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Abstract 

Executive functions (EFs) are key skills underlying other cognitive skills that are relevant to 

learning and everyday life. Although a plethora of evidence suggests a positive relation 

between the three EF subdimensions inhibition, shifting, and updating, and math skills for 

schoolchildren and adults, the findings on the magnitude of and possible variations in this 

relation are inconclusive for preschool children and several narrow math skills (i.e., math 

intelligence). Therefore, the present meta-analysis aimed to (a) synthesize the relation 

between EFs and math intelligence (an aggregate of math skills) in preschool children; (b) 

examine which study, sample, and measurement characteristics moderate this relation; and (c) 

test the joint effects of EFs on math intelligence. Utilizing data extracted from 47 studies (363 

effect sizes, 30,481 participants) from 2000 to 2021, we found that, overall, EFs are 

significantly related to math intelligence (r̅ = .34, 95% CI [.31, .37]), as are inhibition (r̅ = .30, 

95% CI [.25, .35]), shifting (r̅ = .32, 95% CI [.25, .38]), and updating (r̅ = .36, 95% CI 

[.31, .40]). Key measurement characteristics of EFs, but neither children’s age nor gender, 

moderated this relation. These findings suggest a positive link between EFs and math 

intelligence in preschool children and emphasize the importance of measurement 

characteristics. We further examined the joint relations between EFs and math intelligence via 

meta-analytic structural equation modeling. Evaluating different models and representations 

of EFs, we did not find support for the expectation that the three EF subdimensions are 

differentially related to math intelligence. 

Keywords: cognitive skills, executive functions, mathematics, meta-analysis, pre-

school children 

Public Significance Statement: Executive functions (EFs) are key to learning and 

children who score higher on EFs also show better scores in mathematics. This meta-analysis 

confirms that children who can better avoid (or inhibit) being distracted, shift easily between 

different tasks, or update the information they have just learned are also scoring high on math 
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intelligence tests. However, this link between EFs and math intelligence should always be 

interpreted in light of the measurement characteristics of EFs, as suggested by the moderator 

analyses. We found evidence to support the idea that the three EFs (inhibition, shifting, and 

updating) are equally important for math intelligence. 
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The Relation Between Executive Functions and Math Intelligence in Preschool 

Children: A Systematic Review and Meta-Analysis 

Executive functions (EFs)—a set of mental processes that regulate human cognition 

and behavior (Miyake et al., 2000; Miyake & Friedman, 2012)—and their three arguably most 

investigated subdimensions (response inhibition, mental set shifting, and updating of working 

memory; aka inhibition, shifting, and updating) are considered prerequisites for many 

cognitive skills, such as reading, and correlate with fluid intelligence (Cassidy et al., 2016; 

Diamond, 2013; Follmer, 2018). In addition to providing empirical evidence of the relation 

between EFs and these cognitive skills, researchers have repeatedly shown that EFs are linked 

to math skills, such as basic number knowledge, calculation, spatial skills, and mathematical 

reasoning, in schoolchildren and adults (see, e.g., Best et al., 2011; Cragg et al., 2017; Friso-

van den Bos et al., 2013; Peng et al., 2016; Yeniad et al., 2013) and play a crucial role in the 

development of math skills (van der Ven, 2011; van der Ven et al., 2012). Therefore, it is 

critical to examine the preschool years and comprehensively investigate the constructs that 

have been found to contribute to the development of mathematical skills. For instance, 

development of an understanding of numbers begins before school entry (Passolunghi & 

Lanfranchi, 2012) and is related to EFs (Geary et al., 2019), suggesting that the preschool 

years are a formative period with rapid development of mathematical skills and EFs (Zelazo 

& Carlson, 2012). These developmental patterns might even differ between EF 

subdimensions in this age group (Diamond, 2013; Garon et al., 2008) as some EFs develop 

earlier than others. As preschool children are on the brink of structured schooling, their EFs 

constitute an important part of their school readiness and predict their academic success 

throughout their school careers (Blair, 2002; Diamond, 2013; G. J. Duncan et al., 2007). EFs 

and early mathematical skills are not only core areas of school readiness (the very goal of the 

preschool years) but also predict academic success later in the school career. Thus, both 
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constructs are crucial to investigate in preschool children due to their age and preschool 

status. 

