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1 Summary 

Glioblastoma is the most common and lethal type of brain cancer. Despite an aggressive 

treatment of maximal resection followed by radiotherapy and concomitant chemotherapy, the 

median survival time of patients after diagnosis is of 14.6 months, and there have not been any 

major advances in treatment to improve prognostics or the patients’ quality of life since 2005. 

As a consequence, there is an urgent need to improve knowledge about this cancer and 

understand the mechanisms involved in its resistance to treatment. To that end, in this thesis I 

set out to uncover the molecular mechanisms underlying IDH-wildtype Glioblastoma resistance 

to treatment, through a multi-omics integrative analysis making use of both quantitative data 

and established knowledge about the disease. 

First, a major part of these studies involved the manual screening and curation of the literature 

to identify the core driver alterations of functional pathways in IDH-wildtype Glioblastoma, 

focusing on the RTK/PI3K/AKT signaling cascade, the RB pathway and the TP53 pathway. The 

results of that investigation were compiled into a Glioblastoma Disease Map, a visual and 

interactive network representation of these pathways in the context of Glioblastoma made 

publicly available on the MINERVA platform. Furthermore, this work led to the definition of novel 

modelling standards for genetic alterations in the Disease Map framework, which may be 

further developed and used by the community. 

This Glioblastoma Disease Map network was analyzed alongside whole-transcriptome and 

whole-genome sequencing data to investigate resistance mechanisms of Glioblastoma. From 

that analysis, interconnection patterns between the three pathways in the disease maps could 

be highlighted and discussed, and the emergence of cell motility as a critical part of resistance 

mechanisms was proposed. In addition, a collaboration with a laboratory from the Erasmus 

Medical Center in Rotterdam led to multiple analyses of transcriptomics towards the 

identification of biomarkers predictive of drug response, and the publication of an article as a 

co-author. 

Finally, over the PhD multiple database systems and frameworks such as the tranSMART data 

warehouse or the OMOP Common Data Model were encountered and used to develop and 

implement data management processes in line with FAIR data principles, data privacy, and 

downstream data analysis considerations. The results and experience acquired thanks to that 

work provided valuable insights for the implementation of quantitative analyses, but also more 

broadly for the proper conduct research.  
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2 Introduction 

2.1 Glioblastoma 

Glioblastoma is the most common and lethal type of brain cancer. Over the period of 2012-

2016 in the United States1, Glioblastoma represented 48.3% of all malignant brain and other 

Central Nervous System (CNS) tumors, corresponding to an incidence of 3.42 per 100,000 

population. The median survival rate of untreated patients is barely 3 months2, while treatment 

allows to increase it to 14.6 months3. Still, only 6.8% of patients reach the 5-years mark1, 

making the disease extremely fast and brutal.  

Glioblastoma, classified as a World Health Organization (WHO) Grade IV tumour4,5, is mainly 

diagnosed in older people with a median age of diagnosis of 651, and affect males slightly more 

as they represent an average of 57.8% of new yearly cases1. 

Molecular profiling of Glioblastoma tumours have greatly impacted knowledge about the 

disease, to the extent that the WHO recommends including both histological and molecular 

considerations for Glioblastoma diagnosis4,5. 

An important classification first reported by Kleihues and Ohgaki (1999)6 is the distinction 

between Primary and Secondary glioblastomas. Note that in the latest classification of the 

World Health Organization from 20164 and 20215, the terminology of Primary and Secondary 

Glioblastoma has been abandoned, the terms of IDH-wildtype and IDH-mutant being preferred, 

respectively, as Isocitrate Dehydrogenase (IDH) mutation commonly allows discrimination 

between the two types. However, since these labels were used in the context of my studies in 

the data that I worked with, in the present document the terminology will be kept when it was 

explicitly used in data and documents that were provided for the PhD work. IDH-wildtype 

Glioblastomas are tumours emerging de novo in the brain. They represent the large majority of 

Glioblastoma cases7, occur in patients on average 64 years old, and is the more aggressive 

type of Glioblastoma. These tumours typically present overexpression and mutations of the 

EGFR gene, deletion of the CDKN2A locus and amplification of the MDM2 gene. IDH-mutant 

Glioblastomas are tumours that evolved from lower-grade gliomas into more aggressive 

lesions, although they still present a better prognostic than IDH-wildtype Glioblastomas, and 

affect a younger part of the population as well since the patients diagnosed with it are 45 years 

old on average. IDH-mutant Glioblastomas are characterized by mutations of the TP53, IDH1 

and IDH2 genes. 

Besides, research into molecular pathways and characteristics of Glioblastoma has been 

productive in the description of genes and pathways relevant to the development and survival 
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of Glioblastoma tumours8–13. In particular for IDH-wildtype Glioblastomas, these findings point 

to the Receptor Tyrosine Kinase (RTK)/PI3K/AKT, Retinoblastoma (RB) and TP53 pathways 

as key drivers of the disease.  

The first step for the Standard Of Care (SOC) for Glioblastoma consists in surgical resection of 

the tumour at diagnosis. Resection of the tumour presents a huge challenge since brain surgery 

is a delicate operation which typically does not allow for full removal of the highly diffuse tumour 

tissue14,15. As a result, tumour cells remain in the patient’s brain even after surgery and 

invariably lead to recurrence of the cancer, i.e. emergence of a new tumour, which explains the 

short median survival rate of Glioblastoma patients. The surgery is then followed by treatment 

of radiotherapy and concomitant Temozolomide (TMZ) chemotherapy16, called the Stupp 

regimen, which delays recurrence of the tumor but does not prevent it. TMZ is an alkylating 

agent capable of methylating DNA leading to cell death17. In the context of TMZ therapy, the 

methylation of the MGMT (O-6-Methylguanine-DNA methyltransferase) promoter constitute an 

important biomarker for positive prognostic of the patient. Indeed, MGMT is a methyl-

transferase able to revert the effects of TMZ on DNA18,19, thus mitigating the efficacy of the 

therapy. 

However, while there are extensive efforts to develop new treatments15,20–22 in particular 

targeting specific molecular mechanisms mentioned above, since establishment of concomitant 

TMZ chemotherapy into the standard of care in 2005, there has been no major improvements 

in Glioblastoma treatments and patients’ survival. As a consequence, there is a significant need 

to improve our understanding of Glioblastoma mechanisms and identify potential therapeutic 

targets. 

In this context, the GLIOTRAIN (“Exploiting GLIOblastoma intractability to address European 

research TRAINing needs in translational brain tumour research, cancer systems medicine and 

integrative multi-omics”) project was initiated. It is a Horizon 2020, Marie Sklodowska-Curie 

Action (MSCA) Innovative Training Network (ITN) involving 8 beneficiaries and 12 partner 

organizations with the specific goal of training 15 Early-Stage Researchers (ESRs) on research 

on IDH-wildtype Glioblastoma towards the development of new treatments and the elucidation 

of Glioblastoma resistance mechanisms. Furthermore, although each individual ESR has their 

own PhD project, they all fit within the overarching objectives of GLIOTRAIN, and were 

designed to be interconnected. In particular, one of the major milestones for the GLIOTRAIN 

project was the generation of Next Generation Sequencing (NGS) data from Glioblastoma 

samples coming from several beneficiaries in the project. In addition to the clinical 

characterization of the patients from which those samples were extracted, sequencing should 
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lead to the production of transcriptomics RNA-Seq data, proteomics RPPA (Reverse Phase 

Protein Array) data, low-coverage whole-genome sequencing (WGS) data and methylation 

data. The whole pipeline, from selection of the samples to the creation of the final GLIOTRAIN 

database, involved several ESRs. This data was collected for analysis in several PhD projects, 

including mine. 

Within GLIOTRAIN, my PhD project aimed at defining and performing an integrative analysis 

combining both the knowledge already available about the disease and the data generated by 

the project in order to improve understanding of the molecular resistance mechanisms 

developed by the tumour. My studies led me to focus on three main axes of work: the 

compilation of literature knowledge through the construction of a Glioblastoma Disease Map, 

the concurrent analysis of multiple sources of data, and implementation of good data curation 

and data management practices. 

2.2 Disease Map 

In the era of high-throughput technologies producing large amount of data and leading to an 

ever-increasing accumulation of biological knowledge, representation of that knowledge as 

networks of biological entities have gained attention23,24 as a solution to compile, interconnect, 

visualize and analyze information at different levels. Indeed, biological network can represent 

interactions at the level of organs, tissues, cells, proteins, DNA, or even between amino acids. 

Moreover, biological networks can be inferred or enriched based on quantitative data25,26, or 

analyzed as a standalone resource27,28. Even more interesting, computational methods exist to 

account for the biological knowledge in the form of networks as prior knowledge in the 

integrative analysis of multiple omics source of data29–33, resulting in more context-relevant 

findings. 

Importantly, such networks can be published and shared for the scientific community to use in 

research. Notable resources for biological network at the molecular level include the 

STRING34,35 and KEGG36,37 (Kyoto Encyclopedia of Genes and Genomes) databases, the 

SIGnaling Network Open Resource (SIGNOR) 2.038 or the Atlas of Cancer Signaling Network 

(ACSN)39. These networks were created through the extensive curation of a high number of 

publications, resulting in the systematic compilation of knowledge following clearly defined 

formats and standards. As a result, anyone who uses one of these networks would need to 

understand and align on the corresponding framework. 
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One such framework is the Disease Maps project40,41. Disease Maps are a type of integrated 

and highly-curated molecular network representation of signaling and metabolic pathways for 

specific diseases, relying on standard formats such as the Systems Biology Graphical 

Notation42 (SBGN) which defines guidelines for graphical representation of biological entities 

and their interactions, and the Systems Biology Markup Language43 (SBML) which is a verbose 

syntax for representation of biological networks, which can be used by softwares to read or 

export network definitions. Construction of Disease Maps is a community-driven effort, 

requiring both extensive screening of the literature and input from experts on the disease. 

Moreover, the usage of clearly defined standards and support from an active community allows 

for the development of powerful network exploration and analysis tools44–50.  

On the downside, the Disease Maps framework is not well equipped to extensively represent 

mutations. Indeed, literature about genetic alterations in Disease Maps did not bear productive 

results, and consultation with experts on the framework confirmed that Disease Maps projects 

usually focus on protein-level interactions and mechanisms. Alterations at the genetic level are 

considered as implicit since their effect are typically echoed as mutated proteins or up- or 

downregulated expression profile. However, that approach not only makes mutated genes 

implicit, but also does not support standalone representation of transcriptional rates 

modifications, which can then only be visualized by projecting quantitative data onto the 

network. In the context of Glioblastoma and cancer in general, where genetic alterations such 

as point mutations or copy number variation are key drivers of the disease, this absence of 

consensus on genetic alterations representation is a drawback. 

Despite this challenge, the Disease Maps standard and associated tools still appeared as the 

most appropriate and accessible framework to undertake compilation of molecular interactions 

driving Glioblastoma development and survival, in order to visualize, explore, characterize, and 

integrate literature knowledge about Glioblastoma into a data analysis for the PhD project.  
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2.3 Data management methods and systems 

With the rise of NGS data where large volumes of data are generated from many different 

sources and formats, data curation and management are essential to proper conduct of 

research. Indeed, the number of tools and methods, including statistical tests, machine learning 

algorithms, etc. available to analyze data is also in constant growth, and any given analysis 

often requires specific formatting, normalization, or pre-processing of the initial data before it 

can be used as an input. As a result, it is essential to apply proper transformations to the data 

and keep track of it, while also being aware of the impact such transformations can have on 

the data and analysis results. 

In addition, proper data management should follow Findability, Accessibility, Interoperability, 

Reusability (FAIR) data principles51, which provide a useful framework to ensure data quality 

and characterization, subsequently allowing for more reliable and robust results. Indeed, 

following these principles ensures that any results from an analysis can be reproduced and 

validated by reproducing the analysis with the same data, and that this data may be further 

exploited for new investigations. With a well-characterized database, research can be 

conducted more transparently and be easier to validate and advanced further. Simultaneously, 

to preserve patients’ right to data privacy, data management processes are also required to 

include considerations of anonymization of data and secure data storing and sharing practices. 

As part of the training both under the European ITN and under the ITTM (Information 

Technologies for Translational Medicine) company, during the PhD three different data 

management systems were encountered and used: the clinical trials databases from Cancer 

Trials Ireland, the tranSMART data warehouse for hosting the GLIOTRAIN data, and the rising 

Observational Medical Outcomes Partnership Common Data Model (OMOP CDM) used in data 

harmonization projects. By learning about these systems and how to handle and use them, 

valuable insights about the importance of data management in the conduct of research were 

gained. 

2.3.1 Cancer Trials Ireland 

A requirement of the GLIOTRAIN grant was for all ESRs to spend time away from their host 

institution to experience different working environments in an organization partner of the 

project. This was an opportunity which was used to discover and learn more about the very 

specific processes of clinical trials. As a consequence, a secondment was organized to Cancer 

Trials Ireland (CTI). 
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CTI is a non-profit company based in Dublin, Ireland, which supports and coordinates cancer-

related clinical trials in Ireland and across Europe, and was a partner organization of 

GLIOTRAIN. The objectives of the secondment were to learn about how data was collected, 

stored and analyzed in the context of clinical trials, to use that knowledge in the processing of 

data from the GLIOTRAIN project. During that time, in addition to the general processes of 

conducting trials, specific training on data management methods as performed in CTI was 

received and applied hands-on to help directly on two CTI projects in particular: a study about 

identifying glioma biomarkers, and a trial to compare breast cancer treatments. 

2.3.1.1 Glioma Biomarker study 

This project was an observational study in which specific biomarkers data was collected from 

patients, in order to compare it with data from healthy controls and try to determine whether the 

level of any of these biomarkers could suggest onset of glioma in a non-invasive way and be 

included in routine checks.  

2.3.1.2 Breast Cancer Trial 

The breast cancer trial was a two-arms comparison of breast cancer treatment regimen, meant 

for statistical analysis. In this case, the CTI database for that trial was already relatively 

complete and well maintained, and the study was at the stage of early analysis through the 

characterization of the data.  

2.3.2 TranSMART 

The tranSMART system52,53 can be considered as a data warehouse, which includes both a 

database to store and access data, as well as a graphical interface on top of it that allows for 

exploration and statistical analysis of the data from the database. It is a patient-centric system, 

meaning that every datapoint needs to be associated to a single patient characterized in the 

database. 

TranSMART is designed for storing either “low-dimensional” data, i.e. single variables linked 

directly to a given patient in the database such as the clinical information of each patient, or 

“high-dimensional” data54 which typically correspond to the different types of -omics data55 that 

are supported and require a mapping between the variables and the samples in the dataset, 

and between the samples of the dataset and the patients in the database. 

Beyond the database aspect of tranSMART, the system also provides a graphical interface 

platform to visualize, explore and analyze the data stored. For the sake of this interface, 

organization of the data in the database is required. Indeed, although tranSMART databases 
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have a fixed structure with schemas and tables pre-defined, when data is inserted in the 

database it has to be clearly annotated so that different datasets of the same data type can 

easily be differentiated, visualized and analyzed in the interface. Included in these required 

annotations is the position in a tree-like structure of the data, called “tranSMART data tree”, 

used for navigation and selection of specific data in the graphical interface. 

As part of the GLIOTRAIN project, ITTM was tasked with the hosting of the data generated in 

the project for the purpose of analysis in multiple ESR PhD projects. The data was to be 

sequenced from samples taken from the biobank of four of the GLIOTRAIN beneficiaries: Royal 

College of Surgeons in Ireland (RCSI), Luxembourg institute of Health (LIH), Erasmus Medical 

Center, Netherlands (EMC) and Institut du Cerveau et de la Moelle epiniere, France (ICM). 

However, following definition of the materials required to contribute samples, the LIH was not 

able to provide paraffin sections for their samples which was a consortium requirement, and 

consequently they were not able to contribute samples. Fortunately, ICM and EMC were able 

to compensate for the number of samples that LIH was initially supposed to contribute. The 

resulting data to be made available on this GLIOTRAIN database included clinical information 

about the patients from which the samples were extracted, low-coverage WGS data, RNA-Seq 

data, Methylation data and Reverse Phase Protein Array (RPPA) data, thus providing data at 

the genomic, transcriptomic and proteomic level to the consortium. However, the RPPA dataset 

was eventually removed from the list and is absent from the final database. 

2.3.3 The OMOP CDM 

The Observational Medical Outcomes Partnership Common Data Model56,57 (OMOP CDM) is a 

data model increasingly used to harmonize medical, clinical, and healthcare registries and 

databases58–61 to align them with the same structures and standard, thus making them 

comparable and includable in the same analyses despite being from different sources. The 

OMOP CDM is maintained, developed and promoted by the Observational Health Data 

Sciences and Informatics (OHDSI) community62,63, which provides resources, training, tools 

and methods to use the OMOP CDM and analyze harmonized data. In particular, the OHDSI 

community is a strong proponent of FAIR data principles, since it facilitates communication and 

meeting of registry representants who may be interested in conducting research conjointly on 

their data, and even develops tools to perform “network studies”64–67, i.e. data analyses which 

can be performed in a federated, non-centralized way, where data of individual registries is 

analyzed locally instead of being shared, and only aggregated results are returned for 

interpretation, thus ensuring data security and anonymity of patients. 
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The OMOP CDM is characterized by both the structure of its database and the terminology it 

used for the data in it. 

The CDM structure68 has been designed to be able to store most medical and healthcare-

related data, including diagnoses, treatments, lab measurements, but also billing or healthcare 

provider data. In addition, in order to limit loss of information in the process of converting data 

from the source database to the OMOP format, the OMOP tables typically include fields where 

the values as they appear in the source data can be inserted. 

Furthermore, the OMOP CDM uses its own terminology, called the OMOP “Standardized 

Vocabularies”69, to represent data. This terminology is constituted by numerical IDs called 

“concept IDs” representing the many biomedical concepts which can be encountered in 

converted databases. This ontology was constituted by assigning unique numerical IDs (i.e. 

the concept IDs) to all the codes in widely used standard ontologies such as ICD1070, 

RxNorm71, etc. 

As a consequence, in order for a source registry to be included in network studies, it first needs 

to be mapped to the OMOP CDM both in structure and in terminology, a process called the 

Extract, Transform, Load (ETL) process. The OHDSI community has developed tools such as 

the Rabbit-in-a-Hat72 and Usagi73 softwares to perform mapping from the source structure and 

terminology to the OMOP structure and Standardized Vocabularies, respectively, as well as 

extensive documentation and guidelines to define these mappings74,75. 

Looking into the OMOP CDM was instigated for two reasons. First, it was briefly considered as 

an alternative to store the clinical data part of the GLIOTRAIN data. However, since that clinical 

data was relatively simple (only one timepoint) and could easily be included in the tranSMART 

database, it made little sense to separate the data into two different systems with different 

structures and environments.  

Secondly, with the increasing number of projects that used the OMOP CDM or wanted a 

database to be converted to the CDM, ITTM as a company also took the opportunity to get 

closer to the OHDSI community and take part to OMOP-related projects pertaining to 

converting databases to the OMOP CDM. As such, these projects represented a great 

opportunity to get hands-on experience on Data Management and its impact on how data is 

shared and analyzed by multiple parties. 

Through that involvement and experience, an understanding of key aspects of the process of 

mapping data to the OMOP CDM was acquired, documented, and used to lead efforts to 
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develop a methodology and tools to be used within ITTM to improve quality and speed of the 

team on mapping projects.  

2.3.3.1 OMOP Processes Documentation 

Through the work achieved on data management for the CTI, GLIOTRAIN tranSMART and 

ITTM OMOP database, the fact that standardized, reproducible, and well-documented 

processes were essential to ensure quality and reliability of the data was made clear. As a 

consequence, a major contribution to the efforts of streamlining OMOP mapping projects work 

achieved the identification of key parts of the process, bottlenecks, time- and resources-

consuming tasks, etc. and the development of a methodology to standardize the OMOP 

mapping pipeline, mitigate bottlenecks and issue-triggering events, and document and track 

progress to make onboarding of new staff on a project easier. These suggested methods and 

processes were written as Standard Operating Procedures (SOPs) for the team to agree on a 

common work pipeline. 

2.3.3.2 ETL Software 

One important bottleneck in OMOP mapping projects is the implementation of an ETL script, 

i.e. the code that executes the mapping defined from the source data to the OMOP CDM. Since 

every source database is different, in theory each ETL needs to be tailored specifically to that 

source’s data. This is a very stringent issue, since it means that 

• new code needs to be implemented for each project, 

• the person coding the ETL needs to know in detail the source data and mappings to the 

OMOP CDM defined, which results in either 

o the same person must both define the mappings and code the ETL, which is an 

issue since having the skills to do both is not trivial and requires extensive 

training 

o or there needs to be extensive knowledge transfer between the mapper and the 

ETL implementer, which is a very inefficient and time-consuming solution. 

To overcome this issue, the ITTM team has implemented a Python program which takes a 

matrix containing mapping definitions as an input and automatically apply them across the 

source data. This provided a solution where both mapper and ETL implementer relied on the 

agreed structure of the matrix for the definition of the mappings, allowing for the handover from 

mapping to ETL execution to require minimal knowledge transfer. 
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However, that initial software still required significant adjustments based on the source data 

structure, and was not adapted to the Rabbit-in-a-Hat/Usagi tools pushed by the OHDSI 

community and used as part of the new ITTM SOPs for OMOP mapping project. As a result, 

within this thesis the program was developed further to make it compatible with the newly 

adopted methodology and tools. 

2.3.3.3 Machine-readable Syntax 

In particular, an important part of the work on making the ETL software more modular and 

independent from the source database structure of any given project was in the adaptation of 

a formal structure to define mappings, which was carried out through the matrix in the first 

version of the program. This structure had to have the same role, namely provide a 

standardized framework for defining the mappings that the mapper would apply, writing the 

mappings in a format usable as input by the ETL software.  

The solution that was adopted was the creation of a programing-like syntax, which should be 

simple enough that mappers could write it even without extensive programming knowledge, 

while also strictly structured so that it may be read and interpreted by the ETL program, hence 

significantly reducing the work needed from a developer to execute the defined mappings. 
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2.4 Data Analysis 

2.4.1 Identification of predictive biomarkers of drug response 

Due to delays in the production of the GLIOTRAIN data following the European GDPR 

implementation, a collaboration was started with another GLIOTRAIN ESR from the EMC in 

Rotterdam, in the Netherlands. Through that collaboration, computational statistical analyses 

were performed to identify transcriptomics biomarkers predictive of drugs responses, and these 

analyses brought in the dimension of drugs response which was absent from the main 

GLIOTRAIN data. In addition, through this collaboration I obtained data to analyze and produce 

results to present should the delays in the production of the main GLIOTRAIN data extend for 

too long.  

2.4.1.1 Drugs Repurposing Project 

The collaboration initially focused on a study towards the repurposing towards Glioblastoma of 

drugs used for other diseases. The principle of the drug repurposing study was to expose 45 

Glioblastoma (35 Primary and 10 Recurrent) cell cultures to several concentrations of a given 

drug, quantify the number of cells that survived at each concentration, compute the IC50 

(concentration of the drug at which 50% of the cell population has died from drug exposure), 

and use these IC50 values to determine whether the cell cultures responded to the drug or not. 

This process was performed for 109 drugs that are not currently used for Glioblastoma 

treatment, with the goal of identifying which, if any, of these drugs had the potential to be used 

against Glioblastoma. Furthermore, analysis of the gene expression profile of the cell cultures 

was planned, with the hope of identifying predictive biomarkers for drug response, i.e. genes 

for which the expression profile in the tumour would suggest a drug would be effective for 

treating the patient.  

2.4.1.2 Berkeley LASSO Analysis review 

Initially, support on the analytical side of the Drugs Repurposing Project was provided by a 

partner of the EMC team at the University of California Berkeley, where a Least Absolute 

Shrinkage and Selection Operator (LASSO) analysis76, a linear regression approach that allows 

for feature selection, was performed on the data . Since the exact methodology and parameters 

used in there had not been disclosed, it was decided that the results of that analysis would be 

compared to the results produced during the collaboration, to potentially validate the approach. 

To do so, as well as determine whether the Berkeley methodology could be reproduced from 

the limited knowledge available, the results of the Berkeley analysis were reviewed, and 

reproduction was attempted at two levels: 



26 
 

• using the Berkeley LASSO-selected genes to try and identify the same genes of interest  

• compare the functional pathways corresponding to the Berkeley LASSO-selected genes 

to the pathways identified in the Drug Repurposing Project analysis 

2.4.1.3 Validation of Glioblastoma cell culture models 

Later during the PhD project, the collaboration with EMC was extended to another project, in 

order to produce analyses and figures to use in an article that had been in preparation for a 

long time, where the team argues for their models of Glioblastoma cell culture and shows that 

these cultures are representative of the parental tumor they are derived from, in particular in 

response to TMZ exposure which is the current standard of care drug for Glioblastoma. 

For this, they mainly wanted to show correlation between the cell cultures’ response to TMZ 

and response from the patients to treatment, represented by their Overall Survival (OS) and 

Progression Free Survival (PFS).  

Furthermore, same as for the drug repurposing project, a secondary objective for this study 

was to see if predictive biomarkers to TMZ response with new updated drug response data 

could be identified. 

2.4.2 GLIOTRAIN Data Analysis 

Finally, an integrative analysis using the GLIOTRAIN and EMC data as well as the 

Glioblastoma Disease Map was planned to investigate resistance mechanisms of 

Glioblastoma. That analysis was set to take place in two stages. 

First, analysis of each resource individually would allow to detect information about resistance 

mechanisms characteristic to each data type. To do so, Differential Expression Analyses (DEA) 

of each dataset was performed to determine significant differences in the molecular profiles of 

Short-Term (ST) survivors (overall survival < 12 months) and Long-Term (LT) survivors (overall 

survival > 36 months) of Glioblastoma. In addition, a network topology analysis should be 

performed on the Glioblastoma Disease Map in order to identify potential key components of 

the network that may be worth targeting for treatment of Glioblastoma. 

Secondly, an analysis relying on network topology to orient data analysis should be performed 

to allow for the emergence of synergistic patterns between the datasets undetected by 

individual analysis.  

However, due to time constraints only the DEA part of the analysis and a qualitative rather than 

computational analysis of the Glioblastoma Disease Maps network were effectively performed. 
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3 Scope and Aims of the Thesis 

Through this thesis I am presenting the work and research I conducted during my PhD studies, 

towards elucidation of resistance mechanisms of Glioblastoma via an integrative multi-omics 

data analysis. This is done along three axes of research and reflection: the creation of a 

Glioblastoma Disease Map; the analysis of multiple Glioblastoma-related datasets of different 

omics type; and the documentation and automatization of data management-related processes 

and methods. 

The first axis, about the Disease Map, describes how literature about the molecular 

mechanisms involved in Glioblastoma was screened to identify relevant pathways and 

interactions that should be included in a Glioblastoma-specific disease map. In this part of the 

thesis are included the methodology to select and extract molecular interactions, the choices 

on how to represent it within the Disease Map standards, the resulting network and insights 

that could be derived from the disease map on its own. It also presents efforts to extend the 

Disease Map framework to establish yet poorly covered considerations about representation 

of genetic alterations models. 

Secondly, in the reflection about data management, concepts of extensive transparency, 

documentation and communication in the handling of data at the level of data management and 

how they may impact downstream analyses are explored via implementation of data 

management methods under three different systems environments: clinical trials databases, 

the tranSMART data warehouse and the OMOP CDM. It also includes both the steps taken for 

the management of the GLIOTRAIN data and in the improvement of efficiency of the Data 

Management processes.  

Finally, the Data analysis part of the manuscript presents the processing, normalization and 

other transformations applied to the GLIOTRAIN and EMC data before analysis, details the 

different analyses methods considered and applied for the analysis for my PhD project as well 

as for the collaboration with EMC, and discusses the results these analyses produced in the 

perspective of uncovering Glioblastoma resistance mechanisms. 

Figure 1 illustrates the different parts of this project and how they come together towards the 

objective of the thesis. 
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Figure 1: Overview of the components of the PhD. Red: Data Management. Blue: Glioblastoma Disease Map. 
Orange: Identification of predictive biomarkers of drug response Analysis. Green: Integrative analysis. Oval shapes: 
Hosted away abroad 
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4 Materials and Methods 

All data manipulations and analyses were performed using the R language77 in the RStudio 

software78, unless specified otherwise. 

Implementation of the described functions and analyses has been made publicly available on 

a GitHub repository at “https://github.com/RomainTching/phd” (this does not include the 

software described in the section 4.2.3.2 ETL software, which is ITTM Intellectual Property and 

cannot be published in this context). The corresponding files and functions will be referenced 

where relevant in the 4 Materials and Methods section. 

4.1 Glioblastoma Disease Map 

4.1.1 Literature screening 

Articles used as a basis to build the Glioblastoma Disease Map were found through the PubMed 

website79, searching for keywords relevant to the topic of interest, such as “Glioblastoma 

pathways”, “mTorC1 targets” of “TP53 in Glioblastoma” for instance. For each search, up to 

three pages of the results were screened to select and read articles that appeared to be most 

relevant based on both title and abstract of the article. 

To determine a starting point for building the Glioblastoma Disease Map, broad review papers 

about the molecular profile of Glioblastoma8–13 were read. From there, the Glioblastoma 

Disease Map was started focusing on the three pathways recurrently identified in the articles 

as key drivers of Glioblastoma: RTK/PI3K/AKT pathway, the RB pathway and the TP53 

pathway. 

For each of these pathways, review articles on the pathway were sought out to model it in the 

Disease Map, starting with the proteins that are known to be mutated or have altered 

expression profiles in Glioblastoma. Moreover, the references of each review were also 

screened to identify other papers, both original research and review, that would be relevant to 

read afterwards.  

Therefore, the pathways were first modelled based on reviews that described the interactions 

cascade on a broader level, generally in the way they normally unfold in a healthy context rather 

than in Glioblastoma. Glioblastoma-specific alterations were then integrated afterwards, when 

they concerned mutated proteins, since alterations in transcription rate is not directly 

representable at the protein-protein interactions level. 

https://github.com/RomainTching/phd
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Furthermore, because the process of screening literature and building a disease map is very 

time-consuming, the decision was made to mainly focus on review articles to build the core of 

the Disease Map, and only look into original research papers afterwards if time allowed it, since 

progress on other aspects of the PhD would have been greatly impeded otherwise. 

The RTK/PI3K/AKT pathway was started with how the PI3K and AKT proteins are 

activated12,13,80,81, before looking into downstream effectors of the signaling cascade. In 

particular, pathways that may lead to typical cancer-altered functions82,83 such as apoptosis, 

cell proliferation or angiogenesis for instance, were sought out and focused on. This led to the 

investigations on the mTORC1 pathway84,85 which influences cell growth, the FOXO 

transcription factors family86–88 which regulate transcription of many targets, some of which are 

involved in regulation of apoptosis and of the cell cycle, as well as papers describing 

interactions with effectors of the RTK/PI3K/AKT cascade that bridge to the TP5389 and RB90 

pathways. 

Later, the RAS/RAF/MEK/ERK signaling cascade91,92 was identified to be of great interest and 

integrated in the RTK/PI3K/AKT submap since it is also initiated by RTK activation, and may 

act as an alternative path to activate PI3K as well. 

For the RB pathway, focus was given to reviews93–95 that described both regulation of RB and 

its functions to inhibit E2F transcription factors family. 

Finally, while regulation mechanisms of TP5389,96–98 are relatively consistent and well 

characterized, screening literature for the TP53 transcriptional targets was tricky since it has 

many known targets but studies that would investigate Glioblastoma-specific relevant targets 

could not be found. As a result, transcription by TP53 was assumed to be equally likely for all 

of its targets, and they were identified and inserted in the map based on the review from Bieging 

et al. (2014)99. Indeed, this review lists many of the TP53 targets and categorizes them into the 

cellular function they are involved with, which allowed to produce a basis for the TP53 pathway 

with clear separation of the different downstream functions it regulates, so that the submap 

may easily be adjusted by adding or removing TP53 transcriptional targets should a 

Glioblastoma-specific list of relevant targets be identified. 

Furthermore, during research and reading it became clear that in addition to these three 

pathways, explicit representation of genetic alterations in Glioblastoma was also needed. Thus, 

genetic alterations were also integrated, based mainly on findings from the Glioblastoma-

specific TCGA (The Cancer Genome Atlas) datasets8,9, but also on other articles10,12,13,100,101.  
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4.1.2 Genetic Alterations Models definition 

In order to represent Glioblastoma-specific genetic alterations, new standardized models in line 

with the broader Disease Map standards needed to be developed. Since a common consensus 

and good practices on how to represent these genetic alterations could not be found, models 

that would fit the needs of this project, but also general enough that it could be recognized and 

considered for integration by the Disease Map community, had to be defined. 

Thus, to define this model, the Systems Biology Graphical Notation (SBGN) standard was 

followed closely and representation of genetic alterations were defined within that framework. 

Three issues were solved in the definition of that model: the identification of genetic alteration 

types relevant to Glioblastoma, the representation of biological entities involved, and how to 

convey the genetic alterations as interactions between entities.  

Genetic alterations relevant to Glioblastoma were determined to include chromosomal or gene 

amplifications or deletions, point mutations and patterns of mutually exclusive or co-occurring 

mutations. Point mutations can have a wide variety of effects with different amplitudes, however 

given the qualitative nature of Disease Map diagrams, modelling the relative strength of the 

effect of mutations is not possible, and representable effects themselves can be classified into 

four categories based on outcome of the mutation: increased transcription rate, increase 

protein efficiency, decreased transcription rate and decreased protein efficiency. 

Biological entities involved in these alterations are either chromosomal regions, genes, mRNAs 

for transcription rate aberrations, or small-scale mutation (SNPs, small insertions or deletions) 

sites.  

Chromosomal regions in copy number variations were represented as hypothetical complexes, 

whereas they should be containers when modelling other mutations involving genes contained 

in those regions.  

Mutation sites are defined as a single modification site on the gene, which serves to represent 

all mutations of this gene that result in the same outcome. If other mutations of the gene lead 

to a different outcome (for instance, decreased transcription rate and decrease of protein 

efficiency), they are represented by a distinct modification site. Presence of any of the mutation 

linked to the modification site is represented by a ‘*’ symbol. This is a slight divergence from 

the standard, since this ‘*’ symbol in SBGN is supposed to represent that the modification site 

presents any of the alterations: ‘phosphorylation’, ‘methylation’ or ‘acetylation’. But since there 

is no dedicated ‘mutation’ annotation, this was chosen as placeholder. Furthermore, the list of 
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mutations corresponding to that outcome may be added as notes to the mutated gene, to retain 

that information in the map. 

With these definitions, determining a representation for mutation-modelling interaction 

becomes simpler. A small-scale mutation can be the transition from wild-type to mutated alleles. 

Chromosomal aberrations are represented by a transition from the normal locus as a 

hypothetical complex to one which is in an “Amplified” or “Knockout” (KO) state. In addition, to 

convey that these are not natural transitions a phenotype node annotated with the 

corresponding genetic aberration, i.e. “Chromosome Duplication”, “Loss of heterozygosity”, 

“Gene Duplication”, “Gain of Function Mutation” and “Loss of Function Mutation” can be used 

as a catalyzer of the transition. As for mutually exclusive or co-occurring mutations, they can 

be represented as respectively negative or positive influences between the corresponding 

genes or loci. 

As for the qualitative effects of the genetic alterations, an increase or decrease in the 

transcription rate of the gene has been defined as respectively a positive or negative influence 

of the mutated gene on its mRNA; increased or decreased protein efficiency or activity can be 

represented either by a direct positive or negative influence from the mutated protein on its 

wild-type counterpart in the pathway if an exact characterization of the mutation is not available, 

and if it is then the corresponding interactions must be represented. 

Following definition of these different models for genetic alterations representation, they were 

presented, discussed and revised by active members of the Disease Map community from the 

LCSB BioCore. 

4.1.3 Methodology of building the Glioblastoma Disease Map 

In order to build the molecular interaction networks corresponding to each of these pathways, 

work was conducted in parallel on different files, or “submaps”, one for each pathway. 

The submaps and final Disease Map were built using the CellDesigner software102,103 version 

4.4.2, and the final Glioblastoma Disease Map was then uploaded to the MINERVA platform44. 

To transcribe literature knowledge into a given submap, three different documents were 

involved to compile information about molecular interactions: 

1. A “pre-curation” file, listing all statements encountered in articles read that may 

potentially be of use to describe and justify molecular interactions. This file is a 

spreadsheet containing two tabs. The first tab contains two columns: the statements of 

interest, and the publication that the review is using as a source for that statement. The 
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second tab contains, for each article read, a mapping between the citation system it 

uses (e.g. numbers: [1, 2, …]; author names and date: Aldape et al., 2015…) and the 

PMID of the cited publication. 

2. A “curation” file, which only includes the statements from the pre-curation file that 

describe interactions that are effectively modelled in the submap. This file is a table 

based on a template provided by the LCSB Biocore, and contains several columns: 

• “Evidence text” that contains the statement that describes a given interaction 

• “Title” of the publication the evidence text is extracted from 

• “Authors” of the publication the evidence text is extracted from 

• “Journal name / Publication date” of the publication the evidence text is extracted 

from 

• “PMID” the PubMed ID of the publication the evidence text is extracted from 

• “Cited resource” the PubMed ID(s) of the publications referenced as the source 

associated with the evidence text, if relevant 

• “Disease context” to indicate under which setting the described interaction takes 

place. As have been mentioned before, this could be in Glioblastoma, cancer in 

general, healthy tissue functions, but also a specific part of the pathway if it’s the 

focus of the publication, such as regulation of a specific protein or influence of a 

protein on a downstream cellular function. 

• “ReactionID” that contains the ID of the reaction in the CellDesigner submap 

• “ID changes” that was used if an interaction was deleted or broken down into 

several, so that the original ReactionID is still recorded. 

3. the CellDesigner file which contains the submap network for the pathway 

The typical pipeline used to add new interactions to a given submap was to: 

1. Read several publications concerning a specific topic. For each publication I would: 

a. read the publication a first time 

b. add the publication title and PMID as a new row in the precuration file, and 

highlight it to identify it as a title row 

c. read the publication a second time, and highlight all statements in it that may be 

relevant to describe molecular interactions; these statements should be 

relatively short, usually a summarization of findings which would otherwise take 

several sentences to characterize in detail 

d. add all these statements as new rows in the precuration file 
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e. go through the references list of the publication to find potentially interesting 

papers that be relevant to read later, and add these references to a “Read later” 

folder in a bibliography references manager 

2. Once the first step is completed, review the new statements in the precuration file 

across the publications added, and identify interactions to integrate to the submap. 

Preferably, for a given interaction there should be statements from at least two 

publications, which would strengthen confidence in their reliability. 

3. For a given molecular interaction to add to the submap: 

a. the interaction was represented on the CellDesigner submap 

b. the PMID of the publication(s) the associated statements came from were added 

to the submap as a “isDescribedBy” relation of the “PubMed” data type 

c. the associated statements were added to the curation file, which was completed 

with all relevant information about the publications the statements came from 

d. the rows for associated statements in the precuration file were colored in blue 

to indicate the corresponding interaction had been modelled. If a statement 

described more than one interaction, the row was colored in green and the text 

for only the part about this specific interaction was colored in blue 

e. redundant statements from a same publication which were not used as 

reference statements in the curation file were greyed out to also indicate the 

corresponding interaction was already modelled, but not using these statements 

as reference description. 

This process ensured that all potentially relevant information was identified from the 

publications read, stored in a centralized place to avoid the need to go back multiple times to 

the full text of a publication, and tracked to identify which pieces of that information had been 

used and which had yet to be represented. 

The way molecular interactions were modelled depended on how detailed their descriptions 

was in the literature and on my interpretation of these descriptions. Generally speaking: 

a. (de)phosphorylations and other types of post-translational modifications were typically 

represented by a transition of the (de)phosphorylated protein from one state to the 

other, catalyzed by the appropriate enzyme when relevant 

b. however, if the description of the interaction clearly stated that the enzyme binds to the 

protein, or that they form a complex, or other similar formulations that explicitly mentions 

binding as a step of the process, the interaction was represented in two steps, with the 
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formation of the complex first, then its disassembly with the protein released in its 

(de)phosphorylated state 

c. since (de)phosphorylation or other modifications may result in (in)activation of a protein, 

these cases were represented accordingly since the modification itself does not provide 

a clear indication that it corresponds to an (in)active state of the protein 

d. broad cellular functions such as DNA damage response, apoptosis, cell growth, etc. 

were represented with the phenotype type of node in the network 

e. there were occurrences where the description of a transition was unclear or where the 

process was suspected to be more complex and involving some additional steps, such 

as how DNA damage leads to activation of certain proteins for example, but for which 

a better characterization could not be found directly in the articles and would require 

finding articles specific to it. Since that interaction still needed to be represented with 

the information at hand, at least for the time being, the activating component of the 

transition was represented as “triggering” the transition as a way to indicate its role was 

more ambiguous than a clear catalyzer 

f. when a protein was described as being sequestrated, or inhibited following binding to 

another, it was represented as a free, active protein forming a complex with the other 

protein, leading to its inactive state in the complex 

g. otherwise, inhibition was represented as an action of the inhibiting agent on the 

interaction it inhibits, or as a negative influence on the protein inhibited if the specific 

interaction(s) inhibited were not identified 

h. transcription factor-mediated transcription was modelled as a positive (or negative) 

influence of the transcription factor on its target’s mRNA 

i. in cases where members of a protein family, or targets of a transcription factor, were 

involved in similar interactions with the same nodes, they were grouped together under 

a hypothetical complex, so that interactions involving them were represented by 

interactions only with the hypothetical complex, rather than separately with each of the 

components it contains. However, if one of the components of these hypothetical 

complexes was involved in other interactions only specific to that component, these 

interactions had to be represented with another instance of that component outside of 

the hypothetical complex, reformulated to "in accordance with the SBGN standard"  

Once the submaps could be considered as finalized, i.e. the most important interactions for 

each submap were represented and investigating their downstream effectors further would take 

more time than available for the Disease Map, they were combined into one. This was done by 
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copy-pasting the networks from each submap into a new CellDesigner file. Then, the 

interactions that were found in more than one submap were identified and merged. Finally, the 

layout of the whole network was re-defined to make it more readable and easier to navigate. 
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4.2 Data management methods and systems 

4.2.1 Cancer Trials Ireland 

4.2.1.1 Glioma Biomarkers Study 

For the Glioma Biomarkers Study, which was an observational trial seeking to identify blood 

biomarkers of glioma, I was tasked with inputting the trial data into a database. The data for 

each participant of this study was collected on individual Case Report Forms (CRFs) that had 

been previously scanned to be available numerically, and needed to be compiled and inputted 

in the CTI database for that study.  

