor

will notify the analyst, asking whether the new element should be added to the UML model.

Whether an organization should invest into a CNL for requirements also depends on how requirements

are elaborated and used within the organization. Generic text editing tools may suffice for analysts

working on small projects. In our case, the types of projects our industrial partner is engaged in justified

the construction of a CNL; the projects are not only large and complex but also involve multiple analysts

from geographically dispersed locations. Systematic requirements writing practices that help mitigate

incompleteness and ambiguity are thus key for our partner. In addition, organizations are interested in

extracting accurate information from the requirements as a prerequisite step for automating such tasks as

consistency checking between models and (textual) requirements, as well as generating test cases from

requirements. Working toward such automation objectives would be very difficult without structured

requirements, thus further justifying investment into a CNL. In more recent work (Chapter 5), our partners

recognized that generating acceptance criteria exclusively from models would miss critical information

that is available only in NL requirements. In that work, we elaborate on how acceptance-criteria-relevant

information in NL requirements expressed via Rimay can be used for enriching requirements models and

subsequently obtaining more precise and complete acceptance criteria.

Extending Rimay to other domains. In this chapter, we focused on the financial domain. However,

Rimay may be adapted for use in other domains. We recommend the following steps to adapt Rimay to a

given organization:

1. Select requirements. The organization selects functional requirements that are representative of

commonly used conditions and action phrases.

45

CHAPTER 3. ON SYSTEMATICALLY BUILDING A CNL FOR FUNCTIONAL REQUIREMENTS

2. Rephrase requirements using Rimay. The organization first rewrites the requirements selected in

the previous step using Rimay, and second, labels each non-representable requirement with one

of the three causes described in Section 3.5.1. Domain experts must ensure that the intents of the

requirements written in Rimay do not deviate from the original ones.

3. Improve Rimay. For each non-representable requirement, the organization should enhance Rimay’s

grammar by either updating the existing grammar rules or creating new ones. The organization

must follow the methodology described in Section 3.5.1 to perform this step.

4. Generate and integrate Rimay’s editor. Once the organization has enhanced Rimay’s grammar

to support previously non-representable requirements, it generates and integrates the extended

version of Rimay’s editor into the modeling and development tool used within the organization, if

available. If the editor is created using the Xtext language engineering framework, it can be used as

an Eclipse-based plugin or integrated into web applications.

The time required for an organization to extend Rimay is difficult to estimate since doing so depends

on several factors: (1) the number of requirements to be rephrased using Rimay, (2) the degree of access

to engineers who know Rimay’s methodology and have a background in language engineering, and (3)

sufficient access to domain experts.

Since there is currently no extension of Rimay, to gain insights into the time required to extend Rimay,

we discuss relevant aspects of the evaluation and refinement of Rimay presented in Section 3.5. The

evaluation of Rimay included (1) a set of 460 functional requirements, (2) two engineers (first and second

researchers), and (3) six domain experts. The entire evaluation and refinement process required 200 hours

from the engineers and eight hours from domain experts over a span of two months (Section 3.5.3). The

(approximate) distribution of effort observed across the four steps of our approach was as follows: Select

requirements (10%), Rephrase requirements using Rimay (60%), Improve Rimay (25%), and Generate

and integrate Rimay’s editor (5%).

3.8 Conclusions

In this chapter, we proposed a rigorous methodology to define controlled natural languages (CNLs) for

requirements specifications. We applied this methodology to develop a CNL, which we named Rimay,

for expressing functional requirements in the financial domain. Rimay’s grammar was derived from a

qualitative study based on the analysis of 2755 requirements from 11 distinct projects. In this qualitative

study, we identified the information content that financial analysts should account for in the requirements

of financial applications.

We conducted an empirical evaluation of Rimay in a realistic setting. This evaluation measured the

percentage of requirements that can be represented using Rimay. We observed that, on average, 88% of

the requirements that we evaluated in our case study (405 out of 460) could be expressed using Rimay.

Additionally, we analyzed how quickly Rimay would converge and stabilize to even higher percentages

when refined after each new requirements specification was analyzed.

To a large extent, because it was specifically designed to be domain independent, we believe that Rimay

can address the broader domain of data-intensive information systems. That said, future investigations

remain necessary to determine whether and how Rimay can be specialized for other domains.

46

3.8. CONCLUSIONS

While CNLs and requirements patterns have generated a lot of attention in recent years as a vehicle

for improving the quality of natural-language requirements, to our knowledge, no previous study has

proposed and evaluated a CNL based on a qualitative analysis of a large number of industrial requirements

and following a systematic process using lexical resources. A significant portion of this chapter was

dedicated to developing and discussing such a systematic process with the goal of making this process

repeatable; this way, other researchers and practitioners interested in developing their own CNLs can

benefit from our proposed process and possibly even use Rimay as a starting point.

For future work, we intend to conduct a user study on the usefulness of Rimay. This would assess in a

more conclusive manner whether financial analysts benefit from using Rimay for specifying functional

requirements.

47

Chapter 4

Quality Assurance on Requirements

4.1 Introduction

Requirements are important for software development processes. Requirements are generally expressed

using natural language (NL), which is widely used in many industrial applications. NL is ubiquitous in

defining software requirement specifications (SRSs) because it can be used in all application domains and

understood by all stakeholders in a software development project [51]. A recent study reports that 61% of

users prefer to express requirements using NL [32]. Yet, despite its popularity, NL is highly prone to quality

problems, such as under-specification, vagueness, ambiguity, complexity, and incompleteness [42, 22].

The main causes of software project failures in the industry are requirement quality problems [1, 28].

When such problems are not fixed in the early development phases, they carry over to subsequent

development phases, and fixing them in later phases of development is a costly and time-consuming

process. Improving the quality of NL requirements by identifying quality problems at early software

development stages is quickly becoming a pivotal need in industry applications.

Our industrial partner, Clearstream Luxembourg, reported elevated costs associated with in-house

processes to improve requirement quality, which involve several manual iterations and are thus prone to

errors. A tool that automatically detects problems in NL requirements and guides analysts to improve the

quality of NL requirements is highly desirable.

Various approaches have been proposed to improve the quality of NL requirements by detecting

semantic and syntactic problems [50, 20, 26, 60, 48]. However, these approaches do not provide recom-

mendations to analysts for improving the quality of the requirements. Furthermore, existing works do not

account for many of the recurrent problems introduced by analysts. They include non-atomic requirements

(multiple actions in the system response), incomplete content information in the segments of requirements

(e.g., missing actors, verbs in conditions), missing segments in requirements (e.g., a requirement misses

a system response), and incorrect order of segments in requirements (e.g., conditions after the system

response).

In collaboration with our industrial partner, we developed a tool that addresses quality problems

in requirements. Throughout this chapter, the term “smells” refers to quality problems that can lead

49

CHAPTER 4. QUALITY ASSURANCE ON REQUIREMENTS

to defects. A smell has a precise location and detection mechanism that facilitates its inspection and

identification [21]. Our approach detected 10 smells that are commonly present in requirements in the

financial domain. We relied on natural language processing (NLP) techniques to analyze the information

content of functional requirements to detect smells. This chapter provides suggestions for fixing smells

and improving requirement quality. To accomplish this, we derived requirement patterns from an existing

controlled natural language (CNL): Rimay (Chapter 3). Our study is guided by the following research

questions (RQs):

- RQ1) What NL requirement smells are commonly found in the financial domain? We answer

RQ1 by proposing 10 smells in NL requirements. The smells violate the expected requirement quality

categories of completeness, clarity, atomic requirements, and correctness. The 10 smells were derived

after analyzing a set of 384 requirements in the financial domain. They are able to detect quality

problems in individual segments of the requirement (segment level) and in the requirement as a whole

(requirement level).

- RQ2) How can smells be detected? We answer RQ2 by proposing an automated approach that relies

on NLP methods to detect the smells in NL requirements. These methods include Tregex extraction

rules, structural patterns, and glossary search.

- RQ3) How can we suggest templates to improve requirement quality? We answer RQ3 by proposing

an automated approach that analyzes the overall syntax of an NL requirement. According to this syntax,

our approach matches and suggests a suitable Rimay pattern. Following our suggested patterns increases

the chance of fixing smells.

- RQ4) Can our approach correctly indicate the occurrence of smells? To answer RQ4, we evaluated

the smell-identifying accuracy of our tool. To accomplish this, we conducted a case study using SRSs

from financial applications. We compared our results against a handcrafted ground truth. Our evaluation

results suggest that our approach accurately detects smells with a precision of 88% and a recall of 74%.

- RQ5) How accurate is our approach to recommending requirement templates to fix smells?

RQ5 assesses how well our approach suggests appropriate templates to fix smells in NL requirements.

We compared the performance of our approach against a handcrafted ground truth composed of a set of

NL requirements from financial applications. Our approach accurately suggested an appropriate Rimay

pattern with a precision of 89% and a recall of 82%.

The main contributions of this work are (1) a catalog of smells, (2) an automated approach that detects

smells on SRSs and suggests Rimay patterns to fix smells, and (3) an industrial case study in the financial

domain to measure the performance of our application to detect smells and suggest patterns.

4.2 Requirements Smells and Rimay Patterns

This section describes the process we followed to derive requirements smells. We propose a catalog of

smells that describes the syntactic and semantic errors commonly found in requirements. Furthermore,

we describe the procedure we followed to derive the Rimay patterns. These patterns will be shown as

suggestions for the analysts to fix smells in the requirements.

50

4.2. REQUIREMENTS SMELLS AND RIMAY PATTERNS

4.2.1 Requirements Smells

This section aims to answer RQ1: What are the commonly found smells in NL requirements in the
financial domain? To do so, we first analyze the concepts and constructs of the Rimay language to

derive the quality attributes that Rimay (Section 3.4) enforces through its grammar to minimize the risk of

having poorly written requirements. The quality attributes we derived are as follows: (1) Completeness
refers to the presence of all the information required for the requirement to be complete. Rimay achieves

completeness by having constructs that ensure the presence of certain contents. For example, Rimay warns

analysts when a requirement does not have a system response. (2) Clarity refers to the usage of structures,

phrases, and words that are free of ambiguity. Rimay achieves clarity by providing a set of predefined

structures and a fixed vocabulary. (3) Atomic requirements refer to a natural language statement that

describes a single system function. The Rimay language recommends analysts not have more than one

system response in a requirement. (4) Correctness refers to enforcing the presence of correct information

content in the correct order of appearance. The constructs of Rimay minimize the risk of having incorrect

information content in the segments of a requirement. For example, Rimay does not allow the use of a

modal verb in conditions.

We use Rimay because (1) there is a match between the domain where Rimay is applicable and our

case study context, and (2) the Rimay concepts and constructs are characterized by providing precise

syntax and semantics that minimize the risks of having poor quality requirements.

Next, to derive the smells, we analyzed a set of 384 NL requirements provided by our industrial partner

to find NL requirements that violated the quality attributes of completeness, clarity, atomic requirements,

and correctness. Table 4.1 shows the 10 smells we identified. The first column shows the name of the

smell. The second column provides a description of the smell. The third column indicates the quality

attribute that the smell violates. The proposed smells were validated by our industrial partner, who agreed

that the smells describe errors frequently made by analysts when writing NL requirements.

4.2.2 Rimay Patterns

This section describes the process conducted to derive requirements patterns from the Rimay language.

Rimay provides structures with specialized concepts and constructs to specify functional requirements.

However, Rimay does not provide patterns that guides the analysts on how to write a requirement.

To derive the Rimay patterns, we first created a conceptual model for the concepts underlying the

Rimay language. Figure 4.1 shows a high level of abstraction of the Rimay concepts. The model

defines five concepts for "Requirement". "Condition_Structure" further defines five concepts. More-

over, the "Action_Phrase" defines 58 concepts (Section 3.4). Figure 4.1 shows only a few concepts

for "Action_Phrase". Furthermore, the model defines the concept "Condition" used by the concepts

"While_Structure", "If_Structure", and "Temporal_Structure". The concept "Trigger" is used by the

concepts "If_Structure", "When_Structure", and "Temporal_Structure". The concept "Free_Expression" is

used by the concepts "When_Structure", "Where_Structure" and "Temporal_Structural". The concept

"Time_Adverb" is used by "Temporal_Structure" (Section 3.4).

Next, we derived possible combinations of Rimay concepts to create requirement patterns. These

combinations represent valid sequences of Rimay concepts to write requirements.

51

CHAPTER 4. QUALITY ASSURANCE ON REQUIREMENTS

Table 4.1: Catalogue of 10 smells

Smell name Description
Quality
Attributes
Violated

Non-atomic Non-atomic happens when there is more than one Atomic
action in the system response requirement

Incomplete Incomplete requirement happens when the requirement Completeness
requirement does not have a system response but has other

optional segments, i.e., condition and scope

Incorrect order Incorrect order occurs when a condition is located after Correctness
requirement the system response. This construct leads to a vague

interpretation of the occurrence of the condition

Coordination Coordination ambiguity happens when a requirement Clarity
ambiguity has two or more conditions and these conditions are

connected by a coordinated conjunction "or"

Not a requirement Not a requirement happens when the requirement Correctness
does not contain any part, i.e., scope, condition, and
system response

Incomplete Incomplete condition happens when the condition Completeness
condition lacks of either actor or verb

Incomplete Incomplete system response happens when the system Completeness
system response response lacks of either the actor, the modal or the verb

Incomplete scope Incomplete scope happens when the scope misses a noun Completeness

Passive voice Passive voice happens when either the condition or sys-
tem response are described in the passive voice and the
description misses the subject

Completeness

Not a precise verb Not precise verb happens when either the verb of the
condition or system response is not precise enough. The
verb misses a precise action. The list of our not pre-
cise verbs includes: "accomplish", "account", "come",
"consider", "default", "define", "do", "get", "make", "per-
form", "process", "propose", "make", "raise", "read",
"support", and "want". This list was curated by the ana-
lysts from Clearstream

Clarity

Table 4.2 outlines the 10 Rimay patterns derived from the combinations of the concepts in the

conceptual model of the Rimay language. The first column shows the name of the pattern. The second

column specifies the pattern. Finally, the third column indicates the combination of the concepts of the

Rimay language used to derive the pattern. Table 4.2 does not include all the keywords from the Rimay

concepts and does not include the templates for the Action-Phrases. Refer to Chapter 3 for a complete

reference to the concepts and constructs of the Rimay language.

52

4.3. APPROACH

Requirement

Scope

While_Structure When_Structure Where_Structure If_Structure Temporal_Structure

Action_Phrase

REMOVE_10_1OBTAIN_13_5_2ADMIT_65 BEG_58_2 BEGIN_55_1

Trigger

Precondition

Free_Expression

...

Modal_VerbCondition_Structure Actor

Negation

Time_Adverb

{XOR}

{XOR}

{XOR}

1..*

0..*

1

+System_Response

1..*

1

1

1

1

0..1

1

1..*

0..1

1

1

1..*
1

1

1

Figure 4.1: Rimay conceptual model

The derived patterns will be used by our approach to provide suggestions to analysts when our approach

detects smell(s) in NL requirements. If analysts follow our suggestions and rewrite the requirements

using the suggested patterns, the presence of errors can be minimized, and the quality of requirements can

improve.

It is important to note that the proposed Rimay patterns aim to provide a point of reference to the

sequence of Rimay concepts to start writing Rimay requirements. We assume that the analysts possess

prior knowledge of the concepts and constructs of the language. Recall from Section 3.4 that the Rimay

editor provides useful features (syntax highlighting, error markers, and content assist) that help analysts

write requirements.

4.3 Approach

Figure 4.2 provides an overview of the four steps of our approach. The inputs are (1) software requirements

specifications (SRSs), (2) Rimay patterns (Section 4.2.2), and (3) a catalog of 10 smells commonly found

in NL requirements (Section 4.2.1). The SRSs contain a set of requirements. A requirement in our context

specifies what the system response an actor is expected to receive when providing certain inputs if certain

conditions are met.

53

CHAPTER 4. QUALITY ASSURANCE ON REQUIREMENTS

Table 4.2: Rimay patterns

Pattern Name Rimay Pattern Mapping to
Conceptual Model

1. Scope and system
response

For each|all|... "Text",|then the?

Actor must <Action> (every "Text")?.

Scope, Actor,
Modal_Verb,
and Action_Phrase

2. Scope, condition
(precondition), and
system response

For each|all|... "Text", if <Property>

is equal to | is less or equal

to |... "Value",|then the? Actor

must <Action> (every "Text")?.

Scope, Precondition,
Actor, Modal_Verb,
and Action_Phrase

3. Scope, condition
(trigger), and
system response

For each|all|... "Text", when the?

Actor <Action> (every "Frequency")?

,|then the? Actor must <Action>

(every "Text")?.

Scope, Trigger, Actor,
Modal_Verb, and
Action_Phrase

4. Scope, condition
(time), and
system response

For each|all|... "Text", after|

before "Text",|then the? Actor

must <Action> (every "Text")?.

Scope, Time_Adverb,
Actor, Modal_Verb,
and Action_Phrase

5. System response The? Actor must <Action>

(every "Text")?.

Actor, Modal_Verb,
and Action_Phrase

6. Condition
(precondition) and
system response

If <Property> is equal to | is less

or equal to |... "Value",|then

the? Actor must <Action>

(every "Text")?.

Precondition, Actor,
Modal_Verb,
and Action_Phrase

7. Condition (trigger)
and system response

When the? Actor <Action>

(every "Frequency")? ,|then the? Actor

must <Action> (every "Text")?.

Trigger, Actor,
Modal_Verb,
and Action_Phrase

8. Condition (time)
and system response

After|Before "Text",|then the? Actor

must <Action> (every "Text")?.

Time_Adverb, Actor,
Modal_Verb
and Action_Phrase

9. Scope, multiple
conditions, and
system response

For each|all|... "Text", if <Property>

is equal to | is less or equal to |...

"Value",|and when the? Actor <Action>

(every "Frequency")? ,|then the? Actor

must <Action> (every "Text")?.

Scope, Condition
Structure (two or more),
Actor, Modal_Verb,
and Action_Phrase

10. Multiple
conditions and
system response

If <Property> is equal to | is less or

equal to |... "Value",|and when the?

Actor <Action> (every "Frequency")

,|then the? Actor must <Action>

(every "Text")?.

Condition Structure
(two or more), Actor,
Modal_Verb,
and Action_Phrase

54

4.3. APPROACH

In Step 1, we apply preprocessing steps to the NL requirements extracted from the SRSs. In Step

2, our approach separates requirements into segments (i.e, scope, condition, and system response). Our

approach relies on patterns and a segment splitter to split requirements into segments. The patterns were

written using Tregex, which is a language for defining patterns in text syntax trees. In Step 3, our approach

detects smells in NL requirements by applying several techniques, such as structural patterns, Tregex

patterns, rules, and glossary search. In our context, a structural pattern refers to a pattern that checks

the sequence of words in a requirement. Finally, in Step 4, our approach suggests a pattern for analysts

to fix the requirement and convert it into Rimay. Rimay helps decrease the risk of quality problems in

requirements since it has precise syntax and semantics. Throughout this section, we provide examples of

all the steps of our approach using the running example shown in Figure 4.3.

