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ABSTRACT: 

 

A validation data set plays a pivotal role in tweaking a machine learning model trained in a supervised manner. Many existing 

algorithms select a part of available data by using random sampling to produce a validation set. However, this approach can be prone 

to overfitting. One should follow careful data splitting to have reliable training and validation sets that can produce a generalized model 

with a good performance for the unseen (test) data. Data splitting based on resampling techniques involves repeatedly drawing samples 

from the available data. Hence, resampling methods can give better generalization power to a model, because they can produce and 

use many training and/or validation sets. These techniques are computationally expensive, but with increasingly available high-

performance computing facilities, one can exploit them. Though a multitude of resampling methods exist, investigation of their 

influence on the generality of deep learning (DL) algorithms is limited due to its non-linear black-box nature. This paper contributes 

by: (1) investigating the generalization capability of the four most popular resampling methods: k-fold cross-validation (k-CV), 

repeated k-CV (Rk-CV), Monte Carlo CV (MC-CV) and bootstrap for creating training and validation data sets used for developing, 

training and validating DL based point cloud classifiers (e.g., PointNet; Qi et al., 2017a), (2) justifying Mean Square Error (MSE) as 

a statistically consistent estimator, and (3) exploring the use of MSE as a reliable performance metric for supervised DL. Experiments 

in this paper are performed on both synthetic and real-world aerial laser scanning (ALS) point clouds. 

 

 

1. INTRODUCTION 

Automatic and efficient classification of point clouds contributes 

in many applications including visualization, three-dimensional 

(3D) city modelling, construction health monitoring, 

autonomous driving, road furniture and assets management, 

urban planning, and augmented reality (Nurunnabi et al., 2015; 

Li et al., 2021; Su et al., 2022). Machine learning (ML) methods 

based on hand-crafted features such as decision trees (Tran et al., 

2015), support vector machines (Secord and Zakhor, 2007) and 

random forests (Guo et al., 2011) have been used for automatic 

classification. However, these methods are heavily dependent on 

the representation ability of the features. Consequently, the 

generalization abilities of the developed models are restricted 

because of their limitations of using shallow architectures (Li et 

al., 2021). Recently, deep learning (DL) methods with 

supervised training have been showing increasing performance 

in 3D point cloud processing such as classification, 

segmentation, and identification (Goodfellow, et al., 2016; 

Nurunnabi et al., 2021a). It is a common belief that supervised 

learning methods need sufficiently large data sets, and their 

success strongly depends on the available data quality. 

 

Generalization capability, i.e., having the ability to perform for 

unseen data, is one of the most important characteristics of DL 

models. We should follow an appropriate data splitting strategy 

to get reliable training and validation data sets. Several ways 

exist for validating a ML/DL model; one of which is to train a 

model on a big chunk of an existing data set and validate it on 

the remaining part. This approach is common in DL based point 

cloud classification (Qi et al., 2017a). Train/test split is another 

approach, when a part of available data, the validation data set, 

is separated before developing a model and is used to evaluate 

the model, when it is estimated. A common tenet is that the data 

used for training should not be used for validation (Ramezan et 

al., 2019). The argument is that the overlapping data used for 

training and validation may increase the likelihood of overfitting 

because of the possible autocorrelation among the spatially close 

points (Becker et al., 2017). Stehman (2009) developed a 

systematic sampling design strategy to minimize autocorrelation 

in sample sets.  

 

In many cases, given data are limited, even sometimes getting 

sufficiently large data is impossible. It is a common phenomenon 

in medical diagnostic data; in the case of rare diseases such as 

when dealing with autistic adults (Vabalas et al., 2019). We 

know that resampling methods are good for hand-crafted feature-

based ML techniques and when data sets are small. Lyons et al. 

(2018) investigated and justified resampling methods for large-

scale remote sensing data classification. Resampling algorithms 

have been used for classification accuracy assessment, and to see 

the potential of selection of training and validation data sets in 

object-based classification, within the remote sensing framework 

(Weber and Langille, 2007; Zhen et al., 2013). When dealing 

with large-scale point clouds, still we can take the advantage of 

using resampling methods, in several ways, e. g., (i) to evaluate 

the generality of the model, (ii) since DL algorithms are data-

hungry, large and more data generated by resampling methods 

are beneficial to train a better model, and (iii) collecting large 

data always involves more time, cost and human effort and may 

be unavailable, so it saves time, cost and labour. Furthermore, in 

case of insufficient data, with the help of resampling methods, 

we can generate new data, develop a model and validate with 

more data that can achieve sufficient generality and robust 

results for the test (unseen) data.   