Each scanned CRF was screened to input the values and information it contained into the 

corresponding field of the CTI database. Once all the data from that form had been transcribed, 

the file of the CRF was placed into a different subfolder. 

Issues in the data, such as unreadable data due to low quality of the scan, incorrect data type, 

out-of-range values, etc., were referenced in a document dedicated to these issues, recording 

issues encountered as well as the corresponding CRF file, patient ID, and field. This file was 

regularly submitted to CTI supervisors, who then transferred the information to the staff 

members in contact with the hospitals participating to the study, so that they may request an 

update or clarification for that data. 

4.2.1.2 Breast Cancer Trial 

For the Breast Cancer Trial which was a two-arms, treatments comparison study, a fully 

populated database was available containing data about demographics (number of participants 

in different age ranges, geographical location…), biomarkers (ERBB2, HER, …), adverse 

events (frequency, severity, outcome of the different know adverse events…), response to 

treatment (quality of life, overall survival, progression free survival…) etc. collected for the trial. 

The first stage for this work consisted mainly in getting familiar with the database and tools 

used for the exploration and analysis of the data. Several meetings with a supervisor as well 

as the database maintainer took place to discuss and ensure proper understanding of the 

database structure, its contents and how to query it. Extensive discussions also helped to grasp 

exactly what information was needed in the tables and reports output, how it was supposed to 

be formatted, and what information was expected to be conveyed through them. Meanwhile, 

SAS software104 syntax was learned through online tutorials and looking at the CTI code for a 

few other similar trials. 
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Following the preparation phase, implementation of scripts to produce summary statistics 

tables and reports about the database contents for comparison between the two arms of the 

study began. This process started with the simpler tables which only required counting a few 

variables instead of intricate formatting of the output, to get comfortable with programming with 

SAS software before looking into more complex tables requiring to calculate outputs from 

several variables, compute summary statistics or output nested multi-level tables for instance. 

In doing so the example of existing projects was followed and one script per table or report was 

written. 

Following observations of the repetitive usage of a few code snippets for multiple tables and 

reports, these snippets were turned into macros, the SAS software equivalent to programming 

functions, which were compiled into a separate dedicated script.  

Among the more notable macros defined there were: 

• one for each recurrent summary statistic (average, variance, …) 

• one that would take data and a keyword for table structure as input to produce the table 

in the selected format 

• one that output, for a given table, the information about missing data (patient, field…) 

that was encountered during the computation of that table. That output may then be 

used to request update or completion of the data to the source hospital 

Scripts were then further compiled to gather the code for all tables and reports of a same 

category (such as demographics, biomarkers, or adverse events) into one script per category. 

These scripts ended up larger than any individual script for one table or report, but centralized 

the code into a more organized and easy to navigate structure than a multitude of small script 

files would have been. 

4.2.2 TranSMART and the GLIOTRAIN Data 

The data quality control and curation steps performed towards upload of data to the 

GLIOTRAIN tranSMART database were conducted in close collaboration with the GLIOTRAIN 

ESR who oversaw the sequencing of the GLIOTRAIN biobank samples, at VIB, to clarify issues 

and ambiguities that were encountered in the provided datasets. The code used to investigate 

the data and transform it to a tranSMART-compatible format can be found on the GitHub 

repository in the GLIOTRAIN_Data_Analysis/GTdata_Curation.R script. 
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4.2.2.1 Provided data 

To ensure a relative homogeneity of the clinical profile of the patients they came from, the 

samples contributed by ICM, EMC and RCSI were selected based on the same inclusion 

criteria: 

• a Primary Glioblastoma diagnosis, with wildtype Isocitrate Dehydrogenase (IDH) genes 

status  

• patients were less than 70 years old at resection 

• a Karnofsky performance status105 (measuring ability to perform ordinary tasks) of over 

70, which indicates a patient can care for themselves but is unable to carry on normal 

activity or work. 

• patients were under only first line medical Stupp regimen: radiotherapy at 60Gy + 

Temodal106 (Temozolomide-containing drug)  

• frozen tissue from the tumours was available 

In addition to the tumour tissue, EMC also provided 26 cell cultures for sequencing. These cell 

cultures were derived from 26 of the 56 tumour samples they provided, thus offering the 

possibility to compare expression profiles of tumours and derived cell cultures, but also to 

potentially use their cell cultures to validate findings from analysis of the tumour samples. Table 

1 summarizes the number of samples from each organization that were sent for each type of 

sequencing. 

Table 1: Origin of samples from the GLIOTRAIN database. ST / IT / LT: Short-Term / Intermediate-Term / Long-
Term [survivors] 

Number of 
Samples 

Sample type Originating Institute ST / IT / LT 

15 
Glioblastoma tissue 
(extracted nucleic acids) 

RCSI (Brain Tumour Biobank, 
Beaumont Hospital, Dublin, Ireland) 

- / 15 / - 

57 
Glioblastoma tissue 
(extracted nucleic acids) 

ICM (“Onconeurotek“ Pitié-Salpêtrière 
Hospital, Paris, France) 

5 / 29 / 23 

56 
Glioblastoma tissue (FF) EMC (Neuro-oncology Biobank, 

Erasmus Medical Centre, Rotterdam, 
The Netherlands)  

9 / 37 / 10 

26 
Glioblastoma cell culture 
pellets  

EMC (Neuro-oncology Biobank, 
Erasmus Medical Centre, Rotterdam, 
The Netherlands)  

7 / 16 / 3 

Total: 154  

Table 2 lists the collected clinical information associated to the GLIOTRAIN samples. 
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Table 2: Collected clinical data associated with samples in the GLIOTRAIN database. Table extracted and 
adapted from the GLIOTRAIN project Data Management Plan. 

Data  Values 

Patient ID GLIOTRAIN-specific pseudonymized ID 

Diagnosis Glioblastoma  Yes [Inclusion Criterion], No 

Sex  Male, Female 

Age at diagnosis  <70 [Inclusion Criterion] 

Surgical Procedure  Biopsy, Partial Resection, Complete Resection 

Location of the tumour (lobe) Butterfly, Frontal, Parietal, Temporal, Occipital, 
Subcortical, and combinations of these 

Location of the tumour (side) Left, Right, Corpus Callosum 

IDH Status  Wildtype [Inclusion Criterion] 

MGMT promoter methylation status   Methylated, Unmethylated  

Karnofsky performance status  >70 [Inclusion Criterion]   

First line medical Stupp regimen (60Gy+Temodal) Yes [Inclusion Criterion]  

First tumor progression  Number of months since diagnosis 

Second line medical treatment  Description of second line treatment 

Second tumor progression Number of months since diagnosis 

Third line medical treatment  Description of third line treatment 

Third tumor progression Number of months since diagnosis 

Fourth line medical treatment  Description of fourth line treatment 

Fourth tumor progression Number of months since diagnosis 

Fifth line medical treatment  Description of fifth line treatment 

Fifth tumor progression Number of months since diagnosis 

Sixth line medical treatment  Description of sixth line treatment 

Death  Yes, No  

FFPE available   Yes, No 

Frozen tissue available  Yes [Inclusion Criterion]  

The selected samples were then shipped to VIB (Leuven, Belgium), where they underwent 

sequencing by another GLIOTRAIN PhD student to produce RNA-Seq, WGS and Methylation 

data, following the pipelines described below. 

The RNA-Seq data for the GLIOTRAIN database was produced using the following pipeline: 

• Illumina HiSeq 4000, single end  

• Removing duplicates with Clumpify version 37.28  

• Removing adapters with Fastx clipper version 0.0.13 

• Quality check with FastQC version 0.11.4 

• Mapping the reads with STAR version 2.6 
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• Manipulating alignments (sorting, indexing) with Samtools  

• Gene count with HTSeq version 0.10.0 

In addition, seven of the samples were re-sequenced. Five of them because they had almost 

no reads in the output, and a standard output after re-sequencing lead to the conclusion that 

these five samples were not properly loaded during the initial sequencing run. For the other two 

samples, they had low read counts both before and after re-sequencing, which lead to the 

conclusion that the issue was likely due to poor quality of the library for these samples. 

As a result of this process the dataset that was provided for processing and upload to the 

database contained the RNA-Seq read counts for 58,278 transcripts, associated to ENSEMBL 

IDs, in 154 samples.  

Whole Genome Sequencing (WGS) data was produced for 151 samples from the 

GLIOTRAIN biobank. This was low-coverage sequencing data, therefore appropriate to derive 

Copy Number Variations, but not SNPs and variants information. Sequencing was performed 

through the following pipeline: 

• Shot-gun whole genome libraries were prepared with KAPA library prep kit  

• Illumina HiSeq 4000, 0.1X coverage  

• Mapping the reads with BWA-mem version 0.7.12 to human reference genome hg19  

• Picard to remove PCR duplicates v1.43 

• Indexing and manipulating the reads with Samtools 0.1.18 

• CNAs to identified by binning reads in 50kb windows with QDNASeq (R package)  

• ASCAT algorithm v2.0.7 is used to segment the raw data 

The resulting dataset contained the log_R value for a given chromosomal fragment or contig, 

which corresponds to the log2 transformation of the estimated copy number of that fragment. 

Each row in the dataset concerned one such fragment, indicating the chromosome and sample 

to which it belongs, the start and end positions of the fragment on the chromosome, and the 

log_R value. Table 3 and Figure 2Error! Reference source not found. illustrate the format 

of that dataset, which contained data on a total of 11,829 individual chromosomal fragments. 
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In addition, focal events were computed from the WGS data using the GISTIC2.0 software107 

at VIB, and were also shared as potentially interesting to the consortium. Figure 3 represents 

the focal events identified in this dataset. It contained, for each focal event identified, the 

cytoband it corresponds to, its start and end positions, and for each sample whether the copy 

number of the region is strongly amplified, amplified, unchanged, or reduced, with values [2, 1, 

0, -1] respectively.  

Sample Chromosome Start End Log_R 

Sample 1 i Position 1 Position 3 0.3208 

Sample 1 i Position 3 Position 5 0.0171 

Sample 2 i Position 1 Position 2 0.1625 

Sample 2 i Position 3 Position 4 1.2542 

Sample 2 i Position4 Position5 0.0593 

Sample 3 i Position 1 Position 5 0.0811 

Table 3: Example of the format of the processed seg file data for an imaginary chromosome i. Start and 
End give the pair-base positions of the limits of the considered fragment on the chromosome. Log_R is the 

measured value for that fragment 

 

Figure 2: Representation of the fragments present in Error! Reference source not found., aligned per 
sample. Each horizontal black line represents a single continuous fragment of the chromosome ‘i’ for the 
corresponding sample. Dashed vertical green lines represent the start or end position of at least one of the 

fragments. 
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Methylation data was generated only for 15 samples, due to higher cost and limited tissue 

available for RNA-Seq, WGS and Methylation sequencing. The samples were selected based 

on two criteria: 

• There needed to be an even distribution of short-term (OS < 9), intermediate-term (9 < 

OS < 36) and long-term (OS > 36) survivors-derived samples in the dataset, so five of 

each. 

• There was enough of the sample left after both WGS and RNA-Seq analyses were 

performed.  

Note that as a result of this selection, the distribution of methylation profiles is likely not 

representative of what can be observed in a random selection of samples.  

The selection of the samples was performed by three GLIOTRAIN ESRs together at VIB. 

Contrary to RNA-Seq and WGS, the Methylation data was sequenced by a member of the VIB 

team other than the GLIOTRAIN PhD student, who was not able to provide a detailed 

description of the sequencing pipeline, besides that it also relied on an Illumina HiSeq4000 

sequencer. 

Figure 3: Amplified (red) and deleted (blue) cytobands of identified focal events, as detected by the GISTIC 
software. Y axis corresponds to chromosomal position of the focal event, X axis represents its amplitude. Credit for 
analysis and figures to Gonca Dilcan (GLIOTRAIN ESR at VIB, Belgium) 
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The dataset resulting from Methylation sequencing contained the beta (β) values for individual 

CpG sites, that is to say the estimation of methylation level of the sites for the patient, between 

0 for unmethylated and 1 for methylated. Furthermore, data was not available for all site in all 

15 samples, resulting in a large yet extremely sparse matrix. As a consequence, to limit the 

size of the data to be loaded on the database while avoiding removing potentially relevant 

information, the dataset was filtered out to keep only CpG sites for which data was not missing 

in at least 11 (75%) of the samples. The final matrix contained data for 250,959 CpG sites. 

Following sequencing, the data was sent to ITTM for processing and upload to a tranSMART 

database for sharing and access across the consortium. The sequencing datasets all used 

sample IDs internal to VIB rather than the GLIOTRAIN IDs. 

4.2.2.2 Data Privacy and Security 

In order to respect data privacy and security, several measures were taken and aligned across 

the whole consortium. 

First, pseudonymization considerations were included during the process of determining the 

clinical information that would be collected and shared with the consortium about each sample.  

As a result, an ID system internal to GLIOTRAIN and based on the example of the The Cancer 

Genome Atlas (TCGA) barcodes108 was defined. This labelling system contained information to 

identify each sample based on the institute that provided it, a sample number, the tissue origin 

of the sample (tumour or cell culture), the type of analyte contained in the sample (DNA, RNA 

or Protein extracts, or whole tissue), and the sequencing that was performed to generate the 

data (WGS, RNA-Seq or Methylation). These barcodes were agreed on by the consortium and 

used directly to label samples at the collection phase, so that the mapping between GLIOTRAIN 

IDs and the source institute IDs would be known only to the source institute. 

Furthermore, any type of information that could easily allow to identify the patient also had to 

be excluded or modified to remove that possibility, such as recording the age at diagnosis of 

the patient rather than the exact date of diagnosis. 

Secondly, secure channels to access and share data were needed. For that, several solutions 

had to be implemented: 

• a private ownCloud file sharing instance was set up and accessible via ITTM-provided 

credentials, the password of which had to be changed upon first connection. The 

ownCloud was used to share and work on documents within the consortium. It was also 
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used to transfer small data files between users, with the agreement that the data had 

to be immediately collected and removed from ownCloud folders by the people involved 

• for larger omics files that had to be sent from VIB to ITTM for curation and upload to the 

tranSMART database, a SSH connection was provided by VIB for the transfer 

• the tranSMART database itself was hosted on secure servers accessible only with 

credentials, provided by ITTM upon request and approval by the GLIOTRAIN directing 

body, and included a temporary password that was required to be changed at first login. 

The usage of these channels, as well as the fact that other ways to share sensitive information 

such as emails were inappropriate as potentially easy to breach, was extensively and 

repeatedly explained to the consortium members through mails, presentations, and in the 

internal GLIOTRAIN Data Management Plan. 

These considerations and subsequent implemented solutions ensured that the GLIOTRAIN 

data was handled in a secure way, respecting both data privacy of the patients and GDPR 

regulations. 

4.2.2.3 TranSMART Data Tree 

The organization of the data in the graphical interface of tranSMART took into consideration 

that the data should be organized logically and intuitively, by grouping together data that would 

likely be needed at the same time. As such, the data tree nodes devolved from broad categories 

such as “Clinical Data” or “Biomarker Data” into more and more specific labels like “First Line 

of Treatment” or “RNA-Seq Data”. 

While they were initially sequenced together, the choice was made to separate the cell cultures 

omics datasets (RNA-Seq, WGS and focal events) from the parental tumour data in the final 

database, since cell cultures were an addition to the main body of patient data, and may present 

a different profile than a normal tumour, even if slightly. As such, consortium member may want 

to exclude cultures data from their analyses, which would have been difficult to do if they were 

part of the same dataset in tranSMART, while including them if they are loaded as a different 

dataset was much simpler. In addition, discrepancies between the molecular profiles of a few 

of the cell cultures and their parental tumour counterparts (see subsection 5.2.2.1 Provided 

Data Characterization) comforted this decision. 

4.2.2.4 Characterization of the Sequencing Data 

In order to map ENSEMBL IDs of transcripts from RNA-Seq sequencing to the corresponding 

gene names, two issues were solved through inquiry to VIB: 
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• the version of the ENSEMBL database used in their sequencing pipeline to annotate 

transcripts turned out to be the release 89 (April 2017) of the ENSEMBL database 

• a “_PAR_Y” suffix present for 45 transcripts after an ENSEMBL ID which also existed 

in the data without the suffix and in the ENSEMBL database, was identified as an 

annotation to differentiate transcripts derived from the Y chromosome allele of a gene 

from the transcripts coming from the gene on the X chromosome, which were the ones 

without the suffix 

The initial WGS dataset provided by VIB was a matrix where each row contained the log2-

transformed copy number estimation of a given chromosomal fragment from a sample. It 

contained data for 151 samples out of the 154 total included in the GLIOTRAIN biobank, the 

three missing being because they didn’t have enough biological material for both RNA-Seq and 

WGS sequencing. 

First the coverage of the data was investigated. For that purpose, a graphical view of the data 

for each chromosome was produced, by lining up horizontally all the fragments of a given 

sample for that chromosome, and presenting this representation of the chromosome for all 

samples on top of each other, much like what is represented in the example of Figure 2. In 

addition, each fragment was colored based on its associated copy number value.  

Furthermore, a comparison of the copy number variation profiles between the cell cultures 

samples and the parental tumour samples they were derived from was performed at VIB.  

For the focal events dataset, it was noted that the GISTIC analysis to identify focal events did 

not cover X/Y chromosomes. 

Next, the RNA-Seq and WGS data was analyzed to evaluate its quality and detect potential 

biases and artifacts from source institute, sequencing batch, or source tissue type. This was 

achieved by performing a Principal Component Analysis (PCA) on the data, using the ade4109 

R package, version 1.7-16. 

The PCA was performed on the RNA-Seq data including all samples, where any 0 value was 

incremented to 1 and all values were then log-transformed. 

To analyze the WGS data, it was transformed to a more adapted format. For each 

chromosome, the limits of all fragments from all samples for that chromosome were considered 

to be shared across all samples, and subsequently the regions between two consecutive limit 

positions were defined as new fragments. Thus, many fragments from the initial data were 

broken down into several smaller ones sharing the same value as the original. The columns in 

this new dataset, hereafter called “WGS revised dataset”, were then named as a combination 
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of the chromosome, start and end positions of the fragments they correspond to. Using the 

example defined by Figure 2 and Table 3, Table 4 shows what the transformed data looks 

like. 

Sample 
chri_Position1_

Position2 

chri_Position2_

Position3 

chri_Position3_

Position4 

chri_Position4_

Position5 

Sample 1 0.3208 0.3208 0.0171 0.0171 

Sample 2 0.1625 NA 1.2542 0.0593 

Sample 3 0.0811 0.0811 0.0811 0.0811 

Table 4: Format of the WGS revised dataset, based on the example data from Table 3 

4.2.2.5 ETL Processing of the Data 

In order to load the GLIOTRAIN data to the tranSMART database, a pipeline using software 

internal to ITTM as well as data loading tools110 recognized by the tranSMART foundation was 

used. This pipeline required several files as input. 

For the clinical and low-dimensional data: 

• A file containing the tranSMART data tree structure, the name of each node, as well as 

the path to the file containing the corresponding clinical and low-dimensional data 

• One file or more containing the clinical and low-dimensional data to be loaded to the 

database 

For each omic dataset loaded to the database: 

• The data itself, formatted so that samples are columns and features (genes, 

chromosomal regions, transcripts, etc.) as rows, and the symbol ‘.’ (a dot) as missing 

values. 

• A file mapping the samples from the dataset to the corresponding patient in the clinical 

data. 

• A file containing the list of all features present in the dataset and the gene they 

correspond to. But this association to a gene is not a requirement and the corresponding 

column can be left empty, when the features are large chromosomal regions for 

instance. 

Before anything, the VIB sample IDs were replaced in the data by the GLIOTRAIN IDs. 

Then, the files to load the clinical data for the patients, as well as the sequencing batches 

information for the RNA-Seq and WGS datasets as low-dimensional data were prepared. 

A mapping file indicating the gene name corresponding to each ENSEMBL ID was produced.  
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The WGS revised dataset format was found to be the best solution as a tranSMART-compatible 

format for that data. 

In the Methylation dataset the missing values “NA” were replaced with ‘.’, for tranSMART to 

recognize them as such. 

Furthermore, as previously mentioned in the final database the parental tumour and cell lines 

samples should be available in distinct datasets. As a consequence, after transformation to fit 

the tranSMART requirements, the RNA-Seq dataset, WGS revised dataset, and focal events 

dataset were divided accordingly.  

Once the files associated to each of these six datasets and to the methylation data, as well as 

the database structure, clinical data and batch information files were completed, the ETL 

program was executed and the data loaded to a tranSMART v16.3 database. 

Following uploading, the tranSMART user interface was used to test and explore the data and 

make sure everything was in order, accessible and worked as expected, including download of 

the data. Only then, finally, emails were sent to the consortium members to notify them of the 

availability of the database, and provide them with credentials to access it. 

The database was accessed and used by several members of the consortium over the course 

of the project to explore and download data. 

4.2.2.6 Documentation 

All of the findings produced through the characterization of the GLIOTRAIN data, as well as 

transformation performed to reach the format of the data as available in the final GLIOTRAIN 

database were communicated repeatedly to the consortium, through emails and presentations. 

Furthermore, the writing of an internal “data booklet” was started to compile all that information 

and the contents of the database. 

4.2.3 The OMOP CDM 

4.2.3.1 Writing SOPs 

The definition of standard processes for mapping projects to migrate a database to an OMOP-

compatible format required in-depth evaluations of the steps needed in such projects, how to 

perform them in a standardized, reproducible and efficient way, and how to provide a clear and 

thorough documentation to describe them. 
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First, the work needed in a mapping project was broken down into broad processes. These 

processes were defined partly from experience of mapping projects, and by reflecting on a way 

to logically divide the work into coherent and non-overlapping categories. Once these 

categories were roughly characterized, their precise definition was established by identifying 

milestones and major objectives, defined as documents or work required to be completed 

before another process may be started. 

Following identification of broad processes, the tasks involved in the completion of each 

process were listed. In this endeavor, solutions to optimize completion of work were sought out, 

especially for bottlenecks and particularly time- and resource-consuming tasks. For instance, 

templates were created for reports, project documentation and code, wherever possible. 

Finally, this exercise was completed by writing extensive documentation of these processes as 

internal SOPs, describing in detail each task, and providing guidelines on how to complete it. 

For this, a uniform and coherent terminology also had to be defined and used throughout the 

SOPs. 

Once written each SOP was submitted to the ITTM team involved in OMOP mapping projects 

for discussion and validation, and was adjusted based on feedback until a consensus was 

reached. 

4.2.3.2 ETL software 

The first version of the ITTM ETL program was investigated, reorganized and further 

developed. 

A first step of this work consisted in the review of the code to understand its structure, how it 

operates, and identify and document missing features as well as potential bottlenecks of 

execution which would be resource consuming.  

Secondly, the code was refactored to increase modularity: recurrent code snippets were turned 

into functions called where relevant, large functions were broken down into smaller functions 

calls, and code that was scattered across the program but related to the same feature was 

extracted to dedicated modules and classes of the program. 

Finally, additional features for the software were developed to align it with the newly 

standardized OMOP mapping project pipeline documented in the SOPs. Among these new 

features is the intake and interpretation of machine-readable mapping syntax described below. 
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Each new code refactoring or development was tested to ensure proper implementation and 

tracked using the ITTM internal Gitlab versioning platform. 

4.2.3.3 Creating the machine-readable syntax 

An important bottleneck in completing an OMOP mapping project lies in the programmatical 

implementation of defined mappings to execute them. To mitigate the impact of this issue a 

machine-readable syntax for mapping was designed. The objective in the creation of this syntax 

was to define a way to describe mappings that would be structured enough that it may be read 

and interpreted by a program, while also simple and intuitive so that people unfamiliar with 

programming may use it without extensive training. 

To design the syntax, typical mapping definitions were reviewed to identify recurrent patterns 

and structures that required to be formalized in a machine-readable way. Simultaneously, in 

order to keep it intuitive to non-programmers, formalization of the syntax was limited as much 

as possible to include only the structures indispensable to handle mapping definitions. 

Furthermore, to limit the number of instructions necessary to define any given mapping, 

operations that were frequently used in mappings were identified and associated to explicit 

keywords, which would then be used in the interpretation of the syntax to refer to these 

operations. 

However, it was also recognized that some of the more complex mapping operations would not 

be covered by the syntax confined to the strict minimum of formalization. Nevertheless, the 

gain from keeping it that way was judged optimal. Indeed, regardless of mapping definition with 

the syntax, a programmer would still need to be involved for customization of the ETL launcher 

and its execution. The machine-readable syntax would allow mappers to define most mappings 

themselves, and the more complex operations would need to be entrusted to the programmer 

for implementation. As a consequence, this would limit the additional workload of the 

programmer to only a few operations which can be extensively described by the mapper, 

instead of having to read through and implement every mapping definition individually. 

The resulting syntax, i.e. the set of guidelines to define mappings in a structured yet intuitive 

fashion, was submitted to the ITTM team involved in OMOP mapping projects, and particularly 

people without programming skills, to improve and adjust it. 

Once validated, the code to read and interpret it was implemented and integrated to the ETL 

software.  

Finally, the syntax and how to use it in mapping projects was extensively described in 

documentation integrated to the ITTM OMOP SOPs. 
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4.3 Data Analysis 

4.3.1 Enrichment Analysis Methods 

In order to characterize the results from the different analyses performed during the PhD 

studies and to understand their biological relevance in the context of Glioblastoma, it was 

necessary to determine whether the genes identified as a result of a given analysis presented 

synergies in terms of the cellular processes and functional pathways to which they belonged. 

For this purpose, mainly two methodologies have been used. 

4.3.1.1 IPA functional pathways investigation 

The QIAGEN Ingenuity Pathway Analysis111 (IPA, QIAGEN Inc., 

https://digitalinsights.qiagen.com/IPA) software version 01-16 was used in the earlier analyses 

of the Identification of predictive biomarkers of drug response work, to investigate the genes 

found to be associated with a given drug by generating and exploring functional pathways 

networks. Using it was encouraged by the EMC team since it was also the tool used for the 

Berkeley LASSO analysis to identify genes of interest out of the LASSO results, and as such 

would be part of the reproducibility efforts. 

As such, the functional pathways overly represented among these genes were identified using 

the following steps: 

• a new empty “pathway” was created, where the genes under investigation as well as 

the drug to which genes were associated and its known direct target(s) were added 

• the investigated genes were placed together and away from the drug and its targets 

• the Connect function was used to determine if there was any known direct connection(s) 

between any of these molecules 

• the Grow and Path Explorer functions, adding 50 molecules at a time, were used up to 

two times to expand the set of nodes that may link them with each other 

• the Canonical Pathways function overlay was used to determine if any biological function 

was strongly represented in the resulting sets of genes 

• the network was manually modified to present a more structured and readable layout, 

with the investigated genes on one side, the drug and its target on the other, and the 

nodes that were added as a result of network expansion functions in-between. 

However, that approach was manual, very time consuming, there was no way to control or 

define if and why a gene should be added over another when expanding the network,  and the 

molecular interactions and associated canonical pathways are proprietary and manually 
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curated, which may lead to an incomplete or biased network during the process. For instance, 

canonical pathways appeared biased as mostly cancer-related pathways would show up, even 

with only a handful of genes in the network while non-cancer pathways were scarcely 

represented. 

4.3.1.2 Gene Ontology enrichment function 

As a result, a computational alternative was implemented. An R function was coded to: 

• take a list of genes of interest as input 

• perform an enrichment test against Gene Ontology Biological Processes terms thanks 

to the topGO112 R package, version 2.42.0 

output the top 20 pathways found enriched in the genes of interest along with the p-value of 

the enrichment test. Note that these were not adjusted for multiple testing and used mainly for 

ranking purposes. Adjustment was not attempted as it would have required a complex approach 

due to the multi-step nature of the enrichment tests for limited additional insights, as described 

in the R package documentation. This function named runTogGO() can be found on the GitHub 

repository in both Identification_of_predictive_biomarkers_of_drug_response/ 

EMCAnalysis_IoannisDrugs_runningAnalyses.R and GLIOTRAIN_Data_Analysis/ 

GTAnalysis_DEA.R scripts. 

4.3.2 Identification of predictive biomarkers of drug response 

4.3.2.1 Materials 

4.3.2.1.1 Drugs Repurposing Project 

For the Drugs Repurposing Project, the available data was: 

• The whole-transcriptome data from a DASL (cDNA-mediated Annealing, Selection, 

extension, and Ligation) assay, collected from first resection Glioblastoma tumors, i.e. 

before any drug therapy against the cancer. It came in the form of four files, one per 

sequencing batch, and each of them presenting expression data of 29,377 probesets 

for a varying number of samples, with a total of 88 samples across the four batches. In 

addition, this data was not collected specifically for this project: it was from a previous, 

completely independent study113 which used it for a different purpose. It is worth noting 

that since that study took place several years before, we had no control or way to verify 

the methods and quality of the process of generating that data. 

• The clinical data about the patients for which DASL data is available, about their tumors 

and the cell cultures derived from it. That data included: 
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o Overall Survival of the patients in months after surgery. 

o Pathological diagnosis of the tumor, of which there were 35 Primary 

Glioblastoma, 10 Recurrent Glioblastoma, 12 oligodendrogliomas, 9 

astrocytomas, and the rest were other types of brain malignancies. 

o The WHO grade, of which there were 64 grade IV, 19 grade III, and the rest was 

lower or unspecified. 

o The MGMT promoter methylation status of the cell cultures. 

• The IC50 values for all 109 drugs screened on the 45 Glioblastoma cell cultures. These 

values were extrapolated from the percentage of cell population survival at different 

concentrations of the drugs for all 45 cultures. This dataset, hereafter called “initial 

IC50s dataset” contained a mix of quantitative values (e.g. 9.63, 0.0081, 175.10), 

categorical values (e.g. “< 0.0256”, “> 160”) and missing values marked with an ‘X’. As 

such, there were clear inconsistencies within the dataset, where some IC50s were 

marked with a categorical estimation (“>160”) right next to numerical values beyond that 

same category (e.g. 175.10). This was the first drug response dataset provided. 

• The “original IC50s dataset”, from which the initial IC50s dataset was derived by 

replacing extreme values such as 10144 or 10-18 by the aforementioned qualitative values 

of “>160” and “<0.0008”, respectively. Such extreme values were the result of 

extrapolation of IC50 even for drugs for which the tested range of concentrations did 

not contain the IC50 and was thus inappropriate. This dataset was provided following 

request for the fully numerical dataset instead of the mix of numerical and categorical 

values. 

• The raw data for cell cultures survival after exposure to different concentrations of each 

screened drug, provided along the original IC50s dataset. This data contained, for each 

cell culture, spectrophotometry measurements of solutions of cell cultures following 

exposure to a given concentration of a drug. For each cell culture and each drug, 

measurements were collected after exposure to six different concentrations of the drug, 

twice. Similarly, measurements were also taken after exposure to six different 

concentrations of DMSO, which was the solvent for cell cultures, to use as control. Note 

that the concentrations the cell cultures were exposed to were not the same for all drugs, 

since drugs may be more or less potent. Table 5 summarizes the six concentrations 

tested for each drug, but it should be mentioned that in a few isolated cases, there were 

cell cultures which were tested with a different set of concentrations than the other cell 

cultures for a given drug. However, these isolated cases will not be described in detail 
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here, since the difference in concentrations tested was limited on the log scale where 

the data was used for analyses, and that difference was handled in the downstream 

analysis so that the cell cultures may still be compared to each other. 

Table 5: Concentrations used to test survival of most cell cultures against each drug. 

Concentrations 

(µM) 
Drugs tested with these concentrations 

160, 16, 1.6, 0.16, 

0.016, 0.0016 

Allopurinol, Altretamine, Aminolevulinic acid hydrochloride, Anastrozole, Azacitidine, 

Bendamustine hydrochloride, Busulfan, Capecitabine, Carmustine, Celecoxib, 

Chlorambucil, Cisplatin, Cyclophosphamide, Dabrafenib mesylate, Dacarbazine, 

Decitabine, Dexrazoxane, DMSO, Enzalutamide, Estramustine phosphate sodium, 

Exemestane, Floxuridine, Fludarabine phosphate, Fluorouracil, Fulvestrant, Hydroxyurea, 

Ifosfamide, Lenalidomide, Letrozole, Lomustine, Mechlorethamine hydrochloride, 

Megestrol acetate, Mercaptopurine, Methotrexate, Methoxsalen, Mitotane, Nelarabine, 

Pazopanib hydrochloride, Pemetrexed, Pentostatin, Pipobroman, Pomalidomide, 

Procarbazine hydrochloride, Streptozocin, Sunitinib, Temozolomide, Thalidomide, 

Thioguanine, Thiotepa, Tretinoin, Uracil mustard, Vismodegib 

80, 8, 0.8, 0.08, 

0.008, 0.0008 

Afatinib, Amiodarone hydrochloride, Arsenic trioxide, Axitinib, Bleomycin sulfate, Bosutinib, 

Cabozantinib, Carboplatin, Cladribine, Clofarabine, Crizotinib, Cytarabine hydrochloride, 

Dasatinib, Daunorubicin hydrochloride, Doxorubicin hydrochloride, Epirubicin 

hydrochloride, Erlotinib hydrochloride, Etoposide, Everolimus, Gefitinib, Gemcitabine 

hydrochloride, Idarubicin hydrochloride, Imatinib, Irinotecan hydrochloride, Lapatinib, 

Melphalan hydrochloride, Mitomycin, Mitoxantrone, Nilotinib, Oxaliplatin, Plicamycin, 

Ponatinib, Pralatrexate, Raloxifene, Regorafenib, Sirolimus, Sorafenib, Tamoxifen citrate, 

Temsirolimus, Teniposide, Topotecan hydrochloride, Trametinib, Valrubicin, Vandetanib, 

Vemurafenib, Vorinostat 

8, 0.8, 0.08, 0.008, 

0.0008, 0.00008 

Bortezomib, Cabazitaxel, Carfilzomib, Dactinomycin, Docetaxel, Ixabepilone, Omacetaxine 

mepesuccinate, Paclitaxel, Romidepsin, Vinblastine sulfate, Vincristine sulfate, Vinorelbine 

tartrate 

4.3.2.1.2 Berkeley LASSO Analysis 

In addition to the aforementioned datasets, the analysis performed at Berkeley University 

yielded: 

• The Berkeley LASSO analysis results, that is to say the genes for which the expression 

profile appeared to be significantly connected to a drug response. Such genes were 

identified for 36 drugs out of the 109 screened, the other components did not produce 

significant results. These results can be found in Table 21 from annex 8.1 Berkeley 

LASSO Analysis Results.  

• From these results, 10 drugs out of the initial 109 were shortlisted at Berkeley University 

for further investigation, using the IPA software to assess functional relevance of the 
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associated genes. Table 6 presents the subset of the 10 shortlisted drugs from Table 

21, and highlights genes that were found to be of particular interest following the IPA 

investigation. 

• Information about the IPA-identified genes of interest regarding their full name, protein 

class, and whether they are known to be prognostic biomarkers in any cancer type. 

Table 6: Drugs and associated LASSO-selected genes shortlisted for IPA investigation at Berkeley 
University. Bold, underlined gene names are the genes of interest identified in IPA. 

Drug 
Mechanism 

of Action 
Targets Gene Names 

Vemurafenib B-RAF inhibitor 
MAP4K5, SRMS, BRAF, ARAF, 

RAF1, TNK2, FGR 

CTSG, DSP.2, HBD, SLC22A2.2, 

SLC6A20, TNNT2 

Tretinoin 
Retinol 

analogue 

RARA, RARB, RARG, RXRA, 

RXRB, RXRG 

DAO, DNAI2, KIF19, PTPN3, RNF7.1, 

SEMA3E, SLC39A12, TRPM3.1 

Dexrazoxane 
Topoisomerase 

II inhibitor 
TOP2A, TOP2B 

ASB12, CC2D1B.1, ICAM5, LPHN1, 

MRM1, OLA1.1, RTBDN.2, 

SEMA6D.4, SPPL2B 

Cytarabine 

hydrochloride 
Antimetabolite POLA1, POLB, POLD1 PTPN20B 

Mitotane   CALCA.2 

Bortezomib 
Proteasome 

inhibitor 

26-Proteasome, PSMB1, PSMB2, 

PSMB5, PSMD1, PSMD2 
CTAG2 

Imatinib Bcr-Abl 
KIT, PDGFRA, PDGFRB, CSF1R, 

DDR2, DDR1, ABL1, RET 

MIRLET7D, OR2L13, PRPF40B.1, 

Sep.04, SLC8A3.2, SLITRK1.1, XRN2 

Hydroxyurea  
WNT3, RRM1, RRM2, RRM2B, 

Ribonucleotide reductase 
ATG12, LOC286238, WNT3, ZPBP2.1 

Sorafenib 
Multi-TK 

inhibitor 
 PDE1A, SLC01A2.2 

Pazopanib 

hydrochloride 

multi-targeted 

kinase inhibitor 

FLT4, KIT, PDGFRA, PDGFRB, 

FGFR1, FGFR2, CSF1R, FGFR3, 

FLT1, KDR, RET, LCK, ITK 

ALOX12, C15orf27, CASQ2, CBLN4, 

CPLX3, CT45A5, CTXN3.1, FAM81A, 

FAM9A, GABRB2, XRN2, ZNF676, 

GPR128, LCN6, MAPK1, MYH11, 

NECAB1, OPRK1, OPRM1.5, PLN.1, 

TMEM144, TPSD1, TROVE2.3, UCN3 

Validation of Glioblastoma cell culture models 51 cell cultures were used in this study, including 

the GLIOTRAIN cell lines except for the questionable ones, as well 13 cell cultures present in 

the Drugs Repurposing Project. The datasets used in this study and corresponding to these 

cell lines include: 

• New datapoints of cell cultures survival rates after exposure to TMZ, screened over the 

concentrations [6.25, 12.25, 25, 50, 100, 200, 400] µM, since it came out during the 

drugs repurposing project that the initial concentrations tested were too low to capture 

response to TMZ properly. 

• The DASL data and RNA-Seq data subsets for the cell lines that had this transcriptomic 

data available 
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• The OS and PFS data for the patients from which the cell cultures were derived. 

• The MGMT promoter methylation status of both the parental tumours and of the cell 

cultures. 

4.3.2.2 Data Preparation 

Before performing any analysis with the provided data, it had to be processed into a format fit 

for analysis. The corresponding code can be found on the GitHub repository in the 

Identification_of_predictive_biomarkers_of_drug_response/ 

EMCAnalysis_IoannisDrugs_prepocessingAndExtraction.R script. 

4.3.2.2.1 DASL microarray 

The first steps of transformation and normalization of the DASL data were taken following 

directions from the Berkeley University team that had previously performed a LASSO analysis 

with the data. Using the Lumi114,115,116 R package version 2.42.0, the four raw intensity files were 

imported and that data was converted into expression values, using the lumiExpresso method 

applying quantile normalization of the data at the same time. The four datasets were then joined 

and corrected for batch effect using the ComBat117 function from the sva118 R package version 

3.38.0. Next, probesets for which 75% or more of the samples presented a detection p-value 

above a threshold of 0.05 were removed. Finally, the probesets IDs were replaced with the 

gene name they corresponded to. Since there were genes that were represented by several 

probesets, the gene name was followed by a number starting at 1 and increasing with every 

new probeset referring to the same gene. For instance, if three probesets corresponded to the 

TP53 gene, they would be named TP53.1, TP53.2 and TP53.3. This processed dataset, with 

all 88 samples and all probesets except for those of poor data quality, will hereafter be referred 

to as the “DASL normalized dataset”.  

The probesets in this dataset were then filtered for the needs of the various analyses performed 

during the PhD project, both for Identification of predictive biomarkers of drug response 

analyses and the GLIOTRAIN data analyses. 

For the first of these filters, in cases where multiple probesets corresponded to the same gene, 

only the one with the highest variance was kept and the others were removed. Subsequently, 

the “.n” suffix to the gene name was dropped since there was then only one probeset per gene. 

After that, the mean and variances of all remaining probesets were computed, and the 

probesets that were in the lower quartile of both distributions were removed, in order to limit 

noise in the dataset. The list of probesets, and by extension genes, that resulted from this 

filtering process will hereafter be called the “unbiased genes set”. 
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Another filter applied to the DASL normalized dataset was defined with the intent to investigate 

the data specifically under the oncogenic angle, the idea being to only keep probesets 

corresponding to genes known to be associated with cancer. For this purpose, a list of such 

genes was established by looking into arrays specialized for cancer: 

• the nanoString nCounter Pan-Cancer Pathways Panel119 and the nanoString nCounter 

Pan-Cancer Progression Panel120 which both list about 770 genes involved in pathways 

related to angiogenesis, PI3K, EMT... 

• the lists from Illumina TruSight Oncology 500121 and Illumina Ampliseq Cancer Panel122 

of 523 and 409 genes, respectively 

• the lists from Qiagen Cancer PathwayFinder RT2 Profiler PCR Array123 and 

Comprehensive Cancer GeneRead DNAseq Gene Panels124 of 84 and 124 genes, 

respectively 

• the list from Agilent ClearSeq Cancer Research Panels125 of 151 genes 

Then, going back to the DASL normalized dataset, probesets associated with genes that were 

present in any of these lists were kept and the others were removed from the dataset. 

