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Abstract

Understanding the interplay between genomics and human health is a crucial step
for the advancement and development of our society. Genome-Wide Association
Study (GWAS) is one of the most popular methods for discovering correlations be-
tween genomic variations associated with a particular phenotype (i.e., an observ-
able trait such as a disease). Leveraging genome data from multiple institutions
worldwide nowadays is essential to produce more powerful findings by operating
GWAS at larger scale. However, this raises several security and privacy risks, not
only in the computation of such statistics, but also in the public release of GWAS
results. To that extent, several solutions in the literature have adopted crypto-
graphic approaches to allow secure and privacy-preserving processing of genome
data for federated analysis. However, conducting federated GWAS in a secure
and privacy-preserving manner is not enough since the public releases of GWAS
results might be vulnerable to known genomic privacy attacks, such as recovery
and membership attacks.

The present thesis explores possible solutions to enable end-to-end privacy-
preserving federated GWAS in line with data privacy regulations such as GDPR
to secure the public release of the results of Genome Wide Association Studies
(GWASes) that are dynamically updated as new genomes become available, that
might overlap with their genomes and considered locations within the genome, that
can support internal threats such as colluding members in the federation and that
are computed in a distributed manner without shipping actual genome data. While
achieving these goals, this work created several contributions described below.

First, the thesis proposes DYPS, a Trusted Execution Environment (TEE)-
based framework that reconciles efficient and secure genome data outsourcing with
privacy-preserving data processing inside TEE enclaves to assess and create pri-
vate releases of dynamic GWAS. In particular, DYPS presents the conditions for
the creation of safe dynamic releases certifying that the theoretical complexity
of the solution space an external probabilistic polynomial-time (p.p.t.) adver-
sary or a group of colluders (up to all-but-one parties) would need to infer when
launching recovery attacks on the observation of GWAS statistics is large enough.
Besides that, DYPS executes an exhaustive verification algorithm along with a
Likelihood-ratio test to measure the probability of identifying individuals in stud-
ies. Thus, also protecting individuals against membership inference attacks. Only
safe genome data (i.e., genomes and SNPs) that DYPS selects are further used for
the computation and release of GWAS results. At the same time, the remaining
(unsafe) data is kept secluded and protected inside the enclave until it eventually
can be used. Our results show that if dynamic releases are not improperly evalu-
ated, up to 8% of genomes could be exposed to genomic privacy attacks. Moreover,
the experiments show that DYPS’ TEE-based architecture can accommodate the
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computational resources demanded by our algorithms and present practical run-
ning times for larger-scale GWAS.

Secondly, the thesis offers I-GWAS that identifies the new conditions for safe re-
leases when considering the existence of overlapping data among multiple GWASes
(e.g., same individuals participating in several studies). Indeed, it is shown that
adversaries might leverage information of overlapping data to make both recov-
ery and membership attacks feasible again (even if they are produced following
the conditions for safe single-GWAS releases). Our experiments show that up to
28.6% of genetic variants of participants could be inferred during recovery attacks,
and 92.3% of these variants would enable membership attacks from adversaries
observing overlapping studies, which are withheld by I-GWAS.

Lastly yet importantly, the thesis presents GENDPR, which encompasses exten-
sions to our protocols so that the privacy-verification algorithms can be conducted
distributively among the federation members without demanding the outsourcing
of genome data across boundaries. Further, GENDPR can also cope with collusion
among participants while selecting genome data that can be used to create safe
releases. Additionally, GENDPR produces the same privacy guarantees as central-
ized architectures, i.e., it correctly identifies and selects the same data in need of
protection as with centralized approaches. In the end, the thesis presents a ho-
mogenized framework comprising DYPS, I-GWAS and GENDPR simultaneously.
Thus, offering a usable approach for conducting practical GWAS.

The method chosen for protection is of a statistical nature, ensuring that the
theoretical complexity of attacks remains high and withholding releases of statistics
that would impose membership inference risks to participants using Likelihood-
ratio tests, despite adversaries gaining additional information over time, but the
thesis also relates the findings to techniques that can be leveraged to protect
releases (such as Differential Privacy). The proposed solutions leverage Intel SGX
as Trusted Execution Environment to perform selected critical operations in a
performant manner, however, the work translates equally well to other trusted
execution environments and other schemes, such as Homomorphic Encryption.

Keywords: Federated GWAS, Privacy-preserving GWAS, Collusion-tolerance,
Interdependent privacy, Genomic privacy, Distributed multi-party computation.
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Chapter 1

Introduction

The discovery of the deoxyribonucleic acid (DNA) as a carrier of genetic informa-
tion was one of the most important steps in science for understanding how living
beings are formed and how their characteristics are passed through generations.
Several years after its discovery, DNA was fully sequenced and digitized in 2003.
Such a scientific breakthrough enabled scientists to better understand and study
the human DNA in more detail. Understanding the human DNA and how genetic
information impacts on health, abilities, and lifespan of individuals, to name a
few, is extremely important for contributing to a healthier and prosperous society.

With the advancement of DNA research, new findings appeared. For instance,
it allowed the discovery that humans share almost 99.9% of their genetic code.
Such genetic loci, where humans do not share the same genomic information, are
what make us unique as human beings. These genetic variations are frequently
used in broader studies, such as Genome-Wide Association Study (GWAS). GWAS
is a popular type of statistical genomic study that has been developing medicine
by allowing researchers to identify genetic variants associated with a particular
phenotype (i.e., a specific trait, such as a disease). In fact, GWAS has been
adopted to find disease susceptibility and predisposition to risk factors (e.g., drug
or alcohol addiction) and to improve personalized medicine.

Over the years, the development of bioinformatics has enabled the creation
of more sophisticated, powerful, and cheaper DNA sequencing machines. As a
result, individuals’ DNA is now being sequenced more rapidly and cheaply. Thus,
enabling accessible DNA sequencing for the masses. This fact has increased the
number of individuals being sequenced and willing to participate in studies, which
directly helps the progress and confidence in GWAS since it can now be conducted
relying on a more significant number of individuals. Notwithstanding this fact, the
digital format of human DNA is enormous in size. A regular Variant Call Format
(VCF) file usually used in GWASmight take 125 GB considering the entire genome.
Such a characteristic motivates sequencing companies and genomic data holders to
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outsource the storing of genome data to third-party service providers, such as cloud
servers, to reduce operational costs, for example. Besides that, to produce higher
precision results, especially in terms of statistical confidence, and to remove biased
findings related to using homogeneous populations instead of considering multiple
population ancestries around the globe, the research community has been adopting
larger-scale GWAS by combining genome data from several institutions, usually
geographically dispersed. This phenomenon leads to the creation of collaborative
environments to perform such large-scale (collaborative) GWAS. This setting is
usually referred to as federated analysis, which is known as federated GWAS for
Genome-Wide Association Studies.

Additionally, the benefits of GWAS can be ameliorated by open-access releases
of its results. Indeed, public releases of GWAS statistics would contribute to
a faster and broader access to medical/health research findings, and therefore
benefiting society as a whole. As a result, nowadays, biocenters are encouraged to
conduct federated GWASes and release their results publicly.

Despite the above, due to its importance when identifying and carrying humans’
genetic code, DNA is very sensitive data. Hence, individuals need to be assured of
trust and motivation before accepting to share their genomes. Indeed, the leakage
of DNA entails high privacy risks because:

1. It cannot be revoked.

2. It infringes not only the donor’s privacy but also of their family since DNA
is inherited from parents, and

3. It might bring forward a variety of unethical activities from malicious players
who may access leaked genomic data.

Therefore, systems that manage and operate genome data must ideally comply
with the highest privacy and security standards. In addition, when considering a
federated setting, where each data holder is responsible for their sequencing costs,
enforcing local security and privacy of donor’s genomic data is not enough. In
particular, genome data repositories need to assert that the privacy of their data
cannot be breached during their local data are being outsourced and processed
in the GWAS federation. For instance, being aware of the potential presence
of collusion among members of the federation aiming to attack others’ data. If
such data privacy protection cannot be enforced, genomic data centers will not be
willing to participate in collaborative environments.

In this context, solutions in the literature have been relying on cryptographic
methods to enable secure outsourcing and privacy-preserving processing of genomic
data while aggregating and computing GWAS statistics for federated analysis.
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Commonly used mechanisms to assist in preserving privacy include: Homomor-
phic Encryption (HE), Secure Multiparty Computation (SMC), Differential Pri-
vacy (DP), and Trusted Execution Environments (TEE). Unfortunately, whereas
it is true that GWAS plays an essential role by producing studies that allow the
identification of genotype-phenotype correlations, it has been shown that the pub-
lication of GWAS statistics can be subject to genomic privacy attacks (even if
the released GWAS statistics were computed leveraging privacy-preserving pro-
cessing schemes like the ones cited above). In fact, in 2008, Homer et al’s. at-
tack [Hom+08] showed that individuals could have their participation linked to a
specific GWAS by the observation of its released GWAS statistics. Such a privacy
breach is very critical since it might reveal to an adversary whether a victim has
a particular disease or not. For example, insurance companies may misuse this
improperly acquired information to accept or reject individuals’ applications. The
disclosure of this attack has lead the National Institute of Health (NIH) to revoke
access to all open-access GWAS’ results in their database [ZN08]. Nowadays, only
authorized researchers can access GWAS releases, limiting access to new stud-
ies’ findings and consequently decelerating the spreading and benefits that GWAS
brings to society.

Concluding from the above, enforcing only secure and privacy-preserving pro-
cessing of genomic data is not enough. Currently, reconciling secure and privacy-
preserving processing with privacy-preserving releasing of GWAS is a crucial chal-
lenge that has not been tackled by the research community yet. On the one hand,
the computation of GWAS must preserve genomic privacy against attacks mounted
during the sharing and processing of federated GWAS. On the other hand, releases
of GWAS results must preserve genomic privacy against known attacks, such as
recovery and membership attacks.

Motivated by these facts, the present thesis, for the first time, simultaneously
addresses:

• Secure and privacy-preserving processing of genome data;

• Privacy-preserving releasing of GWAS results, impeding the disclosure of
secret and private data of both donors and data holders;

On top of reconciling secure and privacy aspects of federated GWAS, this work
not only anticipates the dissemination and popularity of GWAS but also aims to
obey current data-privacy regulations, which brings new issues. More specifically,
the present thesis envisions to enable the following properties for allowing practical
GWAS under collaborative environments:

• Public access to dynamic releases of GWAS results, i.e., allowing GWAS to
be updated over time as soon as genomes are added or removed (a desirable
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requirement imposed by data-privacy regulations, such as GDPR), while en-
forcing that only safe releases (i.e., protected against known genomic privacy
attacks) are exposed.

• Collusion-tolerance, i.e., considering the presence of honest-but-curious in-
stitution(s) in the GWAS federation that might collude to combine their
knowledge (aggregated genome data) to facilitate or make genomic privacy
attacks possible even if safe releases conditions are being enforced.

• Interdependent genomic privacy, i.e., enforcing the genome data privacy of
donors and institutions under the presence of potentially overlapping stud-
ies that might share genome and studied genome locations, which becomes
present when multiple GWASes are conducted by one or more federations.

• Data locality, i.e., keeping genome data as most as possible at the premises of
the institutions responsible for sequencing them while conducting federated
analysis. For instance, allowing the generation of private releases without
requiring actual genome data outsourcing.

In summary, the current thesis aims at offering mechanisms that acknowledge
and enable the properties presented above in a homogenized form. Thus, present-
ing approaches to make practical GWAS a reality. In particular, the thesis designs
and develops frameworks to allow dynamic releases or updates of interdependent
GWASes will never infringe genomic privacy of individuals donating their genome
data or withdrawing consent of participation while securing data of each data
holder even when suffering collusion attacks from other’s parties in the federation
while granting open-access releases of GWASes.

The hypothesis investigated in this thesis is therefore:
It is possible to enforce secure and privacy-preserving dynamic releases (to allow

individuals the ability to safely withdraw or give consent of participation at any time, as
required by data-privacy regulations, such as GDPR) of interdependent (overlapping)
GWASes in federated environments, as well as to deal with internal threats, such as
collusion attacks being launched by malicious federations members, using a secure and
practical system architecture, while achieving low degradation in terms of data-utility
and accuracy-loss so that large-scale and practical federated GWAS can be conducted
in a scalable and end-to-end privacy-aware manner.

1.1 Problem statement
Due to the particularities of human DNA (huge size, sensitiveness, vulnerability to
inference attacks from released GWAS results, etc.), genome data needs to be man-
aged with proper care. Additionally, when relying on such data to perform GWAS
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in cooperative environments, new system-related, privacy and security issues arise.
In particular, federated GWAS has been conducted by relying on existing privacy-
preserving approaches that are mainly based on cryptographic methods, such as
HE, SMC, and TEE. However, processing and producing federated GWAS in a
privacy-preserving and secure manner is not enough. Several works have shown
that publicly shared GWAS results might be subject to privacy attacks [Hom+08;
Wan+09; Jac+09; Cai+15; Im+12; SB15b; Cra+11]. In particular, some works
have evaluated and offered safety conditions for GWAS releases [San+09a; USF13;
Zha+14; Tra+15; SSB16; Jia+14; SBS19; AAU20a; Hum+14]. Nevertheless, these
works have considered only static GWAS, leaving it questionable whether genome
data remains secure under the statistics updates (assuming the presence of addi-
tion and removal requests). For instance, when new individuals are sequenced or
when some participants would like to withdraw their participation from studies in
order to be compliant with data privacy regulations [BLR19; Des+].

This thesis evaluates and identifies that new conditions for keeping dynamic
GWAS releases safe arise and must be enforced. It shows that removal operations
can undermine the privacy of new and older participants’ genomic data if not
assessed with precaution. Furthermore, the present thesis also shows that the
presence of overlapping data such as genomes and SNPs shared among multiple
studies might also compromise the privacy of participants.

Besides, existing works have not considered possibility of collusion among fed-
eration members to attack others’ data (e.g., because of economic or conflict of
interest reasons). In particular, this thesis identifies that such colluding parties
can conjointly aggregate their data and so isolate small enough data of the victim
party so that privacy attacks can be successfully launched on it.

Lastly, yet significantly, the thesis extends its solutions so that the proposed
genomic privacy-protection mechanisms can be conducted in a distributed manner
and without demanding the outsourcing of individuals’ genome data. In other
words, allowing federation members to jointly conduct the privacy analysis while
not shipping genome data across their premises.

In summary, this work presents and evaluates solutions to enable secure and
end-to-end privacy-preserving GWAS while addressing aspects of practical GWAS,
e.g., dynamic releases, data privacy regulation-compliant, collusion-tolerance, and
interdependent private releases.

1.2 Contributions

This thesis offer solutions to first address a remaining challenge on the state-of-the-
art of federated GWAS. Namely, to reconcile privacy-preserving sharing, processing
and releasing of federated GWASes. On top of that, this thesis assumes novel real-
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life and contemporary requirements that have not been addressed so far, which
lead to a more practical perspective for GWASes, which are defined as practical
GWAS properties. In particular, the solutions developed in this thesis support:

• The production of safe open-access releases of dynamic GWASes updates
while protecting them against privacy attacks also assuming the presence of
multiple (interdependent) studies;

• Consent withdrawal from donors while safely updating GWAS results;

• The production of safe releases by enabling parties to securely aggregate
their data even when parties in the federation are colluding to leak others’
data (i.e., collusion-tolerance);

• Distributed verification of privacy-preserving releases of GWAS. More specif-
ically, it extends the offered protocols to allow them to be performed in a
distributed fashion and without relying on the outsourcing of actual genome
data from federation members.

1.3 Outline

Chapter 2 provides the background used to support the work. Firstly, it introduces
the basics of genomics, while describing the main concepts and the features of the
human genome. Next, it presents the main issues and challenges when digitally
managing such sensitive data. Secondly, it describes how a Genome-Wide Associ-
ation Study (GWAS) is conducted by retrieving and encoding genomic data from
individuals and computing statistics over them to find observations that might
correlate genetic variations to a particular trait (e.g., a disease). It then describes
the types of statistics GWAS produces and explains the needed data to support
these studies. Posteriorly, it discusses the challenges of performing GWAS in a
federated setting, where several data holders (e.g., biocenters usually geographi-
cally separated) contribute with genomic data from individuals sequenced in their
perimeter. Next, it describes and compares existing privacy-preserving approaches
to enable secure and private computation over data in a multiparty setting. Never-
theless, as enforcing privacy-preserving processing of genomic data is not enough,
section 2.8 introduces the existing attacks on GWAS results releases and current
countermeasures. Finally, the section summarizes the open challenges for enabling
practical GWAS, which copes with collusion among federation members, complies
with existing data privacy regulations, ensures safe releases under a dynamic set-
ting where GWAS are updated over time and removes the need for the genome
data outsourcing while conduction privacy-protection mechanisms.
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Next, Chapter 3 first presents the existing works in the literature that enables
the participation of several genome data holders to conduct federated GWAS. It
then details solutions that allow privacy-preserving processing of genome data.
The following sections discuss the issues of releasing GWAS results as they might
be vulnerable to recovery and membership attacks, which might compromise the
privacy of individuals participating in studies. Later, it introduces existing mit-
igation mechanisms to protect GWAS releases. For instance, presenting existing
solutions that rely on Differential Privacy (DP) and statistical inference methods
such as Likelihood-ratio tests (LR-tests). Finally, it describes new privacy concerns
that arise under the presence of multiple releases of interdependent GWASes, i.e.,
studies that eventually use the same genome(s) and consider the same SNP po-
sition(s). As identified later in the thesis, such a scenario might compromise the
genomic privacy of individuals even if releases are produced considering existing
privacy-protection.

Chapter 4 introduces the first solution created to address some of the open
challenges to enable practical GWAS described previously. Namely, this section
presents DYPS, which offers: (i) fully private federated GWAS by combining
privacy-preserving processing and releasing; (ii) privacy-aware in the sense of being
compliant with data privacy regulations (such as GDPR) and hence allowing par-
ticipants to withdraw consent at any time; (iii) safe releases of dynamic GWAS,
which have statistics updated over time given the addition and removal of par-
ticipants; and (iv) collusion-tolerant algorithm that enables GWAS federations to
select a safe batch of genome requests so that federation members’ data cannot be
subject to privacy attacks by up to all-but-one colluding players while still granting
donor’s privacy against external adversaries. DYPS leverages a TEE architecture.
More specifically DYPS uses Intel SGX as its privacy-preserving enabler to allow
secure outsourcing and processing of genomic data from federation members. In
addition, DYPS extends statistical inference methods to protect dynamic releases
of GWAS against membership and recovery attacks. At the same time, enabling
collusion-tolerance. To the best of author’s knowledge, DYPS is the first approach
that reconciles privacy-preserving processing and releasing of GWAS. The exper-
imental results show that DYPS updates releases with a reasonable additional
processing delay (11% longer) while protecting genomic privacy. In particular,
even though a naïve approach is able to produce more releases, it compromises
the privacy of up 8% of participating genomes. Furthermore, DYPS does not de-
crease the amount of aggregate statistics considered in releases, while being able
to produce multiple releases when compared to a static release that can release
only once. DYPS shows practical and scalable performance, presenting reasonable
running time and communication costs under a variety of scenarios. It was ex-
perimented with assuming different federated GWAS settings, considering from 3
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to 7 biocenters, up to 300,000 SNP positions, 6 million simulated genomes, and
approximately 35,000 real genomes.

Moving forward, Chapter 5 extends the protocol and algorithms introduced
in DYPS to support the creation of safe releases under the presence of multi-
ple interdependent GWASes. This chapter first evaluates and identifies the new
conditions to enable safe releases of GWASes statistics considering the presence
of multiple and potentially overlapping studies. In particular, Section 5.2.1 and
Section 5.3 show that enforcing dynamic single-GWAS releases is not safe as ad-
versaries might take advantage of overlapping data to decrease the solution space
they have to infer when launching recovery attacks or to increase the identification
power of individuals participating in studies. As a result, the chapter introduces
I-GWAS, a novel framework that allows privacy-preserving releasing of interde-
pendent GWASes. I-GWAS is also able to incorporate DYPS features such as
dynamic releases and consent withdrawal to participants while not allowing ge-
nomic privacy attacks on the releases. I-GWAS evaluation shows its performance
when protecting overlapping releases. For instance, it was found that up to 92.3%
of genomes might be vulnerable to membership inference, and 28% can be subject
to recovery attacks when adversaries are able to observe several GWASes releases
from multiple sources that share genomes. I-GWAS also presents a better release
utility when compared to dynamic Differential Privacy-based scheme for GWASes
releases. Even though I-GWAS needs to withhold the disclosure of statistics over
some SNPs, it does not apply any data perturbation to the results. In contrast,
DP-based releases suffer data perturbation, which impacts the accuracy of the
results. In addition, unfortunately, no scheme able to offer DP guarantees over
continuous releases of GWAS statistics has been provided so far, which limits its
usability in such a setting. Therefore, I-GWAS represents the first step towards
dynamic and privacy-preserving interdependent GWASes.

Next, Chapter 6 introduces a novel distributed workflow for the assessment
of private GWAS releases. In particular, we offer Genome Distributed Private
Releases (GENDPR), which aims to remove the need for genome data outsourcing
while being able to correctly perform the privacy-protection analyses to create safe
releases. In particular, GENDPR executes the privacy-protection statistical analy-
ses to select data over which releases can be computed while not allowing member-
ship inference attacks in a distributed manner. Since the verification to evaluate
which genome data can be used for the creation of safe releases is performed jointly
by the members of the federation, GENDPR removes the need for genome data out-
sourcing and storage in a centralized location. Moreover, GENDPR can also cope
with the presence of colluding parties aiming to isolate other institutions’ data to
leak their data. The experiments show that GENDPR imitates the same outputs of
the LR-test when compared to a centralized version while needing slightly longer
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running times due to extra coordination and aggregation tasks, which shows its
correctness.

Finally yet importantly, Chapter 7 provides an overview of a holistic scheme
to accommodate DYPS, I-GWAS and GENDPR solutions simultaneously and in
a homogenized form. Next, it provides a comparison between statistical inference
methods (SecureGenome), Differential privacy and the solutions of this work. In
particular, correlating the limitations, advantages and properties that each mech-
anism allows, before discussing and addressing the limitations of the methods
proposed in the thesis.

Lastly, Chapter 8 presents the conclusions, outcomes and planned future work
of the thesis.

1.4 List of publications
Following the targeted goals discussed in Section 1.2, the approaches developed
during this thesis generated several contributions. More specifically, three main
manuscripts have been written, where several of them have already been published
in high-ranked international journals and/or conferences of the privacy-enhancing
technologies and genomic privacy specialities.

Table 1.1 summarizes the publications accomplished by the work developed
during the thesis.
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Table 1.1: List of publications.

Year Title Short description Status Contributions

2020 DyPS:
Dynamic,
Private and

Secure GWAS

A novel framework to allow
privacy-preserving processing
and releasing of federated
GWAS while enabling

continuous and GPDR-aware
releases.

Published
and

presented at
PETS 2021
(July 12,
2021).

Partially conceived and
designed the idea, partially

collected the data, fully carried
implementation and
experiments, partially
conducted analysis and

validation, partially wrote the
paper.

2021 Towards
dynamic
federated
GWAS

A summary of current
challenges to pave the way
for dynamic GWAS. DyPS

is also presented.

Published
and

presented at
GenoPri
2021

(August 22,
2021).

Partially conceived and
designed the idea, fully collected

the data, fully carried
implementation and
experiments, partially
conducted analysis and

validation, partially wrote the
paper.

2022 Towards
practical
GWASes:

Overview and
Challenges

A position paper that
discusses current issues and
unsolved challenges for the
development of practical
GWAS elaborating on
interdependent and

multi-party privacy aspects.

Published
and

presented at
PETS’22
Workshop
on Interde-
pendent and
Multi-party
Privacy
(July 11,
2022).

Fully conceived and designed
the idea, fully collected the

data, fully carried
implementation and
experiments, partially
conducted analysis and

validation, fully wrote the
paper.

2022 I-GWAS:
Privacy-
preserving

Interdependent
Genome-Wide
Association
Studies

A novel framework to assess
and enforce

privacy-preserving
continuous releases of
multiple overlapping

GWASes under federated
environments.

Accepted
at PETS
2023 (July

10-14, 2023).

Partially conceived and
designed the idea, fully collected

the data, fully carried
implementation and
experiments, partially
conducted analysis and

validation, partially wrote the
paper.

2022 Distributed and
secure

assessment of
privacy-
preserving
releases of
GWAS

A multi-enclave distributed
workflow for the assessment
of privacy-preserving GWAS
releases without genome
data outsourcing and

centralized data.

Accepted
at

Middleware
2022

(November
7-11, 2022)

Fully conceived and designed
the idea, fully collected the

data, fully carried
implementation and
experiments, partially
conducted analysis and

validation, partially wrote the
paper.



Chapter 2

Background

This chapter familiarizes the reader with the basic knowledge and aspects that
support this work. The chapter has the following outline. The first section in-
troduces the history, advancements, and details the nature and particularities of
the human genome. Next, it presents the importance, contributions, benefits, and
how a Genome-Wide Association Study (GWAS) is conducted. The following sec-
tion describes the concept and the advantages of conducting large-scale GWAS in
collaborative environments (i.e., federated GWAS). Next, it discusses approaches,
challenges, and trade-offs to enable fully privacy-preserving cooperative GWAS
environments, especially considering the existing genomic privacy attacks from
GWAS releases observation.

At the same time, this chapter contemplates the new assumptions targeted
in this work to enable practical GWAS, which assumes new functionalities, such
as dynamic updates of GWAS statistics, GDPR-aware studies, interdependent
privacy issues tailored to the existence of multiple studies, and collusion-tolerant
federated GWAS.

The solutions offered in this thesis rely on TEEs to provide privacy-preserving
outsourcing and processing of federated GWAS and extend existing genome-oriented
statistical inference methods for the protection of GWAS statistics releases. In
particular, the proposed solutions extends and adapts the Zhou et al.’s [Zho+11]
complexity analysis of genomic recovery attacks and SecureGenome [San+09b;
San+09a] to allow the creation of private releases of GWAS statistics while sup-
porting the properties tailored to practical GWAS. Therefore, due to their im-
portance, a more detailed discussion on TEEs, Zhou et al.’s and SecureGenome
conditions for safe GWAS releases are presented when appropriate.
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2.1 Genomics 101

Since its first discovery in the middle of the 1860s, deoxyribonucleic acid (DNA)
has been substantially studied by the academic community. DNA is an elongated
polymer composed of nucleotides that form the genetic code of all living beings.
The DNA assembles the following nucleotides: adenine (A), thymine (T), cytosine
(C), and guanine (G), in which its opposite bases strand their pairs specifically.
An (A) pairs with a (T), and a (C) always pairs with a (G). The complete hu-
man DNA consists of more than 3 billion pairs of nucleotides over its 23 pairs of
chromosomes. A haploid genotype is represented by the group of nucleotides on
one chromosome (inherited from a single parent). In contrast, a diploid genotype
consists of grouping nucleotide pairs from both chromosomes (inherited from both
parents). In the chromosomes is present all human’s genetic code.

Interestingly enough, it is known that any randomly chosen humans share
approximately 99.9% of their nucleotides. In such non-shared regions, humans
present genetic variations named Single Nucleotide Polymorphism (SNPs). Those
variations are what make us unique as human beings. In particular, a SNP rep-
resents that different nucleotide information is found among individuals. Usually,
these variations are identified when more than 0.5% of a population does not ex-
press the same nucleotide at a certain position of the genome, or when different
nucleotides are found when a given genome sequence is compared to the human
reference genome [Zoo+16]. Particularly, each SNP has two possible alleles (in-
herited from each one of our parents). An allele represents a nucleotide found in a
variant position. Usually, two types of alleles can be identified in SNPs: (i) major
allele, which is the most common nucleotide in the population (represented by 0’s),
and (ii) minor allele, which is the rarer nucleotide within the population, possi-
bly the least common (represented by 1’s). SNPs are frequently used for genomic
studies that aim at finding correlations between genetic variations with particular
traits or phenotypes. Figure 2.1 summarizes and provides a representation of the
main aspects of human DNA.

In April 2003, the first human DNA was sequenced, costing approximately $3
billion US dollars while taking thirteen years to be sequenced [Tir]. From that
moment on, DNA sequencing has been becoming cheaper and faster thanks to the
advent of Next Generation Sequencing (NGS) machines that improved the comput-
ing and parallelism capacity of sequencing genomic data. For example, nowadays,
one individual can have their whole DNA sequenced for less than $1,000 US dol-
lars [Lam+18] and in two days at most [Lew]. Furthermore, Illumina, the largest
manufacturer of DNA sequencers, is predicting to sequence genomes for less than
$100 dollars each in the next years [Her]. Thanks to these developments, DNA
has been becoming increasingly affordable for individuals of any social class. This
outperformed Moore’s Law growth of DNA costs has accelerated and increased the
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23 pairs of chromosomes ≈ 3 billion DNA base pairs

... A T C A C A C C G T C A G ... 

... A T C G C A C A G A C A G ... 

... A T C A C A C A G A C A G ... 

SNPs

...

...

...

≈ millions of SNPs

... A T C A C A C C G C C A G ... 

... A T C A C A C C G C C A G ... 

...

... 0 0       1            0   1        0 ...

...

... 0 1       1            0   1        1 ...

... 0 1       2            0   2        1 ...

... A T C G C A C A G A C A G ... 

Major allele (0)
Minor allele (1)

Diploid genotype

Haploid genotype

...

... 0 0       1            0   1        0 ...

...

... 0 1       1            0   1        1 ...

... 0 1       2            0   2        1 ...

...

... 0 0       1            0   1        0 ...

...

... 0 1       1            0   1        1 ...

... 0 1       2            0   2        1 ...

Figure 2.1: Genomics 101 - background and representation.

number of ongoing human genome studies. Wide-accessible genome sequencing is
the base of these studies that can help individuals and researchers to earlier de-
tect diseases’ predispositions, improve personalized medicine, find better treatment
methods, and even improve dating choices [Blo].

Nevertheless, despite all those benefits, a broader and easier access to such
data has to be performed with proper care. Indeed, there are a variety of issues
regarding genomic data. In the following, the main particularities, challenges, and
privacy risks of managing genomic data are presented.

• Price and size: The size of the digital DNA data is enormous. The most
common file formats for representing DNA data are FASTQ/FAST files1,
Binary Alignment Map (BAM), and Variant Call Format (VCL) files. Their
size varies and correspond to ≈200 GB/genome, ≈100 GB/genome and ≈125
MB/genome, respectively [Rei]. Because of that, sequencing companies, hos-
pitals, and research centers tend to outsource the storing and processing of
such data to more powerful cloud servers as a means to reduce operational
and storing costs [Fer+17; Fer+19];

• Sensitiveness: Personal genomic data reveals detailed and unique charac-
teristics of each individual. Besides that, DNA data have been extensively
used to find the identity of a person [Bal+11]. Indeed, it is already pos-
sible to predict individuals’ faces, skin color, height, and weight from their
genome [Lip+17]. Moreover, Cai et al. [Cai+15] showed in a recent work that
individuals can be uniquely identified by the observation of a small subset of

1Text-based format file that stores nucleotide sequences. The difference between FASTQ and
FASTA files is that the former has a quality score for each sequencing line.
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25 randomly selected informative SNPs. Besides, DNA contains very sensi-
tive health information about a person, such as physical and mental charac-
teristics, disease status and predisposition, comorbidities, or environmental
factors that might contribute to them [Aze18], which malicious entities might
improperly use. Furthermore, any leakage of genomic information regarding
a person, e.g., some region of his/her DNA or SNPs, does only directly re-
veal information about the concerned individual but also leaks information
of his/her relatives such as parents, siblings, and children up to 5 degrees of
separation for ethnicity [BG17]. Additionally, previous work has shown that
genomic privacy deteriorates over time [Bac+18];

• Ethical issues: The above issues might lead to discrimination based on our
genetic information, which has been a concern for over thirty years [Aze18].
Once DNA reveals sensitive characteristics of individuals, e.g., predisposition
to drug addiction, disease possibilities, and even our IQ level (to name a
few), such information might be used by hostile entities to undermine or
take advantage of people. For example, malicious insurance companies might
deny health insurance coverage for particular individuals or companies might
avoid to hire certain applicants based on a person’s genetic information, e.g.,
predisposition to a very rare disease (which means increased treatment costs)
and low IQ level, respectively.

• Control over data and trust: The actual ownership of our DNA is still an
issue. Nowadays, customers do not have complete control over their genomic
data, i.e., where and by whom their DNA data is being observed after it has
been sequenced. After sequenced, donors need to trust their data is secured
by the sequencing institution. As more and more privacy issues and genomic-
aimed privacy attacks are taking place, customers have been more and more
concerned about the security of their DNA data. Currently, genetic testing
companies keep the DNA data of their customers to themselves and do not
transmit transparent guidelines and user rights. Data owners do not know
if their samples are being reused by other researchers and what potential
privacy risks they might face [Hee+11]. To illustrate that problem, a drug
company very recently bought part of the 23andMe genetic testing company,
meaning that this company now has access to 23andMe’s customers’ genome
data [Jai]; Furthermore, when companies outsource their data to third-party
service providers (e.g., for economic reasons), they have to entrust their
data to untrusted parties, which is not ideal. Another critical fact is that
DNA data cannot be simply revoked, i.e., an individual’s genome cannot be
merely canceled or blocked in case of a genomic leak [Aze18]. Also, DNA
data usually does not change over time. Therefore, genome data also needs
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to be protected over a long period of time. Finally, in order to follow and
respect current privacy regulations, such as the Health Insurance Portability
and Accountability Act (HIPAA) [Hea] for the US and the General Data
Protection Regulation (GDPR) [Par] for the EU; genome repositories should
be able to assure that privacy regulations are being enforced in a transparent
and trustworthy manner, which unfortunately is not still the case.

2.2 Genome-wide Association Study (GWAS)

A Genome-wide Association Study (GWAS) is an observational study that aims
at identifying associations between specific genome variations (usually SNPs) with
a particular phenotype, e.g., a disease. Therefore, by locating such correlations,
GWAS can help the development of sooner diagnosis and treatment for diseases,
for example. In particular, GWAS produces correlation statistics over a cohort
of genomes to find high-correlated relations (genetic markers) between variant
positions (SNPs) and a given trait. GWAS considers two populations, (i) the case
group, which corresponds to the cohort of individuals that express the phenotype,
e.g., presents a given disease; and (ii) the control group, which consists of healthy
individuals.

Since any two genotypes of a person (i.e., a complete set of genes) are mostly
identical, one can represent an individual’s genotype by the difference in its infor-
mation compared to a human reference genome [Zoo+16], usually SNPs. Hence,
GWAS investigates a particular set of SNP to discover non-random connections.
As introduced before, a SNP usually has two alleles that can be major or minor.
Major alleles are commonly represented by 0’s, while minor alleles by 1’s. There-
fore, assuming the genotype notation, the value of a SNP ∈ {0, 1, 2}, which informs
the number of minor alleles found in a specific genetic position. In the case of “0”,
it means the presence of two major alleles, i.e., a major homozygous genotype.
Intuitively, a value of “1” means the presence of a major and a minor allele, i.e., a
heterozygous genotype, while a value of “2” represents a minor homozygous geno-
type with two minor alleles. Similarly, in the haploid notation (single-strand), the
value of a SNP ∈ {0, 1}, and follows the same rationale presented before.

When conducting a GWAS, the set of SNPs belonging to specific individuals
is encoded and used for statistical analysis. Table 2.1 provides an example of
N haploid genomes gn ∈ {g1, . . . , gN} that are described over L variants SNPL ∈
{SNP1, · · · ,SNPL}. For each SNP, an “1” in this record represents the fact that the
associated genome contains a minor allele, “0” otherwise. Therefore, SNPs can be
valued by the presence (or not) of the minor allele. For simplicity’s sake, Table 2.1
illustrates the haploid notation (single-strand) to represent the allele sequences.
Recall the genotype notation illustrated in Figure 2.1 if necessary.
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Table 2.1: Genome encoding for GWAS.

SNP1 SNP2 . . . SNPL Phenotypep
A/T C/G . . . A/T Case/Control

Genome g1 0 1 1 Case
Genome g2 1 1 1 Control

...
...