 

One of the most popular ways of data splitting is Cross-

validation (CV) has been used frequently when the available data 

are limited as well as to improve the statistical reliability of the 

results (Ramezan et al., 2019). For the CV, no need of getting 

extra data to have a validation data set. Only once, the given data 

are split into several parts, and then every part is used as a 
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validation set one after another. CV methods have many variants 

including leave-one-out and k-fold. Resampling methods 

repeatedly draw random samples from the available data. So, 

they allow us to create more data from the available data. 

Reasonably, data splitting based on resampling methods has 

better generalization power for the test data. Despite a multitude 

of methods that exist in the literature (Efron and Tibshirani, 

1993; Boos and Stefaski, 2013; Tsamardinos et al., 2018), 

investigation of their performance for achieving the generality of 

DL models is very limited due to their non-linear nature and 

underlying complexities of DL based methods. In this study, we 

focus on the four most common resampling methods: k-fold 

cross-validation (k-CV), repeated k-CV (Rk-CV), Monte Carlo 

CV (MC-CV) and bootstrap that have been frequently used in 

ML algorithms for getting training and validation data sets. We 

employ a DL algorithm, PointNet (Qi et al., 2017a), for per point 

classification in point clouds, and to investigate the influence of 

the resampling methods on the developed DL models by 

studying the values of an error metric used for training and to 

evaluate the model.  

 

DL based classifiers use several metrics such as the well-known 

cross-entropy, Mean Square Error (MSE), and overall accuracy 

(Michelucci, 2018). Practically, the analytical representation of 

the error metrics is complex. In this paper, we show that MSE is 

a statistically reliable and consistent estimator that has the 

potential for measuring the performance of a DL algorithm. We 

also explore that the well-known Central Limit Theorem (CLT; 

Boos and Stefansky, 2013) can play a crucial role in defining 

MSE as an asymptotically normally distributed estimator. The 

contributions of this paper are: (1) investigating and comparing 

the resampling methods for creating training and validation data 

sets used in training and validating a DL based point cloud 

classifier (PointNet; Qi et al., 2017a), and comparing also with 

the conventional train/test split approach, (2) justifying MSE as 

a statistically consistent estimator, and (3) exploring the use of 

MSE as a statistically reliable performance metric for a 

supervised DL algorithm. Our experiments are performed on 

both synthetic and real-world aerial laser scanning (ALS) point 

clouds.  

 

The remaining part of the paper is organized as follows. Section 

2 briefly presents the basic ideas of resampling methods, and 

state-of-the-art DL algorithms for point cloud classification. In 

Section 3, we propose the process of investigating the 

significance of using resampling methods for selecting training 

and validation data sets, and the potential of using MSE as an 

error and evaluation metric for the generalization power of a DL 

algorithm used in point cloud classification. Section 4 

demonstrates the proposed method through synthetic and real-

world ALS data sets. Section 5 concludes the paper.    

 

 

2. RELATED PRINCIPLES AND METHODS  

This section presents a quick discussion about related resampling 

methods, and DL algorithms that are used in point cloud 

classification.   

 

2.1 Resampling  

Resampling is the process of creating a multitude out of a given 

sample. From each of these samples, we can estimate an 

estimator function and later plot those outcomes in a distribution. 

Thus, studying the location, scatter or other necessary statistical 

moments of the resultant distribution can reveal the true 

estimator of the population. In the sense of model fitting, a model 

is refitted based on each sample to serve the purpose of learning 

more about the adapted model (Wang et al., 2021). Many 

resampling methods (e. g., randomization, bootstrap, and Monte 

Carlo) are available in existing literature (Good, 2010; James et 

al., 2015; Manly, 2020). Some are briefly discussed below.  