Following the literature on the differentiation of cognitive skills over time, some 

researchers have argued that EFs and basic math skills actually measure the same underlying 

construct in children, as both are strongly linked to intelligence and can be integrated into the 

Cattel-Horn-Carroll (CHC) theory of intelligence (Ackerman et al., 2005; Allan et al., 2014; 

Fleming & Malone, 1983; Jewsbury et al., 2016; Roth et al., 2015). Specifically, Jewsbury et 

al. (2016) suggested subsuming inhibition and shifting under a general speed factor (Gs), and 

updating can be captured by a general memory factor (Gsm). Math skills have been 

categorized as quantitative knowledge (Gq), fluid intelligence (Gf), and visual processing 

(Gv; Schneider & McGrew, 2018; Uttal et al., 2013). However, other scholars have argued 

that EFs and math skills measure correlated but distinct constructs (see, e.g., Best et al., 2011; 

Cragg et al., 2017; Friedman et al., 2006; Peng et al., 2016; Yeniad et al., 2013). These 

perspectives differ in whether math skills are conceptualized as broader (e.g., students’ grades 

or performance on teacher-constructed math tests) or narrower (e.g., only intelligence tests 

with math components). Typically, EFs and math skills in preschool children are not measured 

with standardized questionnaires that require the children to read and write (cf. the Behavior 

Rating Inventory of Executive Function [BRIEF]; Gioia et al., 2000), and researchers have to 

resort to innovative ways of assessing EFs and math skills. Thus, EFs might vary in their 

relation to math skills in terms of the measurement properties (e.g., Allan et al., 2014; Cortés 

Pascual et al., 2019) or study and sample characteristics (David, 2012; Friso-van den Bos et 

al., 2013; Peng et al., 2016). Investigating the influence of diverse measurement, sample, and 

study characteristics on the relation between EFs and math skills can provide valuable 

information to practitioners who want to streamline the assessment of these constructs and 

researchers who aim to better understand the nature of the relation. 
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The extant body of literature also reveals another issue. There is some disagreement 

about the magnitude of the joint relations of inhibition, shifting, and updating with math skills 

in preschool children. While some researchers found that all three are key predictors of math 

skills (e.g., R. Duncan et al., 2016; Purpura et al., 2017), others found that updating (Friso-van 

den Bos et al., 2013) or shifting (Jacob & Parkinson, 2015) is superior to the other EF 

subdimensions. With this equivocal discussion at hand, researchers should avoid jumping to 

conclusions about the differential effects of specific EFs, as strong claims call for even 

stronger evidence, and the field of EF research is no stranger to critical discussion (see, e.g., 

the discussion on the relation between working memory and intelligence; Ackerman et al., 

2005; Beier & Ackerman, 2005; Kane et al., 2005; Oberauer et al., 2005). Concerning the 

joint and individual contributions of inhibition, shifting, and updating to math skills, some of 

these divergent findings may depend on the ways in which EFs are represented in 

measurement models, for instance, as single or multiple latent variables or composite factors 

(Camerota et al., 2020). The common practice of utilizing single, reflective latent variables 

has been questioned, especially when describing the relations between EFs and math skills. 

For instance, Nguyen et al. (2019) examined an alternative model to the single latent EF 

variable model and showed that relations with math skills could also operate via unique 

components of EFs. To integrate these different approaches, we performed meta-analytic 

structural equation modeling and examined the effects of EFs on math intelligence jointly 

rather than separately. 

To examine the relations among the three EF subdimensions and narrow math skills, 

in the present study, we synthesized 363 effect sizes from 47 studies from 2000 to 2021. Most 

meta-analyses have investigated the relation between a specific EF and math skills (e.g., Allan 

et al., 2014; David, 2012; Peng et al., 2016) or the relation between EFs and general cognitive 

abilities in preschool children (Ackerman et al., 2005; Brydges et al., 2012; Jewsbury et al., 

2016). However, the present meta-analysis combines these two approaches by focusing on 
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math skills related to general cognitive abilities, that is, math intelligence and the three EF 

subdimensions. Furthermore, we identified which study, sample, and measurement 

characteristics may moderate these relations and examined their multivariate nature. To the 

best of our knowledge, this study is the first to investigate the relation between EFs and math 

intelligence using a multilevel and multivariate meta-analysis of preschool children. 