...
Genome gN 0 1 0 Case

Let us understand how genomes are encoded using Table 2.1. At a specific
position of the human genome, a particular nucleotide is the most common. Let
us assume it is the case of nucleotide A for SNP1. However, in a minority of
individuals, this position is occupied by the nucleotide T. Hence, it means that
there are two possible alleles for SNP1 (A or T). In consequence, in SNP1 column at
Table 2.1, every individual with allele A has the most common allele (i.e., a major
allele, represented by 0s). On the other hand, individuals with allele T (the minor
allele) are represented with 1s. The phenotype column identifies the concerned
phenotype of the study, e.g., diabetes or lung cancer. This column also serves to
label from which group a genome/individual belongs, i.e., to the case or control
population.

Table 2.2: A singlewise contingency table for phenotype p.

Phenotypep
Population

Case Control Total
SNPl 0 (major) N case

0 N control
0 N0

1 (minor) N case
1 N control

1 N1

Total N case N control NT

Generally, GWAS data is represented by contingency tables that summarize
the information about the concerned phenotype of the study, the populations, the
major and minor alleles of SNPs, and their corresponding counts over the groups.
Table 2.2 shows an example of a singlewise contingency table for a given GWAS
of phenotype p. Similarly, Table 2.3 presents a pairwise contingency table. There
are two types of GWAS statistics: test and aggregate statistics. The following
sections detail each one of these statistics.
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Table 2.3: A GWAS pairwise contingency table for two variants. SNPi and SNPj,
where i, j ∈ {1, · · · , L}.

Phenotypep
SNPj SNPj

SNPi 0 1 Total 0 1 Total
0 Ccase

00 Ccase
01 Ccase

0− Ccontrol
00 Ccontrol

01 Ccontrol
0−

1 Ccase
10 Ccase

11 Ccase
1− Ccontrol

10 Ccontrol
11 Ccontrol

1−

Total Ccase
−0 Ccase

−1 2N case Ccontrol
−0 Ccontrol

−1 2N control

2.3 GWAS aggregate statistics
The output of GWAS aggregate statistics consists of singlewise allele frequencies,
pairwise allele frequencies, and minor allele frequencies (MAF) over the population.
These statistics are jointly computed over the control and case cohorts of individu-
als. A singlewise contingency table (see Table 2.2) directly outputs the single allele
frequencies associated to a given variant SNPl, where Npop

i is the count of allele
i ∈ {0, 1} in population pop ∈ {case, control}. N case and N control are, respectively,
the size of the case and the control population. N0 and N1 are the overall counts
of major and minor alleles, respectively. The MAF is the frequency of the least
common allele of a SNP in a population, e.g., Ncase

1

Ncase for the case population, and
Ncontrol

1

Ncontrol for the control population. Similarly, the MAF for both populations is
given by N1

NT
, where NT = N case +N control, i.e., the sum of both populations’ size.

Table 2.3 illustrates a pairwise contingency table of two SNPs, SNPi and SNPj ∈
L. Cpop

ij reports the number of occurrences of the four possible combinations of
alleles {00, 01, 10, 11} in a population pop ∈ {case, control}.

2.4 GWAS test statistics
The output of GWAS test statistics consists of chi-squares (χ2), r-square (r2),
and their corresponding p-values of the most significant SNPs. The χ2 hypothesis
test determines whether or not to reject the null hypothesis, which states that the
allele frequencies in the case and control populations follow a similar distribution.
The χ2 statistic of a single SNP is defined as:

χ2 =
∑
i∈{0,1}

(N case
i −N control

i )
2

N control
i

From the χ2 statistic, one can then compute the p-value of each SNP, which
is the probability of observing its contingency table should the null hypothesis
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be correct with respect to some significance level α. In other words, p-values
on χ2 quantify the chances of falsely rejecting the null hypothesis while the null
hypothesis is true. Hence, such a statistic allows us to measure how likely a genetic
marker association with a putative phenotype is due to randomness. If a p-value
is smaller than a given threshold (i.e., 10−8) [Bar+12], then it indicates that the
variant might be significant [Che+21].

In possession of a rank of highly associated SNPs, researchers usually want to
observe how these genetic variants are correlated among them, i.e., identifying if
their co-occurrences are truly random or not, by computing their Linkage Disequi-
librium (LD). LD identifies associations between high-ranked SNPs within a given
genetic locus. For example, alleles in the same chromosome and close to each other
are commonly very dependent, i.e., they express a high linkage disequilibrium. In
particular, LD is an important metric that indicates several evolutionary events,
such as local adaptation, geographical structure, and chromosomal inversions of ge-
nomic data, and therefore LD is of utmost importance for understanding genomic
studies [Kem+15].

LD is calculated from the pairwise allele frequencies between two SNPs. The
value of this metric is determined by the results of the r2 statistics and/or D′, the
former is defined as:

r2 =
(C l1,l2

00 · C
l1,l2
11 − C

l1,l2
01 · C

l1,l2
10 )2

C l1,l2
0− · C

l1,l2
1− · C

l1,l2
−0 · C

l1,l2
−1

while the latter is computed by:

D′ =
C l1,l2

00

2Npop
−

(
C l1,l2

0−

C l1,l2
0− + C l1,l2

1−
∗

C l1,l2
−0

C l1,l2
−0 + C l1,l2

−1

)
,

where li, lj ∈ {1, ..., L}, i.e., any two SNPs in the SNP-set L. Similar to χ2,
P-values on r2 or D′ are computed to quantify the significance of the tests.

2.5 Towards large-scale genomics

The rapidly decreasing costs for sequencing human-genome data has accelerated
human genome data generation and, consequently, its broader sharing. This phe-
nomenon is not found only in the genomic research field but also in the private/in-
dustry sector. There are now various private genetic testing companies offering
their DNA testing and analysis services directly to end customers. In fact, more
and more individuals are deliberately sending their DNA samples for recreational
purposes, such as ancestry and genealogy tests, and performance-enhancing hacks
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based on DNA. Companies like 23andMe 2, MyHeritage 3 and CrossDNA 4 are
openly offering such services with affordable prices.

Since the creation of the Human Genome Project (HGP) [Ins], an international
program that aimed to uncover the complete set of genes and DNA bases of hu-
mans, genomic data has been shared at a higher pace [Hee+11]. The HGP project
has also influenced funding and governmental institutions to sponsor and promote
genomic research. Since then, several new programs have been created to enable
a broader availability of genomic data and (open) access to research findings from
studies. For instance, the 1,000 Genomes Project (1,000 GP) [Con+15a], which
was one of the first open-access genome datasets, consisted of approximately 2,500
genomes from different populations around the world. Later, the 100,000 GP
project [Eng16] was released in England with the intention to carry out larger
studies relying on mostly sequencing patients’ relatives. Likewise, the Interna-
tional HapMap Consortium project (HapMap) [Gib+03] concentrates on studying
the characteristics of millions of sequence variants from heterogeneous populations
with different ancestries (mainly Europeans).

Similarly, the UK Biobank initiative [Byc+18] offers access to phenotype and
genotype data from the UK National Health Service (NHS) 5 to not only universi-
ties but also independent researchers, private and public companies. Additionally,
other organizations from all around the world have been putting efforts into al-
lowing ampler genomic studies. For instance, the Genetic Association Information
Network (GAIN) [Man+07] and the Database of Genotypes and Phenotypes (db-
GAP) [Wal+11] are well-known genomic data repositories. dbGAP has playing an
important role for the proliferation of genomic studies. In particular, it stores and
distributes genome data that are used by researches to conduct GWAS [Wal+11].

The creation of these projects undoubtedly helped the spread and the rate of
discoveries from GWAS. In addition, these genome datasets are constantly used
as use-case in privacy-enhancing technologies contests, such as iDash 6, an annual
competition to raise awareness of genomics privacy while enabling efficient systems
and availability of study results. In such a competition, researchers are challenged
to offer new solutions for a variety of tasks, such as the privacy-preserving reading
of DNA data and solutions for improving individuals’ access control over their
genomic data.

2https://www.23andme.com/en-int/
3https://www.myheritage.com/
4https://crossdna.com/en/
5https://www.nhs.uk/
6http://www.humangenomeprivacy.org/[place_year]/
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2.6 Towards collaborative and practical GWAS en-
vironments

Along with cheaper costs for sequencing human-genome data and broader access to
such data, the possibility to create cooperative (federated) systems where a large
amount of genomic data from around the world can be collected and put together
has become true. Indeed, such an environment enables more significant findings
that can revolutionize genomics research. It is a clear advantage since conducting
GWAS over larger datasets (by combining genome data from multiple data hold-
ers) increases the statistical power and the confidence in the findings [Fer+17].
In addition, relying on heterogeneous data from worldwide institutions helps to
avoid erroneous conclusions from biased statistical findings (tailored with limited
genome data availability). In particular, certain genetic variations linked to some
particular traits (i.e., phenotypes that are more common in specific ancestries)
might unexpectedly influence GWAS associations [Con+15b; Sad+18]. There-
fore, performing GWAS relying on heterogeneous genomic datasets might produce
more reliable findings by alleviating the over-representation of some populations in
studies [Ost+21; SWT19]. For these reasons, the mindset of conducting genomic
studies has rapidly changed. Indeed, instead of producing research studies alone,
biocenters are now shifting towards a larger scale setting, conducting GWAS on
a global scale [VB13; Bes+15]. Therefore, federated GWAS is itself a valuable
and beneficial mechanism. In such a model, there is a cross-institutional collabo-
ration among biocenters, institutes, or any genomic data holders to distributively
aggregate and analyze GWAS.

Since access to genomic data repositories has become more accessible, several
works have discussed the trade-offs of genomic data privacy and sharing in ge-
nomics research [VG16; Kay12]. For instance, keeping genome data confidentiality
and integrity are essential properties from the moment such private goes beyond
the premises of data holders. Some works have envisioned and offered architec-
tures to enable such collaborative systems, where several data holders would store,
share and distributively process genomic data [VB13; Rai+18; Men+19; Bla+18].
Nevertheless, as one would expect, given that these systems manage critical and
sensitive data, there is an utmost need to protect genomic data at both individu-
als’ and institutions’ levels. Hence, there is a need for solutions that protect the
private genome data of donors from genomic privacy attacks and, at the same
time, enforce secure management and processing of such data.

In addition, there is pressure to enable individuals to control how their data is
being used [Dan+20; Dec+18]. In particular, to comply with current data-privacy
regulations’ constraints such as HIPAA and GDPR, which demands that data
subjects shall have the right to withdraw their consent to participate in a GWAS
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at any time. In fact, when individuals’ DNA is sequenced, they usually have
to provide a “broad consent” that authorizes institutions to perform any type of
processing over the data [Tka+18], which might decrease the number of individuals
willing to voluntarily participate in such studies if no privacy-preserving and secure
mechanisms are guaranteed to enforced by the GWAS federation.

Figure 2.2 depicts both stand-alone and federated GWAS settings. The right
side of Figure 2.2 illustrates a standard federated GWAS setting. Each data holder
(e.g., a biocenter institution) holds genomic data sequenced from several individu-
als and collaboratively outsources their data to conduct federated GWAS analyses.

Figure 2.2: Moving from a stand-alone to a federated GWAS setting.

As introduced before, new factors and issues are raised when considering a
federated GWAS scenario, which this thesis aims to address simultaneously. Fur-
thermore, this work introduces the term practical GWAS that encompasses some
novel features required for federated GWAS to comply with 21st-century privacy
guidelines. The properties and features of practical GWAS are categorized next:

• Secure outsourcing and privacy-preserving processing: All genome data that
is outsourced by institutions in a GWAS federation needs to be aggregated
and processed in a safe and secure manner to avoid any type of privacy
breaches. To ensure such functionalities, federations usually rely on privacy-
preserving approaches, such as Secure Multiparty Computation (SMC), Ho-
momorphic Encryption (HE), Differential Privacy (DP), and the use of Trusted
Execution Environments (TEE). These approaches allow secure and private
GWAS computation. However, each method has its advantages and draw-
backs that need to be assessed according to the federations’ expectations
to choose the more suitable scheme. For instance, some approaches achieve
poorer computational and storage performance when assuming an increased
number of participants, while others suffer from decreased accuracy. Later,
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this section describes in detail and compares the existing privacy-preserving
approaches for federated GWAS. Therefore, choosing an efficient and doable
approach is vital when designing federated GWAS.

• Privacy-preserving releasing: Although ensuring privacy-preserving outsourc-
ing and processing of genome data is a crucial step towards practical GWAS,
it is not enough. Few years ago, there was a belief that publicly publish-
ing aggregated statistics was safe [Edi08; Cou08; Hee+11]. Nevertheless,
it has been shown that the release of GWAS statistics can be subject to
genomic privacy attacks. Indeed, several privacy attacks leveraging GWAS
statistics demonstrated that GWAS results need special care before publica-
tion [Wan+09; Hom+08; Jac+09; Im+12; Cai+15]. Following the publica-
tion of these attacks, the NIH preventively removed all GWAS results from
public access and instantiated an approval process one must follow to con-
sult them [ZN08]. Unfortunately, such a restriction diminishes the spread of
GWAS releases and slows down its benefits to the research community and
society [BSB20]. Therefore, practical GWAS should enable safe and open-
access releases of GWAS to the masses.

• Collusion-tolerance: To improve the level of the privacy guarantees when
conducting federated analysis, the designing of federated GWAS should ide-
ally consider the presence of Honest-but-Curious (HbC) institutions or even
the presence of an adversary able to control one or more federation members
and make them behave honest-but-curiously [Pas+21]. When facing such an
adversary, the federated protocol and privacy-protecting algorithms need to
enforce that both the distributed processing and the releasing of GWAS is
processed in a collusion-tolerant manner. Indeed, one of the findings of this
thesis is that a HbC adversary controlling several biocenters and monitoring
the GWAS releases could combine data from specific institutions to isolate
sufficiently small data of honest institutions, and therefore being able to
leak their private data. As a result, HbC parties can circumvent the protec-
tion provided by existing privacy-preserving solutions that do not consider
collusion among members. Therefore, practical GWAS should enforce that
the data of each biocenter is secured (i.e., used to produce results but not
revealed if facing collusion between unethical parties).

• Dynamism (dynamic GWAS setting): Coupled with cheaper costs for se-
quencing human-genome data, GWAS could benefit from a dynamic scheme
where its results are updated as soon as new individuals are sequenced and
added to a study. In addition, there is pressure to enable individuals to
control how their data are used [Dan+20; Dec+18], and therefore allowing
individuals to request removal from studies. In particular, to comply with
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current data-privacy regulations’ constraints such as the US HIPAA the EU
GDPR, data subjects shall have the right to withdraw their consent to par-
ticipate in a GWAS at any time [Dan+20], which demand dynamic privacy-
aware approaches. Enforcing privacy in this dynamic context is challenging
since a potential adversary having access to several GWAS result releases
could leverage the evolution of the results to infer data. Therefore, practi-
cal GWAS should ensure that genome additions and removals from existing
GWAS are performed in a secure and private fashion.

• Interdependent GWASes: In real-life settings, GWASes might consider over-
lapping sets of individuals, each GWAS focusing on a specific set of ge-
nomic variations, some of which might also be used in other studies for
economic reasons. In fact, it is rather likely that federations will run dif-
ferent GWASes simultaneously (e.g., one on diabetes and a second study-
ing lung cancer [Den+20]). Furthermore, as later presented in this thesis,
new means to breach genomic privacy arise from the fact that more and
more genotype-phenotype data and GWAS releases are available. There-
fore, cross-referencing multiple studies might lead to privacy leaks [Gür+18].
Consequently, an adversary can base its attack on the results of a single
multi-trait study or even from GWASes from multiple federations. There-
fore, GWASes should be released only after carefully considering the inter-
dependency among studies in the federation so that the efficacy of privacy-
preserving release mechanisms continue satisfactorily.

To the best of the author’s knowledge, this thesis is the first work that intro-
duces and offers mechanisms to cope with the new issues raised to support the
context of practical GWAS introduced above.

2.7 Privacy-preserving processing of GWAS
As presented before, due to its high sensitivity, genomic data must be managed and
operated following the best practices of privacy and security. Otherwise, potential
volunteers and/or institutions would not feel comfortable sharing their genomic
data for collaborative genomic research. Thankfully, the creation and advance
of cryptography-based primitives that enable privacy-preserving data processing
have been employed as an alternative to mitigate some privacy risks, mainly when
enforcing data protection under federated analyses. In particular, existing ap-
proaches rely on cryptographic primitives to protect the integrity and confiden-
tiality of data and hence the privacy of both data holders and individuals when
their data are shipped and processed. Nevertheless, these non-functional benefits
come at a price. In fact, each one of the current approaches suffer from some type
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of limitation. For instance, enhanced computational/network resources demand,
lower data accuracy (from unexpected noise tailored to cryptographic operations
or from noise-based release protection). These issues might impact the overall per-
formance of federated GWAS systems, and therefore choosing the most suitable
solution is not intuitive and highly depends on the GWAS federation goals and
expectations.

In particular, existing privacy-preserving approaches are organized in several
classes depending on the nature of their mechanism. The following describes
the main privacy-preserving techniques adopted in the literature for the privacy-
preserving processing of data.

• Secure Multiparty Computation (SMC) aims to enable secure outsourcing
and collaboration among several parties. In particular, it allows each party
to privately share their part of their data to compute a given function over
aggregated inputs without the presence of a trusted party, whereas protect-
ing private data. Entities privately share their inputs (x1, x2, ..., xn) and
compute the result of a common function f(x1, x2, ..., xn) without reveal-
ing or disclosing parties’ private share to others. It was first proposed by
Yao et al. [Yao82], which presented an approach based on garbled circuits
over boolean operations. Secret Sharing (SS), such as Shamir’s secret shar-
ing [Sha79] is another type of SMC approach. SS is a scheme used in cryp-
tographic protocols that enables the distribution of private inputs by each
party, which can only be reconstructed if a sufficient number of secrets are
retrieved together. In addition, each isolate share does not reveal useful data
for any party. One of the main drawbacks of SMC approaches is their in-
creased computational overhead and design complexity, which indeed needs
some adaptations to allow the execution of specific tasks. Moreover, SMC
presents limited scalability as its performance decreases with the number of
parties, which limits its use, flexibility, and practicality [Che+16b].

• Homomorphic Encryption (HE): The main goal of HE is to allow arithmetic
operations over encrypted data [Gen09]. In summary, HE enforces that the
output of a function over plain text data is the same as if it were to be per-
formed over two encrypted files containing the same information as in the
plain texts. The benefits of using HE is straightforward. Indeed, performing
operations on encrypted data is more secure and keeps a higher level of se-
curity and data privacy. Furthermore, only the players in possession of the
correct keys will be able to decrypt and read the final output. Therefore,
HE is able to protect not only the inputs of the data holders but also limit
access to the final output of the desired computation. Nevertheless, such ad-
vantages come with some performance costs. Regrettably, only a limited set
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of arithmetic operations can be computed over homomorphically encrypted
data, such as addition and multiplication, which limits its adoption when
performing GWAS (because it demands the computation of more complex
statistics). However, it has been shown that fully homomorphic encryption
can perform more complex computations over encrypted data but it exhibits
even higher storage and computational resources overhead, limiting its us-
ability. Moreover, HE might be subject to cipher-blow-up issues [MC19].

• Differential Privacy (DP): DP [Dwo11] is a data perturbation-based mecha-
nism that provably (mathematically) guarantees the privacy of each record
when statistical data computed over a given data set is released. It provides
a privacy gain method that ensures that the removal or addition of any single
record from a data set does not compromise the privacy of any other record.
It is achieved by computing a probabilistic metric of privacy and applying
random noise to data so that the identification of any subject is not possi-
ble. There are several versions of DP depending on the type of perturbation
added. The most common approach uses the Laplace distribution [Dwo+10;
DP13]. More formally, let D and D′ be two neighboring datasets that differ
by a single element, and let O be the set of all possible outputs of a query.
A release R is ε-differentially private if:

Pr[(R(D) ∈ O] ≤ exp(ε)× Pr[R(D′) ∈ S], (2.1)

where ε is the privacy parameter that determines the level of privacy pro-
tection that comes as a random noise added to the outputs in O. When
leveraging the Laplace mechanism with l1 sensitivity level of a function f
defined as ∆f = maxD,D′ ||f(D)−f(D′)|| (which portraits the largest change
in f when a single record is replaced) [DR+14], the applied noise is derived
from the Laplace distribution with mean 0 and scale ∆f

ε
.

In particular, as the probabilities differ by a factor of ε, DP has a privacy and
data utility trade-off. Intuitively, a smaller ε means stronger privacy with
lower accuracy [DP13]. Such mechanism is defined by as privacy budget.

Therefore, DP can be used to protect the individual inputs of federation
members (i.e., their local genome data) before it is outsourced to the feder-
ation. Such a feature is achieved using DP at a local level (local DP). DP
can also be used to protect the genome sequences participating in a study
(ensuring global DP for the protection of public releases). Nevertheless, DP
suffers from the loss of data utility given its noise-based nature, which leads
to less accurate outputs.

• Trusted Execution Environments (TEEs): TEE assures confidentiality and
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integrity of the data being processed in a processor’s secure area. It lever-
ages a set of operations into trusted zones of processors that enable pro-
tection to the code and data managed inside the trusted area, namely an
enclave. One of the most common implementations of TEEs is Software
Guard Extensions [CD16] by Intel. SGX defines the concept of the enclave
as an isolated unit of data and code execution that cannot be accessed even
by privileged code (e.g., from the operating system or hypervisor). Enclaves
can be attested to prove that the code running in the enclave is the one
intended and that it is running on a genuine Intel SGX platform. Once at-
tested, enclaves can be provisioned with secret data by using authenticated
secure channels. Moreover, enclaves can persist confidential data outside the
trusted zone by using a sealing mechanism. By relying on TEE, it is ex-
pected to reduce the computational complexity and restrictions of the other
cryptography-based approaches. For example, TEE does not suffer from
running only limited types of operations and demands less complex designs,
which increases its communication and computation efficiency. Nonetheless,
current TEE implementations still suffer from a limited amount of memory
in their secure regions (128 MB - of which only 96 MB is usable without
paging [CD16]). In addition, it has been shown that it is vulnerable to
side-channel attacks [Bra+17].

Table 2.4 summarizes and compares the privacy-preserving processing approaches
for securely processing data in collaborative environments. Following the same
idea, Table 2.5 presents a performance overhead discussion of each one of ap-
proaches. The conclusions are made from an performance analysis of existing
works.

In summary, when compared to the other cryptographic methods, TEEs are
significantly faster and admit a larger set of operations (not just arithmetic oper-
ations) [Che+16b]. In addition, although SMC and HE techniques allow privacy-
preserving computation, they lack scalability and need domain-specific adapta-
tions [Che+16b; Zha+15]. In contrast, TEE inherits fewer issues as its overall
framework is able to facilitate the secure sharing of data. Moreover, its lightweight
cryptographic methods offer a more cost-effective model. Besides, when using Intel
SGX, for example, both application code and computation are protected from any
interference from outside of the dedicated secure area. Hence, guaranteeing data
confidentiality and integrity at the same time. Yet important, TEEs do not suffer
from accuracy loss, such as local DP-based approaches.

This thesis leverages TEE as the main component to achieve privacy-preserving
processing of federated GWAS and also for the verification of private releases. TEE
was chosen because it was identified as the most fittable approach in terms of
performance, accuracy, and efficiency trade-off when compared to existing privacy-
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Table 2.4: Overall comparison of privacy-preserving processing approaches.

Approach Hardware
requirements

Type of
operations

Limitations/Risks

DP (local
DP)

Any CPU Any Decreased output accuracy
that impacts data utility.
Vulnerable to collusion

attacks [Eig+14] and highly
depends on the statistical

independence of records in a
data set [LCM16].

HE Any CPU Addition and
multiplication

Limited number of operations
and cipher-blow-up issues.

Reaction attacks on fully HE
protocols [ZPS11].

SMC Any CPU Boolean Task-based designing is
required and not easy to scale.
Not secure against malicious

adversaries [Yao82].

TEE Isolated
cryptographic-

based
processor

Any Limited amount of
memory [CD16] and

vulnerable to side-channel
based attacks [Bra+17].

preserving solutions (as perceived by the discussion in this section). Therefore, the
next section presents TEE in more detail.

2.7.1 Trusted Execution Environments (TEE)

This section presents TEE’s main concepts, and more specifically on Software
Guard Extensions (SGX), the TEE-based solution provided by Intel Corpora-
tion [CD16]. Our solutions rely on Intel SGX [McK+16] as a vehicle for our
implementation without relying on any specific feature of SGX. Our choice for
SGX is motivated by previous works leveraging this technology and its increased
availability in cloud services [Pas+21; BAZ20; Koc+19]. However, our solutions
apply equally well to other TEE implementations.

The development of embedded hardware and secure cryptographic co-processors
has evolved rapidly in the last few years. Thanks to these advancements, various
TEE-based technologies are now available to the general community. As a re-
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Table 2.5: Overall comparison of the performance of privacy-preserving processing
approaches.

Approach Communication
costs

Computational
costs

Storage
costs

Output
accuracy

DP Low Medium Medium Low

HE Medium High High Medium

SMC High Medium Medium Medium

TEE Low Low Low High

sult, the most significant processor manufacturing companies have developed their
own TEE-based solutions. For example, in the form of Trusted Platform Module
(TPM) [Kin06], virtualization (AMD Secure Virtual Machine (SVM) [Van06], and
hardware-enforced isolation in CPUs, such as ARM Trust Zone [PS19] and Intel
Software Guard Extensions (Intel SGX) [CD16]. Given its popularity, availability
to the general community, and adoption, this thesis uses SGX as the means to
leverage TEE’s benefits. In the following, the main concepts of Intel SGX are
discussed.

Intel SGX is a collection of x86-64 instruction extensions that provide appli-
cation code and data with hardware-based memory encryption and isolation. The
protected memory region (also known as an enclave) is located in the address space
of a program and provides confidentiality and integrity protection. Software and
code residing inside enclaves are protected. They cannot be tampered with thanks
to memory encryption mechanisms and isolated execution generated within the
enclave’s boundaries. In particular, an enclave’s memory is mapped to the En-
clave Page Cache (EPC), which is a unique physical memory region. The Memory
Encryption Engine (MEE) is responsible for encrypting data in EPC, making it
inaccessible to other system applications (even the host OS, system BIOS, and
processes of other enclaves).

One crucial characteristic of SGX is that all messages exchanged between the
enclave and the CPU cache are encrypted. Thus, SGX’s trusted computing base
(TCB) can only involve the trusted code inside the enclave and the processor itself.
To enforce trust and security, SGX uses standard cryptographic primitives along
with three main functionalities that play an important role when (i) inputting/out-
sourcing data to enclaves, (ii) ensuring that only certified/trusted code will process
the data, and (iii) protecting data outside the secured region.

To achieve the above goals, SGX assumes the use of known encryption methods
in its design. Namely, it uses Advanced Encryption Standard (AES) to perform
authenticated encryption to provide data authenticity and confidentiality, Ellip-
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tic Curve Diffie-Hellman (ECDH) to enable secure sharing of shared symmetric
keys for AES on insecure channels, and Elliptic Curve Digital Signature (ECDS)
algorithm to sign and verify data authenticity/integrity. When the data are de-
crypted inside an SGX enclave, only authorized and authenticated code can access
the data. This is enforced by hardware-supported access control mechanisms that
certify that any component of the hosting system (e.g., malicious software or op-
erating system) can modify or access data inside the enclave.

The SGX suite consist of the following primitives:

• Remote attestation: This is the method that clients can use to certify that
an application is being executed inside an authenticated enclave and running
correct and trusted code [CD16; McK+16]. This verification is performed
by allowing a remote machine (the client) to determine the level of integrity
of the other platform (the SGX enclave). Usually, it is accomplished by
leveraging cryptography signature schemes to allow clients to verify the hash
of enclaves’ content/code/information. If this process does not succeed (i.e.,
if the enclave’s hash does not match the expected hash), a client would refrain
from sending data or relying on such an enclave.

Usually, there are three parties involved during Intel SGX’s attestation pro-
cess, (i) the Independent Software Vendor (ISV), e.g., the one providing the
source code and who also needs to be registered at Intel as the recognized
code developer; (ii) the Intel Attestation Service (IAS), which hosted by In-
tel and is responsible for verifying authenticity, confidentiality, and integrity
of the enclave; and (iii) the SGX service platforms, i.e., the service provider
that is hosting the SGX-enabled machine, usually a cloud service such as
Azure Confidential Computing 7.

The attestation process starts with the ISV issuing an attestation request
challenge, which might be produced by an enclave user who wishes to com-
plete the enclave’s attestation. The attested enclave then creates a verifica-
tion report, which includes the enclave measurement and is verified through
local attestation by a specific enclave signed by Intel called quoting enclave
(QE). Once the QE signs the report using the attestation key, the generated
quote is then sent to the IAS. Finally, if the quote can be successfully verified
by the IAS, it signs the verification result using an Intel secret key. Such a
file can be used by the enclave’s clients and/or ISV to check the authenticity
of the enclave.

• Secure data outsourcing: When the remote attestation process succeeds, it
means that the client has attested the integrity of the enclave. Therefore,

7https://azure.microsoft.com/en-us/solutions/confidential-compute/
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clients can trust and upload their privacy-sensitive data to the enclave to
be processed in a secure fashion. Clients’ data is sent through a secure
channel established with the enclave that also allows future communications.
Additionally, the outsourced data is usually sent in an encrypted manner that
only the enclave and the client can decrypt. In addition, encrypted data can
be safely held outside enclaves’ premises. For instance, stored in an untrusted
third-party service provider. The enclave can retrieve such data at any time.

• Data sealing: As introduced before, enclaves have limited space. Therefore,
it is needed a method to enable the retrieval of data outside the enclave in a
secure and long-term manner. This is achieved by the data sealing process
that encrypts and stores data in a particular manner such that the enclave
is the only component that is able to “seal”/encrypt and “unseal”/decrypt
it [CD16]. More specifically, the data residing in the enclave is encrypted
using an encryption key generated by SGX’s CPU hardware. In particular,
each enclave has its unique key that is used to encrypt and securely store
data outside the enclave’s boundaries. When retrieving “sealed” data from
outside, that same key is used to decrypt it already inside the enclave. In
addition, this process is also used because every time an enclave exits to
the host OS, all the data inside that enclave is destroyed. As a result, if
an enclave needs to access the data again at a later point, it also needs to
use the sealing mechanisms. Last but not least, data sealing is commonly
also used as a means to increase the scalability of TEE-based solutions by
allowing the retrieval of data at later stages or future steps of an algorithm
running inside an enclave [CD16; BAZ20; Pas+21].

Dataholder (client)

Encrypts raw/original data

Third-party (untrusted) server
SGX-enabled

Uploads encrypted data

Trusted area
(SGX enclave)

Untrusted area

(2)

Decrypts data
Processes data

Remote Attestation

(1)

Seals/unseals data
(3)

Data 
sealing

Encrypted data
outsourcing

Figure 2.3: A typical setting of SGX-based solutions.

Figure 2.3 illustrates the default setting of SGX-based approaches. In a regu-
lar SGX pipeline, client machines (the entities sharing private data) should first
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conclude the remote attestation process (step (1) in the figure) with the enclave
being hosted in a third-party (untrusted) server. Once this step is performed,
the encrypted data can be securely shared and processed (step (2)). Indeed, even
even if the third-party server behaves maliciously, it will not be able to decrypt
or forge the data (if it is tampered with, the enclave will notice that the data
has been modified while decrypting it). In addition, the data is only accessible
to the trusted area inside the enclave. Once private data is moved inside the en-
clave, the enclave can decrypt and securely operate on the data. If the data is
needed at a later point of the application, it can be sealed and stored again in
the untrusted area of the server and then recovered later by the enclave (step (3)).
Finally, the enclave can send back the outputs of its application to the client (using
cryptography methods again to make sure that only authorized clients can access
it). However, as this thesis assumes public releases of GWAS statistics results,
our solutions do not apply such an operation, i.e., the GWAS results produced by
the enclave are publicly shared (after proper crafting to impede genomic privacy
attacks from released statistics).

Limitations of SGX-based privacy-preserving systems. TEEs and, in par-
ticular, Intel SGX have been extensively used to build secure and privacy-preserving
systems. Despite presenting many advantages, SGX-based solutions also suffer
from some limitations. Firstly, when relying on Intel SGX, not only the clients
but also the server needs to trust the hardware manufacturer, which in this case
is Intel, and also the hardware itself. Depending on the envisioned system model,
such additional trust requirements might not be reasonable.

Secondly, SGX uses a particular Memory Encryption Engine (MEE) to encrypt
and decrypt data inside the enclave while data is processed. The issue is that the
available size of the Enclave Page Cache (EPC) memory of an enclave is only 128
MB. Furthermore, only 96 MB out of its 128 MB size can be used by applications
running inside the enclave [CT18]. However, it is true that SGX enclaves are
under constant development, for example, SGX 2 [McK+16] has been recently
released and offers dynamic memory management and allocation within enclaves.
Notwithstanding, it is crucial noticing that even though the enclave memory can be
expanded to 4 GB by using software pagination mechanisms [Che+17a; Che+16b],
it shows an increased performance overhead when dealing with larger data and
high-load algorithms, which is the case of genomic data. Therefore, it is clear that
the memory limitations of SGX may impose an obstacle when utilizing it. It is
expected that the memory limitation problem of SGX will end in the near future.
In particular, some recent processors are already giving support to the creation
enclaves that can manipulate up to 512 GB 8.

8https://lenovopress.com/lp1262-intel-xeon-sp-processor-reference
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Moreover, some previous works have shown the vulnerability of SGX enclaves
to memory access pattern-based attacks, such as side-channels attacks [Man+18].
The majority of side-channel attacks aimed at SGX enclaves are exploiting the
memory cache access of “non-oblivious” implementations of algorithms inside en-
claves. Generic memory-oblivious solutions have been offered to overcome this is-
sue, such as path RAM (PRAM) [Ste+18] and Oblivious RAM (ORAM) [Gol87],
and Oblivious B+ tree shuffling [Vim+15]. More recently, some approaches to cir-
cumvent such attacks have been proposed in the literature, such as adapting the
genomic workflow algorithms to work in a data-oblivious fashion (ensuring random
memory access patterns) [Man+18; ZBA15; AKM20]. Nevertheless, most of these
approaches are offered for general purposes and therefore end up impacting the
overall performance of the system. In addition, other ad-hoc solutions, such as
employing encoding techniques to fit genomic data in a certain way so that paging
attacks cannot succeed, have also been offered. For example, by fitting data within
4 KB page-wise blocks [Che+17a] or processing a limited number of SNPs at a
time [Che+16b].

Finally, enclaves can also be subject to Denial-of-Service (DoS) attacks [TPV17;
Che+17b]. Although those attacks do not compromise privacy, they might disrupt
the pipeline and the expected behavior of the application. As this vulnerability is
out of the scope of the objectives of this work, it has not been addressed.

2.8 Genomic privacy attacks on GWAS releases

Privacy-preserving processing approaches enable safe and secure outsourcing and
computation of data for federated analysis. Nevertheless, only enforcing privacy-
preserving processing is not enough to provide a fully privacy-preserving federated
system. In particular, the final output of a computation operated over aggregated
data from multiple parties also needs to be protected against existing attacks
once results, in our case, GWAS statistics, are published. In addition, sequencing
individuals represents a financial effort, and private institutions would refrain from
participating in a study if there is any risk of seeing their data being inferred by
competitors.

Previous works have been shown that the simple release of GWAS (even if they
are operated leveraging privacy-preserving processing schemes) results might be
subject to privacy attacks launched by an external adversary [Wan+09; Hom+08;
Jac+09; Im+12; Cai+15]. The goal of an adversary when launching a genomic
privacy attack is to leak sensitive genetic information of the victim(s).

Adversaries might compromise the genomic privacy of participants in two ways.
The first (traditional) way, an external adversary launches genomic privacy attacks
by observing the GWAS statistics from releases. The goal is to leak confidential/se-
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cret data of participating individuals. For instance, reconstructing individuals’
genome sequences or inferring the participation of a particular victim in a study.

Another way to leak the private data is to collude with other (colluding) mem-
bers of the federation to increase knowledge regarding the aggregated data (final
result), which can reduce the needed effort and make an attack possible. In partic-
ular, this scheme allows colluders to isolate honest members’ data and as a result
being able to circumvent privacy-preserving releasing schemes [Pas+21]. For in-
stance, in a recovery attack, colluding parties can share their inputs with other
colluders to isolate the data of other members. Thus, reducing the complexity
of the attack (since isolated data searching space is smaller). Thus, potentially
succeeding on leaking data of other parties in the federation. Unfortunately, such
threats have not been given the appropriate care in federated GWAS scenarios.