Preprocess
Requirements

1 Identify
Smells3

Suggest
Rimay Patterns

4

Requirements
with smells

SRSs

Separate Requirement
into Segments2

Rimay patterns to
fix requirements

with smells

Rimay
Patterns

Smells

Figure 4.2: Approach overview

4.3.1 Step 1: Preprocess Requirements

We apply a set of preprocessing steps to the NL requirements extracted from SRSs, including tokenization

(dividing the text of the requirement into tokens, such as punctuation marks and words), post-tagging

(assigning part of speech tags to tokens, such as pronouns, verbs, and adjectives), and constituency parsing

(a process that identifies the structural units of sentences, e.g., clause, noun phrase, verb phrase).

We also remove single and double quotes and maintain the MS Word metadata. These metadata

include line breaks (a point at which text is split into two lines) and bullet points (an item on a list). In our

context, these metadata are useful for detecting multiple conditions and system responses.

Figure 4.3 shows an example of a requirement that was preprocessed by our approach. Our approach

removed the double quotes since we observed that single and double quotation marks prevented us from

correctly identifying the structural units of the sentences.

4.3.2 Step 2: Separate Requirement into Segments

This step is intended to automatically separate the NL requirement into segments (i.e., scope, condition,

and system response). We automatically separate segments from NL requirements to (1) analyze each

segment of the requirement independently with the purpose of finding smells (Step 3) and (2) determine

the overall syntax of the requirements with the purpose of suggesting a precise Rimay pattern (Step 4).

We created an automated procedure to separate requirements into segments using the following methods:

(1) Tregex patterns and (2) segment splitters.

Tregex patterns. The Tregex query language allows users to define regular expression-like patterns

in tree structures [38]. Tregex is designed to match patterns that involve the content of the tree nodes

and the hierarchical relations among the tree nodes of the syntax tree of the requirements. To separate a

requirement into segments, we created a set of patterns using Tregex. In our context, a Tregex pattern

55

CHAPTER 4. QUALITY ASSURANCE ON REQUIREMENTS

Description

Upon reception of a settlement instruction from System-A, System-B must
process the settlement instruction and the input media field must be set to
“SINF” .

Requirement

Separate Requirement into Segments (Step 2)

Identify Smells (Step 3)

Preprocess Requirement (Step 1)

Tregex
pattern

002 System-B must process the settlement
instruction and

System
Response

Tregex
pattern

System
Response

Method

Not
identified

Upon reception of a settlement
instruction from System-A ,

Segment

003

001

Description

the input media field must be set to
SINF .

Requirement

002

#

003

001

System-B must process the settlement
instruction and

System Response

Description

Not matched

the input media field must be set to SINF .

System Response

Upon reception of a settlement instruction from
System-A ,

Segment
Requirement

Identify Smells (Step 3)

Incomplete
Condition

Smell#

001

Description

Not identifiedUpon reception of a settlement instruction
from System-A ,

Segment
Requirement

Smell

Passive
Voice

002

#

003

System-B must process the settlement
instruction and

System
Response

Description

the input media field must be set to SINF .

System
Response

Segment
Requirement

Non Atomic

Smell

002

#

003

001

System-B must process the settlement
instruction and

System
Response

Description

Not identified

the input media field must be set to SINF .

System
Response

Upon reception of a settlement instruction
from System-A ,

Segment

Requirement

Result: Tregex pattern IC2 (Condition no actor no verb)
matches Segment #001

 b) Apply structural patterns to the remaining segments

Result: Structural pattern #1 (Passive voice) matches
Segment #003

c) Apply rules to the requirement

Result: Requirement has two system responses which
triggers the rule non atomic

d) Search for not precise verbs in system response
segments (Glossary search)

Not
Precise
Verb

Smell

002

#

003

System-B must process the settlement
instruction and

System
Response

Description

the input media field must be set to SINF .

System
Response

Segment
Requirement

Result: The verb “process” from segment 002 is not a
precise verb

a) Apply Tregex patterns IC1 and IC2 to segments “Not
matched”

Suggest Rimay Pattern (Step 4)

Requirement

002

#

003

001

System-B must process the settlement
instruction and

System Response

Description

Incomplete
Condition

the input media field must be set to SINF .

System Response

Upon reception of a settlement instruction from
System-A ,

Segment

Rimay Pattern: 7. Condition (Trigger) and system
response

Description

Upon reception of a settlement instruction from System-A , System-B must
process the settlement instruction and the input media field must be set to
SINF .

Requirement

Figure 4.3: Detection smells and suggested Rimay patterns

56

4.3. APPROACH

ID Segment Tregex Pattern

SC1 Scope (PP < ((IN < For) $+ NP)) > (S < (/(RB | , | ADVP)/ $+ (NP $+ VP)))
SC2 Scope ((PP < ((IN < For) $+ NP)) [>- ((VP < MD) $- NP)] &!>> PP)
C1 Condition WHADVP $+ (S <, (S < (NP $+ VP)))) > SBAR &!» VP
C2 Condition (SBAR < (WHADVP $+ (S < (NP $+ VP)))) > (S > SBAR) & > !VP
C3 Condition ((IN < once) $+ (S < (NP $+ VP))) [> SBAR | > S] & > !VP
C4 Condition SBAR < (WHADVP $+ S < (NP $++ VP))
C5 Condition (WHADVP $+ (S < (NP $+ VP)) !» /(VP|SBAR)/)

C6 Condition (WHADVP !< /(of | to)/) $+ (NP $+ VP) !» /(VP | SBAR)/
C7 Condition (SBAR < ((WHADVP !« that) $+ (S &«, (NP $++ VP | $++ VB)))) !» VP
C8 Condition (SBAR < ((WHADVP !« that) $+ (S !« SBAR &«, (NP $++ VP | $++ VB)))) !» VP
C9 Condition

Time
(PP < (IN < (/(̂after | before)$/) $+ (NP !< VB < NN))) > S

SR1 System NP $+ (VP < (MD ?$+ ADVP $++ (VP «, (/VB.?/ $+ (S < (NP $++ VP)))))) > S

S: Clause, SBAR: Subordinate clause, WHADVP: Wh-adverb phrase, VP: Verb phrase, VBG: Verb gerund,
NP: Noun phrase, PP: Prepositional phrase, IN: Preposition, NN: Noun, RB: Adverb, ADVP:Adverb
phrase, MD: Modal, and VB: Verb

Table 4.3: Tregex patterns to identify segments in requirements

matches the specific structure of the constituency structure of a requirement. The constituency structures

of the requirements were obtained in Step 1 (Section 4.3.1).

To create Tregex patterns, we analyzed the syntax of 384 requirements. The set of requirements

was similar to the set used in Section 4.2.1. The process to derive the patterns was as follows: (1) we

grouped the requirements that had the same segments (a segment could be a scope, condition, and system

response); (2) we analyzed the constituency structures of the segments of each group; (3) we derived

patterns that matched the constituency structure of the segments of each group; (4) we gathered all the

patterns that matched the same segment to refine them and merge them, if possible. If not, a segment may

have more than one pattern.

Table 4.3 outlines the 12 Tregex patterns that we derived after following the process described above.

In total, we derived two patterns that detect scope (SC1, SC2), nine patterns that detect conditions (C1–C9),

and one pattern that detects system response (SR1).

Figure 4.4 shows an example of the usage of the pattern C4 to extract the condition of a requirement.

Figure 4.4 shows the constituency parsing tree of requirement R. The requirement has a scope (For all

depositories), a condition (when System-A receives an email alert from System-B), and a system response

(System-A must create an MT530_transaction). Some concepts of requirement R were anonymized

to comply to the confidentiality agreement with our industrial partner. The condition is composed

by a subordinated conjunction (WHADVP: when), a noun phrase (NP: System-A), and a verb phrase

(VP: receives an email alert from System-B). Figure 4.4 shows the pattern that matches the condition of

requirement R. This pattern identifies a subordinated clause (SBAR) that immediately dominates (<) a Wh-

adverb phrase (WHADVP), which is the immediate left sister ($+) of a clause (S). Clause (S) immediately

dominates (<) a noun phrase (NP), which is the immediate left sister ($+) of a verb phrase (VP).

57

CHAPTER 4. QUALITY ASSURANCE ON REQUIREMENTS

S

SBAR

WHADVP S

JJ VBZ

,

System-A

 VP

must create

WRB NP VP

NP

NPNP

`NN

NP

 DT
NP

 VP

NPINNNDT

when System-A receives System-Bfrom alert an email

NNP MD

VB
NN

a MT530_transaction

T-Regex rule to extract condition:
SBAR < (WHADVP $+ (S < (NP $++ VP)))

PP

IN NP

For all depositories

DT NNS

, .

.
,

,

R: For all depositories, when System-A receives an email alert from System-B, System-A must create a MT530-transaction.

Figure 4.4: Example Tregex pattern to match conditions after system response

Segment Information Content
Scope For [each | all | none] noun

Condition [When | if | where | while | until] noun verb

System response [then | <lb> | ; | else | otherwise] noun modal-verb verb

Table 4.4: Information content characterizing the requirement segments

Segment splitter. We propose a segment splitter that attempts to separate requirements into segments

(i.e., scope, condition, and system response). The segment splitter is only used when the Tregex pattern

fails to identify segments in requirements. This failure may be caused by a mismatch between the syntax

of the segment and the syntax described in the Tregex patterns. The new syntax is related to structures not

observed during the creation of the Tregex patterns.

To create our segment splitter, we first collected the keywords that characterized the beginning of each

segment of the requirement. These keywords include, for the condition, "when", "if", "where", "while",

"until", for the scope, "for", and for the system response "then", (line break),";","else", and "otherwise".

Our segment splitter then detects the above keywords in the requirements to split them into segments.

Then, our approach validates each segment. A segment is considered valid if it has the mandatory content

information. Table 4.4 shows the mandatory information content that each segment should have to be

considered valid.

Finally, in the scenarios where segments miss mandatory concepts, our approach labels them as "Not

Matched". These segments will be further analyzed to detect smells in Step 4.

In the example depicted in Figure 4.3, we first applied all the Tregex patterns (Table 4.3) to the

requirement. The pattern SR1 was matched and segments 002 and 003 were identified as a system

response. Furthermore, our approach applied our segment splitter. The segment splitter could not identify

segment 001, since the word "Upon" is not present in our keyword list.

58

4.3. APPROACH

4.3.3 Step 3: Identify Smells

This section aims to answer RQ2: How can smells be detected? For this purpose, in this step, we

describe how we analyze the segments of requirements resulting from Step 2 with the purpose of detecting

any of the smells introduced in Section 4.2.1.

We created an automated procedure to detect the smells using the following techniques: (1) structural

patterns (these patterns analyze the presence and sequence of the words that describe the concepts of

segments of a requirement), (2) rules (our rules check which segments the requirement has, how the

segments of the requirements are connected, and the sequence of the segments in a requirement), (3)

TRegex patterns (this method checks for the specific syntax used to describe incomplete information

content in the segments of requirements), and (4) glossary search (this method extracts the verbs from

conditions and system responses to check if the verbs are not precise). Our approach detects the smell

"Not a precise verb" using the glossary search method. Our approach finds the smells, "Non-atomic",

"Incomplete requirement", "Incorrect order requirement", "Coordination ambiguity", and "Not a require-

ment" using the rules. It detects the smell "Incomplete condition" using structural patterns and Tregex

patterns. It uses structural patterns to detect the smells "Incomplete system response", "Incomplete scope",

and "Passive voice". In the following section, we describe in detail the aforementioned methods and the

smells that each method detects.

Structural patterns. This method analyzes the segments of the requirement using structural patterns

to detect the smells "Incomplete condition", "Incomplete SR", "Incomplete Scope", and "Passive voice".

A structural pattern checks the presence of certain words that describe the concepts of segments in a

specific sequence.

We defined 15 structural patterns, shown in Table 4.5, that were derived to detect the above smells.

There are eight patterns that check for the smell "Passive voice" in the following tenses: present simple,

present perfect, past simple, and past perfect. Moreover, we derived three patterns that check for the smell

"Incomplete condition", three patterns to detect the smell "Incomplete system response", and one pattern

to detect the smell "Incomplete scope".

Structural patterns were matched to the segments resulting from Step 2. For example, the structural

pattern "Passive voice #7" matched the condition of the following requirement "When/WRB a/DT System-

A/NNS has/VBZ been/VBN assigned/VBN via/IN propagation/NNP ..". The condition contains v1 verb

"has" in the present tense, followed by v3 verb "been" in the past participle, followed by v4 verb "assigned"

in the past participle.

In the example depicted in Figure 4.3 (Step 3b), our approach applied our structural patterns to the

segments of the requirement. We matched the structural pattern "Passive Voice 1" with segment 003. This

segment has the v1 verb "be" in its base form and the verb v4 verb "set" in its past participle form.

Rules. We proposed a set of rules that analyze the segments of the requirements identified in

Step 4.3.2 with the purpose of detecting the smells "Non-atomic", "Incomplete requirement", "Incorrect

order requirement", "Coordination ambiguity", and "Not a requirement". Our rules aimed to (1) analyze

how the segments are connected to each other and (2) determine the sequence of the segments of the

requirement. In the following, we describe these rules:

59

CHAPTER 4. QUALITY ASSURANCE ON REQUIREMENTS

Smell # Structural ExamplePattern

Passive voice

1 v1 v4 "...is taken..."
2 v1 adv v4 "...has not taken..."
3 v2 v4 "...was taken..."
4 v2 adv v4 "...was not taken..."
5 v2 v3 v4 "...had been taken..."
6 v2 adv v3 v4 "...had not been taken..."
7 v1 v3 v4 "...has been taken..."
8 v1 adv v3 v4 "...has not been taken..."

Incomplete 9 sc o1 "When for each subscriptions..."
condition 10 sc v1 "When receives the subscription order ..."

11 sc n1 o1 "When the System-A seennd the subscription order ..."

Incomplete 12 md v1 "then must send the settlement request..."
system response 13 n1 v1 "System-A closes the Filter screen..."

14 n1 md o2 "System-B must sed the settlement request..."

Incomplete scope 15 p q o3 "For each using the T-model..."

v1: Verb base form (be | have), v2: Verb past (be | have), v3: Verb past participle (be), v4: Verb past
participle, adv: Adverb (not) sc: Subordinated conjunction, n1: Noun, md: Modal verb,
o1: Other word than noun and verb, o2: Other word than verb, p: Preposition (for), q: Quantifier, o3: Other
word than noun

Table 4.5: Structural patterns for smell detection

1. Non-atomic: The requirement has more than one segment of the type system response.

2. Incomplete requirement: The requirement misses the system response segment, but it has other

segments, such as scope and condition.

3. Incorrect order requirement: The requirement has one or more segments of the type condition

that are after the system response.

4. Coordination ambiguity: The requirement has two or more subsequent conditions. Our approach

extracts the word(s) or character(s) that separate the conditions. If the separator(s) is the conjunction

"or", then our approach triggers the smell "Coordination ambiguity".

5. Not a requirement: The segments of the requirements are not scope, condition, or system response.

In the example depicted in Figure 4.3 (Step 3c), we applied our rules to the requirement. The rule

"Non-atomic" identified two system responses in the requirement that triggered the smell "Non-atomic".

Tregex patterns. Recall from Section 4.3.2 that the Tregex patterns match the specific structures of

the constituency parsing tree resulting from the NL requirement. While analyzing the set of requirements

in Section 4.3.2, we observed two groups of requirements that contained incomplete conditions.

The following are two examples of these requirements: EIC1 and EIC2. “EIC1: Upon reception from

System-A the status Pending of an Instruction, then ...”. The condition of EIC1 misses the actor and the

verb. Instead of a verb, the condition has the noun “reception”. ”EIC2: When creating a new participant,

System-A must...". The condition of EIC2 misses the actor, and the verb is described using a gerund. To

detect these conditions, we derived two Tregex patterns. Therefore, we gathered a set of 55 requirements

60

4.3. APPROACH

ID Tregex Pattern
IC1 ((SBAR < (WHADVP $+ (S < ((VP < (VBG $+ NP | $+ PP)) !$++ NP !$– NP)))) !> > VP)
IC2 ((PP < ((IN < Upon) $+ (NP < ((NP < < NN) $++ PP)))) !> > /(VP | SBAR)/)

S: Clause, SBAR: Subordinate clause, WHADVP: Wh-adverb phrase, VP: Verb phrase, VBG: Verb gerund,
NP: Noun phrase, PP: Prepositional phrase, IN: Preposition, and NN: Noun

Table 4.6: Tregex pattern to detect incomplete conditions

that contained similar examples, such as EIC1 and EIC2. Next, we grouped the requirements into two sets.

Each set shared the same information content. Then, for each set, we derived a Tregex pattern. Table 4.6

shows the two derived patterns, IC1 and IC2.

In the example shown in Figure 4.3 (Step 3a), our approach matched the pattern IC2 with segment

001 "Upon reception of a settlement instruction from System-A". The condition misses the actor and the

verb; therefore, the smell "Incomplete condition"was triggered.

Glossary search. This method aims to identify the smell: "Not a precise verb". For this purpose, we

created a glossary of verbs that do not describe a precise action. For example, according to the English

dictionary, the verb "process" means "operate on (data) by means of a program". This verb does not

provide a precise action, which makes it difficult for an analyst to test the requirements that contain such a

verb. To create our glossary of verbs, we gathered all the verbs of the requirements used in Section 4.2.1.

We searched for verbs that did not have a precise action and were difficult to test. Our glossary includes

the following verbs: accomplish, account, base, come, consider, default, define, do, get, make, perform,

process, propose, make, raise, read, support, and want. Our list includes also verbs that have several

meanings but only one etymology (polysemy). These verbs in our glossary are: come and get.

We have elaborated on our glossary in collaboration with two experts working for our industrial

partner. The experts agreed that they would prefer to avoid using these verbs when specifying requirements

as they are not precise enough and are indeed difficult to test.

To detect these verbs in the requirements, our approach automatically extracts verbs from the require-

ment segments condition and system response. Next, our approach obtains the lemmas of these verbs. A

lemma is the base form of a verb. Finally, our approach searches for the lemma in our glossary. If there is

a match, our approach triggers the smell "Not a precise verb".

In the example shown in Figure 4.3, our approach only analyzes the segment 002 and 003 because

they are segments that are system responses; then, we extracted the verb "process" because it belonged to

our glossary. The smell "Not a precise verb" was triggered.

4.3.4 Step 4. Suggesting Rimay Patterns

This section aims to answer RQ3: How can we suggest templates to improve requirement quality?
For this purpose, our approach analyzes the segments of the requirements identified in the previous steps

to match one of the 10 Rimay patterns (Section 4.2.2). The suggested pattern will guide analysts to fix

any smell detected in requirements and convert them into Rimay requirements.