 

Fisher (1935) introduced the well-known permutation test also 

called randomization test or randomization sampling. This is to 

represent resampling without replacement, i.e., drawing 

observations from a given sample, randomly, without 

replacement. Quenouille (1949) developed the Jackknife 

resampling algorithm to estimate bias and standard error. A 

distinctive feature of this method is that a different observation 

is excluded every time of sampling. Bootstrap is perhaps the 

most widely used resampling method for deriving the 

distribution of an estimator that was developed by Efron (1979). 

Sooner, after developing bootstrap it was realized that bootstrap 

is more flexible than the Jackknife (Efron, 1982; Beasley and 

Rodgers, 2009). In this method, data are sampled repeatedly with 

replacement, so data can be occurred time and again with the 

same probability in each sampling. Several variants of bootstrap 

are available in the literature those can be classified as parametric 

and non-parametric bootstrap (Tsamardinos et al., 2018). CV is 

another most applied resampling approach that has been used in 

ML algorithms.  k fold CV (k-CV) and leave-one-out CV (LOO-

CV) are the two popular variants of CV. k-CV randomly divides 

the data set into k sections (folds), one of the k folds is used for 

validation while others go for training. The advantage of CV is 

that all observations are used for both training and validation 

purposes. The LOO-CV is the extreme case of CV, where k is 

the number of total observations.  The LOO-CV is appropriate 

for small data sets as it has the highest computational cost, hence 

it is not appropriate for large data sets.  

 

2.2 Deep learning (DL) in point cloud, and PointNet  

Deep learning methods use artificial neural networks composed 

of many processing layers to learn representations of data with 

multiple levels of abstraction (LeCun et al., 2015). DL has 

achieved tremendous success in computer vision for 2D image 

data, but it is hard to get the desired level of success with point 

clouds in a similar fashion, especially for convolutional neural 

network (CNN; LeCun et al., 1989) type representations. This is 

because, point cloud data are irregular (variable point density), 

unstructured and have no order. CNNs that have unprecedented 

success in image representation are designed to process data in 

the form of multiple structured arrays (Krizhevsky et al., 2012; 

Hackel et al., 2017). Alternatively, researchers do some 

transformations of point clouds into regular grids and/or multiple 

image collections that can carry the possibility of information 

loss as well as need extra time for processing.  

 

Qi et al. (2017a) proposed the first DL architecture, named 

PointNet that does not use convolution operators, rather consists 

of fully connected layers. PointNet generates features using 

shared multi-layer perceptrons (MLPs), and aggregates them by 

a symmetric function called max-pooling. Max-pooling works as 

the global signature (maximal response) among all the points.   

Per-point features are obtained by local and global information 

aggregation. To aid classification, a tiny spatial transformer 

network (T-Net; Jaderberg et al., 2015) is implemented to 

transform the data into a canonical form that increases invariance 

to input permutation. Nurunnabi et al. (2021b) showed that 

PointNet is simple, computationally efficient, and has potential 

for large-scale outdoor point cloud classification. In PointNet, 

the point coordinates (x, y, and z) of points in a point cloud are 

used as the raw inputs with the potential use of additional 
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features e.g., colours (R, G, B). The authors (Nurunnabi et al., 

2021b) also showed that using LiDAR (Light Detection and 

Ranging) features such as intensity (I) and return numbers (RNs) 

with the point coordinates produces better results than using 

colour information as the input vectors.  

 

A multitude of point-based DL algorithms have been introduced 

in recent years for point cloud classification (Li et al., 2018; Guo 

et al., 2020; Hu et al., 2020). To capture points' local structure, 

Qi et al. (2017b) improved the PointNet algorithm, and 

developed a hierarchical network PointNet++, inspired by the 

2D-CNN, where input captures features at progressively larger 

scales (increasing neighbourhood size) along a multi-resolution 

hierarchy. To address the problems of irregular and unordered 

data format, Li et al. (2018) proposed PointCNN, a generalized 

version of CNN that makes convolution on X-transformed 

points, for the k Nearest Neighbours (kNN). It was developed on 

PointNet++ using an MLP network. Among the others, the most 

noteworthy are PointConv (Wu et al., 2019), KPConv (Thomas 

et al., 2019), and RandLA-Net (Hu et al., 2020). The reader can 

see Guo et al. (2020) and Li et al. (2021) to know more about DL 

algorithms for point cloud classification. Point-based methods do 

not consider explicit information loss and becoming popular day 

by day. We employ PointNet, because of its simplicity to 

understand, and it is sufficiently fast to implement our method 

on large-scale outdoor point clouds.  

