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Abstract. Reconstructing 3D human body shapes from 3D partial tex-
tured scans remains a fundamental task for many computer vision and
graphics applications – e.g., body animation, and virtual dressing. We
propose a new neural network architecture for 3D body shape and high-
resolution texture completion – TSCom-Net – that can reconstruct the
full geometry from mid-level to high-level partial input scans. We decom-
pose the overall reconstruction task into two stages – first, a joint im-
plicit learning network (SCom-Net and TCom-Net) that takes a voxelized
scan and its occupancy grid as input to reconstruct the full body shape
and predict vertex textures. Second, a high-resolution texture comple-
tion network, that utilizes the predicted coarse vertex textures to inpaint
the missing parts of the partial ‘texture atlas’. A Thorough experimental
evaluation on 3DBodyTex.V2 dataset shows that our method achieves
competitive results with respect to the state-of-the-art while generaliz-
ing to different types and levels of partial shapes. The proposed method
has also ranked second in the track1 of SHApe Recovery from Partial
textured 3D scans (SHARP [37,2]) 20221 challenge1.

Keywords: 3D Reconstruction, Shape Completion, Texture-Inpainting,
Implicit Function, Signed Distance Function

1 Introduction

3D textured body shape completion and reconstruction from visual sensors plays
a key role in a wide range of applications such as gaming, fashion, and virtual
reality [31,30]. The challenges of this task and the methods to tackle it varies
depending on the used sensors to capture the human shape and texture. Some
existing methods focus mainly on 3D textured body shape reconstruction from
a single monocular image [19,42,22,17,49]. For instance, under the body shape
symmetry assumption, methods like Human Mesh Recovery (HMR) [18], use a
statistical body model [25] to reconstruct the body shape and pose. Despite the
impressive advances in this line of work [42,22,49], the reconstructed shapes still
cannot capture high-level geometrical details, such as wrinkles, ears. This is due
to the lack of original geometrical information and the projective distortions in

1 https://cvi2.uni.lu/sharp2022/
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Fig. 1. 3D Partial Textured Body Shape Completion. The proposed deep
learning-based method reconstructs and completes the surface geometry of a dressed
or minimally-clothed partial body scan, and inpaints the missing regions with high-
resolution texture. TSCom-Net has the flexibility to either apply dense texture mapping
or vertex-based color estimation as per desired application scenarios.

2D images. On the other hand, 3D scanners and RGB-D sensors can provide
richer information about the geometry of body shapes [41]. Nevertheless, they
are often subject to partial acquisitions due to self occlusions, restricted sensing
range, and other limitations of scanning systems [46,8]. While most of exist-
ing works focus on completing the geometry of body shapes from 3D partial
scans [8,46,38], less interest has been dedicated to complete both the texture
and the geometry at the same time. Nonetheless, this problem remains critical
in real-world applications where complete and realistic human reconstructions
are usually required. Aware of this need, recent competitions, such as SHApe
Recovery from Partial Textured 3D Scans (SHARP) challenges [3,1,37], emerged
in the research community to foster the development of joint shape and texture
completion techniques from partial 3D acquisitions. The results of these compe-
titions showed promising techniques [9,36] with a room for improvements.

The problem of textured 3D body shape completion from 3D partial scans,
as shown in Fig. 1, can naturally be decomposed into two challenging subtopics
– (i) partial shape surface completion and (ii) partial texture completion of the
reconstructed shape. In this setup, especially when no fixed UV-parametrization
of shape is available, methods need to rely on inherent shape structure and
texture correlation cues from the available body parts. Taking this direction,
IFNet-Texture [9] uses implicit functions to perform high-quality shape com-
pletion and vertex-based texture predictions. Despite the impressive results in
SHARP challenges [37,1], the method [9] does not output high-resolution texture
and often over-smooths vertex colors over the whole shape. On the other hand,
3DBooSTeR method [36] decouples the problems of shape and texture comple-
tions and solves them in a sequential model. The shape completion of [36] is
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based on body models [12], while the texture completion is tackled as an image
based texture-atlas inpainting. [36] can complete high-resolution partial texture,
but suffers from large shape and texture modelling artifacts.