To identify a suitable Rimay pattern, our approach first computes the frequencies of the segments

of the requirements. More concretely, our approach counts the number of segments scopes, conditions,

and system responses that appear in a requirement. Furthermore, for the segments that are conditions,

our approach further classifies them into trigger, time, and precondition (Section 3.4) and computes the

61

CHAPTER 4. QUALITY ASSURANCE ON REQUIREMENTS

frequency for each type of condition. To identify a "time condition", our approach checks if the segment

type was matched by the pattern "C9" (Table 4.3) in Step 2. Furthermore, to identify "precondition

condition", we extract from the condition segments the verb phrase (VP). If the VP contains one of

the operators "is equal to", "less or equal to", "contain", and "have" (Chapter 3), then the type is a

"precondition condition". Moreover, to identify trigger conditions, we extract the VP from the condition.

If the VP contains verbs other than the ones used by the "precondition condition", then it is a "trigger

condition". We also consider the frequencies of incomplete segments. The incomplete segments are

the results of detecting the smells "incomplete scope", "incomplete condition", and "incomplete system

response". Once the frequencies are calculated, we map the frequencies to any of the 10 Rimay patterns.

Table 4.7 indicates the frequency of segments for each of the 10 Rimay patterns. The first column indicates

the name of the pattern. The second through sixth columns show the frequency of each segment contained

in each of the 10 Rimay patterns.

In the example shown in Figure 4.3, Step 4, we analyzed the segments in the requirement. The

requirement had segment 001 as an "Incomplete condition", segment 002 as a "System response", and

segment 003 as a "System response". Segment 001 is a condition. Our approach could not detect any verb

in segment 001; however, the Tregex pattern that identified the smell "Incomplete condition" suggests that

this type of condition uses a noun "reception" instead of the verb, which suggests that the verb is an action

verb, suggesting that it is a "condition trigger" To summarize, the requirement in Figure 4.3 (Step 4) has a

"condition trigger" and two system responses. Since Rimay discourages analysts to writing non-atomic

requirements, then our approach suggests Rimay pattern "7. Condition(Trigger) and system response".

Table 4.7: Rimay patterns by segment frequency

Pattern Scope Condition System
Pre-
condition

Trigger Time Response

1. Scope and system response 1 1
2. Scope, condition (precondition), and system 1 1 1
response
3. Scope, condition (trigger), and system 1 1 1
response
4. Scope, condition (time) and system response 1 1 1
5. System response 1
6. Condition(precondition) and system response 1 1
7. Condition (trigger) and system response 1 1
8. Condition (time) and system response 1 1
9. Scope, multiple conditions, and system response 1 2 or more 1
10. Multiple conditions and system response 2 or more 1

4.4 Evaluation

In this section, we describe the case study conducted to address RQ4 and RQ5. We follow best practices

for reporting case study research in software engineering [56].

62

4.4. EVALUATION

4.4.1 Case Study Design

Our evaluation aims to answer the following RQs:

RQ4: Can our approach correctly indicate the occurrence of smells?

RQ5: How accurate is our approach in recommending requirement templates to fix smells?

To answer RQ4 and RQ5, we measured the performance of our approach in detecting smells and

suggesting Rimay patterns against a human-annotated ground truth. We constructed our ground truth

(GT) as follows: (1) we collected five new SRSs from our industrial partner (we refer to this set as S),

(2) an external annotator analyzed the syntax and semantics of each requirement of the set S to detect

smells and assign a Rimay pattern, and (3) we monitored the annotation results each time the annotator

completed an SRS via in-person sessions with the annotator. In each session, we discussed the difficulties

encountered while annotating the requirements and propose solutions to correct such difficulties. In

addition, we validated the overall annotations by reviewing a random set of 10% of the annotations. In

case of anomalies, we asked the annotator to revise the annotations.

Once the ground truth was completed and validated, we conducted our evaluation using an iterative

and sequential approach. We divided set S into two batches. Table 4.8 shows the distribution of the

batches of set S. First, we applied our approach to the first batch of S to detect smells and suggest

patterns. Second, we compared our results against the ground truth by computing precision and recall.

Third, if the approach performed less than 80% (overall precision and recall), we analyzed cases showing

disagreements with the ground truth. Fourth, we improved our approach to correcting disagreements with

the ground truth. Finally, we applied the enhanced version of our approach to the second batch.

Table 4.8: S batch distribution

Batch # SRS ID # Requirements

1
SRS1 294
SRS2 162

2
SRS3 196
SRS4 340
SRS5 150

Total 1142

4.4.2 Data Collection and Preparation

To build our ground truth GT , we first collected data from our industrial partner, Clearstream. Financial

analysts from Clearstream provided us with a set of five representative SRSs. Each SRS contained a

different number of requirements. These SRSs described different types of projects, including updates to

existing applications, compliance of the applications with new regulations, creation of new applications,

and description of the migration of existing applications to new platforms. These SRSs contained

requirements that were not observed during the creation of our approach (Section 4.2). We name the

SRSs SRS1-SRS5 and refer to them as set S in this section. They contain 1142 requirements in total.

Second, we applied domain-specific preprocessing steps to the requirements of set S. We discussed these

preprocessing steps in Section 4.3.1. Third, an external annotator, with a background in requirements

63

CHAPTER 4. QUALITY ASSURANCE ON REQUIREMENTS

engineering and more than three years of experience, conducted a 180-hour annotation process. The

annotator manually analyzed the syntax and semantics of each requirement in SRSs of set S to detect

smells and assign a Rimay pattern. After the annotator completed annotating each SRS, we monitored

the annotation results by having a monitoring session (30-60 minutes). In each session, the annotator

pointed us to the requirements that were difficult to annotate. We then discussed them to reach an

agreement on the correct annotations. Once the annotation process concluded, we randomly selected

10% of the requirements annotated in S for inspection. From the analysis results, we found that most

of the annotations (more than 80%) were satisfactory. As for the errors (less than 20%), we identified

their causes and asked the annotator to correct them throughout all SRSs in S. We then accepted the

annotations.

4.4.3 Collecting Evidence and Results

This section describes the raw data collected in the case study. Table 4.9 provides the annotation results of

the smells detected in set S. The first column indicates the smell name. The second through sixth columns

present the number of requirements containing the smell listed in each row for each SRS in S. The last

column displays the total number of occurrences of each of the 10 smells in set S. From Table 4.9, we

can see that "Passive Voice" is the smell with the highest frequency in S (accounting for 30.8% of the

requirements). In contrast, we have smells such as "Not a requirement" and "Incomplete scope", which

are absent from set S. However, these smells were observed during their derivation (Section 4.2.1).

Table 4.9: Smells - Annotation results for set S

Smell SRS1 SRS2 SRS3 SRS4 SRS5 Total
1. Non-atomic 80 24 26 69 11 210
2. Incomplete requirement 0 2 0 0 0 2
3. Incorrect order requirement 13 7 6 9 7 42
4. Coordination ambiguity 11 5 16 3 4 39
5. Not a requirement 0 0 0 0 0 0
6. Incomplete condition 56 17 68 87 19 247
7. Incomplete SR 4 2 0 0 4 10
8. Incomplete scope 0 0 0 0 0 0
9. Passive voice 54 78 29 59 82 302
10. Not precise verb 4 30 55 1 38 128

Table 4.10 shows the frequencies of Rimay patterns assigned by the annotator to the set of requirements

S. The first column shows the Rimay pattern. The second through sixth columns present the number

of requirements assigned to each Rimay pattern for each SRS in S. The last column displays the total

number of occurrences of each of the 10 Rimay patterns in set S. It is apparent from the data in Table 4.10

that "5. System response" is the most frequently assigned Rimay pattern. This pattern was suggested 314

times in set S. Least frequently assigned Rimay patterns (less than ten times) are "1. Scope and system

response", "3. Scope, condition(Trigger), and system response" and "8. Condition (Time) and system

response". In Table 4.10, we can also see Rimay patterns that were not suggested to any requirements in

set S, i.e., "2. Scope, condition (precondition), and system response " and "4. Scope, condition (Time)

and system response".

64

4.4. EVALUATION

Table 4.10: Rimay patterns - Annotation results for set S

Rimay Pattern SRS1 SRS2 SRS3 SRS4 SRS5 Total
1. Scope and system response 1 0 0 0 3 4
2. Scope, condition (precondition), and system response 0 0 0 0 0 0
3. Scope, condition (trigger), and system response 1 1 0 0 0 2
4. Scope, condition (time), and system response 0 0 0 0 0 0
5. System response 2 218 14 52 28 314
6. Condition (precondition) and system response 16 36 1 50 3 106
7. Condition (trigger) and system response 31 142 63 33 13 282
8. Condition (time) and system response 0 3 0 0 0 3
9. Scope, multiple conditions, and system response 0 0 0 0 0 0
10. Multiple conditions and system response 32 28 13 32 13 118

4.4.4 Analysis of Collected Data

This section assesses the accuracy of our approach to detecting smells in NL requirements (RQ4) and

suggesting Rimay patterns to analysts (RQ5). We applied our approach to the set of requirements S to

detect smells and suggest Rimay patterns. We compared these results against GT (Section 4.4.1) by

computing precision and recall metrics. For this purpose, we first classified the predictions of our approach

into the following categories:

True positives (TP) are the correct predictions. In smell identification, a TP occurs if we detect the same

smell as the ground truth. In pattern suggestion, a TP occurs if a requirement is assigned to the same

Rimay pattern as GT .

False negatives (FN) are missed annotations. In smell detection, a missed annotation occurs when we

incorrectly indicate that the requirement does not have a smell in contrast to GT . In pattern suggestion, a

missed annotation occurs when we do not suggest any pattern in contrast to GT .

False positives (FP) are misclassified annotations. In smell identification, an FP occurs when our approach

incorrectly indicates the presence of a smell. In pattern suggestion, this occurs when we incorrectly

suggest a Rimay pattern.

Next, for each smell and Rimay pattern, we calculated the precision (P) as P = TP
TP+FP and

the recall (R) as R = TP
TP+FN . Furthermore, we calculated the overall precision as Overall-P

=

∑l

i=1
TPi∑l

i=1
(TPi+FPi)

where for smell detection i takes the values from Smell 1 to Smell 10 and for pattern

suggestion, i takes the values from Rimay pattern 1 to Rimay pattern 10. The overall recall was calculated

as Overall-R=
∑l

i=1
TPi∑l

i=1
(TPi+FNi)

where, for smell detection, i takes the values from Smell 1 to Smell

10 and for pattern suggestion, i takes the values from Rimay pattern 1 to Rimay pattern 10.

Table 4.11 shows the P and R results that we obtained to detect smells (RQ4). These results were

calculated for the evaluation set S and compared against the ground truth GT . The first column of Table

4.11 shows the smell name. The second and third columns show the precision (P) and recall (R) values for

each of the 10 smells found in the first batch. The fourth and fifth columns show the precision (P) and

recall (R) values for each of the 10 smells found in the second batch. The sixth and seventh columns show

the overall precision (P) and recall (R) values for each of the 10 smells found in set S. The last row of

Table 4.11 shows the overall P and R values for batches one, two, and overall.

To follow our evaluation design (Section 4.4.1), we first applied our approach to the first batch of S to

detect smells and compare our results with GT . Our approach obtained P and R values below 80% and

65

CHAPTER 4. QUALITY ASSURANCE ON REQUIREMENTS

were deemed unsatisfactory. To address this, we analyzed the misclassified (FP) and missed annotations

(FN). Most of the FPs and FNs cases resulted from new scenarios that were not considered during the

creation of our approach. We improved it to support these new scenarios and detected smells in batch one

with a precision of 88% and a recall of 84% (Table 4.11). As shown in Table 4.11, a decrease of 19% in

the recall value in the second batch affected the overall recall value of our approach. In Section 4.5, we

provide information on the reasons for the decrease in recall.

Table 4.11: Smell detection - Performance on set S

Smell Batch 1 Batch 2 Overall
P R P R P R

1. Non-atomic 0.86 0.93 0.85 0.88 0.85 0.91
2. Incomplete requirement 0.67 1.00 0.33 1.00 0.44 1.00
3. Incorrect order requirement 0.70 1.00 0.75 0.95 0.73 0.97
4. Coordination ambiguity 1.00 1.00 0.92 0.50 0.92 0.52
5. Not a requirement N/A N/A N/A N/A N/A N/A
6. Incomplete condition 0.83 0.76 0.82 0.45 0.83 0.54
7. Incomplete SR 1.00 0.83 0.62 0.62 0.77 0.71
8. Incomplete scope N/A N/A N/A N/A N/A N/A
9. Passive voice 0.96 0.76 0.95 0.81 0.95 0.78
10. Not a precise verb 1.00 0.91 1.00 0.61 1.00 0.68
Overall 0.88 0.84 0.88 0.68 0.88 0.74

Table 4.12 shows the P and R scores that our approach obtained for suggesting precise Rimay patterns

to analysts (RQ5). The results were calculated by applying our approach to the evaluation set S and

compare the results to the ground truth GT . Table 4.12 shows for all Rimay patterns (column 1) the P

and R values for the patterns suggested in the first batch (columns 2-3), second batch (columns 4-5) and

overall (columns 6-7). The last row of Table 4.12 shows the overall scores for P and R for batches one,

two, and the overall set. We applied our approach to the first batch of S to find suitable Rimay patterns

and compared our results with GT . The results were satisfactory. We obtained a P of 90% and an R of

85% in batch 1. Given that these values were above 80%, we did not further enhance our approach. In

terms of the overall accuracy, the suggestions for Rimay patterns have an overall P of 89% and an R of

82% (Table 4.12).

From the data in Table 4.12, we can see that the P and R values in batch two decreased compared to

batch one, which affected the overall performance. We discuss the reasons for such a decrease in P and R

in Section 4.5.

From our experience, we believe that, in practice the acceptance of a new tool is highly dependent

on obtaining correct predictions. Therefore, precision plays a particularly important role in enhancing

user acceptance. If a tool provides incorrect findings too often, users will tend to lose confidence in

the approach and will eventually stop using it. In our evaluation results, we observed that our approach

obtained a high overall precision score (smell detection 88%, and pattern suggestion 89%), suggesting

that our results are promising and likely to foster acceptance by our industrial partner.

66

4.5. DISCUSSION

Table 4.12: Performance pattern suggestion dataset S

Rimay Pattern Batch 1 Batch 2 Overall
P R P R P R

1. Scope and system response 1.00 1.00 1.00 0.44 1.00 0.57
2. Scope, condition (precondition), and system response N/A N/A N/A N/A N/A N/A
3. Scope, condition (trigger), and system response 0.98 0.97 0.95 0.95 0.97 0.96
4. Scope, condition (time) and system response N/A N/A N/A N/A N/A N/A
5. System response 1.00 1.00 0.92 1.00 0.93 1.00
6. Condition (precondition) and system response 0.00 0.00 0.67 0.67 0.50 0.57
7. Condition (trigger) and system response 0.75 0.76 0.72 0.76 0.73 0.76
8. Condition (time) and system response N/A N/A 0.83 0.83 0.83 0.83
9. Scope, multiple conditions, and system response 0.90 0.92 0.85 0.72 0.88 0.85
10. Multiple conditions and system response 0.94 0.77 0.96 0.76 0.95 0.76
Overall 0.90 0.85 0.88 0.80 0.89 0.82

4.5 Discussion

4.5.1 Approach Performance

The results presented in Section 4.4 show that our approach to answering RQ4 is accurate in terms of

detecting smells in NL requirements (P = 88%). However, we observed that our approach achieved a

low precision score for the detection of a particular smell, “Incomplete Requirement” (22%), and a low

recall score for detecting the smells “Coordination ambiguity” (52%)” and “Incomplete condition” (52%).

To determine the root causes of the low precision and recall obtained by our approach, we analyzed the

misclassified and missed annotations for each of the smells mentioned above.

Incomplete Requirement. Recall from Section 4.2.1 that this smell occurs when the requirement misses a

system response. We observed that misclassified annotations were related to inaccurate POS tags assigned

to the verb of the system response. Table 4.13 shows requirement R1. The verb of the system response

of R1 (i.e., route) was incorrectly identified as a noun. Since no verb was found in the requirement, our

approach triggered the smell “Incomplete requirement.”

Coordination Ambiguity. Recall from Section 4.2.1 that this smell occurs when a requirement has more

than two conditions and the conditions have at least one connector (“or”) as a separator. We observed

that missed annotations were related to new scenarios that were not observed during the creation of our

approach or during updates made after Batch 1. An example of a new scenario is shown in Table 4.13

(requirement R2). This requirement is composed of three conditions that are connected by an “or”

connector. Two out of the three conditions for R2 have the symbols “< >“ instead of a verb. The methods

applied in Step 4.3.2 of our approach do not have a scenario that identifies this syntax to express conditions.

Therefore, our approach did not recognize this condition and thus did not apply the method that checks

for the smell “Coordination ambiguity.”

Incomplete Condition. Recall from Section 4.2.1 that this smell occurs when the condition of the

requirement misses the verb or the actor. We observed that the main cause of the misclassifications was the

assignment of incorrect POS tags to the verbs in the condition. The absence of the verb in the condition

triggers the smell “Incomplete Condition”. Regarding missed annotations, we observed that the main

cause was related to scenarios not observed during the creation of our approach or during the updates

made after Batch 1. Table 10 shows an example (R3) of a missed annotation. R3 misses a verb and

67

CHAPTER 4. QUALITY ASSURANCE ON REQUIREMENTS

instead has the symbol “=,” which denotes “equals to.” Furthermore, R3 is made up of a compound noun,

“System-A Order Issuer Ordering data.” The word “Order” of the compound noun is identified as a verb

by the Post Tagger, which suggests that the condition is a complete condition. Therefore, our approach

did not trigger any smells. However, in reality, R3 misses a verb.

Similarly, the results of RQ5 show that our approach accurately suggests requirement patterns in most

cases. However, we noted that our approach obtained low recall when suggesting requirement pattern “1.

Scope and system response” (57%) and obtained low precision and recall when suggesting pattern “6.

Condition (precondition) and system response” (P = 50% and R = 57%). To determine the root causes

of the low precision and recall obtained by our approach, we analyzed cases in which our approach had

misclassified and missed annotations.

Pattern: 1. Scope and system response. This pattern is suggested when a requirement has the following

segments: scope and system response. The obtention of missed annotations was related to new scenarios

that were not observed during the creation of our approach. Requirement R5 in Table 10 is an example

of a missed annotation. R5 has a scope phrase followed by additional information that should be in a

condition. Having this additional information in the phrase scope prevented our approach from properly

distinguishing the phrase scope; therefore, it did not provide a precise Rimay pattern.

Pattern: 6. Condition (precondition) and system response. This pattern is suggested when a requirement

has the following segments: a condition of type precondition and a system response. The misclassifications

were related to new scenarios that were not observed during the creation of our approach. Requirement

R6, in Table 4.13, is an example of a missed annotation (R6). The condition of R6 lacks a verb; instead,

R6 has the operator “=”. The missing verb prevented our approach from recognizing the condition and

providing an accurate suggestion.

In summary, we identified two main reasons why our approach obtained lower precision and recall

in the cases mentioned above. The first is POS Tagger limitations: POS Tagger incorrectly assigns

POS tags to words, which causes our approach to fail to correctly identify the smells and syntax of the

requirement. Our approach does not have control over the accuracy of the POS Tagger, since it is a

third-party component. Concerning new scenarios, we found several that were not previously observed.

