

RETROGRADE PROCEDURAL MEMORY IN PARKINSON'S DISEASE AND REM-SLEEP BEHAVIOR DISORDER

Laure PAULY

INTRODUCTION

Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg; Faculty of Science, Technology and Medicine; University of Luxembourg; Esch-sur-Alzette; Luxembourg; Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg; Parkinson Research Clinic, Luxembourg, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg;

RESULTS - II

p = 0.006*

The procedural memory, a long-term and implicit memory, is in charge of the encoding, storage, and retrieval of the unconscious procedures that underlie motor or cognitive skills. Its analysis is particularly relevant in neurodegenerative diseases N Total N like Parkinson's disease (PD), due to the central role of the basal ganglia in NGBA+/NEA procedural memory. Procedural memory can be separated into an anterograde and a Gender, Gender retrograde component¹ (Fig 1). Disease d Dis

Educatio Edu It has been established that the anterograde MDS-UPDING MDS-UPD**MS** procedural memory is affected in PD^2 . MDS-UPD**MS** Observations on retrograde procedural memory have been done indirectly in form of LEDD LEDD BDI-I (/63)BDI-I (/63) SAS (/42) SAS (/42) case-reports³ and studies on musical memory FAQ (/30) FAQ (/30) or overlearned language^{1,4}. PDQ-39 (/**150**Q-39 (/156) IQCode (/SQCode (/5)

									For H	- neo	nle v	vith	tvr	oica) and	ł
riable Variable			Descripti	v Dsetsectri sp	ilisve stati	istics		P-Values P-Values		$(E \cap C^+)$		ro			rod		
		FOG ⁺	FOG ⁺			FOG	FOG	FOG+ vs. FOG+ vs.	FUG	(FUG) we	Ie	COII	iha	reu	VVILI	l
otal		127	127			127	127	FOG- FOG-	their	age,	gend	er,	edu	ıca	tion	and	
/////////////////////////////////////	Magn	15/105 ⁺⁷	NA 15/105 ⁺⁷	NA	Magu	12/92 ^{+23NA}	A 12/92 ^{+23NA}	p = 0.988 $p = 0.988$	diseas	se du	ration	m	natc	heo	d C	ontro	
ıder, M / F	Mean	Mean	<i>SD</i> 87 / 40	SD	Mean	Mean	<i>SD</i> 83 / 44	.68! p = 0.689	zroup	patie	ents v	with	out	FC	ЭG	(FOG	-
• in years	67	67.26	7	9.97	66	66.85		9.49 .41 $p = 0.417$	Tabla	1)							
ease duration, in years	4.	4.66	Ļ	3.94	4.	4.60		3.92 .96 p = 0.962	Idple	4).							
ication, in years	13	13.35	3	3.93	13	13.10		3.63 .81; p = 0.810									
&{I52]DRS I (/52)	10.81	10.81	6.34	6.34	7.67	7.67	4.94	4p94 0.001*p < 0.00				Descrij	otive statistics	i		P-Values	
SI-(//F1) RS II (/52)	11.93	11.93	6.50	6.50	7.49	7.49	5.15	5p1\$ 0.001**p<0.00			Ī	OC+	FO	C-	Ν	FOC+ vs	
SHU(PIJR) S III (/132)	36.60	36.60	12.62	12.62	33.05	33.05	12.78	12p7 8 0.042* p = 0.04		Variable	(n	= 127)	(n =)	127)	FOG+	FOG-	
difæddHóæhn and Yahr	2.24	2.24	0.54	0.54	1.99	1.99	0.43	p. . 4 30.001 * p = 0.00			Mean	SD	Mean	SD	/FUG-		
ge/12/.51/53//24//25.5/3/4/5	3/4	/78/22/134//4	5/1708/22/14/	5/0	9	9/14/82/15/9	///04082/15/7	/////0	CUPRO	IS ₁ (/3)	1.88	1.10	2.23	1.07	127/127	p = 0.009*	
חס	612 10	612 10	419 10	419 10	523.90	523.90	315 30	315n3400204 n = 02	Evaluation								

uired in earlier life stage

Figure 1. Procedural memory

To our knowledge, validated protocols are missing to evaluate the retrograde part of this memory concept. Therefore, we developed the CUPRO, a brief assessment tool that allows to evaluate the functioning of retrograde procedural memory.