 

 

3. METHODOLOGY 

In this section, we propose a methodology to: (i) show MSE is a 

statistically consistent estimator, and to demonstrate its potential 

for measuring the generalization power of a DL classifier, (ii) 

investigate the consequences of using resampling methods for 

selecting training and validation data sets. We fulfil the 

objectives in three steps; first, we show MSE is a statistically 

consistent estimator and it follows an asymptotically Normal 

distribution. In the second step, we describe how the sampling 

methods work to get training and validation data sets. In the third 

step, we present how the PointNet algorithm works and uses the 

training and validation sets from the second step, and develops a 

classifier. Finally, we investigate the performance of the DL 

models that are developed based on the data sets from different 

resampling and train/test split methods.   

3.1 Use of MSE as an error metric 

In this step, we find an error metric (estimator) to train and assess 

a DL model. To do that, we find an estimator 𝜃, which is 

statistically consistent, effectively unbiased (Eq. 1) with high 

precision (Eq. 2), and is also asymptotically normally distributed 

(Eq. 6). 𝜃 is a consistent estimator if it satisfies the following 

conditions, 

                          (i) 𝑏𝑖𝑎𝑠 (𝜃, 𝜃) = 0 as 𝑛→∞, and                   (1) 

(ii) standard error, 𝑠𝑒 (𝜃) = 0 as 𝑛 → ∞, i.e. high precision. (2) 

Equivalently,  

                               𝑀𝑆𝐸(𝜃, 𝜃) = 0 as 𝑛→∞.                           (3) 

The standard error (se) is defined as the standard deviation (sd) 

divided by the square root of n (the sample size), where  

                             𝑠𝑑 = √
1

𝑛−1
∑ (𝑥𝑖 − 𝑥̅)2𝑛

𝑖=1 ,                         (4) 

                      sample average, mean,  𝑥̅ =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖 ,                 (5) 

and x is a random variable. Following the well-known CLT 

(Boos and Stefansky, 2013), we can show that the distribution of 

a mean of an independently and identically distributed (i.i.d) 

random variable is asymptotically normal (Eq. 6), i.e.,  

                                     𝜃~𝑁(𝜃, 𝑠𝑒 (𝜃)2)                                 (6) 

for sufficiently large sample size, n. More mathematical 

descriptions for developing an asymptotic distribution of an 

estimator are available in Efron and Tibshirani (1993) and Good 

(2013). We explore this fact empirically, and show that a 

synthetic data set following an exponential distribution (Fig. 1a) 

has a mean (𝑥̅) which gradually converges to the shape of a 

Gaussian (Normal) distribution with increasing sample sizes (see 

Fig. 1 b-e). Fig. 1(f) the boxplots show that with the increasing 

sample size, all that means (𝑥̅) are concentrated to their same 

central locations (i.e., mean and median are almost the same). 

The MSE of an estimator 𝜃 of a parameter 𝜃 can be defined as 

the average squared difference between the estimator and its 

parameter, i.e.,  

                            𝑀𝑆𝐸(𝜃) =
1

𝑛
∑ (𝜃 − 𝜃)

2𝑛
𝑖=1 .                        (7) 

It is understandable that the MSE function defined in Eq. 7 is 

nothing but a mean, and follows a Normal distribution (Fig. 2d; 

Experiment 1). The use of MSE has at least two benefits; one, it 

is analytically tractable, and it can be interpreted in terms of both 

bias and variance. We estimate the mean of MSE (mMSE) and 

standard deviation of MSE (sdMSE) for the models that are trained 

with the help of the employed DL algorithm, PointNet. We use 

resampling methods to get the training and validation data sets 

as described in Section 3.2, and decide on a reliable validation 

set that has the least mMSE and sdMSE. That validation set with the 

least mMSE (i.e., tends to zero) and/or sdMSE rationally provides 

more generalization power for a test (unseen) data set.  