These scenarios include different structures of the requirement segments and the usage of symbols instead

of verbs. If analysts agree, we can enhance our tool to support these new scenarios. However, some of

these scenarios are examples of bad practices in specifying requirements. For example, in requirement R2

of Table 4.13, the analyst has used symbols instead of verbs.

Table 4.13: Example of missed and misclassified annotations.

ID Requirement Description
R1 On receipt of a valid C01 cancellation from System-A

Participant, then the System-B must route the cancellation to
the same destination

R2 If the Property-A < > 0 or the Property-B = 0 and

the Property-C 1 < > 0 , then...
R3 if the System-A Order Issuer Ordering data = Value-A

R4 When the value of Property-1 changes in System-A, System-A must ...

R5 - For each portfolio ID associated to an Entitiy-A

Participant with a Service Provider of System-A, then ...
R6 If the Report type = Statement of Orders Aggregated , then ...

68

4.6. THREATS TO VALIDITY

4.5.2 Lack of Testing Data

We observed that the results of the evaluation of RQ4 contained smells that were not evaluated (i.e.,

“Not Requirement” and “Incomplete Scope”). Similarly, the results of RQ5 show that our approach

was not tested to detect the Rimay patterns “2. Scope, condition (precondition), and system response”

and “4. Scope, condition (Time), and system response.” We were unable to test our approach in the

above cases because the evaluation set lacks requirements that contain the smells “Not Requirement”

and “Incomplete Scope”. Moreover, the requirements did not have the syntax to suggest Rimay patterns:

“2. Scope, condition (precondition), and system response” and “4. Scope, condition (Time), and system

response”. As described in Section 4.4.2, the SRSs used to evaluate our approach were collected from

our industrial partners. Our industrial partner provided us with a set of five SRSs over which we had no

control. However, the aforementioned cases were tested during the creation of the approach.

4.6 Threats to Validity

Internal validity focuses on confounding factors. A threat to internal validity is related to the potential

biases introduced during the empirical evaluation. To reduce bias, we delegated the annotation task of

ground truth (Section 4.4) to trained third-party annotator. The annotator did not have access to our

approach; therefore, the annotator was not influenced by the results of our approach.

External validity refers to the generalizability of the results of the case study. Despite the fact that

our evaluation used SRSs that contain NL requirements from the financial domain, the requirements

are representative of a broader class of information systems, such as those in the banking and securities

industries. Nonetheless, future investigations are necessary to determine whether and how our approach

can be applied to other domains and information systems.

4.7 Related Work

In this section, we present existing work related to improving the quality of NL requirements. The

literature groups existing work into three categories of research [37].

The first category describes tools that aim to help business analysts reduce common semantic and syntactic

problems [61] found in NL requirements. These tools identify problems in NL requirements and provide

guidance on how the quality of requirements can be improved.

The second category includes approaches that transform NL requirements into formal models (e.g., object-

oriented analysis models) and logic specification languages. Transformations are typically performed by a

linguistic analysis of NL requirements.

The third category discusses tools that automatically classify NL requirements according to their good or

bad overall quality, for example, ambiguity detection. These tools use methods based on machine learning

or rule-based learning.

This chapter discusses how we built a tool that detects 10 smells that are commonly present in

requirements for financial applications. In addition, we guide analysts through the transition from

unrestricted requirements to Rimay (Section 3.4) requirements as a way to fix requirements that contain

smells and improve requirement quality. Given our objective, our tool falls into the first category of

research mentioned above. In the following section, we consider recent studies that have discussed

69

CHAPTER 4. QUALITY ASSURANCE ON REQUIREMENTS

approaches to identifying smells in requirement specifications and provide directions for improving the

quality of the requirements. We considered four studies relevant to our work: two were concerned with

identifying errors on NL requirement specifications, while the other two identified errors on feature

requests and use-case descriptions.

The work proposed by Osama et al. [50] identified three smells to detect attached ambiguity, coordina-

tion ambiguity, and analytical ambiguity in NL requirements. To correct the ambiguity identified in the

requirements, the authors provide a tool that assists the user by providing unambiguous interpretations.

Seki et al. [60] proposed a set of 54 smells aimed at detecting quality problems in use-case descriptions.

These smells help locate problems related to ambiguity, incorrectness, redundancy, lack, misplacement,

and inconsistency. The authors provide a tool that checks the aforementioned problems in NL requirements

written in Japanese. Mu et al. [48] identified 10 smells to detect problems in feature requests. These

smells are related to problems of ambiguity and incompleteness and incomprehensibility (unable to be

understood or comprehended). The authors provide a tool that highlights the text in the event of containing

any of the 10 smells. Femmer et al. [21] proposed an approach that detects nine smells in NL requirements.

The smells are related to ambiguity and incompleteness problems.

In summary, Osama et al. and Femmer et al. [50, 21] detected smells in NL requirements while Seki et

al. and Mu et al. [60, 48] detected smells in feature requests and use-case descriptions. The smells proposed

by the studies above tackle problems in NL specifications that are related to ambiguity, incorrectness,

inconsistency, misplacement, redundancy, incompleteness, and incomprehensibility. Furthermore, all

the above studies provide a tool that helps business analysts automatically detect smells. Only the study

proposed by Osama et al. [50] provided users with possible solutions to fix the smell found in the NL

requirements. In contrast, apart from detecting smells, our approach suggests appropriate Rimay patterns

to fix any detected smells and converts the requirement into a Rimay requirement. Moreover, 7 out

of 10 smells detected by our approach are not proposed by any of the existing works. These smells

are “Incomplete Scope,” “Incomplete System Response,” “Incomplete Condition,” “Not Requirement,”

“Incorrect Order Requirement,” “Incomplete Requirement,” and “Non-atomic.”

4.8 Conclusions

The goal of this chapter was to better support business analysts in the specification of NL requirements

by detecting smells in NL requirements and to guide them in fixing detected smells. To achieve these

objectives, we propose a set of 10 smells that represent the most common syntactic and semantic errors

found in NL requirements from financial applications. Furthermore, we derived 10 Rimay patterns.

These patterns aim to fix the smells present in NL requirements and convert NL requirements into Rimay

requirements. We then proposed an automated approach that automatically detects our proposed smells in

NL requirements and suggests Rimay patterns to improve the overall quality of NL requirements.

After developing this approach, we tested it in an industrial case study. This evaluation measured the

performance of our approach in detecting smells and suggesting accurate Rimay patterns. We evaluated

our approach using a set of 1142 human-annotated NL requirements that contained smells. Over this set,

our approach detected smells with a precision of 88% and a recall of 74%. Furthermore, our approach

suggested a Rimay patterns with a precision of 89% and a recall of 82%.

70

4.8. CONCLUSIONS

In future work, we intend to expand our list of smells to provide broader coverage of smell detection.

Our proposed smells tackle common smells found in the NL requirements of financial applications, but

they do not represent all syntactic and semantic errors present across all NL requirements. Furthermore, it

will be important to conduct a user study of the usefulness of our approach. This proposed study would

assess in a more conclusive manner whether business analysts benefit from our approach to improving the

quality of NL requirements. Finally, we intend to integrate our approach into an existing and widely known

modeling and code-generation tool, Sparx Systems Enterprise Architect, because Enterprise Architect

was already being used by our industrial partner.

71

Chapter 5

Leveraging Natural-language
Requirements for Deriving Better
Acceptance Criteria from Models

5.1 Motivations and Contributions

Acceptance testing is aimed at determining whether a system under test (SUT) meets its specified

requirements [3]. A key step in acceptance testing is defining the Acceptance Criteria (AC) for the SUT.

AC are conditions that the SUT must satisfy in order for the SUT to be accepted by its users or customers.

Naturally, AC are derived from the requirements. It is desirable to make the AC derivation process as

automated as possible, noting that, without automated support, it would be very tedious for the analysts to

define the AC in a systematic and complete manner. This is specially true for complex systems with large

numbers of requirements and for systems whose requirements evolve frequently.

An important complexity in automating the derivation of AC has to do with the fact that the require-

ments of an SUT may have been expressed using heterogeneous representations. Notably, our experience

with several industry domains, including automotive, telecommunications and finance, indicates that

analysts tend to specify their requirements using a combination of models and natural-language (NL)

statements. These two modes of representation tend to provide complementary and yet overlapping

information. When models (e.g., UML models) and NL statements are used simultaneously for specifying

the requirements, the derivation of AC necessarily has to account for the requirements expressed in

both representations.

To illustrate, we present a (highly simplified) example from the financial domain, involving one model

and one NL requirement.

Model: Figure 5.1 presents a UML Activity Diagram related to setting up an order for purchasing bonds.

If the (order) data is correct, an order is created; otherwise, an alerting process kicks in to notify the bond

trader about the data anomaly.

73

CHAPTER 5. LEVERAGING NATURAL-LANGUAGE REQUIREMENTS FOR DERIVING BETTER
ACCEPTANCE CRITERIA FROM MODELS

Create
Alert

Send
Alert

Receive
Alert

Create
Order

Is data
correct?

[Yes]

[No]

Figure 5.1: Example of a (requirements) model

NL Requirement: The NL requirement is as follows:

R: When System_A creates an alert, then System_A must set the priority of

the alert to "high".

This NL requirement is concerned with the behavior that is expected when an alert is created. As we

are going to discuss in Section 5.2, in this chapter, we use an existing controlled language, named

Rimay (Chapter 3), for writing NL requirements. The above-stated requirement, R, complies with Rimay’s

grammar.

AC Derivation: To generate AC, we employ an existing technique, named AGAC (Automated Generation

of Acceptance Criteria) and its associated tool [2]. The AC produced by AGAC are represented in

the Gherkin scenario language [76]. Gherkin scenarios follow a predefined (textual) template: Given

[initial context], When [event or action], Then [expected result]. In AGAC, each acceptance criterion

is captured by means of a sequence of Gherkin scenarios. Each such sequence exercises an end-to-end

system behavior, starting from the initial node of an Activity Diagram and going all the way to a final

node. Figure 5.2 shows the AC, AC 1 and AC 2, that one would intuitively expect for exercising the two

alternative flows of the model in Figure 5.11. To save space, we have truncated AC 2 by hiding the Gherkin

scenarios induced by the Send Alert and Receive Alert actions in the model of Figure 5.1. In Figure 5.2,

Gherkin’s keywords are in bold. The fixed, predefined text coming from AGAC’s AC templates is in

regular black font. The text obtained from the model of Figure 5.1 or the NL requirement R is in blue.

Given order does not exist in System_A
 And Is data correct? is equal to Yes
When System_A performs Create Order
Then order exists in System_A

Given alert does not exist in System_A
 And Is data correct? is equal to No
When System_A performs Create Alert
Then alert exists in System_A
 And the property priority of alert is equal to high
//Gherkin scenarios for the send and receive actions not shown

A
C

 1
A

C
 2

Figure 5.2: The generated AC

The generated AC; without considering the NL requirement R, the segment (post-condition) in AC 2
shown by a red box will not be generated

1AGAC supports AC generation from a model with (1) parallel flows via standard depth- and breadth-first search [14]
to traverse non-concurrent and concurrent nodes, and (2) loops via a bounded unwinding of the loops. These are important
considerations for deriving end-to-end AC, but are orthogonal to our illustrating example.

74

5.1. MOTIVATIONS AND CONTRIBUTIONS

The example in Figure 5.2 highlights the fact that neither models nor NL requirements provide a

complete picture of what is relevant to AC generation. Specifically, one cannot expect to find in the

NL requirements alone all the information that is pertinent to AC. Notably, control-flow behaviors,

e.g., the ordering of the actions in our example model of Figure 5.1, are often entirely absent from the

NL requirements. The result is that, based on NL requirements alone, one typically cannot synthesize

end-to-end system behaviors; exercising these behaviors is, however, critical to acceptance testing.

On the other hand, NL requirements often provide fine-grained details that analysts would not normally

include in the model. In our example, the analysts, for instance, found it more convenient to use NL

requirements to express the data properties of objects, e.g., the NL requirement R for the alert object.

Without considering R, the post-condition marked in Figure 5.2 with a red box (i.e., “the property priority

of alert is equal to high”) cannot be inferred, thus leaving AC 2 incomplete.

Our work in this chapter is prompted by the observation that a reconciliation of the information content

in models and NL requirements is necessary for deriving precise and complete AC. We propose such an

automated reconciliation approach and tool. The main idea behind our work is to make models the central

repository of information for the generation of AC. To be able to do so, we need to devise a technique that

can enrich models with information that is otherwise exclusively available in NL requirements.

The chapter investigates three Research Questions (RQs):

RQ1: How can we extract AC-related information from NL requirements? We answer RQ1 by

defining a rule set composed of 13 information extraction rules that automatically extract AC-related

information from NL requirements (first contribution). We identified these rules by analyzing the

conceptual overlaps and distinctions between the element types in models and the element types in NL

requirements, with a focus on information-system domains such as finance.

RQ2: How can we systematically enrich models with the (AC-related) information from NL
requirements? We answer RQ2 by proposing a systematic method that generates recommendations for

model enrichment, based on the information extracted by the rules developed in response to RQ1 (second

contribution). The method identifies the model elements that can be enriched with the extracted information

and provides guidance to the analysts as to how they can incorporate this additional information into the

model. Subsequently, an existing model-based AC derivation technique, AGAC [2], is applied to the

enriched model. This way, we make it possible to account for the information in both the model and the

NL requirements during AC derivation.

RQ3: Are our recommendations for model enrichment useful in practice? We answer RQ3 through

an industrial case study conducted in collaboration with a leading financial-services provider (third

contribution) hereafter, referred to as our industrial partner. We applied our model enrichment method to

this case study; this resulted in 27 recommendations for model enrichment. The study involved a group

of five domain experts. The experts were asked if the recommendations were relevant to AC. Out of

the 27 recommendations, 24 were deemed relevant by the experts (precision of 89%). The experts did

not identify any additional AC-relevant information in the NL requirements which had not already been

brought to their attention by the recommendations (recall of 100%).

The rest of this chapter is structured as follows: Section 5.2 provides background. Section 5.3 presents

an overview of our model enrichment approach. Section 5.4 explains and illustrates the details of the

approach. Section 5.5 reports on the evaluation of the approach in an industrial setting. Section 5.6

discusses threats to validity. Section 5.7 compares with related work. Section 5.8 concludes the chapter.

75

CHAPTER 5. LEVERAGING NATURAL-LANGUAGE REQUIREMENTS FOR DERIVING BETTER
ACCEPTANCE CRITERIA FROM MODELS

5.2 Background

5.2.1 Writing NL Requirements in Rimay.

Rimay, introduced in Chapter 3, is a CNL for writing requirements in the domain of information systems,

initially validated in the financial domain. We use Rimay because: (1) it is a suitable match for our case

study context. Indeed, our industrial partner is already using Rimay to write NL requirements for some of

their banking and securities applications; (2) as a CNL, Rimay comes with precise syntax and semantics.

The first characteristic ensures that one has enough expressive power to capture the NL requirements in

our case study. The second characteristic enables us to devise structured and highly accurate rules for

extracting AC-related information from NL requirements, thereby alleviating the need for heuristics based

on natural language processing and machine learning, which are typically less accurate.

Rimay’s main grammar rules are inspired by the Easy Approach to Requirements Syntax (EARS)

templates [44]. EARS is considered by many practitioners to be a good trade-off between flexibility and

precision, due to EARS’ relatively low training overhead and the quality and readability of the resultant

requirements [43].

The rule REQUIREMENT shown in Listing 5.1 provides the overall syntax for a requirement in Rimay.

The rule shows that the presence of the SCOPE and CONDITION_STRUCTURES is optional, but the

presence of an ACTOR, MODAL_VERB and a SYSTEM_RESPONSE is mandatory in all requirements.

Refer to Chapter 3 for a complete reference to the concepts and constructs of the Rimay language.

REQUIREMENT: SCOPE? CONDITION_STRUCTURES? ARTICLE? ACTOR MODAL_VERB not? SYSTEM_RESPONSE.

Listing 5.1: Overall syntax of a requirement in Rimay

5.2.2 Automated Generation of AC

We use the AGAC approach and its associated tool [2] for deriving AC from models. AGAC is an

Activity Diagram-centered approach and consists of two tasks: (1) Create Specifications and (2) Derive

AC. The first task, which is performed manually, is concerned with the creation of a requirements and

analysis model by following an existing modeling methodology [2]. The resulting model include Activity

Diagrams (ADs), Class Diagrams (CDs) and Use Case Diagrams (UCDs). Actors are defined in UCDs

and execute actions that are part of the activities represented in ADs. Domain entities and their properties

are characterized by a domain model, represented using CDs and referenced within the ADs. To enable

automated AC generation, AGAC requires that analysts specify the intent of the actions in the ADs

using 11 predefined stereotypes (Create, Read, Update, Delete, Send, Receive, Enable, Disable, Display,

Not Display, and Validate). The intent type that is ascribed to a given action captures the nature of the

observable behavior of the action, thus allowing the derivation of suitable criteria to exercise the behavior.

The intent of a given action does not always need to be explicitly declared; AGAC can automatically infer

the intent for certain actions. For instance, the Create stereotype is assigned automatically to an action

when (1) the output edge of that action is connected to a domain entity with an identifier that has not been

already encountered when processing previous actions, or (2) the name of that action starts by “Create” or

one of its synonyms. For example, the Create Order action in Figure 5.1 (discussed in Section 5.1) will

automatically receive the Create stereotype because its name starts by “Create".

76

5.3. APPROACH OVERVIEW

The second task, Derive AC, is automated. This task matches the model created in the first task

to a set of predefined AC templates, based on the intents of the actions in the model. The appropriate

templates are then instantiated (potentially multiple times), producing AC represented in the Gherkin

language [76]. More specifically, the templates define the fixed parts of the text in the Given-When-Then

structure of a Gherkin scenario as well as the variable parts (placeholders) that need to be filled with

content from the model. What enables the identification of the appropriate template for a given action

is the tag @Intent, which is specified in every AC template. Gherkin’s popularity can be attributed in

large part to its capability to enforce the use of high-level, domain-specific terms, as well as to support

traceability from AC to executable test cases [76].

5.3 Approach Overview

Identify Model
Elements to Enrich

Enriched
Model

Acceptance
Criteria

2

3 Create
Recommendations

1 Extract Information

Enrich Model4

Generate
Acceptance Criteria5

Recommendations

NL
Requirements

Model

Requirements
Specification

Figure 5.3: Approach overview

In this section, we introduce the inputs to our approach, followed by an overview of the different steps

of the approach (Figure 5.3).

The input to the approach is a Requirements Specification. This specification is composed of a set of

NL requirements and a requirements model (hereafter referred to as a model). In our context, a model is

composed of two types of model artifacts: 1) UML diagrams (specifically, CDs, ADs, and UCDs) and 2)

a traceability matrix.