The probesets from the DASL normalized dataset corresponding to any of the genes from this 

list were kept, and the other probesets were removed. Since this resulted in a much smaller 

number of probesets than the unbiased genes set, probesets were not further filtered out. This 

list of probesets will be referred to as the “cancer genes set” from now on. 

The last filter was defined and used specifically in the validation of Glioblastoma cell culture 

models analysis, and included only protein-coding genes. In this case, annotations from the 

ENSEMBL database were collected to identify protein-coding genes. The probesets which did 

not refer to any of these genes were filtered out from the DASL normalized dataset. Among the 

remaining probesets, the data from probesets which referred to a same gene was averaged per 

sample. Note that this filter was also applied to the GLIOTRAIN RNA-Seq data used for the cell 

culture models validation study. These genes will be referred to along with the corresponding 

dataset as the “protein-coding genes set”. 

4.3.2.2.2 Drug response data 

The initial IC50s dataset provided was not appropriate to use in quantitative analyses. 

Discussions about this issue led to the original IC50s dataset and spectrophotometry 

measurements dataset to be sought out and found. Instead of categorical values, boundaries 

were defined and applied on the entire original IC50s dataset to avoid inconsistencies in the 

data and mitigate the skewing introduced by these extreme values in subsequent analyses: 
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• since the smallest dose that was tested in the drug exposure experiments was 

0.00008uM, the lower bound was set to that value divided by 3, and any IC50 lower than 

that was replaced by this lower bound value; 

• for very high values, the C_max (maximum nontoxic dose for a drug in humans) value 

for Hydroxyurea which was the highest (795 microMolar) out of all the screened drugs 

was multiplied by 3 to define the higher bound for the dataset. Any IC50 higher than that 

was set to this value. 

Although these are also arbitrary values, at least they provided a more consistent approach to 

the problem and would allow to run quantitative analyses, although the impact of this 

shortcoming should also be considered in any result making use of this dataset, which will be 

called the “bounded IC50s dataset”. 

Later an approach taken by Tiriac et al. (2018)126, inspired the EMC team to suggest using the 

spectrophotometry measurements to calculate the Area Under the Curve (AUC) of cell survival 

rates at different concentrations of a drug, and use that AUC as drug response variable instead 

of the IC50. Considering that the IC50s values were already approximated and rather 

unreliable, the suggestion was adopted, and a method in R was implemented to calculate the 

AUC given the datapoints.  

The expected input of this code is a dataframe containing the viability rate of the cells at the 

different tested dosages of a given drug, where the column names should be the concentration 

value (just the number, without unit), and the row names should be the cell culture 

denomination. An argument of the function allows to indicate whether the data contains 

duplicates for cell cultures, in which case the duplicates should be identified with the suffix 

“_dupN” (_dup1, _dup2, _dup3…).  

The first step in the function is to apply a curve-fitting algorithm to fit a specific curve model to 

the data using the drc127 R package version 3.0-1. For each cell culture, three types of models 

were tested for fitting to the data: a log-logistic model, linear model, and exponential decay 

model. These three potential models were chosen based on observations of plotted cells 

survival data on the log scale, where shapes that could match these models could be seen. 

Figure 4 provides an example of such plots, where the log-logistic shape is visible in the data 

from Thioguanine exposure experiments, and curves from the Gemcitabine hydrochloride data 

evolve in a way closer to either exponential decay or linear decrease. 



59 
 

The model with the lowest residual standard error out of the three is selected for that cell culture. 

If the exponential model is selected but the estimated value of the model is above 3 at the 

lowest concentration, meaning that using this model the cell population would supposedly be 

more than three times larger than when not exposed to the drug which is an unreasonable 

assumption, then the log-logistic model is preferred if available. Cell cultures for which no model 

can be fitted for a given drug cannot have the corresponding AUC calculated and as a result 

are excluded from further analysis involving the corresponding drug. In other cases, the fitted 

model is increasing instead of decreasing. For those, a plot is produced to let the user decide 

whether to keep them (e.g. linear models with little variation, suggesting resistance) or exclude 

them (e.g. completely abnormal behaviour, for instance due to bad data quality/measurement).  

If there are duplicates for a given cell culture, the data from all duplicates are fed to the 

algorithm, and they will be used together to fit the model for the cell culture. Once the best-

fitting model is identified, its parameters are extracted when available: upper limit, 

slope/steepness, IC50, as well as the corresponding p-value and error for each of these 

parameters. Note that the IC50 value as the concentration at which the model has decreased 

by half its upper limit is only valid and can only be considered for the log-logistic model, which 

represents the expected evolution of a drug response curve. For the exponential decay and 

linear models, since there is no upper plateau to define a baseline, the IC50 cannot be 

 

Figure 4: Example of plots of cell survival rates (Y axis) at different concentrations (X axis) of Thioguanine 
(left) and Gemcitabine hydrochloride (right). Blue dots correspond to the percentage of cell population survival 
at the given drug concentration, averaged across all replicates for a given cell culture. Black lines represent evolution 
of the cell culture response at different concentrations by linking the blue dots of a given cell culture. 
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estimated. After extraction of the model parameters, datapoints are computed for the selected 

model to create a smooth curve, which will be used to calculate the AUC, on the log scale of 

the range of concentrations tested. This calculation of a smooth curve allowed, in addition to 

getting a more precise AUC value, to disregard the issue of cell cultures being tested with 

different concentrations since the curve is computed over the total range of tested 

concentrations, making AUCs comparable.  

After curve-fitting comes the AUC calculation: from the smooth curves, the AUC is calculated 

using the Bolstad2128 R package version 1.0-28. These AUCs are then normalized with the 

AUC of a constant function f(x) = α over the tested range of concentrations on the log scale, 

where α is the upper limit of the fitted model, which is a parameter of the curve that is computed 

at the curve-fitting stage. 

From the input of viability rate of the cells at the different tested dosages of a given drug, the 

function produces several plot files: the raw data for all cell cultures in the considered drug; the 

raw data for the excluded cell cultures; all the smooth fitted curves and corresponding selected 

model type; and if requested as an argument of the function, a distinct plot for each sample 

with its fitted model and the model parameters. Simultaneously, the calculated AUCs values, 

the smooth curves datapoints for plotting, the parameters of the fitted models and the list of 

excluded cell cultures are also output as text files. Finally, for a smoother importing process in 

the steps that come after the AUCs calculations, the computed models and AUCs as well as 

the tables used to plot the graphs are also exported into RData files. 

Once this method had been implemented, the AUC calculation pipeline was executed. Starting 

with the spectrophotometry measurements dataset, the percentage of a given cell culture 

duplicate population that survived a specific concentration of a given drug was calculated by 

dividing the corresponding spectrophotometry value by the measurement from DMSO exposure 

at the equivalent concentration. Then, for each drug a plot of the evolution of survival rates of 

the cell populations at the six concentrations were produced. This first visualization allowed for 

the identification of drugs that seemingly did not affect cell cultures generally and as a result 

were discarded from subsequent AUC calculation and analyses. This exclusion process can be 

illustrated with Figure 5: cultures survival decreases when exposed to higher doses of  

Fludarabine phosphate, though a few of the cultures react at lower doses than others, so the 

drug was kept for subsequent analyses as it may present good discrimination power between 

resistant and sensitive cell cultures; Pentostatin on the other hand did not appear to have a 

sensible effect on most if not all cell cultures at any concentration, and as a result it was not 

included in further calculations. Finally, the AUC computation method was applied to calculate 
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AUCs relative to each drug remaining. The resulting dataset, containing the AUC values for all 

cell cultures exposed to the drugs that were not excluded, will be hereafter called the “AUC   

data”.  

Finally, for the validation of Glioblastoma cell culture models study AUC computation pipeline 

was executed using that data, and the corresponding drug response variables of AUC, IC50 and 

cells survival rate at 100 µM TMZ were extracted for all 51 cell cultures, into a “new TMZ 

response data” dataset. 

4.3.2.2.3 Samples subsets 

Finally, different subsets of cell cultures were used in the several analyses performed towards 

identification of predictive biomarkers of drug response. These subsets were defined as: 

• “all 88 DASL cultures”, which included all samples present in the DASL microarray data 

• “drug-exposed Glioblastoma cultures”, which is the subset of cell cultures from the “all 

88 DASL cultures” list that correspond to Glioblastoma cell lines that were in the DASL 

data and in the drug exposure experiments 

• “Primary Glioblastoma cultures” is the subset from “drug-exposed Glioblastoma 

cultures” that contained only primary Glioblastoma cell lines 

 

 Figure 5: Example of cell cultures survival rates when exposed to Fludarabine phosphate (left) and 
Pentostatin (right). Blue dots correspond to the percentage of cell population survival at the given drug 
concentration, averaged across all replicates for a given cell culture. Black lines represent evolution of the cell culture 

response at different concentrations by linking the blue dots of a given cell culture. 
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• “MGMT methylated models validation cultures” corresponds to cell cultures used in the 

validation of Glioblastoma cell culture models study which have a methylated MGMT 

promoter 

• “MGMT unmethylated models validation cultures” corresponds to cell cultures used in 

the validation of Glioblastoma cell culture models study which have an unmethylated 

MGMT promoter 

• “MGMT unknown models validation cultures” corresponds to cell cultures used in the 

validation of Glioblastoma cell culture models study which for which MGMT promoter 

methylation status was unknown 

• “MGMT methylated models validation transcriptomics cultures” corresponds to cell 

cultures in the validation of Glioblastoma cell culture models study which have DASL or 

RNA-Seq data available and have a methylated MGMT promoter 

• “MGMT unmethylated models validation transcriptomics cultures” corresponds to cell 

cultures in the validation of Glioblastoma cell culture models study which have DASL or 

RNA-Seq data available and have a unmethylated MGMT promoter 

• “MGMT unknown models validation transcriptomics cultures” corresponds to cell 

cultures in the validation of Glioblastoma cell culture models study which have DASL or 

RNA-Seq data available and for which MGMT promoter methylation status was 

unknown 

4.3.2.2.4 Summary 

Several datasets and subsets of genes and cell cultures have been identified and defined for 

use in data analyses towards identification of predictive biomarkers of drug response. Table 7 

summarizes them and lists their dimensions. 
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Table 7: Dimensions of all datasets and subsets of probesets and cell cultures relevant to the predictive 
biomarkers of drug response identification analyses 

 
Number of cell 

cultures 

Number of features 

(type) 

DASL raw data 88 29,377 (probesets) 

“DASL normalized dataset” 88 26,823 (probesets) 

“Unbiased Genes set”  11,007 (probesets) 

“Cancer Genes set”  2,473 (probesets) 

“DASL Protein-coding genes set”  17,007 (genes) 

“RNA-Seq Protein-coding genes set”  16,431 (genes) 

“initial IC50s dataset” 45 109 (drugs) 

“bounded IC50s dataset” 45 109 (drugs) 

Spectrophotometry measurements 
108 (54 cell cultures x 2 

duplicates per culture) 

666  ( (110 screened 

drugs + DMSO) x 6 

concentrations) 

“AUC data” 54 97 (drugs) 

“all 88 DASL cultures” 88  

“drug-exposed Glioblastoma cultures” 45  

“Primary Glioblastoma cultures” 33  

“new TMZ response data” 51 
3 (drug response 

variables) 

“MGMT methylated models 

validationcultures” 
19  

“MGMT unmethylated models 

validationcultures” 
19  

“MGMT unknown models 

validationcultures” 
13  

“MGMT methylated models 

validationtranscriptomics cultures”  

(DASL / RNA-Seq) 

6 / 9  

“MGMT unmethylated models 

validationtranscriptomics cultures”  

(DASL / RNA-Seq) 

6 / 8  

“MGMT unknown models 

validationtranscriptomics cultures”  

(DASL / RNA-Seq) 

1 / 2  
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4.3.2.3 Drugs Repurposing Project 

The goal of collaboration on the Drugs Repurposing Project was to search for biomarkers that 

would be predictive of cell cultures response to the different drugs. To that end, in addition to 

the Enrichment Analysis Methods, two analysis approaches were defined and implemented to 

investigate covariations between gene expression profiles and drug response. The 

corresponding code can be found on the GitHub repository in the 

Identification_of_predictive_biomarkers_of_drug_response/ 

EMCAnalysis_IoannisDrugs_runningAnalyses.R script. 

4.3.2.3.1 LASSO regressions 

The first analysis approach relied on LASSO regression of the gene expression data using drug 

response data as a response variable. The LASSO fits generalized linear models to the data 

through penalized maximum likelihood, often leading to assignment of null coefficients to many 

of the variables in the model and leaving only a few as selected relevant features for the 

model76, and can be used with the normalized EMC datasets. Furthermore, as the method had 

been previously used by the Berkeley collaborators, there was also interest in attempting to 

reproduce and compare results with this LASSO approach. On the other hand, as a linear 

regression, the method may not be appropriate for non-linear relationships between genes 

molecular profile and the response to drugs of the cultures. 

In this analysis, the glmnet129 R package version 4.1-1 was used for each drug to perform a 

LASSO regression on the DASL data, using the drug response data as a response variable. 

Since the LASSO regression algorithm rarely selects the same set of features twice, the 

robustness of the genes associated with a drug was increased by running 100 regressions and 

extracting genes that were in the results of at least 50 of these runs. 

4.3.2.3.2 Weighted Gene Co-expression Network Analysis (WGCNA) 

The second approach taken for this project was to use the WGCNA130,131 R package. In this 

analysis, the genes from the DASL data were first clustered based on their expression profile. 

Then, the package computed the correlation between the expression of each cluster’s 

eigengene, i.e. a hypothetical gene representative of the expression profile of the genes in the 

cluster, and external variables, such as drug response data. Unlike the LASSO method, this 

approach relies first on grouping genes via clustering before attempting to compare them to the 

response variable, i.e. the drug response, and defined clusters can be quite large (up to a few 

thousands of genes). As a consequence, the WGCNA offered a way to identify many more 

potential genes of interest than the handful that would be selected by LASSO, and using a very 
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different approach as well. Thus, both methods were implemented, in order to analyze data in 

different ways and increase robustness and reliability of any overlapping result.  

Because of the large size of clusters, which in turn may lead to at least a few genes correlating 

with the drug response, only the stronger correlations with a p-value of 0.05 or less and a 

correlation estimate with an absolute value of 0.60 or more were selected for further 

investigation. In those cases, only the genes that were significantly associated with the drug 

response data were extracted from the cluster for enrichment analysis.  

4.3.2.3.3 Analyses execution 

For the drug repurposing project, for which the goal was to identify predictive biomarkers of 

drug response in Glioblastoma cell cultures, the samples analyzed were the drug-exposed 

Glioblastoma cultures.  

The initial run of the analysis was done using the DASL data subsetted with the unbiased genes 

set and drug-exposed Glioblastoma cultures, and the bounded IC50s dataset as the drug 

response data. 

The first step performed in that analysis was the investigation of the DASL data, which 

underwent a PCA to look into the presence of outliers and in the impact of cofactors such as 

batch effect or the Primary/Recurrent Glioblastoma diagnosis of the tumour. Following that PCA 

investigation, it came out that interestingly there did not seem to be a strong difference in gene 

expression profiles between Primary and Recurrent Glioblastoma samples. As a result, it was 

decided to analyze the data using both the drug-exposed Glioblastoma cultures and the 

Primary Glioblastoma cultures subsets parallelly and compare the results. 

Then, both LASSO regressions and WGCNA were performed to analyze the unbiased genes 

set / drug-exposed Glioblastoma cultures DASL dataset and the unbiased genes set / Primary 

Glioblastoma cultures DASL dataset, with the correspondingly subsetted bounded IC50s 

dataset as response variable, to identify genes whose expression would suggest a predictive 

potential for response to each drug. 

The IPA functional pathways investigation method was used to identify cellular processes 

associated with the results. 

Although these results showed promise, the bounding approximation was thought to be too 

much of an issue due to the bias introduced by approximating the extreme outlier values to 

values comparable to the rest of the dataset. Following discussions and searches, the EMC 

team came up with the suggestion for the AUC alternative. Furthermore, an interest for an 
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approach focusing on cancer genes was also put forward. As a result of these exchanges, the 

cancer genes set was defined, and the AUC calculation pipeline was implemented and 

executed to compute AUC values for all cell cultures exposed to each drug. 

For consistency however, the same pipeline as the initial analysis run was followed and as a 

consequence, LASSO and WGCNA methods were applied to a total of four datasets to identify 

gene expressions that could be associated with AUCs as response data: 

• the cancer genes set / drug-exposed Glioblastoma cultures DASL dataset 

• the cancer genes set / Primary Glioblastoma cultures DASL dataset 

• the cancer genes set / drug-exposed Glioblastoma cultures DASL dataset 

• the cancer genes set / Primary Glioblastoma cultures DASL dataset 

The obtained results were then investigated for enriched functional pathways using the 

computational Gene Ontology enrichment function. 

4.3.2.4 Berkeley LASSO Analysis review 

In addition to performing a complete analysis of the EMC data for the Drugs Repurposing 

project, I also looked into the results of the LASSO analysis performed at the Berkeley 

University prior to my involvement in the project. That prior analysis partly inspired my own, 

namely for the normalization tools for the DASL data, using the approach described in 4.3.2.3.1 

LASSO regressions to identify predictive biomarkers of drug response, and identification of 

genes of interest from the LASSO-selected genes through IPA software functional analysis. 

Thus, we were interested in comparing results of my own analysis with results from the 

Berkeley analysis to potential validate these results as well as assess their robustness, 

considering only an overview of the steps of the Berkeley analysis was communicated rather 

than its exact protocol, so it could not be reproduced exactly. 

First, reproducing the identification of genes of interest in IPA based on the list of genes 

associated with a given drug from the Berkeley LASSO results was attempted. This was done 

using the process from subsection 4.3.1.1 IPA functional pathways investigation to determine 

links between LASSO-selected genes and the drug and identify functional pathways involved. 

In the resulting network, the genes of interest were defined as the nodes with a high connectivity 

relatively to others (connected to three or more nodes) in the network or involved in at least 

three functional pathways related to cancer, signaling, or neuronal activities. 

Secondly, the results of the Drugs Repurposing Project analyses were compared to the 

Berkeley LASSO analysis results.  
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The list of drugs that the Berkeley LASSO analysis associated genes with were compared to 

the list of drugs identified as promising from the Drugs Repurposing Project results. For the 

drugs that were present in both sets of results, the associated list of genes (and the functional 

pathways they belong to) for each drug from both of the pipelines were compared, to determine 

whether the results overlapped, i.e. the same genes and/or functional pathways were identified 

for the same drugs by both pipelines, and validated the approach.  

4.3.2.5 Validation of Glioblastoma cell culture models 

This study was about validating EMC Glioblastoma cell cultures models, by demonstrating that 

these models react in a similar way to TMZ as the parental tumors they are derived from, hence 

validating them as appropriate models for Glioblastoma studies. The corresponding code can 

be found on the GitHub repository in the 

Identification_of_predictive_biomarkers_of_drug_response/RNASeq_correlation_analysis.R 

script. 

4.3.2.5.1 Correlations of patients and cell cultures responses 

A first part of the study was to perform correlation tests between response to TMZ of the cell 

cultures and response to TMZ of the parental tumours.  

The response to TMZ of the parental tumours was approximated by the patients’ Progression 

Free Survival (PFS) and Overall Survival (OS), since they were treated with TMZ and thus a 

shorter survival should correspond to a lower sensibility to the drug. For the cell cultures, the 

response to TMZ used was either the AUCs or IC50s from the new TMZ response data. 

Furthermore, since the MGMT promoter methylation status is a positive predictive biomarker 

of TMZ response, the correlations were calculated with the data from three subsets of cell 

cultures and corresponding patients: all cultures available in the new TMZ drug response data, 

the MGMT methylated models validation cultures and MGMT unmethylated models validation 

cultures. 

The IC50s, PFS and OS data was log-transformed. 

The normal distribution of each response variable with each considered subset was evaluated 

with a Shapiro-Wilk normality test. As a consequence, Pearson’s method was used to test 

correlation only between response variables that were both normally distributed. Otherwise, 

correlation tests were performed using Spearman’s method. Table 8 indicates the correlation 

method used for each test. 
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 Responses tested 

Subset Log(PFS) x AUCs 
Log(PFS) x 

Log(IC50s) 
Log(OS) x AUCs 

Log(OS) x 

Log(IC50s) 

Methylated  

(n = 23) 
Pearson Pearson Spearman Spearman 

Unmethylated 

(n = 24) 
Pearson Pearson Pearson Pearson 

All (n = 47) Spearman Spearman Spearman Spearman 

Table 8: Correlation test method for each cell culture x parental tumour response design in the models 
validation study. 

4.3.2.5.2 Predictive biomarkers identification 

In the continuation of the Drug Repurposing Project objectives, identifying biomarkers 

predictive of TMZ response in the cell cultures was attempted. 

For this purpose, normalized DASL dataset and GLIOTRAIN cell lines RNA-Seq data 

normalized with the vst method from the DESeq2 R package were filtered to keep only the 

respective the Protein-coding genes and cell cultures used in the validation of Glioblastoma 

cell culture models study. These subsets were analyzed to search for biomarkers, using the 

new TMZ response data to identify genes for which the expression profile correlates with drug 

response. 

However, rather than LASSO or WGCNA approaches, the investigation of potential biomarkers 

was done by running correlation tests between the expression profile of each gene against 

each response to drug variable. A given gene expression dataset was investigated as follows: 

• For each gene in the dataset, the expression profile was tested for normality with a 

Shapiro-Wilk normality test. 

• A correlation test was performed between the gene expression and each of the drug 

response variables (AUCs, IC50s and cell survival rate at 100 µM TMZ). If both the gene 

expression and the drug response variable were normally distributed, Pearson’s 

correlation was used; otherwise, Spearman’s correlation was preferred. 

• Once the correlations tests have been performed, the p-values obtained from the 

correlation tests between all genes expression and a given drug response variable were 

adjusted for multiple testing using the FDR method. Genes for which the adjusted p-

values were below 0.05 were considered to significantly correlate with the 

corresponding drug response variable. 

• The genes significantly correlated with all three response variables were then 

compared, and the ones correlated with at least two response variables were estimated 
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to be robust findings and compiled into a “signature” list of genes associated with the 

analyzed dataset. 

• The signature genes were input into the function described in the subsection 4.3.1.2 

Gene Ontology enrichment function, to determine the functional pathways involved with 

these genes. 

These steps were applied to analyze both gene expression datasets (DASL and RNA-Seq), 

with three subsets of cell cultures (MGMT methylated, unmethylated, or indifferent) for which 

expression data was available. 

Following the first run of the analysis, it turned out that for all the datasets, no gene passed the 

0.05 adjusted p-value cutoff. As a consequence, the analysis was re-run without that step, to 

consider genes as correlated with a drug response variable if the corresponding correlation test 

had a p-value below 0.05. 

In addition, following promising but unpublished results from an experiment performed by the 

EMC team to determine the efficacy of Omacetaxine mepesuccinate and Cytarabine 

hydrochloride on glioblastoma cell cultures, the same analysis was performed on newly 

produced response data for these drugs, to investigate potential predictive biomarkers of 

response in the same way as was done for TMZ. 

4.3.3 GLIOTRAIN Data Analysis 

The analysis performed on the data available for the project consisted mainly in a DEA between 

ST and LT survivors-derived samples in each dataset. This was done with the parental tumours 

RNA-Seq, focal events datasets, as well as the EMC DASL data. 

Furthermore, to validate these results, the genes identified by DEA of a given dataset were 

investigated in other datasets, to determine whether they were at least following a similar trend. 

This validation was done using the RNA-Seq, focal events, EMC DASL, TCGA RNA-Seq and 

TCGA Copy Number Variations (CNV) datasets, all of which were further subsetted into an IT 

survivors dataset and a ST+LT survivors dataset. The ST+LT datasets from GLIOTRAIN and 

EMC would be used in a differential analysis to compare ST samples to LT samples, while the 

IT datasets would be used to validate the results of that comparison. The TCGA Glioblastoma 

datasets were obtained from the cBioPortal platform132, by searching for “glioblastoma” and 

downloading the Glioblastoma (TCGA, Cell 2013) archive. 
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4.3.3.1 Preparation and Normalization 

The first step for this was to prepare the data for analysis. The corresponding code can be 

found on the GitHub repository in the 

GLIOTRAIN_Data_Analysis/GTAnalysis_Preprocessing.R script. 

For the RNA-Seq data, the ST and LT survivors samples were extracted from the parental 

tumours raw count dataset. In addition, to produce the validation datasets the parental tumours 

raw count data was normalized using the vst method from the DESeq2133 R package version 

1.30.1, using information about the MGMT promoter methylation status, institute of origin and 

sequencing batch information as cofactors. That normalized data was separated into two to 

produce a ST+LT samples normalized RNA-Seq data on one hand and an IT samples 

normalized RNA-Seq data on the other. 

Regarding the focal events dataset, even though it contains numerical values, these numbers 

represent categorical data. As a consequence, the dataset was not normalized, and only 

separated between ST+LT and IT samples subsets.  

The normalized EMC DASL data will all Glioblastoma samples was used for this analysis as 

well, and separated between ST+LT and IT samples subsets. 

Similarly as with the GLIOTRAIN focal events data, the TCGA CNV data was not normalized. 

In addition, the already normalized TCGA RNA-Seq Z-scores data was used as well. Both 

datasets were also separated between ST+LT and IT samples subsets. 

Table 9 summarizes the number of samples of each type, as well as the number of features 

for each dataset. 

Dataset ST samples IT samples LT samples 
Number of 

features 

GLIOTRAIN RNA-Seq 26 69 31 45,623 

GLIOTRAIN focal events 26 67 32 49 

EMC DASL 24 16 6 26,823 

TCGA RNA-Seq 98 49 5 20,531 

TCGA CNV 287 195 40 24,174 

Table 9: Dimensions of the subsets used for the DEAs and validation of the results. 
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4.3.3.2 Differential Expression Analysis 

DEA of the GLIOTRAIN RNA-Seq ST+LT data was performed using the DESeq2 R package 

with the MGMT promoter methylation status, institute of origin, sequencing batch information 

and the survival group as covariates of the model. The cutoff for significance was 0.05 for p-

values adjusted for multiple testing (FDR). The corresponding code can be found on the GitHub 

repository in the GLIOTRAIN_Data_Analysis/GTAnalsysi_DEA.R script, under sections II.1 

Run analysis and II.2 Explore results. 

For the focal events data, considering the values are ordered categories, a logistic regression 

model was fitted to the data for each chromosomal region using the polr method of the MASS134 

R package version 7.3-53, accounting for MGMT promoter methylation status, institute of 

origin, sequencing batch information and the survival group as covariates of the model. A 

chromosomal region was considered to have a significantly different copy number profile 

between ST and LT samples when the corresponding coefficient of the model had an absolute 

value equal or above 1. Regions for which this was the case were screened to extract the genes 

that belong to it, by comparing start and end positions of the regions and genes definition from 

the ENSEMBL database. 

Finally, the EMC DASL data analysis consisted of performing t-test to compare the expression 

profile of the ST and LT samples for all probesets present in the dataset. The cutoff for 

significance was 0.05 for p-values adjusted for multiple testing (FDR). 

The genes identified through DEA of the RNA-Seq and focal events datasets were input into 

the Gene Ontology enrichment function to investigate their synergy and biological relevance to 

the context of Glioblastoma. Since only two genes were identified from the EMC DASL analysis, 

an enrichment analysis was not necessary. Their roles were investigated individually by first 

searching for them on PubMed, and more broadly Google, to identify their functions, pathways 

they are involved with, and potential implication in glioblastoma. Since this first approach was 

successful in providing an overview of these genes and their functions, further investigation 

with more specialized resources was not pursued. 

4.3.3.3 Results validation in other datasets 

In order to increase confidence in the genes identified in the DEA of the data as relevant to 

overall survival of the patients, their profile was checked in other datasets. The goal of this was 

not necessarily to see if these genes would be significantly different between ST and LT, 
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otherwise they would also appear as such in the corresponding DEA, but to be less stringent 

and determine whether the profile follows the same trend as observed in the DEA. 

The corresponding code can be found on the GitHub repository in the 

GLIOTRAIN_Data_Analysis/GTAnalsysi_DEA.R script, under sections I.2 Validation Functions 

and II.3 Compare to other datasets. 

To that end, the following steps were used for each DEA-identified gene, in each validating 

dataset: 

1. the gene was searched in the validating dataset. In the case of CNV validating 

datasets, the chromosomal regions were checked to see if they covered the position of 

the gene 

2. if the gene was found in the validating dataset, a test was performed to see if there was 

potentially a pattern of expression profile associated to patients’ survival. To be less 

stringent than the DEA in order to see if the data even suggests a trend, a p-value 

cutoff of 0.2 was used to consider a gene interesting for this validation.  

3. if the gene passed that test, a correlation test was performed to determine whether or 

not the pattern followed the same direction as identified in the DEA, i.e. if expression 

profile in the validating dataset co-variated with patients survival in the same way as in 

the dataset from which the was identified 

Note that the patients’ survival response variable used in the tests was different depending on 

which subsets of samples were compared. For the ST+LT validating datasets, samples were 

compared as groups, so the response was categorical: either ST or LT. For the IT validating 

datasets, the response variable used was the continuous overall survival value for each patient. 

Furthermore, each validating dataset contained different data types. Therefore, the test to 

determine the existence of a pattern and the correlation test to identify its direction is different 

for each validating dataset. Table 10 summarizes which tests were used for each validating 

dataset. 
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Validating dataset Pattern-identification test Correlation test 

GLIOTRAIN RNA-Seq ST + LT t-test Spearman 

GLIOTRAIN RNA-Seq IT Pearson correlation Pearson 

GLIOTRAIN focal events ST + LT Kruskal-Wallis Spearman 

GLIOTRAIN focal events IT Spearman correlation Spearman 

EMC DASL ST + LT t-test Spearman 

EMC DASL IT Pearson correlation Pearson 

TCGA RNA-Seq ST + LT t-test Spearman 

TCGA RNA-Seq IT Pearson correlation Pearson 

TCGA CNV ST + LT Kruskal-Wallis Spearman 

TCGA CNV IT Spearman correlation Spearman 

Table 10: Statistical tests used for DEA results validation in other datasets 

  



74 
 

5 Results 

5.1 Glioblastoma Disease Map 

A major part of the PhD was dedicated to defining a Glioblastoma Disease Map, i.e. a molecular 

interactions network representing driver alterations of signaling pathways underlying the 

disease. This was done based on literature detailing known Glioblastoma-specific pathway 

alterations. 

5.1.1 Genetic Alterations Representation 

My work towards the representation of Genetic Alterations in a Disease Map led to the definition 

of representation rules that fitted the needs to represent in the Glioblastoma Disease Map the 

mutations affecting Glioblastoma tumor cells that were regularly referenced in the literature. 

These rules could be categorized into three types, described in more details further below: 

chromosomal aberrations, mutations altering function or transcription rate, and representation 

of mutations that were mutually exclusive or on the contrary systematically co-occurring. In 

addition to using it to build the Genetic Alterations submap, I also introduced the resulting model 

to the Disease Map Community as a poster at the 4th Disease Map Community Meeting in 

2019135. 

5.1.1.1 Chromosomal Aberrations 

Amplification as well as Homozygous or Heterozygous Deletion of whole chromosomal 

segments are frequent events in cancer. To model them, chromosomes or loci are presented 

as hypothetical complexes, so that the genes they contain may be included in the model to 

highlight the importance of the mutation, and use the MeSH terms “Chromosome Duplication”, 

“Loss of Heterozygosity” or “Chromosome Deletion” represented as a phenotype that would 

catalyze transition of the loci into an annotated “Amplified”, “KO” or “Homozygous deletion” 

state respectively, as illustrated by Figure 6. Since increased and decreased expression is 

implicit from the variation of copy number, it is not explicitly represented. In addition, though 

the chromosomal region should be preferred wherever possible, amplification or deletion of 

single isolated genes is not excluded, in cases where the literature only references duplication 

or deletion of that one gene rather than its locus. In these cases, the mutation-inducing 

phenotype should be represented with MeSH terms “Gene Duplication”, “Loss of 

Heterozygosity” and “Gene Deletion”.  
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This representation is complementary and does not overlap with the representation of other 

mutations, which should still be modelled separately. Furthermore, since it is possible that a 

locus subject to copy number variations may contain genes that can also undergo mutations 

altering their function or transcription rate, these mutations should also be represented, with 

the chromosome or locus represented as a container rather than a hypothetical complex, and 

separately from the chromosomal aberration mutation, as exemplified in Figure 7. 

The difference in representation of the locus comes 

from its role in the model and the Disease Map 

standards:  

• for duplications and deletions, the locus is 

the unit than undergoes transformation. This 

cannot be modelled with a container object, 

while the hypothetical complex allows not 

only to represent modification as needed, but 

also to contain genes relevant to the 

understanding of the importance of the mutation to the disease while making it explicit 

that this component is not a complex as strictly defined in the standards. 

• for other gene mutations, the container is a more appropriate representation since 

Disease Map standards require that transformations occurring within a given biological 

entity be represented this way, while also strongly suggesting avoiding any 

transformation within a complex.  

5.1.1.2 Mutations altering function or transcription rate 

Another important issue to solve was how to meaningfully represent all known mutations for a 

given gene. Since mutations can be of different types (substitutions, indels, inversions...), occur 

 

 

 

Figure 6: Examples of modelling a chromosomal amplification (left) and deletion (right). Yellow boxes 
represent genes, dash-outlined grey boxes are chromosomes/loci as hypothetical complexes, purple items are 
phenotype nodes representing mutations. A full arrow represents a transition, and a circle-ended arrow represents 
catalysis. 

Figure 7: Representation of the mutation of a 
gene within the corresponding locus. Thick 
yellow line boxes the chromosome as a 
container. 
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at different positions, lead to different amino-acid chains, etc., there could be dozens or 

hundreds of mutations that would need to be modelled. 

However, qualitatively speaking, these events generally result in one of four categories: 

increased or decreased gene transcription rate or increased or decreased protein activity. By 

reducing the modelling possibilities of mutations to these four outcomes, I was able to define a 

model that could faithfully represent the impact of mutations on the disease, while also avoiding 

representing each of them individually which could greatly overload the Disease Map. The idea 

is that all mutations leading to a similar outcome on the final protein are represented by the 

alteration of a single hypothetical site. If there are other mutations that can affect the same 

gene but leading to a different type of outcome, for instance if some mutations result in 

increased efficiency of the gene while other mutations lead to increased transcription of the 

gene, they are represented as two distinct hypothetical sites on the gene. Since the Disease 

Map is a qualitative model rather than a quantitative representation of mechanisms, the relative 

strength of the modification resulting from the different mutations can be overlooked, as only 

the qualitative result needs to be represented. 

Thus, the mutations are represented by the transition of the gene from its normal state to a 

state where the mutation that occurred is represented by a ‘*’ (labelled as “Don’t care” in the 

CellDesigner software and meaning “any alteration”) symbol on the hypothetical mutation site. 

That transition is catalyzed by a phenotype of either “Gain of Function Mutation” or “Loss of 

Function Mutation”, as illustrated by Figure 8. All mutations that result in a similar outcome can 

be provided as notes for the hypothetical site they are associated with, hence the information 

is still available. 

 

The actual impact of these mutations (e.g. lower transcription rate, lower binding potential, loss 

of activating phosphorylation site, etc.) must then be modelled appropriately in the Disease 

Map. While deletion of an entire gene is enough on its own to explain how that affects a 

pathway, it is not the case for Gain or Loss of Function mutations. As previously described, 

these can further be divided into two categories of outcome: increased (or decreased, 

 
Figure 8: Example of how gain of function (left) and loss of function (right) mutations are represented in the 
model. 
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respectively) transcription rate of the gene, or increased (or decreased, respectively) activity of 

the mutated protein. The alteration of transcriptional rate can be represented by a direct 

catalysis or inhibition of the transcription of the normal gene by the mutated gene. As for 

modifications of the activity of the protein, it depends on the extent to which the mutated protein 

is characterized. If the literature provides a clear description of the different behavior, for 

instance if the mutated protein is constitutively active or doesn’t require an intermediate to 

perform its role, the corresponding interactions with the mutated protein can be modelled. If no 

indication is provided, which is often the case, the only possible representation of the result of 

the mutation is to infer whether the mutation is a gain or loss of function, based on the gene 

and its role in the pathways, and the effect of the mutation is then represented accordingly as 

a positive or negative influence on the normal gene. In these cases, a note that indicates this 

interaction is inferred is added to the positive/negative influence interaction. These different 

influences of mutations on the Disease Map network are illustrated in Figure 9. 

 

5.1.1.3 Mutual Exclusion and Co-occurrence patterns 

In some cases, the mutation of a single gene is enough to significantly affect the pathway to 

which the gene belongs. Then, due to selection pressure, mutations in other high-impact genes 

of the pathway are rare, and almost never observed simultaneously. On the other hand, when 

the mutations are not enough to disable or enable the pathway on their own, they can be found 

to be systematically co-occurring with more potent mutations of the pathway. Since several 

such patterns have been observed in Glioblastoma, they also needed to be represented in the 

model. The solution adopted was to model them with a direct positive or negative influence 

 

Figure 9: Examples of representations of mutations impact in the Disease Map. Left: Mutated TERT leads to 
increased transcription. Right: Mutated PIK3R1 and PI3KCA lead to increased efficiency of the PIK3R1:PIK3CA 
complex. Bright green node on the left represents mRNA; on the right, round-cornered light green nodes are 
proteins, thick black lines containing several nodes represent a complex, and round green nodes are small 
metabolites. 
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between the products of the corresponding alterations, as illustrated in Figure 10. 

 

 

5.1.2 Produced Disease Map 

An initial screening of the literature identified the RTKs-PI3K-AKT/MAPK pathway, the RB 

pathway and TP53 pathway to be key drivers of Glioblastoma mechanisms. As a consequence, 

I built a molecular interaction network representation of each of these pathways as well as 

Glioblastoma-specific genetic alterations into independent submaps, which were combined 

once completed. 

5.1.2.1 RTKs-PI3K-AKT/MAPK Submap 

This first submap was the one which required most work. That is because while this pathway 

has a lot of different targets, and thus can activate or inhibit many pathways and cellular 

functions, its components that are typically altered in Glioblastoma (EGFR, PDGFRA, PIK3CA, 

PTEN…) are all upstream of the signaling cascade. That made it difficult to determine which 

targets were more likely to be affected in the context of the disease. Among the potentially 

interesting downstream effectors of the pathway, particular attention was given to the FOXO 

family of transcription factors, which have targets affecting apoptosis and the cell cycle, as well 

as TSC2 and GSK3B which regulate cell growth processes, all of which are particularly relevant 

to tumor cells. 

Beyond the high number of cellular functions this pathway could influence, in the context of 

investigating resistance mechanisms it is also interesting to note a relatively strong connectivity 

of the network: targeting a single gene for treatment may not prove to be efficient very long as 

there is usually at least one alternative path that allows to reach the same downstream targets.  

To get into more details, the submap can be divided into several parts which overlap to some 

extent: the activation of Receptor Tyrosine Kinases and subsequent recruitment of the PI3K 

 
Figure 10: Example of mutually exclusive (left) and co-occuring (right) patterns between genetic alterations. 
Perpendicular end of arrow represents negative influence of the starting node on the target node, whereas stick 

end of arrow represents a positive influence. 
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complex, the transduction of the signal from PI3K to AKT, the activation of cell growth 

processes, inhibition of FOXO transcription factors, inhibition of apoptotic pathways, influence 

on the cell cycle, and finally the RAS/RAF/ERK cascade. 

As mentioned earlier, the common starting point of the PI3K/AKT pathway is the activation of 

RTKs. In particular, EGFR, VEGFR and PDGFRA are well characterized, as they have been 

found to be upregulated in Glioblastoma. Upon activation of these receptors through binding 

with their respective ligand, the RTKs recruit the PI3K complex to the membrane, which triggers 

the release of the catalytic site of the PIK3CA subprotein.  

Transduction of the signal from the activated RTK to AKT is done via the phosphatidinosytol 3-

phosphate (PtdIns(3,4,5)P3) which is a phospholipid found in the membrane. The activated 

RTK:PI3K complex phosphorylates the PtdIns(4,5)P2 phospholipid to produce PtdIns(3,4,5)P3. 

This reaction can be reverted by the PTEN protein. The PtdIns(3,4,5)P3 recruits the AKT 

protein to the membrane, where it needs to be phosphorylated by both PDK1 (which needs to 

be recruited to the membrane by a different PtdIns(3,4,5)P3), and the mTORC2 complex to be 

fully activated, although some evidence suggest phosphorylation by only one of them may be 

enough to activate AKT, even if partially. Once fully activated, AKT is released from the 

membrane and can either remaining the cytoplasm or be transported to the nucleus. 

Inactivation of AKT was not extensively investigated, although it was found that the PP2A family 

and/or the PHLPP2 protein may have a role in it. 

Activated AKT promotes cell growth by phosphorylating the TSC2 protein, leading to inhibition 

of the TSC1:TSC2 complex which dephosphorylates the RHEB-associated GTP. Under a high 

enough concentration of RHEB:GTP, the mTORC1 complex is activated and promotes cell 

growth through inactivation of EIF-4EBP1 which is a cell growth inhibitor and activation with the 

help of PDK1 of RPS6KB1 which is involved in biosynthetic processes.  

The FOXO family (FOXO1, FOXO3, FOXO4 and FOXO6) of transcription factors is particularly 

interesting as targets of AKT, as they regulate transcription of genes involved in several 

different processes. Phosphorylation of the FOXO transcription factors by AKT (or by SGK 

which can phosphorylate them at the same sites) can happen both in the cytoplasm or in the 

nucleus, and leads to their sequestration by a YWHA (or 14-3-3) protein in the cytoplasm. 

Otherwise, they positively regulate BCL2L11, FASLG, TNFSF10, TRADD, BCL6 (which inhibits 

the apoptosis inhibitor BCL2L1), leading to promotion of apoptosis. They also positively 

regulate transcription of CDKN1A, CDKN1B and RBL2 and repress transcription of CCND1 
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and CCND2, which leads to G1/S phase transition repression, partly through activation of the 

RB1 pathway. Therefore, AKT mediated inactivation of the FOXO transcription factors inhibits 

paths towards apoptosis activation and cell cycle inhibition, which are key factors in tumor 

survival and development. 