Theoretical Framework 

Executive Functions and Their Measurement 

EFs are a set of general-purpose control mechanisms that regulate human cognition 

and behavior and are important for self-control and self-regulation (Miyake et al., 2000; 

Miyake & Friedman, 2012). Miyake and Friedman (2012) characterized these control 

mechanisms in their EF framework based on four conclusions drawn from the literature on 

EFs. First, the three EF subdimensions in their framework—inhibition, shifting, and 

updating—tend to be distinct in adults, showing a diversity factor structure with three distinct 

factors. Yet the three EFs are correlated, especially in preschool children, yielding a unitary 

factor for all three EFs (Wiebe et al., 2008). Second, twin studies have suggested that a large 

proportion of EFs are genetically inherited (Friedman et al., 2008). Third, measures of 

executive functions can be used to differentiate between clinical and nonclinical behaviors 

(Young et al., 2009). Fourth, longitudinal studies have shown that EFs are expressed in a 

stable way over the course of one’s life (Mischel et al., 2011), although the structure of EFs 

develops over time and therefore differs between age groups. Other researchers have 

investigated the differences between emotionally arousing (“hot”; e.g., due to a punishment or 

reward) and emotionally neutral (“cool”) EFs (Brock et al., 2009; Zelazo & Carlson, 2012). 

Their findings suggested that, when considered jointly, “hot” EFs are uniquely related to 

disruptive behavior in preschool children, and “cool” EFs are uniquely related to academic 

achievement (Brock et al., 2009; Willoughby et al., 2011). This distinction was further 

corroborated for inhibitory control by Allan et al.’s (2014) meta-analysis, hinting at a variety 
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of executive function dimensions that can be distinguished beyond Miyake et al.’s (2000) 

work. Additionally, higher-level EFs have been examined, such as “planning,” tapping into 

multiple more basic EF processes (Miyake & Friedman, 2012). For the purpose of this meta-

analysis, we further describe the EF framework proposed by Miyake et al. (2000) and its three 

subdimensions (inhibition, shifting, and updating), the ways EFs are measured in children, 

and their implications for math skills. 

Inhibition is the ability to deliberately override a dominant, automatic, or prepotent 

response when needed (Miyake et al., 2000; Miyake & Friedman, 2012). Inhibition tasks 

generally include a conflict between the child’s automatic response and the correct response. 

For instance, in the head-toes-knees-shoulders task (McClelland et al., 2014), a child is 

instructed to touch their head when prompted to touch their toes and vice versa, as well as to 

touch their knees when prompted to touch their shoulders and vice versa. One of the 

dependent variables is the number of correct trials, and the prepotent response that needs to be 

inhibited is touching the stated body part (for a comprehensive review of EF tasks, see Garon 

et al., 2008). In math learning, this ability comes into play whenever the obvious answer to a 

question is not the correct one, and the task demands a more thorough approach (Graziano et 

al., 2016). When a child is trading cards, stickers, or marbles with a friend, for instance, the 

friend might ask how many items (i.e., marbles) the child has. A specific answer requires the 

child to avoid shouting out the answer that comes to mind first (e.g., “many, many marbles”) 

and instead count the marbles one by one and then tell their friend (“I have four marbles”). In 

addition, for children working on a math question, inhibition is important to stay focused and 

avoid the urge to give up or be distracted by more attractive alternatives (Clements et al., 

2016). 

Shifting—also referred to as attention shifting or cognitive flexibility (Diamond, 

2013)—is the ability to switch back and forth between mental sets or tasks (Miyake et al., 

2000; Miyake & Friedman, 2012). Tasks that measure shifting generally have an element of 
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novelty to them, be it changing rules or adjusting priorities. For example, in the dimensional 

change card sorting task (Zelazo, 2006), the child is presented with cards displaying various 

shapes in different colors. The child is asked to sort the cards by color, and after some time, 

they are asked to sort the cards by shape. The number of correct responses after the sorting 

rule is changed serves as the dependent variable. This change in sorting rules represents the 

novelty inherent in shifting tasks. In a math skill-testing situation, shifting is represented by 

the act of switching to a new question and then applying the appropriate rule to the new 

question rather than sticking with one rule, although the question demands otherwise. Shifting 

also comes into play when the solutions to math questions require children to change their 

perspectives. To be a successful marble trader, for instance, the child in the previous example 

must constantly switch from receiving marbles and adding them to their count to giving 

marbles to their friend and subtracting them. 