NL Requirements. Natural languages (NL), such as English, are commonly used for express-

ing systems and software requirements [51]. Table 5.1 shows an example of five NL require-

ments from the financial domain. The requirements in our example are uniquely identified with

Ids composed of the letter R followed by a digit. Each requirement follows the requirement syn-

tax defined by the Rimay language introduced in Chapter 3. In requirement R1 shown in Ta-

77

CHAPTER 5. LEVERAGING NATURAL-LANGUAGE REQUIREMENTS FOR DERIVING BETTER
ACCEPTANCE CRITERIA FROM MODELS

ble 5.1, there is a triggering condition (When the Order_Issuer...creates an Order of

type Subscription_Order), an actor (Order_Issuer) that responds to the trigger, and one system

response (set the settlement_method of the Order to "FOP"). Free of payment (FOP) is a

securities industry settlement method that is not linked to a corresponding transfer of funds. In this case,

only the securities are moved. An example involving a FOP transaction may be gifts or donations. In

requirements R2, R3 and R4 (Table 5.1) , we use the generic names System, Transfer_System,

and Data_Provider to anonymize the names of the settlement platform, the secure file transfer con-

nectivity system, and the funds data provider of our industrial partner. Moreover, we use the name File

to refer to a set of specific information about fund documents. For example, each line of the File may

include the document type identifier, the codes of the countries in which the document can be published,

the ISIN (International Securities Identification Number) code defining the share class for the document,

a flag indicating if the document is written for a specific group of investors only, or the document URL.

Requirement R5 (Table 5.1) includes the terms ISIN and Share_Class_Identifier. ISIN is a

code that uniquely identifies a specific securities issue. Share_Class_Identifier is a designation

applied to a type of security, such as a mutual fund unit in the settlement platform of our industrial partner.

Table 5.1: Example NL requirements

ID Requirement Description
R1 When the Order_Issuer (hereafter known as OI)creates an

Order of type Subscription_Order, then OI must set the

settlement_method of the Order to "FOP"

R2 When Transfer_System receives a File, Transfer_System must

forward the File to System

R3 Every "calendar day", Data_Provider must send a File

R4 Before "8:00 am", every "calendar day", if System does not

receive the File, then System must create an "Alert"

R5 For each "line of the File", System must check that

Share_Class_Identifier.Value contains "line.ISIN"

Model. We assume that the input requirement model has been created by following the AGAC

methodology. AGAC uses three types of UML diagrams to represent requirements: UCDs, CDs and

ADs. Figure 5.4 shows excerpts of diagrams that can be enriched with information extracted from the

NL requirements shown in Table 5.1. Actors are defined in UCDs (e.g., the actor Order_Issuer)

and execute actions that are part of the activities represented in ADs (e.g., Create Order). Domain

entities and their properties are characterized by a domain model, represented using CDs and referenced

within the ADs. For example, the type Subscription_Order, shown in the CD, has one property

named settlement_date. In the AD Create subscription order at the top of Figure 5.4,

the action Create Order creates the object of type Subscription_Order, which is specified in

the domain model.

Models typically include trace relationships (traces) between model elements that are mainly used in

UML for tracking requirements and changes across models [49]. Those traces are usually represented

in a traceability matrix. In our context, traces between NL requirements and AD actions are sufficient

for our purpose as the extraction rules are driven by the control flow captured by actions (as we explain

later in Step 1 of Section 5.4.1). Table 5.2 shows an example traceability matrix where the columns

represent actions from Table 5.3 (discussed in Section 5.4.1), and the rows represent NL requirements

78

5.3. APPROACH OVERVIEW

Activity Diagrams

Create
Order

…

…more
elements

Class Diagrams (Domain Model)

Use Case Diagrams (Actors)

…

«actor»
Order_Issuer …

settlement_date : date
Subscription_Order

act Create subscription order

Figure 5.4: Model excerpts

from Table 5.1. An “X” in Table 5.2 means that the action in the column is traced to the NL requirement in

the row, and vice versa. We also say that the action in the column is a traced action of the NL requirement.

The Rimay tool is tightly integrated with the modeling environment and ensures that trace relationships

are established correctly during requirements writing.

Table 5.2: Traceability matrix

Re
qu

ire
m

en
ts

Model Elements

X

Check
ISIN

Create
Alert

X

Send
File

X

R5
R4
R3
R2
R1

Create
Order

Forward
File

X
X

The Approach. Our approach is composed of five steps, as depicted in Figure 5.3. All the steps,

except “Enrich Model” (Step 4), are performed automatically.

Step 1 is concerned with extracting information (e.g., actors, classes, properties, conditions) from NL

requirements expressed using the Rimay language (see Section 3.4). Only the NL requirements that are

traced to model elements are analyzed during Step 1.

Step 2 is concerned with identifying the model elements that can be enriched by using the information

extracted in Step 1. The inputs of this step are the model elements. The output of this step is the

information about what and where the model elements can be enriched.

Step 3 is concerned with creating recommendations that suggest how to enrich the model elements

in order to produce better AC. Each recommendation explains (a) what model element to enrich, e.g.,

activity partition, object, property value, and (b) where is the model element to enrich, i.e., the exact

location of the model element traced to the NL requirement.

In Step 4, the user (in our case, an analyst) manually reviews the recommendations produced in

Step 3 and decides whether to enrich the model according to the recommendations, or to discard the

recommendations.

Step 5 is concerned with automatically generating AC from the enriched model. This step is performed

via AGAC (see Section 5.2.2).

79

CHAPTER 5. LEVERAGING NATURAL-LANGUAGE REQUIREMENTS FOR DERIVING BETTER
ACCEPTANCE CRITERIA FROM MODELS

5.4 Information Extraction Approach for Deriving better AC

In this section, we describe in detail and illustrate over a small example the five steps of the approach of

Figure 5.3.

5.4.1 Step 1. Extract Information

This step aims to answer RQ1. To do so, we propose 13 rules to extract information content from NL

requirements that is relevant for generating AC. Our extraction rules were borne out of an analysis of the

AC-related conceptual overlaps between the element types in models and the element types in Rimay,

discussed in Section 5.2. To derive the rules, we systematically analyzed the Rimay grammar, identified

correspondences between the grammar and the element types in the models, and finally defined the

extraction rules.

Table 5.3 shows our extraction rules. The rules are organized into four categories that correspond

to the main grammar rules of Rimay from which the information is extracted. These categories are: (a)

SCOPE, (b) CONDITION_STRUCTURE, (c) ACTOR, and (d) SYSTEM_RESPONSE.

Each extraction rule in Table 5.3 has three columns “ID”, “Extraction Rule / Recommendation” and

“Example”. The “ID” column uniquely identifies an extraction rule and is composed of the first letter(s) of

the rule’s category name and a number. For instance, S1 and SR3 are the first and third extraction rules

related to the categories SCOPE and SYSTEM_RESPONSE, respectively.

Due to space constraints, we include the extraction rules and recommendations in the “Extraction Rule

/ Recommendation” column. In Step 3, we will discuss the recommendations. The structure of a rule is:

Rule: If [conditions to be checked in a requirements specification], then [information to extract from the

NL requirements]. To illustrate the rules in Table 5.3, consider rule S1 as an example: “If a prepositional

phrase starts by “for each” and mentions the type A of the collection that will be iterated over and the item

B in the collection, then extract A and B”. Given the prepositional rule in R5: For each "line of

the File", S1 will extract "File" (i.e., the type of the collection) and "line" (i.e., the item in the

collection).

The “Example” column shows the model elements extracted from a single NL requirement identified

by the letter R followed by a number (e.g., R1). We highlight in blue some of the model elements in the

“Example” column; this is to show that the elements are traced to the NL requirement shown in the same

table cell as the respective element. Moreover, we (1) shade an element green when there are updated or

new elements in the model, and (2) enclose the text in the NL requirements in a red rectangle when the

text mentions updated or new elements in the model.

Step 1 (Figure 5.3) is composed of two sub-steps: Sub-Step 1.1 identifies the NL requirements that

are traced to model elements (i.e., AD actions), based on a traceability matrix. If an NL requirement is

not traced to any model element, our tool will show a warning message to the analysts. For instance,

NL requirements R1 to R5 (Table 5.1) will be selected in Sub-Step 1.1 because they are traced to at

least one model element according to the traceability matrix shown in Table 5.2. Sub-Step 1.2 extracts

information (e.g., conditions, actors, triggers, verb phrases, etc.) from the NL requirements selected in

Sub-Step 1.1. The information to be extracted is determined by the rules shown in Table 5.3. Each rule

extracts information from a specific part of an NL requirement. For instance, extraction rule C1 (Table 5.3)

extracts verb phrases from the When structure of NL requirements. In the case of R2 (Table 5.1), C1

80

5.4. INFORMATION EXTRACTION APPROACH FOR DERIVING BETTER AC

The table is organized according to the different grammar rules of Rimay: (a) SCOPE, (b)
CONDITION_STRUCTURE, (c) ACTOR, and (d) SYSTEM_RESPONSE.

Table 5.3: Information extraction rules for NL requirements written in Rimay and the associated model-
enrichment recommendations

R5: For each "line of the File”,
System must check that

Share_Class_Identifier.Value contains
“line.ISIN”.

Extraction Rule /
Recommendation

S1

Rule: If a prepositional phrase
starts by “for each”, and further
mentions: the type A of the
collection that will be iterated
over and an item B in the
collection, then extract
A and B.
Recommendation: (1) create
an expansion region to include
the traced action, (2) add an
expansion node to the
expansion region, (3) set the
type of the expansion node to
A, (4) create an object node to
represent B, and (5) connect
the expansion node to the
object node.

ExampleID ID ExampleExtraction Rule /
Recommendation

Rule: If a condition A in a
Where structure does not
match any decision node
preceding the traced action,
then extract A.
Recommendation: Create a
decision node, and name it A

C7

 R4 (modified): Where “Feature-C is included”,
System must create an "Alert”.

Rule: If a condition A in a While
structure does not match any
decision node in a pre-test loop
preceding the traced action,
then extract A.
Recommendation: Name A
the decision node in the pre-
test loop.

 R4 (modified): While “System is in state A”,
System must create an "Alert”.

C6

C5

Rule: If the condition A in an If
structure does not match any
decision node preceding the
traced action, then extract A.
Recommendation: Create a
local pre-condition (constraint)
in the traced action for each
sub-condition in A.

 R4 (modified):
If “condition 1”, If “condition 2”, and If “condition 3”,

then System must create an "Alert”.

R2: When Transfer_System receives a File,
Transfer_System must forward the File to System.

Rule: If the verb phrase A in a
When structure does not match
the name of any of the actions
preceding the traced action,
then extract A.
Recommendation: Create an
action named A.

R3: Every “calendar day",
Data_Provider must send a File.

C2

R4: Before "8:00 am", every "calendar day”,
 if System does not receive the File, then System

must create an "Alert”.

C4

Rule: If a prepositional phrase
A expresses a timed event, and
the timed event does not match
any of the events or actions
preceding the traced action,
then extract A.
Recommendation: Create a
time-triggered event named A.

Rule: If two prepositional
phrases A and B express a
timed event and do not match
any of the events or actions
preceding the traced action,
then extract A and B.
Recommendation: Create a
time-triggered event that
combines the information of A
and B.

Rule: If a condition A in an If
structure does not match any
decision node preceding the
traced action, then extract A.
Recommendation: (1) create a
decision node, (2) change
negative conditions to positive
ones (e.g., change from “does
not receive” to “receives”), and
(3) name the decision node A.

R4: Before "8:00 am", every "calendar day”,
 if System does not receive the File,
 then System must create an “Alert”.

C3

C1

R1: When the Order_Issuer (hereafter known as
OI) creates an Order of type Subscription_Order,
then OI must set the settlement_method of the

Order to “FOP”.
A2

Rule: If an actor has an alias A
in an NL requirement, then
extract A.
Recommendation: Name A
the traced action’s activity
partition.

R4: Before "8:00 am", every "calendar day”, if
System does not receive the File,

then System must create an "Alert”.

A1

Rule: If an actor A in an NL
requirement does not match the
name of any UML actor linked
to the activity partition of the
traced action, then extract A.
Recommendation: (1) Create
a UML actor and named it A,
(2) create an activity partition to
include the traced action, and
(3) link the activity partition to
the created UML actor.

R1: When the Order_Issuer (hereafter known as
OI) creates an Order of type Subscription_Order,

then OI must set the
settlement_method of the Order to “FOP”.

R1: When the Order_Issuer (hereafter known as
OI) creates an Order of type Subscription_Order,

then OI must set the settlement_method of
the Order to “FOP”.

R4: Before "8:00 am", every "calendar day”, if
System does not receive the File, then System

must create an “Alert" .

SR
3

Rule: If a system response
refers to a specific data A by
name, then extract A.
Recommendation: Name the
object node with the same
name as A.

SR
2

Rule: If a system response sets
a value to a property of a traced
action's output object, then
extract the property and the
value.
Recommendation: (1) Add the
property to the object node, (2)
set the property’s value.

SR
1

Rule: If a system response
creates data A (e.g., Report,
Instruction, Alarm), then extract
A.
Recommendation: (1) Create
an object node with the same
name and type as A, and (2)
connect the traced action to the
object node.

Forward
File f: File

more
elements

…
Receive

File
more

elements
…

f: File

Send
File f: File more

actions…

Every calendar day

Create
Order

OI : Order Issuer
…more

elements
follow

more
elements

precede…

Create
Alert

: System

…more
elements

follow

more
elements

precede…

Create
Alert

…more
elements

follow

more
elements

precede…
: Alert

Create
Order

…more
elements

follow

more
elements
precede…

Subscription Order
settlement_method = “FOP”

Create
Order

…more
elements

follow

more
elements

precede…
Order :

Subscription Order

[Yes]

[No]more
elements…

Create
 Alert

Receives the File?

Before 8, every calendar day

more
elements …

[Yes]

[No]
more

elements…
Create
Alert

Receives the File?

more
elements …

Check
ISIN

more
elements

…

more
elements

…

: File
line

Create
Alert

<<local pre-conditions>>
{condition 1}
{condition 2}
{condition 3}

[No]

[Yes]
more

elements…
Create
Alert

System is
in state A?

more elements …

more
elements …

[No]
[Yes]

more
elements…

Create
Alert

Feature-C is
included?

more
elements …

a) b)

c)

d)

extracts the verb phrase “receives a File”. To give a more complete example of Sub-Step 1.2, Figure 5.5

shows requirement R1 alongside the AC-related information that can be extracted using the extraction

rules of Table 5.3. According to extraction rules C1, A1, A2, and SR1 to SR3, the type of information

extracted from R1 is actor, actor alias, action, object type, property name, object name, and property value.

The yellow marks in Figure 5.5 indicate the information content in R1 extracted by the extraction rules.

For instance, “property value” (e.g., “FOP”) is a type of information extracted by the rule SR2.

81

CHAPTER 5. LEVERAGING NATURAL-LANGUAGE REQUIREMENTS FOR DERIVING BETTER
ACCEPTANCE CRITERIA FROM MODELS

R1. When the Order_Issuer (hereafter known as OI)

creates an Order of type Subscription_Order, then the OI

must set the settlement_method of the Order to “FOP”.

SR1

actor actor alias

object type

property name property
valueobject name

action

A1 A2

C1

SR2 SR3 SR2

Figure 5.5: Illustration of information extraction applied to requirement R1 from Table 5.1

The extracted information is shown in rectangular boxes and the corresponding extraction rules in pin-
shaped pointers

5.4.2 Step 2. Identify Model Elements to Enrich

This step uses the information extracted in Step 1 (Figure 5.3) in order to identify the model elements (e.g.,

activity partition, action, object, property, etc) that can be enriched. A model element is enriched when we

add to it new AC-related information extracted from NL requirements using the extraction rules in Step 1.

In order to identify what model elements need to be enriched, our approach automatically compares

the text sequences extracted from NL requirements (i.e., the information extracted in Step 1) to the names

of the elements in the model. Specifically, our approach (1) runs a pre-processing step that includes

lowercase text conversion, stemming (a process of reducing inflected words to their word stem), and

stop-word removal (words such as articles are removed), and (2) deems two text sequences as matching

when they are syntactically identical. To illustrate how the matching works, consider rule C1 and its

example shown in Table 5.3 (b). According to C1, our approach needs to determine if there is an action

named “receives a File” that precedes the action “Forward File”. If such an action does not exist, our

approach classifies the model element as enrichable.

For example, given the information extracted from Step 1 (actor: Order_Issuer, actor alias: OI,

object name: Order, object type: Subscription_Order, property name: settlement_method,

and property value: FOP), our approach identifies six model elements in Figure 5.4 that are enrichable for

the following reasons:

1. The AD does not have an activity partition linked to the actor “Order_Issuer” defined in the

UCD (rule A1).

2. There is no activity partition named “OI” in the AD (rule A2).

3. The action “Create Order” in the AD does not have any output object node of type

“Subscription_Order” (rule SR1).

4. The output object node of type “Subscription_Order” does not have the property “settle-

ment_method” (rule SR2).

5. The property “settlement_method” is not set to “FOP” in the output object node of type “Subscrip-

tion_Order” (rule SR2).

6. There is no object node named “Order” in the AD (rule SR3).

82

5.4. INFORMATION EXTRACTION APPROACH FOR DERIVING BETTER AC

5.4.3 Step 3. Create Recommendations

This step creates recommendations for the analysts regarding how to enrich the model elements classified

as enrichable in Step 2 (Figure 5.3). All the recommendations were shown already in Table 5.3. Each

recommendation describes the tasks that analysts should perform to enrich a model using AC-related

information extracted by a rule shown in the same cell of Table 5.3.

Step 3 does not recommend tasks that cause the duplication of model elements. For example, a

recommendation for the extraction rule S1 (Table 5.3) will not include the task “create an expansion

region to include the traced action” if the model already has an expansion region that includes the traced

action. Recall from Section 5.3 that a traced action is one that is related to an NL requirement through a

trace relationship.

The recommendations use mostly terminology from UML e.g., local-precondition, event, condition,

expansion region. In addition, other recommendations use terminology derived from programming

languages. For instance, the recommendation of the extraction rule C6 (Table 5.3) uses the term pre-test

loop. A pre-test loop is one in which a set of actions is to be repeated until a specified condition is no

longer true, and the condition is tested before the set of actions is executed. In modern programming

languages, a pre-test loop is implemented using the while statement.

Step 3 uses the general recommendations shown in Table 5.3 to produce specific recommendations for

the model being created by the analysts. To illustrate the type of specific recommendations produced by

Step 3, Table 5.4 shows five recommendations to enrich the model shown in Figure 5.4. The recommenda-

tions described in the “Description” column (Table 5.4) contain predefined text and text extracted from the

NL requirements. The predefined text is in normal black and the text obtained from the NL requirements

is in bold. For instance, in recommendation Rec.1 (Table 5.4) the Order_Issuer is a model element

extracted from the NL requirement that is used to enrich the model.

Table 5.4: Recommendations to enrich the model of Figure 5.4

ID Description Rule
Rec.1 Create an actor and name it “Order_Issuer”, create an activity partition to include

the “Create Order" action, and link the activity partition to the “Order_Issuer”
actor

A1

Rec.2 Name “OI” the activity partition of the “Create Order" action A2
Rec.3 Create an object node of type “Subscription_Order”, and connect the “Create

Order" action to the object node
SR1

Rec.4 Add the property “settlement_method” to the object node of type
“Subscription_Order”

SR2

Rec.5 Set the “settlement_method” property’s value to “FOP” SR2
Rec.6 Name the object node as “Order” SR3

5.4.4 Step 4. Enrich Model

In this step, the analysts consider the recommendations generated by our approach. The recommendations

contain the steps that the analysts have to perform to enrich the model. This step is carried out manually

because the analysts should have the final say as to whether to follow or discard the recommendations.