Last but not least, existing solutions that enables safe releases of GWAS statis-
tics assume a static setting, i.e., they do consider that GWAS results can be up-
dated over time and that adversaries might leverage how statistics have evolved
to mount attacks. Therefore, current mechanisms cannot cope with the new pri-
vacy issues that arise when studies are updated in a dynamic fashion. Notably,
next chapters present how adversaries might explore how statistics have evolved
between any two releases in order to breach existing safe release conditions.

Attacks on GWAS results are classified according to the type of information the
adversary aims to leak and also on how it is carried. The following sections detail
the two categories of genomic privacy attacks, namely recovery and membership
attacks.

2.8.1 Recovery attacks

A recovery attack aims at reconstructing the allele sequence of individuals who
participated in a study (i.e., the content of the encoded genome table used for
GWAS computation, recall Table 2.1). Recovery attacks are also referred as at-
tribute inference attacks. Adversaries mount this attack leveraging GWAS meta-
data (e.g., number of participants and SNPs) and GWAS statistics released in
studies [Zho+11; Fre+14; Ber+18; Dez+17].

In particular, a recovery attack leverages the observation of GWAS statistics
(which may include one or several of the statistics introduced in Section 2.2.) re-
leased over a certain number of SNP positions (let us assume this number as L),
and knowing the number of individuals that have participated in a given study
(i.e., N genome pseudonyms). Possessing such data, an adversary is able to gen-
erate possible combination of genome sequences to build matrices that satisfy the
information provided by the GWAS release. This scheme is presented in Figure 2.4.

Fredrikson et al. [Fre+14] present an approach to infer genotype sequences of
individuals by leveraging demographic information and pharmacological data from
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Figure 2.4: Illustration of a recovery attack on the observation of GWAS statistics.

the victim. Wang et al. [Wan+09] describe a statistical attack capable of inferring
a considerable number of SNPs from individuals by observing GWAS statistics,
specifically r2 values between SNPs. Assuming the adversary has access to partial
genotype data of victims, Samani et al. [Sam+15] illustrate an attack that uses
public GWAS statistics among correlated SNPs, such as pair-wise allele frequen-
cies and linkage-disequilibrium to infer unknown or hiddens SNPs of the victim.
Humbert et al. [Hum+17] evaluate interdependent genomic privacy risks among
individuals. In this work they show that an attacker might correctly infer genotype
information of the relatives of an individual by leveraging statistical relationships
among genomic variants and leveraging genotype and phenotype information of a
person. In addition, Ayday et al. [AH17] illustrate a similar attack where hidden
genomic data from the victims can be inferred by using partially obtained data
from their relatives, such as mother and father. Similarly, He at al. [He+18] present
an attack based on belief propagation in factor graphs that combines phenotype-
genotype data from public GWAS in order to infer not only genotype data but
also phenotype traits of the victims.

The works presented above have considered that additional side information
(“external knowledge”) might be observed by the adversary when launching re-
covery attacks, e.g., the parental relationship among genomes, demographic data,
and partial access to individuals’ genotype sequences). This thesis assumes the
threat model of recovery attacks used in [Zho+11; Wan+09], where a probabilis-
tic polynomial-time (p.p.t.) adversary has access to GWAS statistics data and
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metadata (e.g., anonymized genome ids and SNP ids).
This thesis builds on Zhou et al. [Zho+11] conditions, where the theoretical

complexity of recovery attacks are presented. The rationale behind this attack is
that from the observation of GWAS statistics, an adversary is able to generate at
least

(
2L

N

)
candidate matrices that matches the statistics results of the observed

GWAS [Zho+11]. Out of all candidate (valid) matrices, there is a certain number of
matrices that fully overlap (i.e., contains the same SNP sequences regardless their
order). If the attacker can find am unique matrix out of all valid ones and that also
matches the statistics results of the GWAS, she/he has successfully recovered SNP
sequences of the individuals in a study. However, such a task is NP-hard [Zho+11].

Due to its reversed-engineering nature, a recovery attack demands more com-
putational resources and running time to be launched because a huge number
of combinations have to be generated and compared. On the other hand, the
adversary does not need access to the real genome sequence of the victims (as
most versions of recovery attacks that relies on additional background information
assume).

Recovery attacks might escalate and become more dangerous. Indeed, inferred
genotypes might allow the unwanted identification of subjects who participated in
a specific study. For instance, after successfully reconstructing a genotype sequence
of an individual in a recovery attack, the adversary can launch a membership attack
to detect the participation of the concerned individual in other studies. Such an
attack is explained in the following section.

2.8.2 Membership attacks

In a membership attack, an adversary aims at determining whether a genotype
genvictim participated in a GWAS. The attack works as follows, given the geno-
type sequence of a victim, the metadata, and GWAS statistics over the L SNPs,
a membership attack aims at determining whether the victim belongs in the case
population [Hom+08] by computing statistical tests to measure how likely a par-
ticipant belongs to a study. This attack allows the adversary to link the victim
with the phenotype studied, which is a serious privacy breach. A membership
attack scheme is detailed in Figure 2.5.

Different variations of the attack have been implemented based on various ap-
proaches: from the Likelihood-Ratio LR-test that uses genotype frequencies [Jac+09;
San+09a; VH09], leverages correlations among SNPs of the human DNA [Wan+09],
such as applying Markov Chain Models [Zho+11], using Bayesian approaches [Cla10]
and Belief propagation methods [He+18]. Visscher et al. [VH09] combined linear
regression and LR-tests statistics to infer the presence of an individual from its
genotype and MAF of a GWAS study. They show a clear correlation between the
number of SNPs and individuals in the cohort for the success of the attack. Craig
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Figure 2.5: Illustration of a membership attack on the observation of GWAS statis-
tics.

et al. advocate for an approach based on positive predictive values [Cra+11]. Im
et al. [Im+12] show the feasibility of membership attacks using regression coeffi-
cients from quantitative phenotypes instead of individuals allele frequencies. More
recently, [Cai+15] detailed a practical membership attack that can detect individ-
uals from GWAS results using only 25 random SNPs. Simmons et al. argue that
basing releases on the two previous approaches provide significantly weaker pri-
vacy guarantees for some individuals because the privacy measures used to decide
for a release are averaged over all individuals [SB15b]. Humbert et al. [Hum+15]
show the feasibility of re-identifying individuals in public genomic databases (such
as OpenSNP9) by knowing their phenotypic traits, and then launch membership
attacks using victims’ genotype data to infer new traits (phenotypes).

2.9 Privacy-preserving releasing of GWAS
As introduced earlier, enforcing privacy-preserving data aggregation and process-
ing for federated GWAS is not enough since the existence of genomic privacy
attacks on GWAS releases might compromise the privacy of participants. Inspired
by this issue, works in the literature have provided approaches to protect indi-
viduals from genomic privacy breaches while allowing the publication of GWAS

92 https://opensnp.org
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metadata and results.
Data anonymization approaches enforce privacy properties such as t-closeness,

k-anonymity, and l-diversity. Their objective is to keep personally identifiable data
protected, i.e., indistinguishable from other records in a data set [Swe02]. However,
many works in the literature have been showing that such methods are not able
to protect personal genomic data. In particular, k-anonymous genomic data sets
have been deanonymized [SAW13; Vai+13; SBS19], even with high dimensional
data [ZN+15].

Another approach used to protect releases is DP [Dwo+10]. Recall DP defini-
tion and properties explained in Section 2.7. DP can be used to ensure differential
privacy by relying on the addition of noise to the final output. Nonetheless, as one
could expect, such properties are kept by decreasing the accuracy of the released
data. The privacy level certainty sustained by DP depends on the statistical in-
dependence of the records in a data set. Previous works have shown that highly
correlated records in data sets can diminish the DP’s guarantees [KM11; LCM16].
In addition, if not well designed, DP approaches can also suffer from collusion at-
tacks, which might disclose individuals’ data [Eig+14]. More recently Almadhoun
et al. [AAU20a] have shown that differentially private results are vulnerable to
genomic inference attacks as DP cannot not cope with dependencies of the records
within a genome data set, which diminish the privacy assurances of using DP-based
mechanisms.

In addition, DP under continual observation [Dwo+10; CSS11] and for growing
databases [Cum+18] allow DP guarantees under dynamic scenarios (i.e., results
are updated and released as more data is gathered in a federation). However, these
benefits come with an increased accuracy loss due to higher levels of noise they
are added over the releases, which decreases, even more, the accuracy of results.
Besides that, to the best of the author’s knowledge, no usable dynamic DP-based
approach has been offered to allow safe updates of GWAS.

To avoid the use of noise-based techniques, several works adopt a different
strategy to protect GWAS releases against recovery attacks. More specifically,
it relies on measuring the theoretical complexity bounds necessary to safeguard
releases from probabilistic polynomial-time (p.p.t.) adversaries, i.e., asserting that
a p.p.t. adversary with exponential computing power cannot successfully recover
the complete solution space and determine the right genotype sequences within the
human-genome data set (i.e., individuals’ real genome sequence) that participated
in a given release. Zhou et al. [Zho+11] evaluated the theoretical complexity of
recovery attacks on GWAS results. In summary, in that work, the authors offered
a scheme to measure and decide when GWAS statistics can be safely released by
enforcing that the solution space an adversary has to infer is larger enough when
compared to the “given” side-information (i.e., the results of a GWAS released
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in open-access). Their method quantifies the solution space in terms of N (the
number of subjects participating in a GWAS study) and L SNP positions having
GWAS statistics released. Depending on the type of statistics being released (i.e.,
aggregate or test statistics), the frequency space (seen by the adversary) gets
smaller or larger when compared to the solution space. Therefore, if releases are
built over too few records, the sequences can be inferred and leaked by the p.p.t.
adversary. Thus, their methods decide when releases are permitted when the
GWAS settings (number of participants and SNPs) satisfy the conditions for a
safe release.

Similarly, to protect GWAS releases against membership inference attacks, sev-
eral works proposed statistical inference methods to avoid noise-based solutions.
These solutions are based on statistical inference methods that aim at measuring
the risks of identifying the presence of individuals in a population from the ob-
served GWAS statistics. These mechanisms are based on statistical tests, such as
the Likelihood-ratio tests (LR-test), to measure how likely a particular individual
belongs to a study. For instance, Homer et al. [Hom+08] proposed an attack that
measures the identification power of a particular individual to be present in the
case population. Their technique can be reversed-engineered and used to protect
releases by blocking the participation of genomes that might be subject to privacy
attacks. Additionally, Wang et al. [Wan+09] proposed a new hypothesis test (Tr)
used to ensure that the identification power of all genomes is kept sufficiently below
a given identification power threshold. Similarly, Zhou et al. [Zho+11] proposed
the Λ metric used for the same goal. A more broader approach has been offered by
Sankararaman et al. [San+09a], namely SecureGenome (SG). SG consists of sev-
eral genome-oriented statistical verifications over the cohort of genomes being used
in a GWAS and a reference population. SG consists in identifying SNP positions
that would allow membership inference attacks. As a consequence, prohibiting the
release of statistics over those SNPs.

This thesis builds on statistical-based protection methods for privacy-preserving
releases of GWAS. In particular, the solutions presented extend Zhou et al.’s condi-
tions [Zho+11] to allow protection against recovery attacks and on SecureGenome [San+09b]
for allowing membership inference protection of practical GWAS. Due to their im-
portance, both approaches are detailed later in Section 4.1.

2.10 Enabling practical federated GWAS

The previous sections have introduced the main features that this thesis envisions
for allowing practical GWAS. They also discussed existing mechanisms that can
support some of the functionalities, e.g., privacy-preserving processing and releas-
ing of federated GWAS. Unfortunately, these properties have not been offered in
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a uniformized manner by existing works. In addition, other issues are still to be
solved, e.g., enforcing collusion-tolerance on the genomic data privacy level.

Therefore, this thesis identifies open challenges and enables several properties
that are still uncovered by existing works, where most of them arise from the
new assumptions, functionalities, and threat models the present thesis unfolds to
enable practical GWAS.

An overview of the approaches and techniques this thesis leverages to address
the unsolved problems and the creation of a practical federated GWAS scenario is
presented below.

(i) Relies on TEE to ensure safe, secure, and privacy-preserving outsourcing and
processing of genome data used throughout federated GWAS, while not im-
pacting the accuracy and performance (in terms of computational resources)
of GWAS releases. In addition, the proposed frameworks leverage TEE to
perform privacy-protection mechanism verifications over the data to assure
that only safe/private releases are publicly published.

(ii) Extends genome-oriented statistical methods to allow private releases of fed-
erated GWAS, while maximizing accuracy and utility of releases. In addition,
it assumes a privacy-aware environment in terms of respecting current data-
privacy regulations, such as HIPAA and GDPR. In other words, enabling
donors the chance to withdraw consent over their genomic data at any time.
Therefore, enabling safe updates of GWAS results since our solutions permit
removal and addition of genomes over time (i.e., dynamic GWAS), while im-
peding attacks that leverage some aspects of dynamic releases to facilitate
attack. For instance, impeding adversaries to build their attacks based on
how statistics have evolved.

(iii) Replicates the same privacy guarantees for open-access dynamic releases of
GWAS while assuming that up to all-but-one members in the federation
might collude in order to collect additional knowledge to mount attacks
against other members’ genome data.

(iv) Considers and identifies new private release conditions when the existence of
overlapping data (genomes and SNPs) among multiple GWASes. In other
words, enforcing dynamic releases of interdependent GWASes.

(v) Enables the analysis of privacy-preserving releasing mechanisms in a dis-
tributed fashion while removing the need for genome data outsourcing and
the presence of such data in a centralized location.

These choices were based on selecting the most fittable system architecture
that can accommodate the privacy-preserving mechanisms employed by proposed
solutions.
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Chapter 3

Related Work

This chapter first presents the overall state of the art on federated GWAS and
discusses the existing limitations and unsolved challenges this thesis aims to solve
in this work. It presents the current approaches for privacy-preserving releases
of GWAS, where the drawbacks and trade-offs are analyzed and compared to the
solutions offered in the present thesis. Finally, it concludes by discussing the
privacy risks when dealing with interdependent releases of GWASes.

3.1 Federated GWAS

Allowing collaboration among several genomic data holders certainly increases the
accuracy and the confidence of the statistical findings. Given its benefits, the
idea of adopting federated GWAS has become a real trend nowadays, with a vari-
ety of solutions being proposed to achieve this goal [Con+15b; Zha+18; Sad+18;
Che+16b; Che+17a; Rai+18]. There are basic goals when conducting federated
GWAS: (i) accuracy of the results, (ii) security (integrity and confidentiality) of
the data while being outsourced and processed, (iii) privacy of both data holders
and data donors, and (iv) overall performance/efficiency of the system, e.g., in
terms of scalability [Fro+21].

It is not trivial to design an approach able to encompass all these features.
Indeed, there is trade-off depending on the chosen cryptographic scheme, design
and functionalities supported by the federation that needs to be taken into account.
Recall Table 2.4 and Table 2.5) to see a comparison of existing privacy-preserving
schemes features.

In addition, this thesis assumes new adversarial and threat models that have
not been tackled in the literature yet. Therefore, some design goals, such as dy-
namic GWAS releases and GWAS private release conditions under the presence of
interdependent studies could not be directly compared to existing works. Never-
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theless, the proposed solutions are also compared to other existing approaches. For
instance, they are compared with a adapted DP-based dynamic release mechanism
(in Section 5.5).

The following sections provide a detailed discussion and compare the contribu-
tions of this thesis with related works.

3.2 Solutions for privacy-preserving processing of
GWAS

As introduce in Section 2.7, there are a certain number of privacy-preserving ap-
proaches that can be used to conduct federated GWAS. This section presents
existing federated GWAS works, while comparing them to the solutions presented
in this thesis.

SMC-based approaches. Cho et al. [CWB18] offer a SMC mechanism where
both individuals and computing parties (CP) privately share their data using the
Beaver multiplication triples secret sharing mechanism. The system consists of
three CPs that jointly combine their shares in order to computer GWAS statis-
tics, e.g., p-tests, by employing cryptographic pseudo-random generators (PRGs)
and random projection techniques to accelerate the GWAS computation. As a
result, they claim that their framework scales better and has better efficiency than
existing SMC solutions due to its linear complexity in terms of the number of
individuals and SNPs considered in the study. While Kamm et al. [Kam+13] in-
troduce a SMC framework where institutes share their genome dataset to third
data storage for computing χ2 tests, Zhang et al. [ZBA15] use secret sharing, which
assumes (n, t)-threshold for corrupted parties. However, both only support a lim-
ited number of data and computations. Bogdanov et al. [Bog+14] first proposed
a secret-sharing based SMC generic framework for conducting privacy-preserving
federated analysis. Later, they offer a similar SMC scheme [Bog+18] to perform
Principal Component Analysis (PCA) over distributed genomic data. PCA is a
method used to detect and avoid group stratification-like errors while perform-
ing GWAS. Constable et al. [Con+15b] propose a Secure Two-Party Computation
(STPC) approach to perform privacy-preserving χ2 and MAF processing. Their
approach uses the Portable Circuit Format (PCF), which is a garbled circuit-based
SMC framework. Yet another SMC-based approach based on garbled circuit is of-
fered by Jagadeesh et al. [Jag+17]. However, it has some limitations, such as only
allowing boolean operations and cannot be deployed in larger-scale GWAS settings.
Similarly, Tkachenko et al. [Tka+18] offers another STPC approach that relies on
the ABY framework to compute χ2 in a privacy-preserving manner. Schneider
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et al. [ST19] offers another SMC approach that leverages the ABY SMC frame-
work for privacy-preserving processing of Similar Sequence Queries (SSQs) over
aggregate genome datasets outsourced by several data holders. Currently, the
main focus of the community is to improve and offer the performance of SMC
approaches for conducting privacy-preserving distributed GWAS.

HE-based approaches. Mott et al. [Mot+20] study several HE-based encryp-
tion schemes for human genotype and phenotype data to allow private sharing
while maintaining their statistical and structural properties. They compare the
advantages and limitations of encryption using orthogonal and linear transforma-
tions. Lu et al. [LYS15] describe a method where a researcher creates a couple
of keys and communicates the public key to biocenters that sequence genomes.
The biocenters then encrypt their genomes using a HE-key scheme and store the
resulting encrypted genomes on a public cloud. The cloud then uses homomorphic
computations on the encrypted genomes to obtain encrypted GWAS statistics that
only the researcher can decrypt. Their solution assumes that no one can gain ac-
cess to both the encrypted genomes and the private key (e.g., if the cloud and the
researcher collude). In such a situation, all genomes that the biocenters shared
would be leaked. Hasan et al. [Has+18] propose another hybrid scheme that com-
bines Yao’s garbled circuits and tree-based Paillier homomorphic encryption to
enable privacy-preserving aggregation and output of genomic count queries. Sim-
ilarly, Kim et al. [KL15] propose a fully HE scheme to run χ2 tests using 80-bit
key security. More recently, a distributed GWAS system, which uses somewhat
HE and SMC methods, and answers only yes/no responses for putative markers
SNPs (rather than releasing χ2 values), was introduced by Bonte et al. [Bon+18].
Nonetheless, it is known that protecting private data only by denying access to it,
is not enough. Indeed, one can leak genomic private data by exploiting yes/no an-
swers from such a system, as shown in [SB15a; AAC21; Ayo+20]. For instance, an
attack introduced by Shringarpure et al. [SB15a] demonstrated that leveraging yes
or no responses from the Beacon’s Network service 1 is sufficient to infer the mem-
bership/participation of known genomes in the dataset. Other similar works, such
as [VAC19; Al +17; Rai+17a] have shown the practicality of privacy attacks over
the Beacon platform. Lauter et al. [LLN14] propose a level homomorphic scheme
where all genomic data of individuals are homomorphically encrypted and GWAS
statistics are computed over them at once. Nevertheless, as stated by the authors,
HE still needs improvements to allow efficient operations over encrypted data un-
der multiple keys (one key per individual, for example). Zhang et al. [Zha+15]

1The Beacon Network is a global genome database engine that answers only (yes/no) GWAS-
based queries and hence believed to not disclose private genomic information of donors. Available
at: https://beacon-network.org
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present two methods for computing χ2 statistics of GWAS leveraging HE, namely
the error-less division protocol and secure approximation division that can be cho-
sen according to the design goals of the system in terms of accuracy and complexity.
Ugwuoke et al. [UEL17] created a hybrid framework that combines Paillier HE for
computing addition operations and SMC methods to perform multiplication over
the genomic data used to compute GWAS statistics, such as LD. It is assumed
that entities cannot collude while the data is aggregated. Wang et al. [Wan+16]
offer HEALER, an improved HE-based protocol to compute exact logistic regres-
sion models for GWAS. They used a compression scheme to reduce HE-encrypted
data and a parallel computing mechanism to operate encrypted data. However,
they have assumed small datasets in their experimental evaluation. More recently,
Blatt et al. [Bla+20] show a HE framework under larger GWAS settings (25,000
genomes). It is assumed the presence of a centralized entity collects homomor-
phically encrypted genomes from a number of individuals that specially encodes
the data to allow parallel execution of HE operations inside a HE-enabled cloud
machine. However, their approach is vulnerable to a collusion attack between the
GWAS coordinator and the cloud machine.

DP-based approaches. A framework that combines data anonymization tech-
niques and DP was offered by Wang et al. [WMC14]. In their solution, blocks of
data are privately shared by data holders relying on DP to perturb data. Local DP
is a variation of DP where data owners add noise to their local data before sharing it
for aggregation [Cor+18]. Inspired by that, Lu et al. [LS17] described a Distributed
Differential Privacy (DDP), in which parties perturb their local data shares be-
fore sharing them so that both data aggregator and possibly colluding parties
cannot launch successful inference attacks over the aggregate released data. How-
ever, their system evaluation considered movie ratings and electricity consumption
data, which do not need high precision data results as needed by genomics studies.
Equivalently, Liu et al. [Liu+21] offered another local DP scheme where random
perturbation is applied at the genome level, i.e., each genome sequence receives a
DP noise, and therefore each genome has a local privacy budget. Once all per-
turbed genome data is aggregated in a federated fashion, responses to genomics
queries are protected by a global privacy budget. Similarly, another DP-based ap-
proach has been proposed by Simmons et al. [SBS19]. It combines the addition of
minimal amounts of noise perturbation using Bayesian and Markov Chain Monte
Carlo techniques. The authors claim that their approach is able to release more
data with minimal privacy protection loss. Local DP-based approaches enforce se-
cure and privacy-preserving sharing of genomic data. Nevertheless, it comes with
a reduced data utility due to the introduction of noise in the data [Fre+14], which
decreases the accuracy of final GWAS outputs. MedCo [Rai+18] is a distributed
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protocol built on Unlynx [Fro+17], that allows exploratory medical analysis. It
combines HE, DP, and other improvements to compute statistics over medical data
in a private manner. The system consists of several data providers that secretly
share their records to aggregate data and answer authorized queries. The authors
claim that their scheme can also be used for GWAS. Recently, Aziz et al. [Azi+21]
present new DP-based algorithms that dynamically manage privacy budgets of
the DP mechanism to find optimal values for ε. Thus, increasing the accuracy
of GWAS releases. In their work it is assumed both centralized and distributed
models for conducting GWAS. Similarly, Zhang et al. [Zha+22] propose a frag-
mentation method, which keeps ε-indistinguishability based on local DP, to split
genome data into different partitions so that the knowledge an adversary can ac-
quire by compromising several nodes conducting aggregation tasks is not enough
to mount successful genomic de-identification attacks.

In comparison to the above solutions, the techniques used in this thesis do not
rely on adding noise to data, therefore keeping the accuracy of released results.
Additionally, it is worth recalling that the encryption-based approaches, such as
HE and SMC, come with high costs and complex designs. Consequently, they face
scalability issues.

TEE-based approaches. In 2012, Canim et al. [CKM12] offered the first ap-
proach that leverages secure cryptographic hardware to allow secure sharing and
storage of genomic data inside a third-party machine. More specifically, they
relied on the IBM 4764 cryptographic co-processor [IBM21] installed on the un-
trusted server. Therefore, allowing a tamper-resistant process of genomic data,
and using symmetric encryption to receive and answer GWAS queries. Next,
PREMIX [Che+16a] was one of the first approaches that relied on Intel SGX
enclaves to evaluate individual genomic admixture by allowing the collaboration
of multiple entities sharing genomic data. The encrypted data from each site is
sent to a centralized enclave that answers GWAS queries from authorized clients.
PRINCESS [Che+16b] also performs GWAS tests using SGX enclaves for rare-
disease collaboration studies, where genomic data is securely shared and computed
inside a centralized enclave. Before being transmitted, all genomic data go through
some pre-processing steps, such as data segmentation and compression to improve
the efficiency of the system. In addition, PRESAGE [Che+17a] applies encoding
and indexing methods on genomic data to answer private queries with high per-
formance. After encryption, the data is outsourced to an untrusted party, e.g.,
an SGX-enabled cloud provider, which answers genomic queries with encrypted
results. SAFETY, proposed by Sadat et al. [Sad+18], combines HE for the ag-
gregating data holder’s genomic data inputs and SGX enclaves for more complex
statistical processing. Similarly, Chenghong et al. [Che+17b] offered SCOTCH,
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which uses a hybrid platform that leverages HE to gather genomic data from sev-
eral data holders and compute aggregate statistics in a faster manner, and uses
SGX to compute the data securely. Carpov and Tortech [CT18] won the Track
2 of the iDash Privacy and Security Workshop 2017 competition that challenged
the research community to offer the most efficient approach to compute chi-square
statistics using SGX. They could succeed in this task by implementing a hori-
zontal partitioning technique to encode the genomic data in a more efficient way
and using parallel processing to speed up computations. SkSES is a framework
offered by Kockan et al. [Koc+19] that applies filtering and compression mecha-
nisms to VCF files being shared to a centralized enclave, which securely computes
chi-square statistics. They also proposed the use of sketching data structures to
increase performance and computational running time. More recently, Bomai et
al. [BAZ20] presented another hybrid approach that combines multi-key HE and
SGX to enable secure sharing of genomic data from multiple data holders to a
SGX-enabled cloud provider that computes chi-square GWAS statistics to answer
queries from authorized users.

It is essential to notice that all solutions mentioned above are not concerned
about privacy-preserving processing of GWAS, i.e., they only focus on the sharing
and processing part. Therefore, the released results might still be subject to ge-
nomic privacy attacks. In contrast, this work supports privacy in both aspects of
fully privacy-preserving federated GWAS (processing and releasing).

3.3 Solutions for privacy-preserving releasing of
GWAS

Section 2.8.1 and Section 2.8.2 introduced recovery and membership attacks, re-
spectively. This section presents the related work on the protection of GWAS re-
leases against these attacks. Existing approaches are categorized into three types,
depending on the method they build on:

• Measuring the theoretical complexity of recovery attacks in order to define
safe thresholds based on genomic-oriented statistical analysis to certify that a
study has used enough genomes so that probabilistic polynomial-time (p.p.t.)
adversaries cannot correctly infer genotype information of the participants
in the study [Zho+11].

• Using (reverse-engineering) statistical inference test methods [Hom+08; San+09a;
Wan+09; Cai+15], such as LR-tests, to evaluate and measure the probability
of identifying vulnerable individuals in the study, and posteriorly removing
potential targets out of the study [Hom+08] or prohibit the releases of statis-
tics over SNPs that would enable membership inference [San+09a; San+09b].
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• Utilizing DP mechanisms to perturb the results (applying noise) of a study to
enforce differentially-private releases [SB16; SBS19; AAU20a], i.e., ensuring
that no individual can be identified as a participant of a study.

In the following, it is presented existing solutions that rely on DP mechanisms
to safely release GWAS statistics. Jiang et al. [Jia+14] propose to use a new
privacy-budget approach that balances data perturbation with privacy risks using
statistics of a LR-test. On the other hand, DP was used to enable differentially
private logistic regression by perturbing the objective function [Yu+14] instead
of the final output of a GWAS. Uhlerop et al. [USF13] offered a scheme to re-
lease GWAS statistics over M best ranked (most significant) SNPs using DP with
Laplace mechanism. Tramèr et al. [Tra+15] evaluated several potential DP ma-
nipulations for genomic membership privacy in order better balance the trade-offs
between data utility and privacy. Simmons et al. [SB16] enables differentially pri-
vate GWAS by leveraging the neighbor distance algorithm proposed by Johson
et al. [JS13] in order to apply noise in a more efficient manner. Their approach
is able to protect individuals in both case and control populations. In another
work, Simmons et al. [SSB16] propose two DP frameworks for privacy-preserving
GWAS: PrivSTRAT applies data perturbation considering the group stratification
in a study, and PrivLMM is based on Linear Mixed Models (LLMs).

Although efforts and works have been proposed to enforce DP in a dynamic
environment (i.e., assuming continuous releases), such as DP under continual ob-
servation [Dwo+10; CSS11] and for growing databases [Cum+18]. To the best of
my knowledge, no work has applied such DP techniques under a dynamic GWAS
scenario.

Furthermore, it is important to recall that such DP-based approaches directly
impact the accuracy of GWAS releases, and therefore an expected data utility
loss comes inherited with these approaches. In addition, two recent works by
Almadhoun et al. [AAU20a; AAU20b] have shown that the existence of dependent
records (e.g., relatives’ genomes) in a genomic database can diminish the privacy
guarantees of DP mechanisms. In contrast, this thesis combines statistical tests
with exhaustive verification methods to enforce the genomic privacy of individuals
over continuous releases, without perturbing data.

Finally, the most similar work to this thesis is presented by Ayoz et al. [AAC21].
In their work, they show that both recovery and membership attacks can be
launched by sequentially querying the genomic data-sharing Beacon’s platform.
They assume a similar threat model as this thesis, where new participants are
added over time and statistics results (queries, in their case) are updated. The
challenge behind their threat model is the same as assumed in this thesis. In
particular, an attacker can learn genomic information of new participants as they
are added by observing how the answers of the Beacon evolved within time, i.e.,
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between time t and t+1. Nevertheless, the authors only discuss ideas and some po-
tential countermeasures to mitigate the risks of recovery and membership attacks
under this setting, not offering a concrete solution.

Nonetheless, all these approaches cannot cope with the dynamic settings of
practical GWAS, i.e., new genomes being added and removed on the fly. Therefore,
they can no longer keep genomic privacy when performing continuous releases of
GWAS results. In addition, these techniques cannot cope with collusion among
entities sharing the genomic data. In particular, some data holders might collude
and exchange information about the shared data in order to circumvent the condi-
tions for safe releases of the protection mechanisms. The issues that are raised by
these new assumptions and the threat model (collusion among participating data
holders) are one of the main contributions of this thesis, which are presented and
addressed in Chapter 4 and Chapter 5.

3.4 Issues of interdependent GWAS releases

The decreasing genome sequencing costs have been motivating a scenario towards
sharing the results of independent GWASes on different phenotypes to construct
multi-omics datasets [Im+12]. As the availability of genomic data and multiple
GWAS releases are becoming more accessible, there is now an increased risk for
new genomic privacy attacks, as adversaries can now cross-reference several studies
in order to gain additional knowledge and circumvent existing safe release condi-
tions [Gür+18].

Indeed, in real-life settings, GWASes might consider overlapping sets of indi-
viduals, each having a focus on a specific set of genomic variations, some of which
might also be used in other studies for economic reasons. It is rather likely that
federations will run different GWASes simultaneously (e.g., one on diabetes and a
second studying lung cancer [Den+20]). As a consequence, an adversary is able to
base its attack on the results of a single multi-trait study or even from GWASes
released from multiple federations.

Although some works have started looking at the problem of dependency among
genomic data subjects (i.e., the existence of dependent records within the same
study or genomic database, such as an individuals’ relatives [AAU20a; AAU20b;
Hum+17; AH17; HTH19; Hum+22; Der+22]), and studied how this scenario might
compromise genomic privacy, this thesis is the first to evaluate privacy the risks
when releasing statistics of multiple interdependent GWASes.

In particular, Chapter 5 shows that protecting single-GWAS releases is not
enough. It shows that by the observation of several “safe” single-GWAS releases,
an adversary can still leak genomic data information from individuals by carrying
out new variations of recovery and/or membership attacks leveraging overlapping
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data (e.g., genomes and SNP positions) used in different studies. As a response,
this thesis evaluates the risks and defines the new conditions to allow safe releases
of multiple interdependent GWASes.

3.5 Overview and current stage of federated GWAS
Table 3.1 presents an overview of the solutions found in the literature that enables
federated GWAS. These works have been discussed in previous sections. This
table considers works that conducted actual GWAS, not Principal Component
Analysis (PCA), such as Bogdanov et al. [Bog+18] and Ostrak et al. [Ost+21];
and Similar Sequence Query (SSQ) such as Schneider et al. works [ST18; ST19]
under the federated setting. In addition, despite their valuable contribution, some
works such as PRINCESS [Che+16b], Froelicher’s et al. [Fro+21] assumed the
outsourcing and sharing of PLINK format data (rather than VCF files) to conduct
GWAS. PLINK [Pur+07] is open-source C/C++ application comprised of a variety
of tools to facilitate and conduct GWAS.

Even though assuming different cryptographic schemes, not all works are able
to reconcile privacy-preserving processing with privacy-preserving releasing of GWAS.
Indeed, only two other works [Rai+18; Azi+21] and the works offered in this thesis
are able to securely process and privately release GWAS. In addition, except for
our solutions (DYPS and I-GWAS), the existing works cannot conduct dynamic
and public releases of GWAS where results are updated when new genome requests
are generated. Besides, I-GWAS framework is the only solution that can also allow
privacy-preserving releases of interdependent GWASes. Lastly, GENDPR allows
distributed assessment of private GWAS releases by designing a multi TEE-enclave
environment where federation members jointly verify which data can be safely used
for the creation of safe releases.
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Chapter 4

Dynamic, Privacy-Preserving and
Secure Federated GWAS (DyPS)

The previous chapters presented remaining challenges to allow fully privacy-preserving
federated GWAS in addition to introducing foreseen features to enable practical
GWAS. Namely, (i) fully privacy-preserving GWAS design in terms of sharing, pro-
cessing, and open-access releasing; (ii) privacy-aware in the sense of complying
with data-privacy regulations (such as GDPR) and so allowing participants to
withdraw consent at any time while producing safe releases of dynamic GWAS,
where results are updated over time once new genomes are added or removed; (iii)
collusion-tolerant GWAS, i.e., the federation is able to face all-but-one participants
colluding to attack others’ data and still be able to compute and protect GWAS re-
leases without privacy breaches; (iv) enforcing all above constraints but assuming
the existence of multiple overlapping studies (e.g, reusing same genomes over sev-
eral studies), which demands new release conditions to not compromise the safety
of previous or next releases); and (v) enabling privacy-protecting mechanisms to
be performed in a distributed fashion.

In particular, this chapter addresses challenges (i) to (iii), whereas the next
Chapter 5 details the extensions needed to obtain property (iv). Next, Chapter 6
offers a framework to distributively assess private GWAS releases without genome
data outsourcing before Chapter 7 introduces a holistic scheme that accommodate
all functionalities simultaneously.

This chapter presents DYPS, a novel and scalable framework that reconciles
secure and privacy-preserving processing and releasing of federated GWAS, while
allowing updates of results and collusion-tolerance. Particularly, DYPS leverages
Intel SGX to enable secure sharing and processing of genomic data while com-
puting GWAS statistics and evaluating releases’ safety conditions over genome
data being outsourced by several biocenters of a GWAS federation. Additionally,
DYPS improves the current state-of-the-art mechanisms for safe releases of GWAS,
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which allow only safe releases of static GWAS. In fact, DYPS enables safe releases
of dynamic GWAS (i.e., allowing GWAS results to be updated over time when
new genome operation requests come, for example when addition or removal of
genomes are requested by data holders). To the best of author’s knowledge, DYPS
is the first solution able to reconcile in a homogenized form the issues of privacy-
preserving computation and releasing of not only static but also dynamic GWAS.
By assuming this dynamic GWAS model, DYPS is able to accept participation
consent withdrawal from individuals participating in a study (in order to comply
with data-privacy regulations, for example). DYPS implements efficient algorithms
that determine how to safely release and update GWAS statistics without noise
addition, which guarantees no data utility loss. Moreover, DYPS tolerates up to
all-but-one colluding biocenters without privacy leaks.