Activated AKT has other ways to inhibit apoptosis than just through the FOXO family as 

described above. It can phosphorylate MDM2, which promotes its transport to the nucleus 

where it can regulate and inhibit TP53-induced apoptosis. It also phosphorylates the BAD 

protein, which is then unable to inhibit the apoptosis inhibitor BCL2L1. 

Similarly, the cell cycle is activated by AKT through inactivating phosphorylation of GSK3B. 

When active, GSK3B both inhibits the G1/S phase transition inhibitor MYC, and targets the RB 

pathway inhibitor CCND1 for degradation. 

Finally, the RAS/RAF/ERK cascade was added to this submap although it is relatively 

autonomous from PI3K/AKT, because there is some cross talk between the two. In particular, 

upon RTK activation, the RAS:GDP complex at the membrane is phosphorylated into an 

activated RAS:GTP complex, a phosphorylation that can be reverted by the NF1 protein. The 

RAS:GTP complex is able to recruit and activate the PI3K complex, which can be seen as an 

alternative path for PI3K activation instead of PI3K being directly recruited and activated by the 

RTK.  

Aside from that, once activated, a couple of RAS:GTP can associate to recruit a couple of RAF 

protein which in turn recruit a couple of MEK1 or MEK2 proteins. That large RAS/RAF/MEK 

complex then activates MAPK1 or MAPK3 through phosphorylation. MAPK1/3 is involved in 

feedback loop regulations, as it is able to trigger disassembly of the RAS/RAF/MEK complex, 

phosphorylate the SOS1 leading to its YWHA-mediated sequestration and thus preventing it 

from playing its role as a necessary intermediate for the RTK phosphorylation of RAS:GDP, 

and promote transcription of the DUSP6 protein which can dephosphorylate MAPK1/3 and thus 

inactivate it. 

Overall, the downstream influence of the RTK/PI3K pathway is quite wide, though I was not 

able to capture all proteins and interactions relevant to Glioblastoma. As a consequence, 

priority was given to targets known to be involved in typical hallmarks of cancer such as cell 

growth, proliferation and apoptosis for instance. However, the core Glioblastoma-specific 

alterations of this pathways are represented. Indeed, among the more frequently characterized 

genetic alterations of Glioblastoma, there are 
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• upregulation of EGFR, PDGFRA, MET and ERBB2 RTKs through either mutation or 

duplication, or they are mutated for increased efficiency. In particular, in IDH-wildtype 

Glioblastoma EGFR is almost always either upregulated or mutated for increased 

efficiency or sensitivity, and there is even a variant, named EGFRvIII, which is frequently 

observed and is constitutively active and thus doesn’t require ligand binding to initiate 

signaling 

• mutations of the PIK3R1 subprotein of PI3K which would disable its repression on 

PIK3CA catalytic site, or mutations to PIK3CA to increase its efficacy or allow it to 

phosphorylate PtdIns(4,5)P2 without recruitment by the RTKs, or a loss or inactivation 

of the PTEN protein that reverts PtdIns(3,4,5)P3 into PtdIns(4,5)P2 

• loss or inactivation of the NF1 protein that reverts the activated RAS:GTP complex into 

the inactive RAS:GDP 

• although relatively rare, RAS mutations for increased sensibility have also been 

observed 

As a result, while the pathway presents many downstream effectors, the main driver mutations 

of this signaling pathway occur at its very beginning. 

5.1.2.2 RB Submap 

The Retinoblastoma submap was much simpler to assemble, since RB associates itself with 

E2F family proteins to inhibit transcription of their targets. Typical alterations of this pathway in 

Glioblastoma lie in either the inactivation of RB or the activation of its inhibitors.  

RB1 has several upstream regulators. Upon DNA damage or exit from mitosis, it becomes 

hypophosphorylated, which is its activated state. Active Cyclin Dependent Kinases such as 

CDK4, CDK6 and CDK2 can deactivate it through phosphorylation. These CDKs are repressed 

by CDKN1B and CDKN2A. In addition, the PP1 complex has been shown to facilitate RB1 

dephosphorylation and repress its rephosphorylation. 

In its hypophosphorylated, active state, RB1 is able to bind to E2F family transcription factors 

to inhibit their transcriptional activity but not their ability to bind to their targets. As a result, RB1 

actively inhibits transcription of these E2F targets since it prevents other transcription factors 

and transcriptase to bind to the DNA. Once the concentration of active CDKs is high enough, 

RB1 hyperphosphorylated and releases the E2F transcription factors, thus allowing 

transcription of their targets. However, binding of RB1 to E2F1 specifically is slightly different 
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than with other E2F family members, as even when hyperphosphorylated, RB1 is still able to 

bind to E2F1 and partially inhibit it, specifically in regard to apoptosis-promoting E2F1 targets. 

Another, lesser function of RB1 is that it can target for degradation the gene SKP2, which 

promotes CDKN1B degradation. RB1 thus participates in a positive feedback loop, where it 

prevents degradation of an inhibitor of RB1 inhibitors. 

Modifications to the RB1 pathway in Glioblastoma typically occur through: 

• deletion or disabling of RB1, 

• amplification of CDK4 and CDK6, 

• deletion of the locus that contain the CDKN2A, CDKN2B and ARF genes 

which all limit or prevent RB1 to inhibit the cell cycle. 

5.1.2.3 TP53 Submap 

In Glioblastoma, the TP53 pathway is usually altered through the MDM2, MDM4 and ARF 

regulators of TP53 transcriptional activities. However, although there are many publications 

listing targets of TP53, barely any look into it in the specific context of Glioblastoma, which led 

to the inclusion of TP53 targets indiscriminately. 

Beyond the TP53 targets, a lot of attention was given to its regulation by MDM2 and MDM4. 

Indeed, TP53 can be bound by an MDM2 or MDM4 monomer, by and MDM2 homodimer or by 

an MDM2:MDM4 heterodimer. The bound TP53 can remain sequestrated, but also transported 

to the cytoplasm and targeted for degradation by the proteasome.  

Upon DNA damage, TP53 is released from its inhibitors by proteins such as PRKDC, ABL1, 

CHEK1, CHEK2 and ATM, and is then able to initiate transcription of its targets. 

Modifications to the TP53 pathway in Glioblastoma typically occur through 

• deletion or disabling of TP53, 

• amplification of MDM2 and MDM4, 

• deletion of ARF 

which all limit or prevent TP53 transcriptional activities towards apoptosis, cell cycle arrest, 

autophagy, DNA repair, cellular senescence, etc. 

5.1.2.4 Genetic Alterations Submap 

Finally, using the model defined before, the genetic alterations submap was relatively 

straightforward to build. Indeed, the existence of genetic or transcription rates abnormalities in 
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a specific disease is easier to identify and report than to characterize the effect of point 

mutations on a given protein and the proteins it interacts with. 

Although this submap is not sufficient on its own since it’s necessary to represent the abnormal 

behaviour of mutated proteins, it was important to model these alterations at the genetic level 

rather than just the mutated proteins as they are at the core of the disease mechanisms, but 

also because this submap displays the panel of mutations that may happen in a primary tumor, 

as well as all other mutations available to it to overcome treatment and develop resistance 

mechanisms. 

As most of the well-characterized genetic alterations have been mentioned in the context of the 

other submaps, there are only a few notable ones that were not part of the three main pathways 

but should still be mentioned: 

• The MGMT promoter is frequently methylated, leading to a repression of transcription. 

This is actually a positive predictive biomarker for response to treatment, as MGMT is 

involved in DNA repairing mechanisms that mitigate the effects of TMZ treatment. 

• TERT is often upregulated 

Finally, across these genetic alterations in Glioblastoma, patterns of mutual exclusivity of 

mutations or on the contrary frequent co-occurrence of mutations have been observed. These 

patterns are: 

• PDGFRA amplification occurs rarely alone, and is typically present alongside EGFR 

amplification, upregulation or increased efficiency mutation. Furthermore, EGFR 

upregulation and increased efficiency mutation also tend to happen alongside EGFR 

amplification. This shows that amplification of the EGFR gene, regardless of other 

mutation, is one of the most important alterations in Glioblastoma, as it is present in the 

majority of IDH-wildtype Glioblastoma, and is not prevented by the emergence of 

alternative ways of increasing EGFR-mediated initiation of the PI3K pathway. 

• Mutations of PIK3R1, PIK3CA and PTEN are mutually exclusive. This suggests that 

only one of them is enough to topple the balance of PtdIns(3,4,5)P3 concentration 

towards the pathways activation. It also means that targeting any one of these proteins 

for treatment may not be enough, as mutations to any of the other two may compensate 

the effect of treatment. 

• NF1 mutations are mutually exclusive with EGFR mutations. That suggests that in some 

cases the RAS protein is enough to trigger the whole pathway, and targeting only RTKs 

may result in the rise of activation of AKT via RAS instead.  
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• RB1 mutations tend to occur alongside NF1 mutations, PTEN mutations and TP53 

mutations. This suggests that the three pathways (PI3K/AKT, RB and TP53) are all 

required for Glioblastoma, and disruption of only one or two of them may not be enough 

for the tumor to survive and develop. 

• Interestingly however, EGFR mutations seem to be mutually exclusive with RB1 

mutations and TP53 mutations, while frequently co-occurring with the deletion of the 

CDKN2A/CDKN2B/ARF locus. This somewhat contradicts the previous interpretation 

but may be explained by the cross-talk points between the three pathways identified 

downstream of AKT activation, which added to the disruption caused by the loss of the 

TP53 regulator ARF and RB regulators CDKN2A and CDKN2B may be enough to 

disrupt the other two pathways. 

• Deletion of the CDKN2A/CDKN2B/ARF locus is mutually exclusive with CDK4 

amplification and RB1 alterations. This means deletion of that locus is enough to 

completely disrupt the RB pathway, and attempting to rehabilitate the CDKN2A and 

CDKN2B may be circumvented by the apparition of the other two types of mutations. 

• Amplification of CDK4 is mutually exclusive with NF1 mutations, while also occurring 

alongside MDM2 amplification at a high frequency. Co-occurrence of CDK4 and MDM2 

amplification may be simply due to their loci being close to each other. 

• TP53 mutations are mutually exclusive with MDM2 and MDM4 amplification as well as 

CDKN2A/CDKN2B/ARF locus deletion, which makes sense as it means the pathway 

can be disrupted with alterations to TP53 alone, or to its regulators, but alterations to 

both are unnecessary and constitute another potential way to circumvent treatment 

targeting one or the other. 
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5.1.2.5 Glioblastoma Disease Map 

Once combined, the four submaps lead to the assembly of the Glioblastoma Disease Map 

represented in Figure 11. 

Table 11 summarizes information about the Glioblastoma Disease Map and submaps: 

 PI3K-AKT RB TP53 
Genetic 

Alterations 
Combined 

Number of publications included 14 3 5 7 29 

Number of unique entities 132 35 50 63 262 

Number of modelled interactions 99 33 45 68 239 

Table 11: Summary of number of publications, entities and interactions involved in the Glioblastoma 

Disease Map 

The Glioblastoma Disease Map was uploaded to the MINERVA platform and is publicly 

available at 

 https://pathwaylab.elixir-luxembourg.org/minerva/index.xhtml?id=glioblastoma_map. 

Through this overall network, several crosstalk points between the PI3K-AKT, RB and TP53 

pathways can be identified. In particular, as illustrated in Figure 12, 

Figure 11: Glioblastoma Disease Map assembled from the four submaps: RTK/PI3K/AKT (blue), RB (green), 
TP53 (red) and Genetic Alterations (grey). 

https://pathwaylab.elixir-luxembourg.org/minerva/index.xhtml?id=glioblastoma_map
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• AKT plays a central role in the PI3K/AKT pathway, but also influences the TP53 

pathway through phosphorylation of MDM2, which then inhibits TP53. 

• The FOXO Transcription Factors family, inhibited by AKT, can promote transcription of 

CCND1 and CCND2, inhibitors of the RB pathway, but also its activator CDKN1B. In 

addition, MDM2 can lead to mono-ubiquitination or poly-ubiquitination of FOXO 

transcription factors, leading to their transit to the nucleus or degradation, respectively. 

• TP53 promotes transcription of PTEN, which is an inhibitor of the PI3K pathway 

  

Figure 12: Overview of bridges between the PI3K/AKT, RB and TP53 pathways. 
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5.2 Data management methods and systems 

Considerations around data management methods and solutions grew to become a significant 

part of work I did during the PhD. While this part did not develop directly towards addressing 

the question of Glioblastoma resistance mechanisms, it was nonetheless relevant to improve 

my awareness and understanding of limitations such considerations commonly impose on 

downstream analyses. This was achieved through work on three different topics: data 

management of clinical trial data at the Cancer Trials Ireland company; curation and storage of 

the GLIOTRAIN data into a tranSMART database; and migration of data from heterogeneous 

sources to the standardized OMOP Common Data Model. 

5.2.1 Cancer Trials Ireland 

At Cancer Trials Ireland, processing of clinical data from two different studies was undertaken, 

in order to investigate their completeness and validity. 

Unfortunately, due to the confidentiality agreement between ITTM and CTI as well as the nature 

of the work performed there, the results, figures and tables produced during the secondment 

cannot be published and can only be described abstractly. 

For the Glioma Biomarkers study, for which my role was to input biomarkers measurements 

data from scanned Case Report Forms into a database, a first version of the database was 

populated. In addition, the screening of the data allowed to identify a lot of mistakes and missing 

values in the CRFs. This outcome was not a surprise since the CTI team had already been 

aware and indicated that the initial data collection process for this particular study had not been 

up to their usual standards and they expected a lot of back and forth between themselves and 

the hospitals participating to the study to revise and obtain the data that could not be used from 

the CRFs. As a consequence, up to 60-70% of the data expected to be used in this study was 

processed into the database as a result of the secondment, the rest being data that could not 

be used or read from the CRFs and required further input from the source hospitals. 

For the Breast Cancer trial, the objective of which was to produce summary statistics and 

reports for the trial data using the SAS software, I produced the requested summary tables 

characterizing the database, including demographics, statistics about certain biomarkers, 

number of visits, response to treatment, adverse events, among others. In addition, the code 

for creating these tables was generic and parametric so that it may be used for other studies in 

the future, akin to functions in other languages although the term is not quite accurate in the 

context of the SAS software. These “functions” were used in scripts to output characterization 
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tables and reports while also referencing any encountered issue that requires additional 

attention such as important information that is missing, outliers or unexpected data types in the 

database. 

5.2.2 TranSMART and the GLIOTRAIN data 

Another part of the work around data management took place in regard to the processing of 

the clinical, RNA-Seq raw counts, Whole Genome Sequencing (WGS) and Methylation data of 

the 154 GLIOTRAIN samples to load it to a tranSMART database available to the consortium. 

Indeed, it first needed to be formatted to format compatible with the database, which also 

required investigating and documenting any potential issue with the data as it was provided 

after sequencing, both in its format and distribution. To that end, mainly Principal Components 

Analysis as well as graphical visualization approaches of the data distribution were used to 

investigate the data before it was loaded onto the database with dedicated tranSMART loading 

tools. 

5.2.2.1 Provided Data Characterization 

Curation and management of the GLIOTRAIN data, in close collaboration with other members 

of the consortium, allowed me to implement data management good practices through 

pseudonymization of data, its characterization, documentation, and organization into a 

database. 

To ensure data privacy, sensitive data was anonymized and a GLIOTRAIN samples labelling 

system was defined. 

In addition, several noteworthy characteristics of the data were identified. 

As demonstrated in Figure 13, the PCA analysis of the RNA-Seq data showed that there is a 

clear distinction between tumor samples and cell lines samples, which was expected but was 

still worth checking as it confirmed the relevance of the approach. Furthermore, a slight bias 

can be detected in the data. This appears to be linked to the institute that contributed each 

sample. Finally, two outliers clearly stand out from the rest. They were kept in the data but 

pointed out to the consortium members, to leave the choice to them whether to include these 

outliers in their own analyses and take appropriate measures. 
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Concerning the WGS data, no effect from batch or source institute was detected. However, 

comparison of CNV profiles between cell lines and their corresponding parental tumour at VIB 

revealed that 7 out of the 26 cell lines presented a very different from the profile of their 

corresponding parental tumour. Indeed, in these cell cultures most of the copy number 

variations found in the corresponding parental tumour samples appeared to have been either 

lost or inverted from deletion to amplification and conversely. This issue could not be explained, 

and as a result these cell lines were flagged as “questionable”. 

By aligning individual fragments of each chromosome for each patient, figures as displayed for 

Chromosome 9 as an example in Figure 14 were obtained. From them it could be observed 

that many small segments were missing at various positions for any given chromosome of a 

patient. It was shown that this was due to the low-coverage nature of the sequencing, which 

does not allow for precise and extensive sequencing, leading ambiguity and dropping of poor 

quality segments in the VIB pipeline. But more importantly, there were also large regions that 

were systematically missing at the exact same positions for all samples. Discussion with the 

VIB team clarified that these were regions that had to be removed after sequencing due to their 

 

Figure 13: Projection of the 154 GLIOTRAIN RNA-Seq data samples on the first (X axis) and second (Y axis) 
components from a PCA. Upper left: coloration by sample type, CP: Cell Pellets, WT: Whole Tissue. Upper right: 
coloration by source insitute. Bottom: coloration by batch. 
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low count number and poor mappability, and in most cases these regions appear to coincide 

with centromeres although sometimes much broader, as demonstrated by Table 12. 

In the focal events dataset, two of the identified focal events, on cytobands 18q11.1 and 6q12, 

included one of the systematically missing regions of the chromosome as described above. 

However, since these cytobands are much larger than the missing regions, it is conceivable 

that focal events may be detected despite these missing regions, although this is a piece of 

information that should be kept in mind when using this dataset in an analysis, especially if the 

results involve these two cytobands. 

Finally, it was noted that there were only two batches for the WGS data, while there were four 

for the RNA-Seq data. This was explained by the fact that the sequencers were able to handle 

up to 240 samples at a time for low-coverage WGS against 64 for RNA-Seq sequencing. 

 

Figure 14: Example of the WGS coverage visualization with chromosome 9 for the 151 WGS data samples. 
Each line on top of the grey background represents an individual fragment of the chromosome for a given sample. 
X axis represents the position on the chromosome. Samples are piled on top of each other along the Y axis. Color 
of the fragment represents the amplitude of the focal event, both towards amplification (red) or deletion (blue). 
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Table 12: Position of systematically missing WGS data and comparison with centromeres position. 

5.2.2.2 Extract, Transform, Load Process and Documentation 

The results of these exploratory analyses brought light to some potential issues in the data, 

such as the source institute bias or the outliers in the RNA-Seq data, and the questionable cell 

lines. Despite that, it was decided to limit modifications to the data and provide it as close as 

possible to how it came out of the sequencing pipeline, to grant the consortium members the 

freedom to handle these issues as they see fit, which would not be possible if data was provided 

normalized or further transformed.  

Instead, these observations were extensively documented and communicated to ensure that 

consortium members would be aware of them. 

The data was then loaded to the tranSMART database with annotations allowing for an intuitive 

and easy to navigate tree structure in the graphical interface. With no issue identified in the 

database following upload, access to the database was provided to the consortium. 

Chromosome Missing region Corresponding centromere136 

 start end start end 

chr1 12 825 000 13 825 000   

chr1 121 325 000 145 425 000 122 026 460 125 184 587 

chr2 89 025 000 95 625 000 92 188 146 94 090 557 

chr3 90 175 000 93 575 000 90 772 459 93 655 574 

chr4 49 025 000 52 725 000 49 708 101 51 743 951 

chr5 45 875 000 49 625 000 46 485 901 50 059 807 

chr5 68 775 000 70 775 000   

chr6 57 675 000 62 025 000 58 553 889 59 829 934 

chr7 57 625 000 63 425 000 58 169 654 60 828 234 

chr8 43 275 000 47 625 000 44 033 745 45 877 265 

chr9 38 775 000 71 025 000 43 236 168 45 518 558 

chr10 38 425 000 42 875 000 39 686 683 41 593 521 

chr11 50 175 000 55 075 000 51 078 349 54 425 074 

chr12 34 275 000 38 475 000 34 769 408 37 185 252 

chr16 35 075 000 46 575 000 36 311 159 38 280 682 

chr17 22 125 000 25 325 000 22 813 680 26 885 980 

chr18 14 775 000 18 575 000 15 460 900 20 861 206 

chr19 24 325 000 28 375 000 24 498 981 27 190 874 

chr20 26 125 000 29 875 000 26 436 233 30 038 348 

chrX 58 275 000 62 075 000 58 605 580 62 412 542 

chrX 154 913 804 154 925 000   
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5.2.3 The OMOP CDM 

As part of ITTM and in order to improve efficiency of mapping source datasets to the OMOP 

CDM format, I was involved in the definition of processes and tools to facilitate these activities. 

This work involved mainly formal development of a pipeline and software around OMOP 

mapping rather than active manipulation of data, but did require accounting for and 

documenting good practices for data management. 

5.2.3.1 SOP writing 

As a consequence of that reflection, I had a major role in defining the following pipeline for 

mapping project, which is represented by the Figure 15 diagram.  

Below are general descriptions of the different processes represented in this pipeline, as well 

as others not directly involved in mapping but required for ITTM OMOP projects, and which 

solutions I found to improve and formalize them. 

Requirements Analysis: The earliest stage of the project should focus on exchanges to 

understand exactly what is expected for this project in terms of activities (mapping, evaluation 

of mapping, ETL implementation…) and timelines, identify the main interlocutors both on the 

ITTM and source side, and get a broad overview of the data to map (size, storage infrastructure, 

terminology used…). For this a form to submit to customer to orient discussion was designed, 

to clearly express the information needed and obtain it faster. 

 

Figure 15: Pipeline of the OMOP mapping process (top) and corresponding legend (bottom) 
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Data Characterization: The first phase of the actual mapping pipeline consists in exploring 

and getting familiar with the source data to map. It requires extensive communication with 

someone from the source institute who knows the data well. It was important to define this 

phase apart from the downstream mapping activities, since it was realized from experience that 

starting to define mappings before having a clear understanding of the data often leads to 

misunderstandings, repeated modifications of mappings and loss of time which could be 

avoided by knowing the data well enough and having a general idea of how the mapping should 

be defined before even starting. To ensure this is carried out properly, in addition to the 

production of a Data Dictionary, i.e. a list of all fields in the source database with their 

description and possible values, which was already good practice at ITTM, the suggestion was 

put forward that an extensive report about the knowledge gathered during this step should be 

written and both should be validated by the source institute to confirm the data has been well 

characterized. A template of that report with guidelines to write it was also created. 

Structural Mapping: Consists in defining where the data from the source database fits in the 

OMOP CDM, and whether any transformation (e.g. calculation of the value in the OMOP field 

from two different fields in the source data; changing the date format; using the value from field 

X or Y depending on the value in field Z…) is required to achieve it. This activity, carried out 

using the Rabbit-in-a-Hat software developed by the OHDSI community, is extremely time-

consuming, however due to the nature of the work which is to define how the source data fits 

in the OMOP CDM and thus is highly specific to the structure of the source database, a solution 

for optimization of this step was not identified. Somewhat to the contrary even, through the 

definition and integration of Machine-readable Syntax, presented at length in the corresponding 

subsection below, the step of defining mappings in that syntax was introduced into this activity 

in addition to verbose descriptions. While the writing of both formats sensibly increases the 

workload needed during this process, both are needed since on one hand the verbose 

description allows for a clear, unambiguous and straightforward explanation of what is needed 

to transform the data from its source structure to the OMOP CDM, and on the other hand the 

mapping code syntax greatly reduces the workload needed to implement the ETL program that 

executes the mapping (see paragraph below), hence largely compensating for the work 

invested. 

In addition, a script able to merge two different mapping files was implemented, so that several 

people may work parallelly to define mappings for different source fields and have their 

mappings combined once completed. 



94 
 

Semantic Mapping: The objective in this task is to map non-numeric values (e.g. free text, 

categories, ontology codes…) from the source data to the OMOP Standardized Vocabularies. 

This is done mainly through the use of the Usagi software and Athena search engine, both 

being resources developed by the OHDSI community, and here as well due to the nature of the 

work being completely dependent on the source data, I was not able to suggest efficiency-

improving methods, except maybe for defining guidelines to prioritize the methods to use for 

the mapping: 

a. if the source data uses codes from a standard ontology that is available in the OMOP 

Standardized Vocabularies (e.g. SNOMED, ICD-10, LOINC, RxNorm, MeSH), 

automatically generate the mappings by querying them directly from the Standardized 

Vocabularies 

b. compile codes that are not part of available standard ontologies into a file input for the 

Usagi software and define mappings in Usagi 

c. in cases when Usagi suggestions and search features are not enough to find satisfying 

mappings, use the Athena search engine for an advanced search 

d. if still no appropriate mapping is found, contact the source institute to get insight on the 

code and suggestions on alternative terminologies which could help find better results 

e. as last resort, map to the OMOP concept_id ‘0’, corresponding to “No matching concept” 

The output of this mapping process should be a CSV file containing the mapping between the 

source codes and OMOP concept_ids 

ETL Writing: Once both Structural and Semantic mappings have been defined, a program 

implementing the execution of these mappings for all the data in the database is needed. The 

OHDSI community does not provide many resources for this step, and suggests that it should 

be entrusted to someone competent in ETL implementation, without more details74. This 

suggests they expect each ETL program to be tailored specifically to the source data. However, 

we developed a Python program with modularized features that enable re-using code with a 

minimal workload to adapt it to each project. This program is described in more details in the 

ETL Software subsection below. In addition to that program, and again for the sake of 

transparency and documentation, the writing of an ETL code report was suggested for 

integration  into this process, to describe the code structure, dependencies and specificities of 

the program and provide an overview of it to the source institute. For that purpose, a template 

of that report was created, which would require only a few modifications since the program 

remains mostly unchanged across projects. 
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Peer Review: In order to ensure quality of the work, all project-specific mappings, ETL code 

and deliverables should be double-checked by a second person, and discussed until 

consensus is reached if the second opinion disagrees with what was reviewed. To smoothly 

integrate that process within the general pipeline, in particular for Structural and Semantic 

mappings which may take a long time before reaching completion, small bits of work, such as 

a group of about 10 field mappings or a section of a report, should be submitted for review once 

completed, so that review and subsequent discussion may take place in parallel to the progress 

of other parts of the work. 

Timelines and Progress Tracking: Since the goal is to efficiently progress through the 

mapping processes, it was important to define a way to estimate timelines and keep track of 

the tasks that were completed or pending. To that end, two complementary approaches were 

defined: 

• From the data dictionary created during the Data Characterization step a “mapping 

master file” is created, where all fields that require Structural Mapping and all values 

that require Semantic Mapping are listed. These lists have two purposes: firstly, 

estimate the total time both activities would take to achieve, since it was estimated from 

experience that on average it takes 30 minutes to complete structural mapping for one 

source field, and 10 minutes to complete semantic mapping of one source code 

(accounting for both the definition of the mapping and its review), so that timelines may 

be defined; secondly, in these lists next to each field name or source code, the status 

of the mapping is indicated and updated as needed with annotations “pending”, “in 

progress”, “for review” or “validated”. A template was provided as well for this mapping 

master file with prepared columns which only need to be filled with project-specific data, 

and the automatic calculation of activities duration once the lists are populated. This 

particular attention to Structural and Semantic Mapping steps is important because they 

are the most time- and resource-consuming activities out of the entire pipeline. 

• Generally speaking, OMOP projects should still fall into broader project management 

policy of ITTM, and thus be managed through the JIRA tool used at ITTM. But here 

again, in order to formalize and facilitate this process, and thanks to my work on defining 

all these activities that constitute and OMOP project pipeline, these processes were 

broken down from large categories like Data Characterization or Semantic Mapping all 

the way down to the level of elementary tasks, and as a result a list of all tasks expected 
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to be needed in JIRA was created, with guidelines on how to handle them in ambiguous 

cases. 

Project Documentation: As mentioned above, several reports should be written over the 

course of the project. These reports were designed so that there would be extensive 

documentation about any given project, with two objectives in mind: transparency with the data 

owner, so that they would have a clear understanding of the state of the project and what was 

achieved and done to their data; documentation for any newcomer to the project so that 

onboarding them may be relatively straightforward and avoid any important information being 

omitted during the process. As mentioned, for each of these reports a template was created 

with guidelines for the sections that need to be filled. 

In addition, for internal documentation templates of Confluence pages for a given project were 

also prepared. Rather than repeating information from the different reports and mapping files, 

these pages are for internal use and should contain general information about the project, 

expected timelines, primary contacts, location of the different mapping and report files in the 

ITTM infrastructure, and provide an overview of the status of the main tasks in JIRA. 

From the definition and characterization of all these activities in the OMOP pipeline and 

subsequent tasks, each of the steps of this pipeline were described in detail as internal SOPs 

for the company.  

5.2.3.2 ETL software 

Through my work on the ITTM ETL software, the program was further developed and optimized, 

and possible improvements have been identified. 

Refactoring led to cleaner, more readable and well-organized code. Replacing repeating code 

snippets with function calls and increasing the number of descriptive comments made the 

software easier to navigate and understand. Furthermore, two new modules were added to 

centralize functions dispersed in the code but related either to semantic mapping for the first 

module, or to the reporting of standard output, warning or error messages for the other. 

Beyond refactoring the code, the modules were further developed to add new features, such 

as compiling and exporting ETL execution report data at the end of the program or import 

mapping definitions directly from the Rabbit-in-a-Hat mapping file for instance. In addition, a 

template was created for the project-specific code, which centralizes all instructions specific to 

a project such as the path to input files or mapping operations too complex to be represented 

with the machine-readable mapping syntax that require code implementation. 
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Finally, while the program was significantly improved from the work done, features that could 

be further optimized or added have also been identified. In particular, it was found that formula 

evaluation to interpret machine-readable mapping code was the most resource-consuming 

process during execution, and its optimization would greatly benefit performance. 

5.2.3.3 Machine-readable mapping syntax 

In order to optimize transition from OMOP mapping definitions to their implementation, I 

contributed heavily to the designing and implementation of a machine-readable syntax for 

defining mapping. 

The formalization process of common mapping instructions led to the definition of several 

structures. 

Firstly, the architecture of the mapping definition pipeline needed to be accounted for. In 

particular, the Rabbit-in-a-Hat software which is the tool used to define mappings is structured 

in such a way that information relevant to a given mapping may be scattered over multiple 

places. As a consequence, a given mapping should have a starting point in which the position 

of all pieces of information relevant to the mapping are provided by the mapper. Such starting 

points and guidelines to use them were defined and documented. 

In addition, like in most programming languages assigning a value to a particular variable, i.e. 

to a field in an OMOP table, was handled with the straightforward “field = value”. 

Finally, since scenarios where alternative mappings are needed depending on the data itself 

regularly happen in mapping projects, a structure similar to “IF” statements and blocks in 

programming languages with the subsequent alternative mappings was also devised. 

Furthermore, 17 frequently used mapping operations were identified and assimilated to calling 

a function with a name explicit of its use. 

Following definition of the machine-readable mapping syntax the corresponding code to 

interpret it was implemented and integrated to the ETL software, and both are currently used 

in ITTM OMOP mapping projects. 
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5.3 Data Analysis 

5.3.1 Identification of predictive biomarkers of drug response 

Research conducted for identification of predictive biomarkers of drug response was done in 

close collaboration with another GLIOTRAIN ESR at the Erasmus Medical Center. The goal for 

this work, which involved two different studies, was mainly to perform quantitative analyses of 

gene expression data in relation to drug response measurements to investigate genes that 

could potentially help predict effectiveness of drugs on Glioblastoma. 

5.3.1.1 AUC computation 

In order to perform these quantitative analyses, the need to compute the response variable from 

the raw data measurement of cell culture survival rate at different drug concentrations emerged. 

For this, it was decided to computationally fit curves to that survival data and use the Area Under 

the Curve (AUC) as response variable for the analyses. IC50 may also be derived from the 

curve. Indeed AUC and IC50 are commonly used as response variables for such quantitative 

analyses, and since the range of concentrations used for some of the drugs required extreme 

extrapolation for the IC50, using AUC which did not rely on such approximation appeared to be 

more reliable. 

To facilitate and automatize curve-fitting and AUC computation for the predictive biomarkers of 

drug response analyses, a bioinformatics pipeline was developed which, for a given screened 

drug: 

• takes as input a matrix of the survival rates of cell cultures (including duplicates) after 

exposure to different concentrations of the drug 

• fits either a log-logistic, linear or exponential decay model to the datapoints of each 

sample, depending on which fitted model presents the smallest residuals 

• produces several plot files where data is aggregated per cell culture: 

o the raw data lines 

o the raw data for “excluded samples”, for which curve-fitting was not successful 

o the smooth fitted curves and corresponding selected model type 

o optionally, one individual graph per cell culture where the parameters of the 

model are displayed directly on the plot 

• exports as text files: 

o the smooth fitted curves data points for plotting 

o the parameters for the fitted models 
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o the list of excluded samples 

• .RData files that contain 

o the fitted models 

o the smooth fitted curves data points for plotting 

Once the program was implemented, it was used to calculate AUCs and IC50s for both the 

drugs repurposing and cell culture models validation projects. 

Furthermore, the program was also used for a different project I did not work directly on, which 

was about validating IDH-mutant Glioblastoma cell cultures models. This led to me signing as 

a co-author for a publication137 on that study. 

5.3.1.2 Drugs Repurposing Project 

The goal of the Drugs Repurposing Project was to analyze microarray transcriptomics data of 

treatment-naïve cell cultures in comparison with response data of same cell cultures to 110 

drugs, in order to identify genes for which the expression profile may be predictive of sensitivity 

to a given drug, as well as use the results to select the most interesting drugs candidates for 

treating Glioblastoma. First, a PCA was performed on the data to investigate its distribution, in 

particular in regard to external factors such as sequencing batch and type of sample. Then, 

data was analyzed both with Least Absolute Shrinkage and Selection Operator (LASSO) and 

Weighted Gene Co-expression Analysis (WGCNA) methods, in order to cover the analysis with 

different methodologies (i.e. regression and clustering). Furthermore, as other factors including 

the type of sample (Primary and Recurrent Glioblastoma) and the set of genes included in the 

analysis (cancer-focused or indifferent), several analyses were conducted with the different 

combinations of these parameters. 

The analysis pipeline started with a characterization of the available data. 

Initial investigation of the DASL data, looking at the distribution of the mean and variance of the 

different probesets did not reveal any significant abnormality or outlier. A PCA also revealed 

no strong bias associated with batches as shown in Figure 16.  
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The PCA also revealed no strong dissociation between Primary and Recurrent Glioblastoma 

samples, as illustrated by Figure 17, which is concerning since there are known differences 

between these types, and therefore there should be a noticeable difference in their expression 

profile. 

 

Figure 17: Primary (in red) and Recurrent (in blue) Glioblastoma samples from the DASL data projected on 
the first (X axis) and second (Y axis) Principal Components (left), and third (X axis) and fourth (Y axis)  

Principal Components (right) Principal Components from a PCA 

In the first run of the analysis using the initial IC50s dataset, both the LASSO and WGCNA 
approaches produced interesting results. 

Using LASSO, there were only a few, if any, genes associated to each drug. Although these 

genes were rarely directly connected, there were many cases where they would be distant by 

only one or degrees neighbours. Growing the networks by adding such neighbours also allowed 

for the emergence of functional pathways, and as a result I identified 3 drugs for which 

Glioblastoma-relevant pathways were associated with the LASSO-selected genes when 

including all Glioblastoma samples in the LASSO analysis, and two drugs had such a pattern 

when only Primary Glioblastoma samples were used. These results are described in Table 13 

and Table 14. 

Figure 16: Samples from the DASL data projected on the first (X axis) and second (Y axis) Principal 
Components (left), and third (X axis) and fourth (Y axis)  Principal Components (right) from a PCA. Coloring 
by batch. 
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Table 13: Glioblastoma-relevant results from the initial run of the LASSO analysis including all Glioblastoma 
samples 

Drug LASSO-selected genes Emerging Pathways 

Pemetrexed 

HLA.DRB5, HSD17B1, ID2, OR52E8, PIGN, PVALB, 

RASSF5, RBM44, SLC26A11, STK17B, TAS2R43, 

TBC1D3B, TRPA1, WFIKKN2, WNT3, ZNF229, ZNF28 

Protein Kinase A Signaling, 

Sirtuin Signaling 

Pralatrexate 

ADCYAP1, ARG2, CHRDL2, CNGA1, CSAG1, DOK6, 

ENTPD3, FCGR2B, FNDC9.1, GJD3, GPC3, 

HIST3H2A, HOPX, HPDL, HSPB3, IL1RN, KCNS3, 

LINGO2, LRRC26, MASTL, MCM3AP.AS1, N4BP3, 

NODAL, PLAC9, PRSS36, SLC6A12, XRN2 

Molecular Mechanisms of 

Cancer, Axonal Guidance 

Signaling, Glioblastoma 

Signaling 

Sorafenib 

BMP6, CNGA1, FAM81A, GTF2H2B, GUCY1A1, 

KCNH7, KCNIP2, KCNQ3, MADCAM1, OLFM4, OMD, 

P2RY14, PCDH8, PCDHGB4, RPL23AP64, SMA5, 

ST18, UNC5C, ZFPM2 

Glucocorticoid Receptor 

Signaling, Neuroinflammation 

Signaling 

 

Table 14: Glioblastoma-relevant results from the initial run of the LASSO analysis including Primary 
Glioblastoma samples 

Drug LASSO-selected genes Emerging Pathways 

Sorafenib 

ACVR1C, ADGRG7, ADH1B, CLIP1, DCHS2, 

DNAJA4, EMX2OS, GJB6, GRM3, GUCY1A1, 

SLC7A2, TMEM233, TNNT2, UBE4A, ZFPM2 

Synaptic Long Term Depression, 

Glucocorticoid Receptor Signaling, 

Gap Junction Signaling 

Capecitabine 

CCL25, CRTC1, ENOX2, GLIDR, HBG2, 

LARGE1, OR8G2P, PLAA, PPIL2, RNF213, SRC, 

TMEM104, TMEM234, TMEM39B, TSC2, ZNF117 

14-3-3-mediated Signaling, AMPK 

Signaling, Glioblastoma Signaling 

Conversely, the WGCNA approach produced clusters of genes much larger than the LASSO. 

This led to different results in the IPA enrichment investigation. Indeed, the genes in any of the 

cluster were numerous enough that connections between them could be established already 

with looking for common neighbours, though enrichment of the network with first-degree shared 

neighbour was still performed. Despite that, there were also many of the genes in the cluster 

which remained unconnected to the rest. In addition, since there were many more genes, the 

number of associated functional pathways were also higher than for the LASSO results. It is 

also important to note that contrary to the LASSO approach which selects a different set of 

genes for each drug, the WGCNA clusters genes based on their expression profiles before 

correlating them with drug response. As a result, a same gene cluster can be correlated to the 

response of several drugs, and associated functional pathways would be mostly the same since 

they emerge mainly from the initial gene cluster, although there may be additional pathway that 

would emerge due to the addition of the drug, its targets and any intermediate component 
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between them and the genes of the cluster. Finally, I had to focus on the stronger cluster/drug 

associations, otherwise there would be too many networks to investigate. Therefore, the 

threshold of investigation was arbitrarily set to an absolute correlation threshold of 0.6 or higher 

with a p-value of 0.05 or less. This to shortlist a more manageable seven clusters to investigate 

than 21 clusters if the absolute correlation threshold was set 0.5, or over 40 clusters if all 

clusters that had a correlation p-value of at most 0.05 with at least one drug had to be 

investigated. However, that threshold was only reached when only the Primary samples were 

included in the analysis and the Recurrent samples were left out. As a result, for WGCNA I 

focused on that subset. Table 15 provides an overview of the results. 

Despite these promising results which seemed to identify cancer and/or neuron-related genes 

correlated with response to several drugs, I was not satisfied with the bounded solution for the 

IC50s data. Following acquisition of the spectrophotometry measurements of cell cultures 

survival at different concentrations of drugs and implementation and execution of the AUC 

computation, evaluation of the output of the AUC computation process for the drugs revealed 

several noteworthy results.  

First of all, there were 13 drugs which clearly 

seemed to have no effect of Glioblastoma cell 

cultures. As illustrated by Figure 18, the cell 

survival rates did not vary with drug 

concentrations, and most cell cultures 

presented similar response profiles. This 

concerned the drugs Allopurinol, Altretamine, 

Anastrozole, Cabazitaxel, Capecitabine, 

Cyclophosphamide, Docetaxel, Ifosfamide, 

Lenalidomide, Letrozole, Pentostatin, 

Pomalidomide and Thalidomide, which as a 

consequence were removed from the rest of 

the analysis. 

 

 

 

Figure 18: Drugs such as Anastrozole which did not 
seem to affect cell cultures viability were removed 
from the analysis. Blue dots correspond to the 
percentage of cell population survival at the given drug 
concentration, averaged across all replicates for a given 
cell culture. Black lines represent evolution of the cell 
culture response at different concentrations by linking 

the blue dots of a given cell culture. 
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Table 15: Clusters highly correlated with drugs (absolute coefficient of 0.6 or more, p-value of 0.05 or less) 
and Glioblastoma-relevant functional pathways linked to cluster genes involved with that correlation. From 
the initial run of the WGCNA analysis including Primary Glioblastoma samples. For Cluster 1 and 2, several 
pathways were recurrently associated with the correlated drugs, and were thus listed along with the cluster name 
as “Recurrent pathways”, which were referred to in the “Corresponding Canonical Pathways” column. 