Updating is the ability to constantly monitor and rapidly manipulate the content of 

working memory (Miyake et al., 2000; Miyake & Friedman, 2012). Although this definition is 

only slightly different from working memory itself (namely, the ability to store and process 

information at the same time; Baddeley, 1992), the two constructs can be distinguished 

regarding several points. In Baddeley’s (1992) memory model, working memory is an 

overarching brain system with three components: the central executive, the phonological loop, 

and the visual sketch. Both updating and working memory tasks go beyond merely holding 

content in working memory (Baddeley, 1992) and add the aspect of manipulation (Lehto, 

1996), while updating tasks introduce an aspect of monitoring and replacing old pieces of 

information with new ones. Consequently, working memory can be assessed with a backward 

digit span. The child is asked to repeat a list of digits (or words) backward, with the number 

of correct responses in a row representing the dependent variable. This task requires the child 

to listen to and remember the list of digits (holding them in their working memory) while 

simultaneously reversing the order of the digits (processing the content of working memory). 
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To make this an updating task, the child can be asked to use only the third last digit, which 

adds the aspect of monitoring and manipulating, rather than repeating all digits backward. In 

the present study, we refer to working memory and updating as updating due to the 

similarities in their assessment and considerable ambiguity in primary studies. In the 

mathematics context, updating is crucial for solving multistep problems. Using the marble 

trading example, the child needs to remember the preceding steps or preliminary results (e.g., 

“I have two marbles”) to decide on the next step and then update their previous results 

mentally (Harvey & Miller, 2017). The latter step could be to add one marble to the count 

(e.g., “My friend gave me one marble. So, I have three now”) without having to count the 

marbles again.  

Despite the distinction between multiple EF subdimensions, this distinction may not 

be clear-cut for complex EF tasks. In fact, such tasks may require multiple EF processes or 

processes other than executive functioning. Friedman et al. (2008) described this issue of 

“task impurity” using an example from the Wisconsin Card Sorting Test (WCST): While 

some WCST tasks require shifting due to changing sorting rules, the tests may also require 

perceptual and motor skills. Moreover, EF and math tasks may share design and assessment 

features, such as relying on numbers or operations (i.e., “method overlap”). Therefore, the 

relations between EFs and other constructs could be biased. To circumvent such bias, latent 

variable models have been proposed to account for common and unique variations among EF 

tasks and processes (Camerota et al., 2020). 

Several models that describe the structure of EF assessments have been developed and 

reported in primary studies. These models include, but are not limited to, latent variable 

models with a single latent EF variable, multiple-correlated latent EF variables, or multiple 

latent EF variables with a general EF factor and some specific factors (Camerota et al., 2020; 

Friedman & Miyake, 2017). The question of the unity or diversity of executive functions is a 

key question in EF research and has initiated many empirical studies that have explored the fit 
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of appropriate measurement models (Karr et al., 2018). However, such measurement models 

may vary among age groups, and most evidence supports the representation of EFs by a single 

latent variable for young and preschool-age children (Wiebe et al., 2008; Willoughby et al., 

2012). At the same time, some evidence also points to the representation of EFs by a two-

dimensional model (Karr et al., 2018; Lerner & Lonigan, 2014). Nonetheless, over time, the 

various EF processes may become more differentiated in later childhood (Brydges et al., 

2014; Lerner & Lonigan, 2014). 

Math Intelligence and Its Measurement 

In the present study, we conceptualized math skills as part of intelligence due to their 

inherent fluid and crystallized aspects (Woodcock, McGrew, & Mather, 2001; Wechsler et al., 

2003). Some theoretical frameworks subsume math skills in subfacets of intelligence. For 

instance, the CHC theory of intelligence categorizes math skills mainly under the narrow 

stratum I of fluid intelligence (Gf) as quantitative reasoning—that is, the inductive and 

deductive reasoning abilities involving mathematical relations and properties—and under 

stratum I quantitative knowledge (Gq), which includes mathematical knowledge and 

achievement (Schneider & McGrew, 2018).(Schneider & McGrew, 2018) Mathematics skills 

related to geometry and space may also involve visual processing (Gv) generally and spatial 

reasoning specifically (Uttal et al., 2013). This conceptualization of math skills as part of 

general intelligence, which we refer to as “math intelligence” (e.g., Dweck, 2014; Martens et 

al., 2006; Rattan et al., 2012), is based on two elements. First, the present sample was 

comprised of preschool children who had not yet been exposed to formal schooling; thus, 

school achievement scores or teacher grades were not included. Second, we reasoned that 

intelligence and EFs are related (Friedman et al., 2006). Although much research attention has 

been paid to examining the relations between EFs and domain-general intelligence 

components (Ackerman et al., 2005), little is known about the relation between EFs and math-

specific intelligence components. 
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Further, we differentiate between three subdimensions of math intelligence tasks: 

calculation and reasoning, basic number knowledge, and spatial tasks. Calculation and 

reasoning, which encompass numerical operations and applied mathematical problems, can be 

measured by, for instance, the Applied Problems subscale of the Woodcock-Johnson Test of 