Our method overcomes the weaknesses of both [9] and [36]. The shape com-
pletion part of our TSCom-Net is designed to learn a continuous implicit function
representation [28,48,29] as also followed by Chibane et al. [8]. Furthermore, we
identify that the IFNet-Texture method [9], an extension of [8], uses a vertex-
based inference-time texture estimation process that ignores the shape and color
feature correlation cues at the learning phase. For this reason, we employ an end-
to-end trainable vertex-based shape and texture completion networks – SCom-
Net and TCom-Net – to boost their performance with joint-learning. Next, we
propose to refine the predicted vertex-based texture completions directly in the
texture-atlas of 3D partial scans. This is achieved using an image inpainting net-
work [23,36], reusing the predicted vertex textures, and yielding high-resolution
texture. It is notable that, unlike [20,36], TSCom-Net does not require a fixed
UV-parametrization which makes the considered ‘texture charts’ random, dis-
continuous, and more complex in nature across the samples. Overall, our con-
tributions can be summarized to:

1. An end-to-end trainable joint implicit function network for 3D partial shape
and vertex texture completion. We propose an early fusion scheme of shape
and texture features within this network.

2. A high-resolution texture-atlas inpainting network, which uses partial con-
volutions [23] to refine the predicted vertex textures. At the same time, this
module is flexible and can be plugged with any other 3D shape and vertex
texture reconstruction module.

3. An extensive experimental evaluation of TSCom-Net showing its multi-stage
improvements, its comparison w.r.t. the participants in SHARP 2022 chal-
lenge [3], and its generalization capabilities to different types of input data
partiality.

The rest of the paper is organized as follows. After summarizing the methods
related to our line of work in Section 2, we present the core components of
TSCom-Net in Section 3. The experiments and evaluation parts are reported
and discussed in Section 4. Finally, Section 5 concludes the paper and draws
some future works.

2 Related Works

Deep Implicit Function and 3D Shape Representation Learning. Su-
pervised learning methods for 3D shape processing require an efficient input
data representation. Apart from common learning representations of 3D shapes
– such as regular voxel grids [24,49], point clouds [32], Oc-trees [44], Barnes-Hut
2D-tree [5], depth-maps [27], and meshes [16], the popularity of implicit repre-
sentation [28,48,29] has recently increased. These representations [48,29] serve
as a continuous representation on the volumetric occupancy grid [28] to encode
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the iso-surface of a shape. Therefore, given any query 3D point, it returns its
binary occupancy in the encoded iso-surface. This continuous representation is
extremely useful when the input shapes are partial and the spatial locations can
be queried on missing regions based on the available regions.

Learning-based 3D Shape Completion. 3D reconstruction and comple-
tion of shapes, especially for human 3D body scans, is tackled in different
ways [14,43,40,39,15,46,47,13]. Some methods deal with partial point clouds as
input [15,46,47,13]. A subset of these methods do not consider textured scans
and focus on different types of shape quantization – e.g., voxel grids [15], oc-
trees, and sparse vectors [46] with the aim of capturing only fine geometric
details. Furthermore, many of these models [46,7,13] cannot always predict a
single shape corresponding to the partial input shape. Another traditional way
for body shape completion from a set of partial 3D scans is by non-rigidly fitting
a template mesh [4,11,6]. However, improper scaling [4], computational speed [6],
and articulated body pose matching [11] is a major problem for these methods.

