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Background

Despite the increasing prevalence of Parkinson’s Disease (PD)
and research efforts to understand its underlying molecular
pathogenesis, early diagnosis of PD remains a challenge.’

Machine learning analysis of blood-based omics data is a
promising non-invasive approach to finding molecular
fingerprints associated with PD that may enable an early and
accurate diagnosis.? However, genes and metabolites don’t
act isolated. Higher order functional representations of omics
data such as pathways allow better and more meaningful
interpretation.3

Here, we applied ML classification methods to transcriptomics
and metabolomics data from PD case/control studies (PPMI* &
NCER-PD cohort> respectively).

- Higher order functional representations were generated via
aggregation statistics (mean, median, sd) and deregulation
scores based on principal curves® “pathifier scores” (A)

- External two-level cross-validation was used, including
nested feature selection (B)

- Models’ performance and most relevant predictive
features were compared with individual feature level
predictors (C)

Conclusions

- Significant AUC scores for cross-validation & external
testing.

- Pooled representations of omics data can perform as well
as single-level omics predictors to classify PD versus
controls samples.

- Plausible biological pathways associated with PD diagnosis.

Limitations:
- Unknown confounders

- Large variability among PD patients makes identifying
common trends difficult

- Data represents late stages of the disease

Future work:

- Modelling of other PD prognostic outcomes (e.g. motor
dysfunction scores)

- Graph representation of the data via protein—protein
interactions, metabolic networks
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