4.1 Conditions for safe GWAS releases

Genomic privacy attacks leveraging GWAS results. Let us first recall
how privacy attacks on GWAS releases work. An adversary may try to leverage
a GWAS’s metadata (i.e., lists of SNPs and pseudonymized genomes) and test
and/or aggregate statistics to breach the genomes’ owners privacy. Figure 4.1 il-
lustrates the typical information that an adversary can observe: (i) the list of the
L SNPs; (ii) the N genome pseudonyms used in the GWAS, and (ii) the GWAS
results which may include one or several of the statistics introduced in Section 2.2.
To be noted, that if the adversary is a biocenter contributing to the GWAS com-
putation, this adversary knows a subset of the SNPs and genome pseudonyms as
well as a subset of the content of the table. This adversary knowledge increases in
case of collusion between several biocenters.

SNP1

g1

gN

⁞

SNPL…

? GWAS
Aggregate statistics

Test statistics

Figure 4.1: Observable data for privacy attacks on GWAS.

Section 3.3 introduced the main existing approaches for protecting GWAS re-
leases. DYPS builds on Zhou et al. [Zho+11] and SecureGenome [San+09a] solu-
tions. The former is used to quantify the needed number of genomes to protect
recovery attacks, while the latter is used to guard releases against membership
attacks. It is worth recalling that those approaches consider static GWAS, which
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in turn cannot be directly applied when conducting dynamic releases as DYPS
does. In particular, DYPS enforces that these conditions are met while GWAS
results are updated, which is more challenging. Furthermore, DYPS ensures these
conditions are enforced when facing collusion among participants.

The existing conditions for GWAS safe releases differ according to the statistics
produced by the GWAS and the targeted attack. Table 4.1 summarizes these
conditions according to the type of release and attack.

Table 4.1: Release conditions for GWAS aggregate or test statistics computed over
L SNPs and N individuals.

Observable
statistics

Attack Attack unfeasibility conditions

Aggregate Membership Single allele freq.: LR metric is suf-
ficiently low, N > 100 and MAF
> 0.05 (1)
Pairwise allele freq.: Λ or Tr metric
is sufficiently low. (2)

Recovery 2(N − 1)/log(N + 1) > L (3)

Test Membership 2N/(log(N + 1)− 1) > L (4)
Recovery 2(N − 1)/(log(N + 1)− 1) > L (5)

4.1.1 Protecting recovery attacks

Zhou et al. [Zho+11] showed that recovery attacks on allele frequencies and on test
statistics are NP-complete. They argue that the release of a GWAS is safe if the
solution space an adversary has to explore is significantly larger than the GWAS
result space. Let us take a closer look at this safety condition with a single GWAS
study comprised of L SNPs and N genomes. The size of the solution space |S| is
the number of possible matrices that verify a given statistical result. |S| is at least(

2L

N

)
, that is, the complexity of selecting N SNP sequences from 2L sequences into

which the L SNPs expand. The size of the allele frequency space |D| is equal to
(N + 1)L+(L2), which corresponds to all possible values for L single SNPs and

(
L
2

)
SNP pairs over N sequences. The condition for a safe GWAS release of this single
study is that the size of the solution space S is large compared to the size of the
frequency space D:

|S|>|D| := (2N − 1)

log(N + 1)
> L (4.1)
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Similarly, when considering test statistics releases (e.g., p-values and r-squares
(r2)), the ratio between the solution space and the test static space, i.e., |R2|, is
also to be kept within safe boundaries. One crucial information when launching
the attack over GWAS test statistics data is to correctly identify the values of r (or
their signs) given r2 results. Given that the space size for r values (assuming the
adversary was able to recover it) is approximately (N + 1)L+(L2), and by assigning

r values to r2, |R2| = (N+1)(
L
2)+L

2(
L
2)

. Hence, one can obtain the following relation:

|S|>|R2| := 2N

log(N + 1)− 1
> L (4.2)

Recalling Table 4.1, it is noticed that Equation (3) covers (i.e., demands more
genomes for protection) Equations (4) and (5) for the protection of aggregate
statistics releases against recovery attacks and test statistics against membership
and recovery attacks. Hence, the solutions of this thesis use Equation (3) as the
upper-bound to select safe batch of genome requests. Thus, assuming a more
conservative approach. In addition, it is important to notice that the offered solu-
tions combine the use of the equations with LR-tests so that releases are protected
against both attacks simulteneously.

4.1.2 Protecting membership attacks

As discussed in Section 2.9, several works that proposed statistical-based solu-
tions to mitigate membership attacks from the observation of GWAS releases.
Despite presenting an genomic privacy attack, Homer et al. method [Hom+08]
can be used to identify genomes vulnerable to membership inference, and there-
fore impeding the participating of individuals at risk. A more recent approach,
SecureGenome [San+09a; San+09b] performs several genome-wide statistical veri-
fication to select safe data that can be used to create safe GWAS releases. Besides,
It proposes to calculate the sensitivity and specificity of a LR-test to decide which
allele frequencies for a given dataset can be safely released. The hypothesis test
Tr metric [Wan+09] or the Λ metric [Zho+11] can also be used to ensure that the
identification power of released genomes is sufficiently low.

The solutions of the present thesis build on SecureGenome [San+09a; San+09b]
due to its genome-oriented approach and because it has been adopted and com-
monly used to quantify membership risks for protecting static GWAS releases by
many works [AH17; Zho+11; Pas+21; Hal+21]. Besides that, our solutions show
the feasibility of extending SG to cope with the new issues brought by the exis-
tence of dynamic GWAS releases. Since SecureGenome is an important part of the
present thesis, and provides the ground properties of our solutions, SecureGenome
(SG) is detailed in the following sections.
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4.2 Detailing SecureGenome
SG’s rationale. The goal of SG is to select a safe subset of SNPs from the
original SNP-set of a GWAS from which the observation of released statistics
would not allow membership inference of any participant (genome) relying on
several genome-oriented statistical verifications along with a likelihood-ratio test
(LR-test). To achieve that goal, SG applies a combination of privacy assessments
by computing some statistics over the pool of genomes participating in a study
and a reference set. Therefore, SG assumes the availability of a reference genome
dataset and of the pool of individuals participating in the study. These genome
datasets are used to draw the hypothesis of the test.

Assumptions of the SG’s model. SG assumes that the SNPs considered in
the LR-test are independent due to the fact that selected SNPs can be far apart
each other. In addition, the standard SG analysis does not assume genotyping
errors, i.e., the allele information over the SNPs are precise, and this is a common
assumption in the literature. Although, the authors show by experimentation that
genotyping errors only decrease the identification power of the attack.

Furthermore, SG’s LR-test assumes that SNP allele frequencies in the pop-
ulation are bounded away from zero and one. Hence, there is a > 0 such that
a ≤ pl ≤ 1 − a, where pl corresponds to the allele frequency of SNP l in the co-
hort. This is an expected assumption due to the fact that GWAS only considers
SNPs whose minor allele frequencies (MAF) are well represented in the selected
population. In a nutshell, SecureGenome consists of the following steps:

1. Removing SNPs with rare allele frequencies (MAF < MAFcutoff ): In this
step, SG pools and compute the allele frequencies of each position (consider-
ing both case and control genome sets) and checks if the MAF of SNPs are
below or equal to MAFcutoff , usually below 0.05. SNP positions with low
MAF forms characteristic outliers that can be used by adversaries to deduce
membership. They are therefore not considering for the subsequent steps.

2. Removing SNPs in high LD (p-value on r2 < LDcutoff ): High linkage dis-
equilibrium (e.g., p-value on r2 < 10−5) indicates highly connected SNPs.
Such information can be leveraged to attack individuals by using the associ-
ation levels among SNPs, as shown in [San+09a; Zho+11]. For this step, SG
employs a greedy algorithm that checks and removes SNPs that are in LD.
If any two SNP positions are found to be in LD, the most ranked SNP is
kept for further verification. SNP positions in high LD are then prohibited
from participation. Notice that Steps 1) and 2) are particularly important to
match the assumption of the presence of independent SNPs for the LR-test
analysis in the next step.
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3. Identifying SNPs that would allow membership inference (LR-test verifica-
tion over remaining SNPs) at specified detection power threshold and false-
positive rates. Therefore, SG uses the remaining SNPs from the previous
steps to conduct the LR-test described below.

SG’s null hypothesis draws the probability of an individual belonging to the
case genome set consisted of N genomes under Hardy-Weinberg Equilibrium
(HWE)1. In contrast, SG’s alternative hypothesis draws the probability of
the individual belonging to the pool consisted of N − 1 genomes under the
null hypothesis and HWE.

LR =

L∑
l=1

[xn,l log
p̂l
pl

+ (1− xn,l) log
1− p̂l
1− pl

], (4.3)

where L is the number of pre-selected independent SNPs in a study (recall
steps (i) and (ii) discussed above), xn,l is the allele information at SNP
position l of individual n ∈ [0, N − 1], pl is the allele frequency of SNP
position l in the population, and p̂l is the frequency of SNP position l in
reference set.

The power 1 − β of the LR-test can be found as a function of the pool size
N , the number of SNPs L with a tolerable false-positive rate α. Conversely,
using the Neyman-Pearson lemma that states that no test can have larger
power than the LR-test, the power 1 − β achievable for the LR-test given
(L,N, α) determines the maximal L so that no (α, β)-test can be obtained
for a pool of size N .

In particular, SG uses the LR-test to empirically verify the identification
power of the N individuals in a study by sampling their allele sequences over
several subsets of SNPs ∈ L in an iterative fashion while removing SNPs
that would keep the identification power of any participant above a specified
detection power threshold. Thus, impeding the release of GWAS statistics
of SNPs that would pose membership inference risks of any individual.

According to Sankararaman et al. [San+09b], the SG’s LR-test approximates
the Gaussian distribution that is parameterized by the relationship between
sample size N , number of independent SNPs L, statistical power 1 − β,
and type I error probability (or significance level) α when both L and N
are moderately large, according to the central limit theorem. The extended
version of SG [San+09b] further demonstrates that this approximation also
holds when N is not assumed to be large using the Lindeberg-Feller central

1HWE states that genomic variations are stable among generations given the absence of
disturbing/external factors.
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limit theorem. Besides, the authors empirically show that this approximation
also hold for small N and L values.

As a summary, at the end of the LR-test, SG has identified a SNP-set L′
belonging to the original SNP-set L (i.e., ′L ∈ L), from which the observa-
tion of GWAS statistics over these SNPs would not allow an adversary to
identify the presence of individuals participating in the study respecting the
configured (i) upper bound on the power (the probability that an individ-
ual is correctly identified to be in the population); and (ii) upper bound on
the false positive rate (the probability that an individual that is not in the
population is erroneously identified to be in the population) of the LR-test.
Therefore, the SNPs belonging to L′ can then be safely used in a GWAS as
their statistics would not allow inferring the presence of underlying individ-
uals.

Additionally, SG can be extended to cope with the existence of relatives in a
cohort and how their presence might compromise the risk of others. For instance,
the authors showed that the identification of first-order and second-order relatives
of a target individual decreases according to the number of exposed SNPs [AH17;
San+09a].

The output of SG is used to detect SNPs that can have their statistics released
while protecting membership attacks on the genomes participating in a study.
Nevertheless, SG assumes only single and static GWAS releases, which is not
enough for allowing the properties of practical GWAS assumed in this thesis.

Indeed, as shown throughout this work, new conditions and so new approaches
need to be enforced to accommodate safe releases guarantees under these set-
tings. The extensions and steps enforced by DYPS to guarantee SG protection in
a dynamic setting (i.e., over continuous releases) are presented in Section 4.5.4.
Similarly, Section 5.4 presents the steps of I-GWAS to allow dynamic releases on
the presence of overlapping studies.

This thesis adopts the privacy parameters suggested in SecureGenome [San+09b]
after extensive evaluation of their approach. Namely,MAFcutoff = 0.05, LDcutoff =
10−5, false-positive rate = 0.1 and 0.9 detection power rate threshold = 0.9.

4.3 DyPS’ system and threat models
This section details DYPS’ system and threat models.

System model. Figure 4.2 illustrates DYPS’ system and threat models. DYPS
considers a federated system of B biocenters {bioc1, · · · , biocB}, which obtain and
locally store the allele sequences of individuals. Each biocenter may sequence the
genomes of case and/or control individuals, potentially at different speed rates
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due to various models of sequencing machines. DYPS assumes that biocenters can
contribute genomes to a GWAS, and that individuals retract their participation
consent, at most once. The biocenters are connected through an asynchronous
communication network. Their common goal is to perform a GWAS over a set
of L SNPs. DYPS denotes by LtoN(L) the minimum number of genomes that
need to be used to release statistics computed over L SNPs so that Equations (3),
(4) and (5) in Table 4.1 are enforced. Reciprocally, DYPS denotes NtoL(N) the
maximum number L of SNPs that can be safely released according to the number
of participating genomes N in a study.

DYPS assumes the availability of a server equipped with a TEE dedicated to
the federation. Consequently, it might identify the pseudonyms of the genomes and
SNP ids that are used for the computation of GWAS statistics. DYPS assumes
accordingly that the parties have access to this information since the pseudonyms
of the used genomes are made public. This TEE is responsible for executing the
actual GWAS computation, and ensuring that the GWAS statistics can be safely
released before openly published.

Dynamic and public
releases of GWAS

Colluding HbC biocenters

DyPS

Centralized TEE-enabled
Service provider

External adversary

Figure 4.2: DyPS’ system and threat models.

Threat model. DYPS assumes a probabilistic polynomial-time adversary that
has access to a reference population with an allele distribution identical to that of
the case population. Note that this reference population is not the same as the
control population of the study. To launch membership attacks, the adversary also
has access to a victim’s DNA profile (i.e., its genetic code).

DYPS considers an honest-but-curious adversary controlling biocenters and
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monitoring the GWAS releases: biocenters follow the protocol and do not forge
genomes. In addition, DYPS considers collusion between biocenters that aim at
inferring information from the non-colluding biocenters. DYPS assumes that up
to f = (B − 1) biocenters can collude to launch either membership or recovery
attacks on the released GWAS results. The investigation of additional adversarial
behaviors is left for future work of this thesis. Indeed, enforcing genomic data gen-
uineness is an open challenge as digital genomes can be forged [Hua+15; Rai+17b]
or synthesized [Ney+17], which would make data poisoning attacks undetectable.

As presented in Section 2.7.1, relying on TEE such Intel SGX has some limi-
tations. For example, even though all data is stored encrypted on the TEE server
and only manipulated by the enclave, DYPS does not cope with possible Intel
SGX side-channel attacks [Bra+17]. In addition, DYPS assumes that the SGX en-
clave is always available. For instance, enclaves can be subject to Denial-of-Service
(DoS) attacks [TPV17; Che+17b]. Although those attacks do not compromise pri-
vacy, they might disrupt the pipeline and the expected behavior of the application.
However, addressing this vulnerability falls out of the scope of this thesis.

4.4 Overview of DyPS

DYPS adopts a federated architecture that allows each biocenter to safely share
genomes through a TEE-enabled server computing GWAS, while keeping the con-
trol of their own genomes (i.e. without revealing their data to other biocenters
and by ensuring no privacy leakage from GWAS results). DYPS’ architecture is
illustrated in Figure 4.3. To ensure a secured computation potentially performed
by untrusted machines, DYPS relies on a TEE which leverages custom micropro-
cessor zones, to enforce isolation, confidentiality and integrity of both the data
and operations. Periodically, the enclave collects the requests from the various
biocenters and decides which requests are to be executed to safely and dynami-
cally update the GWAS results. In the following, a discussion on how the TEE is
utilized (Subsection 4.4.1), the workflow of DYPS (Subsection 4.4.2), how batches
of requests are selected to produce safe test statistics (Subsection 4.5), how DYPS
can dynamically increase the number of SNPs over which statistics are computed
(Subsection 4.5.2), and the production of aggregate statistics from the selected
requests (Subsection 4.5.4), are presented.

4.4.1 TEE-based architecture

DYPS uses Intel SGX enclaves that can be attested to prove that the code running
inside it is the one intended, and that it is running on a genuine Intel SGX platform.
Once attested, enclaves can be provisioned with secret data by using authenticated
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secure channels. Moreover, enclaves can persist secret data outside the trusted zone
by using a sealing mechanism.

Figure 4.3: DyPS’ federated architecture.

Once DYPS’ enclave has been initialized, each biocenter executes a remote
attestation procedure to authenticate it and establish a secret symmetric key.
The biocenters sign their data with their private key, encrypt it with the shared
symmetric key and send it over the network to the enclave’s host. Upon reception
of the encrypted data by the untrusted host, the enclave loads it into its protected
memory space and decrypts it.

As time goes by, the biocenters are expected to sequence genomes, and might
receive participation consent withdrawals from donors. For each genome ad-
dition or removal, the biocenters send a request to the enclave. This request
〈biocid, gid, seqid, pop, op, VCFid〉 contains the biocenter ID (biocid), the donor’s pseudonym
(gid), the operation sequence number of the biocenter (seqid), if the donor belongs
to the control or case population (pop), whether the genome should be added or
removed (op ∈ {Add,Rmv}), and the corresponding genotype data following the
Variant Cell Format file format (VCFid) in case of genome addition.

4.4.2 Workflow diagram

GWAS can produce both test statistics and aggregate statistics. DYPS follows
the workflow depicted in Figure 4.4 to ensure safe releases in both cases. This
workflow is executed in the enclave and contains multiple modules: (1) the pending
requests queues, (2) the request selection to produce safe test statistics, (3) the
GWAS processing, and (4) the test to produce safe aggregate statistics.

(1) FIFO pending requests pool. DYPS maintains FIFO queues of genome ad-
ditions or removals for each biocenter. DYPS tries to execute the received requests
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Figure 4.4: DyPS’ workflow diagram.

according to their initial ordering by the biocenter through the use of their sequence
number. However, DYPS might not always treat requests across the FIFO queues
(e.g., because a genome A cannot be immediately removed, while a genome B can
be added). A particular case occurs when a request to remove a genome that has
not yet been added to the GWAS is received, in which case, both requests can
immediately be executed by removing them from the FIFO queues.

(2) Requests selection. During this phase, DYPS aims at identifying a subset
of genome operations that can be safely executed to update the GWAS results.
To avoid exhaustive search of safe operations, DYPS assembles batches of requests
where each set of non-colluding biocenters (B − f) contributes more genome ad-
ditions than removals and has sufficiently enough requests. The genome additions
and removals to be executed are selected according to their FIFO order. The
algorithm that DYPS is detailed in Subsection 4.5 and prove that it prevents all
privacy leaks on test statistics. If no set of requests can be processed to release
statistics, the process aborts. Since DYPS is periodically executed, requests are
eventually processed.

(3) GWAS processing. After collecting a batch of requests that verifies the
safe conditions for a GWAS release, DYPS computes the GWAS statistics over the
overall remaining genomes in the SGX enclave. If the GWAS only aims at releasing
test statistic, at this point DYPS can safely release or update the publicly accessible
results (i.e., skipping step (4)).

(4) Membership tests. If DYPS aims at computing aggregate statistics, this
additional step verifies that membership attacks cannot be executed on aggregate
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statistics. To do so, DYPS extends SecureGenome [San+09a] while performing
additional operations that are presented in Subsection 4.5.4 to decide which SNP
positions might have their statistics released.

4.5 Request selection to address test statistics re-
leases

This section details how biocenters can add or remove genomes from the results
of a GWAS assuming (for now) that the number of studied SNPs remains con-
stant. Both operations, if not handled carefully, can create privacy issues when
the released statistics are updated. For example, updating statistics by adding, or
removing, a single genome might directly leak this genome to an adversary that
would observe publicly released statistics.

An exhaustive search (i.e., a brute force approach) checking if any candidate
set of selected requests combined with the sets of requests used in previous releases
verify Equations (3), (4) and (5) in Table 4.1 is not practical and would require
exponential time. To avoid this issue, DYPS waits to have received sufficiently
enough requests from the biocenters to verify equations listed in Table 4.1. More
specifically, DYPS uses equation (3) as it implies equations (4) and (5).

DYPS assembles batches of genome operations according to the FIFO ordering
of requests, and so that a batch contains more additions than removals for every
subset of (B − f) biocenters, and an overall number of genome operations either
equal to 0 or larger than LtoN(L) - equation (3) of Table 4.1 - for every subset of
(B − f) non-colluding biocenters. In summary, DYPS enforces that a safe batch
always has more genomes LtoN(L) but also ensuring that the number of genome
addition operations are larger than the number of removals, and that both addition
and removal operations combined are larger than LtoN(L).

The following Section 4.5.1 presents the pseudocode of DYPS’ algorithm that
uses the requests selection mechanism compositions to select a safe batch of genome
operations when the federation is facing up to B− f colluding biocenters. From a
high-level perspective, this algorithm works as follows. First, all pending addition
requests of biocenters are selected, and for each of them, at most an equal number
of pending removal requests. Then, the biocenters with the smallest number of
selected requests are eliminated, until the B−f biocenters with the least numbers
of operations collectively possess enough requests (i.e., more than LtoN(L)) or
until each biocenter has enough requests by itself. All requests from the biocenters
that have not been discarded participate in the next release. This algorithm has
a low complexity, since the previous statistic releases are not considered, while
a brute force algorithm would have a exponential complexity with the number of
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previous releases (as shown in the results of the experiments of Section 4.6.2). The
GWAS test statistics can then be dynamically updated using the selected genome
requests.

Next, Section 4.5.2 presents how DYPS can scale the number SNPs being con-
sidered by GWAS over time. This is an important property that would allow
sooner releases of GWAS. Particularly, considering a larger number of SNPs in
the beginning of a study demands a huge number of genomes to satisfy release
conditions, e.g., millions of genomes, which might not be feasible for some feder-
ations. Hence, DYPS shows mechanisms to allow initial releases considering less
SNPs and so less genomes, while also increasing the number of SNPs over time (as
more genomes are added to studies).

Finally, Section 4.5.3 formally presents the conditions that DYPS uses to select
a safe batch of genome requests, and it proves by induction that the adversary is
never able to isolate test statistics where less than LtoN(L) genomes participate
in releases.

4.5.1 Pseudocode of DyPS requests selection mechanism

DYPS uses the algorithm reported in Algorithm 1 to select the biocenters that
participate in a batch of requests to be executed. In the case of test statistics,
all addition requests from a selected biocenter are selected, and a lower or equal
number of removals. This algorithm assumes that up to f biocenters are colluding,
with f ≤ (B − 1).

DYPS first retrieves and binds the requests to their corresponding biocenters in
FIFO order (line 7 to 9), and adds them to bioList. After gathering the requests
from the biocenters, DYPS sorts the list of biocenters according to their number
of addition requests (line 10), before selecting a batch of requests (lines 11 to 34).

The rationale behind the selection algorithm is to select a group of biocenters
such that their combined requests cannot be attacked by the f biocenters that
participate the most, and who might be colluding. From line 12 to 20, DYPS
checks if the number of additions of the i selected biocenters are large enough
considering the requests of f malicious biocenters and that this number is equal
or greater than LtoN(L).

If such a set of biocenters is not found, DYPS checks if some biocenters have
enough requests to update statistics individually, considering Theorem 2 in the
previous section and LtoN(L) (lines 21 to 28). Note that during this step, the
algorithm limits the number of removals per biocenter to the number of additions
it is also executing. From lines 30 to 33, DYPS checks if biocenters were selected
and adds them to the list of selected biocenters (selectedBios). Finally, the
algorithm retrieves the selected biocenters and returns the sets of addition and
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Algorithm 1 DyPS pseudocode for requests selection and test statistic releases.
1: procedure DyPS request selection algorithm(B, f, L)
2: Input: B set of biocenters, f number of colluding players, L number of SNPs.
3: Output: sets of selected genome addition and removal requests.
4: Uses: NtoL(L), the minimum number of genomes required to update L SNPs.
5: bioList = ∅;
6: selectedBios = ∅
7: for b in B do// retrieve pending requests from each biocenter in FIFO order
8: bioList[b.id].add(b.toAddGenomes,b.toRmvGenomes);
9: end for
10: bioList.sort();// sort using the number of addition requests
11: istart = −1;
12: for (int i = 0; i < B; i+ +) do
13: if (bioList[i].addCount == 0) then
14: continue;
15: end if
16: if (bioList.size() - i > f and sumBioReq(bioList, i, bioList.size()− f − 1) ≥ LtoN(L) then
17: istart = i;
18: break;
19: end if
20: end for
21: if (istart == −1) then // assemble all biocenters that individually have enough operations
22: for (int i = 0; i < B; i+ +) do
23: if (bioList[i].addCount ≥ bioList[i].rmvCount and bioList[i].addCount +

bioList[i].rmvCount ≥ LtoN(L)) then
24: istart = i;
25: break;
26: end if
27: end for
28: end if
29: if (istart != −1) then // assemble the selected biocenters
30: for (int i = istart; i < B; i+ +) do
31: selectedBios.add(bioList[i]);
32: end for
33: end if
34: // assemble the batch of requests from selected biocenters
35: for (int i = 0; i < selectedBios.size(); i+ +) do
36: Adds_Batch := selectedBios[i].addRequests
37: Rms_Batch := selectedBios[i].rmvRequests
38: end for
39: end procedure
40: // release test statistic over selected set of requests
41: computeTestStatistics(Adds_Batch, Rms_Batch)



removal requests that can be executed to update the GWAS test statistics (line 35
to 39).

In the case of aggregate statistics, the actual composition of the requests batch
is determined by the dedicated SNPs selection algorithm presented in the next
Section 4.5.4.

4.5.2 Scaling the GWAS over number of SNPs

So far, it has been assumed that statistics are computed over a static set of SNPs.
However, as more genomes become available, DYPS can dynamically increase the
number of SNPs over which statistics are computed, as illustrated in Figure 4.5.

The initial statistics release (i.e., release 1 in Figure 4.5) happens when the
enclave can assemble a batch of N1 genome addition requests such that L1 =
LtoN(N1) ≥ 1. DYPS then automatically decides the subsequent releases, based
on the conditions of Table 4.1, as follows. Let us assume that the i-th release of
statistics decided by DYPS covers Li SNPs, and let Ni = NtoL(Li). The number
of genomes Ni+1 and the number of SNPs over which to release statistics Li+1

are determined as follows. First, Ni+1 must verify Ni+1 − Ni > NtoL(Li), which
states that the statistics over the first Li SNPs need to be sufficiently updated
to preserve the privacy of the newly considered individuals over these SNPs. The
value of Li+1 is then computed using Li+1 = LtoN(Ni+1 − Ni). This process is
called a diagonal expansion (release 1 to 2 in Figure 4.5). The actual composition
of the requests may contain additional genome removals. In that case, DYPS uses
the methods that were defined previously for test and aggregate statistics over the
SNPs considered both by release i and i+ 1 to prevent privacy leaks.
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Figure 4.5: SNPs set dynamic scaling.

DYPS can also handle two additional special cases. The first one happens when
Li+1 = Li, which can happen when release Li updated the full set of studied SNPs
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(vertical expansion, release 2 to 3 in Figure 4.5). The second case happens when
the value of L is increased by the system administrator. In that situation, the
number of SNPs over which statistics are released might be increased immediately
if the number of genomes added allows it (horizontal expansion, release 3 to 4).

4.5.3 Composition property and proofs for genome requests
selection to protect test statistics releases

This section demonstrates that the method DYPS leverages to select the set of
genomes to be added, or removed, from a GWAS release prevents both membership
attacks on test statistics, and recovery attacks on both aggregate and test statistics.
The reader can recall Table 4.1 for a summary of the equations that DYPS relies
on to evaluate the conditions of feasibility of those attacks. More precisely, those
equations state that there is a function such that a GWAS release that studies
L SNPs can be considered secure if it used LtoN(L) genomes. Similarly, one
could invert these equations to discover how many SNPs L can be safely released
according to the number of genomes N , namely NtoL(N).

The following theorems and proofs describe how DYPS selects safe batches of
genome requests, and the types of GWAS updates that can be performed according
to the nature of the release. Let Ai be the set of genome additions and Ri the set
of genome removals used for a specific release, or update, i of the GWAS results.

Theorem 1 (Vertical expansions with f = 0). If each release i is such that |Ai|+
|Ri| ≥ LtoN(L) and that |Ai| ≥ |Ri|, then each combination of releases involves
more than LtoN(L) genomes, which prevents an adversary to successfully launch
a privacy attack.

Proof. This theorem is proved by induction. The first release does not contain any
genome removal and, therefore, adds more than LtoN(L) genomes. The property
to prove is then verified for the first release. Let us assume that this property is
verified for any combination of releases whose ids are lower than or equal to i. Let
j be the ID of the (i+ 1)-th release, which contains the additions and removals of
genomes Aj and Rj. Let us consider a combination of releases whose ids are lower
than or equal to i. This combination contains a set of genome additions A and
a set of genome removals R. Now, if we were to combine this combination with
release j, we would still obtain a secure release.

The number of genomes that an adversary can isolate by combining the releases
is equal to |R| + |A \ Rj| + |Rj \ A| + |Aj|. By adding and removing |A ∩ Rj| to
this expression one can obtain:
(|R|+ |A \Rj |+ |A ∩Rj |) + (−|A ∩Rj |+ |Rj \A|+ |Aj |) (1).

The values of the two parts of the previous expression can be bounded thanks
to the following two inequalities:
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• By assumption, we have |A|+ |R| ≥ LtoN(L) and, therefore, |R|+ |A\Rj|+
|A ∩Rj| ≥ LtoN(L) (2)

• By construction, |Aj| ≥ |Rj|, and therefore |Aj| ≥ |A ∩Rj|+ |Rj \ A| (3)

We can now bound each term in (1). First, we already established (in (2))
that (|R| + |A \ Rj| + |A ∩ Rj|) = |A| + |R| ≥ LtoN(L), which bounds the first
term in (1). Second, by using (3), one can see that −|A ∩Rj|+ |Rj \ A|+ |Aj| ≥
−|A ∩ Rj| + |Rj \ A| + (|A ∩Rj|+ |Rj \ A|) ≥ 2 ∗ |Rj \ A| ≥ 0, which bounds
the second term in (1). By adding these two inequalities, we finally obtain that
|R|+ |A \Rj|+ |Rj \ A|+ |Aj| ≥ LtoN(L), which concludes.

Theorem 2 (Horizontal expansions with f = 0). Let (Ai, Ri) be the set of genome
additions and removals respectively executed during the GWAS results update i.
The horizontal expansion algorithm allows an expansion of L SNPs and does not
allow an adversary to successfully launch a privacy attack.

Proof. By construction, the released set of Li+1 SNPs have been chosen so that
|Ai| + |Ri| ≥ NtoL(Li+1), which prevents any genomic data over the SNPs that
are newly considered in release i+ 1 to be inferred.

Theorem 3 (Diagonal expansions with f = 0). Let (Ai, Ri) and (Ai+1, Ri+1) be
the sets of genome additions and removals respectively executed during the GWAS
results updates i and i + 1, between which a diagonal expansion occurred. The
diagonal expansion algorithm does not allow an adversary to successfully launch a
privacy attack.

Proof. A diagonal expansion can be seen as a combination of vertical and horizon-
tal updates, which are respectively proven safe in Theorems 1 and 2.

In the following, let Ai,S be the set of genome additions and let Ri,S the set of
genome removals used for a specific release, or update, i of the GWAS results by
a set S of players (i.e., biocenters). Now, it is shown how the previous results are
applied to the situation where up to f of the B biocenters might be colluding.

Theorem 4 (Releases with f 6= 0). For any set S of (B − f) non-colluding
biocenters, if each release i either verifies:

• |Ai,S|+ |Ri,S| ≥ LtoN(L) and |Ai,S| ≥ |Ri,S|, or

• |Ai,S| = 0 and |Ri,S| = 0,

then each combination of releases involves either no genomes from the (B − f)
biocenters at all, or more than LtoN(L) genomes, which prevents an adversary to
successfully launch a privacy attack.

68



Proof. A release that does not contain any additions or removals cannot leak any
private information. We can therefore only reason about combinations of releases
that each satisfy the first condition that was listed. This Theorem is therefore
a direct consequence of Theorem 3, if one considers the genomes that have been
released by a given subset of (B − f) biocenters.

4.5.4 Membership tests to address aggregate statistics re-
leases

DYPS only includes in the GWAS results of the SNPs which depicted safe aggregate
statistics (i.e., that would now allow membership inference). Similarly to safe test
statistics, preventing recovery attacks from aggregate statistics relies on enforcing
a minimum batch size of genome (i.e., Equation (3) in Table 4.1). However, to
provide aggregate statistics while also preventing membership attacks, the current
batch of requests and its combinations with previous releases must verify conditions
(1) or (2) of Table 4.1. To ensure these conditions, DYPS relies on metrics that
bound the identification power achievable over a set of requests (genomes) and
GWAS result to identify over which SNPs to update the GWAS results. DYPS
extends SecureGenome for this verification.

More specifically, given a set of genomes, a set of SNPs, and a set of control
genomes (the adversary knowledge), DYPS determines which SNP positions can
have their allele frequencies safely released by firstly removing very rare allele fre-
quencies (MAF ≤ 0.05), and SNPs in high linkage disequilibrium (p-value below
10−5) among the participating SNPs. After this step, DYPS computes and evalu-
ates the detection power achieved by the singlewise LR or pairwise Λ in order to
decide over which SNPs aggregate statistics can be safely released.

Identifying a set of SNPs to update in a given batch of genome operations
however does not guarantee that the privacy of each genome will never be breached.
Indeed, any release of aggregate statistics can be combined with past releases, and
the genomes that a subset of up to f colluding biocenters contributed can be
removed from the resulting aggregate statistics.

To verify whether a SNP’s single or pairwise allele frequencies can be updated
within a batch of genome operations, DYPS executes an exhaustive verification.
More precisely, for a given SNP, this exhaustive verification (i) gathers all releases
where statistics over the selected SNP have been released, and (ii) verifies that any
combination of these releases have a low enough LR (i.e., identification power rate)
score for the given SNP for any combination of up to f adversary biocenters. The
complexity of this verification scheme is O(L′ · 2R ·

(
B
f

)
), where L′ is the number

of selected SNPs in the current candidate batch, and R is the current number of
releases. In practice, one could simply tune DYPS to limit the maximum number
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of releases it wishes to avoid spending too much time performing verification.
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Figure 4.6: Successive releases of test and aggregate statistics as new genome
addition or removal requests are executed.

Figure 4.6 illustrates some scenarios DYPS might face with aggregate statistics.
In this example, DYPS determined a batch of N1 genomes over which statistics
might be released according to the method we defined for test statistics, over
L1 SNP positions. Using the SNP selection algorithm, DYPS determines that
aggregate statistics over a subset (id1, id2, id3) of those L′ = 3 SNPs can be released
(release 1). In release 2, following the same algorithm, DYPS determines that
aggregate statistics can be released over L′ = 2 SNPs (id1 and id2). DYPS then
verifies whether each combination of previous releases with the current one still
allows aggregate statistics to be released, i.e., the combination of releases 1 and 2.
This verification passes for SNP id1 (represented with plain arrows), which means
that the statistic can be updated, while it does not for SNP id2 (represented with
dashed arrows), which cannot be updated during this release. Over release 3,
DYPS determines that L′ SNPs (id1 and id3) can be released over the selected
genomes. However, the verification process identifies that the aggregate statistics
cannot be released for SNP id3 (because of the combination of releases 1 and 3,
dashed arrow did not pass), while all verification pass for SNP id1 that can be
updated (all combinations of releases are not shown for simplicity).

The next Section 4.5.5 discusses the pseudocode of the algorithm that DYPS
uses to perform the exhaustive verification analysis over existing release and se-
lected SNPs. Posteriorly, Section 4.5.6 explains how DYPS extends the SNP se-
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lection mechanism to pairwise statistics releases.

4.5.5 Pseudocode of DyPS exhaustive verification mecha-
nism for aggregate statistics

At this point, DYPS had already selected a safe batch of requests to use to update
test statistics, as explained in Section 4.5.

DYPS then checks whether aggregate statistics can be updated using the se-
lected batch of requests. This process is shown in the algorithm reported in Algo-
rithm 2.

Algorithm 2 DyPS pseudocode for aggregate statistic releases.
1: procedure DyPS for Agg. statistic releases(S,Rels) // selected set of genomes, list of releases so far
2: Input: set of genomes from selected biocenters.
3: Output: set of SNP positions for safe aggregate statistics releases.
4: Uses: SNPSelection(S,B, f): returns safe SNP positions for a set of genomes S and combi-

nations of
(B
f

)
genome sets; shareGenomes(rel): checks if a release shares genomes with release

rel; AllCombinations(Rel_shared_SNPS): create all combinations of releases that shares SNPs with
Rels_shared_SNPS.