Cluster and Recurrent Pathways 
Correlated Drugs 

(number of genes) 
Corresponding Canonical Pathways 

Cluster 1 

Recurrent pathways: 

• Axonal Guidance Signaling 

• Hepatic Fibrosis / Hepatic 

stellate Cell Activation 

• GP6 Signaling 

• Cardiac Hypertrophy Signaling 

• Role of Osteoblasts, osteoclasts 

and chondrocytes in Rheumatoid 

Arthritis 

• Osteoarthritis Pathway 

• Atherosclerosis Pathway 

Enzalutamide (624) 

Acute Phase Response, Glucocorticoid 

Receptor Signaling, IL-6 Signaling, 

Axonal Guidance, Glioma Invasiveness 

Bleomycin sulfate 

(666) 

Recurrent Pathways, Glioma 

Invasiveness, ERK/MAPK Signaling 

Busulfan (728) Axonal Guidance, Sirtuin Signaling 

Carboplatin (809) Recurrent pathways 

Idarubicin 

hydrochloride (214) 

Recurrent pathways, Molecular 

Mechanisms of Cancer 

Melphalan 

hydrochloride (666) 
Recurrent pathways 

Cluster 2 

Recurrent pathways: 

• Synaptogenesis Signaling 

• Axonal Guidance Signaling 

• Opioid Signaling 

• Neuroinflammation Signaling 

• Huntington’s Disease Signaling 

• Protein Kinase A Signaling 

• GABA Receptor Signaling 

• Synaptic Long-term Depression 

• CREB Signaling 

Bendamustine 

hydrochloride (249) 
Recurrent Pathways 

Oxaliplatin (293) Recurrent Pathways 

Melphalan 

hydrochloride (288) 
Recurrent Pathways 

Mercaptopurine 

(219) 
Recurrent Pathways 

Lomustine (225) Recurrent Pathways 

Cluster 3 Temozolomide (67) 
Hepatic Fibrosis / Hepatic stellate Cell 

Activation, mTOR Signaling 

Cluster 4 
Procarbazine 

hydrochloride (83) 
Estrogen Receptor Signaling 

Cluster 5 
Omacetaxine 

mepesuccinate (48) 

Protein Kinase A Signaling, Sirtuin 

Signaling 

Cluster 6 Carboplatin (121) 
Axonal Guidance Signaling, 

Osteoarthritis Pathway, Protein Kinase 



104 
 

A Signaling, Synaptogenesis Signaling, 

Molecular Mechanisms of Cancer 

Cluster 7 Afatinib (22) 
Synaptogenesis Signaling, Huntington’s 

Disease Signaling, Apoptosis Signaling 

Moreover, the tested range of concentrations was likely not adapted for several of the screened 

drugs. Indeed, there were drugs for which the log-logistic shape of most the curves fitted with 

that model was clearly not captured within the tested range of concentrations, either because 

inflexion  

• seems to happen before the lowest concentration tested (Carfilzomib, Dactinomycin, 

Gemcitabine, Ixabepilone, Romidepsin) 

• reaches the lower plateau beyond the highest tested concentration (Amirolevilinic acid 

hydrochloride, Bendamustine hydrochloride, Busulfan, Carmustine, Dabrafenib 

mesylate, Dacarbazine, Floxuridine, Methoxsalen, Mercaptopurine, Procarbazine 

hydrochloride, Temozolomide, Vismodegib) 

• takes place over a broader range on both sides of tested concentrations, with both early 

and late part of the log-logistic curve visibly occurring outside of the tested 

concentrations (Decitabine, Pemetrexed) 

Although the model could still be fitted, the fact that this was the tendency for most of the fitted 

curves raised the potential issue that the model inference may be off for those drugs. In addition 

to that, there are also cases where the sigmoid shape is not even observable and leads to fitting 

either the linear model, when the data is monotonously decreasing, or the exponential decay 

model when the drug response data is likely reflecting the end part of a sigmoid shape. 

Furthermore, there were drugs for which there was a high number (>25%) of curves fitted to 

either the linear or exponential decay models rather than the expected log-logistic model for 

drug response. In some cases, it is likely due to a wrong tested range of concentration as 

described above, while in others it may be due to  

• high sensitivity of the cell cultures to the drug for cases where exponential decay model 

was fitted for a few cultures while the others were fitted to the log-logistic model 

(Dasatinib, Temsirolimus and Topotecan hydrochloride) 

• low sensitivity of the cell cultures to the drug for cases where a linear model with almost 

no slope was fitted for a few cultures while the others were fitted to the log-logistic model 

(Amirolevilinic acid hydrochloride, Arsenic trioxide, Bendamustine hydrochloride, 

Busulfan, Dexrazoxane, Temozolomide) 
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• unexplained response of the cell cultures to the drug or experimental errors (Floxuridine, 

Fluorouracil) 

Finally, there were drugs for which a relatively important number (ten or more) of cell cultures 

were excluded from the final set of models, either because none of the models could fit the data, 

the fitted model was monotonously increasing (suggesting higher survival of cells with higher 

concentrations of the drug) instead of decreasing, or because the computed higher limit of the 

model, corresponding to the estimated percentage of cell population survival at null 

concentrations of the drug, was three times higher than the value for the control. These issues 

may be due to the drug not affecting the cell cultures at all, or come from inadequate 

concentrations testing ranges or poor data quality. While it would have been good if new 

experiments to produce new data for these drugs could have been performed, it was not 

possible to do so at that stage and the drugs had to be excluded from further analysis. 

Conversely, there were also many drugs for which the curve-fitting process resulted in well-

defined log-logistic curves, with very few samples excluded, and inflexion points of curves quite 

close to each other across all cell cultures. That was the case for 19 out of the 109 drugs, 

namely Afatinib, Amiodarone hydrochloride, Bortezomib, Bosutinib, Cabozantinib, Celecoxib, 

Crizotinib, Enzalutamide, Everolimus, Exemestane, Gefitinib, Imatinib, Mitotane, Nilotinib, 

Omacetaxine mepesuccinate, Plicamycin, Regorafenib, Sirolimus, Sorafenib, Sunitinib, 

Tamoxifen citrate, Thioguanine and Vemurafenib. These results suggest that the response 

(and by extension AUC and IC50 derived from it) to any of these drugs is highly similar for all 

cell cultures, and as a result it may not be interesting to look into them since it means that 

response would hardly be helpful to discriminate between cell cultures and their gene 

expression profiles. 

The drugs that haven’t been mentioned so far as presenting either notable issues in curves or 

well-defined log-logistic curves are drugs for which curve fitting was successful, but the models 

were not as well defined or were quite dispersed and heterogeneous, suggesting a more 

variable and not as consistent response to the drug. As such, these are the drugs which, at 

that point, show the most promise to be reliable enough to be used in an analysis while also 

having enough dispersion to enable identification of genes that have different expression 

profiles in cultures that are more responsive to a given drug than in cultures that are less 

responsive to that drug in a significative way. Those drugs are Axatinib, Azacitidine, Bleomycin 

sulfate, Carboplatin, Chlorambucil, Cladribine, Clofarabine, Cytarabine hydrochloride, 



106 
 

Daunorubicin hydrochloride, Doxorubicin hydrochloride, Epirubicin hydrochloride, Erlotinib 

hydrochloride, Estramustine phosphate sodium, Etoposide, Mitomycin, Fludarabine 

phosphate, Idarubicin hydrochloride, Irinotecan hydrochloride, Lapatinib, Lomustine, 

Mechlorethamine hydrochloride, Megestrol acetate, Melphalan hydrochloride, Mitoxantrone, 

Oxaliplatin, Pipobroman, Pazopanib hydrochloride, Ponatinib, Raloxifene, Teniposide, 

Thiotepa, Tretinoin, Uracil mustard, Valrubicin, Vandetanib and Verinostat.All these findings 

about curve-fitting results for the different drugs can be found in the Table 16 summary.  

Still, all drugs except for the ones clearly unaffecting Glioblastoma cells were included in the 

analyses to see what would come from it, since the analysis relied on the assumption that 

difference in the cell cultures response to drug, captured through AUC which is influenced not 

by multiple other factors including slope steepness and final plateau of the curve, regardless of 

the shape of the curve, could be used as response variable for a multivariate analysis. While 

the typical log-logistic shape brings more confidence in the accuracy of the data used, we did 

not want to exclude any promising drug candidate on that sole criterion. To look for biomarkers 

for which the expression profile could be associated with drug response, the data was analyzed 

with both LASSO and WGCNA, each with two different subsets of samples (all Glioblastoma 

samples and only Primary Glioblastoma samples), and with the unbiased genes set and the 

cancer genes set. As a result, eight different sets of results were produced and needed to be 

screened, interpreted, and compared. Furthermore, the enrichment analysis method was 

switched from the initially used manual and time-consuming investigation in IPA relying on 

proprietary molecular interactions and pathways and offering limited control over network 

development parameters to the method described in the 4.3.1.2 Gene Ontology enrichment 

function subsection which provided a more reliable solution as it was automatized, provided 

statistical tests and p-values along with results, and relied on the Gene Ontology which is a 

more standard and widely used resource.. The significant enrichment analysis results for each 

of the eight analysis designs were compiled in Table 22 and Table 23 from the 8.2 Drugs 

Repurposing LASSO and WGCNA results annex. 

Table 16 provides an overview of which approach(es) resulted in the identification of potentially 

interesting functional pathways, which would lead to the identification of potential predictive 

biomarkers, for each drug. 
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Table 16: Overview of the results emerging from AUC computation, LASSO and WGCNA analysis in the 
Drugs Repurposing Project. Red cells indicate drugs that were excluded due to apparentlt no effect on cell 
cultures, orange cells indicate questionable relevance of fitted curves, yellow are for drugs for fitted curve models 
were very homogeneous, green cells indicate fitted models presented heterogeneous log-logistic profiles, and blue 
indicate the drugs for which results were obtained for a given experimental setting. 
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Drug names 
Curves fitting (from AUC 

computation) 
WGCNA LASSO 

Afatinib                  

Allopurinol                  

Altretamine                  

Aminolevulinic acid 
hydrochloride                   

Amiodarone 
hydrochloride                    

Anastrozole                  

Arsenic trioxide                    

Axitinib                  

Azacitidine                   

Bendamustine 
hydrochloride                    

Bleomyci sulfate                     

Bortezomib                    

Bosutinib                  

Busulfan                    

Cabazitaxel                  

Cabozantinib                  

Capecitabine                  

Carboplatin                  

Carfilzomib                    

Carmustine                      

Celecoxib                  

Chlorambucil                  

Cisplatin                   

Cladribine                  

Clofarabine                  

Crizotinib                  

Cyclophosphamide                  

Cytarabine 
hydrochloride                  

Dabrafenib 
mesylate                   

Dacarbazine                   

Dactinomycin                        

Dasatinib                  

Daunorubicin 
hydrochloride                  

Decitabine                   

Dexrazoxane                     

Docetaxel                  
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Drug names 
Curves fitting (from AUC 

computation) 
WGCNA LASSO 

Doxorubicin 
hydrochloride                    

Enzalutamide                    

Epirubicin 
hydrochloride                    

Erlotinib 
hydrochloride                  

Estramustine 
phosphate sodium                  

Etoposide                  

Everolimus                    

Exemestane                  

Floxuridine                   

Fludarabine 
phosphate                   

Fluorouracil                   

Fulvestrant                   

Gefitinib                   

Gemcitabine 
hydrochloride                    

Hydroxyurea                    

Idarubicin 
hydrochloride                    

Ifosfamide                  

Imatinib                   

Irinotecan 
hydrochloride                  

Ixabepilone                      

Lapatinib                   

Lenalidomide                  

Letrozole                  

Lomustine                   

Mechlorethamine 
hydrochloride                   

Megestrol acetate                    

Melphalan 
hydrochloride                    

Mercaptopurine                  

Methotrexate                      

Methoxsalen                       

Mitomycin                    

Mitotane                  

Mitoxantrone                   

Nelarabine                   

Nilotinib                   

Omacetaxine 
mepesuccinate                  

Oxaliplatin                    
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Drug names 
Curves fitting (from AUC 

computation) 
WGCNA LASSO 

Paclitaxel                    

Pazopanib 
hydrochloride                     

Pemetrexed                     

Pentostatin                  

Pipobroman                   

Plicamycin                  

Pomalidomide                  

Ponatinib                   

Pralatrexate                     

Procarbazine 
hydrochloride                      

Raloxifene                    

Regorafenib                  

Romidepsin                  

Sirolimus                   

Sorafenib                   

Streptozocin                    

Sunitinib                   

Tamoxifen citrate                   

Temozolomide                    

Temsirolimus                    

Teniposide                  

Thalidomide                  

Thioguanine                  

Thiotepa                     

Topotecan 
hydrochloride                     

Trametinib                  

Tretinoin                  

Uracil mustard                     

Valrubicin                   

Vandetanib                   

Vemurafenib                   

Vinblastine sulfate                   

Vincristine sulfate                   

Vinorelbine tartrate                  

Vismodegib                   

Vorinostat                   

 

5.3.1.3 Berkeley LASSO Analysis review 

Before the analyses described above, a different team at Berkeley University had performed a 

LASSO analysis and investigated functional pathways of their results using the IPA software. 

As a result, a comparison between their approach and was conducted in order to assess 
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robustness of results with similar yet unidentical approaches since exact protocol of the 

Berkeley analysis was not provided. The available information for this was the drugs and 

associated genes identified by the LASSO analysis, and which of those genes were identified 

as particularly interesting using the IPA software. The comparison was conducted in two 

stages: attempting to identify the same genes of interest from the list of genes associated with 

each drug in the Berkeley results; and comparing the Berkeley results with results of the Drugs 

Repurposing Project analyses described above.  

5.3.1.3.1 Investigation of the IPA enrichment analyses interpretations 

The pathway enrichment analysis in IPA performed for the genes identified by the Berkeley 

LASSO analysis for each of the 10 shortlisted drugs led to the following results: 

• For Bortezomib, Cytarabine Hydrochloride, Mitotane and Sorafenib, which all had only 

one or two genes associated by the LASSO analysis, no clear connection between the 

drugs and their respective LASSO-associated genes nor any functional characteristic 

emerged from the investigation. 

• For Hydroxyurea as well, no clear biological function emerged from the network that 

formed to connect the drug and its four LASSO-associated genes, and that network itself 

was limited mostly to shared upstream miRNA regulators between the LASSO genes 

and the targets of the drug. 

• Surprisingly the drug Pazopanib hydrochloride, for which the LASSO selected a large 

number of genes compared to the other drugs, did not output clear biological functions, 

as the LASSO candidates seemed very disconnected from each other and from the drug. 

• Among the nine LASSO-selected genes for Dexrazoxane,  

o three (MRM1, OLA1 and ICAM5) seem well connected to the drug 

o five (RTBDN, ADGRL1, SPPL2B, ICAM5 and SEMA6D) are located at the 

cellular membrane, although they are involved in different processes (cell 

junctions, signal transduction, ligand binding...) 

o however, no functional pathway was found to be particularly well represented in 

the resulting network 

• For Vemurafenib, several of the LASSO-selected genes were downstream of BRAF and 

ARAF which are inhibited by the drug, providing a biological explanation to these results. 

In addition, through the connections of CTSG, TNNT2 and DSP, cellular adherens and 

cell-cell contact functions seem to emerge from the network, confirming the Berkeley 

results which had identified CTSG and DSP as genes of interest in their investigation. 
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• The analysis for Imatinib bore several noteworthy results: 

o The network generated by connecting Imatinib-associated LASSO genes with 

the targets of the drug was quite dense, however it was in a large part due to 

both sets of genes share common upstream miRNA regulators. 

o Among the connections that were not due to common miRNA regulators, several 

of XRN2 direct neighbours associated with signaling pathways and cancer-

related groups (see Figure 20), while SEPT4 direct neighbours strongly 

associated with neuronal pathologies-associated canonical pathways (see 

Figure 19) 

o Overall, the network displayed a high representation of Glioma/Glioblastoma 

associated pathways 

o These results are not completely in line with the ones from the Berkeley analysis, 

where SLITRK1 was defined as gene of interest rather than SEPT4 
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Figure 19: SEPT4, a LASSO-selected gene associated with Imatinib, is connected to genes belonging to 
neuronal pathologies-associated pathways. 

Figure 20: XRN2, a LASSO-selected gene associated with Imatinib, is connected to genes 
belonging to signaling pathways and cancer-related pathways. 
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• The Tretinoin results were particularly interesting: generating connections between the 

Tretinoin targets and the LASSO-selected genes added many genes to the network, yet 

there was a relatively short distance between the Tretinoin targets and the LASSO-

selected genes, regardless of the path as illustrated by Figure 21. In addition, together 

the genes from that network revealed to be heavily involved with signaling pathways 

such as the PI3K/AKT, 14-3-3 mediated signaling, ERBB, NF-kB… pathways, which I 

encountered frequently in my research to build the Glioblastoma Disease Map. Although 

the Berkeley analysis did not recognize DNAI2, SEMA3E and SLC39A1 as interesting 

following their run in IPA, overall my results are in line with theirs for this drug. 

 

Figure 21: Network obtained by establishing links between Tretinoin targets (in the blue rectangle) and 
LASSO-selected genes (in the red rectangle) for Tretinoin 

To conclude, this attempt at reproducing findings from IPA enrichment analysis starting from 

the same lists of genes ended with mixed results. Reproduction of results was achieved for 

only three (Tretinoin, Vemurafenib and Imatinib) out of the ten drugs investigated. This finding 

suggest that the limited information provided of the general steps of the procedure was not 

enough for robust reproduction of results, and highlighted the importance of documenting and 

communicating protocols. Considering that the three drugs for which results could be 

reproduced were also the only ones for which Glioblastoma-relevant pathways emerged, it 

could also be that those were the only ones for which associated genes presented biological 



114 
 

coherence, and completely unrelated genes for the other drugs leading to random network 

expansion in IPA may also be a factor in the divergence of results. 

5.3.1.3.2 Comparison of computational analyses results 

Out of the 36 drugs that the Berkeley LASSO analysis associated genes with, 8 came up in the 

results of my LASSO analyses, 18 in my WGCNA runs, and 16 could not be associated with 

any gene with LASSO and WGCNA analyses and were thus absent from my results. Of the 10 

drugs shortlisted in the Berkeley analysis for further IPA investigation, 2 were found in my 

LASSO analysis, 5 in my WGCNA analyses, and 4 were absent from my analyses. Table 17 

details the overlap between the drugs highlighted by the Berkeley analysis and mine. 

Table 17: Overlap between drugs identified in the Berkeley LASSO analysis and my analyses. Drug names 
in red are the 10 drugs shortlisted at Berkeley for IPA investigation. Drug names in bold were identified in both my 
LASSO and WGCNA analysis 

 Drugs identified in the Berkeley LASSO analysis 

Identified in my 

LASSO analyses 

Bendamustine, hydrochloride, Carboplatin, Enzalutamide, Melphalan 

hydrochloride, Pazopanib hydrochloride, Sirolimus, Sorafenib, Uracil 

mustard 

Identified in my 

WGCNA analyses 

Arsenic trioxide, Azacitidine, Bleomycin sulfate, Bortezomib, Busulfan, 

Carmustin, Dexrazoxane, Enzalutamide, Fluorouracil, Hydroxyurea, Imatinib, 

Lomustine, Melphalan hydrochloride, Methotrexate, Oxaliplatin, Pazopanib 

hydrochloride, Pemetrexed, Uracil mustard 

Absent from my 

results 

Allopurinol, Cisplatin, Cytarabine hydrochloride, Dacarbazine, Dasatinib, 

Decitabine, Estramustine phosphate sodium, Erlotinib hydrochloride, 

Floxuridine, Fulvestrant, Mitotane, Pentostatin, Streptozocin, Trametinib, 

Tretinoin, Vemurafenib 

Finally, out of all the genes that were associated to each of the 10 shortlisted drugs in the 

Berkeley LASSO analysis, the only overlap was the OR2L13 gene which was associated to 

Imatinib and also came up in my results for this drug. While this does not suggest complete 

disagreement between the two analyses since the important information would rather be 

whether the pathways and functions the genes associated with each drug in the Berkely 

analysis overlap with the pathways identified from my results, it shows that at least there is 

likely no one or two genes (except maybe for OR2L13 in regard to Imatinib) for which the 

expression profile is outstanding enough relatively to a drug that it would be robustly selected 

across analyses. 

However, there was also no real overlap on the functional pathways side either. Indeed, from 

investigations in IPA of the Berkeley LASSO-selected genes for the 10 shortlisted drugs, the 

results of which were described in the 5.3.1.3.1 Investigation of the IPA enrichment analyses 

interpretations subsection above, interesting patterns and functional pathways were only found 
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for three of the drugs (Tretinoin, Vemurafenib and Imatinib), and none of them strongly align 

with results of the analyses I conducted.  

This suggests again failure to reproduce the Berkeley LASSO analysis results without access 

to their protocol. In addition, since results of multiple LASSO runs on the same data may bear 

different results, if a similar bootstrap approach as my own implementation was not used at 

Berkeley, there is even less chances to obtain matching results. But more importantly, while 

obtaining aligned results through similar but different pipelines would have strengthened 

confidence in them, these findings raise the question of robustness and adequacy of analyses. 

Beyond the computational protocol, the issue of the data in particular should also be pointed 

out, since the results of the Drugs Repurposing Project analyses were obtained used AUC as 

response variable, while the Berkeley LASSO analysis relied on the heavily approximated initial 

IC50s dataset, which likely also introduced bias in their analysis, although it was interesting to 

investigate whether that would lead to completely different results or not. Hence, divergence of 

findings is not too surprising either.  

5.3.1.4 Validation of Glioblastoma cell culture models 

For this study the goal was to determine whether the Glioblastoma cell cultures from EMC 

responded similarly to TMZ exposure as the tumours they originated from. For this the 

correlations between cell cultures response (AUCs, IC50s) and the patients response 

represented by their OS and PFS were calculated, with the covariate of MGMT promoter 

methylation status accounted for, since it is known to be a positive prognostic biomarker to 

TMZ response. The correlation results are detailed in Table 18. 

 Correlation (p-value) 

MGMT status PFS x AUCs PFS x IC50s OS x AUCs OS x IC50s 

Methylated  

(n = 23) 
-0.136 (0.54) 0.0619 (0.78) -0.482 (0.021) -0.0652 (0.77) 

Unmethylated 

(n = 24) 
-0.188 (0.38) 0.0752 (0.727) -0.199 (0.35) 0.0235 (0.91) 

All (n = 47) -0.260 (0.067) -0.0340 (0.82) -0.365 (0.0092) -0.0515 (0.72) 

Table 18: Correlations between cell cultures response to TMZ and patients’ survival 

From these correlations it appears that only AUCs and patients’ OS are correlated, both when 

considering all cell cultures together and when only looking at cell cultures that have a 

methylated MGMT promoter status. For cultures that have an unmethylated MGMT promoter, 

correlation is not observed. There also seems to be no correlation when using either PFS and 

IC50s as representation of patients’ and cultures’ response to TMZ, respectively. 
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In addition to these correlations, any potential biomarkers predictive of TMZ response was 

searched in the DASL and GLIOTRAIN RNA-seq transcriptomics datasets. That search was 

conducted in both the DASL and RNA-Seq data, while also considering all cell cultures, only 

methylated MGMT promoter cell cultures and only unmethylated MGMT promoter cell cultures. 

The significant enrichment analysis results obtained from the list of genes found to be 

correlated with TMZ response without multiple testing adjustment of p-values are listed in Table 

19. While each dataset/samples set combination seem to present a theme slightly more 

prevalent than others, such as immune response for the DASL/MGMT-methylated samples 

combination, cellular response to signaling for the DASL/MGMT-unmethylated samples 

combination, or interestingly cilium assembly for the RNA-Seq/all samples combination which 

is in line with results from subsection 5.3.2 GLIOTRAIN Data Analysis, they all also present a 

variety of other unrelated pathways. This suggests a high diversity and limited functional 

coherence in the genes found, which supports the finding that these genes would not be 

considered significantly correlated if p-values were adjusted for multiple testing, and that their 

correlation with TMZ response was purely coincidental. This is even further supported by the 

absence of MGMT in any of the correlate genes list, despite its well-known role in mitigating 

effects of TMZ. 

Similarly, although that was not directly to demonstrate cell cultures representativity of their 

parental tumours, I used that same approach to evaluate the presence of biomarkers predictive 

of Cytarabine hydrochloride and Omacetaxine mepesuccinate response on request of the EMC 

team. But since there was no reason to believe that MGMT promoter methylation status would 

impact response to those drugs which have different mode of actions than TMZ, that cofactor 

was ignored here. The corresponding results are presented in Table 20. Here as well, absence 

of significant correlation when adjusting for multiple testing, high heterogeneity of pathways 

associated with genes correlated when not adjusting for multiple testing, and the disconnect 

between these pathways and the known mode of action of these drugs suggest that the 

correlations identified were only coincidental. 
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Table 19: Top 20 results from enrichment analyses on recurrent genes correlated to TMZ reponses for all, 
only MGMT methylated and only MGMT unmethylated cell cultures 

RNA-Seq DASL 

All samples 

• canonical glycolysis 

• mitral valve formation 

• inner dynein arm assembly 

• protein localization to cilium 

• epithelial cilium movement involved in 

determination of left/right asymmetry 

• purine ribonucleotide biosynthetic process 

• negative regulation of oxidative stress-induced 

intrinsic apoptotic signaling pathway 

• nucleoside biosynthetic process 

• polyphosphate metabolic process 

• actomyosin contractile ring assembly 

• intraciliary transport involved in cilium assembly 

• positive regulation of bleb assembly 

• termination of mitochondrial transcription 

• negative regulation of ribosomal DNA 

heterochromatin assembly 

• purine ribonucleoside triphosphate biosynthetic 

process 

• regulation of mitochondrial membrane potential 

• spindle assembly 

• non-motile cilium assembly 

• regulation of cytokinesis 

• gluconeogenesis 

• extracellular matrix organization 

• positive regulation of prostaglandin 

biosynthetic process 

• membrane protein ectodomain proteolysis 

• embryo implantation 

• spontaneous neurotransmitter secretion 

• positive regulation of cell growth 

• response to hypoxia 

• negative regulation of ubiquitin protein ligase 

activity 

• neutrophil chemotaxis 

• heterotypic cell-cell adhesion 

• positive regulation of synaptic transmission, 

glutamatergic 

• membrane to membrane docking 

• establishment of endothelial barrier 

• positive regulation of epidermal growth 

factor-activated receptor activity 

• regulated exocytosis 

• cellular response to tumor necrosis factor 

• neutrophil aggregation 

• negative regulation of gap junction assembly 

• negative regulation of protein neddylation 

• cell surface pattern recognition receptor 

signaling pathway 

Methylated MGMT promoter samples 

• DNA replication initiation 

• G1/S transition of mitotic cell cycle 

• positive regulation of DNA-dependent DNA 

replication 

• nuclear DNA replication 

• ciliary basal body-plasma membrane docking 

• negative regulation of G protein-coupled 

receptor internalization 

• negative regulation of calcium ion import into 

sarcoplasmic reticulum 

• positive regulation of polyamine transmembrane 

transport 

• negative regulation of ATPase-coupled calcium 

transmembrane transporter activity 

• chorion development 

• regulation of mitotic cell cycle phase transition 

• regulation of centrosome duplication 

• extracellular matrix organization 

• glomerular mesangial cell development 

• regulation of short-term neuronal synaptic 

plasticity 

• synaptic vesicle maturation 

• positive regulation of regulatory T cell 

differentiation 

• inflammatory response 

• branching involved in blood vessel 

morphogenesis 

• negative regulation of guanylate cyclase 

activity 

• negative regulation of gap junction assembly 

• recognition of apoptotic cell 

• negative regulation of cytokine secretion 

• lymph vessel development 
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• putrescine biosynthetic process from ornithine 

• thyroid hormone transport 

• centriole replication 

• double-strand break repair via break-induced 

replication 

• cell division 

• negative regulation by host of symbiont 

molecular function 

• regulation of CD40 signaling pathway 

• maintenance of lens transparency 

• phospholipase C-activating G protein-

coupled receptor signaling pathway 

• blood vessel remodeling 

• negative regulation of viral entry into host cell 

• angiogenesis 

• positive regulation of myeloid leukocyte 

differentiation 

• opioid receptor signaling pathway 

• regulation of T cell tolerance induction 

• T-helper 1 cell differentiation 

Unmethylated MGMT promoter samples 

• regulation of transcription by RNA polymerase II 

• canonical glycolysis 

• fever generation 

• actin filament severing 

• polyphosphate catabolic process 

• regulation of microvillus length 

• intestinal D-glucose absorption 

• glyceraldehyde-3-phosphate biosynthetic 

process 

• terminal web assembly 

• septin ring organization 

• actomyosin contractile ring assembly 

• modification of postsynaptic actin cytoskeleton 

• cytoplasmic microtubule organization 

• Wnt signaling pathway, planar cell polarity 

pathway 

• positive regulation of transcription by RNA 

polymerase I 

• forebrain dorsal/ventral pattern formation 

• gluconeogenesis 

• mitochondrial translational termination 

• regulation of behavior 

• fructose 1,6-bisphosphate metabolic process 

• detection of chemical stimulus involved in 

sensory perception of smell 

• G protein-coupled receptor signaling 

pathway 

• detection of chemical stimulus involved in 

sensory perception of sour taste 

• positive regulation of timing of catagen 

• hydrogen peroxide biosynthetic process 

• keratinization 

• secretory granule organization 

• fructose catabolic process to 

hydroxyacetone phosphate and 

glyceraldehyde-3-phosphate 

• adenylate cyclase-modulating G protein-

coupled receptor signaling pathway 

• cellular response to cadmium ion 

• sodium ion transmembrane transport 

• inner ear auditory receptor cell differentiation 

• binding of sperm to zona pellucida 

• cellular response to platelet-derived growth 

factor stimulus 

• regulation of circadian sleep/wake cycle 

• protein localization to synapse 

• regulation of oxidative stress-induced cell 

death 

• regulation of multicellular organism growth 

• regulation of MDA-5 signaling pathway 

• antimicrobial humoral immune response 

mediated by antimicrobial peptide 
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Table 20: Top 20 results from enrichment analyses on recurrent genes correlated to Cytarabine and 
Omacetaxin response 

Cytarabine hydrochloride Omacetaxine mepesuccinate 

• antigen processing and presentation of 

exogenous peptide antigen via MHC class I, 

TAP-dependent 

• cellular response to potassium ion 

• cellular response to muramyl dipeptide 

• positive regulation of neuroblast proliferation 

• response to pheromone 

• poly-N-acetyllactosamine biosynthetic 

process 

• cerebral cortex radial glia guided migration 

• positive regulation of myelination 

• trachea morphogenesis 

• regulation of growth hormone activity 

• negative regulation of DNA recombination at 

telomere 

• cuticle development 

• glycerophosphate shuttle 

• O-glycan processing 

• fungiform papilla development 

• negative regulation of G2/M transition of 

mitotic cell cycle 

• synaptic vesicle maturation 

• hematopoietic stem cell differentiation 

• regulation of transcription elongation from 

RNA polymerase II promoter 

• homophilic cell adhesion via plasma 

membrane adhesion molecules 

• cellular response to fibroblast growth factor 

stimulus 

• coronary artery morphogenesis 

• cholesterol catabolic process 

• positive regulation of RNA polymerase II 

transcription preinitiation complex assembly 

• regulation of receptor catabolic process 

• DNA replication initiation 

• mesenchymal cell proliferation 

• positive regulation of membrane protein 

ectodomain proteolysis 

• cell cycle G2/M phase transition 

• telomere maintenance 

• inositol phosphate dephosphorylation 

• regulation of generation of precursor metabolites 

and energy 

• myoblast differentiation involved in skeletal 

muscle regeneration 

• negative regulation of mitophagy in response to 

mitochondrial depolarization 

• pentacyclic triterpenoid metabolic process 

• L-ornithine import across plasma membrane 

• ncRNA deadenylation 

• regulation of cellular response to very-low-density 

lipoprotein particle stimulus 

• phospholipase C-activating adrenergic receptor 

signaling pathway 

• positive regulation of heparan sulfate 

proteoglycan binding 

 

5.3.2 GLIOTRAIN Data Analysis 

This analysis aimed at investigating potential resistance mechanism through Differential 

Expression Analysis (DEA) of individual datasets (GLIOTRAIN RNA-Seq and focal events data 

as well as the EMC DASL microarray datasets) between short-term and long-term survivors 

samples. This comparison between short-term and long-term samples was meant to highlight 

genes for which the molecular profile was particularly different between the two groups and 

thus, likely playing a key role in patient overall survival. Furthermore, comparison of the DEA 

results in other datasets and using the intermediate-term survivors for validation was also 

implemented. 
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Following the DEA of the RNA-Seq, 310 genes were identified as differentially expressed in the 

RNA-Seq data between long-term and short-term survivors. They are listed in Table 24 from 

the 8.3 Results from the RNA-Seq DEA annex. The Gene Set Enrichment Analysis revealed 

that cell-motility-associated pathways were overrepresented among these genes, suggesting 

that aggressivity and resistance of the tumor to treatment leading to recurrence of Glioblastoma 

is strongly linked to the ability of the cancerous cells to propagate within the brain before 

surgery. 

From the analysis of the EMC DASL data suggested a difference in expression of only the 

SPRY4 and PRKAR1B proteins between ST and LT survivors. SPRY4 is a MAPK signaling 

pathway inhibitor positioned upstream of RAS activation and as such could influence the 

PI3K/AKT pathway, while PRKAR1B is part of the PKA complex, which is involved in many 

phosphorylation processes and has been observed to be involved in cancer. Interestingly neither 

of these proteins has been strongly associated with Glioblastoma yet, as PubMed searches 

combining “Glioblastoma” and either of them as keywords bears limited and mostly off-topic 

results. 

In regard to the focal events analysis, no chromosomal region, and by extension no gene, was 

identified as significantly differentially expressed between LT and ST survivors. 

Unfortunately, the results obtained from analysis of the RNA-Seq, WGS and DASL data could 

not be reproduced in other datasets. Even disregarding the p-value, the trends (i.e. over- or 

under-expression of the gene between ST and LT survivors) were not consistently reproduced, 

which suggest that at least one of the steps of the whole pipeline is inadequate, whether at the 

level of data normalization or analysis which would lead to incorrect results, or the method of 

validation in other datasets itself is inappropriate. Unfortunately, I did not have the opportunity 

to thoroughly investigate the matter. While the possibility of a mistake which would invalidate 

the DEA results cannot be ruled out, it is also true that these results seem promising and 

biologically relevant to Glioblastoma. 
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6 Discussion and perspectives 

6.1 Glioblastoma Disease Map 

6.1.1 Genetic Alterations Representation 

Over the course of the Glioblastoma Disease Map building, the need arose to develop a way 

to represent genetic alterations in the Disease Map. Indeed, many such alterations have been 

well characterized to be critical to Glioblastoma tumour development and survival, and thus 

clearly representing them would be required to study and uncover potential resistance 

mechanisms.  

The model I defined for representing genetic alterations was designed to fit the needs for the 

Glioblastoma Disease Map. It allows for the accurate translation of most frequently observed 

mutations in Glioblastoma into the Disease Map format, without overloading the network 

because of the high number of reported mutations while still providing a way to reference all 

these mutations as notes for the model. I think the suggested representations and particularly 

the aggregation of mutations by outcome provides a useful tool and solid basis for the 

community to integrate genetic alterations into Disease Maps. In addition, beyond the defined 

guidelines the model could be further developed to also support some of the more complex 

alterations such as histones modifications and other epigenetic events, which were not covered 

in this work. Indeed, while the need for them did not arise in the context of core Glioblastoma 

driver mutations, they may play a role in the determination of the effectors expressed 

downstream of the three characterized pathways, and these modifications can also be relevant 

to many other diseases138,139 and thus be used for the potential corresponding disease maps to 

make them more accurate and reliable resources for investigating these diseases.  

It is also noteworthy that the developed model representation for chromosomal duplication 

focuses on intrachromosomal duplication. However, genes are often also amplified through 

extrachromosomal DNA. An explicit way to differentiate between intra- and extrachromosomal 

amplification of a single gene was not defined in the proposed model and should certainly be 

part of any future developments for representation of genetic alterations in the Disease Map 

standards. 

In hindsight, this shortcoming likely comes from the fact that while the proposed genetic 

alterations model was developed with the help and feedback of Disease Map community 

members to ensure alignment with Disease Maps standards, insight from experts on genetic 

alterations themselves was not sought out to validate the accuracy and completeness of the 
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model. As a consequence, this work and any future development on it would greatly benefit 

from submission and validation by biologists extensively knowledgeable about genetic 

alterations in cancer. 

6.1.2 Produced Disease Map 

Building a Glioblastoma Disease Map constituted a large part of my PhD research. Through 

identification of frequently altered pathways in Glioblastoma and modelling them, I created the 

foundations for the representation of Glioblastoma molecular mechanisms, where the most 

common mutations in Glioblastoma and their impact on functional pathways have been 

modelled.  

An important challenge in the assembly of the network was the difficulty in finding Glioblastoma-

specific characterization of molecular interactions.  

Indeed, although there were quite a few Glioblastoma-related mutations identified in the 

literature, their effect on the gene or protein was rarely investigated as well. The presence of 

the mutation was noted, but how that impacted the corresponding pathway was not clear, and 

therefore in many cases that impact had to be modelled as a supposition based on the role of 

the normal protein in its pathway. 

Similarly, articles describing either a section or an entire pathway were often describing it on 

either a general, non-altered level where the cascade may be characterized in detail, or on a 

scale broader than specifically Glioblastoma such as “in disease” or “in cancer” where 

alterations of the pathway in several diseases are mentioned and sometimes compared but 

rarely in depth. Meanwhile, information about the workings of these pathways in Glioblastoma 

was scarce, and there was no information about Glioblastoma-specific downstream targets of 

AKT or transcription factors. As a consequence, all of these targets had to be considered to be 

potentially equally affected by the Glioblastoma-specific alterations of their upstream 

regulators. A significant improvement for the Disease Map, and understanding of Glioblastoma 

in general, would thus be to investigate Glioblastoma cells expression profiles to determine 

whether indeed all targets are affected similarly, or whether only a few specific ones are 

involved in the context of Glioblastoma. 

It is important to note that I consider this Glioblastoma Disease Map to be a first version of the 

network, which would benefit from further development and expansion, and in greater details. 

While the network does present the fundamental mechanisms of IDH-wildtype Glioblastoma, 

the interactions included involve either the start of a signaling cascade for the 

RTK/RAS/PI3K/AKT pathway, or regulation of transcription factors for the RB and TP53 



123 
 

pathways, but their downstream effectors were only partly investigated and there are likely 

several interesting and important subsequent pathways that were not identified and explored. 

As a consequence, the limited size and coverage of the Glioblastoma Disease Map 

compromise it’s biological accuracy and relevance, as well as its use for an integrative analysis, 

to guide investigation of whole-genome and whole-transcriptome datasets which cover 

thousands of genes that are not represented in the network. 

As a consequence, the next step for the development of the Glioblastoma Disease Map should 

be to expand and possibly refine the network. 

One of the methods to achieve this would be to further explore literature to extensively 

characterize the targets of the mTORC1 complex, FOXO, E2F and TP53 transcription factors, 

but also of AKT and RB themselves. Other pathways as well, such as the Notch140–143 or 

Epithelial-to-Mesenchymal Transition144–147 pathways have been mentioned in the literature as 

potentially relevant to Glioblastoma, although not to the same extent as the three pathways 

characterized in this work. 

Moreover, computational methods to enrich the network based on the GLIOTRAIN quantitative 

data may also be considered in further completing the map, as well as in identifying 

Glioblastoma-specific downstream effectors of the pathways. 

An alternative would be to consider genes of interest identified from quantitative analyses of 

Glioblastoma-related data, such as the DEA of GLIOTRAIN data performed in this work, and 

extract the corresponding interactions from other curated networks. Several such projects have 

been considered and ultimately the Atlas of Cancer Signaling Network (ACSN) was found to 

be the best choice. The ACSN is a network following Disease Map standard, and focusing on 

cancer more broadly rather than Glioblastoma. It represents 9,692 entities involved in 8,137 

interactions, and was manually curated based on 4,532 publications148, providing a very 

thorough and high-quality Disease Map. As such, the ACSN would be a great resource to 

isolate and extract Glioblastoma-specific interactions to complete the Glioblastoma Disease 

Map. Taking this idea further, it could even be used in the integrative analysis instead of the 

Glioblastoma Disease Map, and from the results of that analysis extract the corresponding 

subnetworks from the ACSN and integrate them into the Glioblastoma Disease Map. 

Beyond these suggestions to pursue development and improvement of the Disease Map, 

several shortcomings in the approach used during the PhD to build it should be pointed out.  

Indeed, a major issue in the approach taken was to start with functional pathways rather than 

genetic alterations which would have been more logical and provided better grounded insight 



124 
 

on which pathways to focus on integrating in the network, although the choice of pathways was 

by no means completely arbitrary. 

Furthermore, as mentioned above, literature about downstream impact of pathways alterations 

in Glioblastoma was limited, and a large part of the map was build based on literature about 

broader conditions such as cancer, or even healthy tissue. As a result, the accuracy, relevance 

and representativity of the network for Glioblastoma may be questioned. To validate the 

produced Disease Map, projection of quantitative data onto it would have helped confirm or 

contradict relevance of the overall network. 

In addition, rather than building the Disease Map from scratch which was extremely time-

consuming, it would have made more sense to start from an existing resource such as the 

ACSN or the SIGNOR network and modify it towards Glioblastoma specificity. The suggestion 

to extract subnetworks of interest from the ACSN mentioned above came from that realization 

in order to make up for that mistake and complete the Glioblastoma map with information from 

that resource. 

Finally, while Disease Maps are supposed to be a community-driven endeavor, I failed to 

actively seek ought insight and validation of the model by my peers of the GLIOTRAIN project 

and other Glioblastoma experts, and performed the work myself and basing most of the work 

on articles alone. It is likely that had that not been the case, the shortcomings mentioned so far 

could have been greatly mitigated, and the Glioblastoma Disease Map itself would likely be 

more complete, reliable, and usable for quantitative analysis. 