Cognitive Ability (version III; Woodcock, McGrew, & Mather, 2001). This is a widely used 

intelligence test validated for individuals ages 2 to older than 90. The Applied Problem scale 

includes subitizing, simple subtraction, and calculation tasks, among others. Basic number 

knowledge, which comprises counting and cardinality, can be measured with simple tasks in 

which children are asked to count for as long as they can. The highest number to which the 

children can correctly count serves as the dependent variable. Spatial tasks involve aspects of 

geometry, shapes, and algorithms. Examples include shape recognition or shape-matching 

tasks in which children must match a probe with a target shape (e.g., Child Math Assessment; 

Starkey et al., 2004). In the present study, spatial tasks were later merged with the “other” 

category due to the small number of available effect sizes.  

The three subdimensions of math intelligence were derived from previous theory and 

research. From a theoretical perspective, they reflect the three aspects of the CHC theory of 

intelligence adapted to math intelligence in preschool-age children: Calculation and reasoning 

and basic number knowledge represent fluid intelligence (Gf) and quantitative knowledge 

(Gq), while spatial tasks represent (Schneider & McGrew, 2018)math-related visual 

processing (Gv) in preschool children (Schneider & McGrew, 2018)(Schneider & McGrew, 

2018). We merged the calculation and reasoning categories into one subdimension following 

previous factor-analytic research, which indicated that mathematical operations (i.e., 

calculation) and reasoning load on quantitative knowledge (Gq; Parkin & Beaujean, 2012). 

Friso-van den Bos et al. (2013) specified similar categories (simple arithmetic; counting, and 

basic understanding of numerical concepts; geometry, shapes, and algorithms) but included 

additional categories that did not apply to preschool children (e.g., advanced arithmetic or 
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teacher rating). Peng et al. (2016) drew on similar but more differentiated categories of math 

tasks (i.e., basic number knowledge, whole-number calculations, fractions, geometry, algebra, 

and word-problem solving). Thus, we derived the math intelligence construct and its three 

subdimensions in the present study from previous theory and research. 

Relations Between Executive Functions and Math Skills 

EFs contribute to the process of learning and performing math skills. Not only are 

there applied settings where EFs and math skills are related, as described previously, but there 

is also strong evidence that preschool children’s EFs can predict their math skills later (Bull et 

al., 2008; Clements et al., 2016; Cragg & Gilmore, 2014; McClelland et al., 2014). For 

researchers and educators, it is crucial to better understand this relationship in preschool 

children in order to pave the way for success in their (academic) careers (Ancker & Kaufman, 

2007; R. Duncan et al., 2007). In addition, measures of EFs can be deployed to identify 

children who need more help learning mathematical skills (C. A. C. Clark et al., 2010).  

Because EFs are crucial for learning and performing math skills, a lack of EFs can 

predict difficulties in math skills. This has been suggested by experimental dual-task studies, 

such as those focused on updating (for a review, see Raghubar et al., 2010). To adequately 

assist children who are struggling with math skills early on, it is important to clarify the 

structure of the EF construct and the potential differential contribution of the three EF 

subdimensions. In contrast to most of the evidence suggesting a unitary EF construct in 

preschool children (Wiebe et al., 2008), several researchers have shown results that support 

the notion of distinct EF subdimensions in that age group (Carlson, 2005; Espy et al., 2001). 

Thus, it is unclear whether EFs are best represented as one construct or as several 

subdimensions. However, this knowledge could help educators and parents assist struggling 

children to thrive with tailored instruction later in school (e.g., by reducing updating demands, 

as in Case et al., 1996) or could help parents provide support and strengthen EFs in a playful 

way (see, e.g., Hutchison & Phillips, 2018). However, there seems to be no strong evidence of 
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far transfer from, for instance, updating to reading comprehension and arithmetic (Melby-

Lervåg & Hulme, 2013) or between EFs (Kassai et al., 2019). Furthermore, although it might 

be possible to train EFs, the benefits of such training seem to vanish quickly (Takacs & 

Kassai, 2019). From an economic perspective, knowledge of the EF subdimensions is relevant 

for the construction of measures for EFs and math skills. If the constructs cannot be 

differentiated, they could be measured with one instrument, saving time and financial 

resources as well as reducing the effort required of children. Examining the relation between 

EFs and math skills will inform not only theorization but also the current assessment practices 

for EFs in preschool educational contexts.  