5: safe_SNPs := SNPSelection(S,B, f)
6: for s in safe_SNPs do // for each selected safe SNP
7: for rel in Rels do// for each release so far
8: if (s == rel.s) then // SNP position s has been released in a previous release rel
9: if (S.shareGenomes(rel)) then // candidate release S also shares genomes with previous

releases rel
10: Rel_shared_SNPs.add(rel)
11: end if
12: end if
13: end for
14: end for
15: for combRel in AllCombinations(Rel_shared_SNPs) do
16: testSet := combRel + S // merge participating genomes in both releases
17: checkSafeSNPs := SNPSelection(testSet)
18: if (s in checkSafeSNPs) then
19: continue // this SNP can be released
20: else
21: safe_SNPs.del(s) // cannot find a safe release this SNP this round
22: end if
23: end for
24: return safe_SNPs // set of safe SNPs for candidate release S
25: end procedure
26: computeAggStatistics(safe_SNPs) // compute and release aggregate statistic over the set of selected

SNPs

DYPS first collects the safe SNP positions that can be released given the se-
lected genomes and all combinations of genomes considering up to f adversary
biocenters (line 5). For each selected SNP, DYPS then collects the previous re-
leases where it has been previously updated, and checks whether they involved
genomes that participate in the current batch of genomes (lines 6 to 14). DYPS
then generates and loops over all combinations of releases that share the same
SNPs (lines 15 to 23). For each possible combination, DYPS executes the SNP
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selection software over the resulting set of genomes. If the SNP position s in
safe_SNPs is also found to be safe in testSet, it means that it can be updated,
otherwise, it is ignored. In the end, DYPS has a list of safe SNP positions to be
updated (line 24).

4.5.6 Verification for pairwise statistics releases

In order to extend the mechanism that finds the list of SNPs over which statistics
can be released using a batch of genome operations from singlewise frequencies
to pairwise frequencies, DYPS considers the best of the SecureGenome [San+09a]
approach and pairwise-based LR-tests Tr [Wan+09] and/or Λ [Zho+11]. On single-
wise frequencies, DYPS uses SecureGenome’s strategy to remove SNPs in linkage
disequilibrium, and very rare SNPs (i.e., SNP positions with MAF ≤ 0.05). After
removing those SNP positions, DYPS runs the singlewise-based LR-test to identify
the safe SNP positions.

In addition, DYPS can also verify the probability of re-identifying participants
leveraging pairwise-based LR-tests (using the Tr and/or the Λ metrics) in order to
decide which pairs of SNP positions can also have their pairwise frequency safely
released.

The exhaustive verification for pairwise frequencies follow a similar scheme,
and can be executed in parallel of the verification for singlewise frequencies. It is
important noticing that Tr and Λ provide a membership metric for safe releases
of pairwise statistics. However, they do not apply any SNP pruning mechanism
(i.e., removal of dependent and very rare SNPs). Therefore, DYPS extends the
state-of-the-art by not only offering a mechanism to safely release both types of
allele frequencies but also accomplishing it in a dynamic fashion.

4.6 Experimental evaluation

4.6.1 Experiments setup

It was used both Windows 10 Enterprise and an Ubuntu 18.04 LTS in a 64-bit
machine, equipped with 16 GB of RAM and an Intel i7-8650U @ 2.11.GHz, which
supports Intel SGX. DYPS’s performance is evaluated under several scenarios using
simulated and real genomes. DYPS’ code was run both in Java using Java JDK
12.0.1 and Eclipse IDE (4.11.0), and inside an Intel SGX enclave using Graphene
SGX [TPV17] to implement DYPS in C++, so that it can run inside the SGX
enclave. DYPS uses AES 256 to encrypt messages, and ECDSA for signatures.
When it executes the remote attestation procedure, a biocenter agrees on a key
with the enclave, which it uses to encrypt and sign the data it sends to the enclave,
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while the enclave can verify it upon reception.
During the experiments, each round represents the moment when biocenters

generate genome operation requests that are sent to the enclave, and the enclave
tries to generate a GWAS statistics release. In real settings, rounds would typically
have a one day duration. The biocenters use a Poisson distribution to generate
genome addition or removal requests. The parameters of these Poisson distribu-
tions were set so that biocenters generate more genome additions than removals
since it is expected to reflect reality. For the experiments, based on simulated
or on real genomes, it was assumed a default λ = 8 for additions, and λ = 6
for removals as default. For larger GWAS settings, the value for λ has been pro-
portionally increased. These values were adopted based on the increasing rate of
genome sequencing, and the growing concern about genome privacy risks among
society nowadays. For example, Dankar et al. [Dan+20] have recently evaluated
and claimed the need for the creation of dynamic information consent models ca-
pable of autonomously enabling individuals to opt out of participating in genomic
studies at any time.

The performance of DYPS’ request selection heuristic was compared to a brute
force (BF) mechanism, and a naïve algorithm. The BF approach aims at adding
or removing genomes by assembling batches of genome operations, and checking
whether they are safe by combining them with all previous combinations of data
releases. DYPS scales better than the BF algorithm with the number of data
releases by avoiding this brute force verification for test statistics. The naïve
approach waits for biocenters to collectively have LtoN(L) genomes (additions
or removals) when performing a release. This method can be seen as the current
state-of-the-art, and does not allow genomes removals. It is shown that this method
executed with genome removals leads to privacy risks.

Regarding aggregate statistics, since DYPS is the first dynamic GWAS protocol,
it could only be compared to a static SOTA GWAS algorithm, which would wait
for all requests to have been collected before releasing statistics. To do so, DYPS
is compared with a static approach that would rely on the LR metric [San+09a]
to release singlewise allele frequencies at the end of the experiment. For this
experiment, the default LR parameter values defined in [San+09a] were used: a
MAF cut-off of 0.05, a LD between SNPs cut-off of 10−5, a false positive rate of
0.1, and a true positive rate of 0.9.

DYPS was stressed by simulating the generation of up to 6 million genome
requests studied over up to 300K SNPs to evaluate its performance with test
statistics. In addition, DYPS was also evaluated using two real genome datasets
to evaluate its performance on both test and aggregate statistics: the idash2017
dataset [Pri], which consists of real 2,000 genomes, and the phs001039.v1.p1 dataset
from dbGAP [Wal+11] of an Age-Related Macular Degeneration study, which con-
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sists of 14,860 case genomes and 13,035 control genomes.

4.6.2 Bandwidth, CPU and memory consumption

DYPS uses 64-bits integers to encode the ID fields in a request, except for the pop
and op fields that only require one bit. Overall the size of a request is 258 bits,
which represents approximately 48 Bytes after encryption. A genome is encoded
using 2 bits per SNP, which would represent only 75 KB for a GWAS studying
300,000 SNPs. Given those numbers, bandwidth is not a bottleneck for DYPS
since communications only occur when biocenters asynchronously send requests to
the enclave.
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Figure 4.7: Running time of the brute force and DyPS request selection approach
for test statistics over 5,000 SNPs (LtoN(L) = 38, 040) (B = 4, f = 0).

To measure DYPS’ CPU and memory consumption, it was considered a GWAS
scenario that involves 4 non-colluding biocenters (B = 4, f = 0). Figure 4.7 shows
the CPU running time of the brute force (BF) and of DYPS’ request selection
algorithms during a synthetic GWAS that involves 5,000 SNPs and 20,000 rounds.
DYPS’ SNP selection algorithm has a constant complexity and is very fast (less
than 350 ms), while the BF selection algorithm, with exponential complexity, re-
quires more than 20 seconds after 20,000 rounds.

Figure 4.8 shows DYPS’ performance when deployed in an enclave. Every
point represents a release that took place during the experiment. As can be noted,
DYPS’s selection algorithm for test statistics has a constant running time (and
below 1 ms). In addition, the release construction running time varies according
to the number of requests. The longest release construction running time was
below 500 ms in a release with 38,059 genome operations, and the average during
the experiment was 269 ms. With similar settings, DYPS was executed inside an
SGX enclave for conducting a GWAS studying 300,000 SNP positions and with

74



2500 5000 7500 10000 12500 15000 17500 20000
Number of rounds

0

100

200

300

400

500

600

CP
U 

Ti
m

e 
(m

s)

DyPS release construction
DyPS selection algorithm

Figure 4.8: Running time of DyPS request selection approach for a test statistics
over 5,000 SNPs (LtoN(L) = 38, 040) inside the SGX enclave (B = 4, f = 0).

four biocenters. Although DYPS was able to add 6,078,551 genomes and to remove
899,278 genomes, it was observed similar behavior for the CPU running time.

DYPS’ memory consumption in the SGX enclave was also monitored assuming
different system settings (i.e., varying number of B and f). A significant change in
memory consumption was not observed, which stays around 2 MB per round when
the numbers of participating and colluding biocenters evolve. This is expected,
since genomes are stored encrypted outside of the enclave and at a given time,
only a limited number of genomes are loaded into the enclave’s memory to be
processed.

4.6.3 Naïve dynamic release vs. DyPS

Now, DYPS’ releases performance in terms of number of releases and number of
requests is compared to a naïve approach. More specifically, the number of releases
that can be performed by the naïve approach, which updates GWAS results as
soon as more than LtoN(L) genomes are collected without making sure that the
combination of these releases are also safe, to the number of releases that DYPS
performs. Figure 4.9 reports the number of releases for both approaches, where
the label of a bar plot reports the number of rounds for which the experiment ran
(i.e., the value of r), and the number of SNPs per GWAS (i.e., L).

Figure 4.9a shows the corresponding number of releases done by each approach,
and for the naïve approach shows the number of releases for which a genome was
at risk. Up to 4.98% of the releases contained at least one genome that was at risk.
Figure 4.9b shows the number of genomes that were added, or removed by each
method during the experiments. It also shows how many genomes were at risk with
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Figure 4.9: Comparison between the naïve release approach and DyPS under
different scenarios (r rounds, and L SNPs) for (B = 4, f = 0).

the naïve release approach. Overall, the naïve approach was only able to consider
at most 11% more genomes than DYPS, and exposed up to 8% of the genomes
to privacy leaks (i.e., recovery attacks). Even though DYPS updates the GWAS
results less frequently, which is to be expected, it is overall of low consequence on
the number of considered genomes. In addition, DYPS enforces that no genome is
at risk.

4.6.4 Impact of dynamic SNP-set scaling

To measure how DYPS’ scaling mechanism approach reduces the treatment delay
of requests, the effect of the dynamic SNP-set scaling mechanism was measured.
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In particular, it was simulated a situation where the number of rounds is limited,
and L (the number of SNPs) is large, such that DYPS without dynamic scaling
could create only a limited number of releases whereas DYPS was able to create
more and earlier releases.
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Figure 4.10: DyPS with or without dynamic SNP-set scaling - round delays for a
GWAS consisting of 3,000 SNP positions (LtoN(L) = 21, 600) (B = 4, f = 0).

Figure 4.10 provides the round delays for both approaches per type of genome
operation (addition or removal). DYPS without the dynamic release mechanism
was able to perform a single release (additions of 21,602 genomes), represented by
the square at the 908th round (with an average round delay above 430 rounds),
during the whole experiment, but could not remove any released genomes. On the
other hand, DYPS with dynamic scaling was able to execute 11 secure releases,
varying among diagonal, vertical and horizontal releases. One can also observe
that DYPS treated genome additions and removals with very similar delays (the
star markers), and that the dynamic mechanism has an order of magnitude lower
delay. One can also notice that the time to release of requests increases as the
number of SNP positions L increases over time, even when using dynamic SNP-
set scaling since more genomes operations are required per batch of requests to
ensure privacy.

It was then measured the number of pending operations, and the overall num-
ber of applied genome operations. Figure 4.11a and Figure 4.11b respectively
report those numbers for DYPS with or without dynamic scaling. DYPS without
dynamic scaling was not able to apply any removal requests during the experiment.
Moreover, at the end of the experiment, 14,119 genome addition and 3,572 genome
removal requests were still pending. In total, 21,602 genomes have been added and
none were removed. In contrast, DYPS could publish more safe releases starting
from the first round. The experiment was ended at the 1250th round to compare
the performance of both approaches. At that point DYPS was able to add 22,179
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Figure 4.11: DyPS without and with dynamic scaling of the SNPs set for a GWAS
consisting of 3,000 SNP positions (LtoN(L) = 21, 600) (B = 4, f = 0).

and to remove 7,580 genomes. At the end of the experiment, 19 genome additions
and 2 genome removals remained, which represented a decrease of more than 99%
for both cases when compared to DYPS without dynamic scaling.

The CPU running time of the two versions was also compared. It was noticed
that DYPS with dynamic scaling has a slight increase of CPU time when compared
to DYPS without scaling, due to the fact that it needs additional analysis to
dynamically evaluate and safely decide the increasing of the number of SNPs over
which statistics are released. However it still remains practical and a magnitude
lower than the BF approach for the selection of requests (which does not consider
a dynamic scaling scheme).
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4.6.5 Impact of colluding biocenters

In this section, DYPS’ performance with colluding biocenters is evaluated. For this
experiment, it was considered an increased number of biocenters (seven biocenters)
and several values for the number of colluding biocenters (f). This experiment was
performed in the enclave. Figure 4.12 illustrates the pending rounds for addition
and removal requests per update of the GWAS results for varying number f of
colluding biocenters. As one could expect, when more biocenters collude the re-
quests are applied with more delay, since it takes more time to assemble larger
sets of requests, which are required for safety when facing more adversaries. For
example, with the first threat model (f = 0), the average number of pending
rounds was 10.13 and 10.11 for addition and removal requests, respectively. On
the other hand, with f = 5 and f = 6, the average processing delays were equal to
52 and 71.25 rounds for additions, and 53 and 60.2 for removals, respectively. An
interesting event happens in Figure 4.12b for the B = 7, f = 6 line where there is
a very small delay at the 200th round. It is explained by the fact that a release
was created with the genomes of a single biocenter, in the 181st round (first release
in Figure 4.12a), and then after just 19 rounds, this same biocenter was able to
execute removal requests at the 200th round, which explains the short delay.

Table 4.2 details the number of genome additions and removals, the number
of releases, and the average addition and removal request delays under several
scenarios. As expected, fewer addition and removal operations are executed when
facing stronger adversaries. However, the numbers decrease by at most 8.34%
for the additions, and 26.57% for the removals when comparing without collusion
(f = 0) to six colluding biocenters over seven (f = 6). The latter number is
explained by the fact that DYPS does not currently wait to perform requests,
and because removals require that sufficiently enough additions are simultaneously
executed.

Table 4.2: Average number of processed addition and removal requests, number
of GWAS releases, and average round delays for addition and removal requests
depending on the number of colluding biocenters.

Threat Model (B, f) #Additions, #Removals, #Releases, #Add. round
delays, #Rmv. round delays

B = 7, f = 0 55,435 / 19,917 / 46 / 10.13 / 10.1

B = 7, f = 1 55,093 / 19,421 / 24 / 19.75 / 10.9

B = 7, f = 2 55,013 / 19,692 / 24 / 19.96 / 20.1

B = 7, f = 3 54,353 / 18,984 / 19 / 24.84 / 24.6

B = 7, f = 4 54,033 / 18,825 / 14 / 33.93 / 33.6

B = 7, f = 5 52,655 / 17,994 / 9 / 52.0 / 51.0

B = 7, f = 6 50,813 / 14,625 / 12 / 71.25 / 60.2
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(a) Time to release in rounds for genome addition requests.

(b) Time to release in rounds for genome removal requests.

Figure 4.12: (B − f) DyPS: Time to release in rounds for genome requests for a
GWAS consisting of 300 SNP positions (LtoN(L) = 1, 598) during 1,000 rounds,
and different number of possibly colluding biocenters.

4.6.6 SNP selection for aggregate statistics

DYPS’ releases of aggregate statistics depend on the SNP distribution among the
set of added genomes. DYPS is first evaluated using the idash2017 dataset [Pri],
which consists of 2,000 real genomes (1,000 case and 1,000 control). All the
genomes in the control set was used as the adversary knowledge when launch-
ing the membership attack. For aggregate statistics, DYPS’ release mechanisms
require more extensive computations when the number of previous releases and
when the number of genomes used per release increase (cf. Section 4.5.4). There-
fore, it was primarily considered scenarios where f = 0, because it maximizes the
number of releases and their size. This section considers a GWAS that studies a
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small set of L SNPs (i.e., the top 10 most significant SNPs) so that releases are
more frequent. Given these parameter values, it can be studied the worst case of
the exhaustive verification procedure (i.e., more combinations to be checked).

Figure 4.13: Running time for the different steps of DyPS execution for a GWAS
studying 10 SNP positions (B = 5, f = 0). Reference group size: 1,000. Total
number of real genomes used: 2,000.

Figure 4.13 details DYPS’ CPU consumption during each round per category:
request handling, request selection, SNP selection for aggregate statistic release,
exhaustive verification, and total round processing. Each CPU running time peak
happened when a round resulted in a release of GWAS statistics. DYPS’ selection
algorithm, which runs for every round, used less than 200 ms for almost each round,
and less than 1 second overall, which is very reasonable given that sequencing a
genome usually requires around 1 day. For the largest measured value, obtained
in the 42nd round, DYPS verified more than 2,359,296 combinations of releases
in the enclave. The largest part of the computation was used by the exhaustive
verification process for aggregate statistics release.

4.6.7 DyPS vs. static release of aggregate statistics

Next evaluation compares DYPS with a state-of-the-art static release algorithm
over a larger set (the top 1,000 SNPs) of the idash2017 dataset in Figure 4.14.
More precisely, it was measured over how many SNPs both approaches are able
to release aggregate statistics only, which enables frequent updates. The LR-
metric [San+09a] was used to decide whether singlewise frequencies can be re-
leased. The static release method identified that singlewise frequencies could be
safely released over 45 SNPs out of the 1,000 studied, using the full set of genomes
remaining at the end of the experiment (i.e., in only one release - the dashed bar).
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Figure 4.14: Comparison between a static approach and DyPS for releases of
aggregate statistics for a GWAS studying 1,000 SNP positions (B = 5, f = 0).
Reference group size: 1,000. Total number of real genomes used: 2,000.

On the other hand, the number of selected SNPs for DYPS varied according to
the rounds, as expected, that is, in each different round, a different distribution
of genomes participated in a release and, therefore, the set of SNPs over which
statistics can be released evolves. The maximum number of SNPs DYPS released
during the experiment was 70, while small releases, which do not prevent previous
releases to be accessed, were more frequent. Note that in this experiment, DYPS
released aggregate statistics after every round, while test statistics would not have
been updated as frequently. Therefore, one can conclude that DYPS not only
provides more frequent releases but also over a largest set of SNP positions. In a
similar scenario with 350 SNPs, DYPS was able to release 2.6 times more statistics
(i.e., multiple safe releases with at most 44 SNPs instead of 17 only released once).

Figure 4.15 illustrates the results of the CPU running time. As can be noted,
in the 44th round a more extensive verification took place, which has checked
4,972,331 combinations of releases in total. The running time was 1,467 millisec-
onds. Furthermore, comparing to Figure 4.13 experiment with 10 SNPs, there is
now an expected slight increase in the SNP selection software algorithm running
time (star marker line) because now a larger number of SNPs have been checked.
Nevertheless, even increasing the SNP-set size by 100x times (from 10 to 1,000
SNPs scenario, the longest time have just approximately doubled in average (200
to 500 ms). Similarly, the longest time for the exhaustive verification, took ap-
proximately 2,000 ms in the 42nd round.

As expected, the presence of colluding biocenters on aggregate statistics im-
pacts the performance of DYPS. In particular, when facing colluding biocenters,
DYPS has to evaluate more combinations of genomes considering potential combi-
nations colluding biocenters might form. This results in an increased running time
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Figure 4.15: Running time for the different steps of DyPS for a GWAS studying
1,000 SNP positions (B = 5, f = 0). Reference group size: 1,000. Total number
of real genomes used: 2,000.

due to the additional verifications. Considering the same scenario, and now using
f equals to (B − 1), we can notice that DYPS’s running time increases slightly.
Figure 4.16 shows the computation time required by DYPS when the number of
colluding biocenters is either 0 or B − 1, where B = 5. In particular, in this
new experiment the peak and average running time for f = 0 were 1,612 and 896
milliseconds, respectively. Whereas for the f = 4 case, it took 2,348 and 1,212
milliseconds.

Figure 4.16: Running time for f = 0 and f = 4 with aggregate statistics computed
over 1,000 SNP positions. Reference group size: 1,000. Total number of real
genomes used: 2,000.
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4.6.8 DyPS over a large-scale GWAS

DYPS’ performance was also evaluated over another another real genome dataset,
dbGAP phs001039.v1.p1 [Wal+11], which consists of more than 35,000 genomes
from which 27,895 could be used under the General Research Use (GRU) consent,
of which 14,860 genomes are cases and 13,035 are controls, respectively. The
SNP positions that appear in both cohorts are studied. The chromosome 1 was
considered for this experiment as it is the chromosome with the largest number
of remaining SNPs. It was considered 5,000 SNP positions to evaluate DYPS’s
algorithm over this larger dataset. Besides, both the addition and removal lambda
parameters were multiplied by 16 (λ = 128 for additions and λ = 96 for removals),
so that more genome operations are generated per round. It was considered the
whole control dataset (13,035 genomes) as the adversary reference group.

Figure 4.17 shows the performance of DYPS over this larger dataset. Overall,
12,418 genomes were added, and 5,120 genomes were removed. Compared to the
experiment in Figure 4.15, this experiment had an expected longer running time
(average of 207 seconds, and peak of 2,500 seconds, when a cohort made of more
than 27,800 genomes was studied) for the SNP selection algorithm because of the
larger genomes cohort (i.e., more participating genomes and a larger reference
group). On the other hand, Figure 4.17 shows a shorter running time for the
exhaustive verification step due to a smaller number of SNP positions over which
statistics could be released. This was because most of the SNP positions were being
filtered out by the linkage disequilibrium and MAF step of DYPS over previous
rounds.

Figure 4.17: Running time for the different steps of DyPS execution for a GWAS
studying 5,000 SNP positions (B = 5, f = 0). Reference group size: 13,035. Total
number of real genomes used: 27,895.
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In addition, in scenarios where DYPS deals with a larger number of SNPs, it
could rely on existing SNPs batching mechanisms inside enclaves, such as [Che+16b],
in which SNPs are firstly separated in batches of equal size, and processed sepa-
rately. Later, SNPs in different batches are processed in a crossed-over manner in
order to keep a global set of safe SNPs updated as batches are processed.

Table 4.3: DyPS’ average memory consumption inside the enclave depending on
several controls group sizes and 5,000 SNPs.

(#B / #f) DyPS inside enclaves Average Memory Consumption (KB)

(B = 5/f = 0), controls: 1,000 2,160

(B = 5/f = 0), controls: 5,000 2,224

(B = 5/f = 0), controls: 7,500 2,228

(B = 5/f = 0), controls: 10,000 2,228

(B = 5/f = 0), controls: 13,035 2,228

DYPS’ memory consumption is reported in Table 4.3 when different sizes of
control groups (i.e., adversary reference groups) are used. The memory consump-
tion of the machine was identical to the one reported in previous experiments,
i.e., around 2 MB. DYPS can therefore support a large number of genomes and
SNP positions without significant performance penalty. Overall, the memory con-
sumption stays well below the theoretical 128 MB (of which only 96 MB is usable
without paging [CD16]) memory limitation of SGX enclaves.
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Chapter 5

Privacy-preserving Interdependent
GWASes (I-GWAS)

Chapter 4 offered methods to achieve dynamic, privacy-preserving and secure fed-
erated processing properties to enable several properties of practical GWAS. Never-
theless, the presented contributions are still insufficient to cover all the properties
of practical GWAS that are envisaged in this thesis. This chapter addresses the
remaining challenges. Namely, identifying new safe conditions for the creation of
dynamic safe releases under the presence of interdependent GWASes, which en-
compasses the property (iv) of practical GWAS, i.e., offering solutions to enable
safe releases of potentially overlapping GWASes.

The decreasing genomic sequencing costs motivated a trend towards sharing
the results of independent GWASes on different phenotypes to construct multi-
omics datasets [Im+12]. As a consequence, some studies might consider the same
SNP positions and/or use the same genomes that have participated or will be used
in other studies. For example, a particular individual whose genome is present in
the control population of several studies or a certain individual that coincidentally
participated in two different GWASes belonging to the case population, e.g., a
person that has diabetes and high blood pressure and participated in two studies
separately. This problem can also be extended to a scenario where an external
adversary can observe overlapping GWASes releases from several federations, and
then being able to circumvent the conditions that were presented to safely release
single-GWAS results (see Chapter 4).

This chapter argues theoretically and confirm experimentally that both naïve
and individually-safe releases enable privacy attacks in such multi-GWAS settings.
For instance, it is shown that an adversary exploiting as little as two GWASes,
can learn about the participation of involved individuals by performing a mem-
bership attack if no further protection is enforced. In addition, the adversary can
reconstruct genetic variations of up to 28.6% of the participants by launching a
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recovery attack, even if individually each GWAS release is safe. Furthermore, it
shows that overlapping studies need to follow new conditions for safe GWASes re-
leases, otherwise, private genomic data can be leaked even from the observation of
“safe” single-GWAS releases. In particular, it contributes precise conditions under
which interdependent GWAS preserve the privacy of the individuals who share
their genetic data.

To address these issues, this chapter introduces I-GWAS as a privacy-aware
solution for releasing to the public the results of interdependent and dynamically
updated genome-wide association studies. I-GWAS successfully prevents privacy
risks from such interdependent GWASes by discarding from the studies only those
genetic variations that are vulnerable to membership inference attacks, and by
selecting safe batches of genomes for the requested GWAS that can be safely
used while mitigating recovery attacks. Moreover, I-GWAS similarly prevents
membership attacks thanks to the SecureGenome LR-test, which provides an upper
bound for the likelihood to learn about the membership of an individual in the
case group. Nonetheless, such a LR-test is conducted in a crossed-over manner so
that several combination of exposed SNPs and genomes among several studies are
checked. I-GWAS uses the same TEE-enabled architecture of DYPS, and therefore
can be seen as an extension of DYPS’ protocol so that the GWAS federation can
also conduct and releases multiple GWASes at same time.

5.1 I-GWAS’ system and threat models

I-GWAS system and threat models slightly differ from DYPS. In particular, I-
GWAS assumes that federations conduct several GWASes at the same time. These
multiple studies might share some genomes, or consider the same SNPs. I-GWAS’s
models are described in the following:

System model. I-GWAS assumes a similar scenario as DYPS. However, it as-
sumes dynamic releases of multiple and potentially overlapping GWASes. There-
fore, there is a federation comprised of B biocenters, {bioc1, · · · , biocB}, each se-
quencing genomes and requesting the addition to or removal of individuals from
the federation. Now, in contrast to DYPS, the federation jointly operates on a set
of P phenotypes {p1, · · · , pP}, which they study using several GWASes. Each pi
represents a study with a corresponding set of SNPs and genomes, possibly added
or removed dynamically to continuously update results. All genome operation re-
quests sent by the biocenters are treated in FIFO order. All requests are evaluated
in rounds, and I-GWAS certifies that a safe batch of requests (that meets the in-
terdependent GWASes criteria) can be selected. If a safe batch of genomes cannot
be found in a round, I-GWAS aborts the round. Eventually, a safe release will
take place as new genome requests come over time.
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Similar to DYPS, it is assumed that all GWASes release allele frequencies or
test statistics, and such statistics are only released after the evaluation of privacy
risks in interdependent and heterogeneous GWASes are evaluated.

I-GWAS gives the conditions under which such operations preserve the privacy
of the individuals who share their genetic data for the purpose of public releases
of GWASes. I-GWAS also receives all genome data and requests in an encrypted
form and performs the safe interdependent release conditions analysis inside the
TEE enclave. In summary, I-GWAS determines the minimal number of genomes
each GWAS should use for any type of statistics to prevent recovery attacks, and
performs additional checks on the actual statistics to release to prevent membership
attacks. Moreover, I-GWAS assume that no information leaves the TEE before I-
GWAS explicitly releases it and that cryptographic primitives are secure. In other
words, resulting statistics are only released after the evaluation of privacy risks
in interdependent and heterogeneous GWASes are evaluated. I-GWAS precises
the conditions under which interdependent GWAS preserve the privacy of the
individuals who share their genetic data.

Threat model. I-GWAS assumes that all biocenters in the federation are
trusted to follow the protocol and to provide high-precision data [Pas+21; Zha+18;
Sad+18; Che+17a; Rai+18]. In case of Honest-but-Curious (HbC) biocenters, I-
GWAS is used in combination with DYPS (presented in Chapter 4) to enforce the
safe release of results when facing colluding members. As in DYPS, I-GWAS as-
sumes the threat of an external probabilistic polynomial-time adversary capable of
observing released GWASes results, which it uses to mount recovery and member-
ship attacks [Hom+08; San+09a; Pas+21; Zho+11]. Nevertheless, these releases
might overlap, thus demanding new safe release conditions explained during this
chapter.

Workflow overview. I-GWAS proceeds using the same pipeline as DYPS. To
avoid repetition, Section 4.4 should be recalled. For the sake of completeness, the
workflow is briefly summarized (and illustrated in Figure 5.1) in the following:
(1) Before a biocenter starts interacting with the TEE, it remotely attests the
authenticity of the hardware, software, and configuration of the TEE and finally
establishes a secure connection with it. (2) Each biocenter locally encrypts and
transfers data to the TEE, i.e., new genomes and their corresponding requests to
add genomes to a study or to remove their participation from existing studies.
(3) Upon reception of requests, the TEE decrypts the genomes, includes them in
the data structures it maintains, and selects a batch of genomes (ideally including
the newly added genomes) that can be safely used for a candidate release while
impeding recovery attacks. Next, I-GWAS performs its extended LR-test analysis
to evaluate the feasibility of membership attacks on the selected genome set merged
with potentially overlapping releases. Only SNPs that would not allow such an
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Figure 5.1: I-GWAS system and threat model.

attack will be considered in the study. (4) Finally, the TEE uses the data (genomes
and SNPs) selected in step (3) to compute and release the actual GWAS statistics.
The TEE periodically executes this workflow.

5.2 Safety conditions for interdependent GWASes

The overlapping region of SNPs and genomes from multiple GWASes can be lever-
aged by adversaries to reduce the solution space for inferring the matrices that
verify an observed statistical result or update. This section reviews recovery at-
tacks and extend the safety conditions proposed by Zhou et al. [Zho+11] and DYPS
(Chapter 4) for interdependent GWASes.

Figure 5.2 illustrates two studies GWAS1 and GWAS2 that release statistics
over L1 SNPs and N1 genomes, and over L2 SNPs and N2 genomes, respectively.
The studies overlap in Novl genomes and Lovl SNPs. Individually, both studies
fulfill DYPS safety condition, that is, |S1|>|D1| and |S2|>|D2|. However, leverag-
ing knowledge about the overlapping regions of GWAS1 and GWAS2, adversaries
might be able to reduce the search space for each possible situation in which these
studies may overlap (i.e., evaluating addition, subtraction and union mappings
over releases’ solution spaces). Eventually, if the solution space of a combination
of releases is not large enough (i.e., |D| ≈ |S| [Zho+11]) such a combination might
be subject to a recovery attack.
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Next, it is given a formal analysis of the complexity of the search space when
adding, subtracting and taking the union of statistical results for single and pair-
wise allele frequencies, and also for test statistics when releases can be combined
and leveraged by adversaries to circumvent privacy conditions in place

Figure 5.2: Illustration of two overlapping GWASes.

5.2.1 Recovery attack mappings

This section describes the statistics an adversary is able to compute from the
results of two GWASes (for example, by observing two releases as in Figure 5.2).
In particular, GWAS1 and GWAS2 release two maps m1 and m2 that associate
SNPs to its allele frequency, counts or test statistics (V1, V2) in N1 and N2.

From the presented formulas, one can verify the formulas that are provided in
the next sections for several search spaces an adversary has to infer, i.e., Dadd,
Dsub, Dunion, Sadd, Ssub, and Sunion for allele frequencies and for test statistics.

Singlewise statistics mapping. From the m1 and m2 maps in Figure 5.2 an
adversary can compute three other maps, madd, msub and munion, whose elements
are defined over L1 ∪ L2 as follows:

madd[i] =


m1[i] if i ∈ L1\L2

m2[i] if i ∈ L2\L1

m1[i] +m2[i] if i ∈ L2 ∩ L1

msub[i] =


m1[i] if i ∈ L1\L2

−m2[i] if i ∈ L2\L1

m1[i]−m2[i] if i ∈ L2 ∩ L1
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munion = {(m1,m2) ∈ {0, 1}(L1·N1) · {0, 1}(L2·N2)

|m1[i, j] = m2[i, j] for (i, j) ∈ (Novl, Lovl)}

Pairwise statistics mapping. Following the same idea, from m1 and m2, one
can compute other maps, madd, msub and munion, whose elements are defined for
(i, j) ∈ N1 or (i, j) ∈ N2 as follows:

madd[i, j, p, q] =



m1[i, j, p, q] if (i, j ∈ L1\L2)∨(i ∈ L1\L2∧j ∈
Lovl)

m2[i, j, p, q] if (i, j ∈ L2\L1)∨(i ∈ L2\L1∧j ∈
Lovl)

m1[i, j, p, q]+
m2[i, j, p, q]

if i, j ∈ Lovl

msub[i, j, p, q] =



m1[i, j, p, q] if (i, j ∈ L1\L2)∨(i ∈ L1\L2∧j ∈
Lovl)

−m2[i, j, p, q] if (i, j ∈ L2\L1)∨(i ∈ L2\L1∧j ∈
Lovl)

m1[i, j, p, q]−
m2[i, j, p, q]

if i, j ∈ Lovl

munion = {(m1,m2) ∈ {0, 1}(L1·N1) · {0, 1}(L2·N2)

|m1[i, j, p, q] = m2[i, j, p, q] for (i, j, p, q) ∈ (Novl, Lovl)}

5.2.2 Singlewise allele frequencies search space analysis

In this case, GWAS1 and GWAS2 release two maps m1 and m2 that associate
a SNP to its minor allele counts (V1, V2) in N1 and N2. The space of possi-
ble solutions for addition is therefore |Sadd| = 2L1·N1+L2·N2−Lovl·Novl and |Ssub| =
2L1·N1+L2·N2−2·Lovl·Novl for subtraction. The latter formula comes from the fact that
values in the intersection of the two matrices are canceled out under subtraction.
Intuitively, |Sunion| = |Sadd|.

For the frequency spaces, we obtain |Dadd| and |Dsub| by computing the product
of the number of possible values for each SNP that they contain:
|Dadd| = (N1+1)L1−Lovl · (N2+1)L2−Lovl · (N1+N2−Novl+1)Lovl .
|Dsub| = (N1+1)L1−Lovl · (N2+1)L2−Lovl · (N1+N2−2Novl+1)Lovl .
|Dunion| is the product of the frequency spaces of both releases divided by the

frequency space over the overlapped area: |Dunion| = (N1+1)L1 ·(N2+1)L2

(Novl+1)Lovl
.
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5.2.3 Pairwise allele frequencies search space analysis

This analysis produces the pairwise statistics mappings that associate tuples (i, j, p, q)
to pairwise allele counts in the respective datasets. Here, i, j denote the SNPs and
p, q the allele types as in [Zho+11].

The solution space complexities for |Sadd| and |Sunion| are the same as for
singlewise allele frequencies. In contrast, |Ssub| = 2L1·N1+L2·N2−(Lovl·Novl), because
msub depends on the values in the intersection (i.e., (i, j) ∈ (Novl, Lovl)), which are
canceled out.

Like in the singlewise frequencies case, |Dadd| and |Dsub| are obtained by com-
puting the product of possible values of the SNPs over the released frequen-
cies. Let |DN1| = (N1 + 1)(

L1−Lovl
2 )+(L1−Lovl)·Lovl+(L1−Lovl) and |DN2| = (N2 +

1)(
L2−Lovl

2 )+(L2−Lovl)·Lovl+(L2−Lovl). Then,
|Dadd| = |DN1| · |DN2 | · (N1+N2−Novl+1)Lovl+(Lovl2 ).
|Dsub| = |DN1 | · |DN2| · (N1+N2−2Novl+1)Lovl+(Lovl2 ).
|Dunion| is the product of the frequency spaces divided by the frequency space

of the overlapped area: |Dunion| = (N1+1)
L1+(L1

2 )·(N2+1)
L2+(L2

2 )

(Novl+1)
Lovl+(Lovl2 )

.