More closely related works to ours are [9,36,8]. Saint et al. [36] and Chibane
et al. [9] solve the same 3D textured shape completion, where the former uses
3D-Coded [12] and non-rigid refinement to reconstruct the shape and the latter
uses deep implicit functions [8]. While [36] provides a fixed UV-parametrization
useful for the texture completion, it cannot recover extreme partial body scans
due to its restriction to a template body model [25]. On the other hand, [8] can re-
cover corase-to-fine geometrical details using multiscale implicit representations.
However, the implicit representations cannot preserve the UV-parametrization
of the input partial shape, which restricts the texture completion to a vertex-
based solution [9]. TSCom-Net builds on top the implicit shape representation
of [8,9] and extends it to produce higher-resolution texture.

Learning-based 3D Textured Shape Completion. Completing the texture
of 3D body shapes is a challenging task due to many factors – e.g., varying
shades, unknown clothing boundaries, and complex styles and stripes. This task
can be either tackled by completing the RGB texture for each vertex of the
completed mesh [9], or directly completing the texture-atlas [36,10]. While the
former takes advantage of the shape structure of the vertices to predict textures,
its resolution depends on the resolution of the shape, which is often limited
due to memory constraints. On the other hand, the texture-atlas completion
allows for high-resolution texture generation, but does not take advantage of
the structure of the shape when no fixed UV-parametrization is given [20,36],
or multiple charts are provided [36,10]. To adress these limitations, TSCom-Net
uses both paradigms. Firstly, it completes the vertex-based textures, then refines
them in the texture-atlas image space using a dedicated inpainting module.

3 Proposed Approach – TSCom-Net

Given a 3D partial body scan X = (V, T , E), tuple defining set of vertices V,
triangles T , and edges E along with its corresponding partial texture A, our
aim is to recover the 3D complete body scan Y with high-resolution texture.
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Fig. 2. Overview of TSCom-Net. TSCom-Net has two main components – (I) an
end-to-end trainable vertex-based shape and color completion network (on the left)
that returns low resolution and often over-smoothed vertex colors. The underlying
architecture of this modules is based on IFNet [8] and IFNet-Texture [9] along with
newly added modifications to boost both the shape and color completion jointly. (II)
A coarse-to-fine texture inpainting module (using 2D partial convolutions [23]) that
takes partially textured and fully reconstructed body shape, background coarse masks,
and coarse-texture and its masks for the missing regions as input, and outputs a high-
resolution, complete ‘texture atlas’.

To achieve that, we propose a deep learning-based framework TSCom-Net with
two intermediate stages (see Fig. 2). First, we reconstruct the shape and coarse
vertex texture of the given partial scan. Then, we further inpaint the partial
texture atlas with another network in a coarse-to-fine manner.

3.1 Joint Shape and Texture Completion

Let Xs = RN×N×N be the discretized voxel grid of the input partial scan X
with resolution N . Each occupied voxel has the value of 1 (0 otherwise). Both
the ground-truth and partial scans are normalized. Similarly, another voxel grid,
Xc, is constructed with the texture of the input partial scan X. Each occupied
voxel of Xc has an RGB texture value in [0,1]

3
obtained from the partial texture

(〈−1,−1,−1〉 otherwise).

TSCom-Net consists of two implicit feature networks SCom-Net and TCom-
Net that learn to complete the shape and texture of a partial surface, respectively.
Different from [9], the two sub-networks are trained jointly to enable the interac-
tion between shape and texture learning. An early fusion technique is utilized to
improve the color accuracy by incorporating the shape features in addition to the
color features of the partial scan. Consequently, the texture network TCom-Net
learns to use the shape information extracted by SCom-Net to predict a more
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accurate texture. In what follows, we start by describing the shape completion,
then present the texture completion.