Nevertheless, I would argue that the produced Glioblastoma Disease Map is still a solid 

foundation for investigation of Glioblastoma resistance mechanisms. Indeed, through 

qualitative analysis of the network I could confirm that the RTK/RAS/PI3K/AKT, RB and TP53 

pathways really are at the center of Glioblastoma tumors, and several cross-talks between 

them can already be highlighted at the protein-protein interactions level. In addition, mutual 

exclusion and co-occurrence patterns in frequently observed genetic alterations suggest that 

targeting any one of these alterations alone for treatment would likely not be enough, since 

even in already well-known Glioblastoma alterations there are paths towards resistance 

mechanisms, i.e. the rise of mutations leading to the same outcome as the one that was 

prevented by treatment.  

However, through study of these paths on the disease map, some preliminary 

countermeasures can be devised. For instance, it seems clear that EGFR mutations and 

CDKN2A/CDKN2B/ARF locus homozygous deletion can disrupt all three pathways, with just 

these two nodes of the network, while the alternative requires many more mutations to reach 
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the same level of disruption. As a result, it may be worth investigating whether, for patients that 

present both EGFR alterations and ARF locus homozygous deletion, a treatment that both 

repress EGFR signaling and remediates to ARF locus homozygous deletion could significantly 

reduce tumor development and improve the patients’ survival, since the tumor would then need 

the simultaneous apparition of many mutations to overcome treatment effects. In addition, since 

RB1 mutations seem to be at the center of the alternative pathway, it could be worth considering 

to also target them in the treatment. Of course, these are speculations based on observation 

of a network, and I lack the medical knowledge to assess the availability of such treatments 

and feasibility of such a study. For validation of these hypotheses, reaching out to expert 

biologists and/or pharmacologists in these domains, for instance to my collaborators at EMC, 

would have been the final step of this network investigation. Unfortunately, these interpretations 

came late during the PhD and could only be briefly mentioned to them. Nevertheless, these 

observations and interpretations constitute an important part of my research towards 

understanding resistance mechanisms of Glioblastoma, and may benefit future studies. 
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6.2 Data Management Methods and Systems 

The work conducted on different data management systems and frameworks led to the 

understanding and implementation of good practices for data handling all throughout the PhD. 

The issues encountered while compiling CTI data highlighted that there is always a probability 

of human mistakes in the collection of the data, which should therefore be carefully screened 

before integrating it in any analysis. 

This principle was applied in curation of the GLIOTRAIN data for upload on the tranSMART 

database, through which the FAIR data principles were fully pursued. Issues with the 

GLIOTRAIN data were identified and documented, and the complexity of this process, to obtain 

relevant information about data sequencing pipeline, emphasized the importance of extensive 

documentation about transformations operated on the data in its use for an analysis and to 

increase confidence in its results. These observations were further confirmed during the 

analyses for identification of predictive biomarkers of drug response, and in particular through 

the comparison of the early Berkeley LASSO analysis results to my own which showed little 

overlap, likely due to divergence of methodologies stemming from absence of documentation 

of the Berkeley analysis, as is discussed in the corresponding subsection 6.3.1.2 Berkeley 

LASSO Analysis review below. 

Finally, both the tranSMART database and OMOP projects work brought considerations about 

appropriate and useful formatting of the data. Indeed, while data may be provided in a certain 

format, that format may not be adapted to the database and require transformations. On the 

other hand, how this data is expected to be formatted for analysis should also be taken into 

consideration as it may lead to misunderstanding later on. Such issues were encountered for 

the GLIOTRAIN data where members of the consortium expected to get actual FASTQ 

sequences instead of data derived from it, for OMOP projects where data owners were 

unfamiliar with the OMOP CDM and surprised of the mapping results, but also for the analyses 

for identification of predictive biomarkers of drug response in which the initial IC50s dataset 

was inappropriate for actual quantitative analysis. As a consequence, documentation and 

communication upstream of the curation of data, to manage expectations and clarify what 

options are available and should be chosen was put forward in the OMOP mapping projects 

SOPs and its importance was communicated to members of the GLIOTRAIN consortium. 

It should be mentioned that these data management considerations were initially not planned 

to take such a large role in the PhD work but rather grew from what was initially supposed to 
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be minor support to the GLIOTRAIN consortium infrastructure and ITTM activities. As a result, 

the work performed there was not as well-structured and defined as research at it should have 

been: while literature was still searched for FAIR principles, appropriate normalization methods 

or common mapping practices in the OMOP community, the screening was not as in-depth as 

it should have been for research standards. Furthermore, had it been better planned it could 

have been defined and carried out to be better integrated within the thesis work, towards goals 

of confirming hypotheses or benchmarking, with clear publishable results. 

Beyond the application of FAIR data principles and mindful handling of data, the work carried 

out around Data Management systems and framework bore several resources which will 

continue to be used beyond the end of this PhD:  

• the GLIOTRAIN tranSMART database will remain available to the GLIOTRAIN 

consortium members for at least five years 

• the SOPs, Machine-readable mapping syntax and ETL software implemented are used 

and will be further refined at ITTM in OMOP mapping projects 
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6.3 Data Analysis 

6.3.1 Identification of predictive biomarkers of drug response 

6.3.1.1 Drugs Repurposing Project 

Thanks to the LASSO and WGCNA analyses of the DASL and AUC data from EMC, I was able 

to generate a lot of potential associations between gene expression profile and response to the 

screened drugs. However, that also meant spending a lot of time going through all of them to 

see emerging patterns and determine which were the more interesting results. 

First of all, a challenge in the interpretation of these results was that in some cases, the 

functional pathways resulting from a given analysis were very specific, while in other cases they 

could span over a much broader range of processes and biological functions (e.g. pathways 

related to cell cycle, DNA repair, cell differentiation, immune response, PI3K, MAPK or 

apoptotic signaling pathways…), making it difficult to interpret them and assess their relevance 

and reliability. Although such loosely associated results appeared in results from all types of 

analysis run combinations, they seemed to occur more frequently when using either the 

WGCNA approach or the unbiased set of genes, and as a result were particularly more frequent 

in analyses that combined both. That can be explained by the fact that WGCNA tends to 

generate clusters of genes much larger than LASSO-selected groups of genes, and the 

unbiased set of genes is by definition larger and includes all types of genes, regardless of 

function. Furthermore, it seems like these broader results come up more frequently for drugs 

for which curve-fitting resulted in a large proportion (>25%) of non-log-logistic models. This 

does not seem to be correlated with method or genes subset, and likely stems from a higher 

heterogeneity in the AUC responses, leading to a broader range of genes for which expression 

may appear connected to drug response. The sample subset used did not seem to impact the 

proportion of specific or broad range of functional pathways in the result of the run. 

Another relevant outlook on this analysis would be the general comparison of the results based 

on the parameters of the analysis they were generated from, i.e. whether the curve-fitting 

process produced well-defined models or not, which method (WGCNA or LASSO) was applied, 

with which DASL data subset of genes (unbiased or cancer genes) and which sample of cell 

cultures (all Glioblastoma or only Primary Glioblastoma cell cultures) as input. 

The quality of the curve models produced to compute AUCs does not appear to have an 

important impact on the results of analysis. Whether the models produced were well defined 

and heterogenous enough to suggest variable response, very homogenous leading me to 



129 
 

initially expect limited discriminatory power, or even in cases where the range of tested 

concentrations seemed inadequate to the drug, results that were similar in relevance to 

Glioblastoma were obtained. It is worth mentioning that drugs presenting well-defined, 

heterogenous models led to the identification of a lot more results than with drugs with 

homogenous models, which themselves still produced more results than drugs screened over 

an unsuitable range of concentrations. The results for drugs for which models presented an 

important proportion of non-log-logistic models however seemed to be more variable, a little 

less relevant to Glioblastoma context, especially when it was cumulated with a large number 

of cell cultures excluded (ten or more, only happened for drugs with high non-log-logistic 

models proportion) from the analysis, and a tested range of concentrations seemingly 

inadequate to the drug. 

Concerning the method used, WGCNA typically found many more genes correlated with AUC 

drug response than LASSO. However, as mentioned earlier this large number of genes which 

tends to be associated to a broad range of functional processes, and also can end up being 

correlated to several drugs due to a different subset of these genes, but lead to similar and thus 

redundant functional pathways. As a consequence, it may be worth it to run the WGCNA 

analyses again but defining parameters to limit the size of genes clusters, and potentially get 

more specific results. In addition, when both LASSO and WGCNA produce results for a given 

drug, they usually hardly overlap and thus do not validate each other. Despite my best efforts 

to ensure appropriate settings for the analyses, this could be due to different reasons such as 

inappropriate normalization of the input data, influence of external factors that were not 

accounted for in the models, non-linear relationship between gene expression and response 

variable, or failing to adjust p-values of correlation tests between WGCNA clusters and drug 

response for multiple-testing, which would have made the WGCNA approach more stringent. 

Unfortunately, I was unable to extensively investigate this discrepancy, and since although not 

overlapping the results from both analyses still seemed relevant to Glioblastoma, the decision 

was made to pursue interpretation of the results and highlight that any interesting and promising 

result should be taken with a grain of salt and demands validation by experimentation or further 

analysis, since it was not clear which of the two analyses methods may be inappropriately 

applied. 

As for the subset of genes, the unbiased approach typically resulted in more drug/genes 

association found and a more diverse range of functions that may be associated, than the 

cancer genes approach for which identified functional pathways tended to be very redundant 

(cell cycle, DNA repair, immune response) yet still overlapping with results from the unbiased 



130 
 

approach. As such, the list of cancer genes defined may need to be expanded, but appears to 

be relatively accurate since the emerging pathways can be associated with cancer hallmarks. 

In addition, both approaches allow to look at the data under complementary angles, and I 

cannot find a reason to prefer one over the other. 

For the samples of Glioblastoma cell cultures included in the analysis, it is worth noting that for 

all other parameters of the analysis run equal, the results obtained when including all or only 

Primary Glioblastoma samples tend to be similar but not identical, although there are also cases 

where they appear to be completely different. Analyses using only Primary Glioblastoma 

samples usually produce more gene-to-drug association results (except for analysis using 

LASSO and the cancer genes subset, where there were more results when including all 

samples), and for a few drugs only one analysis run with Primary Glioblastoma samples 

produced a result. As a result, I find it difficult to determine which subset would be more 

interesting to focus on: on one hand the Primary Glioblastoma samples produce more results 

and should present more homogenous expression profiles than when analyzed alongside 

Recurrent Glioblastoma samples, while on the other hand these additional cell lines may 

introduce some variability helpful to discriminate between responsive and non-responsive cell 

cultures while also increasing the sample size. Furthermore, since results from either subset 

are not similar enough to disregard one or the other, it could be that both should still be 

investigated. 

Overall, besides identifying the fact that drugs for which experimental response data was likely 

inadequate to properly fully capture drug response of the cell cultures lead to less reliable 

results which should be more carefully scrutinized, and the possible caveat of inappropriate 

setting of one or both analysis methods, comparison of the results obtained from different 

parameters of analyses runs do not really allow to identify a set of parameters more robust or 

reliable than others. However, the genes identified through the different experimental set-ups 

and the associated functional pathways emerging from them seemed to align with expectations 

for Glioblastoma, such as pathways related to cell cycle, apoptosis, immune response, 

neuronal morphogenesis, etc. As a consequence, although doubt was raised regarding the 

correct parametrization of the analyses methods, the results would suggest the general pipeline 

was not completely misguided. 

Another issue which would have been relevant to explore was the relevance and validation of 

clusters identified through the WGCNA method. Indeed, while the method clusters genes based 

on expression profile, it may be interesting to then determine whether the genes associated 

within a given clustered are actually related, or whether the co-expression relationship found 
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may only be coincidental. This could be done for instance by consulting molecular network and 

pathways databases to see if the genes belong to the same or connected pathways, and we 

could even consider using the ACSN as well for that purpose. 

Finally, looking at the actual results to identify which of the drugs may be more appropriate to 

treat Glioblastoma and investigate potential predictive biomarkers, with a very superficial 

understanding of the mode of action of the drugs I would have shortlisted 

• Epirubicin hydrochloride for which the results were specifically associated with cell cycle 

processes,  

• Oxaliplatin which got results from three different WGCNA runs with somewhat diverse 

results, but neuron development-associated pathways were consistently present 

• Pazopanib hydrochloride mostly selected by LASSO runs with hits such as cell cycle, 

DNA repair, neuron remodeling and regulation of transcription 

• Bleomycin sulfate, which is a cytotoxic antibiotic, and one of the runs associated genes 

from susceptibility to cytotoxicity pathways to it, so I would focus on these genes in 

particular 

• Topotecan hydrochloride has interesting results, but since the tested range of 

concentrations seems inappropriate, I would suggest measuring new datapoints and 

re-run the analysis to make sure 

• Vandetanib is a drug that inhibits EGFR-mediated survival, so the unique result of 

Insulin-like growth factor receptor pathway, another Receptor Tyrosine Kinase, is 

interesting 

• Dasatinib which supposedly inhibits proliferation, adhesion, migration and invasion, and 

is associated with neuron genesis pathways in the analyses results 

Of course, that selection should be done along with the EMC team, who is more knowledgeable 

about the biological and pharmacological workings of the different drugs. However, while I was 

finishing the analysis and compiling results, they switched their focus to the study for validating 

cell cultures models and requested my help on it, postponing further investigation of my results 

to a later date which did not come before the end of my PhD. Hence, to conclude this analysis 

it would be worthwhile to have these results extensively investigated, and validated by testing 

the corresponding drugs on cell cultures presenting an expression profile of the potential 

predictive biomarker suggesting either sensibility or resistance to the drug. 
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6.3.1.2 Berkeley LASSO Analysis review 

In the investigations of the results from the Berkeley University LASSO analysis of the data for 

the drugs repurposing project, I started by trying to reproduce in the IPA software the 

identification of genes of interests among the ones that were associated to the 10 shortlisted 

drugs. This was met with mixed results: while my findings aligned with Berkeley’s in regard to 

Tretinoin, Vemurafenib and Imatinib, which were the drugs that seemed most promising for 

Glioblastoma treatment based on the findings from the LASSO analysis, I could not reproduce 

their interpretations of genes of interest for the other seven drugs. Nevertheless, the three drugs 

for which our results did concur were encouraging prospects for new Glioblastoma treatment, 

and I was hoping that my own analysis from the Drugs Repurposing project would confirm 

these drugs as good candidates for Glioblastoma treatment. 

However, following execution of the LASSO and WGCNA analyses pipeline, it came out that 

my results were not in line with the ones from the Berkeley LASSO analysis. While there is an 

overlap in the list of drugs that were found to have potential predictive biomarkers, said 

biomarkers do not correspond to the same functional pathways and processes that were found 

at Berkeley. Furthermore, the drugs that I would find more promising for Glioblastoma treatment 

based on the results of my analysis were different than the ones shortlisted in the Berkeley 

analysis. 

As a consequence, we can consider that the Berkeley LASSO analysis and my own lead to 

different results and do not validate each other. However, it should be highlighted that since I 

only had a very general understanding of the pipeline that was used in the Berkeley analysis, 

without a clear documentation on the parameters and reasoning behind the different steps, our 

methodologies were certainly different, although the extent of the differences could not be 

ascertained. Among the most fundamental divergences that I can think of are that the steps 

used to explore LASSO-selected genes in IPA software were likely different since I only got a 

general overview of the pipeline of the Berkeley analysis rather than a detailed description of 

the steps and parameters used despite requesting it. But even more significantly, I was told 

that the Berkeley analysis made use of the initial IC50s dataset, which contains a mix of 

numerical and categorical values, by approximating the categorical values using an 

undisclosed methodology, though the approximation rules applied were not disclosed. This is 

an important difference between the two pipelines, which likely explain in large part differences 

in our results, and as was stated previously, I believe using that dataset was bad practice 
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because of the important extrapolations used for calculating IC50s and inconsistencies it 

presents and as a consequence I feel more confident in my results.  

6.3.1.3 Validation of Glioblastoma cell culture models 

Correlation tests between cell cultures’ and patients’ response to TMZ suggest that although 

only partially, the cell cultures do reflect how their parental tumours respond to TMZ treatment. 

In particular, a lower AUC of the cell culture, which suggests that the culture was more 

responsive, does correlate with a longer patient survival time, regardless of MGMT status. This 

is in line with the goal of the study to demonstrate that the cell cultures models are 

representative of the parental tumour they are derived from, using TMZ response as a 

measurement of this similarity. The results from the methylated and unmethylated MGMT 

promoter groups also make sense biologically with the hypothesis: when methylated, MGMT 

does not mitigate the damages done by TMZ treatment, so the corresponding cell cultures 

should be responsive to it with the same relative amplitude as their parental tumours. On the 

other hand, an unmethylated MGMT promoter leads to a considerably lower impact of TMZ 

treatment on the cancer, and thus other factors are at play in the toxicity of TMZ for both the 

cultures and OS for the patients. 

The fact that only AUCs and OS are correlated however raises questions regarding both IC50s 

and PFS. Indeed, if the cell cultures do behave similarly to the parental tumours they are 

derived from when exposed to TMZ like the OS x AUCs correlation would suggest, it is puzzling 

that the pattern was not observed with OS x IC50s correlation, since IC50s are also a 

measurement of drug response. Unfortunately I could not find an explanation for this difference, 

although a non-linear relationship between them is a lead that would be worth investigating. As 

for the PFS, which should be a representation of patient response and thus we could expect it 

to be correlated with AUCs same as the OS (and the p-value was closer to 0.05 than any of 

the other non-significant tests), it may be interesting to look into the reasons why both OS and 

PFS are routinely collected, since it could provide a lead on what the differences between the 

two are, and on whether other factors may need to be included for a model analysis to be 

predictive of PFS. 

As far as finding predictive biomarkers to drug response, be it for TMZ, Cytarabine and 

Omacetaxine, results were not conclusive in both the RNA-Seq and DASL datasets. The 

functional pathways associated spanned a very diverse range of processes, with close to no 

relation to the known mode of action of each drug. This was an unfortunate but not unexpected 

outcome, since the lists of genes investigated for each drug were already questionable, in the 
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sense that the genes were found correlated to drug response only if multiple-testing bias was 

ignored. When accounting for it and applying a correction, no gene passed the 0.05 q-value 

threshold to be considered significant. Thus, it is likely that correlations found between genes 

and any of the drug were purely coincidental. Another issue was the fact that expression of 

MGMT was absent from the list of identified genes, which is puzzling since as mentioned before 

it should play an important role in discriminating cell that are responsive or not to TMZ when 

considering either all cultures or only the unmethylated MGMT subset. 

These observations could have several explanations. First the number of cell cultures for which 

RNA-Seq or DASL data was available was relatively small, and even smaller when further 

stratified by MGMT promoter methylation status. This leads to smaller power of the analysis, 

and finding significant correlations becomes less likely. Another possible explanation is that 

there could be other cofactors at play, such as age or sex, which would require further 

stratifications of the cell lines for significant patterns to emerge. Finally, it could also be that 

such patterns are non-linear and could only be detected through multivariate analyses or non-

linear regression models to be detected rather than with correlation tests for each single gene. 

This would also explain why MGMT was not identified in the results, if predictive potential is 

dependent on a non-linear relation to drug response. 

As a consequence, the next steps for this analysis should be to test for potential covariates 

other than MGMT promoter methylation status to identify any relevant one, and perform a 

multivariate analysis, using for instance the same LASSO or WGCNA pipeline as in the Drugs 

Repurposing Project to attempt detection of predictive biomarkers. 

6.3.2 GLIOTRAIN Data Analysis 

The Differential Expression Analysis of GLIOTRAIN data yielded mixed results. 310 genes 

were identified from the RNA-Seq dataset as significantly discriminating between short-term 

and long-term survivors, and 2 from the EMC DASL data.  

However, a similar trend in the profile of these genes in other datasets, including TCGA dataset 

on Glioblastoma, could not be detected. This could have several causes, at any step of the 

pipeline, which unfortunately made it difficult to investigate and identify a cause more likely than 

others. Indeed, the issue might be that the DEA results themselves are invalid, either because 

the processing, normalization or subsetting methods of any of the datasets was inadequate, or 

the DEA itself was wrongly set up. Such a situation could lead to falsely identify patterns that 

are actually not present in the data and thus could not be reproduced in other datasets. 

Alternatively, the issue could also come from using inadequate statistical tests to see if the 



135 
 

genes found from the DEA presented similar behaviour in other datasets. Although the pipeline 

was carefully reviewed, the issue could not be solved before the end of the PhD. While every 

effort was made to ensure the methods applied were adapted to each data type, this situation 

suggests that mistakes were still made, and again highlight the importance of reproducibility 

and independent validation to ensure that published findings are reliable, or at least point out 

potential issues with them. 

Despite the uncertainty on the exact source of the validation issue, these identified genes may 

still be relevant to Glioblastoma as they appear to be in line with known features of the disease.  

The 310 genes seem to be heavily involved in cell motility pathways, which may explain at least 

partly the difference between the two groups of patients: higher diffusion abilities lead to more 

of the tumour cells escaping from resection at first surgery, which means more tumour cells 

able to proliferate as well as to develop resistances to treatments, thus resulting in faster 

recurrence of the cancer and degradation of the patient’s health. While this does not deal with 

the direct molecular mechanisms through which treatment resistance emerges, it represents 

an important finding which may be used for prognostic evaluation of patients. As such, it would 

be interesting in the future to further investigate those 310 genes to determine and validate 

their potential as prognostic biomarkers for faster recurrence. 

In regard to the 2 genes from the EMC DASL dataset, one is part of the Sprouty gene family 

which appears in the Glioblastoma Disease Map as regulators of the RAS/RAF/MAPK cascade, 

and has received increased attention in the recent years for its role in cancers149–151, including 

gliomas and glioblastomas152–154. Thus, this result would confirm relevance of this protein family 

for Glioblastoma. The second gene itself, PRKAR1B, does not appear to have been widely 

characterized as a key driver of oncogenesis, but it may be worth investigating how the Protein 

Kinase A complex to which it belongs may be involved in Glioblastoma processes. 

In addition, to further identify other potentially relevant genes associated to these results, 

projecting these genes onto the ACSN network and using a diffusion algorithm29,30, this 

projection may then be used to identify and extract subnetworks relevant to Glioblastoma which 

could be used to enrich the Glioblastoma Disease Map. 

However, these results were obtained using only the subset of short-term and long-term 

survivors from datasets, which constituted only a limited number of samples. It would have 

been interesting to also run an analysis including intermediate-term survivors with overall 

survival as a continuous response rather than an ordinal one. More samples included may have 
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granted more analysis power, and it would have been interesting to compare the results with 

the existing DEA results. 

In addition, these results are already interesting in themselves, but they rely on individual 

analysis of each dataset separately, and the Glioblastoma Disease Map is barely used 

downstream of these analyses as a resource to locate the identified genes in the context of 

Glioblastoma as represented from the literature. To draw on the full potential of these materials, 

the initial plan for this PhD was to design and execute an integrative analysis involving all data 

and guided by the literature knowledge through the Disease Map. While this point was not 

reached over the course of my studies due to time constraints, the general pipeline was taking 

shape and it would have been interesting to see what would have come of it.  

The next steps for the integrative data analysis would have been to: 

• for each patient, 

o for each GLIOTRAIN dataset, project the data of the patient onto the ACSN 

network, and run a diffusion algorithm to attribute weights or score to molecular 

interactions based on their profile in the dataset 

o merge the networks corresponding to the different datasets for the patients 

using an algorithm similar to the Similarity Network Fusion155 iterative merging 

method 

o Extract the weight associated to each interaction from the merged network as a 

vector for the patient 

• run an unsupervised clustering algorithm on the network weights of the patients 

• characterize the resulting clusters, including the main interactions defining them and 

the clinical profile of the patients they contain 

• The interactions driving cluster definitions can be extracted from the ACSN to enrich 

the Glioblastoma Disease Map 

• The clusters definition may be validated using the EMC DASL and TCGA data 

This integrative pipeline makes use of both the Disease Map, with ACSN here since as 

mentioned previously the current Glioblastoma Disease Map does not include most of the 

genes present in large omics dataset, to guide the analysis and the data from multiple omics 

dataset. Furthermore, if the clusters definitions do not appear to correlate with Overall Survival, 

a supervised clustering algorithm may be considered as well to bring that dimension into 

consideration in the definition of clusters. In addition, this approach does not require all samples 

to have data available in all datasets. As such, we could also consider calculating weights for 
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EMC data samples and TCGA samples to include them in the clustering instead of as validation 

sets, although I would be less leaning towards this approach of mixing completely different 

samples, collected and sequenced in completely different conditions over which we have little 

knowledge and control. 

While the general pipeline for this analysis has been formulated, the specific methods to use 

have yet to be determined and implemented. This includes in particular the diffusion algorithm, 

the adaptation of the SNF iterative merging algorithm, and the clustering method. Nevertheless, 

even if it could not be carried out, I believe the results could be very interesting to investigate. 
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6.4 Conclusion 

Over the course of my PhD studies, research towards the elucidation of resistance mechanisms 

led me to elaborate a Glioblastoma-specific Disease Map and to analyze multiple omics 

datasets. Along the way, implementation of data management principles provided insights not 

only on considerations necessary for suitable and transparent storing of data, but also on the 

importance of documenting and communicating information relative to any transformation 

operated on it, both in the context of processing it to make it available and for the purpose of 

analysis, since without that knowledge mishandling the data, producing biased results or 

misinterpreting quickly becomes easy. The development of the Glioblastoma Disease Map 

allowed for the highlighting of key mechanisms of Glioblastoma and of their interconnections, 

facilitating investigations into the molecular emergence of resistances to treatment. The work 

achieved in this domain yielded both a core for the Glioblastoma Disease Map which should 

be further expanded in the future, and the definition of a model for genetic alterations within the 

Disease Map framework which was presented to the community and open for adoption in other 

projects. Finally, in order to analyze omics dataset both for the Identification of predictive 

biomarkers of drug response analyses and the GLIOTRAIN analysis, extensive multivariate 

analysis pipelines have been defined and partly implemented and executed. While these 

investigations could not be completed all the way during this PhD, the results they produced 

were promising and suggested that resuming and finishing them may lead to a breakthrough 

on our understanding of Glioblastoma resistance mechanisms and potential ways to overcome 

them. 
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8 Annexes 

8.1 Berkeley LASSO Analysis Results 

DNA-

damaging 

agents 

Target / 

Mechanism of 

Action 

LASSO-selected Genes/Probesets 

Dacarbazine 
Alkylating agents 

(triazines) 
OTX2 

Bendamustine 

hydrochloride 

Alkylating agents 

(nitrogen mustard) 

DACH1.2, DUOXA2, ERP44.1, LAMB2L, MIR331, 

ZNF483.3 

Melphalan 

hydrochloride 
“ KHDRBS2 

Uracil mustard “ 
ACVR1C, BTRC.1, IL1RL1.1, MBOAT2.1, SEC24B.1, 

SLC25A44, SLC9A2, TAC3.2 

Streptozocin 
Alkylating agents 

(nitrosoureas) 
INPP5J, RHBG 

Carmustine “ BMF.2 

Lomustine “ 
ACVR1C, ADPRHL1, AGAP3, ATE1.3, DOC2B, HTR1B, 

PDPK1, PPP4R4.2, SLC25A22, ST8SIA6, TMEM233 

Busulfan 
Alkylating agents 

(alkylsufonates) 

AMBN.1, C9orf11, DACH1.2, DMGDH, FXYD2.1, 

KCNJ12, PMEPA1.1, THAP7.2 

Oxaliplatin “ CRH 

Carboplatin “ 
C2orf88, DEFB119, FBXW11.2, HTR1B, OPN4.1, 

PCDH21, TCERG1L, ZNF483.3 

Cisplatin “ MAPK8IP3.2 

Cytarabine 

hydrochloride 
Antimetabolite PTPN20B 

Pentostatin “ CASP7.2, KIF20B, SLC38A2, ZDHHC18 

Methotrexate “ FOXR2, PRSS38 

Floxuridine “ OPN4.1 

Fluorouracil “ KCNC2.1 

Pemetrexed “ GLI2, HPGD, SMTN.2 

Decitabine Nucleoside analogue DIS3 

Azacitidine Nucleoside analogue CTXN3.1 

Dexrazoxane 
Topoisomerase II 

inhibitor 

ASB12, CC2D1B.1, ICAM5, LPHN1, MRM1, OLA1.1, 

RTBDN.2, SEMA6D.4, SPPL2B 

Bleomycin 

sulfate 
Cytotoxic antibiotic 

CBWD2, DEFB119, DEFB124, DENND2C, GLTPD2, 

PCDHA1, PHF6.2, RIPPLY2.1, TCERG1L 

Hydroxyurea 

Ribonucleoside 

diphosphate 

reductase inhibitor 

ATG12, LOC286238, WNT3, ZPBP2.1 

Arsenic trioxide Metalloid oxides 
CCL1, CYP4X1, DIO2, HOXB9, ISM1, LYPD6B.1, 

OTUD4, PMS2, SMPDL3B, UPK3B.3 

Tyrosine 

kinase 

inhibitors 

Target / 

Mechanism of 

Action 

LASSO-selected Genes/Probesets 
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Imatinib Bcr-Abl 
MIRLET7D, OR2L13, PRPF40B.1, Sep.04, SLC8A3.2, 

SLITRK1.1, XRN2 

Dasatinib Bcr-Abl C9orf135 

Erlotinib 

hydrochloride 
EGFR CCR2, ITIH1 

Pazopanib 

hydrochloride 

Multi-targeted kinase 

inhibitor 

ALOX12, C15orf27, CASQ2, CBLN4, CPLX3, CT45A5, 

CTXN3.1, FAM81A, FAM9A, GABRB2, XRN2, ZNF676, 

GPR128, LCN6, MAPK1, MYH11, NECAB1, OPRK1, 

OPRM1.5, PLN.1, TMEM144, TPSD1, TROVE2.3, UCN3 

Sorafenib 
Multi-targeted kinase 

inhibitor 
PDE1A, SLC01A2.2 

Trametinib MEK 1 CPA3, SLC22A2.2 

Vemurafenib BRAF CTSG, DSP.2, HBD, SLC22A2.2, SLC6A20, TNNT2 

Others 

Target / 

Mechanism of 

Action 

LASSO-selected Genes/Probesets 

Allopurinol 
Xanthine oxidase 

inhibitor 
CD207 

Bortezomib Proteasome inhibitor CTAG2 

Enzalutamide 
Nonsteroidal 

antiandrogen (NSAA) 
ACVR1C, CTXN3.1, KHDRBS2, SPTB.1 

Estramustine 

phosphate 

sodium 

Antigonadotropic / 

Antiandrogen 
GNB5.1, MYO3A 

Sirolimus mTOR inhibitor B4GALNT2, MGC57359.1, Sep.14 

Tretinoin Retinoid analogue 
DAO, DNAI2, KIF19, PTPN3, RNF7.1, SEMA3E, 

SLC39A12, TRPM3.1 

Fulvestrant 
Estrogen receptor 

antagonist 

C6orf204, DAB2IP.2, GPR116, IPP, MIR513A2, PANK2, 

SPAG4L, TRPM9.1, WNT10A, ZNF585A.1 

Mitotane 

Steroidogenesis 

inhibitor / 

diphenylmethanes 

CALCA.2 

Table 21: Berkeley Lasso analysis results: Genes associated to each drug by LASSO selection. Gene names 

'Sep.04' and 'Sep.14' are likely Excel artifacts for 'SEPT4' and 'SEPT14' gene names. 
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8.2 Drugs Repurposing LASSO and WGCNA results 

Bendamustine hydrochloride 

Unbiased genes set | Primary Glioblastoma samples 
• regulation of small GTPase mediated signal transduction 

• positive regulation of GTPase activity 

• regulation of GTPase activity 

• small GTPase mediated signal transduction 

Carboplatin 

Cancer genes set | Primary Glioblastoma samples 
• positive regulation of NF-kappaB transcription factor activity 

• positive regulation of DNA-binding transcription factor activity 

• transmembrane receptor protein serine/threonine kinase signaling pathway 

• regulation of DNA-binding transcription factor activity 

• regulation of signaling receptor activity 

• cellular response to growth factor stimulus 

• response to growth factor 

Dactinomycin 

Cancer genes set | All Glioblastoma samples Cancer genes set | Primary Glioblastoma samples 

• preantral ovarian follicle growth 

• negative regulation of ovarian follicle development 

• gonadal mesoderm development 

• Mullerian duct regression 

• sex determination 

• positive regulation of NF-kappaB transcription factor activity 

• positive regulation of DNA-binding transcription factor activity 

• transmembrane receptor protein serine/threonine kinase signaling pathway 

• aging 

• regulation of DNA-binding transcription factor activity 

• canonical Wnt signaling pathway involved in positive regulation of 
cardiac outflow tract cell prolif... 

• positive regulation of fibroblast growth factor receptor signaling 
pathway 

• glial cell fate determination 

Enzalutamide 

Cancer genes set | All Glioblastoma samples 
• positive regulation of canonical Wnt signaling pathway 

• positive regulation of stress-activated MAPK cascade 

• positive regulation of stress-activated protein kinase signaling cascade 

• positive regulation of Wnt signaling pathway 

• negative regulation of canonical Wnt signaling pathway 
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• negative regulation of Wnt signaling pathway 

• regulation of stress-activated MAPK cascade 

• regulation of stress-activated protein kinase signaling cascade 

• regulation of canonical Wnt signaling pathway 

Everolimus 

Unbiased genes set | Primary Glioblastoma samples Cancer genes set | All Glioblastoma samples 
• cellular response to tumor necrosis factor 

• response to tumor necrosis factor 

• neutrophil degranulation 

• neutrophil activation involved in immune response 

• neutrophil mediated immunity 

• neutrophil activation 

• granulocyte activation 

• leukocyte degranulation 

• myeloid cell activation involved in immune response 

• myeloid leukocyte mediated immunity 

• myeloid leukocyte activation 

• leukocyte activation involved in immune response 

• cell activation involved in immune response 

• leukocyte mediated immunity 

• positive regulation of canonical Wnt signaling pathway 

• positive regulation of stress-activated MAPK cascade 

• positive regulation of stress-activated protein kinase signaling cascade 

• positive regulation of Wnt signaling pathway 

• negative regulation of canonical Wnt signaling pathway 

• negative regulation of Wnt signaling pathway 

• regulation of stress-activated MAPK cascade 

• regulation of stress-activated protein kinase signaling cascade 

• regulation of canonical Wnt signaling pathway 

Idarubicin hydrochloride 

Unbiased genes set | Primary Glioblastoma samples 

• mast cell chemotaxis 

• mast cell cytokine production 

• mast cell degranulation 

• antimicrobial humoral response 

• negative regulation of blood vessel diameter 

• regulation of blood pressure 

• negative regulation of neuron death 

• regulation of neuron death 

Megestrol acetate 

Unbiased genes set | All Glioblastoma 
samples 

Unbiased genes set | Primary 
Glioblastoma samples 

Cancer genes set | Primary 
Glioblastoma samples 

• daunorubicin metabolic process 

• doxorubicin metabolic process 

• progesterone metabolic process 

• cellular response to tumor necrosis factor 

• response to tumor necrosis factor 

• neutrophil degranulation 

• positive regulation of glial 
cell-derived neurotrophic 
factor secretion 
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• prostaglandin metabolic process 

• digestion 

• positive regulation of protein kinase B 
signaling 

• regulation of protein kinase B signaling 

• protein kinase B signaling 

• epithelial cell differentiation 

• G protein-coupled receptor signaling pathway 

• positive regulation of cell proliferation 

• positive regulation of intracellular signal 
transduction 

• positive regulation of signal transduction 

• regulation of cell proliferation 

• positive regulation of cell communication 

• positive regulation of signaling 

• neutrophil activation involved in immune 
response 

• neutrophil mediated immunity 

• neutrophil activation 

• granulocyte activation 

• leukocyte degranulation 

• myeloid cell activation involved in immune 
response 

• myeloid leukocyte mediated immunity 

• myeloid leukocyte activation 

• leukocyte activation involved in immune 
response 

• cell activation involved in immune 
response 

• leukocyte mediated immunity 

Melphalan hydrochloride 

Unbiased genes set | All Glioblastoma samples 

• angiogenesis 

• heart development 

• blood vessel morphogenesis 

• blood vessel development 

• vasculature development 

• cardiovascular system development 

Mitomycin 

Unbiased genes set | Primary Glioblastoma samples 

• calcium ion transmembrane transport 

• calcium ion transport 

• divalent metal ion transport 

• divalent inorganic cation transport 

• regulation of ion transmembrane transport 

• regulation of transmembrane transport 

• inorganic cation transmembrane transport 

• regulation of ion transport 

• inorganic ion transmembrane transport 

• cation transmembrane transport 

• metal ion transport 

Nelarabine 
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Unbiased genes set | Primary Glioblastoma samples 

• positive regulation of ERK1 and ERK2 cascade 

• protein localization to nucleus 

• regulation of ERK1 and ERK2 cascade 

• ERK1 and ERK2 cascade 

• positive regulation of MAPK cascade 

Nilotinib 

Cancer genes set | Primary Glioblastoma samples 
• regulation of toll-like receptor signaling pathway 

• TRIF-dependent toll-like receptor signaling pathway 

• regulation of tumor necrosis factor-mediated signaling pathway 

• positive regulation of I-kappaB kinase/NF-kappaB signaling 

• NIK/NF-kappaB signaling 

• regulation of I-kappaB kinase/NF-kappaB signaling 

• I-kappaB kinase/NF-kappaB signaling 

• regulation of inflammatory response 

Pazopanib hydrochloride 

Unbiased genes set | Primary 
Glioblastoma samples 

Cancer genes set | All 
Glioblastoma samples 

Cancer genes set | Primary Glioblastoma 
samples 

• regulation of mitotic cell cycle phase transition 

• regulation of cell cycle phase transition 

• mitotic cell cycle phase transition 

• cell cycle phase transition 

• regulation of mitotic cell cycle 

• cell division 

• regulation of cell cycle process 

• mitotic cell cycle process 

• mitotic cell cycle 

• regulation of cell cycle 

• cell cycle process 

• cell cycle 

• negative regulation of neuron remodeling 

• negative regulation of dendrite extension 

• negative regulation of branching 
morphogenesis of a nerve 

• negative regulation of transcription by RNA 
polymerase II 

• negative regulation of transcription, DNA-
templated 

• negative regulation of nucleic acid-templated 
transcription 

• negative regulation of RNA biosynthetic process 

• negative regulation of RNA metabolic process 

Raloxifene 

Unbiased genes set | Primary Glioblastoma samples 

• transmembrane transport 

• transport 

• establishment of localization 
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• localization 

• single strand break repair 

• regulation of DNA recombination 

• regulation of mitotic recombination 

• mitotic spindle elongation 

Romidepsin 

Cancer genes set | Primary Glioblastoma samples 

• signal transduction involved in mitotic G2 DNA damage checkpoint 

• positive regulation of telomerase catalytic core complex assembly 

• negative regulation of TORC1 signaling 

• establishment of protein-containing complex localization to telomere 

• meiotic telomere clustering 

• positive regulation of DNA damage response, signal transduction by p53 class mediator 

• phosphatidylinositol-3-phosphate biosynthetic process 

• negative regulation of B cell proliferation 

• positive regulation of DNA catabolic process 

• regulation of microglial cell activation 

Sirolimus 

Unbiased genes set | All Glioblastoma samples 
• chloride transport 

• ion transmembrane transport 

• transmembrane transport 

• transport 

• ion transport 

• inorganic anion transport 

• anion transport 

Sorafenib 

Unbiased genes set | All Glioblastoma samples 

• post-translational protein modification 

• protein modification process 

• cellular protein modification process 

• macromolecule modification 

• cellular protein metabolic process 

• protein metabolic process 

Temsirolimus 

Cancer genes set | All Glioblastoma samples 
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• positive regulation of single-stranded telomeric DNA binding 

• telomere assembly 

• protection from non-homologous end joining at telomere 

• establishment of protein localization to telomere 

• negative regulation of telomere maintenance via telomerase 

• positive regulation of telomere maintenance via telomerase 

• positive regulation of telomerase activity 

Thiotepa 

Unbiased genes set | Primary Glioblastoma samples 
• regulation of membrane repolarization during action potential 

• calcium ion import across plasma membrane 

• regulation of calcium ion transmembrane transport via high voltage-gated calcium channel 

• inorganic ion homeostasis 

• calcium ion transmembrane import into cytosol 

• cellular homeostasis 

• positive regulation of calcium ion transmembrane transporter activity 

Topotecan hydrochloride 

Unbiased genes set | Primary Glioblastoma samples 

• B cell receptor transport into membrane raft 

• positive regulation of activated T cell proliferation 

• glomerular visceral epithelial cell differentiation 

• T cell costimulation 

• positive regulation of protein tyrosine kinase activity 

• positive regulation of MAP kinase activity 

• intrinsic apoptotic signaling pathway 

• positive regulation of protein serine/threonine kinase activity 

Uracil mustard 

Cancer genes set | All Glioblastoma samples 

• regulation of Cdc42 protein signal transduction 

• positive regulation of interleukin-2 secretion 

• negative regulation of long-term synaptic potentiation 

• B cell proliferation involved in immune response 

• regulation of modification of synaptic structure 

• positive regulation of Wnt signaling pathway, planar cell polarity pathway 

• positive regulation of substrate adhesion-dependent cell spreading 

Vandetanib 
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Cancer genes set | All Glioblastoma samples 

• negative regulation of integrin biosynthetic process 

• positive regulation of insulin-like growth factor receptor signaling pathway 

Vismodegib 

Cancer genes set | All Glioblastoma samples Cancer genes set | Primary Glioblastoma samples 

• response to glucocorticoid 

• response to corticosteroid 

• neutrophil activation involved in immune response 

• neutrophil degranulation 

• neutrophil activation 

• granulocyte activation 

• neutrophil mediated immunity 

• leukocyte degranulation 

• myeloid cell activation involved in immune response 

• myeloid leukocyte mediated immunity 

• myeloid leukocyte activation 

• leukocyte activation involved in immune response 

• cell activation involved in immune response 

• negative regulation of cell-substrate adhesion 

• negative regulation of angiogenesis 

• negative regulation of blood vessel morphogenesis 

• positive regulation of angiogenesis 

Vorinostat 

Cancer genes set | All Glioblastoma samples 

• positive regulation of intrinsic apoptotic signaling pathway in response to osmotic stress 