5.2.4 Test statistics search space analysis

From a GWAS release, apart from observing the sets of SNPs L and genomes N
that participated in a study, adversaries can also observe the p-values statistics
of the χ2 test along with the r2 values of linkage disequilibrium. However, the
r2 values encompass fewer information than pairwise frequency statistics from the
adversary’s perspective [Zho+11; Wan+09], which leads to the safety condition

|R2| = (N+1)
L+(L2)

2(
L
2)

being smaller than |D| = (N + 1)L+(L2).

We can therefore derive the solution space analysis for test statistics using
the same approach as for pairwise frequency space analysis (which is actually the
theoretical upper bound since other allele frequencies, such as singlewise frequen-
cies, can be derived from them): |Sadd| = |Sunion| = 2L1·N1+L2·N2−Lovl·Novl and
|Ssub| = 2L1·N1+L2·N2−(Lovl·Novl).

Test statistics space complexities are derived from the product of possible values
for the SNPs over the released test statistics with |DN1 |, |DN2 | as above: |R2

add| =
|DN1

|

2(
L1−Lovl

2 )+(L1−Lovl)·Lovl
· |DN2

|

2(
L2−Lovl

2 )+(L2−Lovl)·Lovl
· (N1+N2−Novl+1)

Lovl+(Lovl2 )

2(
Lovl
2 )

.

|R2
sub| =

|DN1
|

2(
L1−Lovl

2 )+(L1−Lovl)·Lovl
· |DN2

|

2(
L2−Lovl

2 )+(L2−Lovl)·Lovl
· (N1+N2−2Novl+1)

Lovl+(Lovl2 )

2(
Lovl
2 )

.

|R2
union| is computed as the product of the test statistics spaces of both releases
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over the overlapping area: |R2
union| =

(N1+1)
L1+(L1

2 )

2
(L1

2 )
· (N2+1)

L2+(L2
2 )

2
(L2

2 )

(Novl+1)
Lovl+(Lovl2 )

2
(Lovl2 )

.

In addition, although estimating correct values of r2 (to measure associations
between SNPs that can be used to facilitate attacks) from GWAS test statistics
is NP-hard [Zho+11], I-GWAS not only conducts the searching space analysis
(assuming the full SNP-set L) but also certifies that SNPs found to be in linkage
disequilibrium do not have their statistics released (during the LR-test phase).
Such a more conservative approach impedes adversaries from leveraging LD to
mount attacks.

5.2.5 Protecting interdependent GWASes against recovery
attacks

As analyzed before, releases of interdependent GWASes need to satisfy new safety
bounds that can lead to unsafe situations if ignored. In particular, these new
bounds enforces that the conditions of Equation 4.1 also holds for overlapping
releases so that the solution space of combinations of releases is assured to be
sufficiently large.

Next sections detail how I-GWAS protects the release of statistics against
recovery attacks using sequential releases, which assumes that studies are dynam-
ically updated as new genomes are sequenced and/or removed. It starts by pro-
viding the intuition behind the release of GWAS statistics using an example where
only one interdependent GWAS has been previously released, before generalizing
to G GWASes.

5.2.6 Sequential releases of GWASes

Let us assume that a first GWAS — GWAS1 —has released statistics over L1

SNPs with N1 genomes, and that a second, GWAS2, aims at releasing statistics
over L2 SNPs. Furthermore, let us recall LtoNsingle(L) function from DYPS, which
represents the minimum number of genomes one should combine to release the
results of an independent GWAS on L SNPs. Our approach consists in increasing
the number N2 of genomes that GWAS2 uses so that the new safety bounds for
interdependent releases are verified. Particularly, it is discovered that releasing
GWAS2 with LtoNsingle(L2) genomes is not safe when overlapping genome data is
present.

Figure 5.3 shows the smallest safe value forN2 when L1=1, 000 andN1=LtoNsingle(L1),
and when Lovl ∈ [0, L1] and Novl ∈ {N1

2
, N1}. In this figure, the default line repre-

sents LtoNsingle(L2), i.e., the formula that assumes individual releases. By observ-
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ing the behavior of N2, one can notice that depending on the attack (i.e., targeting
the addition, subtraction, or union), N2 exceeds LtoNsingle(L2). By observing the
behavior of N2, one can notice that depending on the attack (i.e., targeting the
addition, subtraction, or union), N2 exceeds LtoNsingle(L2). In such situations, it
is identified that interdependent releases are not safe if relying on LtoNsingle(L2).
In addition, it can be noticed that protecting against the union and addition attack
always requires more genomes than for the other cases.

On the other hand, it can be noticed that the addition and subtraction attack
lines against r2 releases (Fig. 5.3 (b)) always stay below the default line. Note
that the lines plotted for the addition and subtraction mappings overlap each
other at the bottom of the chart). This means that adding or subtracting r2

values to launch a privacy attack is not practical and matches previous works
findings [Zho+11; Wan+09].

Another finding is that the addition and subtraction attack lines against r2

releases (Fig. 5.3 (b)) always stay below the default line (note that the lines plotted
for the addition and subtraction mappings overlap each other at the bottom of the
chart). This means that adding or subtracting r2 values to launch a privacy attack
is not practical and matches previous works findings [Zho+11; Wan+09].

Interestingly, one can also notice that N2 decreases when Lovl increases for all
type of attacks. This downwards behavior comes from the fact that the solution
spaces (e.g., |Sadd|) grow faster than the frequency spaces (e.g., |Dadd|) with Lovl,
and because a recovery attack is deemed possible depending on their ratio (e.g.,
|Sadd|/|Dadd|) [Zho+11].

In summary, interdependent releases are safe when the space analysis for each
type of attack is kept within safe boundaries, i.e., the combined solution space
between the releases is sufficiently larger than their combined frequency spaces. In
particular, the number N2 of genomes required to protect interdependent releases
depends on Lovl and Novl. For instance, for these experiments, if such conditions
are not enforced, up 28.6% of the genomes are vulnerable to recovery attack,
i.e., their genotype sequence might be inferred if overlapping data is not properly
considered by the privacy-protection mechanism.

Therefore, to mitigate recovery attacks, I-GWAS identifiesN2 such that |Sop|>|Dop|
for op ∈ {add, sub, union} given the overlaps a study has with previous GWAS.
For pairwise allele frequencies and for test statistics, the union attack provides the
theoretical bound for interdependent releases. Hence, it is sufficient to check that
N2 verifies |Sunion|>|Dunion|. For singlewise allele frequencies (not illustrated in
Fig. 5.3 for space reasons), the subtraction attack defines the safety bound. In
summary, I-GWAS selects the largest bound as the safety threshold and apply its
conditions when selecting safe batches of genomes for the creation of safe releases.
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Figure 5.3: Smallest number of genomes N2 that a GWAS that overlaps with
a previous GWAS should use for a safe release depending on their overlapping
SNP-set size (Lovl) and genomes set size (Novl).

5.2.7 Scaling with the number of GWASes

This section shows how I-GWAS method extends to the case where G GWASes
have previously released statistics. Let us note |Si| the solution space for a given
GWASi, and |Di| its frequency set space. It is presented only the analysis for the
pairwise frequency space. The analysis for the other statistics (i.e., singlewise and
r2) is similar.

Before introducing I-GWAS’ solution for multiple releases of interdependent
GWASes, let us first discuss an intuitive solution to this problem. Indeed, to
enforce that several interdependent releases are safe, one could compute all possi-
ble combinations of existing releases. Then, measure and evaluate if the solution
space is sufficiently large given the released statistics space. Such a brute force
approach is secure but has exponential complexity and is not reasonable in prac-
tice [Pas+21]. Motivated by that, I-GWAS offers a novel solution with linear
complexity. I-GWAS relies on the following Theorem that defines how and when
multiple interdependent GWASes can be dynamically released without infringing
on the genomic privacy of their participants.

Theorem 5 (Safe releases of interdependent GWASes). For every GWASi and
GWASj, if (1) |Si|>|Di| and (2) |Sj ||Dj | >

∏
i 6=j |Si ∩ Sj|, then any combination of

releases from GWASi and GWASj involves enough genomes to prevent recovery
attacks.

Proof. The very first release of a GWAS in the federation does not overlap with
any other GWAS, and meets the condition for independent GWAS releases, i.e.,
|Si|>|Di|. The release is safe.
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Let us assume that any combination of i ≥ 1 GWAS releases is safe. Let
further j be the ID of the (i+1)-th GWAS, {S1, S2, ..., Si} the sets of the i previous
GWAS solution spaces, and {D1, D2, ..., Di} their corresponding frequency spaces.
All these GWASes also contain enough genomes to meet the single-GWAS safe
condition (i.e., |Sj|>|Dj|). Then the inclusion-exclusion formula states that

|
i⋃

j=1

Ej| =
∏g

j=1 |Ej|∏
1≤j<k≤g |Ej∩Ek|∏

1≤j<k<l≤g |Ej∩Ek∩El|
...

(−1)g−1|Ej∩···∩Eg |

where all |Ej| can be substituted by either |Sj| or |Dj| to compute the sizes of
the combination solution and frequency spaces, respectively. Given this formula,
one easily obtains that |

⋃i
j=1 Sj| ≥

∏g
j=1 |Sj |∏

1≤j<k≤g |Sj∩Sk|
and that 1 ≤ |

⋃i
j=1Dj| ≤∏g

j=1 |Dj|. Therefore, if one ensures that

∏g
j=1
|Sj |∏

1≤j<k≤g |Sj∩Sk|∏g
j=1 |Dj |

≥ 1 then |
⋃i
j=1 Sj| >

|
⋃i
j=1Dj|. This condition is equivalent to

∏
j≤g−1

|Sg |
|Dg | ·

(
|Sj |
|Dj | ·

1∏
k≤g |Sg∩Sk|

)
≥ 1,

which is provided since
∏

j≤g−1
|Sg |
|Dg | ≥ 1 because of condition (1), and since |Sj ||Dj | ·

1∏
k≤g |Sg∩Sk|

≥ 1 because of condition (2).

I-GWAS relies on Theorem 5 to verify that a GWAS can release or update its
results, given that other GWASes have already released theirs. This verification has
a complexity that is linear with the number of GWASes. Moreover, this analysis
can also be applied to other GWAS statistics (i.e., singlewise and r2), once the
relation |S|>|D| for the corresponding type of statistics is also kept. To illustrate
this process, I-GWAS’ algorithms (pseudocode) are discussed in the following:

I-GWAS’ pseudocode for selecting a safe batch of genome requests.
Algorithm 3 illustrates the operations that I-GWAS performs in order to select a
safe batch of genome operations considering overlapping GWASes. Every time a
safe batch of requests for single-GWAS is found, its requests are simulated (line
5), and then the solution spaces are checked over all existing releases, if the release
has safe boundaries, it can proceed (line 6 to 10).

5.2.8 Allowing safe genome removals

I-GWAS provides dynamic processing of genomes and their safe removal, similarly
to DYPS, and extends it to interdependent GWASes. For the update of a given
(single) GWAS, DyPS assembles a batch of genome additions and removals, respec-
tively represented by A and R, such that |A|+ |R| ≥ LtoNsingle(L) and |A| ≥ |R|.
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Algorithm 3 Verification of a set of genome requests to prevent recovery at-
tacks.
1: procedure isSafeI-GWAS(g,G,Add_Req,Rmv_Req)
2: Input: g: candidate GWAS with Add_Req and Rmv_Req genome additions and removals, respectively;

G: set of released GWASes
3: Output: set of selected genome addition and removal requests for interdependent GWASes

(LtoNI-GWAS)
4: Uses: Si and Di respectively return the solution and frequency space sizes for a GWAS i (or an inter-

section of GWASes); copyAndApplyRequests(g,Add_Req,Rmv_Req) applies a batch of request to a copy
of a GWAS and returns it.

5: g′ = copyAndApplyRequests(g,Add_Req,Rmv_Req)
6: tmp =

S(g′)
D(g′)

7: for i in G do
8: tmp = tmp. Si

Di
. 1
S(g′∩i)

9: end for
10: return tmp ≥ 1
11: end procedure

The rationale behind this approach is that even if some genomes that partici-
pated in a GWAS are removed, the solution space an adversary has to explore
only increases with time. I-GWAS, however, offers a method that acknowledges
interdependent GWASes. Before a GWAS can release its results, I-GWAS deter-
mines the minimum number of genomes it should use, which might also depend
on other GWASes and which is denoted as LtoNI-GWAS, to satisfy the conditions
of Theorem 5.

Let us consider an example with two (possibly overlapping) releases of two
interdependent GWASes. The first GWAS, GWASi, consists of genome additions
Ai and removals Ri, and the second GWAS,GWASj, consists of genome additions
Aj and removals Rj. Since these releases were orchestrated by I-GWAS, we have
|Ai| + |Ri| ≥ LtoNI-GWAS(i) and |Aj| + |Rj| ≥ LtoNI-GWAS(j). Let us then as-
sume that GWASi is updated with new genome operations Ai′ and Ri′ , such that
Ai′ > Ri′ . Then, each GWAS considered alone stays safe. The number of re-
maining genomes in GWASi is |Ri| + |Ai \ Ri′| + |Ri′ \ Ai| + |Ai′| > |Ri| + |Ai| >
LtoNI-GWAS(i) ≥ LtoNsingle(i). The combination of GWASi and GWASj is also
safe because Theorem 5 enforces that it contains more than LtoNI-GWAS(i) genome
operations.

5.3 Membership attacks on interdependent GWASes

As with novel recovery attacks presented in Section 5.2, an adversary can leverage
the fact that some genomes might have been used in multiple interdependent
studies for succeeding in membership attacks. In particular, an adversary can
launch membership attacks over release combinations, which might increase the
identification power of the attack.
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DYPS combines SG’s LR-test with an exhaustive verification process to dy-
namically update the statistics of a single GWAS. In particular, every SNP in a
candidate release is checked against existing releases to identify if it statistics has
been released before by another study. Compared to I-GWAS, DYPS cannot cope
with the presence of interdependent studies. In practice, it is identified that an
adversary could combine statistics across several overlapping releases and mount
a membership attack (as shown by the experiments in Section 5.5). Therefore, I-
GWAS encompasses additional required verifications to support dynamic releases
of interdependent GWASes.

Like previous works [Hal+21; San+09b; Pas+21] I-GWAS also leverages SG’s
LR-test for membership protection. However, in contrast to existing solutions,
which evaluate the conditions of safe releases considering studies separately, I-
GWAS offers a novel pipeline able to protect the privacy of participating genomes
by implementing an exhaustive verification step that acknowledges all possible
sets of genome and SNPs combinations among existing studies. In particular, I-
GWAS applies an exhaustive local verification (on a single-GWAS level) combined
with a global verification that considers all existing combinations of GWASes on
a per-SNP basis.

5.4 Protecting interdependent GWASes against mem-
bership attacks

After selecting a safe batch of genomes using the conditions to prevent recovery
attacks on interdependent GWASes presented in Section 5.2.5, I-GWAS identifies
data that can be released without posing membership privacy risks. I-GWAS
leverages SG’s to run membership inference tests over the selected genomes of
the candidate GWAS. Thus, identifying the set of safe SNP positions regarding a
candidate release selected data.

However, the above verification is not enough. Indeed, I-GWAS also needs to
enforce that the selected SNPs can be safely released or updated within a single
GWAS previous releases (i.e., verifying which SNPs are “locally” safe). This task
consists in executing additional LR-test verifications over all possible combinations
of releases (and so genome distributions) within previous releases of a particular
study (depicted on the left side of Figure 5.4). Recall that rare alleles and SNPs in
LD are primarily blocked from participation, and therefore such information could
not be leveraged by adversaries.

In addition, to prevent an adversary from leveraging the combination of re-
leased statistics from other studies, I-GWAS retains in the candidate GWAS only
those SNPs of the previous step that remain “globally” safe. For this, I-GWAS
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first identifies overlapping SNPs and then executes additional LR-tests over the
combination of genomes from heterogeneous studies that shared SNPs with the
candidate GWAS (depicted on the dashed lines coming from the right side of Fig-
ure 5.4). After this procedure, I-GWAS has identified a list of SNPs that survived
all verifications and therefore can be used for a safe release.

Let us consider the example illustrated in Figure 5.4, where GWAS1 releases
take place first, and SNPs are selected following the local verification only (rep-
resented by solid lines) because there was only one study. The notation Ni_r rep-
resents the genome set selected for GWASi, release r. Let us discuss the different
scenarios I-GWAS considers when a candidate release is found for GWAS2:

Figure 5.4: Exhaustive verification process to protect interdependent GWASes
releases against membership attacks.

Local verifications. A first situation occurs when a SNP that is labeled as safe
by I-GWAS and has never been studied before can be released without global
verification because an adversary cannot combine releases. This is the case for all
selected SNPs in N1_1 of GWAS1 and id4 in N2_1 of GWAS2. When SNPs have
been considered in previous releases of a study, e.g., id1, id2 and id3 of GWAS1

at N1_2 and N1_3, those releases are combined by I-GWAS and extra LR-tests are
conducted over them to certify that candidate SNPs are also identified as safe when
the combinations are tested. In this example, id1 succeed in all local verifications
of GWAS1 releases (green lines). In contrast, id2 failed (red lines) when tested
against the (N1_2, N1_1) combination. Thus, id2 is not considered in N1_2 release.

Local and global verifications. In this case, a SNP is found to be safe for a
single GWAS release, but has been released in another study before. For example,
id1 is safe over the N2_1 genome set of GWAS2, but id1 statistics has been released
in GWAS1 before (over the overlapping genome set Novl). In this case, I-GWAS
evaluates new LR-test rounds to certify that a SNP is also identified as safe over
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the combinations of genomes among the two studies. This is represented by the
dashed line coming from the selected SNPs of GWAS2. In our example, id3 is
detected as safe over the N2_1 set in GWAS2, but when combined with the other
genome sets from GWAS1, the LR-test identified that this SNP cannot have its
statistics safely released anymore (dashed red lines). On the other hand, id1 passed
all tests when GWAS1 releases are combined with those of GWAS2 (dashed blue
lines), and therefore might have its statistics published. SNP id4 is not tested
since it has never been released before by any study.

Furthermore, to avoid that previously released SNPs (and potentially not con-
sidered in the future) being leveraged by adversaries, I-GWAS keeps track of all
released SNPs so that when combining releases for further verification, those SNPs
are also checked. These “ghost” SNPs are represented by dashed boxes (id2 and
id3) in Figure 5.4, which allow I-GWAS to apply the exhaustive verification step
for all released SNPs regardless if they can currently be observed or not. For
instance, even though SNP id2 was not released in N1_2 of GWAS1, it is checked
anyway once it is a candidate SNP selected for N1_4 release. In that example, id2

has been labeled as safe over all runs of membership verification, and therefore is
allowed to have its statistics released at N1_4 of GWAS1.

In summary, I-GWAS’s exhaustive verification certifies that only SNPs selected
as safe after multiple LR-test runs over the combinations of overlapping releases
are allowed to release statistics. Thus, certifying that the identification power
of individuals is kept within safe boundaries even in cases where an adversary is
mounting membership attacks leveraging combination of releases.

After selecting a safe batch of genomes (that would allow a safe release against
recovery attacks), I-GWAS evaluates which SNPs might have their GWAS statis-
tics safely released without allowing membership inference. Algorithm 4 details
such a process. First, I-GWAS identifies which SNPs can be released over the
bath of selected genomes for the single-GWAS candidate release (line 5) using
the SNPSelection function that represents the SecureGenome’s [San+09a] step,
which is used to find SNPs that can be safely exposed while avoiding membership
attacks. Nevertheless, the standard SNPSelection function (i.e., SecureGenome)
only works in a static GWAS release setting. To enable dynamic GWASes releases
under the presence of overlapping data, I-GWAS conducts additional verifications
explained in Section 5.4 and described in the following paragraph.

I-GWAS enforces that each SNPl (from the original SNP-set L of a study g)
that is identified as safe by the SNPSelection function is to be tested over all
possible combinations of existing releases (lines 6 to 24). In particular, I-GWAS
first identifies and collects all releases where SNPl has previously participated (lines
7 to 13). Then, I-GWAS loops and run the SNPSelection function for each
possible combination of intersected releases that used SNPl (lines 14 to 16). If SNPl
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is labeled as safe in all verifications (i.e., over all combinations), it means that it
can be safely released. Otherwise, SNPl is withhold from the candidate release (line
20). In the end of this loop, I-GWAS has identified a list of SNPs that survived
(i.e., was labeled as safe when checked against existing combinations of releases)
and therefore can have their statistics safely released (line 25). Additionally, recall
that in this step, SNPs that presents rare allele frequencies are in LD are also
identified and blocked from participation.

Algorithm 4 Selection of SNPs to prevent membership attacks.
1: procedure checkInterdependentMembership(Add_Reqs,Rmv_Reqs,G)
2: Input:Add_Req and Rmv_Reqs of candidate study g and G set of released GWASes
3: Output: set of selected SNPs for safe interdependent GWASes
4: Uses: AllCombinations(relsToCombine) creates combinations of releases in relsToCombine;

SNPSelection(Add_Reqs,Rmv_Reqs, g) runs the LR-test and returns the safe SNP-set for a single GWAS
g

5: selected_SNPs := SNPSelection(Add_Reqs,Rmv_Reqs, g)
6: for SNPl in selected_SNPs do // for each selected safe SNP in a single GWAS, isSafeSingleBiocList
7: relsToCombine := ∅
8: for g in G do //check each existing GWAS g
9: for rel in g do //check each release of GWAS g
10: if (SNPl == rel.s) then // SNP position SNPl has been released in a release rel
11: relsToCombine.add(rel)
12: end if
13: end for
14: for combRel in AllCombinations(relsToCombine) do
15: testSet := combRel.Add_Reqs + combRel.Rmv_Reqs + Add_Reqs + Rmv_Reqs // merge

genomes requests
16: checkSafeSNPs := SNPSelection(testSet)
17: if (SNPl in checkSafeSNPs) then
18: continue // this SNP can be released
19: else
20: safe_SNPs.del(SNPl) // this SNP cannot be released
21: end if
22: end for
23: end for
24: end for
25: return selected_SNPs // set of safe SNPs for candidate release
26: end procedure

Algorithm 5 details the full pipeline of I-GWAS’ framework for privacy-preserving
releases of interdependent GWASes. From lines 6 to 13, I-GWAS check if there ex-
ists a safe batch of requests for a single-GWAS. If this is the case, those requests are
checked now considering interdependent GWASes (line 14, which is the combina-
tion of Algorithms 3 and 4). If this evaluation succeeds, aggregate GWAS statistics
can be computed over the selected genomes and SNPs and are publicly published.
Only the SNPs identified as safe by Algorithm 4 will have both aggregate and test
statistics released. On the other hand, the others (unsafe) SNPs are secluded from
having their GWAS statistics released. Note that only the I-GWAS’s TEE enclave
has access to the identified unsafe SNP ids and their respective GWAS statistics,
and therefore these SNPs cannot be leveraged by adversaries to mount genomic
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Algorithm 5 Full I-GWAS workflow.
1: procedure I-GWAS workflow for interdependent GWASes(G)
2: Input: set G of GWASes
3: Output: updated statistics of a safe GWAS g
4: Uses: NtoLsingle(g) returns the list of selected biocenters and their corresponding batch of requests to

update a single-GWAS g; andNtoLI-GWAS(g,G,Add_Req,Rmv_Req) returns the list of selected biocenters
and their corresponding batch of requests to update GWAS g

5: isSafeSingleBiocList := ∅
6: isSafeFinal := False
7: selected_SNPs := ∅
8: for g in G do //check each existing GWAS g
9: isSafeSingleBiocList := LtoNsingle(g)
10: if (isSafeSingleBiocList 6= ∅) then // assemble the requests from selected biocenters
11: for b in isSafeSingleBiocList do
12: Add_Reqs := isSafeSingleBiocList.addRequests
13: Rmv_Reqs := isSafeSingleBiocList.rmvRequests
14: end for
15: end if
16: isSafeFinal = isSafeI-GWAS(g,G,Add_Reqs,Rmv_Reqs)
17: if (isSafeFinal) then // update the requests from selected biocenters
18: selected_SNPs := checkInterdependentMembership(Add_Reqs,Rmv_Reqs,G)
19: end if
20: end for
21: computeTestStats(Add_Reqs, Rmv_Reqs) // update test statistics over selected requests
22: computeAggregateStats(selected_SNPs) // update aggregate statistics over selected SNPs
23: end procedure

privacy attacks.
The complexity of I-GWAS’ verification increases with the number of re-

leases and studies. The computational complexity for the verification is O(L′ ·
2LocalRel·OverlappedRel), where L′ is the number of selected SNPs after the first run
of the LR-test on the candidate release set, and LocalRel and OverlappedRel are
the number of releases within a study and the number of overlapping releases from
other GWASes, respectively. Furthermore, as GWASes often aim at determining
only the K most highly ranked SNPs [Bar+12; Che+16b], I-GWAS could limit
the value of L′ to be faster.

5.5 Experimental evaluation

I-GWAS was evaluated under the same settings as of DYPS, i.e., I-GWAS is imple-
mented in C++ and runs inside a Intel SGX enclave using Graphene SGX [TPV17].
For I-GWAS, it was also used real genomes from the phs001039.v1.p1 dbGAP
dataset [Wal+11], which consists of 14,860 case and 13,035 control genomes to bet-
ter measure the effect of interdependency between genomes belonging to different
studies. Furthermore, it was adopted the same standard settings of SecureGenome
for the LR-tests to decide which SNPs might have their allele frequencies safely
released: 0.1 false-positive rate, 0.05 MAF cut-off, 10−5 LD cut-off and a 0.9 true-
positive rate for the identification threshold.
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I-GWAS performance is evaluated along 3 metrics: privacy, data utility and
running time. I-GWAS is compared against DYPS so that the implications of
releasing GWASes without being concerned about overlapping genomic data are
clearly showed. Besides, I-GWAS is compared with ε-DP using Laplace mechanism
for the releases of GWAS statistics. It is considered several ε and privacy budgets
(pvb) spent over releases to evaluate trade-offs. pvb is used to keep DP properties
over multiple releases. pvb starts at 1 (100% of ε) and each release consumes a
fraction of ε. When pvb is exhausted, DP cannot release data with original privacy
guarantees. It was utilized PyDP, a Python wrapper for Google’s Differential
Privacy C++ library [Goo22] to create differentially private releases.

A comparison between I-GWAS with a method based on local DP is not pre-
sented since it introduces higher perturbation than a centralized DP scheme [Cor+18;
LS17]. Moreover, the experiments showed that the system-side performance (e.g.,
bandwidth, memory, and CPU consumption) of I-GWAS is very similar to that of
other TEE-based solutions [Sad+18; Che+16b; BAZ20; CT18; Pas+21; Koc+19].
Additionally, I-GWAS only imposes a penalty of requiring extra genomes to pro-
tect overlapping releases (cf. Table 5.2) when compared to DP-based releases.
Such a limitation depends on the assumed workload, e.g., the rate at which new
genomes are added and the frequency of overlapping data (cf. Figure 5.3).

To be fair when comparing I-GWAS against DP-based releases, it was created
a release utility metric that acknowledges both data coverage (amount of data
allowed to be used in a release) and accuracy loss. Otherwise, DP utility score
would always perform worse than I-GWAS. The utility of a release is evaluated as
follows:

L∑
l=0

SNPlrel · SNPlacc

L
(5.1)

In this formula, L is the original SNP-set of the GWAS, SNPlrel ∈ {0, 1}, i.e.,
1 if statistics over SNP l has been released and 0, otherwise, and SNPlacc is the
accuracy of the released statistics of SNP l compared to its original (unperturbed
– noise-free) result. Note that we still evaluate I-GWAS along other traditional
metrics mentioned before.

5.5.1 Privacy and data utility

Figure 5.5 illustrates the privacy at the cost of data utility when having to prevent
the release of GWAS results of some SNP positions. This experiment used all
14,860 case genomes and consider two GWASes over 10,000 SNPs and varied the
fraction of overlapping genomes among studies between 1% to 50%. The vulnerable
SNPs are positions that would put participating genomes at risk of being identified
in a membership attack. These SNPs need to be identified and secluded from public
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Figure 5.5: Vulnerable SNPs and release coverage when protecting interdependent
GWASes against membership attacks.

releases. The GWAS results are only known by the I-GWAS’s trusted enclave, and
only the results of SNPs that can be safely exposed are publicly shared.

It can be noticed that over the dbGAP dataset considered, when the number of
overlapping genomes increases, the release coverage decreases because more SNPs
at risk are found and withheld by I-GWAS. In the worst case, 81.8% of SNPs
might be used to identify individuals and therefore are prohibited from having
their statistics released. Interestingly, in this use case, it can be noticed that as
long as only very few genomes are shared between studies (between 1% – 10%), all
SNPs could be released. It is worth mentioning that I-GWAS is able to identify
vulnerable SNPs independently of the dataset.

Table 5.1: I-GWAS protection against membership attacks with four GWASes.

# SNPs Vulnerable SNPs using Release coverage
DyPS (%) w/ I-GWAS (%)

1,000 80 20
2,500 81.8 18.2
5,000 84.6 15.4
10,000 92.3 7.7

Table 5.1 presents the results of our second scenario where 4 GWASes are
considered. The first 3 GWASes used disjoint sets of 4,953 genomes each, while
the last one shares each of its 14,860 genomes with the other three GWASes. Each
experiment/line assumes a different number of SNPs. Using DYPS, which cannot
protect releases of interdependent studies, the number of SNP positions at risk
increases with the overall number of SNPs, from 80% to 92.3%, which is aligned
with the findings of Simmons et al. [SBS19]. As a result, I-GWAS presents a
smaller release coverage since it refrains statistics of vulnerable SNPs from being
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released. In this experiment, I-GWAS released statistics over 20% to 7.7% of the
original SNP-set according to the scenario.

5.5.2 Comparison to Differential Privacy

The next experiments considered a scenario where a GWAS (GWAS1) has already
released single allele frequencies over 1,000 SNPs using 7,430 genomes (note that
LtoN(1, 000) = 6, 320). Now, a second study (GWAS2) aims at releasing single
allele frequencies over 1,000 SNPs using 14,860 genomes from which 7,430 was used
in (GWAS1) and share half of the SNPs. Therefore, Novl = 7, 430 and Lovl = 500.
The accuracy of the single allele frequencies released by GWAS2 using I-GWAS
or DP are compared. Setting a privacy budget with DP is necessary to support
a given number of releases. The privacy budget interferes on the noise applied to
protect a release. This experiment was repeated 100 times and report the average
results. Table 5.2 presents the results of this experiment.

I-GWAS detects that compared to the state-of-the-art LtoN formula, which in-
dicates 6,320 genomes would be enough to protect GWAS2, the second study would
need at least 350 additional genomes (i.e., 5.53% more genomes) in order to prevent
recovery attacks on overlapping studies. Relying on additional genomes to enforce
privacy slightly delays releases. Future work could be to use synthetic genomes
while preserving statistical properties for this purpose [Hua+15; Rai+17b].

ε-DP releases statistics over all SNPs and presents a better release utility score
in several scenarios (compare blue and green scores in Table 5.2), but it perturbs
the results (accuracy loss column). The accuracy loss metric corresponds to how
distant the DP result is from the original statistics one would obtain without pri-
vacy guarantees. While I-GWAS release utility score is equal to 66 irrespective
of the number of subsequent releases, DP release utility scores varied from 76.41
to 94.11 in the best cases. Nevertheless, DP showed poor performance in settings
that would allow more future releases (red scores in Table 5.2). In fact, the limited
privacy budget of DP-based releases restricts the number of conceivable releases,
whereas I-GWAS can afford an unlimited number of releases by virtue of its ex-
haustive verification methods. To allow more releases, ε-DP should use smaller
pvb over releases so that some privacy budget is kept to protect future releases.
Nevertheless, smaller pvb means increased accuracy loss. Intuitively, using larger
values of pvb over releases would increase the release utility of ε-DP releases but
reduces the number of allowed safe releases. Therefore, when adopting DP, GWAS
federations have to carefully select the privacy budget that will be spent over dy-
namic releases. For instance, considering pvb = 0.12 per release, ε-DP could afford
only up to 8 safe releases with decreased utility. In contrast, using half of the total
privacy budget per release (pvb = 0.50) would only allow two safe releases but
higher utility.
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Analyzing the impact of noise with ε-DP. Now, assuming the same scenario,
the accuracy loss impact of ε-DP on allele frequencies of each SNP is evaluated
in more detail. The error bar plots show the average (black circles, ideally at “0”,
i.e., without noise), standard deviation (black rectangles), minimal and maximal
values (grey lines) for accuracy loss of the DP-based releases over 100 repetitions.
Figure 5.6 presents a cut-off of the first 200 SNP positions of the release for the
second study using ε = 2 and pvb = 0.12 (the setting with highest utility score
with DP) repeated 100 times.

Allele frequencies were applied 4.18% of noise on average, with a 0.41% aver-
age standard deviation, which kept the perturbation applied over SNPs results in
the 3.77 - 4.59% accuracy loss interval. For some SNPs, original statistics were
distorted above 40%, e.g., SNP ID 3, 88 and 97. Using I-GWAS, the same study
released statistics over 66% of the original SNP-set without any noise addition.
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Figure 5.6: Results of GWAS releases using ε-DP releases using (ε = 0.1 and
pvb = 0.12). Cut-off of the first 200 of 1,000 SNPs.

5.5.3 Running time and complexity

Figure 5.7 shows the running time of I-GWAS for a GWAS that overlaps with
other 5 GWASes that consider 500 (left side) or 1, 000 SNPs (right side).

Half of the genomes and SNPs that participated in the G previous GWASes
releases were re-used by the current GWAS. First, a batch of requests for the can-
didate release is selected individually, and then its requests are checked against
previous overlapping studies. Evaluating all possible combinations of existing re-
leases with the brute force method does not scale as the associated complexity
increases exponentially. However, thanks to Theorem 5, I-GWAS’s running time
scale linearly with the number of existing releases and are shorter than those
of a brute force approach. In addition, I-GWAS has a linear complexity even
when considering a larger number of SNPs. For instance, with 1,000 SNPs, I-
GWAS running time varied from 111 seconds for 2 GWASes to 157 seconds for 5
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Figure 5.7: Running times of the brute force and I-GWAS approach for protecting
recovery attacks on interdependent GWASes.

GWASes, whereas the brute force approach lasted from 111 seconds to 955 sec-
onds, respectively. A similar behavior also happened with the experiments over
500 SNPs. While I-GWAS varied from 4 to 14 seconds, the brute force needed 4
to 69 seconds according to the number of GWASes, respectively. For the member-
ship inference protection, it was measured the average for one analysis over the
largest dataset (i.e.,14,860 genomes and 10,000 SNPs). I-GWAS computes this
verification in 12.73 seconds. Keeping the number of SNPs and considering fewer
genomes, I-GWAS takes on average 6.45 seconds for 9,906 genomes, 4.61 seconds
for 7,430 genomes, and 2.96 s for 4,953 genomes. Lastly, the average memory con-
sumption of I-GWAS in the enclave was 2 MB. Hence, respecting SGX’s memory
limitations.
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Chapter 6

Genome Distributed Private Release
(GenDPR)

Even though some works are concerned with conducting secure and privacy-preserving
federated GWAS in a distributed manner, they did not certify that GWAS releases
might be vulnerable to genomic privacy attacks. Motivated by that, previous
chapters presented solutions to reconcile privacy-preserving processing and releas-
ing of GWASes. Notwithstanding, existing solutions that allow the creation of
privacy-preserving GWAS releasing require genome data to be pooled (usually in
a centralized location) by a trusted curator or computing module. While DP-
based mechanisms need to sample and access actual genome data to determine
the perturbation levels to be applied on the original data to create differentially
private releases, statistical inference methods execute computations to measure
the probability of identifying the presence of individuals in the dataset.

This chapter offers GENDPR, a novel workflow that enables members of a
GWAS federation to distributively verify and create safe releases of GWAS re-
sults without requiring genome data outsourcing and not accessing centralized
genome data. The members of GENDPR jointly perform the statistical privacy-
protection mechanisms to impede membership inference attacks from the observa-
tion of GWAS releases. In addition, GENDPR can also cope with the presence of
colluding members trying to gain knowledge of genomic data of other members of
the federation.