3.2 Performing resampling methods to get training and 

validation data sets 

We perform the above mentioned (in Section 1) four most 

common resampling methods using standard procedures (Efron 

and Tibshirani, 1993; James et al., 2015; Hastie et al., 2017). 

Suggested by the reviewers for the earlier version of this paper, 

besides the resampling methods, we also consider the train/test 

split approach to compare. For the train/test split, first, we divide 

the available data into two parts. One is separated at the 

beginning to use for the test of the final model, and the rest part 

is used to apply resampling approaches to get training and 

validation sets. Later, the training and validation part is split 

again into two disjoint (training and validation) sets. Resampling 

methods are described below in brief to follow this paper.  

 

(i) For the k cross-validation (k-CV), we shuffle the seen data and 

divide them into k folds (parts). One fold is held out as the 

validation set while the rest k-1 folds are merged to use for 

training. The process of selecting training and validation data 

lasts k times. DL model is trained and validated every k time. The 

performance of the final model is the average (arithmetic mean) 

performance of the k models. Usually, researchers make 5-fold 

or 3-fold to get a reasonable portion (%) of data for training and 

validation sets. In this paper, we fix k = 5 to have 20% of the data 

for validating a trained model.  

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-617-2022 | © Author(s) 2022. CC BY 4.0 License.

 
619



 

 

 

 
 

Figure 1. Demonstration of the Central Limit Theorem (CLT): (a) histogram of a 1D synthetic data set, follows an Exponential 

distribution with mean 5. 105 samples of sizes 3, 10, 100 and 1,000 are drawn, means are 𝑥̅; line diagrams of frequency versus 𝑥̅ for: 

(b) n =3, (c) n =10, (d) n =100, and (e) n =1000, plots show that 𝑥̅ with an increasing number of points follows Normal distribution, 

(f) boxplots for the means (𝑥̅) of different sizes of samples.  

 

 

(ii) Repeated k-CV (Rk-CV) has the opportunity of making data 

R times larger than the given data set, it checks the validity of the 

developed model with R×k validation sets. It repeats the k-CV, 

R times. However, before performing k-CV, the data are shuffled 

every time for R times. We repeat k-CV 20 times (i. e., R = 20).  

 

(iii) Monte Carlo CV (MC-CV) randomly draws a prefixed 

(user-defined) size subset (a portion without replacement) from 

the seen data, uses it as a training set while the rest of the seen 

data are used as a validation set. It repeats this process several 

(m) times defined by the user, and the performance of the model 

is the average performance of the repeats. We repeat 100 times.  

 

(iv) The main idea behind bootstrap approach is generating new 

data sets from a given one by resampling with reiteration. In our 

case, bootstrap draws samples (e.g., B times with replacement) 

of the same size from a validation set. This approach trains a 

model only once on the training set and validates B times with 

the bootstrap samples. We fix B =100. 

3.3 Implementation of a DL based classification algorithm 

We use PointNet as a DL classifier for the pointwise 

classification of laser scanning point clouds. The input to the 

PointNet network can be arranged as a matrix array of size 

𝑁 × 𝑀, where N is the number of points and M is the number of 

associated features for each point. Unlike PointNet, instead of 

colour values, we use related LiDAR features (e. g., point 

intensity (I) and return numbers (RN)) with the point coordinates. 

The ReLU (Rectified Linear Unit) is used for the hidden layers 

and the Softmax activation functions are used for the output 

layers. Instead of multiple cross-entropy, MSE is used as the loss 

function, and the Adam (a stochastic optimizer) with a learning 

rate of 0.001 is used to train the model. To reduce the influence 

of vanishing and exploding gradients, the ‘He initialization’ 

strategy is used with the ReLU activation function. Batch 

Normalization (Ioffe and Szegedy, 2015) is used for all the 

layers, and the dropout layers are installed only for the last MLP. 

Interested readers are referred to Goodfellow et al. (2016) and Qi 

et al. (2017a) for more details on the DL and PointNet algorithm, 

respectively.  

4. EXPERIMENTS, RESULTS AND EVALUATION  

We perform three experiments in this section. One experiment is 

on a synthetic data set, and the other two are through real-world 

ALS data sets. We investigate the use of MSE as a consistent 

estimator for error estimation at the model training stage, and to 

evaluate the developed model with the validation data set(s). 