• positive regulation of granulosa cell apoptotic process 

• positive regulation of B cell differentiation 

• positive regulation of mitochondrial membrane potential 

• positive regulation of release of cytochrome c from mitochondria 
Table 22: Enrichment analysis results derived from the EMC Drugs Repurposing Project LASSO analysis results 

Amiodarone hydrochloride 

Unbiased genes set | All Glioblastoma 
samples 

Unbiased genes set | Primary Glioblastoma 
samples 

Cancer genes set | Primary 
Glioblastoma samples 

All - Cluster 11 

• cell division 

• G1/S transition of mitotic cell cycle 

• DNA replication initiation 

• DNA unwinding involved in DNA replication 

• positive regulation of mitotic nuclear division 

• mitotic chromosome condensation 

Primary – Cluster 16 

• DNA replication-dependent nucleosome assembly 

• nucleotide-excision repair, DNA gap filling 

• telomere maintenance via semi-conservative 
replication 

• positive regulation of DNA-directed DNA 
polymerase activity 

Primary – Cluster 1 

• DNA replication initiation 

• cell division 

• anaphase-promoting complex-
dependent catabolic process 

• G1/S transition of mitotic cell cycle 
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• G2/M transition of mitotic cell cycle 

• meiotic cell cycle 

• positive regulation of DNA-dependent DNA 
replication initiation 

All - Cluster 13 

• cell division 

• nucleosome assembly 

• DNA replication-dependent nucleosome 
assembly 

• mitotic metaphase plate congression 

• telomere capping 

• cell cycle 

• positive regulation of cytokinesis 

• regulation of mitotic cell cycle spindle 
assembly checkpoint 

• attachment of mitotic spindle microtubules to 
kinetochore 

• G2/M transition of mitotic cell cycle 

• double-strand break repair 

• regulation of cytokinetic process 

• base-excision repair, gap-filling 

• telomere capping 

• double-strand break repair via nonhomologous end 
joining 

• telomere organization 

• mismatch repair 

• DNA repair 

Primary – Cluster 25 

• cell division 

• anaphase-promoting complex-dependent catabolic 
process 

• regulation of attachment of spindle microtubules to 
kinetochore 

• positive regulation of cytokinesis 

• mitotic metaphase plate congression 

• nucleosome assembly 

• G2/M transition of mitotic cell cycle 

• mitotic spindle organization 

• DNA damage response, signal transduction by p53 
class mediator resulting in cell cycle arrest 

• positive regulation of mitotic metaphase/anaphase 
transition 

• mitotic spindle assembly 
checkpoint 

• G2/M transition of mitotic cell cycle 

• DNA damage response, signal 
transduction by p53 class 
mediator resulting in cell cycle 
arrest 

• regulation of response to DNA 
damage stimulus 

• telomere maintenance 

• mitotic centrosome separation 

• negative regulation of monocyte 
differentiation 

Arsenic trioxide 

Unbiased genes set | All Glioblastoma samples Cancer genes set | All Glioblastoma samples 
All - Cluster 8 

• Golgi inheritance 

• Golgi localization 

All - Cluster 9 

• central nervous system myelination 

• positive regulation of oligodendrocyte progenitor proliferation 

All - Cluster 14 

• cellular response to cell-matrix adhesion 

• mitotic cell cycle 

All - Cluster 1 

• cell proliferation 

• MAPK cascade 

• cellular response to calcium ion 

• negative regulation of signal transduction 

• cell surface receptor signaling pathway 

• positive regulation of GTPase activity 

• positive regulation of intracellular signal transduction 

• neurogenesis 

• positive regulation of transporter activity 

• regulation of Ras protein signal transduction 

• negative regulation of neuron apoptotic process 
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All - Cluster 15 

• cellular macromolecule biosynthetic process 

• canonical Wnt signaling pathway involved in stem cell proliferation 

• regulation of gene expression 

• cellular response to retinoic acid 

• regulation of macromolecule biosynthetic process 

• canonical Wnt signaling pathway involved in midbrain dopaminergic neuron 
differentiation 

• positive regulation of DNA methylation 

• canonical Wnt signaling pathway involved in mesenchymal stem cell 
differentiation 

• regulation of cell death 

• renal sodium ion absorption 

Azacitidine 

Unbiased genes set | Primary Glioblastoma samples Cancer genes set | Primary Glioblastoma samples 
Primary – Cluster 1 

• positive regulation of cellular senescence 

• negative regulation of ERK1 and ERK2 cascade 

• negative regulation of phosphatase activity 

• negative regulation of dephosphorylation  

Primary – Cluster 25 

• cell division 

• anaphase-promoting complex-dependent catabolic process 

• mitotic sister chromatid segregation 

• mitotic spindle assembly checkpoint 

• mitotic spindle organization 

• mitotic metaphase plate congression 

• mitotic cytokinesis 

• negative regulation of stress-activated MAPK cascade 

• DNA damage response, signal transduction by p53 class mediator resulting 
in cell cycle arrest 

• regulation of chromosome segregation 

• chromosome segregation 

Primary – Cluster 2 

• positive regulation of apoptotic signaling pathway 

• negative regulation of insulin-like growth factor receptor signaling pathway 

Primary – Cluster 1 

• cell division 

• mitotic spindle organization 

• G2/M transition of mitotic cell cycle 

• mitotic cytokinesis 

• positive regulation of chromosome segregation 

• mitotic centrosome separation 

• DNA damage response, signal transduction by p53 class 
mediator resulting in cell cycle arrest 

• mitotic spindle assembly checkpoint 

• regulation of chromosome organization 

• cell proliferation 

• positive regulation of mitotic nuclear division 

Primary – Cluster 2 

• negative regulation of double-strand break repair via 
nonhomologous end joining 

• positive regulation of brain-derived neurotrophic factor receptor 
signaling pathway 
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• negative regulation of myelination 

• mitotic cell cycle arrest 

• positive regulation of microglial cell activation 

Bleomycin sulfate 

Unbiased genes set | All 
Glioblastoma samples 

Unbiased genes set | Primary 
Glioblastoma samples 

Cancer genes set | All 
Glioblastoma samples 

Cancer genes set | 
Primary Glioblastoma 

samples 
All - Cluster 12 

• cell division 

• mitotic chromosome movement 
towards spindle pole 

• G1/S transition of mitotic cell 
cycle 

• retrograde vesicle-mediated 
transport, Golgi to ER 

• regulation of mitotic 
metaphase/anaphase transition 

• mitotic centrosome separation 

• mitotic cell cycle checkpoint 

• G2/M transition of mitotic cell 
cycle 

• positive regulation of somatic 
stem cell population maintenance 

• positive regulation of somatic 
stem cell division 

• positive regulation of DNA-
dependent DNA replication 
initiation 

Primary – Cluster 27 

• susceptibility to natural killer cell mediated 
cytotoxicity 

• susceptibility to T cell mediated cytotoxicity 

• negative regulation of macrophage chemotaxis 

• positive regulation of natural killer cell mediated 
cytotoxicity directed against tumor cell target 

Primary – Cluster 23 

• positive regulation of fibroblast apoptotic 
process 

• negative regulation of ERK1 and ERK2 
cascade 

• regulation of non-canonical Wnt signaling 
pathway 

Primary – Cluster 15 

• positive regulation of forebrain neuron 
differentiation 

• cell-cell adhesion in response to extracellular 
stimulus 

• acinar cell differentiation 

• hepatocyte cell migration 

• cardiac neuron differentiation 

All - Cluster 2 

• negative regulation of 
ERK1 and ERK2 
cascade 

• positive regulation of 
B cell proliferation 

• cell surface receptor 
signaling pathway 

• positive regulation of 
MAP kinase activity 

• negative regulation of 
neurotrophin TRK 
receptor signaling 
pathway 

• motor neuron 
migration 

Primary – Cluster 3 

• negative regulation of 
ERK1 and ERK2 
cascade 

• positive regulation of 
MAP kinase activity 

• receptor localization to 
synapse 

• angiogenesis 

Bortezomib 

Unbiased genes set | All Glioblastoma samples Unbiased genes set | Primary Glioblastoma samples 
All - Cluster 1 

• chemical synaptic transmission 

• memory 

• brain development 

Primary – Cluster 26 

• calcium ion transmembrane transport 

• neuron development 

• brain development 
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• neurotransmitter transport 

• inhibitory synapse assembly 

• regulation of postsynaptic membrane potential 

• regulation of neuronal synaptic plasticity 

• regulation of synaptic vesicle exocytosis 

• chemical synaptic transmission 

• neurotransmitter secretion 

• synaptic vesicle clustering 

• postsynaptic intermediate filament cytoskeleton organization 

• positive regulation of phospholipase C-activating G protein-coupled 
receptor signaling pathway 

• neurofilament bundle assembly 

• exocytic insertion of neurotransmitter receptor to postsynaptic membrane 

• regulation of postsynaptic membrane potential 

• neurotransmitter receptor internalization 

Busulfan 

Unbiased genes set | Primary Glioblastoma samples 
Primary – Cluster 3 

• Notch receptor processing, ligand-dependent 

Carfilzomib 

Unbiased genes set | Primary Glioblastoma samples Cancer genes set | Primary Glioblastoma samples 
Primary – Cluster 2 

• regulation of macrophage migration inhibitory factor 
signaling pathway 

• positive regulation of phosphatidylinositol 3-kinase signaling 

• negative regulation of insulin-like growth factor receptor 
signaling pathway 

Primary – Cluster 4 

• cellular response to interleukin-4 

• positive regulation of signal transduction by p53 class mediator 

• cytokine-mediated signaling pathway 

• positive regulation of programmed cell death 

• protein phosphorylation 

• positive regulation of protein kinase B signaling 

• cell migration 

• presynaptic modulation of chemical synaptic transmission 

• activation of transmembrane receptor protein tyrosine kinase activity 

• positive regulation of T cell receptor signaling pathway 

• negative regulation of extrinsic apoptotic signaling pathway in absence of ligand 

Carmustine 

Unbiased genes set | All Glioblastoma samples Unbiased genes set | Primary Glioblastoma samples 
All - Cluster 2 

• cellular response to topologically incorrect protein 

• protein folding 

• negative regulation of protein localization to endosome 

• regulation of mRNA splicing, via spliceosome 

• mRNA export from nucleus 

Primary – Cluster 3 

• DNA ligation involved in DNA recombination 

• double-strand break repair via classical nonhomologous end 
joining 

• neutrophil clearance 

• negative regulation of dendritic cell apoptotic process 
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• cellular protein-containing complex assembly 

• protein folding in endoplasmic reticulum 

All - Cluster 3 

• ER to Golgi vesicle-mediated transport 

• Golgi organization 

• positive regulation of protein targeting to mitochondrion 

• DNA modification 

• vesicle fusion with Golgi apparatus 

• autophagy 

• mitochondrial mRNA processing 

• retrograde transport, endosome to Golgi 

• vesicle targeting, rough ER to cis-Golgi 
 

• single strand break repair 

• DNA ligation involved in DNA repair 

Primary – Cluster 5 

• positive regulation of TORC1 signaling 

Primary – Cluster 1 

• regulation of ERK1 and ERK2 cascade 

Primary – Cluster 6 

• negative regulation of myeloid progenitor cell 
differentiation 

Celecoxib 

Cancer genes set | Primary Glioblastoma samples 
Primary – Cluster 3 

• negative regulation of ERK1 and ERK2 cascade 

• cell-matrix adhesion 

• negative regulation of neurotrophin TRK receptor signaling pathway 

• positive regulation of vascular endothelial growth factor receptor signaling pathway 

• positive regulation of vasculogenesis 

• epithelial cell development 

• positive regulation of blood vessel endothelial cell migration 

• positive regulation of endothelial cell proliferation 

Dactinomycin 

Unbiased genes set | All 
Glioblastoma samples 

Unbiased genes set | Primary Glioblastoma 
samples 

Cancer genes 
set | All 

Glioblastoma 
samples 

Cancer genes set 
| Primary 

Glioblastoma 
samples 

All - Cluster 16 

• RNA processing 

• negative regulation of non-
canonical Wnt signaling pathway 

All - Cluster 13 

• nucleosome assembly 

Primary – Cluster 27 

• positive regulation of central B cell tolerance induction 

• basophil homeostasis 

• eosinophil homeostasis 

• positive regulation of blood vessel diameter 

• monocyte homeostasis 

All - Cluster 3 

• cellular response 
to retinoic acid 

• mesenchymal cell 
differentiation 

Primary – Cluster 5 

• positive regulation 
of I-kappaB 
kinase/NF-kappaB 
signaling 
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• DNA replication-dependent 
nucleosome assembly 

• double-strand break repair via 
nonhomologous end joining 

• telomere capping 

• DNA replication initiation 

• negative regulation of cell cycle 
checkpoint 

• telomere organization 

• G1/S transition of mitotic cell 
cycle 

Primary – Cluster 32 

• negative regulation of epidermal growth factor receptor 
signaling pathway 

• signal transduction involved in G2 DNA damage 
checkpoint 

• regulation of phosphatidylinositol 3-kinase activity 

• autophagy 

• negative regulation of cysteine-type endopeptidase 
activity involved in apoptotic process 

• double-strand break repair via homologous 
recombination 

• regulation of G1/S transition of mitotic cell cycle 

• regulation of TORC1 signaling 

Primary – Cluster 24 

• positive regulation of interleukin-2 biosynthetic process 

• negative regulation of retinoic acid receptor signaling 
pathway 

• negative regulation of cAMP-dependent protein kinase 
activity 

• regulation of cell-cell adhesion mediated by integrin 

• interleukin-2 secretion 

• retinoic acid metabolic process 

Primary – Cluster 28 

• positive regulation of hippocampal neuron apoptotic 
process 

• positive regulation of microglial cell mediated cytotoxicity 

• synapse pruning 

• negative regulation of long-term synaptic potentiation 

• neutrophil degranulation 

• positive regulation of macrophage fusion 

• positive regulation of receptor localization to synapse 

• regulation of tumor necrosis factor biosynthetic process 

• negative regulation of interleukin-1 beta production 

• macrophage activation 

• immune response-inhibiting signal transduction 

• G protein-coupled 
receptor signaling 
pathway 

• lymphocyte 
differentiation 

• synaptic 
transmission, 
glutamatergic 

• leukocyte 
degranulation 
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• regulation of microglial cell migration 

• defense response to virus 

• cytokine-mediated signaling pathway 

• cellular response to chemokine 

• regulation of T cell proliferation 

Primary – Cluster 17 

• cellular response to tumor necrosis factor 

• positive regulation of double-strand break repair via 
nonhomologous end joining 

Primary – Cluster 4 

• negative regulation of Rho-dependent protein 
serine/threonine kinase activity 

• negative regulation of dendritic cell apoptotic process 

• positive regulation of natural killer cell differentiation 

Primary – Cluster 29 

• positive regulation of double-strand break repair via 
nonhomologous end joining 

• protein localization to site of double-strand break 

Primary – Cluster 15 

• neurotransmitter secretion 

• hepatocyte cell migration 

• cell-cell adhesion in response to extracellular stimulus 

• membrane to membrane docking 

• regulation of transcription involved in lymphatic 
endothelial cell fate commitment 

Primary – Cluster 21 

• regulation of T cell proliferation 

• response to tumor necrosis factor 

• dendrite regeneration 

Primary – Cluster 16 

• chromatin silencing at rDNA 

• DNA replication-dependent nucleosome assembly 
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• nucleosome assembly 

• CENP-A containing nucleosome assembly 

• telomere capping 

• double-strand break repair via nonhomologous end 
joining 

• interleukin-7-mediated signaling pathway 

• nucleotide-excision repair, DNA gap filling 

• DNA-templated transcription, initiation 

• antibacterial humoral response 

• telomere maintenance via semi-conservative replication 

• antimicrobial humoral immune response mediated by 
antimicrobial peptide 

• negative regulation of stem cell differentiation 

• negative regulation of DNA recombination 

Dasatinib 

Cancer genes set | Primary Glioblastoma samples 
Primary – Cluster 6 

• transmission of nerve impulse 

• positive regulation of neurological system process 

• positive regulation of neuron projection regeneration 

• positive regulation of phagocytosis 

• regulation of excitatory synapse assembly 

• negative regulation of astrocyte differentiation 

• postsynapse assembly 

• myelination in peripheral nervous system 

Dexrazoxane 

Unbiased genes set | All 
Glioblastoma samples 

Unbiased genes set | Primary Glioblastoma samples 
Cancer genes set | All 
Glioblastoma samples 

All - Cluster 4 

• negative regulation of vascular 
endothelial growth factor 
receptor signaling pathway 

• regulation of microglial cell 
migration 

• negative regulation of neuron 
apoptotic process 

Primary – Cluster 25 

• cell division 

• mitotic cytokinesis 

• DNA damage response, signal transduction by p53 class 
mediator resulting in cell cycle arrest 

• G2/M transition of mitotic cell cycle 

• regulation of signal transduction by p53 class mediator 

• positive regulation of DNA endoreduplication 

All - Cluster 2 

• negative regulation of 
transforming growth factor beta 
production 

• negative regulation of ERK1 
and ERK2 cascade 

• regulation of cellular response 
to growth factor stimulus 



170 
 

• positive regulation of protein 
kinase B signaling 

• cytosolic calcium signaling 
involved in initiation of cell 
movement in glial-mediated 
radial cell mi... 

• negative regulation of 
phosphatidylinositol 3-kinase 
activity 

• positive regulation of 
interleukin-4 biosynthetic 
process 

Primary – Cluster 7 

• axonogenesis 

• epithelial cell morphogenesis 

Primary – Cluster 6 

• positive regulation of Wnt signaling pathway 

• regulation of presynaptic cytosolic calcium ion concentration 

• regulation of Wnt signaling pathway, planar cell polarity pathway 

• positive regulation of non-canonical Wnt signaling pathway 

• negative regulation of cell cycle arrest 

Primary – Cluster 8 

• regulation of postsynaptic cytosolic calcium ion concentration 

• negative regulation of necrotic cell death 

• negative regulation of cell cycle arrest 

• regulation of necroptotic process 

• regulation of necrotic cell death 

• positive regulation of protein 
tyrosine kinase activity 

Doxorubicin hydrochloride 

Unbiased genes set | 
Primary Glioblastoma 

samples 

Cancer genes set | All Glioblastoma 
samples 

Cancer genes set | Primary Glioblastoma samples 

Primary – Cluster 12 

• negative regulation of intrinsic 
apoptotic signaling pathway in 
response to hydrogen peroxide 

• cytoplasm protein quality 
control by the ubiquitin-
proteasome system 

• canonical Wnt signaling 
pathway involved in regulation 
of cell proliferation 

• base-excision repair, gap-filling 

All - Cluster 3 

• negative regulation of B cell 
differentiation 

• regulation of transcription, DNA-
templated 

• cell cycle arrest 

• regulation of cell proliferation 

• positive regulation of erythrocyte 
differentiation 

• positive regulation of extrinsic apoptotic 
signaling pathway in absence of ligand 

• cellular response to stress 

All - Cluster 4 

• epidermal cell differentiation 

Primary – Cluster 7 

• cell cycle arrest 

• regulation of neuron differentiation 

• regulation of Ras protein signal transduction 

• protein dephosphorylation 

• cellular senescence 

• Wnt signaling pathway 

• positive regulation of transcription of Notch receptor target 

• positive regulation of Notch signaling pathway 

Primary – Cluster 6 

• positive regulation of extrinsic apoptotic signaling pathway 
in absence of ligand 

• regulation of macrophage differentiation 

• extrinsic apoptotic signaling pathway 
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• positive regulation of cyclin-dependent protein 
serine/threonine kinase activity 

• neuron differentiation 

• negative regulation of cell growth 

• negative regulation of extrinsic apoptotic signaling pathway 

Enzalutamide 

Unbiased genes set | Primary Glioblastoma samples 
Primary – Cluster 16 

• DNA replication-dependent nucleosome assembly 

• chromatin silencing at rDNA 

• nucleosome assembly 

• CENP-A containing nucleosome assembly 

• telomere capping 

• double-strand break repair via nonhomologous end joining 

• DNA-templated transcription, initiation 

• DNA repair 

Epirubicin hydrochloride 

Unbiased genes set | Primary Glioblastoma 
samples 

Cancer genes set | All Glioblastoma samples 
Cancer genes set | 

Primary Glioblastoma 
samples 

Primary – Cluster 12 

• neurotransmitter receptor biosynthetic process 

• negative regulation of intrinsic apoptotic signaling 
pathway in response to hydrogen peroxide 

• negative regulation of synaptic transmission, 
cholinergic 

• canonical Wnt signaling pathway involved in 
regulation of cell proliferation 

• positive regulation of mitotic cell cycle spindle 
assembly checkpoint 

• positive regulation of cell cycle checkpoint 

• regulation of spindle checkpoint 

• positive regulation of B cell differentiation 

All - Cluster 5 

• positive regulation of cell proliferation involved in 
heart morphogenesis 

• positive regulation of DNA catabolic process 

• regulation of apoptotic process 

• glial cell fate commitment 

• regulation of mitotic spindle assembly 

• mitotic G2 DNA damage checkpoint 

All - Cluster 3 

• negative regulation of B cell differentiation 

• positive regulation of neuron differentiation 

• mesenchymal cell differentiation 

• cellular response to retinoic acid 

• negative regulation of intracellular signal transduction 

Primary – Cluster 7 

• cell cycle arrest 

• regulation of Ras protein 
signal transduction 

• regulation of neuron 
differentiation 

• cellular senescence 

• positive regulation of 
transcription of Notch 
receptor target 

• centrosome localization 

Floxuridine 

Cancer genes set | Primary Glioblastoma samples 
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Primary – Cluster 4 

• negative regulation of GTPase activity 

• retinoic acid metabolic process 

Fludarabine phosphate 

Unbiased genes set | Primary Glioblastoma samples 
Primary – Cluster 34 

• positive regulation of endothelial cell proliferation 

• phosphatidylinositol 3-kinase signaling 

• positive regulation of blood vessel diameter 

• positive regulation of blood vessel endothelial cell migration 

• positive regulation of phosphorylation 

• negative regulation of phosphatidylinositol biosynthetic process 

• cellular response to growth factor stimulus 

• leukocyte migration 

Primary – Cluster 27 

• susceptibility to natural killer cell mediated cytotoxicity 

• susceptibility to T cell mediated cytotoxicity 

• cell-cell adhesion via plasma-membrane adhesion molecules 

• positive regulation of DNA damage response, signal transduction by p53 class mediator resulting in t... 

• positive regulation of type B pancreatic cell apoptotic process 

• positive regulation of natural killer cell mediated cytotoxicity directed against tumor cell target 

Primary – Cluster 6 

• regulation of eIF2 alpha phosphorylation by dsRNA 

• negative regulation of myeloid progenitor cell differentiation 

Fluorouracil 

Unbiased genes set | All Glioblastoma samples 
All - Cluster 5 

• intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stress 

• regulation of autophagy 

• intrinsic apoptotic signaling pathway in response to oxidative stress 

• negative regulation of protein kinase B signaling 

• positive regulation of oligodendrocyte apoptotic process 

Gefitinib 

Unbiased genes set | Primary Glioblastoma samples Cancer genes set | Primary Glioblastoma samples 
Primary – Cluster 6 Primary – Cluster 8 
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• positive regulation of Wnt signaling pathway, planar cell polarity 
pathway 

• positive regulation of vascular endothelial cell proliferation 

• positive regulation of endothelial cell apoptotic process 

• regulation of vascular endothelial cell proliferation 

• vascular endothelial cell proliferation 

• positive regulation of epithelial cell apoptotic process 

• regulation of endothelial cell apoptotic process 

• cellular response to epidermal growth factor stimulus 

• macrophage activation 

• regulation of response to DNA damage stimulus 

• DNA unwinding involved in DNA replication 

• telomere maintenance via recombination 

• regulation of T cell differentiation in thymus 

• DNA replication initiation 

Gemcitabine hydrochloride 

Unbiased genes set | All Glioblastoma samples 
All - Cluster 9 

• central nervous system myelination 

• negative regulation of neuron differentiation 

• regulation of synaptic vesicle fusion to presynaptic active zone membrane 

• positive regulation of glial cell differentiation 

• positive regulation of myelination 

• myelination 

• tissue regeneration 

• oligodendrocyte differentiation 

• neuron fate specification 

• spinal cord motor neuron differentiation 

• regulation of myelination 

• positive regulation of gliogenesis 

• positive regulation of G protein-coupled receptor signaling pathway 

Hydroxyurea 

Unbiased genes set | Primary Glioblastoma samples 
Primary – Cluster 1 

• positive regulation of protein localization to synapse 

• negative regulation of autophagosome assembly 

• regulation of presynapse assembly 

• regulation of presynapse organization 

• synaptic transmission, GABAergic 

Idarubicin hydrochloride 

Unbiased genes set | Primary Glioblastoma samples Cancer genes set | Primary Glioblastoma samples 
Primary – Cluster 20 

• cell-matrix adhesion 

Primary – Cluster 3 

• negative regulation of ERK1 and ERK2 cascade 
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• extracellular matrix organization 

• branching involved in blood vessel morphogenesis 

• blood vessel development 

• negative regulation of angiogenesis 

• endothelial cell differentiation 

Primary – Cluster 18 

• base-excision repair, base-free sugar-phosphate removal 

• telomere maintenance via base-excision repair 

Primary – Cluster 22 

• positive regulation of retinoic acid biosynthetic process 

• negative regulation of immature T cell proliferation in thymus 

• negative regulation of neurotrophin TRK receptor signaling pathway 

• negative regulation of GTPase activity 

• establishment of mitotic spindle orientation 

• positive regulation of MAP kinase activity 

• protein localization to postsynaptic membrane 

• positive regulation of excitatory postsynaptic potential 

Imatinib 

Unbiased genes set | Primary Glioblastoma samples 
Primary – Cluster 16 

• chromatin silencing at rDNA 

• DNA replication-dependent nucleosome assembly 

• telomere organization 

• transcription, RNA-templated 

• rRNA processing 

Ixabepilone 

Unbiased genes set | All 
Glioblastoma samples 

Unbiased genes set | Primary 
Glioblastoma samples 

Cancer genes set | All 
Glioblastoma samples 

Cancer genes set | Primary 
Glioblastoma samples 

All - Cluster 9 

• regulation of ARF protein 
signal transduction 

• negative regulation of 
epithelial to mesenchymal 
transition 

• positive regulation of ARF 
protein signal transduction 

• negative regulation of Wnt 
signaling pathway 
involved in dorsal/ventral 
axis specification 

Primary – Cluster 20 

• positive regulation of 
angiogenesis 

• extracellular matrix 
organization 

• negative regulation of 
endodermal cell differentiation 

• anatomical structure formation 
involved in morphogenesis 

• cell adhesion 

• cell surface receptor signaling 
pathway 

All - Cluster 4 

• nucleotide-excision repair, DNA 
duplex unwinding 

• global genome nucleotide-
excision repair 

• nucleotide-excision repair, 
preincision complex assembly 

• regulation of G2/M transition of 
mitotic cell cycle 

• Wnt signaling pathway 

• nucleotide-excision repair, DNA 
incision, 5'-to lesion 

Primary – Cluster 9 

• interleukin-21-mediated 
signaling pathway 

• interleukin-4-mediated 
signaling pathway 

• interleukin-9-mediated 
signaling pathway 

• regulation of epithelial cell 
proliferation 

• interleukin-2-mediated 
signaling pathway 

• negative regulation of T cell 
differentiation 
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• negative regulation of 
canonical Wnt signaling 
pathway involved in 
controlling type B 
pancreatic cel... 

All - Cluster 10 

• epidermal growth factor 
receptor signaling pathway 

• positive regulation of focal 
adhesion assembly 

• blood vessel development 

• transcription-coupled nucleotide-
excision repair 

• nucleotide-excision repair, DNA 
damage recognition 

• interleukin-15-mediated 
signaling pathway 

• interleukin-7-mediated 
signaling pathway 

Lapatinib 

Unbiased genes set | Primary Glioblastoma samples 
Primary – Cluster 6 

• common myeloid progenitor cell proliferation 

• myeloid progenitor cell differentiation 

• positive regulation of Wnt signaling pathway, planar cell polarity pathway 

Lomustine 

Unbiased genes set | Primary Glioblastoma samples Cancer genes set | Primary Glioblastoma samples 
Primary – Cluster 9 

• positive regulation of NF-kappaB transcription factor activity 

• regulation of postsynaptic neurotransmitter receptor internalization 

• postsynaptic neurotransmitter receptor internalization 

• postsynaptic endocytosis 

• neurotransmitter receptor internalization 

• lymph vessel development 

Primary – Cluster 10 

• myelination in peripheral nervous system 

• hematopoietic progenitor cell differentiation 

• negative regulation of cell adhesion 

• regulation of cell adhesion 

• hemopoiesis 

• hematopoietic or lymphoid organ development 

Primary – Cluster 26 

• calcium ion transmembrane transport 

• spontaneous neurotransmitter secretion 

• regulation of synaptic vesicle fusion to presynaptic active zone membrane 

Primary – Cluster 10 

• cell adhesion 

• negative regulation of STAT cascade 

• positive regulation of gene expression 

• immune response 

• regulation of blood vessel endothelial cell migration 

• regulation of epidermal cell differentiation 

Primary – Cluster 3 

• positive regulation of CREB transcription factor activity 

• negative regulation of ERK1 and ERK2 cascade 

• activation of cysteine-type endopeptidase activity involved in 
apoptotic process 

• negative regulation of neurotrophin TRK receptor signaling 
pathway 

• regulation of axonogenesis 

• negative regulation of GTPase activity 

• positive regulation of p38MAPK cascade 

• negative regulation of cell growth 
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• synaptic vesicle clustering 

• potassium ion transport 

• exocytic insertion of neurotransmitter receptor to postsynaptic membrane 

• synaptic vesicle exocytosis 

• calcium ion export across plasma membrane 

• calcium ion-regulated exocytosis of neurotransmitter 

• synapse assembly 

• positive regulation of excitatory postsynaptic potential 

• regulation of ion transmembrane transport 

Primary – Cluster 7 

• positive regulation of TOR signaling 

Mechlorethamine hydrochloride 

Unbiased genes set | All Glioblastoma samples 
All - Cluster 11 

• extracellular matrix organization 

• positive regulation of cytokine biosynthetic process 

• angiogenesis 

• negative regulation of intracellular signal transduction 

• positive regulation of angiogenesis 

• negative regulation of apoptotic process 

• negative regulation of cell adhesion 

• cell adhesion 

• cell activation 

• regulation of endothelial cell apoptotic process 

Melphalan hydrochloride 

Unbiased genes set | Primary Glioblastoma samples Cancer genes set | Primary Glioblastoma samples 
Primary – Cluster 26 

• neurotransmitter secretion 

• calcium ion transmembrane transport 

• regulation of synaptic vesicle fusion to presynaptic active zone 
membrane 

• synaptic vesicle clustering 

• glutamate secretion 

• exocytic insertion of neurotransmitter receptor to postsynaptic 
membrane 

• sodium ion transmembrane transport 

Primary – Cluster 3 

• negative regulation of neurotrophin TRK receptor signaling pathway 

• regulation of signaling receptor activity 

• negative regulation of GTPase activity 

• regulation of axonogenesis 

• establishment of mitotic spindle orientation 

• positive regulation of CREB transcription factor activity 

• positive regulation of ion transport 

• positive regulation of excitatory postsynaptic potential 

• activation of MAPKKK activity 
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• calcium ion-regulated exocytosis of neurotransmitter 

• spontaneous neurotransmitter secretion 

• synapse assembly 

• positive regulation of excitatory postsynaptic potential 

Primary – Cluster 22 

• Notch signaling pathway 

• positive regulation of retinoic acid biosynthetic process 

• regulation of Fas signaling pathway 

• positive regulation of Wnt signaling pathway by BMP signaling 
pathway 

• negative regulation of immature T cell proliferation in thymus 

Primary – Cluster 9 

• positive regulation of NF-kappaB transcription factor activity 

• intrinsic apoptotic signaling pathway by p53 class mediator 

• positive regulation of stress-activated MAPK cascade 

• synaptic vesicle transport 

• positive regulation of stress-activated protein kinase signaling 
cascade 

• establishment of synaptic vesicle localization 

• mitotic cell cycle arrest 

Methotrexate 

Unbiased genes set | All 
Glioblastoma samples 

Unbiased genes set | Primary 
Glioblastoma samples 

Cancer genes set | All 
Glioblastoma samples 

Cancer genes set | Primary 
Glioblastoma samples 

All - Cluster 6 

• positive regulation of 
angiogenesis 

• vasculogenesis 

• defense response to tumor cell 

• negative regulation of 
angiogenesis 

• angiotensin maturation 

• negative regulation of blood 
vessel endothelial cell migration 

• vascular endothelial growth 
factor signaling pathway 

Primary – Cluster 10 

• negative regulation of T cell 
extravasation 

• negative regulation of NK T cell 
proliferation 

• negative regulation of CD8-positive, 
alpha-beta T cell differentiation 

• negative regulation of T-helper 17 
type immune response 

• interleukin-17 secretion 

• negative regulation of interleukin-17 
secretion 

All - Cluster 6 

• positive regulation of ERK1 
and ERK2 cascade 

• extracellular matrix 
organization 

• blood vessel remodeling 

• glomerular mesangial cell 
development 

• vascular endothelial growth 
factor signaling pathway 

• positive regulation of 
endothelial cell migration 

Primary – Cluster 10 

• negative regulation of cell 
migration 

• transmembrane receptor 
protein tyrosine kinase 
signaling pathway 

• neutrophil degranulation 

• neutrophil mediated immunity 

• response to ammonium ion 
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• phosphatidylinositol 3-kinase 
signaling 

• cell-matrix adhesion 

• negative regulation of 
endothelial cell differentiation 

• blood vessel maturation 

• blood vessel remodeling 

• positive regulation of endothelial 
cell differentiation 

• lymphangiogenesis 

• positive regulation of 
phosphoprotein phosphatase 
activity 

• negative regulation of androgen 
receptor signaling pathway 

• negative regulation of T-helper 17 
cell differentiation 

• negative regulation of tumor 
necrosis factor secretion 

• NK T cell differentiation 

• negative regulation of double-strand 
break repair via homologous 
recombination 

• negative regulation of type 2 
immune response 

Primary – Cluster 34 

• venous blood vessel development 

• vasculogenesis 

• transforming growth factor beta 
receptor signaling pathway 

• negative regulation of angiogenesis 

• endothelium development 

• negative regulation of Rho-
dependent protein serine/threonine 
kinase activity 

• cell adhesion 

• extracellular matrix organization 

• positive regulation of 
endothelial cell proliferation 

• positive regulation of 
angiogenesis 

Methoxsalen 

Unbiased genes set | All 
Glioblastoma samples 

Unbiased genes set | Primary 
Glioblastoma samples 

Cancer genes set | All 
Glioblastoma samples 

Cancer genes set | 
Primary Glioblastoma 

samples 
All - Cluster 4 

• regulation of microglial cell 
migration 

• mature B cell differentiation 
involved in immune response 

• leukocyte activation 

• immune response 

• positive regulation of neuroblast 
proliferation 

Primary – Cluster 11 

• regulation of release of cytochrome c 
from mitochondria 

• mitochondrial nucleoid organization 

• positive regulation of mitochondrial 
transcription 

• negative regulation of mitochondrial 
membrane permeability involved in 
apoptotic process 

All - Cluster 2 

• negative regulation of 
neurotrophin TRK receptor 
signaling pathway 

• negative regulation of ERK1 
and ERK2 cascade 

• positive regulation of CREB 
transcription factor activity 

• establishment of mitotic 
spindle orientation 

Primary – Cluster 3 

• positive regulation of CREB 
transcription factor activity 

• negative regulation of 
angiogenesis 

• negative regulation of 
neurotrophin TRK receptor 
signaling pathway 

• regulation of cysteine-type 
endopeptidase activity 
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• regulation of vascular 
endothelial growth factor 
receptor signaling pathway 

• negative regulation of 
autophagic cell death 

• positive regulation of CD40 
signaling pathway 

• negative regulation of 
phosphatidylinositol 3-kinase 
activity 

All - Cluster 5 

• regulation of signaling receptor 
activity 

• positive regulation of MAP 
kinase activity 

• nucleotide-excision repair, DNA 
damage recognition 

• regulation of transcription from 
RNA polymerase II promoter in 
response to hypoxia 

• regulation of postsynaptic 
specialization assembly 

• nucleotide-excision repair, DNA 
duplex unwinding 

• global genome nucleotide-
excision repair 

• nucleotide-excision repair, 
preincision complex assembly 

• positive regulation of syncytium 
formation by plasma membrane 
fusion 

All - Cluster 7 

• neutrophil degranulation 

• positive regulation of tumor 
necrosis factor production 

• macrophage differentiation 

• positive regulation of cytochrome-c 
oxidase activity 

• inhibition of cysteine-type endopeptidase 
activity involved in apoptotic process 

• negative regulation of hypoxia-induced 
intrinsic apoptotic signaling pathway 

• DNA damage induced protein 
phosphorylation 

Primary – Cluster 36 

• Golgi vesicle prefusion complex 
stabilization 

• positive regulation of single-stranded 
telomeric DNA binding 

• vesicle-mediated intercellular transport 

• vascular endothelial growth factor 
receptor-1 signaling pathway 

• telomere assembly 

• negative regulation of double-strand 
break repair via nonhomologous end 
joining 

• negative regulation of vascular 
endothelial cell proliferation 

• cell-cell adhesion via plasma-membrane 
adhesion molecules 

Primary – Cluster 12 

• regulation of cell cycle arrest 

• positive regulation of cell cycle process 

• cellular respiration 

• neurotransmitter receptor biosynthetic 
process 

• B cell receptor apoptotic signaling 
pathway 

• B cell negative selection 

• regulation of mitochondrial membrane 
permeability involved in programmed 
necrotic cell death 

All - Cluster 1 

• cellular response to calcium 
ion 

• positive regulation of 
GTPase activity 

• Ras protein signal 
transduction 

• regulation of Rho protein 
signal transduction 

• regulation of apoptotic 
process 

involved in apoptotic 
process 

• epidermal growth factor 
receptor signaling pathway 

• negative regulation of 
neuron differentiation 

• activation of protein kinase 
activity 

• establishment of mitotic 
spindle orientation 
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• negative regulation of B cell 
proliferation 

• positive regulation of T cell 
proliferation 

• positive regulation of cytokine 
secretion 

• phagocytosis, engulfment 

• positive regulation of B cell 
differentiation 

• cellular response to macrophage 
colony-stimulating factor 
stimulus 

• positive regulation of defense 
response to bacterium 

• leukocyte migration 

• inflammatory response 

• regulation of neutrophil 
differentiation 

• B cell receptor signaling 
pathway 

• receptor-mediated endocytosis 

• release of matrix enzymes from 
mitochondria 

• negative regulation of intrinsic apoptotic 
signaling pathway in response to 
hydrogen peroxide 

Primary – Cluster 28 

• neutrophil degranulation 

• innate immune response 

• positive regulation of macrophage fusion 

• negative regulation of leukocyte 
apoptotic process 

• toll-like receptor 2 signaling pathway 

• T cell activation via T cell receptor 
contact with antigen bound to MHC 
molecule on antigen presenti... 

• negative regulation of tumor necrosis 
factor production 

• inflammatory response 

• defense response to virus 

Primary – Cluster 13 

• inflammatory response 

• peptide antigen assembly with MHC class 
II protein complex 

• neutrophil degranulation 

• MyD88-dependent toll-like receptor 
signaling pathway 

• positive regulation of T cell proliferation 

• negative regulation of interleukin-6 
production 

• antigen processing and presentation of 
exogenous peptide antigen via MHC class 
II 

• positive regulation of B cell differentiation 

• negative regulation of immune effector 
process 

• regulation of neutrophil differentiation 
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• polysaccharide assembly with MHC class 
II protein complex 

• innate immune response 

• regulation of lymphocyte mediated 
immunity 

• lymphocyte differentiation 

• regulation of adaptive immune response 
based on somatic recombination of 
immune receptors built from... 