The unity and diversity of EFs have implications for describing the EF–math 

intelligence relationship. Different representations of EFs can result in different inferences 

drawn from this relationship. Nguyen et al. (2019) noted that there is a lack of agreement 

about the theoretical assumptions underlying the link between EFs and math skills. 

Specifically, the authors observed the common practice of representing EFs as a single latent 

variable or a composite score (see also Camerota et al., 2020). With this representation, the 

relation between EFs and math skills operates through a variable that captures what is 

common among the manifest EF indicators (Borsboom et al., 2003). Such a model ultimately 

provides information about the extent to which a unitary EF construct explains variations in 

the measures of skills in mathematics and sheds light on the joint contribution to math skills. 

However, if researchers are interested in the unique effects of EFs, the EF–math relations 

could be described via the residuals of the manifest EF indicators or multiple latent EF 

variables (Gignac & Kretzschmar, 2017; Nguyen et al., 2019). Finally, models describing the 

direct relations between multiple manifest or latent EF variables and math skills have the 

potential to unravel whether differential or uniform effects exist (Arán Filippetti & Richaud, 

2017). Overall, the joint relations between multiple EFs and math intelligence can be modeled 

and interpreted in several ways. 
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Previous Meta-Analyses 

We identified eight meta-analyses that investigated the relation between math skills 

and EFs as a whole, as well as the specific subdimensions (inhibition, shifting, and updating). 

This body of research revealed the need to bring together multiple EF subdimensions, a focus 

on age groups, and conceptualizations of math skills. Table 1 presents an overview of the 

previous meta-analyses. 

In general, studies have found moderate correlations between all three subdimensions 

of EF and math skills. Allan et al. (2014) found a moderate average correlation (r̅ = .34) 

between inhibition and the development of academic skills, including math skills, in their 

meta-analysis of preschool children. For shifting, Yeniad et al.’s (2013) meta-analysis yielded 

a correlation of r̅ = .26 between shifting and math skills (operationalized as math 

performance) in children ages 4–14 years. Five meta-analyses (Cortés Pascual et al., 2019; 

David, 2012; Friso-van den Bos et al., 2013; Peng et al., 2016; Swanson & Jerman, 2006; see 

Table 1) focused on the relation between updating and math skills and found slightly higher 

correlations than those reported previously for inhibition and shifting. Two meta-analyses 

(David, 2012; Swanson & Jerman, 2006) found medium to large group differences in 

updating between children and young adults with and without math difficulties in favor of the 

group without math difficulties. Extending the sample to participants between 3 and 52 years 

of age, Peng et al. (2016) found a correlation of r̅ = .35 between updating (operationalized as 

working memory) and math skills. Recently, Cortés Pascual et al. (2019) examined the links 

between composite EF and updating scores and math performance in children ages 6–12 

years, finding similar average correlations (r̅ = .37) for both links (Table 1). 

Two meta-analyses examined the connections between math skills and all three EF 

subdimensions separately. Friso-van den Bos et al. (2013) examined the relation between 

math skills and inhibition (r̅ = .27), shifting (r̅ = .28), and updating (visuospatial: r̅ = .34; 

verbal: r̅ = .38) in samples of 4- to 12-year-olds. Jacob and Parkinson (2015) investigated the 
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link between the three EF subdimensions and math skills (indicated by math achievement) in 

preschool children and schoolchildren, as well as in adolescents (ages 3–5 years, 6–11 years, 

and 12–18 years, respectively). Their results showed moderate correlations across the age 

groups and EF subdimensions, with an overall correlation of r̅ = .31. However, Jacob and 

Parkinson (2015) did not examine inhibition, shifting, and updating separately across the three 

age groups. Thus far, only this meta-analysis and one other have focused on preschool 

children (Allan et al., 2014; Jacob & Parkinson, 2015). All the meta-analyses broadly 

conceptualized math skills, including a wide range of subdimensions, measures, and tasks. 

Two meta-analyses showed substantial heterogeneity in correlations due to variations in math 

skills and tasks (Friso-van den Bos et al., 2013; Peng et al., 2016). In addition, key aspects of 

the unique and joint effects of EFs on math skills have not yet been investigated meta-

analytically. 