Shape Completion: The input discretized voxel grid Xs is encoded as in [8]
using a 3D convolutional encoder gs to obtain a set of nmultiscale shape features,

gs(Xs) := S1,S2, . . . ,Sn , (1)

where Si ∈ Rdi×K×K×K , 1 ≤ i ≤ n, denote the shape features with resolution
K = N

2i−1 and channel dimension di = d1 × 2i−1. Accordingly, Sn would have
the lowest resolution but the highest channel dimensionality among other shape
features. Given the features Si, the completion of the shape is achieved by pre-
dicting the occupancies of the query points {pj}Mj=1, where pj ∈ R3. At training
time, the points pj are sampled from the ground-truth Y. During inference time,
pj are the centroids of all voxels in Xs. Multiscale features Sp

i,j := φ(Si,pj) can
be extracted for each point pj using a grid sampling function φ, taking and
flattening the features of Si around the neighborhood of pj .

Finally, pj and Sp
i,j are decoded with fs consisting of sequential 1D convo-

lutional layers to predict the occupancy value sj of pj ,

fs(pj ,S
p
1,j ,S

p
2,j , . . . ,S

p
n,j) := sj . (2)

The completed mesh structure X̂ is obtained by applying marching cubes [26]
on the voxel grid Xs with the predicted occupancy values sj .

Texture Completion: For the texture completion, the colored voxel grid Xc

is encoded using a 3D convolutional encoder gc to obtain a set of m multiscale
texture features,

gc(Xc) := C1,C2, . . . ,Cm , (3)

where Ci ∈ Rri×L×L×L, 1 ≤ i ≤ m, denote the texture features with resolution
L = N

2i−1 and channel dimension ri = r1×2i−1. Texture completion is carried out
by predicting the RGB values of the query points {qj}Mj=1, where qj ∈ R3. The
points qj are sampled from the ground-truth Y during training. At the inference

time, qj are the vertices of the reconstructed mesh X̂. Similar to the shape
completion, the grid sampling function φ(Ci,qj) allows extracting multiscale
texture features Cq

i,j for each point qj .
The shape and texture completions are fused at the texture decoder level.

This is achieved by concatenating the multiscale shape and texture features
before feeding them to a decoder fc consisting of sequential 1D convolutional
layers. In particular, the RGB values cj for each point qj are given by,

fc(qj ,S
q
1,j ,S

q
2,j , . . . ,S

q
n,j ,C

q
1,j ,C

q
2,j , . . . ,C

q
m,j) := cj . (4)

Finally, vertex textures are obtained by attaching the predicted cj to X̂.

3.2 Texture Refinement

The proposed joint shape and texture networks are able to predict the vertex
textures of a completed mesh. However, the predicted vertex textures have two
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limitations: (1) they are predicted for the full body, including the existing regions
of the partial body. Consequently, high-level texture details of input partial body
might be lost in the predicted textured body mesh; (2) the resolution of the ver-
tex textures depends on the resolution of the reconstructed shape. This implies
that high-resolution vertex textures come at a cost of high-resolution predicted
shape, which is not straightforward to obtain due to memory constraints.

Fig. 3. Texture Refinement. (a) the texture-atlas is transferred to the completed
3D shape, (b) the masks for the missing regions and background are identified, (c)
the vertex textures are projected into the transferred texture-atlas, (d) the masks for
missing regions are updated by unmasking the regions of the projected vertex textures,
(e) the final inpainted texture-atlas.

To overcome these issues, we use a texture-atlas [21,36] based refinement of
the predicted vertex textures. This refinement reuses the coarse vertex textures
predicted by the joint implicit shape and texture network and refines them in
the 2D image space, while preserving the original texture from the partial input
scan. In particular, the original texture of the partial scan is transferred to the
completed shape by a ray-casting algorithm, as in [36]. This allows the creation
of a UV map and a texture atlas A for the completed mesh as depicted in
Fig. 3(a). Following [36], the missing regions and the background regions are
identified in the transferred texture atlas to create the two binary masks M and
Mb shown in Fig. 3(b). Using the UV map created by the texture transfer, the
vertex textures are projected to obtain a coarsely completed texture-atlas Ac as
sketched in Fig. 3(c). The mask for missing regions M is then updated with the
projected vertex textures, yielding a coarse mask Mc as displayed in Fig. 3(d).