Figure 5.6 exemplifies the output of Step 4 for the model shown in Figure 5.4 and requirement R1 in

83

CHAPTER 5. LEVERAGING NATURAL-LANGUAGE REQUIREMENTS FOR DERIVING BETTER
ACCEPTANCE CRITERIA FROM MODELS

Figure 5.5, according to the six recommendations shown in Table 5.4. Note that, in Figure 5.6, we have

assumed that the analysts would accept all the recommendations. We use comments (identified with the

ids of the extraction rules that produced each recommendation) to mark the places in the model that have

been enriched by the analysts.

Activity Diagrams

…

Class Diagrams (Domain Model)

act Create subscription order

Order : Subscription_Order

settlement_date : date
settlement_method : string

Subscription_Order

Create
Order

…more
elementssettlement_method = “FOP”

Use Case Diagrams (Actors)

…

A2 A1

SR1

SR2

SR2

SR3

«actor»
Order_Issuer

OI : Order_Issuer

…

Figure 5.6: Enriched model and the mapping of new elements to the extraction rules of Table 5.3

5.4.5 Step 5. Generate Acceptance Criteria

This step automatically generates AC based on the intents of the AD actions in the model enriched by

the analysts (Step 4). To generate AC, we use a set of predefined AC templates provided by AGAC (see

Section 5.2.2). For example, the acceptance criterion shown in Figure 5.7 is generated from the action

named “Create Subscription Order”.

This acceptance criterion exercises the following behavior: when the Order_Issuer (OI) executes Cre-

ate a Subscription_Order, if the Order does not exist, then the Order is created and its settlement_method

is set to FOP.

@Intent Create
@Requirement_Id: R1
Scenario: Create an Order
Given an Order of type Subscription_Order does not
 exist in OI of type Order_Issuer
When OI Create Order,
Then Order exists in OI
 And the property settlement_method of Order is equal to FOP

Figure 5.7: Example acceptance criterion related to the model of Figure 5.6

5.5 Empirical Evaluation

In this section, we describe the case study we carried out to address RQ3. Throughout the section, we

follow best practices for reporting on case study research in software engineering [56].

84

5.5. EMPIRICAL EVALUATION

5.5.1 Objectives and Design

We evaluated our approach using a real requirements specification developed by our industrial partner.

The specification includes three ADs, three CDs, one UCD, and 23 NL requirements. We reflect on the

representativeness of this case study in Section 5.6.

We applied the 13 extraction rules shown in Table 5.3 to the 23 NL requirements and obtained 27

recommendations for the analysts to enrich the model. We carried out this evaluation in close collaboration

with five analysts at our industrial partner. All the analysts were domain experts, with significant experience

writing financial system requirements ranging from 7 to 28 years. We asked these analysts to answer the

following two questions:

(Q1) Are the recommendations to enrich the model useful to generate better AC? Yes/No

(Q2) Should the refinements introduced into the model be made visible to the analysts to facilitate its

interpretation? Yes/No

Q1 addresses relevance as the main topic of investigation in our evaluation. Relevance refers to whether

analysts deem a recommendation useful to enrich a model and generate more precise and complete AC.

For the purpose of this evaluation, we are interested in Q1 only. Nevertheless, we also included Q2 to

gather feedback on the level of detail that analysts deem useful to show in models in order to facilitate

their understanding. Naturally, for a given recommendation, Q2 was asked only when the answer to Q1

was positive (Yes).

5.5.2 Preparation for Data Collection

In this section, we define the procedures and protocols for data collection. The following data was provided

to the analysts for evaluation: (a) the original requirements specification (including NL requirements and

a model), (b) the set of 27 model-enrichment recommendations produced by our approach, and (c) the

AC generated from the model in (a). For each recommendation, as a group and through discussions, the

analysts were asked to: (1) if needed, enrich the model following the recommendation, (2) generate AC

from the enriched model, (3) compare the AC in (2) to the AC generated from the original model in (a),

and (4) answer Q1 and Q2. Note that the five analysts were already trained to use AGAC and to read AC

specified using Gherkin scenarios.

5.5.3 Collecting Evidence and Results

We report on the analysis of the data collected from the questionnaire’s answers. Table 5.5 shows the

number of Yes and No answers to Q1 and Q2, given by the group of analysts after they reached consensus.

Table 5.5: Questionnaire answers

Question Yes No
Q1 24 3
Q2 7 17

With regard to Q1, the analysts agreed to follow 24 of the 27 recommendations to enrich the model.

Table 5.6 compares the original model and the enriched one in terms of numbers of elements of different

85

CHAPTER 5. LEVERAGING NATURAL-LANGUAGE REQUIREMENTS FOR DERIVING BETTER
ACCEPTANCE CRITERIA FROM MODELS

types. The increase in instances across all element types in the enriched model confirms that our approach

is effective in creating recommendations that the analysts deem necessary for the purpose of AC generation.

After enriching the model, the analysts generated AC. Table 5.7 provides a comparison of the AC that

were generated from the original and the enriched model. In AGAC, one AC is described using a sequence

of one or more Gherkin scenarios. Therefore, we compared AC in terms of the total number of Gherkin

scenarios (Given-When-Then structures), and the pre- and post-conditions in their Given and Then

parts, respectively. Though there is a general, significant increase, the most striking value in Table 5.7

is the 596% increase in the number of post-conditions. This result was mainly due to the addition of 75

values for the properties of action’s output objects (Table 5.7) that AGAC transforms into post-conditions

in the Gherkin scenarios. As a result, along with a more modest increase in pre-conditions, this contributes

to making AC more precise. Another noteworthy result is the 22% increase in Gherkin scenarios, thus

showing that model refinement leads to more complete AC.

Table 5.6: Comparison of the original and enriched models

Model Element Original Enriched % Increase
Actions 22 24 9.1%
Events 1 3 200%
Objects 11 15 36.4%
Decision Nodes 8 9 12.5%
Fork and Join Nodes 2 3 50%
Propriety Values 0 75 N/A

Table 5.7: Comparison between the original AC (Original) and the AC derived from the enriched model
(Augmented)

AC Details Original Augmented % Increase
Pre-conditions 438 535 22,1%
Post-conditions 325 2262 596%
Gherkin scenarios 156 191 22,4%

5.5.4 Analysis of Collected Data

In this section, we assess the relevance of our approach in producing better AC by answering Q1 and Q2.

To answer Q1, we define the following metrics, based on the answers provided by the five analysts:

(1) true positives (TPs) as the cases in which the recommendation is deemed correct and relevant to the

generation of AC, (2) false positives (FPs) as the cases in which the recommendation is deemed irrelevant

and has no bearing on the generation of AC, and (3) false negatives (FNs) as the cases in which the

analysts identify recommendations that are missed by our approach, but are useful for the generation of

AC.

We calculate precision as TP/(TP + FP) and recall as TP/(TP + FN). Table 5.8 shows our

accuracy results: over our case study, the recommendations have a precision of 89% and recall of 100%.

There are three FPs, resulting from three recommendations that suggested missing elements in the model,

but these elements were identified to be already present by the analysts. Our approach did not yield any

FNs due to the systematic derivation of our extraction rules (Section 5.4.1). Nevertheless, the analysts

86

5.6. THREATS TO VALIDITY

Table 5.8: Accuracy metrics for our recommendations

TPs FPs FNs P% R%
24 3 0 89 100

were asked to try to identify any recommendations that our approach might have missed; they could not

identify any.

To answer Q2, we considered only the 24 recommendations that were deemed correct and relevant

by analysts (Q2 in Table 5.5). The analysts found the additional information resulting from 17 of these

recommendations not worth visualizing in the model. For example, the analysts agreed that details such

as the expected run-time property values extracted by extraction rule SR2 (Table 5.3) did not need to

be visualized. The analysts agreed that the additional information resulting from the seven remaining

recommendations should be visualized as the information was deemed helpful for improving model

comprehension. For example, the analysts found the conditions extracted from NL requirements by

rule C4 (Table 5.3) to be useful information to visualize in decision nodes. To conclude, most of the

information extracted from NL requirements, despite being relevant to the generation of AC, was deemed

not useful for visualization purposes. This observation provides evidence about the largely complementary

nature of the information content captured by models versus NL requirements.

5.6 Threats to Validity
Internal validity focuses on confounding factors. The main confounding factor to mitigate in our

case study is related to the fact that analysts may have influenced one another when responding to our

questionnaire during the evaluation. In particular, the answers obtained from the analysts could be about

what each person feels and thinks, but it could also be influenced by a phenomenon such as ‘groupthink’,

through which people conform to what others believe. To mitigate this bias, for each recommendation,

we asked analysts to (1) first answer Q1-Q2 offline, and (2) then report their answers during the group

discussion. In addition, we focused the group discussion on using consensus-seeking dialog as a method

to converge (on answers to Q1-Q2) through debate.

External validity concerns the generalizability of our case study results. Although our evaluation is based

on a single case study, the NL requirements and the model in the case study are representative of a broader

class of information systems, such as the ones in the banking and securities industry. However, future

investigations are necessary to determine whether and how our approach can be applied to other domains

and information systems.

In our case study, the While and Where structures – two out of Rimay’s eight main grammar rules

(see Section 3.4) – were left unused by the NL requirements. Nevertheless, these structures would be

treated similarly to the If structure (which does get used in our case study). As for the AC, the Gherkin

scenarios derived from the enriched model in our case study cover six out of the 11 intent types supported

by AGAC. The covered intent types are: “delete”, “send”, “receive”, “update”, and “validate”. The intent

types not covered are “read”, “enable”, “disable”, “display” and “not display”. The template for “read”

is conceptually similar to that for “send”. For example, the post-condition for “read” (“Then [actor]

read [object]”) is similar to that for “send” (“Then [actor] sent [object]”). The templates for the other

four intent types (“enable”, “disable”, “display” and “not display”) are similar to that for “delete”. For

example, the pre-condition for all these four intent types is “Given [object] exists in [actor]”, just like for

87

CHAPTER 5. LEVERAGING NATURAL-LANGUAGE REQUIREMENTS FOR DERIVING BETTER
ACCEPTANCE CRITERIA FROM MODELS

“delete”. We thus anticipate that our results will generalize to other systems of the same type. This being

said, further case studies involving other types of systems that are commonly modeled using ADs, CDs

and UCDs, e.g., public administration services, remain necessary for improving external validity.

5.7 Related Work

This section presents existing work that is related, to various degrees, to the extraction of information

from NL requirements with the objective of creating or enhancing UML models.

We consider eight studies relevant to our work; seven aim at extracting information from NL require-

ments to create UML models and one – to enhance existing UML models for the purpose of test-case

generation. Table 5.9 outlines these eight studies. The first column cites the study. The second column

indicates whether an empirical evaluation was conducted as part of the study. The third column shows the

number of rules, patterns, or heuristics that are included in the study. Finally, the fourth column indicates

whether the study uses CNLs, patterns, or templates.

Table 5.9: Summary of related work

Study Empirical Number of Restricted
Reference Evaluation Rules NL?

Ilieva et al. [29] No 14 No
Moreno et al. [47] No 9 No
Fliedl et al. [23] No 5 No
Smialek et al. [62] No 6 Yes
Arora et al. [6] Yes 21 No
Thakur et al. [68] Yes 54 No
Yue et al. [80] Yes 65 Yes
Wang et al. [73] Yes N/A Yes

The approaches described in [29, 62, 23, 47] were identified from the systematic review of transforma-

tion approaches between user requirements and analysis models conducted by Yue et al. [78]. We further

included subsequent studies to this systematic review [6, 68, 80, 73].

We start with the studies that extract information from NL requirements for the creation of UML

models. Ilieva et al. [29] propose a methodology to extract information from unrestricted NL requirements

to build UCDs, ADs, and domain models. To this end, they describe 14 heuristics that define the

correspondence between UML model elements and pieces of information in the NL requirements. Moreno

et al. [47] discuss nine patterns for structuring the information representing the data with which the

system works (static information) and the data that describes the system behavior (dynamic information)

as extracted from unrestricted NL requirements. In this study, static and dynamic information is used,

respectively, for building conceptual and behavioral models.

Fliedl et al. [23] propose a semi-automated approach that considers the user’s feedback to linguistically

analyze unrestricted NL requirements and translate these requirements into a conceptual pre-design schema.

This schema contains static and dynamic information. The study maps this information to UML model

diagrams, e.g, ADs, using a set of five extraction rules.

Smialek et al. [62] restrict the representation of UCDs through a concrete syntax. They describe the

meta-model of their concrete syntax and define mapping patterns that link the concrete syntax meta-model

88

5.8. CONCLUSIONS

components to the UML elements of Sequence Diagrams and ADs. They describe six mapping patterns in

the study. None of the above approaches report empirical evaluations.

Arora et al. [6] collect from previous work a set of 18 extraction rules and propose three new extraction

rules for unrestricted NL requirements. Their rules extract elements for building domain models. The

authors evaluate the usefulness of their approach via a case study and expert surveys.

Thakur et al. [68] report an automated approach to extract domain elements from unrestricted UCD

specifications. They propose 54 extraction rules and empirically compare their approach with two similar

approaches.

Yue et al. [80] propose an approach that, by implementing 65 transformation rules (28 rules for CDs,

18 rules for sequence diagrams, and 19 rules for ADs), automatically generates UML model diagrams

from NL requirements. They consider NL requirements that conform to a restricted natural language,

named RUCM [79], for writing UCD specifications. They empirically evaluate their approach in terms of

consistency, completeness, applicability, and performance through a series of case studies.

All the above-mentioned studies target the construction of UML models from scratch. In contrast,

the solution proposed by Wang et al. [73] updates UML models using NL requirements to generate test

cases. Their approach enables users, based on UCD specifications written in RUCM [79], to extract model

elements for checking completeness and add new information to models, e.g., conditional statements to be

inserted as pre- and post-conditions. Additionally, their approach creates a test model for the generation

of test cases. An empirical evaluation reported that their approach generates 25% more test case scenarios

compared to manually written test case scenarios developed by experts.

To summarize, seven studies [29, 47, 23, 6, 68, 80, 62] discussed in this section suggest rules to fully

transform textual requirements to models. One of our rules (C4), presented in Table 5.3, shares the same

rationale as a rule introduced by Ilieva and Ormandjieva [29]. The rest of our rules differ from the rules,

heuristics, and patterns introduced in the above-cited studies. One approach [73] includes information

from NL requirements to enhance conceptual models and generate test cases. In contrast, our approach

identifies AC-related information from NL requirements which, if included in the model, can significantly

improve the precision and completeness of generated AC in terms of Gherkin scenarios. Moreover, our

approach differs from that of Wang et al. in the nature of the NL requirements. Whereas Wang et al. orient

their work around textual use-case specifications resulting from object-oriented analysis, the CNL that

underlies our work, Rimay, has been designed around more traditional requirements engineering practices

where the requirements are expressed as independent statements with modal verbs (e.g., shall, must, will).

5.8 Conclusions

The goal of this chapter is to better support the model-based derivation of system test Acceptance

Criteria (AC) by enriching requirements models with additional information from natural language (NL)

requirements. Though this chapter targets a specific modeling methodology (AGAC) and controlled

natural language (Rimay) for requirements specifications, many of the principles we describe are general.

Through a comparative analysis of the conceptual overlap of AGAC and Rimay, we first systematically

derived 13 rules to extract AC-relevant information from NL requirements. Then, we proposed a semi-

automatic approach that identifies the model elements that can be enriched with this extracted information,

creates recommendations for the analysts, augments the model according to the selected recommendations,

and automatically generates AC from the enriched model using AGAC.

89

CHAPTER 5. LEVERAGING NATURAL-LANGUAGE REQUIREMENTS FOR DERIVING BETTER
ACCEPTANCE CRITERIA FROM MODELS

Our empirical evaluation, which was conducted through a case study in the financial domain, involved

collecting feedback and decisions from five domain experts and provided initial but strong evidence of the

feasibility and benefits of our approach. Indeed, most recommendations were followed by the experts (24

out 27) and led to a significantly augmented model and AC, thus providing stronger support for acceptance

testing.

90

Chapter 6

Conclusions & Future Work

6.1 Summary

In this dissertation, we proposed solutions to improve the quality of NL requirements and requirement

models. These solutions respond to the practical needs observed in the financial sector. For companies in

this sector, it is desirable to reconcile the information content in NL requirements and models to easily

communicate the requirements among project stakeholders and develop successful software applications.

It is also important to note that leveraging requirement information content can enable the automation of

certain tasks (e.g., generating AC). The work presented in this dissertation was conducted in collaboration

with Clearstream Services SA Luxembourg, a security services company owned by Deutsche Borse AG.

All contributions have been empirically evaluated using industrial case studies. Below, we summarize the

contributions of this dissertation..

This dissertation introduced a new methodology for defining controlled natural languages (CNLs)

to specify requirements. We used this methodology to create a CNL (Rimay) for specifying functional

requirements in the financial domain. The grammar of Rimay was derived from an extensive quality

study using 2755 requirements. The purpose of this quality study was to identify the information content

that financial analysts should account for in the requirements of financial applications. We empirically

evaluated Rimay in a realistic setting. In this evaluation, we measured Rimay’s expressiveness to represent

the requirements. The results showed that 405 of the 460 (88%) requirements evaluated in our case study

could be expressed using Rimay.

We identified a set of 10 smells commonly observed in requirements from the financial domain. These

smells describe the semantic and syntactic errors found in the requirements. Furthermore, we derived 10

Rimay patterns from the Rimay language, which were then provided as suggestions for users to fix smells.

This resulted in the development of a tool that detects smells in requirements and suggests Rimay patterns

to fix the smells. We evaluated this tool through an industrial case study, during which we measured

the performance of our approach. Our results were then compared against a human-annotated ground

truth. The results showed a precision of 88% and a recall of 74% in smell detection. Furthermore, Rimay

patterns were suggested with a precision of 89% and a recall of 82%.

91

CHAPTER 6. CONCLUSIONS & FUTURE WORK

This dissertation also introduces a methodology that supports the model-based derivation of acceptance

criteria (AC) by enriching requirements models with AC-related information in NL requirements. Our

approach, along with Rimay, leverages a specific modeling methodology, the Automated Generation of

Acceptance Criteria (AGAC), to specify requirements. First, we systematically derived 13 rules to extract

AC-relevant information from NL requirements. These rules were identified by analyzing the conceptual

overlap between AGAC and Rimay. Then, we proposed a semi-automatic approach that (1) identifies

the model elements that can be enriched with this extracted information, (2) creates recommendations

for analysts to augment the model according to the selected recommendations, and (3) automatically

generates AC from the enriched model using AGAC. We evaluated our approach by applying our model

enrichment method to an industrial case study. Our method suggested 27 recommendations for model

enrichment; these results were validated by a group of experts who provided feedback and decisions about

which recommendations were relevant to AC. The results showed that 24 of the 27 recommendations

proved relevant (precision of 89%). This led to a significantly augmented model and AC.