The previous chapters presented solutions to protect GWAS releases against
membership attacks using statistical inference methods, more specifically using
SecureGenome [San+09a; San+09b] introduced in Section 4.2. However, to con-
duct SG’s privacy-protection analysis, genome data needs to be pooled, which are
located in a centralized location and, in our case, in a TEE-enabled centralized
server. Note that existing DP-based mechanisms also needs genome data to be
pooled by a trusted curator/aggregator responsible for defining the perturbation
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levels needed to protect the results. Therefore, this thesis identifies the following
drawbacks of existing centralized workflows:

1. Requires outsourcing of actual genome data: the existing solutions need
access to the genome sequences of the individuals to compute the LR-test or
define perturbation levels. In particular, such data is kept in a centralized
TEE-enabled machine that operates on the received data.

2. Single point of failure vulnerability: lack of availability of the centralized
TEE server disrupts the whole workflow, and as a consequence the liveness
of the GWAS.

3. Scalability/computational resources limitation: the centralized TEE-enabled
server needs to store all genomic data from biocenters in the federation;
TEEs usually suffer from limited memory, which might limit its overall per-
formance.

Aiming at surpassing the above-mentioned issues, this chapter offers a novel
mechanism to improve the manner that the assessments of privacy-preserving
GWAS are enforced. In particular, this chapter strives for a solution that:

• Keeps all genomic data inside the entrusted institutions’ premises by avoiding
centralization and actual genome data outsourcing.

• Ensures protection despite possible the collusion of all-but-one federation
members, by concealing data even if peer data is known.

• Produces at least the same privacy guarantees as centralized solutions, by
correctly identifying the same data in need for protection that the centralized
architecture would identify.

GENDPR is comprised of an untrusted part (from the perspective of other fed-
eration members) that exclusively accesses local genomic data and a trusted part
that combines intermediary information from peer members to identify which sub-
set of variants can be safely used for the subsequent secure GWAS computation.
By exchanging only intermediate data, such as allele count vectors and local cor-
relation metrics instead of the genomic variants in relation to a reference genome
(recall that a VCF data file can easily amount to 100 GB), GENDPR significantly
reduces the secure storage requirements on the central computing device, respec-
tively in our case of the member TEE that is elected to assess safety based on this
intermediate data.

GENDPR outsources and communicates intermediate data in encrypted forms
and only to properly authenticated TEEs, as a release of such information would
still enable membership and inference attacks, albeit with a much reduced chance
of success.
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6.1 GenDPR’ system and threat models

System model. GENDPR considers a similar system models as of previous ones
approaches. Nevertheless, now it is assumed that each federation member has
its own TEE-enabled server. Thus, creating a multi-enclave setting. In summary,
GENDPR considers a federation comprised of B biocenters {bioc1, . . . , biocB}, each
being entrusted with genomic information and authorized to use and release this
information in GWAS studies. Federation members and biocenters are used in-
terchangeably. On premise, each biocenter maintains a database with genomes,
servers to perform operations over this data and a TEE-enabled server that is mu-
tually trusted by other federation members, including, after remote attestation,
the authenticity of the trusted part of GENDPR. The goal of GENDPR is to se-
cure the privacy of individuals that have entrusted a correct federation member
with their genomes even when the federation releases GWAS results or when other
members become curious or get compromised.

To remain compliant with regulations, such as GDPR, GENDPR ensures that
no genomic information is communicated across TEEs and all communication of
intermediate data is encrypted and linked to the current instance of the trusted
part of GENDPR in remote TEEs. Members have access to a same reference set
public genome data set (e.g., a public genome dataset [Con+15a; Wal+11]) used
in the LR-test.

Given a desired starting set of SNP positions Ldes, GENDPR returns a re-
duced set Lsafe ⊆ Ldes of SNPs that are safe to be considered in a subsequent
GWAS. For this final GWAS, existing privacy-perserving federated GWAS ap-
proaches [Pas+21; Sad+18; BAZ20; Koc+19; Rai+18] may be used, by consider-
ing the risk for SNPs in Ldes \ Lsafe or by leaving out these SNP positions in the
first place.

Worth recalling that TEE-enabled data sealing mechanism is used by local
enclaves to persist secret data outside the trusted zone, which can be retrieved
later for further processing. Sealed data can only be encrypted/decrypted by
the enclave using its unique key. Additionally, it is assumed that appropriate
countermeasures are in place to mitigate potential weaknesses of a concrete TEE
limitations presented in Section 2.7.1. Figure 6.1 illustrates GENDPR’s system
and threat model.

Threat model. Like previous work on secure GWAS releases [Zha+18; Sad+18;
Rai+18; Pas+21], GENDPR assumes adversaries capable of mounting member-
ship attacks, by observing released GWAS statistics and metadata. In addition,
GENDPR assumes up to f federation members might become faulty (e.g., as a
result of a compromise). Collusion allows members to increase their knowledge,
which increases their chance to mount membership attacks. GENDPR allows f to
become as large as B − 1, but leave ensuring liveness in situations where feder-
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Figure 6.1: GenDPR system and threat model.

ation members refuse to execute GENDPR a question for future work. Also, as
mentioned before, GENDPR does not consider leakage of genome information from
the premises of compromised members, as this is an orthogonal problem.

While GENDPR considers that federation members might become honest-but-
curious to mount attacks using collusion, it assumes that the integrity and confi-
dentiality of TEEs remains intact. Moreover, GENDPR assumes the trusted part
of the protocol is able to detect whether a federation member has tampered with
the genome data and its accuracy (e.g., by checking the signature of signed .vcf
files using hierarchical signature schemes).

Under the above assumptions, we show that as long as no TEE crashes, GENDPR
produces a selection of SNP positions (Lsafe) that is safe to be used for actual
GWAS computation while protecting the privacy of individuals even if up to
f ≤ G − 1 federation members collude. Thus, the GWAS federation is prop-
erly considering the risks of including genetic variations that might compromise
the privacy of its members.
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6.2 Genome Distributed Private Release (GenDPR)

6.2.1 Architecture and overview

GENDPR’s protocol starts when the federation agrees on conducting a particular
GWAS aiming at releasing statistics over Ldes SNP positions with specific MAF,
LD and LR-test cutoff parameters. The protocol coordinates multiple enclaves
hosted at each biocenter’s premises. The coordination tasks are performed by the
randomly elected leader that also performs aggregation and computations tasks
leveraging intermediate inputs mutually shared by the members of the federa-
tion in a secure and private manner through its TEE-based architecture. There
are two types of biocenters, regular biocenters and leader biocenter. Besides ex-
ecuting GWAS-specific computations (using the trusted MAF, LD and LR-test
modules) inside the enclave (like regular biocenters), the leader biocenter also exe-
cutes GENDPR’s coordination algorithm. As participating enclaves have attested
each other, they can trust on the code and the data outsourced by the members.

Multi-enclave GWAS federation (GenDPR-enabled)

Regular biocenter TEE-enabled server
. . .

TEE enclave


MAF phase trusted
module

LD phase trusted module

LR-test phase trusted
module

Leader biocenter TEE-enabled

 server

Local genome
dataset

TEE enclave


MAF phase trusted
module

LD phase trusted module

LR-test phase trusted
module

Coordination trusted
module

Local genome
dataset

Figure 6.2: GenDPR architecture components.

Encrypted local genome datasets are used to feed local enclaves so that each
biocenter enclave can produce and outsource genomic intermediate data requested
by the leader biocenter according to the phase it starts. Biocenters only exchange
data that is transmitted encrypted over the network. The TEE-enabled encryption
scheme adopted by GENDPR allows decryption and encryption only inside and by
mutually trusted enclaves. In particular, biocenters agree on the keys used among
existing enclaves during a remote attestation phase.
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Figure 6.2 presents GENDPR’s multi-enclave architecture. For simplicity sake,
we refrained from detailing the other regular biocenter enclaves in this figure.

6.2.2 Verification for mitigating recovery attacks

As introduced in previous chapters, DYPS and I-GWAS leverage theoretical com-
plexity analysis to select a safe batch of genomes that can produce safe GWAS re-
leases against recovery attacks. Such a verification is performed using the genome
operations (addition or removal from studies) of the federation members. Thus, no
genome data needs to be shipped during this phase. As a result, only the integrity
and confidentiality of the biocenters genome requests need to be protected, which
is achieved by leveraging the TEE-based architecture.

Hence, before running the distributed membership inference tests, GENDPR
selects the genomes that are safe against recovery attacks. For that purpose, the
randomly elected leader biocenter receives all genome operations from the other
biocenters and execute the collusion-tolerant solution space analysis introduced in
Section 4.5 to select the genomes allowed to advance to the next verification.

After this step, GENDPR starts the distributed algorithm to verify the data
that can be used to produce safe releases against membership attacks, which are
detailed in the next sections.

6.2.3 Workflow

Distributing the task of determining the data (genomes and genetic variations)
over which GWAS statistics can be safely released while sending the minimum
amount of data, is not trivial. Several works rely on the existence of a centralized
server that stores actual genomes and is responsible for running such verifications.
Therefore, conducting such analysis in a distributed fashion and only leveraging
summary and intermediate genomic data from federation members is a challenge.
Indeed, if not designed correctly, it can lead to inaccurate verification (as shown
later in Section 6.3).
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Figure 6.3: GenDPR workflow.
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Figure 6.3 presents an overview of GENDPR’s workflow. GENDPR is divided
into several consecutive phases. Biocenters compute and outsource different in-
termediate computation results depending on the phase. One of the biocenters is
randomly chosen and functions as an aggregator of inputs from the other biocen-
ters and acts as the coordinator of the protocol. In particular, at the beginning of
a GWAS and before the start of the distributed computations, GENDPR initiates
two essential pre-processing tasks. Namely, (i) the leader enclave selection, which
consists of randomly choosing one of the registered enclaves among the participants
of the federation, which (ii) requests the local computation of summary statistics,
e.g., allele counts vector of each biocenter over the original SNP-set Ldes of the
GWAS. Therefore, biocenters locally compute N case

1 l for each l ∈ Ldes. Such a
vector is identified as caseLocalCounts[Ldes]b of size Ldes and is sent by each bio-
center b to the leader biocenters’s enclave. The biocenters also share the number
of individuals in their local case population (N case

b).
Biocenters compute and outsource different intermediate computation results

depending on the phase. One of the biocenters is randomly chosen and functions
as an aggregator of inputs from the other biocenters and acts as the coordinator
of the protocol. In particular, at the beginning of a GWAS and before the start
of the distributed computations, GENDPR initiates two essential pre-processing
tasks. Namely, (i) the leader enclave selection, which consists of randomly choos-
ing one of the registered enclaves among the participants of the federation, which
(ii) requests the local computation of summary statistics, e.g., allele counts vector
of each biocenter over the original SNP-set Ldes of the GWAS. Therefore, bio-
centers locally compute N case

1 l for each l ∈ Ldes. Such a vector is identified as
caseLocalCounts[Ldes]b of size Ldes and is sent by each biocenter b to the leader
biocenter’s enclave. In addition, the biocenters share the number of individuals in
their local case population, i.e., N case

b.
Note that the leader biocenter does not need to outsource its intermediate

results as it can compute its local summary statistics while aggregating the other
biocenters inputs locally. In addition, a new leader can be elected at the beginning
of each phase since crucial data for the progress of the protocol is broadcast by
the leader at the end of a phase, which enables other biocenter’s enclave to assume
the leader position. Moreover, it is important to recall that all inputs and outputs
of GENDPR are encrypted so that only authenticated (due to remote attestation)
enclaves are able to encrypt/decrypt them. The following details each phase of
GENDPR.

6.2.4 MAF analysis (Phase 1)

GENDPR’s MAF analysis is straightforward. First, the leader enclave locally com-
putes the allele counts vector of the reference population (referenceLocalCounts[Ldes]
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also of size Ldes) and sizeN reference. Then, after receiving the encrypted caseLocalCountsb
and N case

b from each biocenter, the leader enclave decrypts and starts the MAF
verification. In particular, the leader enclave sums all N case

b received from the
biocenters with N reference into NT . Then, the leader biocenter goes over the re-
ceived inputs to calculate the allele counts of SNPs in both populations (case and
reference) and then computes the global MAF of each SNP. More specifically, for
each l in the original SNP-set Ldes and for each biocenter’s b allele counts vec-
tor, the leader biocenter computes totalGlobalCounts[l] = caseLocalCounts[l]g +
referenceLocalCounts[l]. The aggregated result is then divided by NT in order to
get the MAF for SNP l, i.e., globalAlleleFreq[l] = totalGlobalCounts[l]/NT . Fi-
nally, the leader checks if MAFl < MAFcutoff . If so, SNP l is placed on a blacklist
and therefore will not be considered for release. In that way, GENDPR manages
to perform the removal of rare MAF SNP positions without demanding the out-
sourcing of actual genomes from the biocenters. Intuitively, the leader biocenter
identifies a list of retained SNPs L′ ∈ Ldes that is broadcast to the federation in
order to continue the next steps of the protocol.

GENDPR’s MAF analysis is straightforward. First, the leader enclave locally
computes the allele counts vector of the reference population (referenceLocalCounts[Ldes]
also of size Ldes) and sizeN reference. Then, after receiving the encrypted caseLocalCountsb
and N case

b from each biocenter, the leader enclave decrypts and starts the MAF
verification. In particular, the leader enclave sums all N case

b received from the
biocenters with N reference into NT . Then, the leader biocenter goes over the re-
ceived inputs to calculate the allele counts of SNPs in both populations (case and
reference) and then computes the global MAF of each SNP. More specifically, for
each l in the original SNP-set Ldes and for each biocenter’s b allele counts vec-
tor, the leader biocenter computes totalGlobalCounts[l] = caseLocalCounts[l]b +
referenceLocalCounts[l]. The aggregated result is then divided by NT in order to
get the MAF for SNP l, i.e., globalAlleleFreq[l] = totalGlobalCounts[l]/NT . Fi-
nally, the leader checks if MAFl < MAFcutoff . If so, SNP l is placed on a blacklist
and therefore will not be considered for release. In that way, GENDPR manages
to perform the removal of rare MAF SNP positions without demanding the out-
sourcing of actual genomes from the biocenters. Intuitively, the leader biocenter
identifies a list of retained SNPs L′ ∈ Ldes that is broadcast to the federation in
order to continue the next steps of the protocol.

6.2.5 LD analysis (Phase 2)

The next step consists of executing the LD verification over the retained L′ SNPs,
so that all SNPs that will be potentially released are independent from each other.
To compute LD, allele information between two SNPs needs to be pooled. It is
easily achievable in a centralized TEE-based architecture because all genomes are
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locally available. GENDPR, however, cannot benefit from such availability as it can
only rely on intermediate data from biocenters and is thus not able to pool the allele
sequences for LD computation. One could naïvely let each biocenters conduct the
LD analysis locally and share their locally retained SNPs. Nevertheless, assuming
this approach, each biocenter would inaccurately select different SNPs because
biocenters own different genomes, implying heterogeneous distributions that lead
to different correlation statistics.

GENDPR employs the following adaptations for removing SNPs in LD. When
computing the LD between every pair of SNP l and l+1 ∈ L′, local allele sequences
of individuals need to be pooled to compute correlation statistics. Therefore,
each biocenter b enclave locally produces and outsources the following correlation
statistics over their genomes: µlb += SNPlb , µl+1b += SNPl+1b , µ(l,l+1)b += SNPlb ∗
SNPl+1b , µl2b += SNPlb ∗ SNPlb , µ(l+1)2b

+= SNPl+1b ∗ SNPl+1b , and NT (acquired
during the previous phase). The leader biocenter computes the same correlation
statistics over the reference set.

Upon reception, the leader enclave aggregates biocenters inputs with the corre-
lation metrics obtained over the reference set. This way, GENDPR can collectively
absorbs the correlation statistics from each biocenter so that the aggregated corre-
lation metrics reflect the global genome distribution of the federation for the right
computation of LD. After that, the leader enclave can proceed with the compu-
tation of the p-value on the r2 test to measure the level of correlation between
the two SNPs. If LD(l,l+1) < LDcutoff , then SNPs l and l + 1 are dependent, and
therefore GENDPR keeps the most ranked one (in terms of p-value on χ2) for the
next iterations of the algorithm. When this evaluation ends, the leader biocenter
has identified a new SNP-subset L′′ ∈ L′ that is broadcast for supporting the next
phase. This process is repeated at most (L′)2 times, considering a very rare case
where all pairs of SNPs are found to be independent, which is not a common event
in the human genome [BM12; Bar+12].

6.2.6 LR-test analysis (Phase 3)

To perform the LR-test verification the actual allele information of SNPs of each
participant is needed (i.e., xn,l in Equation 4.3). Therefore, to successfully conduct
the LR-test, existing solutions rely on the availability of genomes in a centralized
enclave. On the other hand, GENDPR overcomes such constraint by demand-
ing each biocenter to compute and outsource their local LR-matrices. However,
biocenters cannot correctly compute these matrices leveraging their local genome
dataset distribution, otherwise conclusions of the test are incorrect. Indeed, us-
ing local frequencies would lead to wrong LR-matrices because the LR-test needs
to be drawn considering SNP frequencies of the whole population (i.e., genomes
belonging to all biocenters). Therefore, allele frequencies over the full cohort is
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Figure 6.4: GenDPR distributed LR-test phase scheme.

needed so that each biocenter can accurately compute their local LR-matrix. The
local LR-matrix consists of the LR values (recall Equation 4.3) for each SNP l and
allele value of individual n at SNP position l represented by xn,l in each biocenter
dataset.

The complete scheme enforced by GENDPR for the distributed LR-test eval-
uation is illustrated in Figure 6.4, where Bioc2 has been selected as the leader.
In Step (1), the leader Bioc2 broadcasts the allele frequencies vector of the case
and reference populations over the retained SNPs L′′ (note that these vectors are
already available inside the leader enclave since the MAF phase). Therefore, the
casesAlleleFreq[L′′] and refAlleleFreq[L′′] vectors, both of size L′′, are shared
with all biocenters. These vectors represent pl and p̂l of Equation 4.3, respec-
tively. In Step (2), after the reception of the allele frequencies vectors, each bio-
center (Bioc1 to Biocb) can correctly build their LR-matrices since the received vec-
tors encompass the frequencies over the complete cohort of participating genomes.
Therefore, their local LR-matrices can be correctly computed. After completion,
biocenters encrypt and send their local LR-matrices to the leader biocenter. In
Step (3), upon the reception of biocenter’ LR-matrices, the leader Bioc2 first com-
putes its local LR-matrix, and then merges all matrices received. Thus, creating a
LR-matrix that covers all biocenters LR metrics. This matrix is used throughout
the LR-test verification performed in Step (4) inside Bioc2’s enclave. This verifi-
cation consists of empirically checking several subsets of SNPs in L′′ that satisfies
the conditions presented in Section 4.2. When the LR-test ends, the leader enclave
has identified a new subset of SNPs Lsafe ∈ L′′, which is encrypted and broadcast
to the members of the federation (Step (5)). The list of SNPs in Lsafe can be
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safely used for the computation and release of the GWAS.
Additionally, GENDPR can be combined with Differential Privacy (DP) [Dwo11]

mechanisms to increase the data utility of releases. Particularly, the SNPs in Lsafe
can be released in a noise-free manner (i.e., without any data perturbation like
DP applies), while SNP positions not present in Lsafe but in Ldes are released
with DP-based perturbation. Thus, allowing GWASes to release statistics over all
initially desired SNP positions (Ldes) in a privacy-preserving manner. I plan to
investigate such a technique in future work.

Algorithm 6 describes GENDPR’s pseudocode. This algorithm reflects the be-
havior explained previously. Data encryption operations were not discussed during
the workflow because it is standardized knowledge when leveraging TEE-based ar-
chitectures. Therefore, only the rationale of the algorithm is presented.

GENDPR starts randomly selecting a biocenter in the federation that will be-
have as the leader of the protocol in line 6. Then, in line 9, the leader biocenter
starts computing its local GWAS summary statistics, e.g., case allele counts and
the number of individuals. It does the same over the genomes in the reference
set. From that moment on, the leader can receive the summary statistics data of
the other biocenters (locally computed when the federation agrees on starting a
study). After collecting biocenters’ intermediate data, the leader biocenter starts
the MAF analysis by first aggregating local counts over the original SNP-set Ldes
of the study. It does the same for calculating the total number of individuals in
the federation. Then, the leader biocenters finally computes the MAF of each
SNP and checks the MAF cut-off, keeping only SNP positions with MAF above or
equal to the MAF cut-off (MAFcutoff ). These steps are described in lines 10 to 24.
At the end of this analysis, the leader biocenter has acquired a new SNP-subset
L′ consisting of the list of SNPs that survived this phase. Such a list of SNPs is
broadcast to all biocenter in line 25.

Next, the leader biocenter initiates the LD analysis after receiving the cor-
relation metrics of each biocenter of a pairwise combination of SNPs in L′. In
particular, the LD verification algorithm (from lines 26 to 55) aggregates local
correlation statistics from each biocenter and the ones corresponding to the refer-
ence set for SNPs pair l and l+1. In addition, the leader biocenter computes allele
frequencies over L′′ for the reference and global population (note that is achievable
using the allele counts shared in the MAF analysis) that is further aggregated with
the correlation metrics of all biocenters. After aggregation, the leader biocenter
calculates the p-value for the correlation between the two SNPs. If SNPs are high-
correlated, i.e., p-value below the LD cut-off (LDcutoff ), the leader biocenter keeps
the most ranked SNP and proceeds the loop. SNPs that do not present a high
pairwise correlation with others are retained in L′′, which is also broadcast at the
end of this phase. Finally, the allele frequencies vectors (casesAlleleFreq[L′′] and
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Algorithm 6 GenDPR’s full workflow pseudocode
1: procedure GenDPR(GWAS g, B set of biocenters, original SNP set Ldes of g, α, β, ref_population)
2: Inputs: (1) Local allele counts vector from biocenters of size Ldes; (2) Local statistics of SNPl and SNPl+1; (3) Local

LR-matrix each of size Ncase
b x L′′

3: Outputs: (1) Selected SNP subset L′; (2) Selected SNP subset L′′; (3) Selected SNP subset Lsafe, which can be used
to create private GWAS release

4: Uses: randomLeaderSelection(B): select and returns a random biocenter b ∈ B to be considered as leader;
startLocalComputations(): computes local statistics of biocenter; computeR2(µl, µl+1, µ(l,l+1), µl2

, µ
(l+1)2

, NT ): re-

turns p-value on r2 between SNPs l and l+1; getMostRanked(l, l+1, s): returns index of most ranked SNP (p-value on χ2

of study g; LRtest(LRMatrix, α, β): returns a set of SNPs that keeps individuals identification power below given threshold
5:
6: leaderbioc = randomLeaderSelection(B) //randomly selects a leader in B
7: leaderbioc.startLocalComputations() // computes leader and biocenters local allele statistics
8: leaderbioc.listenToInputs() // collects intermediate data from other biocenters
9:
10: (1) //MAF analysis
11: for b in B do //retrieves local allele counts vector from each biocenter
12: NT += Ncase

b

13: end for
14: NT += Nreference

15: for SNP l in Ldes do
16: for b in B do //retrieves local allele counts vector from each biocenter
17: totalGlobalCounts[l] = caseLocalCounts[l]b + referenceLocalCounts[l]

18: end for
19: globalAlleleFreq[l] = totalGlobalCounts[l]/NT

20: if globalAlleleFreq[l] < MAFcutoff then //SNP l cannot be retained

21: continue
22: else
23: L′.push(l)

24: end if
25: end for
26: leaderbioc.broadcast(L

′) // leader biocenter broadcast message
27:
28: (2) //LD analysis
29: lastindex = L′[−1] // get index of the last SNP in L′

30: auxindex = L′[0] // get index of the first SNP in L′

31: while auxindex! = lastindex do // starts greedy algorithm for LD computation
32: for SNP l in L′ do
33: leaderbioc.listenToInputs() // collects intermediate correlation statistics from biocenters
34: leaderbioc.startLocalComputations() // computes leader local correlation statistics
35: for b in B do //retrieves local LD statistics for SNPl and SNPl+1 from each biocenter

36: µl += µlb

37: µl+1 += µl+1b

38: µ(l,l+1) += µ(l,l+1)b

39: µ
l2

+= µ
l2
b

40: µ
(l+1)2

+= µ
(l+1)2

b

41: end for
42: µl += µlref

43: µl+1 += µl+1ref

44: µ(l,l+1) += µ(l,l+1)ref

45: µ
l2

+= µ
l2
ref

46: µ
(l+1)2

+= µ
(l+1)2

ref

47: pval = computeR2(µl, µl+1, µ(l,l+1), µl2
, µ

(l+1)2
, NT )

48: if pval > LDcutoff then //independent SNPs

49: auxindex = l + 1

50: continue
51: else //dependent SNPs, keep most ranked one
52: lindex = getMostRanked(l, l + 1, s)

53: L′′.push(lindex)

54: end if
55: end for
56: auxindex = l + 1

57: end while
58: leaderbioc.broadcast(L

′′, casesAlleleFreq[L′′], refAlleleFreq[L′′]) // leader biocenter broadcast message
59:
60: (3) //LR-test analysis
61: leaderbioc.listenToInputs() // collects local LR-matrices from biocenters
62: leaderbioc.startLocalComputations() // computes leader local LR-matrix
63: for b in B do //retrieves and concatenates local LR-matrix from each biocenter
64: for SNP l in L′′ do
65: FullLRMatrix[l]+ = LRmatrixb[l]

66: end for
67: end for
68: Lsafe = LRtest(FullLRMatrix, α, β) //runs LR-test analysis over full matrix

69: return Lsafe //final subset of SNPs for safe GWAS g release

70: end procedure



refAlleleFreq[L′′]) are broadcast to the biocenters in line 56.
Lastly, the leader biocenter needs to perform the LR-test to find the final

list of safe SNPs. This verification starts in line 58, where the leader biocenter
receives the local LR-matrices from each biocenter that are locally computed by
each biocenters using casesAlleleFreq[L′′] and refAlleleFreq[L′′] shared in the
previous phase. Upon the reception of the local LR-matrices, the leader biocenter
loops over L′′ to merge all received LR-matrices with its local matrix (lines 60
to 64). Next, in line 65, the leader biocenter runs the LR-test function over the
merged matrix that empirically finds a subset Lsafe ∈ L′′ of which releases over
these SNPs do allow membership inference attacks to succeed. Finally, leader
biocenter broadcasts Lsafe SNP-set list in line 66.

6.2.7 Collusion-tolerant GenDPR

To protect the GWAS federation against collusion among biocenters, GENDPR’s
leader enclave needs to certify that the outcome of the private analysis is valid for
the cases where up to f ≤ B−1 colluding biocenters attempt to attack the honest
ones. For this purpose, GENDPR employs a collusion-tolerant algorithm. For
each phase of GENDPR’s pipeline discussed above, GENDPR generates the

(
B

B−f

)
combinations of intermediate results received from the biocenters to simulate the
case where f biocenters would launch an attack. Each of these combinations has a
unique identifier and goes through the various phases of GENDPR, which identify
a list of safe SNPs. At the end of each phase, GENDPR computes the intersection
of the SNPs chosen for each combination, thus preventing any f biocenters to to
compromise the data of honest biocenters. Let us discuss an example for Phase 3
(the most complex phase).

During the LR-test phase, the leader enclave generates and provides an unique
id, and broadcasts

(
B

B−f

)
allele frequency vectors of L′′ SNPs selected in the previ-

ous LD analysis phase. As a consequence, the leader receives
(

B
B−f

)
local matrices

(each one computed using its corresponding frequency vector) from each biocenter.
Each combination of sub-matrices forms a unique merged matrix that is used for
the actual LR-test evaluation inside the leader enclave. As a result, GENDPR col-
lects several lists of selected SNPs Lsafe executed over each matrix, i.e., one SNP
list is output for each LR-test completed over combinations. Finally, the leader en-
clave computes the intersection among the lists of SNPs, and finally outputs only
the intersected SNPs, i.e., SNPs that were labeled as safe in every combination.
This way, GENDPR certifies that no combination of genome data can be isolated
and become vulnerable to colluding biocenters.

During the LR-test phase, the leader enclave generates and provides an unique
id, and broadcasts

(
B

B−f

)
allele frequency vectors over L′′ SNPs selected in the
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previous LD analysis phase. As a consequence, the leader receives
(

B
B−f

)
local

matrices (each one computed using its corresponding frequency vector) from each
biocenter. Each combination of sub-matrices forms a unique merged matrix that
is used for the actual LR-test evaluation inside the leader enclave. As a result,
GENDPR collects several lists of selected SNPs (Lsafe), i.e., one for each LR-test
completed over each combination of matrices. Finally, the leader enclave computes
the intersection among the lists of SNPs, and finally outputs only the intersected
SNPs, i.e., SNPs that were mutually labeled as safe in every combination. This
way, GENDPR certifies that no combination of genome data can be isolated and
become vulnerable to colluding biocenters.

GENDPR can also adhere to a more conservative approach assuming all pos-
sibilities of collusions instead of considering a static f , i.e., f = {1, ..., B − 1}.
GENDPR would then perform evaluations over

∑f=B−1
f=1

(
B

B−f

)
.

As one would expect, this scheme demands GENDPR to execute extra rounds
of computations, which in practice can be efficiently conducted in parallel inside
the leader enclave as it already stores all necessary data. The following details the
extension applied by GENDPR to enable collusion-tolerance.

To avoid repetition, Algorithm 6 should be recalled to understand the required
modifications that GENDPR enforces to accommodate collusion-tolerance.

To enable collusion-tolerance, GENDPR needs to execute the analysis over each
combination of data that can be actually isolated by colluding biocenters to mount
membership attacks against honest biocenters or to distort the correct output
of selected SNPs. To that extent, after retrieving intermediate data from each
biocenter in each phase, GENDPR forms

(
B

B−f

)
combination with the received

inputs to simulate the fraction of data that could be isolated by the colluding
biocenters depending on f . Therefore the original set B consisted of b biocenters
becomes a new set of combination of biocenters so that the verification can be
computed for every combination, represented as combBiocSet = combineBioc(B).
combineBioc(B) is a function that receive the set of biocenters B and outputs a
new set consisted of

(
B

B−f

)
combinations.

As a result, the loop to acquire biocenters data is done throughout this new
combBiocSet. For instance, the loop for MAF analysis in line 10 of Algorithm 6
is performed over combBiocSet =

(
B

B−f

)
instead of the original set B. The same

behavior is applied to the other phases of GENDPR’s protocol. Namely, in line 33
for the LD analysis and line line 60 for the LR-test.

Besides that, GENDPR also need to keep a data structure to store the list of
selected SNPs of each iteration. This is needed so that GENDPR can compute the
intersection of SNPs selected as safe in all combinations. In fact, at the end of each
phase, only SNPs present in all lists are going to be broadcast to the federation
because they are safe independently of the presence of colluders. For example, con-
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sidering the MAF phase again, GENDPR appends each L′ to a new data structure
called L′_ListSet after line 23. Once the loop over combBiocSet ends, GENDPR
computes finalL′ = getIntersection(L′_ListSet) function that receives a set of
SNP lists and returns a list of SNPs mutually chosen in all combinations. The
SNPs in finalL guarantees that no combination of intermediate results leveraged
by colluding parties can be used to launch successful membership attacks.

This method to compute the intersection of SNPs is performed at the end of
each phase before data is broadcast by the leader biocenter. More specifically, the
getIntersection(L) function to find the SNPs intersection over the list outputted
for each iteration is executed before line 25 for MAF analysis, line 56 for the LD
phase and before line 66 after the LR-test verification, and then acquiring the final
intersected list of SNPs Lsafe that can be safely used in a release.

6.3 Experimental evaluation

GENDPR is also implemented in C/C++ using the Graphene SGX library [TPV17]
and evaluated its performance on an Intel i7-8650U processor with 16 GB RAM,
running Ubuntu 18.04. The experiments used 27,895 genomes from the dbGaP
(phy001039.v1.p1) dataset for an Age-Related Macular Degeneration study [Wal+11].
The dataset contains of 14,860 case genomes and 13,035 control genomes. The
control population set was used as a reference for the LR-test. Additionally, the
genomes were divided equally among federation members. GENDPR is evaluated
using SecureGenome’s suggested settings [San+09b] – 0.05 MAF cut-off, 10−5 LD
cut-off, 0.1 false-positive rate and 0.9 identification power threshold – which is also
used as baseline (centralized version). All exchanged data is encrypted using AES
256. The experiments assume from 2 to 7 federation members (biocenters) and
from 1,000 to 10,000 SNP positions. We report the average of 5 five repetitions.
We also compared GENDPR with a centralized approach that runs SecureGenome
inside a centralized TEE enclave, which we use as Baseline.

6.3.1 Bandwidth, memory and CPU usage

Table 6.2 shows the average resource demands for GENDPR for different configu-
rations of the federation and the GWAS it performs. As can be seen, all scenarios
remain below 1% of CPU utilization and below 2 MB of data that needs to be
exchanged on average among the federation members. Biocenters exchange vec-
tors of integers that require 32 bits for each SNP in the original dataset Ldes.
Hence, the overall size of data that needs to be exchanged is (4 ·Ldes) Bytes, which
increases by approximately 30% after encryption due to padding.
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Table 6.1: Average resource demand of GenDPR.
Configuration Avg. CPU utilization Avg. Memory demand

2 Biocenters / 1,000 SNPs < 1% 2,068 KB
2 Biocenters / 10,000 SNPs < 1% 2,164 KB

3 Biocenters / 1,000 SNPs < 1% 2,068 KB
3 Biocenters / 10,000 SNPs < 1% 2,172 KB

5 Biocenters / 1,000 SNPs < 1% 2,074 KB
5 Biocenters / 10,000 SNPs < 1% 2,148 KB

7 Biocenters / 1,000 SNPs < 1% 2,052 KB
7 Biocenters / 10,000 SNPs < 1% 2,180 KB

With GENDPR, biocenters do not need to outsource genome sequences, which
saves 2 · Ldes bits for every genome and 2 · Ldes ·NT bits in total.

Notice, the data that need to be exchanged in subsequent steps becomes even
lower as they operate only on a subset of the initially desired SNPs. Indeed, for
the LR-test phase, each biocenter shares smaller data, i.e., over L′′ ·N case

b, which
is a magnitude order smaller than complete genome sequences.

In summary, it can be seen that GENDPR’s performance scales well with an
increasing number of biocenters and SNPs considered and that it remains well
within the resource limitations found in today’s TEEs.

6.3.2 Running time

In Figures 6.5 and 6.6, we report GENDPR’s running time compared to the Base-
line approach for each task performed during each phase while considering several
GWAS settings. Firstly, we can notice that even though not demanding any data
aggregation tasks, the centralized solution is not relatively quicker than GENDPR.
Particularly, the running times of both directly depend on the size of the data
that needs to be evaluated. Comparing Figures 6.5a with 6.5b, and Figures 6.6a
with 6.6b, we can notice that the number of genomes and SNPs considered in-
creases the magnitude order of the running time of both approaches. Therefore,
we claim that GENDPR is scalable since that doubling the number of genomes
considered at first (7,430) and considering 10 times more SNPs in a study have
not imposed a burden to the distributed protocol. Overall, GENDPR finishes in
reasonable time.

Moreover, we can see that increasing the number of biocenters to more than
two, actually decreases the running time of the protocol since the computational
tasks are distributed among members, which reduces running time compared to the
centralized architecture. In contrast, the centralized version cannot take advantage
of such a feature, and therefore needs to process all the data at once. Hence, we
claim that GENDPR also benefits from the workload distribution achieved thanks
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(a) 7,430 genomes / 1,000 SNPs.
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(b) 14,860 genomes / 1,000 SNPs.

Figure 6.5: Running time comparison (1,000 SNPs).

to its distributed protocol.
Comparing the running times of each phase we can notice that the LR-test

analysis is the longest due to the fact that besides operating on larger data struc-
tures (2D matrix instead of 1D vectors as in previous phases), GENDPR uses an
empirical approach when selecting the safe SNP-subset among the available SNPs,
which require some iterations over several sets of SNPs. In general, GENDPR only
imposes slightly longer running time due to the extra coordination and aggregation
tasks performed by the leader, but the presence of more of more members in the
federations can actually improves GENDPR’s running time.

An interesting phenomenon identified is that although the scenario with 5 bio-
centers presented a longer running time compared to the scenarios with 3 and
7 biocenters, it is approximately as long as the scenario with 2 biocenters. De-
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(a) 7,430 genomes / 10,000 SNPs.
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(b) 14,860 genomes / 10,000 SNPs.

Figure 6.6: Running time comparison (10,000 SNPs).

spite that, GENDPR’s distributed protocol is faster than the centralized (Baseline)
approach in all settings.

It is important to note that GENDPR’s running time depends on the distri-
bution of the genome data being assessed in the analysis. For instance, for some
populations more or fewer SNPs are removed at each phase. In particular, a higher
number of retained SNPs through the phases means increased running time since
statistics need to be computed over a larger space.