Given the coarsely completed texture-atlas Ac, the coarse mask of missing
regions Mc, and the background mask Mb, the problem of texture refinement is
formulated as an image inpainting one. Specifically, we opt for the texture-atlas
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inpainting method proposed in [36], which adapts partial convolution inpaint-
ing [23] to the context of texture-atlas. Partial convolutions in [23,36] extend
standard convolutions to convolve the information from unmasked regions (i.e.
white regions in the binary masks). Formally, let us consider a convolution filter
defined by the weights w, the bias b and the feature values Aw

c of the texture-
atlas Ac for the current sliding window. Given the coarse mask of missing regions
Mc and the corresponding background mask Mb, the partial convolution at every
location, similarly defined in [36], is expressed as,

ac =

{
wT (Aw

c �Mc �Mb) · sum(1)
sum(Mc�Mb)

+ b if sum(Mc �Mb) > 0

0 otherwise
, (5)

where � denotes element-wise multiplication, and 1 has same shape as Mc but
with all elements being 1. As proposed in [36], the masks Mc are updated after
every partial convolution, while the background masks are passed to all partial
convolutions layers without being updated by applying do-nothing convolution
kernels. The partial convolutional layers are employed in a UNet architecture [33]
instead of standard convolutions. At training time, the vertex textures are sam-
pled from the ground-truth texture-atlas. The same loss functions in [23,36] are
used to train the network. It is important to highlight that the proposed tex-

ture refinement is different from [36] as it reuses the predicted vertex textures
instead of inpainting the texture-atlas from scratch. We show in Section 4 that
the proposed refinement outperforms the inpainting from scratch and the vertex
texture based completion. Furthermore, we reveal that such refinement can be
used to improve other vertex based texture completion.

4 Experimental Results

Dataset and Evaluation Metrics. Our method was trained on the 3DBody-
Tex.v2 dataset [34,35,37] which has been recently used as a benchmark for the
SHARP challenge [3]. The dataset contains a large variety of human poses and
different clothing types from 500 different subjects. Each subject is captured
with 3 different poses and different clothing types, such as close-fitting or arbi-
trary casual clothing. The number of ground truth scans in the training set is
2094. A number of 15904 partial scans for training and validation were generated
using the routines provided by the SHARP challenge organizers [2]. The number
of unseen (during training) scans in the evaluation set is 451.

As considered in SHARP challenges, the evaluation is conducted in terms
of shape scores Ss, texture scores St, and the area scores Sa. Shape and tex-
ture scores are calculated via measuring surface-to-surface distances by sampling
points from the ground truth and the reconstructed meshes. The area score es-
timates the similarity between the triangle areas of the meshes. The final score
Sr is calculated as Sr = 1

2Sa(Ss +St). Details about these metrics can be found
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in [37,2]2. The evaluation of the completed meshes is performed via the Codalab
system provided by the SHARP challenge3.

4.1 Network Training Details

We trained the joint implicit networks using the Adam optimizer with a learning
rate of 10−4 for 54 epochs. The model was trained on an NVIDIA RTX A6000
GPU using the Pytorch library. The query points for the training are obtained
from the ground truth surfaces by sampling 100000 points. During training, we
sub-sample 50000 of these points at each iteration. Gaussian random noise N (σ)
is added to each point to move the sampled point near or far from the surface,
depending on the σ value. Similar to [9], the σ is chosen as 0.01 for half of the
points and 0.1 for the other half. We did not add noise to the query points of the
texture network, as its goal is to predict the color value of the points sampled
from the surface. Partial scans are voxelized by sampling 100000 points from the
partial surface and setting the occupancy value in the nearest voxel grid to 1.
Similarly for the colored voxelization, the value of the nearest voxel is set to the
RGB value of the sampled point obtained from the corresponding texture-atlas.
The input voxel resolution is 128 and the resolution for the final retrieval is 256.