OBJECTIVES

The main objectives of our study were to:

Develop the CUPRO evaluation system to assess functioning of retrograde procedural memory⁵

Test the hypothesis (H_2) of a deficit of retrograde procedural memory in people with PD and freezing of gait (FOG)

 H_1 PD

Test the hypothesis (H_1) of a deficit of retrograde procedural memory in **people with PD** compared to control subjects (CS)⁵

Test the hypothesis (H_3) of a deficit H_3 of retrograde procedural memory **RBD REM-Sleep** with people In (RBD) (at-risk **Behavior Disorder** cohort for PD)

+ Validation of our observations in an independent PD/RBD Cohort.

METHODS

Based on the Necker's Cube⁶, we established an extended evaluation system, the CUPRO. It assesses both the:

2.32 1.35 LanguagesIspograges spoken .b4 = 0.672 p = 0.0

Table 4. Demographic and clinical data for FOG⁺ and FOG⁺

 Table 5. Neuropsychological assessments

MOCA total score (/30)

Cognition

Psychomotor

speed / Executive

functions

Besides lower global cognition and executive functions, FOG⁺ performed worse in retrograde procedural memory compared to matched control patients (Table 5).

DISCUSSION & OUTLOOK

Despite the importance of procedural memory in our daily life activities and the numerous studies that have investigated this topic, there are still many discrepancies, mainly due to the varying definitions of the memory concept and to the nature of the used tasks⁸. Until now, assessments primarily evaluated the motor, perceptual and cognitive procedural learning, with tasks such as the pursuit rotor task⁹, serial reaction time task¹⁰, and arithmetic alphabet test¹¹. Only few studies focused on the suggested long-term retention of new skills ^{12,13,14}.

The CUPRO evaluation system has a number of strengths: it is simple to administer and as the Cube Copying test is widely used in clinical and research settings it is

> already incorporated in standard assessments, i.e. MoCA. Therefore, it can be easily integrated in protocols. It adds valuable information to an already well-established screening tool without increasing the burden for patients. However, we can not verify if all participants learned the drawing of geometric forms. The non-conscious acquiring of skills makes it difficult to gain insights into if and how the strategy of cube drawing has been learned.

5x420.001*b < 0.005p6 = 0.005 * p = 0.0000 $2p3 \neq 0.009 * p = 0.00$ 1pt.890.001*p < 0.00 $0.\beta \models 0.217 \text{ p} = 0.2$

- copying procedure, representing retrograde procedural memory
- final result, representing visuo-constructive functions (Fig. 2).

Figure 2. Representation of the extended evaluation system for the Cube Copying Test, the CUPRO evaluation system. The first intermediate score (IS₁) evaluates the copying procedure, the second intermediate score (IS₂) the visuoconstructive functions. (A-D) Representation of the four copying procedures.

unconsciously applied.

Global cognition was evaluated with the MoCA⁷. Given that a wide range of cognitive & neural processing capabilities are required for cube copying, additional testing for discriminant validity by investigating associations of cube copying performance with several related constructs was done with a subgroup of participants for which relevant tests were available ($34 \le N \le 73$) (Table 3).

RESULTS -

For H₁, people with typical PD were compared with age and gender matched controls (CS) (Table 1). We observed significantly worse functioning of retrograde procedural

Procedural Nemory in **Parkinson's** disease

Retrograde

The Cube Copying Test meets the conditions of assessing retrograde procedural memory -> by copying the cube, a previously learned (i) procedure (ii) İS

Our findings suggest that impaired retrograde procedural

memory could be detectable in a prodromal, non-motor stage of the disease. Given that diagnosing PD means identifying an already advanced disorder with progressed neurodegeneration, it is essential to advance in the identification of early marker in order to aim the early diagnosis of PD. Therefore, in an upcoming study we investigate this memory concept in a PD-risk cohort, with people with REM sleep Behavior Disorder (RBD) (H₃). Additionally, future research will validate the CUPRO evaluation system in an independent Parkinson's disease cohort.

CUNCLUSION

The integrity of retrograde procedural memory is crucial for a person's ability to conduct routine activities of daily living. This study established a new tool to assess functioning of retrograde procedural memory and showed deficits in retrograde procedural memory in people with PD compared with control subjects. Furthermore, we were able to observe declined procedural memory in PD with FOG. These insights may lead to hypotheses on FOG aetiology and the development of treatment options.