• phagocytosis 

Mitomycin 

Unbiased genes set | Primary Glioblastoma samples Cancer genes set | Primary Glioblastoma samples 
Primary – Cluster 9 

• positive regulation of aorta morphogenesis 

• positive regulation of somatic stem cell population maintenance 

• positive regulation of somatic stem cell division 

• positive regulation of mammary stem cell proliferation 

• positive regulation of NF-kappaB transcription factor activity 

• ectodermal cell differentiation 

• venous blood vessel morphogenesis 

• mammary gland epithelial cell differentiation 

• positive regulation of cardiac muscle cell differentiation 

• negative regulation of stem cell differentiation 

• positive regulation of cardiocyte differentiation 

Primary – Cluster 3 

• regulation of signaling receptor activity 

• negative regulation of cell proliferation 

• negative regulation of angiogenesis 

• positive regulation of CREB transcription factor activity 

• epithelial cell differentiation 

• positive regulation of cell proliferation 

• cell morphogenesis involved in differentiation 

• negative regulation of ERK1 and ERK2 cascade 

• positive regulation of protein phosphorylation 

• cell-cell signaling 

• positive regulation of integrin biosynthetic process 

• negative regulation of receptor biosynthetic process 

Mitoxantrone 

Unbiased genes set | Primary Glioblastoma samples Cancer genes set | Primary Glioblastoma samples 
Primary – Cluster 25 

• cell division 

• DNA replication 

• attachment of mitotic spindle microtubules to kinetochore 

• anaphase-promoting complex-dependent catabolic process 

• regulation of attachment of spindle microtubules to kinetochore 

• regulation of transcription involved in G1/S transition of mitotic cell 
cycle 

• mitotic spindle assembly checkpoint 

• cell cycle 

Primary – Cluster 1 

• cell division 

• mitotic spindle assembly checkpoint 

• DNA replication 

• cell proliferation 

• DNA damage response, signal transduction by p53 class mediator 
resulting in cell cycle arrest 

• anaphase-promoting complex-dependent catabolic process 

• regulation of mitotic nuclear division 

• DNA damage induced protein phosphorylation 
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• DNA damage response, signal transduction by p53 class mediator 
resulting in cell cycle arrest 

• regulation of mitotic cell cycle spindle assembly checkpoint 

• regulation of chromosome segregation 

• positive regulation of exit from mitosis 

• regulation of G2/M transition of mitotic cell cycle 

• mitotic spindle organization 

• mitotic sister chromatid cohesion 

• DNA biosynthetic process 

• mitotic sister chromatid segregation 

• positive regulation of chromosome segregation 

• G2/M transition of mitotic cell cycle 

• mitotic centrosome separation 

• chromatin remodeling 

• replicative senescence 

• regulation of signal transduction by p53 class mediator 

• regulation of transcription, DNA-templated 

• mitotic spindle assembly 

Nilotinib 

Unbiased genes set | Primary Glioblastoma samples 
Primary – Cluster 9 

• positive regulation of protein autophosphorylation 

• ARF protein signal transduction 

• regulation of ARF protein signal transduction 

• negative regulation of insulin receptor signaling pathway 

• negative regulation of cellular response to insulin stimulus 

• regulation of protein autophosphorylation 

• negative regulation of mitotic nuclear division 

• negative regulation of nuclear division 

• regulation of insulin receptor signaling pathway 

• regulation of cellular response to insulin stimulus 

• insulin receptor signaling pathway 

• regulation of mitotic nuclear division 

Primary – Cluster 22 

• regulation of calcium import into the mitochondrion 

• establishment of glial blood-brain barrier 

• response to aluminum ion 

• substrate-dependent cell migration, cell attachment to substrate 

• response to selenium ion 

• Notch receptor processing, ligand-dependent 

Omacetaxine mepesuccinate 

Cancer genes set | Primary Glioblastoma samples 
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Primary – Cluster 4 

• regulation of signaling 

• phosphatidylserine acyl-chain remodeling 

• phosphatidylglycerol acyl-chain remodeling 

• phosphatidylinositol acyl-chain remodeling 

• positive regulation of DNA metabolic process 

• mammary gland morphogenesis 

• phosphatidylcholine acyl-chain remodeling 

• phosphatidylethanolamine acyl-chain remodeling 

Oxaliplatin 

Unbiased genes set | All 
Glioblastoma samples 

Unbiased genes set | Primary Glioblastoma samples 
Cancer genes set | Primary 

Glioblastoma samples 
All - Cluster 1 

• neural retina development 

• neuron development 

• long-term synaptic potentiation 

• regulation of short-term 
neuronal synaptic plasticity 

• brain development 

• modulation of excitatory 
postsynaptic potential 

Primary – Cluster 21 

• positive regulation of glial cell-derived neurotrophic factor 
secretion 

Primary – Cluster 26 

• glutamate secretion 

• calcium ion transmembrane transport 

• regulation of synaptic vesicle exocytosis 

• neurotransmitter secretion 

• neuron development 

• synaptic vesicle clustering 

• exocytic insertion of neurotransmitter receptor to postsynaptic 
membrane 

• positive regulation of phospholipase C-activating G protein-
coupled receptor signaling pathway 

• positive regulation of dendrite extension 

• sodium ion transmembrane transport 

• regulation of synapse assembly 

• calcium ion export across plasma membrane 

• calcium ion-regulated exocytosis of neurotransmitter 

• spontaneous neurotransmitter secretion 

Primary – Cluster 9 

• positive regulation of high voltage-gated calcium channel 
activity 

Primary – Cluster 4 

• regulation of neurotransmitter 
receptor localization to postsynaptic 
specialization membrane 

• negative regulation of GTPase 
activity 

• cell surface receptor signaling 
pathway 

• intrinsic apoptotic signaling pathway 
in response to endoplasmic 
reticulum stress 

• positive regulation of apoptotic 
signaling pathway 

• blood vessel remodeling 

• cell cycle checkpoint 
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• synaptic vesicle cycle 

• ectodermal cell differentiation 

• synaptic vesicle priming 

• regulation of synaptic vesicle recycling 

• positive regulation of protein autophosphorylation 

• regulation of protein autophosphorylation 

• endocytic recycling 

• negative regulation of mitotic nuclear division 

• synaptic vesicle recycling 

• negative regulation of nuclear division 

• exocytic process 

• intrinsic apoptotic signaling pathway by p53 class mediator 

Primary – Cluster 29 

• negative regulation of stem cell differentiation 

• somatic stem cell division 

• negative regulation of ectodermal cell fate specification 

• regulation of hematopoietic stem cell differentiation 

• stem cell population maintenance 

• negative regulation of fat cell differentiation 

• positive regulation of epithelial to mesenchymal transition 

• regulation of T cell homeostatic proliferation 

Paclitaxel 

Unbiased genes set | Primary Glioblastoma samples 

Primary – Cluster 26 

• positive regulation of phospholipase C-activating G protein-coupled receptor signaling pathway 

• positive regulation of excitatory postsynaptic potential 

Pazopanib hydrochloride 

Unbiased genes set | Primary Glioblastoma samples 
Primary – Cluster 17 

• regulation of type III interferon production 

• positive regulation of interferon-beta secretion 

• positive regulation of interferon-gamma-mediated signaling pathway 

• cellular response to interferon-gamma 

• positive regulation of interferon-alpha secretion 

• positive regulation of double-strand break repair via nonhomologous end joining 
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• positive regulation of neuron migration 

• positive regulation of tumor necrosis factor-mediated signaling pathway 

Primary – Cluster 4 

• DNA ligation involved in DNA recombination 

• negative regulation of Rho-dependent protein serine/threonine kinase activity 

• double-strand break repair via classical nonhomologous end joining 

• single strand break repair 

• DNA ligation involved in DNA repair 

Pemetrexed 

Unbiased genes set | All Glioblastoma samples 
All - Cluster 6 

• vasculogenesis 

• vascular endothelial growth factor signaling pathway 

• blood vessel remodeling 

• positive regulation of angiogenesis 

• blood vessel maturation 

• lymphatic endothelial cell differentiation 

• regulation of cell proliferation 

• lymphangiogenesis 

• positive regulation of endothelial cell differentiation 

• positive regulation of phosphoprotein phosphatase activity 

• positive regulation of phosphatidylinositol 3-kinase signaling 

Pipobroman 

Unbiased genes set | Primary Glioblastoma samples Cancer genes set | Primary Glioblastoma samples 
Primary – Cluster 9 

• positive regulation of somatic stem cell population maintenance 

• positive regulation of somatic stem cell division 

• positive regulation of mammary stem cell proliferation 

• ectodermal cell differentiation 

• positive regulation of NF-kappaB transcription factor activity 

• venous blood vessel morphogenesis 

• vesicle-mediated transport in synapse 

• mammary gland epithelial cell differentiation 

• positive regulation of cardiac muscle cell differentiation 

Primary – Cluster 3 

• negative regulation of ERK1 and ERK2 cascade 

• regulation of signaling receptor activity 

• activation of cysteine-type endopeptidase activity involved in apoptotic 
process 

• negative regulation of angiogenesis 

• negative regulation of neurotrophin TRK receptor signaling pathway 

• positive regulation of endothelial cell proliferation 

• negative regulation of GTPase activity 

• establishment of mitotic spindle orientation 

• positive regulation of CREB transcription factor activity 

Plicamycin 
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Cancer genes set | Primary Glioblastoma samples 
Primary – Cluster 4 

• positive regulation of signal transduction by p53 class mediator 

• positive regulation of MAP kinase activity 

• inositol phosphate-mediated signaling 

• negative regulation of cell death 

• nucleotide-excision repair, DNA gap filling 

Ponatinib 

Unbiased genes set | Primary Glioblastoma samples 
Primary – Cluster 30 

• vascular endothelial growth factor receptor signaling pathway 

• negative regulation of mature B cell apoptotic process 

• positive regulation of mast cell cytokine production 

Pralatrexate 

Unbiased genes set | All 
Glioblastoma samples 

Unbiased genes set | Primary Glioblastoma samples 
Cancer genes set | Primary 

Glioblastoma samples 
All - Cluster 11 

• extracellular matrix 
organization 

• positive regulation of cell 
migration 

• regulation of cell-substrate 
adhesion 

• positive regulation of 
epithelial to mesenchymal 
transition 

• endodermal cell 
differentiation 

• regulation of inflammatory 
response 

• extracellular matrix 
disassembly 

• epithelial to mesenchymal 
transition involved in 
cardiac fibroblast 
development 

• cell adhesion 

Primary – Cluster 19 

• meiotic DNA double-strand break formation 

Primary – Cluster 17 

• cellular response to tumor necrosis factor 

Primary – Cluster 24 

• regulation of cell-cell adhesion mediated by integrin 

• retinoic acid metabolic process 

Primary – Cluster 10 

• positive regulation of activated CD8-positive, alpha-beta T cell 
apoptotic process 

• positive regulation of tolerance induction to tumor cell 

• negative regulation of NK T cell proliferation 

• negative regulation of CD8-positive, alpha-beta T cell activation 

• negative regulation of CD8-positive, alpha-beta T cell 
differentiation 

• positive regulation of synapse structural plasticity 

• positive regulation of interleukin-10 secretion 

• negative regulation of CD4-positive, alpha-beta T cell proliferation 

Primary – Cluster 11 

• T cell differentiation involved in 
immune response 

• positive regulation of epithelial to 
mesenchymal transition involved 
in endocardial cushion 
formatio... 

• regulation of NK T cell 
differentiation 

Primary – Cluster 10 

• artery morphogenesis 

• positive regulation of cell 
proliferation 

• positive regulation of 
angiogenesis 

• response to cytokine 

• positive regulation of blood 
vessel endothelial cell migration 
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• substrate adhesion-dependent 
cell spreading 

• NK T cell differentiation 

• negative regulation of interleukin-10 production 

• negative regulation of activated T cell proliferation 

Primary – Cluster 9 

• positive regulation of mammary stem cell proliferation 

• positive regulation of somatic stem cell population maintenance 

• positive regulation of somatic stem cell division 

• positive regulation of NF-kappaB transcription factor activity 

• regulation of postsynaptic neurotransmitter receptor internalization 

• mammary gland epithelial cell differentiation 

Procarbazine hydrochloride 

Unbiased genes set | All 
Glioblastoma samples 

Unbiased genes set | Primary Glioblastoma samples 
Cancer genes set | Primary 

Glioblastoma samples 
All - Cluster 2 

• protein folding in endoplasmic 
reticulum 

• regulation of G2/M transition of 
mitotic cell cycle 

• negative regulation of RNA 
splicing 

• negative regulation of mRNA 
processing 

Primary – Cluster 37 

• double-strand break repair via nonhomologous end 
joining 

• regulation of transcription involved in G1/S transition of 
mitotic cell cycle 

Primary – Cluster 14 

• translational initiation 

• rRNA (guanine-N7)-methylation 

• ribosomal small subunit export from nucleus 

• rRNA processing 

• positive regulation of ribosome biogenesis 

• positive regulation of rRNA processing 

Primary – Cluster 11 

• positive regulation of 
autophagy 

• proteasomal ubiquitin-
independent protein 
catabolic process 

• DNA recombinase assembly 

• negative regulation of telomerase 
activity 

Raloxifene 

Unbiased genes set | Primary Glioblastoma samples 
Primary – Cluster 16 

• DNA replication-dependent nucleosome assembly 

• chromatin silencing at rDNA 

• CENP-A containing nucleosome assembly 

• telomere capping 

• double-strand break repair via nonhomologous end joining 

• nucleosome assembly 

• re-entry into mitotic cell cycle 
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• telomere organization 

Romidepsin 

Cancer genes set | Primary Glioblastoma samples 
Primary – Cluster 9 

• positive regulation of interleukin-2 biosynthetic process 

• negative regulation of T cell differentiation 

• regulation of megakaryocyte differentiation 

• calcium ion transmembrane transport 

• regulation of antigen receptor-mediated signaling pathway 

• cell surface receptor signaling pathway 

• cellular response to epidermal growth factor stimulus 

• B cell receptor signaling pathway 

• negative regulation of adaptive immune memory response 

• telomeric heterochromatin assembly 

• negative regulation of chromosome condensation 

• positive regulation of CD8-positive, alpha-beta T cell differentiation 

Sunitinib 

Unbiased genes set | Primary Glioblastoma samples 
Primary – Cluster 26 

• commitment of neuronal cell to specific neuron type in forebrain 

• neurotransmitter secretion 

• positive regulation of excitatory postsynaptic potential 

• neuron development 

• synaptic vesicle clustering 

• regulation of ion transmembrane transport 

• positive regulation of dendrite extension 

• negative regulation of G1/S transition of mitotic cell cycle by negative regulation of transcription... 

• negative regulation of short-term neuronal synaptic plasticity 

• positive regulation of ARF protein signal transduction 

Primary – Cluster 15 

• neuron migration 

• regulation of postsynaptic neurotransmitter receptor activity 

• positive regulation of cyclin-dependent protein serine/threonine kinase activity 

Tamoxifen citrate 

Unbiased genes set | Primary Glioblastoma samples 
Primary – Cluster 4 
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• DNA ligation involved in DNA recombination 

• mitochondrial proton-transporting ATP synthase complex assembly 

• negative regulation of Rho-dependent protein serine/threonine kinase activity 

• double-strand break repair via classical nonhomologous end joining 

• single strand break repair 

• DNA ligation involved in DNA repair 

• pro-B cell differentiation 

• lymphoid progenitor cell differentiation 

• regulation of centrosome duplication 

• nucleotide-excision repair, DNA gap filling 

Temsirolimus 

Unbiased genes set | Primary Glioblastoma samples 
Primary – Cluster 7 

• ubiquitin-dependent SMAD protein catabolic process 

• oncogene-induced cell senescence 

• negative regulation of toll-like receptor 5 signaling pathway 

Primary – Cluster 20 

• extracellular matrix organization 

• cell-cell adhesion mediated by integrin 

• regulation of cell adhesion mediated by integrin 

• extracellular matrix disassembly 

Thiotepa 

Unbiased genes set 
| All Glioblastoma 

samples 

Unbiased genes set | Primary Glioblastoma 
samples 

Cancer genes set | Primary Glioblastoma 
samples 

All - Cluster 8 

• Golgi inheritance 

• Golgi localization 

• cytokine secretion 
involved in immune 
response 

• positive regulation of 
MAPK cascade 

Primary – Cluster 9 

• positive regulation of mitotic cell cycle, embryonic 

• negative regulation of stomach neuroendocrine cell 
differentiation 

• negative regulation of pancreatic A cell 
differentiation 

• negative regulation of inner ear auditory receptor 
cell differentiation 

• negative regulation of forebrain neuron 
differentiation 

• lateral inhibition 

Primary – Cluster 3 

• negative regulation of ERK1 and ERK2 
cascade 

• regulation of signaling receptor activity 

• intestinal epithelial cell maturation 

• negative regulation of neurotrophin TRK 
receptor signaling pathway 

• negative regulation of GTPase activity 

• establishment of mitotic spindle orientation 

• positive regulation of excitatory postsynaptic potential 
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Topotecan hydrochloride 

Unbiased genes set | Primary Glioblastoma samples 
Cancer genes set | All 
Glioblastoma samples 

Cancer genes set | Primary 
Glioblastoma samples 

Primary – Cluster 9 

• negative regulation of stem cell differentiation 

• positive regulation of somatic stem cell population maintenance 

• positive regulation of somatic stem cell division 

• positive regulation of mammary stem cell proliferation 

• negative regulation of stomach neuroendocrine cell 
differentiation 

• positive regulation of mitotic cell cycle, embryonic 

• negative regulation of pro-B cell differentiation 

• forebrain radial glial cell differentiation 

Primary – Cluster 23 

• negative regulation of sprouting angiogenesis 

• positive regulation of mesenchymal cell proliferation 

• regulation of cell migration involved in sprouting angiogenesis 

• negative regulation of endothelial cell migration 

• endothelial cell-matrix adhesion 

• negative regulation of phosphatidylinositol biosynthetic process 

Primary – Cluster 21 

• negative regulation of intrinsic apoptotic signaling pathway 

Primary – Cluster 22 

• positive regulation of Wnt signaling pathway by BMP signaling 
pathway 

Primary – Cluster 18 

• negative regulation of oligodendrocyte apoptotic process 

Primary – Cluster 20 

• transforming growth factor beta receptor signaling pathway 

• positive regulation of angiogenesis 

• angiogenesis 

• cell adhesion 

All - Cluster 2 

• negative regulation of ERK1 and 
ERK2 cascade 

• negative regulation of 
neurotrophin TRK receptor 
signaling pathway 

• negative regulation of protein 
kinase B signaling 

• positive regulation of oxidative 
stress-induced neuron death 

Primary – Cluster 3 

• negative regulation of cell 
proliferation 

• angiogenesis 

• negative regulation of ERK1 and 
ERK2 cascade 

Primary – Cluster 10 

• negative regulation of apoptotic 
process 

• negative regulation of cell 
migration 

• positive regulation of 
angiogenesis 

• positive regulation of cell 
proliferation 

• positive regulation of blood vessel 
endothelial cell migration 
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• integrin-mediated signaling pathway 

Uracil mustard 

Unbiased genes set | All Glioblastoma samples Unbiased genes set | Primary Glioblastoma samples 
All - Cluster 9 

• central nervous system myelination 

• positive regulation of oligodendrocyte progenitor proliferation 

• positive regulation of glial cell differentiation 

• neuron fate specification 

Primary – Cluster 33 

• regulation of telomere maintenance 

• positive regulation of telomeric DNA binding 

• DNA repair 

• negative regulation of telomerase activity 

• negative regulation of endoplasmic reticulum stress-induced intrinsic apoptotic 
signaling pathway 

Valrubicin 

Unbiased genes set | Primary Glioblastoma samples Cancer genes set | Primary Glioblastoma samples 
Primary – Cluster 13 

• neutrophil degranulation 

• innate immune response 

• positive regulation of T cell proliferation 

• inflammatory response 

• immune response 

• interleukin-3 production 

• mast cell degranulation 

• negative regulation of immune response 

• regulation of leukocyte tethering or rolling 

• positive regulation of blood vessel endothelial cell proliferation 
involved in sprouting angiogenesi... 

• B cell receptor signaling pathway 

• activation of immune response 

• myeloid dendritic cell activation 

Primary – Cluster 7 

• positive regulation of transcription of Notch receptor target 

• insulin receptor signaling pathway 

• cellular response to epidermal growth factor stimulus 

• cell cycle arrest 

Primary – Cluster 6 

• transmission of nerve impulse 

• regulation of presynapse assembly 

• detection of cell density by contact stimulus involved in contact inhibition 

• canonical Wnt signaling pathway involved in metanephric kidney 
development 

Vemurafenib 

Unbiased genes set | Primary Glioblastoma samples 
Primary – Cluster 31 

• regulation of nucleotide-excision repair 

• DNA double-strand break processing involved in repair via single-strand annealing 

• G1/S transition of mitotic cell cycle 
Table 23: Enrichment analysis results derived from the EMC Drugs Repurposing Project WGCNA analysis results 
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8.3 Results from the RNA-Seq DEA 

 pvalue padj geneName 

ENSG00000249359.2 6.83E-42 2.33E-37 RP11-374A4.1 

ENSG00000226521.7 1.04E-29 1.78E-25 AC126365.1 

ENSG00000227713.1 1.24E-17 1.41E-13 AC116609.1 

ENSG00000214883.4 7.33E-17 6.26E-13 RP11-574M7.2 

ENSG00000261316.1 8.56E-15 5.85E-11 LINC01834 

ENSG00000225366.4 4.82E-14 2.75E-10 TDGF1P3 

ENSG00000217331.1 1.97E-13 9.62E-10 RP11-304C16.3 

ENSG00000248131.5 8.28E-11 3.54E-07 LINC01194 

ENSG00000267382.1 9.57E-11 3.63E-07 RP11-325K19.2 

ENSG00000255047.1 4.71E-10 1.61E-06 HNRNPRP2 

ENSG00000254979.5 1.42E-09 4.41E-06 RP11-872D17.8 

ENSG00000277210.3 1.62E-09 4.62E-06 RP11-14C10.6 

ENSG00000277762.1 3.09E-09 8.13E-06 RN7SL261P 

ENSG00000214891.9 3.61E-09 8.82E-06 TRIM64C 

ENSG00000160401.14 1.18E-08 2.69E-05 CFAP157 

ENSG00000206738.1 1.54E-08 3.09E-05 Y_RNA 

ENSG00000237770.2 1.52E-08 3.09E-05 SPATA31D2P 

ENSG00000182329.12 2.06E-08 3.70E-05 KIAA2012 

ENSG00000258752.1 2.00E-08 3.70E-05 RP11-356K23.1 

ENSG00000154099.17 2.20E-08 3.76E-05 DNAAF1 

ENSG00000234363.1 2.32E-08 3.78E-05 PPIAP27 

ENSG00000199595.1 2.91E-08 4.53E-05 Y_RNA 

ENSG00000181085.14 3.94E-08 5.86E-05 MAPK15 

ENSG00000152611.11 5.64E-08 7.95E-05 CAPSL 

ENSG00000167858.12 6.05E-08 7.95E-05 TEKT1 

ENSG00000238926.1 5.93E-08 7.95E-05 Y_RNA 

ENSG00000137473.17 7.74E-08 9.45E-05 TTC29 

ENSG00000145491.11 7.66E-08 9.45E-05 ROPN1L 

ENSG00000174844.14 8.28E-08 9.76E-05 DNAH12 

ENSG00000117222.13 8.67E-08 9.88E-05 RBBP5 

ENSG00000159625.14 1.25E-07 0.000136 DRC7 

ENSG00000271070.1 1.27E-07 0.000136 GMCL1P2 

ENSG00000156206.13 1.32E-07 0.000137 CFAP161 

ENSG00000271580.1 2.24E-07 0.000225 RP11-536L3.4 

ENSG00000206113.10 2.51E-07 0.000245 CFAP99 

ENSG00000205959.3 3.27E-07 0.000311 RP11-689P11.2 

ENSG00000243710.7 3.75E-07 0.000346 CFAP57 

ENSG00000163885.11 4.01E-07 0.000358 CFAP100 

ENSG00000237077.1 4.09E-07 0.000358 AC105399.2 

ENSG00000131044.16 5.14E-07 0.000439 TTLL9 
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ENSG00000213612.3 5.28E-07 0.00044 FAM220CP 

ENSG00000171595.13 6.54E-07 0.000532 DNAI2 

ENSG00000166596.14 6.92E-07 0.00055 CFAP52 

ENSG00000175267.14 7.20E-07 0.000559 VWA3A 

ENSG00000146221.9 8.23E-07 0.000625 TCTE1 

ENSG00000136918.7 9.01E-07 0.000628 WDR38 

ENSG00000213085.9 8.50E-07 0.000628 CFAP45 

ENSG00000265316.1 8.89E-07 0.000628 RP11-286N3.1 

ENSG00000270765.5 8.95E-07 0.000628 GAS2L2 

ENSG00000170893.3 1.11E-06 0.000761 TRH 

ENSG00000226837.2 1.15E-06 0.000768 HMGB1P32 

ENSG00000133665.12 1.28E-06 0.000843 DYDC2 

ENSG00000152760.9 1.46E-06 0.000943 TCTEX1D1 

ENSG00000169314.14 1.62E-06 0.001024 C22orf15 

ENSG00000144031.11 1.70E-06 0.001039 ANKRD53 

ENSG00000158816.15 1.76E-06 0.001039 VWA5B1 

ENSG00000197385.5 1.76E-06 0.001039 ZNF860 

ENSG00000279328.1 1.75E-06 0.001039 RP11-203H19.2 

ENSG00000141744.3 1.99E-06 0.001136 PNMT 

ENSG00000228611.2 1.99E-06 0.001136 HNF4GP1 

ENSG00000139537.10 2.11E-06 0.001182 CCDC65 

ENSG00000122735.15 2.17E-06 0.001194 DNAI1 

ENSG00000182759.3 2.30E-06 0.001245 MAFA 

ENSG00000183644.13 2.53E-06 0.001353 C11orf88 

ENSG00000197816.13 2.71E-06 0.001425 CCDC180 

ENSG00000155761.13 3.17E-06 0.001617 SPAG17 

ENSG00000188523.8 3.15E-06 0.001617 CFAP77 

ENSG00000170231.15 3.46E-06 0.001741 FABP6 

ENSG00000248712.7 3.54E-06 0.001755 CCDC153 

ENSG00000257057.2 3.85E-06 0.001879 C11orf97 

ENSG00000162004.16 4.03E-06 0.00194 CCDC78 

ENSG00000140057.8 4.19E-06 0.001991 AK7 

ENSG00000186471.12 4.29E-06 0.002009 AKAP14 

ENSG00000165164.13 4.45E-06 0.002043 CFAP47 

ENSG00000179902.12 4.48E-06 0.002043 C1orf194 

ENSG00000203799.12 4.58E-06 0.00206 CCDC162P 

ENSG00000120051.14 4.97E-06 0.002206 CFAP58 

ENSG00000164746.13 5.15E-06 0.002255 C7orf57 

ENSG00000131771.13 6.70E-06 0.0029 PPP1R1B 

ENSG00000135205.14 6.89E-06 0.002907 CCDC146 

ENSG00000169064.12 6.87E-06 0.002907 ZBBX 

ENSG00000173013.5 7.25E-06 0.003022 CCDC96 

ENSG00000168658.18 7.35E-06 0.003028 VWA3B 
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ENSG00000110723.11 7.61E-06 0.003095 EXPH5 

ENSG00000072858.10 8.23E-06 0.003247 SIDT1 

ENSG00000114473.13 8.25E-06 0.003247 IQCG 

ENSG00000197826.11 8.27E-06 0.003247 C4orf22 

ENSG00000260259.1 8.49E-06 0.00326 LINC02166 

ENSG00000268736.1 8.49E-06 0.00326 MTCO3P39 

ENSG00000248399.1 9.17E-06 0.003484 RP11-503N18.4 

ENSG00000162814.10 9.60E-06 0.003604 SPATA17 

ENSG00000269984.1 1.00E-05 0.003717 RP11-362K14.5 

ENSG00000158428.3 1.03E-05 0.003758 CATIP 

ENSG00000230599.2 1.03E-05 0.003758 AC018495.3 

ENSG00000092850.11 1.05E-05 0.003791 TEKT2 

ENSG00000186529.15 1.09E-05 0.003883 CYP4F3 

ENSG00000226644.5 1.18E-05 0.004174 RP11-128M1.1 

ENSG00000160188.9 1.26E-05 0.004366 RSPH1 

ENSG00000162148.10 1.26E-05 0.004366 PPP1R32 

ENSG00000153347.9 1.28E-05 0.004385 FAM81B 

ENSG00000157703.15 1.30E-05 0.004385 SVOPL 

ENSG00000196666.4 1.33E-05 0.004397 FAM180B 

ENSG00000237542.1 1.32E-05 0.004397 MTCO3P17 

ENSG00000140795.12 1.35E-05 0.004442 MYLK3 

ENSG00000215612.7 1.42E-05 0.004597 HMX1 

ENSG00000230173.1 1.43E-05 0.004597 LINC01790 

ENSG00000154479.12 1.49E-05 0.004745 CCDC173 

ENSG00000163263.6 1.52E-05 0.004796 C1orf189 

ENSG00000187942.11 1.55E-05 0.004849 LDLRAD2 

ENSG00000008226.19 1.80E-05 0.005489 DLEC1 

ENSG00000129654.7 1.80E-05 0.005489 FOXJ1 

ENSG00000181780.4 1.77E-05 0.005489 OR5J1P 

ENSG00000166535.19 1.93E-05 0.005664 A2ML1 

ENSG00000175318.11 1.88E-05 0.005664 GRAMD2 

ENSG00000187905.10 1.91E-05 0.005664 LRRC74B 

ENSG00000197057.9 1.92E-05 0.005664 DTHD1 

ENSG00000230062.5 1.94E-05 0.005664 ANKRD66 

ENSG00000185681.12 2.00E-05 0.005803 MORN5 

ENSG00000223197.1 2.06E-05 0.005929 RNU6-1001P 

ENSG00000248844.6 2.09E-05 0.005951 RP11-626H12.3 

ENSG00000269956.1 2.29E-05 0.006455 MKNK1-AS1 

ENSG00000004838.13 2.44E-05 0.006725 ZMYND10 

ENSG00000141294.9 2.46E-05 0.006725 LRRC46 

ENSG00000146038.11 2.41E-05 0.006725 DCDC2 

ENSG00000181656.6 2.44E-05 0.006725 GPR88 

ENSG00000112183.14 2.59E-05 0.007009 RBM24 
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ENSG00000159712.10 2.62E-05 0.007009 ANKRD18CP 

ENSG00000260266.1 2.63E-05 0.007009 CTD-2311M21.2 

ENSG00000176601.12 2.78E-05 0.007307 MAP3K19 

ENSG00000257296.1 2.77E-05 0.007307 RP11-701B6.1 

ENSG00000158423.16 2.84E-05 0.007418 RIBC1 

ENSG00000167646.13 3.05E-05 0.007902 DNAAF3 

ENSG00000189350.12 3.09E-05 0.007947 TOGARAM2 

ENSG00000163736.3 3.26E-05 0.008242 PPBP 

ENSG00000168589.14 3.24E-05 0.008242 DYNLRB2 

ENSG00000111834.12 3.28E-05 0.008246 RSPH4A 

ENSG00000188596.10 3.33E-05 0.008257 CFAP54 

ENSG00000212766.9 3.33E-05 0.008257 EWSAT1 

ENSG00000129991.12 3.44E-05 0.00841 TNNI3 

ENSG00000197748.12 3.45E-05 0.00841 CFAP43 

ENSG00000276578.1 3.58E-05 0.008688 LLNLR-285B5.1 

ENSG00000157856.10 3.68E-05 0.008857 DRC1 

ENSG00000266718.1 3.76E-05 0.008975 RP11-466A19.1 

ENSG00000152763.16 4.05E-05 0.009617 WDR78 

ENSG00000164946.19 4.14E-05 0.009734 FREM1 

ENSG00000220267.1 4.16E-05 0.009734 ACTBP8 

ENSG00000260198.1 4.26E-05 0.009909 RP11-441F2.2 

ENSG00000115339.13 4.35E-05 0.010025 GALNT3 

ENSG00000215187.10 4.37E-05 0.010025 FAM166B 

ENSG00000187726.8 4.57E-05 0.010365 DNAJB13 

ENSG00000267193.5 4.58E-05 0.010365 RP11-116O18.3 

ENSG00000168970.22 4.64E-05 0.010372 JMJD7-PLA2G4B 

ENSG00000203666.12 4.63E-05 0.010372 EFCAB2 

ENSG00000161249.20 4.99E-05 0.011002 DMKN 

ENSG00000173557.14 4.97E-05 0.011002 C2orf70 

ENSG00000115423.18 5.19E-05 0.011292 DNAH6 

ENSG00000182791.4 5.19E-05 0.011292 CCDC87 

ENSG00000230565.1 5.33E-05 0.011523 ZNF32-AS2 

ENSG00000273449.1 5.43E-05 0.011664 RP11-218F10.3 

ENSG00000173947.13 5.50E-05 0.011741 PIFO 

ENSG00000272514.5 5.65E-05 0.011998 CFAP206 

ENSG00000197153.4 5.95E-05 0.012558 HIST1H3J 

ENSG00000215912.12 6.04E-05 0.012663 TTC34 

ENSG00000231453.1 6.20E-05 0.012921 LINC01305 

ENSG00000133640.18 6.32E-05 0.013038 LRRIQ1 

ENSG00000180626.9 6.33E-05 0.013038 ZNF594 

ENSG00000135951.14 6.38E-05 0.013058 TSGA10 

ENSG00000283538.1 6.60E-05 0.013421 RP11-180P8.1 

ENSG00000183914.14 6.80E-05 0.013669 DNAH2 
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ENSG00000205835.8 6.78E-05 0.013669 GMNC 

ENSG00000206172.8 6.95E-05 0.013883 HBA1 

ENSG00000134533.6 7.05E-05 0.014002 RERG 

ENSG00000283383.1 7.10E-05 0.014026 RP11-499F19.3 

ENSG00000272442.2 7.23E-05 0.014206 RP11-444E17.6 

ENSG00000141519.14 7.52E-05 0.014693 CCDC40 

ENSG00000248464.1 7.71E-05 0.014963 FGF10-AS1 

ENSG00000113924.11 8.04E-05 0.015518 HGD 

ENSG00000175920.16 8.37E-05 0.016074 DOK7 

ENSG00000166473.17 8.59E-05 0.016394 PKD1L2 

ENSG00000165309.13 8.73E-05 0.01658 ARMC3 

ENSG00000172771.11 8.93E-05 0.016857 EFCAB12 

ENSG00000279400.1 9.06E-05 0.017006 CTD-2353F22.2 

ENSG00000158578.18 9.13E-05 0.017058 ALAS2 

ENSG00000118307.18 9.21E-05 0.017114 CASC1 

ENSG00000171811.13 9.37E-05 0.017307 CFAP46 

ENSG00000183690.12 9.51E-05 0.017387 EFHC2 

ENSG00000232233.1 9.48E-05 0.017387 LINC02043 

ENSG00000070731.10 9.86E-05 0.017919 ST6GALNAC2 

ENSG00000156042.17 0.0001 0.017938 CFAP70 

ENSG00000196565.13 9.99E-05 0.017938 HBG2 

ENSG00000229657.2 9.96E-05 0.017938 RP11-494K3.2 

ENSG00000115850.9 0.000105 0.018343 LCT 

ENSG00000121101.15 0.000104 0.018343 TEX14 

ENSG00000141469.16 0.000105 0.018343 SLC14A1 

ENSG00000162456.9 0.000103 0.018343 KNCN 

ENSG00000178125.14 0.000106 0.018343 PPP1R42 

ENSG00000241458.1 0.000105 0.018343 RPL7P19 

ENSG00000174529.7 0.000109 0.018843 TMEM81 

ENSG00000104450.12 0.000113 0.019334 SPAG1 

ENSG00000204666.3 0.000113 0.019334 CTD-2126E3.1 

ENSG00000228038.1 0.000115 0.019536 VN1R51P 

ENSG00000250990.1 0.000116 0.019659 AC073635.5 

ENSG00000117245.12 0.000119 0.019962 KIF17 

ENSG00000138615.5 0.000119 0.019962 CILP 

ENSG00000139304.12 0.000121 0.019994 PTPRQ 

ENSG00000204323.5 0.00012 0.019994 SMIM5 

ENSG00000114204.14 0.000124 0.020472 SERPINI2 

ENSG00000256552.2 0.000127 0.020809 RP11-113C12.4 

ENSG00000133115.11 0.000129 0.020927 STOML3 

ENSG00000165383.11 0.000128 0.020927 LRRC18 

ENSG00000183562.3 0.000132 0.02138 CTC-343N3.1 

ENSG00000258699.1 0.000133 0.02146 RP11-356K23.2 
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ENSG00000138435.15 0.000134 0.021524 CHRNA1 

ENSG00000140527.14 0.000136 0.021669 WDR93 

ENSG00000142621.19 0.000136 0.021669 FHAD1 

ENSG00000147724.11 0.000137 0.021724 FAM135B 

ENSG00000199565.1 0.000139 0.021844 Y_RNA 

ENSG00000188659.9 0.000147 0.023056 SAXO2 

ENSG00000243802.2 0.00015 0.02342 RP11-390K5.1 

ENSG00000254211.5 0.000153 0.023726 LINC01485 

ENSG00000214688.5 0.000155 0.023996 C10orf105 

ENSG00000171533.11 0.000158 0.024353 MAP6 

ENSG00000186354.10 0.000161 0.024638 C9orf47 

ENSG00000173838.11 0.000166 0.025288 Mar-10 

ENSG00000280927.1 0.000167 0.025432 CTBP1-AS 

ENSG00000128408.8 0.000171 0.02589 RIBC2 

ENSG00000169126.15 0.000173 0.026 ARMC4 

ENSG00000129990.14 0.000175 0.026195 SYT5 

ENSG00000007174.17 0.000176 0.026299 DNAH9 

ENSG00000234841.4 0.00018 0.026704 RP11-119H12.4 

ENSG00000256618.2 0.00018 0.026704 MTRNR2L1 

ENSG00000091181.19 0.000183 0.02675 IL5RA 

ENSG00000149927.17 0.000183 0.02675 DOC2A 

ENSG00000261488.1 0.000183 0.02675 RP11-757F18.5 

ENSG00000197921.5 0.000185 0.026844 HES5 

ENSG00000215217.6 0.000185 0.026855 C5orf49 

ENSG00000089101.17 0.000188 0.026979 CFAP61 

ENSG00000205129.8 0.000187 0.026979 C4orf47 

ENSG00000139714.12 0.000193 0.027483 MORN3 

ENSG00000211663.2 0.000193 0.027483 IGLV3-19 

ENSG00000269054.1 0.000197 0.027907 CTD-2619J13.3 

ENSG00000133101.9 0.000199 0.028001 CCNA1 

ENSG00000155966.13 0.000199 0.028001 AFF2 

ENSG00000188729.6 0.000203 0.028468 OSTN 

ENSG00000198648.10 0.000204 0.028509 STK39 

ENSG00000171962.17 0.000207 0.028725 DRC3 

ENSG00000267493.3 0.000211 0.029182 CIRBP-AS1 

ENSG00000167434.9 0.000212 0.029218 CA4 

ENSG00000109846.7 0.000213 0.029244 CRYAB 

ENSG00000175455.14 0.00022 0.030096 CCDC14 

ENSG00000010626.14 0.000227 0.030948 LRRC23 

ENSG00000218793.1 0.000229 0.030948 RP3-382I10.3 

ENSG00000243730.2 0.000228 0.030948 RPL29P3 

ENSG00000244300.2 0.000231 0.031107 GATA2-AS1 

ENSG00000114670.13 0.000235 0.031493 NEK11 
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ENSG00000226690.7 0.000241 0.03221 AC005281.1 

ENSG00000096093.15 0.000243 0.032334 EFHC1 

ENSG00000188536.12 0.000244 0.032341 HBA2 

ENSG00000197557.6 0.000246 0.032464 TTC30A 

ENSG00000146776.14 0.000253 0.03321 ATXN7L1 

ENSG00000173467.8 0.000256 0.033585 AGR3 

ENSG00000277103.1 0.000262 0.034239 RP11-520B13.8 

ENSG00000203499.11 0.000264 0.034273 FAM83H-AS1 

ENSG00000162643.12 0.000279 0.035958 WDR63 

ENSG00000227579.5 0.000278 0.035958 RP1-35C21.2 

ENSG00000185055.10 0.000283 0.036381 EFCAB10 

ENSG00000100583.4 0.000286 0.0366 SAMD15 

ENSG00000184471.7 0.00029 0.036927 C1QTNF8 

ENSG00000165084.15 0.000296 0.037205 C8orf34 

ENSG00000184845.3 0.000294 0.037205 DRD1 

ENSG00000187695.8 0.000295 0.037205 RP11-723O4.6 

ENSG00000252185.1 0.000296 0.037205 RNU6-752P 

ENSG00000261787.1 0.0003 0.037508 TCF24 

ENSG00000125845.6 0.000306 0.038148 BMP2 

ENSG00000244398.1 0.000321 0.03981 RP11-466H18.1 

ENSG00000284526.1 0.000322 0.03981 RP11-666A8.13 

ENSG00000199497.1 0.00033 0.040691 RNU1-94P 

ENSG00000228848.3 0.000343 0.042202 AC105402.2 

ENSG00000103599.19 0.000353 0.043224 IQCH 

ENSG00000125122.15 0.00036 0.043853 LRRC29 

ENSG00000163737.3 0.000362 0.043853 PF4 

ENSG00000163879.10 0.000362 0.043853 DNALI1 

ENSG00000102904.14 0.000371 0.044396 TSNAXIP1 

ENSG00000165923.15 0.000369 0.044396 AGBL2 

ENSG00000224543.4 0.000368 0.044396 SNRPGP15 

ENSG00000256973.1 0.000373 0.044396 RP11-359J14.2 

ENSG00000265554.1 0.000373 0.044396 RP11-419J16.1 

ENSG00000279467.1 0.000377 0.044682 KB-1125A3.12 

ENSG00000164530.13 0.000379 0.044808 PI16 

ENSG00000103145.10 0.000381 0.044904 HCFC1R1 

ENSG00000130957.4 0.000383 0.044954 FBP2 

ENSG00000279419.1 0.000401 0.046931 RP5-907C10.3 

ENSG00000231933.7 0.000407 0.047242 CTA-125H2.2 

ENSG00000235207.1 0.000405 0.047242 TUBBP6 

ENSG00000274105.1 0.000408 0.047242 RP11-278C7.3 

ENSG00000181619.11 0.00041 0.047348 GPR135 

ENSG00000144134.18 0.000418 0.048072 RABL2A 

ENSG00000111837.11 0.000428 0.048948 MAK 
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ENSG00000150873.11 0.00043 0.048948 C2orf50 

ENSG00000260776.5 0.000428 0.048948 RP11-114H24.2 

ENSG00000160345.12 0.000435 0.049292 C9orf116 

ENSG00000270011.6 0.000436 0.049292 ZNF559-ZNF177 

ENSG00000102575.10 0.00044 0.049675 ACP5 

ENSG00000133454.15 0.000447 0.049921 MYO18B 

ENSG00000142530.10 0.000446 0.049921 FAM71E1 

ENSG00000150773.10 0.000449 0.049921 PIH1D2 

ENSG00000165606.8 0.00045 0.049921 DRGX 

ENSG00000265148.5 0.000449 0.049921 TSPOAP1-AS1 

ENSG00000107014.8 0.000453 0.049942 RLN2 

ENSG00000204389.9 0.000452 0.049942 HSPA1A 
Table 24: Significant genes identified in the DEA of the GLIOTRAIN RNA-Seq data. 