We follow a similar naming convention as in [45] for our architecture details.
Let c3-k denote Conv3D-ReLU-BatchNorm block and d3-k denote two Conv3D-
ReLU blocks followed by one BatchNorm layer where k is the number of filters.
The kernel size for all 3D convolutional layers is 3 × 3. Let gs-i represent the
grid feature sampling of the query points from the output of the previous layer,
and mp denote 3D max pooling layer. Let c1-k denote the Conv1D layer with
1x1 kernel where k is the number of output features and ReLU activation except
the output layer where the activation is linear. The encoder architecture for
shape and texture networks is composed of the following layers: gs-0, c3-16,
gs-1, mp, d3-32, d3-32, gs-2, mp, d3-64, d3-64, gs-3, mp, d3-128, gs-4, mp, d3-
128, d3-128, gs-5.4 The decoder architecture for the shape network contains:
c1-512, c1-256, c1-256, c1-1. The decoder architecture for the texture network
consists of c1-512, c1-256, c1-256, c1-3. The partial convolutional network is
trained with Adam optimizer and learning rate of 10−4 for 330000 iterations.
The original texture size of 2048× 2048 was used for training the network with
a batch size of 1.

4.2 Results and Evaluation

In this section, a qualitative and quantitative analysis of the results of TSCom-
Net against the results of the SHARP challenge participants are presented. Other

2 The details about the metrics can be accessed via: https://gitlab.uni.lu/cvi2/
cvpr2022-sharp-workshop/-/blob/master/doc/evaluation.md

3 The leaderboard on Codalab can be accessed via: https://codalab.lisn.upsaclay.
fr/competitions/4604#results

4 Sampling features gs-1, gs-2, ..., gs-5 are flattened and concatenated. Shape features
are also added here for the texture encoding.

https://gitlab.uni.lu/cvi2/cvpr2022-sharp-workshop/-/blob/master/doc/evaluation.md
https://gitlab.uni.lu/cvi2/cvpr2022-sharp-workshop/-/blob/master/doc/evaluation.md
https://codalab.lisn.upsaclay.fr/competitions/4604#results
https://codalab.lisn.upsaclay.fr/competitions/4604#results
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Method
Shape

Score(%)
Area

Score(%)
Texture

Score(%)
Final

Score(%)

IFNet-Texture[9] 85.44 ± 2.93 96.26 ± 6.35 81.25 ± 7.61 83.34 ± 6.86
Method Raywit 85.91 ± 7.14 93.96 ± 3.96 83.45 ± 8.43 84.68 ± 7.63
Method Rayee 86.13 ± 7.32 96.26 ± 3.61 83.23 ± 8.31 84.68 ± 7.74
Method Janaldo 89.76 ± 4.97 96.76 ± 2.28 87.10 ± 6.33 88.43 ± 5.56
TSCom-Net (Ours) 85.75 ± 6.15 96.68± 2.89 83.72 ± 6.95 84.73 ± 6.5

Table 1. Quantitative Results for SHARP 2022. The best and second best scores are
denoted in bold-black and bold-gray colors respectively.

participants of the challenge employ implicit networks for the shape reconstruc-
tion with vertex-based texture completion [3]. We also compare our method to
the state-of-the-art IFNet-Texture [9] method, which won the previous editions
of SHARP 2021 and 2020 [37]. The shape network of [9] is re-trained with the
generated partial data of SHARP 2022. For the vertex texture predictions, the
available pretrained model provided by the authors was used.

Quantitative Evaluation: In Table 1, we illustrate the quantitative results
using the metrics of SHARP challenge [37]. Overall, our method is ranked second
in the leaderboard with a final score of 84.73%, obtaining a better texture score
than Method-Rayee, Method-Raywit and IFNet-Texture [9]. It should be noted
that the texture score depends on the shape score as well, since it is not possible
to get a correct texture score for an incorrectly predicted shape.