Descriptive statistics						
Variable	F	PD	C	PD vs. CS		
	(n =	201)	(n = 2)			
	Mean	SD	Mean	SD		
Gender, M / F	111	/ 90	109	p = 0.920		
Handedness , R / L / A	170 / 14	4 / 7 $^{+10}$ na	180 / 6 /	p = 0.139		
Age, in years	64.84	10.20	64.71	10.18	p = 0.943	
Education, in years	13.60	3.80	14.25	3.96	p = 0.128	
MOCA total score (/30)	26.58	2.68	26.97	2.29	p = 0.246	
MDS-UPDRS-III (/132)	32.80	13.40	4.59	5.10	p < 0.001 *,**	
Hoehn and Yahr	2.06	0.53	0.00	0.00	p < 0.001 *,**	
Stage 1 / 1.5 / 2 / 2.5 / 3 / 4 / 5	19 / 13 / 119 /	29 / 18 / 2 / 1 ^{+1 na}				
BDI-I (/63)	8.32	6.36	4.95	4.72	p < 0.001*,**	
SAS (/42)	13.63	5.49	9.84	4.75	p < 0.001 *,**	
Languages spoken	2.81	1.10	3.56	0.78	p < 0.001 *,**	
Disease duration, in years	5.37	4.39	-	-	-	
LEDD	596.35	391.30	-	-	-	

Table 1. Demographic and clinical data for PD and CS

 Table 2. CUPRO Cube scoring system

		Descrip	P-Values			
Variable		I (n =	PD = 201)	(n =	PD vs. CS	
Extended avaluation		Mean	SD	Mean	SD	
system of the Cube	IS1 (/3)	2.05	1.13	2.43	0.90	p = 0.008 *,**
Copying Test	IS2 (/3)	2.26	1.10	2.59	0.84	p = 0.013 *,**

memory in PD compared to the CS (Table 2). Higher MoCA scores and education correlated significantly with higher scores for retrograde procedural memory. No significant correlation for disease duration, MDS-UPDRS-III score, LEDD and depressive symptoms were found.

		Ν	Spearman – Correlation coefficient B	р
suo-constructive abilities	Qualitative Scoring MMSE Pentagone Test	54	- 0.103	p = 0.462
suo-spatial abilities	Judgment of Ligne Orientation Benton	56	+0.058	p = 0.249
ecutive functions	Frontal Assessment Battery	73	+0.102	p = 0.392
suo-constructive abilities	Rey-Osterrieth Complex Figure - Copy	34	+0.169	p = 0.338
unning functions	Rey-Osterrieth Complex Figure - Type	34	- 0.381	p = 0.831
•• • • • • •				

Table 3. Discriminant validity - correlations for the IS1 and possible interfering factors

Neither visuo-constructive, visuo-spatial, planning nor executive functions significantly interfered with the score representing retrograde procedural memory (Table 3).

The CUPRO evaluation system will not only fill the gap of techniques for reliably assessing functioning of retrograde procedural memory in clinical settings but may also help to identify valuable perspectives for future research.

Abbreviations SD: Standard Deviation; PD: People with Parkinson's disease; CS: Control subjects; FOG⁺: Freezers; FOG⁻: non-Freezers; M: Male; F: Female; R: Right-handed; L: Left-handed; A: Ambidextrous; na = not available; n = sample size; MDS-UPDRS: Movement Disorder Society - Unified Parkinson's Disease Rating Scale; BDI: Beck Depression Inventory; SAS: Starkstein Apathy Scale; PDQ-39: Parkinson's disease questionnaire 39-item MoCA: Montreal Cognitive Assessment; LEDD: Levodopa Equivalent Daily Dose; IS: Intermediate Score. * Significant at the 5% level (2-tailed). ** Significant at the Bonferroni-adjusted 5% level (2-tailed).

References: ¹Crystal et al. (1989); ²Muslimović et al. (2007); ³Matthews et al. 2015; ⁴Bridges et al. (2013), ⁵Pauly et al. (2022), ⁶Necker (1832); ⁷Nasreddine (2005); ⁸Seidler et al. (2007); ⁹Heindel et al. (1989), ¹⁰Clark et al. (2019); ¹¹Thomas et al. (1996); ¹²Crystal et al. (1989), ¹³Cohen et al. (2007), ¹⁴Mochizuki-Kawai et I. (2004).

⁵Pauly L, Pauly C, Hansen M, Schröder VE, Rauschenberger A, Leist AK - Retrograde Procedural Memory in Parkinson's Disease: A Cross-Sectional, Case-Control Study. J Parkinsons Dis; 2022

For more information about my PhD project

LinkedIn Profile

Fonds National de la Recherche Luxembourg

www.lih.lu