6.2 Future Work

The findings of this dissertation lay the groundwork for future research to further improve current practices

related to requirements specifications and acceptance testing. Further studies evaluating the usefulness of

our solutions presented in Chapters 3 and 4 could broaden the knowledge of the benefits we can expect to

improve the quality of NL requirements. Furthermore, the proposed smells outlined in Chapter 4 describe

common syntactic and semantic problems encountered in NL financial requirements. There remains a

broader spectrum of syntactic and semantic problems to consider. Therefore, we intend to augment our

catalog of smells to provide better coverage for smell detection (Chapter 4).

Our method for generating recommendations for model enrichment presented in Chapter 5 uses

syntactic comparisons between the information content of NL requirements and requirement models.

Enhancing our approach to include semantic analysis would provide a more accurate match and would

significantly improve the performance of our approach.

92

Appendix A

Action Phrases in Rimay

Table A.1 and Table A.2 show the name, summary, and examples of the Rimay grammar rules related to

action phrases. Table A.1 displays the rules built during the qualitative study and Table A.2 depicts the

rules created in the empirical evaluation.

Table A.1: Types of action phrase rules in Rimay (from Qualitative Study).

Grammar Rule
Name

Grammar Rule Summary Examples

ADMIT_65 exclude|excludes

MODIFIER? PROPERTY|

INSTANCE|TEXT

(in ELEMENTS)?

(using|based on TEXT)?

(in compliance with TEXT

(described in TEXT)?)?

exclude the "Gregorian dates

that are not business days" in

the System based on "the

relevant calendar".

ADVISE_37_
9_1

instruct|instructs

(MODIFIER? ACTOR (to|in))?

MODIFIER? TEXT

(using|based on TEXT)?

instruct CAIN in

"Deliveries" using the "P

format only".

ALLOW-64.1 allow|allows|

authorize|authorizes

(MODIFIER? ACTOR to)?

MODIFIER? TEXT

(in MODIFIER? (CLASS|PLACE|

UI_COMPONENT))?

Example 1: allow the "use of

the new input media SIGMA"

Example 2: allow the "use

of wild card *" in the

"criteria" field

BEG_58_2 request|requests

MODIFIER? ACTOR

(for|to TEXT)?

(by using MODIFIER? TEXT)?

Example 1: request the System

to "provide the following

position types: AWAS, BLOK,

BLCA, RSTR, DRAW, PLED"

Example 2: request the System

to "cancel the settlement" by

using the "Order Reference".

93

APPENDIX A. ACTION PHRASES IN RIMAY

Table A.1: (continued) Types of action phrase rules in Rimay (from Qualitative Study).

BEGIN-55.
1-1

start|starts|begin|begins

MODIFIER? TEXT

start the "calculation of the

next NAV date on daily basis".

CANCEL cancel|cancels

MODIFIER? TEXT

cancel the "request of

Validation".

CONCEALMENT-
16-1

hide|hides

MODIFIER? (UI_COMPONENT)

|TEXT)

(from ACTOR)?

hide the "PSC parties" section

displayed on "Parties" screen.

CONTRIBUTE-
13.2

restore|restores

MODIFIER? PROPERTIES

(to TEXT)?

(for a period of TEXT

starting from TEXT)?

restore "FundsHandler archived

data" for a period of "10

years" starting from "Nov-2017".

CREATE-26.4 compute|computes|

publish|publishes

MODIFIER? PROPERTY

(as TEXT)?

(for MODIFIER? TEXT)?

(using|based on TEXT)?

((in compliance with)

ARTICLE?

TEXT)?

(described in ARTICLE?

TEXT)?)?

Example 1: calculate the

"Record Date Balance" using

"Calculation Rule".

Example 2: compute the "Trade

Dated balance (TDB)" in

compliance with "Trade Dated

balance".

Example 3: publish the "end

of life statuses" for each

"instruction types linked to an

investment fund instrument" on

SIGMA.

ENABLE_
DISABLE

enable|disable

MODIFIER? (ACTOR to)?

TEXT

(in MODIFIER? (CLASS|PLACE|

UI_COMPONENT))?

enable the User to "select a

5, 6, 8 or 9-digit account

number" in the "Client Account

number" field.

ENFORCE_63 enforce|enforces

MODIFIER?

(ACTOR to)? TEXT

(in MODIFIER? (CLASS|PLACE|

UI_COMPONENT_INSTANCE))?

enforce the "upper case for

the criteria entry" in the

"Search" screen.

ENGENDER-27 create|creates|

generate|generates

ADVERB_PHRASE?

MODIFIER? INSTANCES

(in ELEMENTS)?

(for MODIFIER? TEXT)?

(in compliance with

ARTICLE? TEXT)?

(described in ARTICLE?

TEXT)?)?

Example 1: create an "entry" in

the "Market Calendar table".

Example 2: create "5 different

values of <num> <day>" in

compliance with "converting

rule".

Example 3: create a

"Transaction" in "Settlement

Request" for "OI".

94

Table A.1: (continued) Types of action phrase rules in Rimay (from Qualitative Study).

EXCHANGE-
13.6

replace|replaces

MODIFIER? PROPERTIES

for MODIFIER? TEXT

(in compliance with|

by applying the rule TEXT

(described in ARTICLE?

TEXT)?)?

replace the "4

last characters" of

Allegements_Clearstream_

Identifier for "D001".

FORBID-67 prevent|prevents

ARTICLE? (ACTOR? from TEXT)

|TEXT

prevent the User from "deleting

an element"

GET_FROM download|downloads

MODIFIER? INSTANCE|CLASS

(through ACTOR)

(and|or ACTOR)*
(in compliance with TEXT

(described in TEXT)?)?

download "the confirmation

messages from "FDEP".

HERD-47.5.2 aggregate|aggregates

MODIFIER? PROPERTY

together?

aggregate all

"fee Types"

INTERRUPT interrupt|interrupts

MODIFIER? (ACTOR|(TEXT

process))(with TEXT)?

interrupt the "Settlement

Request".

INVOLVE-107 include|includes

MODIFIER? PROPERTY

(in INSTANCE|CLASS)?

include the "5-digit

creation account" in

Settlement_Instruction.

KEEP-15.2 store|stores MODIFIER?

(property|properties

PROPERTIES value|values

TEXT) (in MODIFIER? CLASS|

INSTANCE)?

(for a period of TEXT

starting from TEXT)?

Example 1: store all "deleted

parameters"

in the "List A".

Example 2: store the values

"Validate", "Authorize",... in

the Life_Cycle.

Example 3: store the

"FundsHandler data" in

"location A" for a period of

"at least 10 years" starting

from "DD/MM/YYYY".

LIMIT-76 limit|limits|restrict|

restricts|reduce|reduces

MODIFIER? PROPERTY|

INSTANCE (to TEXT)?

restrict the "DATA-ENTRY

Profile" and "AUTHORIZATION

Profile" to "have messages

Setr.004, Setr.005".

MIGRATE migrate|migrates

MODIFIER?

(NON_UI_COMPONENT_INSTANCE

|CLASS)+ (from ACTOR|CLASS

|INSTANCE|PROPERTY)?

(to (ACTOR|INSTANCE|

PROPERTY)+)?

migrate "All the data that have

been decommissioned as listed

in the KD01" to "Oxygen".

95

APPENDIX A. ACTION PHRASES IN RIMAY

Table A.1: (continued) Types of action phrase rules in Rimay (from Qualitative Study).

Grammar Rule
Name

Grammar Rule Summary Examples

MIX-22.1-2 add|adds MODIFIER?

PROPERTY|INSTANCE|ACTOR

(about TEXT)?

to MODIFIER?

PROPERTY|INSTANCE|ACTOR

Example 1: add "SIGMA" to

XY_System.

Example 2: add a "record" about

"missing Market Calendar" to

the "exception log".

MIX_22_
1_2_1

link|links

(INSTANCE_WITH_INSTANCE|

PROPERTY_WITH_PROPERTY)

(, INSTANCE_WITH_INSTANCE|

PROPERTY_WITH_PROPERTY)*

Example 1: link "BIC" to

"Matching BIC".

Example 2: link "allegement

message MT578" to "outgoing CIF

message - RTS".

NEGLECT-
75-1-1

neglect|neglects|

ignore|ignores

MODIFIER? PROPERTY

(from ELEMENTS)?

(using|based on TEXT)?

(in compliance with TEXT

(described in TEXT)?)?

ignore the "ex/cum transaction

condition indicator" from

"Instruction".

OBTAIN-
13.5.2

accept|accepts|receive|

receives|retrieve|

retrieves

MODIFIER? INSTANCE|CLASS

(from ELEMENTS_NO_UI)?

(through ACTORS)?

(in compliance with TEXT

(described in TEXT)?)?

Example 1: receive a DA_file

from CFCL_IT.

Example 2: reject the

"Message" in compliance with

"current validation rules".

OTHER_COS-
45.4

close|closes|reverse

|reverses MODIFIER?

UI_COMPONENT_INSTANCES

close the

"Confirmation" message.

PUT-9.1 insert|inserts

MODIFIER? PROPERTY|TEXT

on|in MODIFIER?

INSTANCE|PROPERTY|TEXT

append "XXX" on the "depository

LI, LJ, LK, LL, LM, LO and YN".

REFLEXIVE_
APPEARANCE-
48.1.2

display|displays|

show|shows MODIFIER?

INSTANCES|CLASSES|TEXT

(to ACTOR)?

(as TEXT UI_COMPONENT?)?

(on|in MODIFIER? (ACTOR|

UI_COMPONENT_INSTANCE))?

(until STRING)?

(with the default (values

|value) TEXT)?

Example 1: display "5, 6, 8 or

9-digit account number" in the

"exported report account" field.

Example 2: display the

"relevant Jurisdiction

Calendar" as "selected".

96

Table A.1: (continued) Types of action phrase rules in Rimay (from Qualitative Study).

Grammar Rule
Name

Grammar Rule Summary Examples

REMOVE_10_1 extract|extracts|remove|

removes|delete|deletes|

deduct|deducts

MODIFIER? PROPERTIES

(from ELEMENTS)?

(using|based on TEXT)?

(in compliance with TEXT

(described in TEXT)?)?

Example 1: extract the

"description" of Fund_frequency

from the "reference data".

Example 2: delete the "DECU

field" from the "Settlement

Parties block".

SAY-37.7-1 report|reports|propose|

proposes

MODIFIER? TEXT

to ELEMENTS_NON_UI

(using TEXT)?

report all "allegements

received without a customer

account" to Report_service

using "defaulted Allegement

Main Account".

SEE-30.1-1 detect|detects MODIFIER?

NON_UI_COMPONENT_INSTANCE

| CLASS (and|or

(NON_UI_COMPONENT_INSTANCE

|CLASS)? (on

NON_UI_COMPONENT_INSTANCE

|CLASS) (and|or

NON_UI_COMPONENT_INSTANCE

|CLASS)?)?

detect the "corresponding

settlement request".

SELECT_
UNSELECT

select|selects|unselect|

unselects MODIFIER?

UI_COMPONENT_INSTANCE

|CLASS|PROPERTY

(from MODIFIER?

NON_UI_COMPONENT_INSTANCE

|CLASS|LABEL)?

(using|based on TEXT)?

select the "last price date"

from Vestima_ref_data.

SEND-11.1 return|returns|send|sends|

forward|forward|pass|

passes|export|exports

ADVERB_PHRASE?

(MODIFIER? CLASS|

INSTANCE)+ (from ACTOR)?

to MODIFIER? ACTOR

(and|or MODIFIER? ACTOR)*
(through ACTOR)?

send a "Settlement Request" to

SIGMA.

SHAKE-22.
3-2-1

concatenate|concatenates

MODIFIER? CLASS|INSTANCE

with|into MODIFIER? LABEL? PROPERTY

((in compliance with|

by applying the rule) TEXT

(described in TEXT)?)?

concatenate "Accrued

interest" with "Narrative".

97

APPENDIX A. ACTION PHRASES IN RIMAY

Table A.1: (continued) Types of action phrase rules in Rimay (from Qualitative Study).

Grammar Rule
Name

Grammar Rule Summary Examples

SYNCHRONIZE synchronize|synchronizes

(INSTANCE_WITH_INSTANCE|

PROPERTY_WITH_PROPERTY)+

synchronize "participants

with the status Valid and the

data corresponding to that

status" with "participants and

data of Vestima+".

THROW-17.1 discard|discards

MODIFIER? TEXT

(from TEXT)?

(to TEXT)?

discard the "changes made by

the user".

TRANSCRIBE-
25.4

copy|copies

MODIFIER? PROPERTY|LABEL

into MODIFIER? INSTANCE|

PROPERTY|TEXT

copy the "PSC" of

FNCBL_Custodian_

SIP_participant into "Custodian

SIP PSC" screen.

TURN-26.6.1 convert|converts|change|

changes|transform|

transforms

PROPERTY_INSTANCE_

OR_VALUE_AND_ITS_CHANGE +

(in compliance with TEXT

(described in TEXT)?)?

Example 1: convert "<day>

value" of Fund_frequency into

"5 different values of <num>

<day>" in compliance with

"converting rule" described

in "Rule_location".

Example 2: The HUB must

transform "cancellation" of

Message to "TNP XML".

UPDATE update|updates|set|sets

PROPERTY_INSTANCE_OR_

VALUE_AND_ITS_CHANGE +

(in compliance with TEXT

(described in TEXT)?)?

set the "83a: Instr.

Party" field into "EDA (account

10999)".

USE-105 use|uses|apply|applies

MODIFIER? NON_UI_

COMPONENT_INSTANCE|CLASS|

LABEL|PROPERTY|TEXT (as

NON_UI_COMPONENT_INSTANCE|

CLASS|LABEL|PROPERTY|

TEXT)? (for|to TEXT)?

(in ACTOR|CLASS|LABEL|

PROPERTY)? (during TEXT)?

use the "wild card *" in the

"criteria".

VALIDATE validate|validates|

check|checks

(MODIFIER?

NON_UI_COMPONENT_INSTANCE

_OR_CLASS_TO_BE_VALIDATED

by checking that)|that|

TEXT (EXPRESSION)?

(following MODIFIER?

TEXT)?

validate Settlement_Request

by checking that "Transaction

Type" contains "SWIT".

98

Table A.2: Types of action phrase rules in Rimay (from Empirical Evaluation).

Grammar Rule
Name

Grammar Rule Summary Examples

CALCULATE calculate|calculates|

recalculate|recalculates

MODIFIER? TEXT

(for MODIFIER? TEXT)?

(using|based on TEXT)?

((in compliance with)

ARTICLE? TEXT)? (described

in ARTICLE? TEXT)?)?

calculate the "Record Date

Balance" using "Calculation

Rule".

ESTABLISH_
55_5_1

establish|establishes

MODIFIER?

TEXT

(with TEXT)?

establish a "mechanism of Ack

and Nack to ensure that the

Settlement request has been

received by Vestima register".

SEARCH_35_2 search|searches

for MODIFIER?

(PROPERTY|INSTANCE)+

on|in ACTOR

search for the Account_Trades

in Vestima_Prime_GUI.

SPLIT split|splits

MODIFIER?

PROPERTY

(into TEXT)?

using TEXT

split the "frequency

description" into "individual

values" using "+ sign".

STOP_55_4 stop|stops|

finish|finishes

(TEXT|(MODIFIER?

TEXT|CLASS))

stop "processing the Settlement

Request".

SUBSCRIBE subscribe|subscribes

(to|for) MODIFIER? TEXT

subscribe to the "PM publisher

flow related to the instruction

status update".

UPLOAD upload|uploads

ADVERB_PHRASE?

MODIFIER?

(NON_UI_COMPONENT_INSTANCE|

INSTANCE)+ to MODIFIER?

(ACTOR|CLASS|INSTANCE|

PROPERTY)+ (through

ACTORS)?

upload the "excel file" to the

System.

99

Bibliography

[1] AHONEN, J. J., AND SAVOLAINEN, P. Software engineering projects may fail before they are

started: Post-mortem analysis of five cancelled projects. J. Syst. Softw. 83, 11 (2010), 2175–2187.

[2] ALFÉREZ, M., PASTORE, F., SABETZADEH, M., BRIAND, L. C., AND RICCARDI, J. Bridging

the gap between requirements modeling and behavior-driven development. In 22nd ACM/IEEE

International Conference on Model Driven Engineering Languages and Systems, MODELS 2019,

Munich, Germany, September 15-20, 2019 (2019), IEEE, pp. 239–249.

[3] AMMANN, P., AND OFFUTT, J. Introduction to software testing. Cambridge University Press, 2016.

[4] APEL, S., AND KÄSTNER, C. An overview of feature-oriented software development. J. Object

Technol. 8, 5 (2009), 49–84.

[5] ARORA, C., SABETZADEH, M., BRIAND, L. C., AND ZIMMER, F. Automated checking of

conformance to requirements templates using natural language processing. IEEE Trans. Software

Eng. 41, 10 (2015), 944–968.

[6] ARORA, C., SABETZADEH, M., BRIAND, L. C., AND ZIMMER, F. Extracting domain models

from natural-language requirements: approach and industrial evaluation. In Proceedings of the

ACM/IEEE 19th International Conference on Model Driven Engineering Languages and Systems,

Saint-Malo, France, October 2-7, 2016 (2016), ACM, pp. 250–260.

[7] ARORA, C., SABETZADEH, M., BRIAND, L. C., AND ZIMMER, F. Automated extraction and

clustering of requirements glossary terms. IEEE Trans. Software Eng. 43, 10 (2017), 918–945.

[8] AUTILI, M., GRUNSKE, L., LUMPE, M., PELLICCIONE, P., AND TANG, A. Aligning qualitative,

real-time, and probabilistic property specification patterns using a structured english grammar. IEEE

Trans. Software Eng. 41, 7 (2015), 620–638.

[9] BADAMPUDI, D., WOHLIN, C., AND PETERSEN, K. Software component decision-making:

In-house, OSS, COTS or outsourcing - A systematic literature review. J. Syst. Softw. 121 (2016),

105–124.

101

BIBLIOGRAPHY

[10] BETTINI, L. Implementing domain-specific languages with Xtext and Xtend. Packt Publishing,

Birmingham, 2013.

[11] BOEHM, B., AND BASILI, V. Top 10 list [software development]. Computer 34, 1 (2001), 135–137.

[12] BOLANDER, P., AND SANDBERG, J. How employee selection decisions are made in practice.

Organization Studies 34, 3 (2013), 285–311.

[13] CARVALHO, G., FALCÃO, D., DE ALMEIDA BARROS, F., SAMPAIO, A., MOTA, A., MOTTA, L.,

AND BLACKBURN, M. R. Nat2testscr: Test case generation from natural language requirements

based on SCR specifications. Sci. Comput. Program. 95 (2014), 275–297.

[14] CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., AND STEIN, C. Introduction to Algorithms,

3rd Edition. MIT Press, 2009.