Possible Moderators 

Previous meta-analyses of the relations between EFs and math skills have suggested a 

wide array of possible moderators, focusing on differences in age and measurement (see 

Table 1). In the present meta-analysis, we focused on study, sample, and measurement 

characteristics as three key sources of heterogeneity (for an extensive list of all coded 

moderators, see the Coding of Studies section and the codebook in Supplemental Material 

S1). As in any meta-analysis, study characteristics, such as variables indicating the context of 

the primary study or whether a primary study was published, can reveal research trends and 

design issues (see Ferguson & Heene, 2012). Sample characteristics, such as gender 

composition, country of origin, average age, and whether the children were in kindergarten, 

preschool, or still at home, have been found to explain substantial heterogeneity (see Friso-

van den Bos et al., 2013; Yeniad et al., 2013). In particular, differences in age may lead to 

divergent findings because the development of EFs and math skills evolves rapidly before 

children enter school (N. P. Allan et al., 2014; Garon et al., 2008). David (2012) and Swanson 
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and Jerman (2006) found that the links between updating and math skills are stronger in 

younger children than in older ones, and Friso-van den Bos et al. (2013) reported similar 

findings for shifting. We coded the authors’ descriptions of the preschool status of the 

respective samples. As for gender composition, some studies found no effect on the relation 

between EFs and math skills (Bull et al., 2008; Clark et al., 2010). In a meta-analysis of 

children ages 6–12 years, however, Cortés Pascual et al. (2019) found gender composition 

significantly moderates the relationship of updating and an EF composite with math 

performance. At the same time, most studies in the present sample did not explicitly examine 

the possible influence of gender, leaving a research gap in the literature on preschool children. 

Additionally, there is some evidence that children from different countries and continents 

vary in terms of performance speed and problem-solving strategies, which might hint at 

differences in instruction and number language (Imbo & LeFevre, 2009). Furthermore, studies 

have reported that socioeconomic status is related to EFs (Blair, 2010) and influences their 

relation to math skills (Noble et al., 2007; Riggs et al., 2006). Finally, measurement 

characteristics are especially important in the context of preschool children because children 

at that age generally are not yet able to read or write. Therefore, commonly used measures 

based on reading and writing (e.g., paper-and-pencil word problem-solving tasks) cannot be 

applied. As a result, a wide array of alternative measures of inhibition, shifting, and updating 

have been used, introducing heterogeneity to the pool of measurements for preschool 

children. Some previous meta-analyses have supported the possible differential relation 

between different types of EF tasks and math skills (see Allan et al., 2014; Jacob & 

Parkinson, 2015). Table S6.1 presents a summary and examples of all types of EF tasks 

examined in the present meta-analysis. Regarding the measurement characteristics of math 

skills, different task types (e.g., basic number knowledge tasks vs. numerical reasoning tasks) 

have been proposed (see Allan et al., 2014; Peng et al., 2016) and have been found to 

moderate the relation between updating and math skills (Friso-van den Bos et al., 2013). 
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Despite this evidence, several key characteristics have been tested to only a limited extent, 

including whether using a verbal, paper-and-pencil, behavioral, or computer-based test of EFs 

or math skills makes a difference (see Allan et al., 2014); whether the constructs were tested 

in a group setting or individually; and whether the test was a performance test or a third-

person rating. In the present meta-analysis, we investigated the possible moderating effects of 

such characteristics on the relation between measures of EFs and math intelligence within and 

between studies. In the Coding of Studies section, we provide a list of all moderators. 

The Present Meta-Analysis 

The present meta-analysis was aimed at elucidating the relation between EFs and math 

skills—the latter of which is conceptualized as a facet of intelligence—in preschool children. 

The meta-analysis also aims to quantify variations within and between studies through 

multilevel meta-analysis, explaining these variations based on the study, sample, and 

measurement characteristics, and to test the amount of variation in math skills that can be 

jointly explained by inhibition, shifting, and updating. To answer the research questions, we 

followed the steps of the Meta-Analysis Reporting Standards (APA Publications and 

Communications Board Working Group on Journal Article Reporting Standards, 2008), and 

we utilized advanced meta-analytic approaches, including multilevel meta-analysis and meta-

analytic structural equation modeling. Specifically, the present meta-analysis addresses three 

research questions: 

1. To what extent are EFs (represented by a composite and by the three 

subdimensions of inhibition, shifting, and updating) and math skills 

(conceptualized as math intelligence) related in preschool children? (Overall 

correlations) 

2. To what extent do these relations vary within and between studies, and which 

sample, study, and measurement characteristics explain this variation? 