6.3.3 Correctness

To assert correctness, it is compared the SNP positions selected as safe by GENDPR,
by the Baseline (centralized TEE-enabled SecureGenome approach), and by a lim-

126



ited distributed protocol that uses naïve aggregation (where the LD and LR-test
analyses – steps that require access to allele information – are run locally by each
biocenter leveraging allele frequency vectors shared by the leader). While the LD
verification needs to pool pairwise allele statistics over all individuals, the LR-test
requires pooling all genomes to produce the LR-matrix used in the test. In the
naïve approach, each biocenter computes the LD and LR-test independently and
shares an encrypted vector with selected SNP indexes, of which an intersection is
later computed to obtain the final list of SNPs.

Table 6.2 presents the number of SNPs retained as safe after each phase of the
privacy-protecting evaluation obtained considering 7,430 or 14,860 case genomes
and several number of SNPs. First, it can be noticed that changing the number
of biocenters in the federation does not affect the outcome of the verification. In
addition, it is noted that GENDPR imitates the behavior of the Baseline over all
verification phases, which shows that GENDPR is correct and does not suffer from
perturbation throughout its execution.

Moreover, if intermediate data is not aggregated and considered correctly, i.e.,
using a naïve aggregation algorithm, it can lead to wrong SNP selection. Indeed,
it was detected that even though such a scheme is able to retain the same SNPs
during the MAF evaluation, it is not able to correctly perform the LD and LR-
test analyses since these latter verifications need to consider the global genome
distribution to correctly identify safe SNPs, which is not enforced with a naïve
aggregation. This behavior is identified in the bold lines of Table 6.2, where the
naïve protocol inappropriately identified a smaller and disjoint set of SNPs. The
release of such SNPs would allow membership inference of participants in the study.
On the other hand, the adjustments rendered in GENDPR thwart such issues, i.e.,
GENDPR selects the same set of SNPs as Baseline, which shows its accuracy.

Table 6.2: Comparison of the selected SNPs after each phase of the privacy-
protecting verification.

Original
number of

SNPs

Baseline GenDPR Distributed with limited
aggregation

7,430 genomes Number of retained SNPs

1,000 MAF 731 / LD 44 / LR 44 MAF 731 / LD 44 / LR 44 MAF 731 / LD 29 / LR 29
2,500 MAF 1,559 / LD 107 / LR 107 MAF 1,559 / LD 107 / LR 107 MAF 1,559 / LD 66 / LR 12
5,000 MAF 2,666 / LD 208 / LR 208 MAF 2,666 / LD 208 / LR 208 MAF 2,666 / LD 127 / LR 29
10,000 MAF 4,584 / LD 375 / LR 375 MAF 4,584 / LD 375 / LR 375 MAF 4,584 / LD 240 / LR 240

14,860
genomes

1,000 MAF 303 / LD 25 / LR 25 MAF 303 / LD 25 / LR 25 MAF 303 / LD 11 / LR 11
2,500 MAF 1,032 / LD 50 / LR 50 MAF 1,032 / LD 50 / LR 50 MAF 1,032 / LD 22 / LR 22
5,000 MAF 2,021 / LD 105 / LR 105 MAF 2,021 / LD 105 / LR 105 MAF 2,021 / LD 44 / LR 44
10,000 MAF 3,767 / LD 187 / LR 187 MAF 3,767 / LD 187 / LR 187 MAF 3,767 / LD 80 / LR 80
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6.3.4 Collusion-tolerant GenDPR

This section discuss the experiments to evaluate the impact of the collusion-
tolerant version of GENDPR in terms of privacy protection (detecting SNPs that
would become vulnerable given the presence of colluders) and performance (run-
ning time and release coverage). Table 6.3 presents the results of collusion-tolerant
GENDPR. It can be noticed that from 20.9% to 28.3% of the SNPs could have their
statistics unsafely released when collusions happen and are not protected against.
These vulnerable SNPs are secluded and refrained from being released. Thus,
there is an expected impact on the number of SNPs being released proportional to
the number of vulnerable SNPs. Despite that, collusion-tolerant GENDPR is still
able to release from 71.7% to 79.1% of the data when compared to the experiments
without collusion (f = 0) presented in Table 6.2.

Table 6.3: Collusion-tolerant GenDPR results considering 10,000 SNPs and
14,860 genomes.

Settings # safe released SNPs with
collusion detection

# vulnerable SNPs without
collusion detection

Running time (ms)

B = 3, f = 1 141 (75.4%) 46 (24.6%) 123,338.5
B = 3, f = 2 143 (76.5%) 44 (23.5%) 76,362.5
B = 3, f =
{1, 2}

138 (73.8%) 49 (26.2%) 158,059.5

B = 4, f = 1 143 (76.5%) 44 (23.5%) 159,293.2
B = 4, f = 2 139 (74.3%) 48 (25.7%) 156,569.9
B = 4, f = 3 145 (77.5%) 44 (22.5%) 80,681.4
B = 4, f =
{1, 2, 3}

136 (72.7%) 51 (27.3%) 309,032.3

B = 5, f = 1 144 (77.1%) 43 (22.9%) 215,347.1
B = 5, f = 2 135 (72.1%) 52 (27.9%) 255,071.8
B = 5, f = 3 137 (73.3%) 50 (26.7%) 181,159
B = 5, f = 4 148 (79.1%) 39 (20.9%) 79,300.4
B = 5, f =
{1, 2, 3, 4}

134 (71.7%) 53 (28.3%) 605,281.8

Overall, there is an increase in running time of the collusion-tolerant GENDPR
due to the extra verifications conducted over biocenters’ isolated data. Comparing
the most conservative setting of GENDPR (in which all possible combination of
colluders are considered, i.e., f = {1, ..., B − 1}) with the f = 0 case, it is noticed
longer running times. For instance, the B = 5, f = {1, 2, 3, 4} setting took 605
seconds while for f = 0, 44 seconds. Nevertheless, such an increment of running
time is a reasonable trade-off to bring higher levels of privacy.

Another interesting result is the shorter running times achieved in the f = B−1
setting when compared to other values of f as presented in the last line of Table 6.3.
This is explained by the fact that in this scenario the additional rounds of LR-
tests only need to be performed considering each biocenter dataset individually,
and therefore over fewer genomes. It is noticed that the number of safe SNPs
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depends on how the distribution of the genome data impacts the identification
power of participants during the LR-test evaluation. Therefore, there is no direct
correlation between the number of genomes/SNPs with the number of safe SNPs.
The experiments considering 1,000 SNPs showed a similar behavior.
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Chapter 7

A Holistic Approach (combining
DyPS, I-GWAS and GenDPR)

This chapter provides an overview of a federated GWAS framework to conduct
practical GWASes, which consists of enforcing all the functionalities described in
the previous chapters simultaneously. In particular, it describes how to reconcile
all proposed solutions of this thesis in a homogeneous form.

The detailed specifications for each phase of the framework can be found in
their respective chapters. However, this chapter refresh some descriptions and the
main operations and goals of federated practical GWASes.

7.1 Holistic architecture

Figure 7.1 illustrates the multi-enclave TEE architecture used to support the op-
erations of DYPS, I-GWAS and GENDPR.

The goal of the federation is to produce safe releases of GWASes that are eval-
uated in a per-round basis. A round represents the moment a collection of genome
requests is gathered. The biocenters are responsible for sequencing donors’ genome
data and to generate genome operations according to the desire of the individual,
i.e., willing to participate in a GWAS g or asking for removal. Each biocenter
has its unique key that is used to encrypt and sign its local messages/requests
before outsourcing. Recall that during the attestation phase, the enclaves authen-
ticity are checked and they mutually agree on their keys. Therefore, only attested
enclaves can decrypt data of each other. In addition, all shipped messages are
produced inside attested enclaves. As a result, the federation members can trust
the inputs/outputs from the other enclaves.

The type of the message sent by the enclaves depends on the current phase
of the framework (described in Figure 7.2 between fewer – two enclaves – for
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Encrypted_Signed(genid, seqid, VCFid) For step (4)

Figure 7.1: Holistic multi-enclave system architecture. Steps (1), (2), (3) and (4)
are presented in Figure 7.2

simplicity’s sake). The next section describes the pipeline of the holistic framework.

7.2 Holistic framework

For steps (1) and (2), which consist of receiving and analyzing genome operation
requests (addition or removal), biocenters only need to send their request <Req> in
an encrypted and signed form. <Req> contains 〈biocid, genid, seqid, gwasg, pop, op〉,
previously defined in Section 4.4.1. Recall that seqid (the operation sequence num-
ber of the biocenter) is used to analyze the genome operation in a FIFO manner.
However, it does not necessarily means that the request is performed in FIFO.
For instance, some genomes might not be allowed to participate in a release, while
other (even if sent later) might be able to participate depending on the privacy-
preserving analysis.

The operations performed in step (2) consists of running DYPS and I-GWAS
algorithms to select a safe batch of genomes for a candidate GWAS g release
while impeding recovery attacks under the presence of dynamic and overlapping
releases. These algorithms measure the theoretical complexity of the solution space
of a candidate release in relation to existing (already released studies) to check if
a candidate release is within safe boundaries. In other words, if the solution space
an internal adversary(ies), colluding biocenters, or an external adversary has to
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infer is sufficiently large (recall conditions of Chapters 4 and 5).
Therefore, this step can be executed leveraging only the genome ID (genid),

its respective operation (pop), biocenter ID biocid and study gwasg information.
Consequently, no actual genome data needs to be shipped.

<biocid, genid, seqid, gwasg, pop, op>

<biocid, genid, seqid, gwasg, pop, op>

...

FIFO pending requests
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TEE enclave
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Figure 7.2: Holistic framework for federated practical GWASes.

There are two possibilities after step (2) ends. Either a safe batch of genomes
has been found, and then the framework progress to step (3) or the candidate
release cannot take place, and therefore it is aborted and evaluated later in a
subsequent round. To be noted that pending requests are reassessed in the next
rounds. Furthermore, a release of GWAS g will eventually take place as biocenters
sequence more genomes over time.

In case step (3) succeeds, the federation needs to assure that the release is not
vulnerable against membership inference attacks. For that, the biocenters jointly
run the GENDPR algorithm that allows the SecureGenome tests to be performed
without genome data shipping. In this step, each biocenter’s enclave produce
local summary data, e.g., local allele frequencies and local LR-matrix as specified
in Section 6.2 for running the distributed LR-test. Such summary data is also
encrypted and signed before being broadcast to the other enclaves.

Upon successfully finishing step (3), the federation has identified a safe set
of SNP positions that can be used to generate a private GWAS release. Step
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(4), the actual GWAS statistics computation, can be performed using any exist-
ing privacy-preserving federated GWAS approach or using a similar TEE-based
schemed offered in this thesis. However, biocenters might need to share the actual
genome data of selected participants (VCFid) along with genome ID (genid) and re-
quest sequence ID (seqid) or send local summary data, depending on the assumed
approach as discussed in previous chapters.

Finally, the GWAS statistics produced over the data selected in steps (2) and
(3) can be publicly published since no potentially colluding federation member
or external adversary can compromise genomic privacy of participants given the
statistical model protection guarantees described in this work.

Step (5) represents the continuous open-access releases or updates of GWASes
statistics over time as soon as more donors are sequenced and their respective
genome requests are generated by the biocenters.

7.3 Comparison between SecureGenome, Differen-
tial Privacy and the solutions offered in this
thesis

The solutions of the thesis rely on statistical-based methods and offer extensions to
enable the properties of practical GWASes. Due to the importance and popularity
of Differential Privacy, this section offers an overall comparison between the sta-
tistical inference method chosen (SecureGenome) and Differential Privacy to allow
private releases of GWAS statistics. Table 7.1 compares the features, properties,
commonalities, advantages, and disadvantages of SG and DP, while relating them
to the functionalities enabled by the solutions of this work.

DP is a generic approach to protect data releases against membership infer-
ence, and therefore has also been used to protect GWAS releases. DP relies on
mathematically proven privacy guarantees (recall DP properties and definition in-
troduced in Section 2.7) to create private statistics releases according to a specified
privacy budget used to determine the perturbation level required to protect private
data of every single individual. In contrast, SG impedes membership inference at-
tacks by preventing the release of statistics over SNPs that have a low frequency,
are highly associated with another SNP (linkage disequilibrium), or whose release
would lead to a high identification power of an individual through a LR-test.

In particular, both SG and DP have been used to protect records against
membership inference attacks. While DP has a general applicability, SG takes
genomic data particularities into account, such as the presence of dependent SNPs
and rare allele frequencies. In fact, these two methods have been successfully
applied in static GWAS scenarios [Azi+21; Rai+18; Fro+17; San+09b; Zho+11].
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Both approaches need a trusted (centralized or distributed) curator responsible
for receiving and conducting the analysis for the creation of a private release. In
the case of DP, to assess and decide the required perturbation level to protect a
release according to the specified privacy budget. For SG, to conduct statistical
tests over the data to quantify membership inference risks of individuals according
to the specified confidence levels of the LR-test.

DP has the advantage of not requiring a reference set (as SG does) to gen-
erate private GWAS releases. Besides, DP does not make any assumption on
the background knowledge of adversaries and its cost is cheap once the privacy
budget is calibrated (in case of static setting). A clear difference among the two
approaches is that while DP produces safe statistics over the entire dataset (but
applying data perturbation on the results), SG release statistics only over the SNP
positions identified as safe after the verification (i.e., they would keep membership
risks of participants below a specified power), but without noise addition.

Unfortunately, despite DP benefits, Liu et al. [LCM16] have identified that the
presence of correlated data within a dataset can be exploited by adversaries to
breach DP guarantees. Similarly, Almadhoun et al. [AAU20a; AAU20b] recently
showed that this issue also impacts genomic privacy. In particular, they demon-
strated that inference attacks might become possible when adversaries leverage
dependencies (e.g., statistically linked genomic variations or kinship) among the
genomes in a study. In contrast, SG’s LR-test can be adapted to cope with the pres-
ence of relatives of individuals in a study, which can be determined by setting a γ
variable to determine the probability of identifying relatives in a cohort [San+09b].

Furthermore, managing the privacy budget of DP mechanisms for protecting
continuous observation [Dwo+10; CSS11] and growing databases [Cum+18] are
at an early development stage, and the author is unaware of a practical imple-
mentation of these concepts. Equivalently, SG also suffers from lack of support for
dynamic releases and overlapping data. Indeed, our findings show that new privacy
issues arise when considering a dynamic setting, where data is released (queried)
multiple times and the presence of overlapping studies is possible. Indeed, these
novel privacy issues impact the privacy guarantees of both SG and DP.

For instance, the presence of overlapping data among several studies and the
observation of how statistics evolve across releases facilitate adversaries work when
mounting genomic privacy attacks. Hence, how to practically (in terms of privacy
guarantees and accuracy loss) use DP under dynamic settings is still a challenge.
In contrast, the present thesis tackles this challenge building on methods of sta-
tistical nature, by providing extensions to enable safe releases of dynamic and
potentially overlapping GWASes, whose results are continuously updated as ad-
ditional genomes become available or are removed, while allowing individuals to
remove their consent of participation in ongoing studies.
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7.4 Assessing the limitations of the proposed solu-
tions

This section provides further discussions on the potential limitations of the offered
solutions and directions for future research directions.

As covered before, there are two valid approaches to prohibit membership in-
ference attacks on GWAS releases, namely (i) leveraging Differential Privacy or
(ii) utilizing statistical inference methods. Each one of these methods has its own
particularities and privacy guarantees. In fact, they should be used according to
the expectations of the federation in terms of precision of the results, foreseen
number of releases and privacy-protection guarantees.

Unfortunately, due to the unavailability of DP-based mechanisms for continu-
ous dynamic releases of GWASes, giving up accuracy (to the scale as presented in
Table 5.2) for privacy when using standard DP, might not be reasonable, especially
when dealing with high-precision studies, such as GWAS [SB16; SBS19].

The solutions of the present thesis build on SecureGenome [San+09b] to cope
with dynamic and overlapping releases given its genome-oriented nature, for be-
ing used in previous TEE-based privacy-preserving architectures [Pas+21], and
because it is a noise-free approach. Indeed, the offered solutions can afford an
infinite number of releases thanks to its exhaustive verification scheme, which is
not the case when using DP because limited privacy budget. However, the utility
score might be impacted depending on the number of vulnerable SNPs found in
the original SNP-set. In addition, the solutions needs additional genomes to pro-
tect releases against recovery attacks, which depends on how large are overlapping
regions among studies. At the same time, the experiments indicate that the solu-
tions are scalable and has linear complexity depending on the number of existing
overlapping studies. Notwithstanding, it is important noticing that the exhaustive
verification method conducted by the solutions of this thesis is computationally
more expensive than DP-based algorithms.

Regrettably, statistical inference-based methods and DP might be vulnerable
to the presence of dependent records [AAU20b; AAU20a; Dwo+10; Cum+18].
Despite that, Sankararaman et al. [San+09b] demonstrated that SG can remediate
such an issue by allowing the detection of relatives in a cohort using a parameter (γ
) to represent the probability of detecting relatives of individuals in a cohort. As
a consequence, the solutions offered in this work can accommodate such a feature.
Furthermore, the author is not ware of existing approaches that offer collusion-
tolerance in terms of private releasing. To the best of my knowledge, the present
thesis is the first to consider the presence of colluding federation members trying
to facilitate or circumvent GWAS private release conditions.

DYPS, I-GWAS and GENDPR consider contemporary genomic privacy risks
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derived by known existing attacks and their countermeasures. Therefore, our ap-
proaches might be vulnerable to future genomic discoveries, e.g., new correlations
between SNPs found at a later time. Nevertheless, these type of findings are
becoming more unusual with time [Cog+15] and the offered privacy-protection
algorithms can be adapted to changing control population statistics but only a
posteriori. In particular, even though it is true is that such discoveries might com-
promise previous releases conducted with our solutions, new findings can be easily
integrated to their protocols, e.g., by adding an additional verification to remove
specific new dependencies. As a result, past studies releases would have to be
made inaccessible or imposed tougher access restrictions as previously conducted
by NIH [ZN08; Hom+08]. After potential updates on the protocol, studies can
be relaunched so that releases are now conducted following up-to-date genomic
privacy protection standards. Lastly, we note that the ability to update releases
depends on the current number of overlapping studies and how high their data
are correlated, which can impact the release coverage of studies, as verified in our
experiments.

In addition, as this thesis extends the Zhou et al.’s [Zho+11] conditions to
protect releases against recovery attacks, which considers SNP correlations up
to the level of linkage disequilibrium and pairwise correlations as several oth-
ers [Wan+09; Tra+15; Hum+14]. Several works studies the privacy risks when con-
sidering additional genomic-related correlations under different threat models such
high-order correlations [KFZ08; VAC19; Dez+17; Sam+15] and kinship [AH17;
Dez+17; Hum+17]. Recent research on genome-wide LD identified that: (i) us-
ing kth Markov Chain Models (MCM) to identify higher-order correlations might
not scale, whereas leveraging recombination models is linear with the number of
SNPs [Dez+17]; (ii) inference power of an attack does not increase much when
considering MCM with k > 3 [Sam+15]; (iii) relying on a Hidden Markov Model
(HMM) presents better accuracy than MCM [Dez+17; Sam+15]; and (iv) anal-
ysis of how the assumed windows size, number of SNPs in a window, and using
sliding-window schemes interfere with the identification of higher-order LD re-
gions [KFZ08; Kem+15]. Besides, it is still unclear how common and powerful
high-order LDs are in the genome [ZFC18]. Therefore, our solutions can be ex-
tended to remove SNPs that are involved in kth higher-order correlations or SNPs
that could be inferred using HMM. However, future work would be required to de-
termine the minimum order of correlations to consider to prevent privacy attacks
under dynamic and overlapping settings.

Besides, this thesis envisions that genomic-oriented privacy protection methods
can be combined with DP mechanisms to provide better release utility. In partic-
ular, such a hybrid mechanism would conduct presented methods as a first step
to select a safe batch of genomes and then detect vulnerable SNPs. Currently,
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these SNPs are secluded from the release, i.e., they do not have their statistics
released. Nevertheless, these SNPs might be released using further protection that
can be enforced with Differential Privacy, while the statistics of the remaining
(safe) SNPs can be released without perturbation. As a consequence, increasing
the overall utility score of releases. However, the limited privacy budget of DP
would impede the continuous releases of the SNPs that were released leveraging
DP. Therefore, such a study to offer a practical hybrid mechanism is left for future
work.

Finally, even though the experiments evaluated in the present thesis uses the
suggested privacy parameters adopted in previous works [San+09b; San+09b;
AH17], the offered solutions can also support stricter privacy-protection levels, for
example, by specifying more conservative thresholds and confidence levels (false-
positive and detection rates of the LR-test).
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Chapter 8

Conclusions and Future Work

8.1 Conclusions and outcomes of the thesis

To the best of author’s knowledge, this thesis is the first that reconciles secure
genomic data analysis (in the sense of securely and in a privacy-preserving manner
conducting federated GWAS), with privacy-preserving open releasing of GWAS
statistics results. In addition, the present thesis enables several novel functionali-
ties toward practical GWAS, which requires novel mechanisms to support additional
features. This thesis therefore, identified and provided solutions to enable them.

In particular, it shows that on one hand, an adversary might launch privacy
attacks during the computation of GWASes. On the other hand, GWASes releases
must preserve genomic privacy against known attacks in the literature, i.e., re-
covery and membership attacks. For instance, these attacks raise genome privacy
concerns due to the fact that genome data is very personal and therefore should
remain private. Indeed, genomic data contains sensitive data that would allow,
for instance, individuals’ predisposition to diseases, and even be used to leak sen-
sitive data from individuals’ family members or relatives. As a result, nowadays,
GWASes results are not allowed to be publicly shared anymore, which impacts
the spreading of the benefits brought by GWASes, such as early disease detection,
drug developments, and personalized medicine

Unfortunately, existing state-of-the-art solutions are not able to combine both
aspects of a fully privacy-preserving federated GWAS (processing and releasing)
environment in a homogenized form. Moreover, given the reduced cost of sequenc-
ing DNA nowadays, and also to allow federations to comply with data-privacy
regulations, such as GDPR (that oblige institutions, e.g., biocenters, to enable
consent withdrawal from genome data donors at any time), there is now a need
to update GWASes results in a dynamic manner. As a consequence, enabling dy-
namic update of GWASes brings novel genomic privacy challenges. For instance,
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adversaries might observe several GWASes updates, and compare how statistics
have evolved from time to time. As shown in this thesis, such an observation can
compromise private genomic data of participants in new ways.

Additionally, due to economic reasons or to surpass competitors, for example,
some biocenters might conjointly exchange data in order to circumvent safe con-
ditions of releases and so infringe private data of other biocenters. Indeed, HbC
biocenters can collude aiming to isolate sufficiently enough data of other’s bio-
centers that will become vulnerable to genomic privacy attacks. Furthermore, the
existence of overlapping genome data being used by multiple studies is also an open
issue. Indeed, a number of the same genomes and/or SNP positions might be used
in different studies. Such a scenario might decrease the solution space adversaries
have to infer when launching recovery attacks or enable successful membership
inference by the combination of multiple overlapping GWASes’ data.

To cope with such issues, this thesis offers solutions combined in form of a
unique framework capable of enabling dynamic privacy-preserving releases of over-
lapping GWASes results according to the evolution of the considered number of
genomic variations, individuals, or involved biocenters while enforcing privacy.
The solution leverages Intel SGX to securely receive and process genome data
from biocenters whilst evaluating safe release conditions to allow safe publication
of GWASes results without compromising privacy of both donors and data hold-
ers. It proposes a genome operation (i.e., addition and removal of participation
in studies) requests selection mechanism that selects a safe batch of genomes even
when up to f = B − 1 biocenters are colluding to attack others. Furthermore, it
provides a scaling mechanism to speed up the release of results by progressively
increasing the number of considered genomic variations. Moreover, the thesis is
the first to acknowledges the new privacy issues that arise under the presence of
interdependent GWASes, which might share genomes and SNPs. As identified,
this scenario obliges new safe release conditions to be enforced.

The performance of the solutions were extensively evaluated considering up to
300,000 SNPs and more than 6 million simulated genomes, and using two datasets
made of 2,000 and 35,000 real genomes, respectively. It is experimentally shown
and theoretically proved that the solution can scale with the number of studies
and genomes while enabling dynamic releases. It was successfully demonstrated the
practicability of both test and aggregate statistics release mechanisms, and com-
pared them against baseline approaches. For test statistics, the thesis compared
the solution to an approach that would immediately update the results whenever a
sufficiently large batch of requests could be assembled. This latter approach puts
up to 8% of the genomes at risk, while this work prevents all privacy leaks. For
aggregate statistics, the solution was compared to a static approach that would
wait for all requests to have been received before releasing statistics. The exper-
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iments show that this work is able to provide earlier aggregate statistics releases
over the same number of SNPs. These earlier releases occasionally provided statis-
tics including up to 2.6 times as many SNPs. Moreover, the existence of colluding
players only slightly impacts the performance of the solutions by increasing the
time that some genome requests are executed.

Compared to safe releases that consider only a single, but possibly dynami-
cally updated GWAS, up to 28.6% of the processed genomic information could
be leaked in recovery attacks. Depending on the number of genomes shared in a
study, between 81.8% and 92.3% of the SNPs remain vulnerable to membership
attacks if disclosed naïvely. It is also demonstrated the benefits of using our noise-
free solution instead of relying on DP mechanisms. Thus, achieving no accuracy
loss when releasing GWASes. Indeed, when compared to standard ε-DP using the
Laplace mechanism, DP considerably decreases the accuracy of releases. On the
other hand, this thesis’ solution only degrades the number of SNPs having statis-
tics releases, but without noise addition. Although it is true that this method
decreases the coverage of GWAS releases, it is shown that depending on the set-
tings (expected number of releases, privacy guarantee levels), I-GWAS presents
a better release utility score that DP-based mechanisms. Notwithstanding, the
author is unaware of DP-based solutions that can enable safe dynamic releases of
GWAS as endorsed by the approach offered in this work.

Chapter 6, which introduces GENDPR, extends the previous solutions to show
that the privacy-protection mechanisms enforced by them can also be conducted
in a distributed manner. GENDPR is a distributed multi-enclave federated frame-
work that allows members of the federation to jointly assess and decide private
releases of GWAS, without requiring genome data outsourcing kept at centralized
local (as assumed by centralized federated schemes). GENDPR accomplishes these
goals by enforcing coordination and aggregation tasks performed by an randomly
elected trusted leader that receives only intermediate data (e.g., summary statis-
tics) from other members. Thus, federation members genome data does not leave
their local premises. GENDPR proves that privacy-protection mechanisms (such
as to protect releases against membership attacks) can be correctly computed in a
distributed fashion and can also cope with the existence of colluding participants.
In particular, GENDPR is able to generate the same output of the SecureGenome
analysis over centralized data. Moreover, GENDPR can identifies additional data
that would be vulnerable with the presence of colluding attacks. GENDPR also
presents an efficient performance in terms of computational resources, such as
memory and CPU consumption but also in running times. Indeed, as some op-
erations of the privacy-protection verifications are shared among the members,
for some settings of federations, the running time of GENDPR is smaller than
the centralized approach where all computations are to be performed by a single
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machine.
As a consequence, the present thesis addresses crucial and recent genomic pri-

vacy concerns that will allow further scientific progress in genomics research by
enabling secure and privacy-preserving genome data sharing and collaboration. In
particular, the proposed solutions offer more trust and privacy to not only peo-
ple donating their genomic data but also to data holders (e.g., biocenters). Thus,
facilitating the creation and adoption of larger-scale GWASes. As a result, acceler-
ating the development of new treatments and advances in medicine. In summary,
this thesis advances the literature on secure and privacy-preserving GWAS under
collaborative environments by offering an end-to-end privacy-preserving environ-
ment for federated GWAS while enabling new features to enable practical GWAS
that consider 21st-century privacy guidelines.

8.2 Future work

Future work includes extending our solutions to tolerate byzantine biocenters
(which might behave arbitrarily) inside the federation. These malicious biocenters
could upload fake genomic data, statistics or genome operations requests. To mit-
igate this, a novel module to check authenticity and genuinity of genome data can
be conducted within enclaves so that outsourced data from federation members
can be attested. Nevertheless, the creation of algorithms to detect genuine genome
data is still a challenge.

Other directions for future work include analyzing the interplay between differ-
ential privacy and tolerable privacy budgets for dependent and overlapping records
under continual releases. Besides, studying and addressing new privacy issues that
might raise under the presence of colluding parties in local-DP based schemes, sim-
ilarly to what have been identified in this thesis with statistical-based methods.

On the system-side aspect of the work, it is planned to create an data-oblivious
version of the protocol and algorithms in order to mitigate the side-channel attack
vulnerability of TEE-based schemes.

In addition, I plan to study the feasibility of employing fault-tolerant protocols
on top of the multi-enclave privacy-protecting protocol so that our solutions can
make progress and keep liveness even given the presence of faulty (e.g., delayed or
disrupted members).

Furthermore, I aim at designing a hybrid approach that combines homomorphic
encryption (HE) and TEE. For instance, leveraging HE for simpler tasks, such as
data aggregation, while relying on TEEs to compute more complex operations,
such as running conducting membership inference tests.

Additionally, this work leaves as an open challenge the designing of collusion-
tolerant by nature privacy-preserving releasing mechanisms. For instance, a collusion-
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tolerant Differential Privacy approach to support the presence of colluding mem-
bers sharing their raw and perturbed data with specific members trying to circum-
vent private release conditions, similar to what has been assumed in this thesis.

Last but not least, after a fruitful discussion with Prof. Dr. Yves Moreau, I
leave as another remaining challenge the creation of privacy-preserving releasing
schemes that account for the “meaningfulness” of the SNP positions allowed to have
their statistics disclosed. In particular, privacy-preserving releasing approaches
might prohibit the participation of genomes/SNPs with a high association with
a study, but cannot have their statistics released due to the privacy-protection
mechanisms in place. Hence, implementing a method that acknowledges the in-
terplay between privacy and SNP associations within a study is a crucial feature
to allow easier adoption of such privacy-preserving schemes by bioinformaticians
and researchers.

143



Terminology

Concept Description
Deoxyribonucleic acid (DNA) Elongated polymer composed of genetic information

that form all living beings’ genetic code.

Gene The sections of a DNA responsible for accommodating
instructions for specific functional molecules, usually a
protein. It encodes and express individual character-
istics (e.g., hair color) of all living creatures, which is
inherited from relatives.

Genome The complete set of genes (genetic instructions) needed
to form all functional characteristics of an organism al-
lowing it to live, grow and develop. Genomes are found
in specific DNAS’ partitions (chromosomes). individual.
It contains all the information the individual requires to
function. The genome is usually stored in long molecules
of DNA called chromosomes.

Chromosome A long DNA molecule that stores the genetic material of
a creature. It is a threadlike structure wrapped around
proteins in a scaffolding manner. The human genome is
made of 23 pairs of chromosomes.

Nucleotide An organic molecule that is composed of sugar, a phos-
phate group, and a nitrogenous base. It represents the
basic unit that assembles the DNA. It is categorized de-
pending on its nitrogenous type. In DNAs, there are four
types of nucleotides: adenine (A), cytosine (C), thymine
(T), and guanine (G). While for RNAs, uracil (U) sub-
stitutes thymine.

Locus In the biological context, it represents a single region
in the genome where genetic variations (the presence of
different nucleotides in creatures of a same population)
might occur.
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Concept Description
Reference genome It is a generic genome that contains all common vari-

ations found in a population. The human reference
genome consists of all known variations present in hu-
mans. On average, humans share 99.9% of genetic in-
formation from which the remaining 0.1% consists of
variations.

Single nucleotide polymorphism
(SNP)

The smallest piece of genetic information (i.e., a nu-
cleotide) that varies at a specific position (locus) of
the genome in a population. Only variations that are
present in more than 1% of the population are consid-
ered SNPs. Variations found in less than 1% of the pop-
ulation are recognized as rare mutations or abnormal
changes.

Allele A variant of a nucleotide stored in a chromosome pair.
Each cell in a pair of chromosomes has two alleles in-
herited from each parent per gene. There is a dominant
allele, which is the one responsible for coding the func-
tionality of a protein, whereas the recessive allele does
not contribute to the encoding of proteins. Furthermore,
there are two types of alleles: major and minor alleles
according to their incidence at a specific locus of the
genome.

Major allele The most common type of allele found at a given locus
of the genome in a population.

Minor allele The rarest type of allele found at a given locus of the
genome in a population.

Allele frequency It measures the prevalence of genomic variations among
individuals. It consists of the sum of all incidences of
a given allele at a specific locus, divided by the total
number of alleles found in a population.
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Concept Description
Genotype The full sequence (double-stranded DNA) of alleles

present in individuals’ SNPs. Since any two genotypes
of a person (i.e., a complete set of genes) are mostly
identical, one can represent an individual’s genotype by
the difference of its information compared to a human
reference genome. There are three types of genotypes:
(i) major homozygous genotype, i.e., the presence of
two major alleles; (ii) minor homozygous genotype, i.e.,
the presence of two minor alleles; and (iii) heterozygous
genotype, i.e., the presence of a major and a minor allele.

Haplotype A single strand sequence of DNA variations (e.g., SNPs)
adjacent to each other.

Phenotype The observable physical properties or characteristic
present in a organism. It results from the combination
of the environment where the living creature lives and
its genotype.

Genome-wide association study
(GWAS)

An observational and statistical study that aims at iden-
tifying correlations between specific genome variations
(SNPs) with a particular phenotype, e.g., a disease.
It evaluates the presence of certain genomic variations
among two groups of individuals (case and control) that
might be linked to the concerned trait.

Federated analysis A collaborative environment where several parties (that
also might do not trust each other, for economical rea-
sons, for example), jointly agrees to contribute by shar-
ing their local data/inputs aiming at computing a given
function of interest, e.g. performing GWAS statistics
using aggregated data from all participants of the fed-
eration, i.e., data holders.

Case population Individuals participating in a GWAS that does not ex-
press the phenotype of interest, e.g., lung cancer.

Control population Individuals participating in a GWAS that does express
the phenotype of interest, e.g., people with lung cancer.
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Concept Description
Minor Allele Frequency (MAF) It is the frequency of the second most common allele

(i.e., a minor allele) of a SNP locus in a population.
Usually, GWAS aims at identifying MAF between 1%-
5%.

chi-square (x2) statistic An association test that determines if there is a statis-
tical correlation between variables. In GWASes, it is
used to determine whether or not the null hypothesis,
which states that the allele frequencies in the case and
control populations follow a similar distribution, can be
rejected.

p-value (x2) statistic A statistical test to determine the probability of occur-
rence of the observed data seems consistent or not with
the null hypothesis of the chi-square test. Usually, a
p-value below 10−8) indicates that a genetic variant is
highly associated with the phenotype of interest of the
GWAS.

Linkage disequilibrium (LD) The phenomenon when allele frequencies at one or more
loci are not independent, i.e., when the frequency of as-
sociation between alleles at different loci is not random.

Likelihood-ratio test (LR-test) A LR-test measures the goodness of fit of two competing
statistical models (i.e., the null and alternative hypothe-
sis) based on the ratio of their likelihoods observed from
supporting data (e.g., case and control populations of a
GWAS).

Trusted execution environment
(TEE)

It consists of a secured area inside a CPU’s processor
where loaded code and data cannot be tampered with,
even by the operating system. Such isolation enforces
confidentiality and integrity of information residing in
such regions.

Homomorphic Encryption (HE) It is a cryptographic method that allows the execution
of computation (e.g., arithmetic operations) over en-
crypted data.
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Concept Description
Secure Multiparty Computation
(SMC)

It is a cryptographic method that allows several par-
ties to jointly operate, compute and receive the result
of a function of interest without disclosing their private
inputs to other parties.

Differential Privacy (DP) It is an approach for allowing the public sharing of in-
formation (e.g., statistical results) about a given dataset
while preventing the leak of private information of any
record part of the dataset.

Honest-but-Curious (HbC) ad-
versary

In a multiparty setting, a HbC adversary is an entity
that follows the protocol honestly but might attempt to
learn extra information from the system or other parties.

Probabilistic polynomial-time
(p.p.t.) adversary

It is an adversary that can only perform a polynomial
amount of operations that can be accomplished by any
probabilistic polynomial-time algorithm. Such an algo-
rithm can rely on the results of a random source, e.g., a
random function such as tossing a coin.
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