MSE is also used to measure the influence of above mentioned 

four resampling methods for generating training and validation 

data. To understand the developed model, and the classification 

results for the ALS data, we use five common evaluation metrics: 

F1-score (F1), mean F1 (mF1), Intersection over Union (IoU), 

mean IoU (mIoU), and the Overall Accuracy (OA). The reader 

is referred to Nurunnabi et al. (2022) for detail about the metrics.  

 

4.1 Experiment 1: Synthetic data set 

In the first experiment, we show that MSE is a statistically 

reliable error metric that follows Normal distribution for the 

large data. We generate 500 2D points that portray five different 

spirals (Fig. 2a) representing five classes. We train a 5-layer 

Neural Network (NN) with the well-known stochastic Adam 

optimizer, the ReLU and Softmax activation functions for the 

input and the output layers, respectively. MSE is used as the loss 

function. Plots b and c in Fig. 2 portray the predictions of the 

model. We derive, then, 1,000 samples of 100 points, repeat the 

training of the NN for each sample and calculate MSE values. 

Fig. 2d shows that MSE follows a Normal distribution. Next, 

resampling methods are executed 100 times for 100, 500, 1,000 

and 5,000 sample points, and mMSE, and sdMSE are computed for 

each sample size. Rk-CV is performed with R=20 and k = 5, and 

MC-CV is performed with 100 repetitions. Table 2 explores that 

with the increasing sample sizes, mMSE and sdMSE decrease, thus 

justifying MSE as a consistent estimator. k-CV and bootstrap 

produce the least mMSE and sdMSE, respectively. We draw 

boxplots and line diagrams for the results of Rk-CV, MC-CV and 

bootstrap those who are evaluated 100 times with the validation 

data sets. Fig. 3, both the boxplots and line diagrams show that 

bootstrap produces more robust results with just one outlying 

value (Fig. 3a) of MSE. It is worth noting that bootstrap takes 

significantly less time (12.13 s) than the others (Table 2).  
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Figure 2. Classification by a neural network: (a) an artificial non-linear 2D data (500 points) set having five different spirals, (b) 

classification into five different regions (colours), (c) confusion matrix for the classification, (d) histograms of density versus MSE, 

MSE of 1,000 samples of 100 points follows a Normal distribution (magenta curve).  

No. of sample points 
Train/test split k-CV Rk-CV  MC-CV  Bootstrap  

MSE mMSE sdMSE mMSE sdMSE mMSE sdMSE mMSE sdMSE 

100 0.1786 0.1348 0.0157 0.1513 0.0162 0.1500 0.0156 0.1520 0.0120 

500 0.0193 0.0255 0.0072 0.0213 0.0073 0.0204 0.0078 0.0305 0.0059 

1,000 0.0064 0.0076 0.0028 0.0088 0.0044 0.0096 0.0043 0.0077 0.0025 

5,000 0.0042 0.0049 0.0015 0.0057 0.0027 0.0060 0.0031 0.0071 0.0011 

Time (for 1,000 points) 11.73 second (s) 58.18 s  1977.52 s 1887.55 s 12.13 s 

Table 1. Results of different sampling methods based on 100 samples of different sizes; higher performance (i. e., lower mMSE and 

sdMSE) gains with increasing sample size. 

 

Figure 3. Results of Rk-CV, MC-CV and bootstrap for 100 synthetic data sets: (a) Boxplots for the MSE values, (b) line diagrams for 

MSE versus number of iterations. 

Methods 

MSE results   Classification results 

Metrics Methods Train/test split k-CV Rk-CV MC-CV Bootstrap 

mMSE sdMSE Class F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU 

k-CV 0.0839 0.0528  uC 56.66 39.54 72.68 57.08 74.71 59.63 74.34 59.15 78.82 65.04 

Rk-CV 0.0749 0.0187  Ground 93.35 87.52 85.79 75.12 88.60 79.54 88.49 79.36 93.14 87.16 

MC-CV 0.0802 0.0470  Building 83.44 71.58 92.07 85.30 91.70  84.67 91.46 84.27 92.11 85.37 

Bootstrap 0.0452 0.0020 mF1/mIoU 77.82 66.21 83.51 72.50 85.00 74.61 84.76 74.26 88.02 79.19 

Train/test        0.0599 (MSE) OA 81.95 84.03 85.69 85.47 89.13 
 

Table 2. Results of train/test split and resampling methods (k-CV, Rk-CV, MC-CV and bootstrap). Results show significant impact 

on error metrics, and classification performance metrics (in percentage, %) for the AHN test data set.  