Method Texture Score (%)

Method-Janaldo 87.10± 6.33
Method-Janaldo + Our Texture Refinement 87.54 ± 6.19

Table 2. Effectiveness of Our Texture Refinement.

Furthermore, we demonstrate the effectiveness of our texture refinement
method by applying it to the predictions of Method-Janaldo. The results in
Table 2 show that our inpainting network introduced in Section 3.2 improves
the texture score by 0.44%. This shows that the proposed texture refinement
can be used as an additional component to improve other shape and texture
completion methods that predict low-resolution vertex textures.

Finally, Fig. 4 show the distributions of shape, texture, and final scores for the
predictions of TSCom-Net, Method-Janaldo, Method-Janaldo with our texture
refinement, and IFNet-Texture [9]. The first row of this figure illustrates the
overall distribution of the scores and highlights the superiority of our texture
scores w.r.t. IFNet-Texture [9]. While Method-Janaldo outperforms our results,
it can be observed that if we endow it with our texture refinement scheme, the
distribution of texture scores becomes slightly higher. In the second and third
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Fig. 4. Score Distribution. Distribution of shape, color and combined final scores
( score

100
along x-axes of the plots). The first row reports the distribution of the scores on

all the scans. The second row focuses on casual-outfit scans while the third one reports
the distributions on fitness-outfit scans.

row of Fig. 4, we report the distribution of the scores on scans with casual-outfit
and fitness-outfit. Unsurprisingly, casual-outfit scans were more challenging than
fitness-outfit ones for all methods. Nevertheless, our approaches recorded more
improvements w.r.t. Method-Janaldo and IFNet-Texture on the casual-outfit
scans than the fitness-outfit ones.

It is important to mention that the reported scores are the result of mapping
distance values (shape or texture) to scores in percentage using a parametric
function. This mapping might make the scores from different methods close
to each other, depending on the chosen parameters. We note that the original
parameters of the SHARP challenge 2022 metrics are used. Thus, we further
conducted a qualitative evaluation of our method.

Qualitative Evaluation: Fig. 5 shows a qualitative comparison of our approach
to other competing methods on models with casual outfit and fitness outfit.
Considering the coat missing region of the top row model, it can be noted that
IFNet-Texture [9] and Method-Raywit are unable to predict the correct colors.
On the other hand, Method-Rayee and Method-Janaldo produce over-smoothed
textures, creating blurry artifacts. Neither of these effects can be observed on the
TSCom-Net predictions. In the second row, the bottom legs and feet appear to be
the most difficult regions to recover. Method-Rayee and Method-Raywit fail to
produce the correct shape for these missing regions. While IFNet-Texture [9] and
Method-Janaldo are able to recover the correct shape, both generate white color
artifacts on the jeans. Our method is the only one to produce more reasonable
texture predictions, showing a sharper change in color between the jeans and
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Fig. 5. Qualitative results. Visual comparisons of textured body shape completion
results by different competing methods (as per Table.1). The first two rows depict
results on samples with casual outfits, i.e., more variation on garment texture pattern.
The last two rows depict results on samples with fitness outfits.
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the feet. Similar to the second model, it is apparent that our results on the third
model are sharper for the regions with a color change from skin to black when
compared to the other results. The visual comparisons illustrate that our results
are of higher resolution with better texture representation than the competing
approaches despite the close quantitative scores.

4.3 Ablation Study

Fig. 6. Multi-stage improvements of texture-atlas inpainting in TSCom-Net.