[15] CRAPO, A. W., MOITRA, A., MCMILLAN, C., AND RUSSELL, D. Requirements capture and

analysis in ASSERT(TM). In 25th IEEE International Requirements Engineering Conference, RE

2017, Lisbon, Portugal, September 4-8, 2017 (2017), IEEE Computer Society, pp. 283–291.

[16] DENGER, C., BERRY, D. M., AND KAMSTIES, E. Higher quality requirements specifications

through natural language patterns. In 2003 IEEE International Conference on Software - Science,

Technology and Engineering (SwSTE 2003), 4-5 November 2003, Herzelia, Israel (2003), IEEE

Computer Society, p. 80.

[17] DICK, J., HULL, M. E. C., AND JACKSON, K. Requirements Engineering, 4th Edition. Springer,

2017.

[18] DIETTERICH, T. G. Approximate statistical test for comparing supervised classification learning

algorithms. Neural Computation 10, 7 (1998), 1895–1923.

[19] ECKHARDT, J., VOGELSANG, A., FEMMER, H., AND MAGER, P. Challenging incompleteness

of performance requirements by sentence patterns. In 24th IEEE International Requirements

Engineering Conference, RE 2016, Beijing, China, September 12-16, 2016 (2016), IEEE Computer

Society, pp. 46–55.

[20] FEMMER, H., FERNÁNDEZ, D. M., JÜRGENS, E., KLOSE, M., ZIMMER, I., AND ZIMMER,

J. Rapid requirements checks with requirements smells: two case studies. In 1st International

Workshop on Rapid Continuous Software Engineering, RCoSE 2014, Hyderabad, India, June 3, 2014

(2014), ACM, pp. 10–19.

[21] FEMMER, H., FERNÁNDEZ, D. M., WAGNER, S., AND EDER, S. Rapid quality assurance with

requirements smells. J. Syst. Softw. 123 (2017), 190–213.

[22] FERNÁNDEZ, D. M., WAGNER, S., KALINOWSKI, M., FELDERER, M., MAFRA, P., VETRO, A.,

CONTE, T., CHRISTIANSSON, M., GREER, D., LASSENIUS, C., MÄNNISTÖ, T., NAYABI, M.,

OIVO, M., PENZENSTADLER, B., PFAHL, D., PRIKLADNICKI, R., RUHE, G., SCHEKELMANN,

A., SEN, S., SPÍNOLA, R. O., TUZCU, A., DE LA VARA, J. L., AND WIERINGA, R. J. Naming

the pain in requirements engineering - contemporary problems, causes, and effects in practice. Empir.

Softw. Eng. 22, 5 (2017), 2298–2338.

102

BIBLIOGRAPHY

[23] FLIEDL, G., KOP, C., MAYR, H. C., SALBRECHTER, A., VÖHRINGER, J., WEBER, G., AND

WINKLER, C. Deriving static and dynamic concepts from software requirements using sophisticated

tagging. Data Knowl. Eng. 61, 3 (2007), 433–448.

[24] FOWLER, M. UML Distilled : a brief guide to the standard object modeling language, 3rd edition. ed.

Addison-Wesley Longman Publishing Co., Inc., 2003.

[25] FUCHS, N. E., KALJURAND, K., AND KUHN, T. Attempto controlled english for knowledge

representation. In Reasoning Web. Springer, 2008, pp. 104–124.

[26] GÉNOVA, G., FUENTES, J. M., MORILLO, J. L., HURTADO, O., AND MORENO, V. A framework

to measure and improve the quality of textual requirements. Requir. Eng. 18, 1 (2013), 25–41.

[27] GLASER, B. G. The discovery of grounded theory : strategies for qualitative research, [reprinted]. ed.

Aldine Transaction, New Brunswick London, 2006.

[28] HULL, E. C., JACKSON, K., AND DICK, J. Requirements Engineering, Third Edition. Springer,

2011.

[29] ILIEVA, M. G., AND ORMANDJIEVA, O. Models derived from automatically analyzed textual user

requirements. In Fourth International Conference on Software Engineering, Research, Management

and Applications (SERA 2006), 9-11 August 2006, Seattle, Washington, USA (2006), IEEE Computer

Society, pp. 13–21.

[30] INDURKHYA, N., AND DAMERAU, F. Handbook of natural language processing, second edi-

tion ed. Chapman & Hall/CRC machine learning & pattern recognition series. Boca Raton, Florida :

Chapman & Hall/CRC, 2010.

[31] JURETA, I., MYLOPOULOS, J., AND FAULKNER, S. A core ontology for requirements. Appl.

Ontology 4, 3-4 (2009), 169–244.

[32] KASSAB, M., NEILL, C. J., AND LAPLANTE, P. A. State of practice in requirements engineering:

contemporary data. Innov. Syst. Softw. Eng. 10, 4 (2014), 235–241.

[33] KIPPER, K., DANG, H. T., AND PALMER, M. S. Class-based construction of a verb lexicon. In

Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference

on on Innovative Applications of Artificial Intelligence, July 30 - August 3, 2000, Austin, Texas, USA

(2000), AAAI Press / The MIT Press, pp. 691–696.

[34] KONRAD, S., AND CHENG, B. H. C. Facilitating the construction of specification pattern-based

properties. In 13th IEEE International Conference on Requirements Engineering (RE 2005), 29

August - 2 September 2005, Paris, France (2005), IEEE Computer Society, pp. 329–338.

[35] KONRAD, S., AND CHENG, B. H. C. Real-time specification patterns. In 27th International

Conference on Software Engineering (ICSE 2005), 15-21 May 2005, St. Louis, Missouri, USA

(2005), ACM, pp. 372–381.

[36] KUHN, T. A survey and classification of controlled natural languages. Comput. Linguistics 40, 1

(2014), 121–170.

103

BIBLIOGRAPHY

[37] KUMMLER, P. S., VERNISSE, L., AND FROMM, H. How good are my requirements?: A new

perspective on the quality measurement of textual requirements. In 11th International Conference

on the Quality of Information and Communications Technology, QUATIC 2018, Coimbra, Portugal,

September 4-7, 2018 (2018), IEEE Computer Society, pp. 156–159.

[38] LEVY, R., AND ANDREW, G. Tregex and tsurgeon: tools for querying and manipulating tree

data structures. In Proceedings of the Fifth International Conference on Language Resources and

Evaluation, LREC 2006, Genoa, Italy, May 22-28, 2006 (2006), European Language Resources

Association (ELRA), pp. 2231–2234.

[39] LÚCIO, L., RAHMAN, S., CHENG, C., AND MAVIN, A. Just formal enough? automated analysis of

EARS requirements. In NASA Formal Methods - 9th International Symposium, NFM 2017, Moffett

Field, CA, USA, May 16-18, 2017, Proceedings (2017), vol. 10227 of Lecture Notes in Computer

Science, pp. 427–434.

[40] MANNING, C. D., AND SCHÜTZE, H. Foundations of statistical natural language processing. The

MIT Press, Cambridge MA London, 1999.

[41] MARCUS, M. P., SANTORINI, B., AND MARCINKIEWICZ, M. A. Building a large annotated

corpus of english: The penn treebank. Comput. Linguistics 19, 2 (1993), 313–330.

[42] MAVIN, A., AND WILKINSON, P. Big ears (the return of "easy approach to requirements engi-

neering"). In RE 2010, 18th IEEE International Requirements Engineering Conference, Sydney,

New South Wales, Australia, September 27 - October 1, 2010 (2010), IEEE Computer Society,

pp. 277–282.

[43] MAVIN, A., WILKINSON, P., GREGORY, S., AND UUSITALO, E. Listens learned (8 lessons learned

applying EARS). In 24th IEEE International Requirements Engineering Conference, RE 2016,

Beijing, China, September 12-16, 2016 (2016), IEEE Computer Society, pp. 276–282.

[44] MAVIN, A., WILKINSON, P., HARWOOD, A., AND NOVAK, M. Easy approach to requirements

syntax (EARS). In RE 2009, 17th IEEE International Requirements Engineering Conference, Atlanta,

Georgia, USA, August 31 - September 4, 2009 (2009), IEEE Computer Society, pp. 317–322.

[45] MÉNDEZ, D., WAGNER, S., KALINOWSKI, M., AND FELDERER, M. Napire: Naming the pain in

requirements engineering. http://napire.org.

[46] MILLER, G. A. Wordnet: A lexical database for english. Commun. ACM 38, 11 (1995), 39–41.

[47] MORENO-CAPUCHINO, A. M., JUZGADO, N. J., AND VAN DE RIET, R. P. Formal justification in

object-oriented modelling: A linguistic approach. Data Knowl. Eng. 33, 1 (2000), 25–47.

[48] MU, F., SHI, L., ZHOU, W., ZHANG, Y., AND ZHAO, H. NERO: a text-based tool for content

annotation and detection of smells in feature requests. In 28th IEEE International Requirements

Engineering Conference, RE 2020, Zurich, Switzerland, August 31 - September 4 (2020), IEEE,

pp. 400–403.

[49] OMG. Unified modeling language. version 2.5.1, 2017. Accessed 20 September 2022.

104

BIBLIOGRAPHY

[50] OSAMA, M., ZAKI-ISMAIL, A., ABDELRAZEK, M. A., GRUNDY, J. C., AND IBRAHIM, A. S.

Score-based automatic detection and resolution of syntactic ambiguity in natural language require-

ments. In IEEE International Conference on Software Maintenance and Evolution, ICSME 2020,

Adelaide, Australia, September 28 - October 2, 2020 (2020), IEEE, pp. 651–661.

[51] POHL, K. Requirements Engineering - Fundamentals, Principles, and Techniques. Springer, 2010.

[52] POHL, K., AND RUPP, C. Requirements Engineering Fundamentals - A Study Guide for the Certified

Professional for Requirements Engineering Exam: Foundation Level - IREB compliant. Rocky

Nook, 2011.

[53] POST, A., AND HOENICKE, J. Formalization and analysis of real-time requirements: A feasibility

study at BOSCH. In Verified Software: Theories, Tools, Experiments - 4th International Conference,

VSTTE 2012, Philadelphia, PA, USA, January 28-29, 2012. Proceedings (2012), vol. 7152 of Lecture

Notes in Computer Science, Springer, pp. 225–240.

[54] POST, A., MENZEL, I., AND PODELSKI, A. Applying restricted english grammar on automotive

requirements - does it work? A case study. In Requirements Engineering: Foundation for Software

Quality - 17th International Working Conference, REFSQ 2011, Essen, Germany, March 28-30,

2011. Proceedings (2011), vol. 6606 of Lecture Notes in Computer Science, Springer, pp. 166–180.

[55] RIAZ, M., KING, J. T., SLANKAS, J., AND WILLIAMS, L. A. Hidden in plain sight: Automatically

identifying security requirements from natural language artifacts. In IEEE 22nd International

Requirements Engineering Conference, RE 2014, Karlskrona, Sweden, August 25-29, 2014 (2014),

IEEE Computer Society, pp. 183–192.

[56] RUNESON, HÖST, M., RAINER, A., AND REGNELL, B. Case Study Research in Software

Engineering - Guidelines and Examples. Wiley, 2012.

[57] SADRAEI, E., AURUM, A., BEYDOUN, G., AND PAECH, B. A field study of the requirements

engineering practice in australian software industry. Requirements Engineering 12, 3 (Jul 2007),

145–162.

[58] SALDAÑA, J. The coding manual for qualitative researchers. Sage, 2015.

[59] SCHIENMANN, B. Kontinuierliches Anforderungsmanagement : Prozesse - Techniken - Werkzeuge.

Programmers’s choice. Addison-Wesley, München, 2002.

[60] SEKI, Y., HAYASHI, S., AND SAEKI, M. Detecting bad smells in use case descriptions. In 27th

IEEE International Requirements Engineering Conference, RE 2019, Jeju Island, Korea (South),

September 23-27, 2019 (2019), IEEE, pp. 98–108.

[61] SELVYANTI, D., AND BANDUNG, Y. The requirements engineering framework based on iso

29148: 2011 and multi-view modeling framework. In 2017 International Conference on Information

Technology Systems and Innovation (ICITSI) (2017), IEEE, pp. 128–133.

[62] SMIALEK, M., BOJARSKI, J., NOWAKOWSKI, W., AMBROZIEWICZ, A., AND STRASZAK, T.

Complementary use case scenario representations based on domain vocabularies. In Model Driven

105

BIBLIOGRAPHY

Engineering Languages and Systems, 10th International Conference, MoDELS 2007, Nashville,

USA, September 30 - October 5, 2007, Proceedings (2007), vol. 4735 of Lecture Notes in Computer

Science, Springer, pp. 544–558.

[63] SOLEMON, B., SAHIBUDDIN, S., AND GHANI, A. Requirements engineering problems and

practices in software companies: An industrial survey. In Advances in Software Engineering -

International Conference on Advanced Software Engineering and Its Applications, ASEA 2009

(2009), vol. 59, Springer, pp. 70–77.

[64] SOMMERVILLE, I. Software engineering, 9th ed. ed. Pearson, Boston, 2011.

[65] SOMMERVILLE, I., AND SAWYER, P. Requirements engineering: a good practice guide. John Wiley

and Sons 113 (1997), 114.

[66] STEVENSON, A., AND CORDY, J. R. A survey of grammatical inference in software engineering.

Sci. Comput. Program. 96 (2014), 444–459.

[67] STOL, K., RALPH, P., AND FITZGERALD, B. Grounded theory in software engineering research:

a critical review and guidelines. In Proceedings of the 38th International Conference on Software

Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016 (2016), ACM, pp. 120–131.

[68] THAKUR, J. S., AND GUPTA, A. Identifying domain elements from textual specifications. In

Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering,

ASE 2016, Singapore, September 3-7, 2016 (2016), ACM, pp. 566–577.

[69] THE STANDISH GROUP. The chaos report, 1995-2019. Accessed 20 September 2022.

[70] TOUTANOVA, K., KLEIN, D., MANNING, C. D., AND SINGER, Y. Feature-rich part-of-speech

tagging with a cyclic dependency network. In Human Language Technology Conference of the North

American Chapter of the Association for Computational Linguistics, HLT-NAACL 2003, Edmonton,

Canada, May 27 - June 1, 2003 (2003), The Association for Computational Linguistics.

[71] VEIZAGA, A., ALFÉREZ, M., TORRE, D., SABETZADEH, M., AND BRIAND, L. C. On systemati-

cally building a controlled natural language for functional requirements. Empir. Softw. Eng. 26, 4

(2021), 79.

[72] VEIZAGA, A., ALFÉREZ, M., TORRE, D., SABETZADEH, M., BRIAND, L. C., AND PITSKHE-

LAURI, E. Leveraging natural-language requirements for deriving better acceptance criteria from

models. In MoDELS ’20: ACM/IEEE 23rd International Conference on Model Driven Engineering

Languages and Systems, Virtual Event, Canada, 18-23 October, 2020 (2020), ACM, pp. 218–228.

[73] WANG, C., PASTORE, F., GOKNIL, A., BRIAND, L. C., AND IQBAL, M. Z. Z. UMTG: a toolset

to automatically generate system test cases from use case specifications. In Proceedings of the

2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015, Bergamo, Italy,

August 30 - September 4, 2015 (2015), ACM, pp. 942–945.

[74] WITHALL, S. Software requirement patterns. Pearson Education, 2007.

106

BIBLIOGRAPHY

[75] WOHLIN, C., RUNESON, P., HÖST, M., OHLSSON, M. C., AND REGNELL, B. Experimentation

in Software Engineering. Springer, 2012.

[76] WYNNE, M., AND HELLESOY, A. The Cucumber Book: Behaviour-Driven Development for Testers

and Developers. Pragmatic Bookshelf, 2017.

[77] YOUNG, R. The main thing is keeping the main thing the main thing. Requirements Engineering

Magazine 1 (2015).

[78] YUE, T., BRIAND, L. C., AND LABICHE, Y. A systematic review of transformation approaches

between user requirements and analysis models. Requir. Eng. 16, 2 (2011), 75–99.

[79] YUE, T., BRIAND, L. C., AND LABICHE, Y. Facilitating the transition from use case models

to analysis models: Approach and experiments. ACM Trans. Softw. Eng. Methodol. 22, 1 (2013),

5:1–5:38.

[80] YUE, T., BRIAND, L. C., AND LABICHE, Y. aToucan: An automated framework to derive UML

analysis models from use case models. ACM Trans. Softw. Eng. Methodol. 24, 3 (2015), 13:1–13:52.

[81] ZAVE, P., AND JACKSON, M. Four dark corners of requirements engineering. ACM Trans. Softw.

Eng. Methodol. 6, 1 (1997), 1–30.

[82] ZHAO, L., ALHOSHAN, W., FERRARI, A., LETSHOLO, K. J., AJAGBE, M. A., CHIOASCA, E.,

AND BATISTA-NAVARRO, R. T. Natural language processing for requirements engineering: A

systematic mapping study. ACM Comput. Surv. 54, 3 (2021), 55:1–55:41.

[83] ZIKMUND, W., BABIN, B., CARR, J., AND GRIFFIN, M. Business Research Methods. Cengage

Learning, 2013.

107

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Context and Motivation
	Research Contributions
	Dissertation Outline

	Background
	Controlled Natural Languages
	Natural Language Processing
	UML
	Acceptance Testing

	On Systematically Building a CNL for Functional Requirements
	Motivations and Contributions
	Related Work
	Qualitative Study
	Research Question
	Study Context and Data Selection
	Analysis Procedure

	Controlled Natural Language for Functional Requirements
	Condition Structures
	Conditions
	System Response

	Empirical Evaluation
	Case Study Design
	Data Collection
	Collecting Evidence and Results
	Analysis of Collected Data

	Threats to Validity
	Construct Validity
	Internal Validity
	External validity
	Reliability Validity

	Practical Considerations
	Conclusions

	Quality Assurance on Requirements
	Introduction
	Requirements Smells and Rimay Patterns
	Requirements Smells
	Rimay Patterns

	Approach
	Step 1: Preprocess Requirements
	Step 2: Separate Requirement into Segments
	Step 3: Identify Smells
	Step 4. Suggesting Rimay Patterns

	Evaluation
	Case Study Design
	Data Collection and Preparation
	Collecting Evidence and Results
	Analysis of Collected Data

	Discussion
	Approach Performance
	Lack of Testing Data

	Threats to Validity
	Related Work
	Conclusions

	Leveraging Natural-language Requirements for Deriving Better Acceptance Criteria from Models
	Motivations and Contributions
	Background
	Writing NL Requirements in Rimay.
	Automated Generation of AC

	Approach Overview
	Information Extraction Approach for Deriving better AC
	Step 1. Extract Information
	Step 2. Identify Model Elements to Enrich
	Step 3. Create Recommendations
	Step 4. Enrich Model
	Step 5. Generate Acceptance Criteria

	Empirical Evaluation
	Objectives and Design
	Preparation for Data Collection
	Collecting Evidence and Results
	Analysis of Collected Data

	Threats to Validity
	Related Work
	Conclusions

	Conclusions & Future Work
	Summary
	Future Work

	Action Phrases in Rimay
	Bibliography