 

  

4.2 Experiment 2: AHN data set 

The second experiment is performed on real-world ALS data 

from Actueel Hoogtebestand Nederland, version 3(AHN3). This 

open access data set has a point density of 15-20/m2. The points 

are labelled in three classes (ground, building, and unclassified 

(uC) that includes vegetation). We choose two small parts from 

the AHN3 data. One part (Fig. 4b) is separated for the final test, 

and the other part (Fig. 4a) is used to get training and validation 

data sets following the train/test split and resampling methods. 

These training and validation data are then used to train and 

validate the DL, i.e., PointNet (Qi et al., 2017a), model.  

We follow the specified guidelines of the PointNet. The network 

is performed with the training data having blocks of the size of 

10m×10m, sampled with 2,048 points per block, and batch size 

of 32. We use the spatial coordinates as well as the LiDAR 

features (I and RN), and heights as the raw inputs. The heights 

are the differences between the z values of a point of interest and 

the lowest point in the local neighbourhood of the interest point 

(Nurunnabi et al., 2022). Hence, individual points are 

characterized by their coordinates (x, y, z), I, RN, and heights. 

Besides resampling methods, we perform train/test split 

approach. For the train/test split approach, training and validation 

sets are separated in a way so that they have no overlap.  
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Figure 4. (a) AHN training and validation data, (b) AHN test data, classification results based on: (c) train/test split, (d) k-CV, (e) Rk-

CV, (f) MC-CV, and (g) bootstrap.     

Table 2 and Fig. 4 present the performance of the concerned 

resampling and train/test split methods.  Results in Table 2 show 

that bootstrap achieves the least values of mMSE (0.0452) and 

sdMSE (0.002). As desired, bootstrap gets the highest OA of 

89.13% for the test set. Train/test split and k-CV get MSE = 

0.0599 and mMSE = 0.0839, respectively. It reveals that although 

the MSE (0.0599) of split/train is lower than the mMSE (0.0839) 

of k-CV, train/test split gets significantly less OA of 81.95% than 

k-CV (OA = 84.03%), because train/test split evaluates its model 

just once with a validation set and does not get sufficient 

generality for the new (test) data set. Significantly better results 

are achieved for all the resampling methods for the test data than 

the non-resampling train/test split method.    
 

4.3 Experiment 3: Vaihingen data set 

We consider the ISPRS (International Society for 

Photogrammetry and Remote Sensing) benchmark Vaihingen 

data set (Niemeyer et al., 2014) that has been used frequently for 

the development of DL algorithm. This data set was collected by 

using a Leica ALS50 scanning system. It has an average point 

density of around 4-6/m2. It is separated as training and test sets. 

The training set covers mainly a residential area of 399m×421m 

that consists of 753,876 points, and the test set covers two scenes 

of 389m×419m urban area of 411,722 points. Along with the 

point coordinates, each point has I, RN, the number of returns, 

and the respective class labels of power lines (PL), low 

vegetation (LV), impervious surface (IS), car, fence, roof, 

facade, shrub, or tree. This is an imbalanced data set that has 

significant disparity by the number of points in the classes. For 

example, the group PL has only 546 and 600 points, whereas IS 

has 193,723 and 101,986 points for training and test, 

respectively. To see the influence of imbalanced data on the 

classification results, this time, we perform simple random 

sampling method, and also stratified random sampling method to 

avoid the possible absence of points from the smaller groups. 

Training and validation sets were generated according to the 

resampling algorithms. The PointNet algorithm was run on the 

training set using a block size of 10m ×10m, and a batch size of 

32. Each block contains 2,048 sample points. We feed the same 

input (feature) vectors and the same hyper-parameters to train the 

network that were used for the second experiment on the AHN3 

data. The training was finished with 100 epochs.   