Method
Shape

Score(%)
Area

Score(%)
Texture

Score(%)
Final

Score(%)

IFNet-Texture [9] 85.44 ± 2.93 96.26 ± 6.35 81.25 ± 7.61 83.34 ± 6.86
Texture-transfer Baseline 85.75± 6.15 96.68 ± 2.89 56.51 ± 18.98 71.13 ± 11.11
Ours w/o Coarse Masks 85.75± 6.15 96.68 ± 2.89 81.04 ± 7.92 83.39± 6.87
Ours w/o Tex. Refine. 85.75± 6.15 96.68 ± 2.89 83.27 ± 7.08 84.53 ± 6.54
Ours w/ Bilinear Interp. 85.75 ± 6.15 96.68 ± 2.89 83.66 ± 6.95 84.71 ± 6.50
Ours w/o Partial Conv. 85.75 ± 6.15 96.68 ± 2.89 83.68 ± 6.96 84.71 ± 6.50
TSCom-Net (Ours) 85.75 ± 6.15 96.68± 2.89 83.72 ± 6.95 84.73 ± 6.50

Table 3. Quantitative scores of TSCom-Net with multi-stage improvements.

Our joint implicit function learning for shape and texture (TSCom-Net w/o
Texture Refinement) gives a 1.19% (cf. Table 3) increase in the final score with
respect to [9] demonstrating the effect of early fusion between SCom-Net and
TCom-Net. Only transferring the partial texture to the reconstructed shape,
where the color values for the missing regions are all black, gives us a baseline
texture score of 56.51%. Training an inpainting network directly on the partial
textures (TSCom-Net w/o Coarse Masks) increase texture score to 81.04% which
is 0.21% lower than [9] and 24.53% higher than the baseline. Conducting bilinear
interpolation of the vertex colors in missing regions is giving a texture score of
83.66%. All-in-all partial convolutions, instead of standard convolutions, gives
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stable and more sharper texture inpainting results. Fig. 6 depicts how the differ-
ent types artifacts or lack of sharpness appear when other options of inpainting
are tested. Finally, TSCom-Net consisting of all the components is giving the
highest final score of 84.73%.

Method
Partiality Type Shape

Score (%)
Texture

Score (%)
Final

Score (%)Training Testing

IFNet-Texture [9] T2 T1 87.99 ± 4.65 84.32 ± 5.73 86.15 ± 5.09
IFNet-Texture [9] T1 T1 86.49 ± 3.96 89.28 ± 2.89 87.88 ± 3.32
3DBooster [36] T1 T1 58.81 ± 14.99 72.31 ± 6.79 65.57 ± 3.32
TSCom-Net (Ours) T2 T1 88.05 ± 4.84 85.46 ± 5.56 86.75 ± 5.14

Table 4. Generalizability of TSCom-Net when trained and tested on samples with
different types of partiality.

Generalization to Other Types of Partiality: In this section, we evaluate
the generalization capability of our model to other types of partiality. In partic-
ular, we consider the view-based partiality (T2) introduced in SHARP 2022 [3]
to train the models and use the hole-based partiality (T1) introduced in previ-
ous editions of SHARP [37] for inference. This implies that the networks trained
on (T2) have never seen hole-based partial scans (T1). Table 4 demonstrates a
comparison of the generalization capability of our method to IFNet-Texture [9]
that is also trained on (T2) and tested on (T1) subset. Following these settings,
we obtain an increase of 1.14% for the texture score compared to [9]. We also
compare our model trained on (T2) and tested on (T1) to IFNet-Texture [9]
and 3DBooster [36] both trained on (T1) and tested on (T1). In this case, our
approach significantly outperforms [36] while achieving comparable results to [9]
although both were trained on (T1).

5 Conclusion

This paper presents a method for completing the shape and texture of 3D partial
scans. Joint implicit feature networks are proposed for learning to complete the
shape and textures. Moreover, a new coarse-to-fine texture refinement network
was introduced. It generates high-resolution texture from the predicted coarse
vertex texture and the available partial texture. Experimental evaluations show
that our method gives visually more appealing results than the state-of-the-
art and is positioned second in the SHARP 2022 challenge. In future, we plan
to make the entire TSCom-Net modules end-to-end trainable for completing
3D scans and refining the texture. At the same time, we will investigate neural
implicit radiance field for texture completion (with editable 2D UV texture map)
and 3D surface reconstruction.
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