 

Table 3 summarizes and explores the results for the Vaihingen 

test data set. Results in the table show that stratified sampling 

based resampling methods produce better classification rates (%) 

than their corresponding item from simple random sampling. We 

see, train/test split approach produces OA of 68.04% and 70.24% 

when it is based on the samples from simple random sampling 

and stratified sampling, respectively. For both simple random 

sampling and stratified sampling, train/test split method 

produces less correct classification (OA) rate than any of the 

concerned resampling approaches. For example, for stratified 

sampling, train/test split achieves OA of 70.24% and bootstrap 

achieves OA of 71.72%. All four resampling methods get almost 

similar success rates. With the least value of mMSE (0.0248), Rk-

CV achieves the highest values of mF1, mIoU and OA (71.74%). 

Bootstrap achieves the least sdMSE with an OA of 71.72%.   

 

Methods 

Stratified sampling Simple random sampling 

MSE results Classification results MSE results Classification results 

mMSE sdMSE mF1 mIoU OA mMSE sdMSE mF1 mIoU OA 

Train/test split 0.0257 --- 41.53 31.53 70.24  0.0269 --- 39.44 29.81 68.04    

k-CV 0.0284 0.0019 41.39 31.12 71.22 0.0269 0.0004 41.19 29.81 69.69 

Rk-CV 0.0248 0.0016 42.57 32.52 71.74 0.0273 0.0018 42.44 32.08 70.33 

MC-CV 0.0275 0.0016 41.47 31.73 71.69 0.0267 0.0009 41.35 31.59 70.69 

Bootstrap 0.0309 0.0003 42.41 32.15 71.72 0.0304 0.0003 40.55 30.84 71.21 

Table 3. Results based on train/test split and resampling methods (k-CV, Rk-CV, MC-CV and bootstrap). Outcomes reveal impact on 

error metrics, and classification performance metrics (in %) for the ISPRS benchmark Vaihingen test data set (Scene 1 and 2).  
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Figure 5. classification results for the Vaihingen test data set (Scene 1). (a) ground-truth, results of: (b) simple random sampling based 

train/test split, (c) stratified sampling based train/test split, and (d) stratified sampling based Rk-CV. Many points are misclassified in 

the black rectangles for plots b and c.  

 

Figure 5 portrays the classification results of Scene 1 of the 

Vaihingen test data set. To accommodate within the space, we 

portray results of three selected methods only for Scene 1. Rk-

CV produces significantly better results than the train/test split 

approach based on both simple random sampling and stratified 

sampling. Compared with the stratified sampling based Rk-CV 

results in Fig. 5d, many more roof points in the black rectangles 

of Fig. 5b (simple random sampling based train/test split) and 

Fig. 5c (stratified sampling based train/test split) are 

misclassified as the false negative.  

 

 

5. CONCLUSIONS 

This paper showed that MSE is a statistically consistent 

estimator, it does work as a reliable cost function. Moreover, it 

can work as an error metric to assess a DL algorithm and to 

evaluate the generality of the model. Results on synthetic data 

sets showed that bias and standard deviation of an MSE tend to 

zero for a large and increasing sample size. For large data sets, it 

tends asymptotically to a shape of a Gaussian (Normal) 

distribution. Hence, MSE with the least values of mean and 

standard deviation (error) has the potential for appropriate 

selection of resampling methods that finds a reliable validation 

set to generalize a DL classifier.  

 

Experiment showed that a specific resampling method does not 

always produce the best results for all data sets. The investigation 

explored that whatever method is used for data splitting, we 

should check its performance with several validation data sets to 

understand the generality of the developed model. In one 

experiment, we see that despite having lesser MSE, train/test 

split did not achieve better results than a resampling method. 

This is because the train/test split approach evaluates just with a 

single validation data set. Since bootstrap draws samples with 

replacement, it has more possibility of getting autocorrelation 

between points that can produce more bias to the estimators, 

however, bootstrap has the opportunity of resampling with the 

same probability for the observations and has the potential for 

the estimation of the distribution of a statistical estimator, e.g., 

MSE. Bootstrap has more potential for small data sets. Future 

studies will investigate the potential of using MSE and 

resampling methods to understand the generality of the other 

supervised machine learning methods, such as decision trees and 

random forests when they deal with large-scale point clouds.   
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