(Heterogeneity and moderators) 
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3. To what extent do the three subdimensions of EFs (i.e., inhibition, shifting, and 

updating) differ in their ability to explain variations in math intelligence, and how 

much variation do they jointly explain? (Model testing) 

Methods 

Literature Search 

We report how we determined our sample size, all data exclusions (if any), all 

manipulations, and all measures in the study. The literature search and parts of the study 

selection were part of a broader project conducted by the authors that focused on the 

interrelations between EFs and different facets of intelligence in the general population. For 

this reason, the first steps of the literature search, screening, and coding procedure included 

the broad construct of intelligence. The literature search focused on published peer-reviewed 

articles and dissertations listed in Medline, Embase, ERIC, PsycINFO, ISI Web of Science 

(Core Collection), and ProQuest Dissertations and Theses. To mitigate potential publication 

bias, we also searched for gray literature in Google Scholar, OpenGrey, PsyArXiv, and 

ResearchGate. We performed an initial search of these databases in November 2018 and 

updated the search in March 2019 and in February–March 2021. The two updates yielded 

about 1,800 additional publications. We adjusted the search terms to fulfill the requirements 

of the different databases. The details of these searches, the search terms, and the full search 

strategy are in Supplemental Material S2. All searches were limited to results from between 

January 1, 2000, and the dates above; English-language publications; and studies with human 

subjects (Boyle et al., 2018). The start date was chosen to ensure that the studies utilized the 

core EF dimensions defined in Miyake et al.’s (2000) seminal paper. More practical reasons 

for this start date were to minimize cohort effects and keep the number of studies manageable. 

Given that math skills are considered an element of intelligence and cognate reasoning skills, 

we first based the search terms on EFs, intelligence, and reasoning: 
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((executive (function* or dysfunction* or control* or abilit*)) OR (dysexecutive 

(function* or dysfunction* or control* or abilit*)) OR (cognitive control)) OR (short 

term memor*) OR (working memor*) OR (updating) OR (Multitasking Behavior) OR 

(Inhibition) OR (Shifting) OR (Switching) OR ((cognitive or mental) flexibilit*)) 

AND ((Intelligence) OR (IQ) OR ((Intelligence or IQ) (test* or measure* or 

examination* or tool* or score* or scoring or scale* or instrument* or assessment* or 

rating* or evaluat* or questionnaire*)) OR (reasoning) OR (Problem Solving) OR 

(Decision Making)). 

The first step of the search (the main literature search) yielded 13,887 publications, 

and the second step (gray literature search) yielded 1,529 publications. We removed 

duplicates and all publications with participants older than 18 years to ensure a focus on 

children and youths (Bramer et al., 2016), resulting in 4,620 publications. We then transferred 

these publications to DistillerSR (Evidence Partners, 2021) and deduplicated them once more, 

resulting in 4,611 publications for further screening. The literature search, deduplication, and 

screening procedure for all references are summarized in Figure 1. As part of the screening, 

we extracted relevant publications that focused on math intelligence. 

Study Selection 

The screening procedure comprised three steps—initial screening of titles and 

abstracts, screening for preschool children, and full text screening (see Table 1). Table S6.2 in 

the Supplemental Material presents detailed descriptions of all three screening steps. After 

following the three steps, we included all studies that fulfilled the following five criteria: (a) 

The study had to be empirical and report original research findings. (b) The mean age of the 

sample had to be at or less than 6 years and 11 months, with more than half of the sample not 

in primary school yet. We chose this high cut-off age to possibly include children from 

countries such as Germany, where children tend to start first grade in the year they turn 7 

years old. In combination with including only samples of which the majority was not yet in 
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school, we tried to create an age-inclusive but predominantly preschool overall sample. (c) 

The study had to contain at least one sample in which the majority of participants were 

healthy and not diagnosed with a disorder or medical condition. This criterion maximizes the 

generalizability of the findings to the general public, as recent meta-analyses have found 

impaired EFs in children with conditions such as type 1 diabetes mellitus, fetal alcohol 

spectrum disorder, or high-functioning autism spectrum disorder (Broadley et al., 2017; 

Kingdon et al., 2016; Lai et al., 2017). (d) The facet of intelligence and at least one EF had to 

be measured. (e) The zero-order correlations of this relation had to be reported, or sufficient 

information to compute such an effect size had to be given. We did not include partial 

correlations or the results of multivariate analyses, as they do not purely represent the relation 

between EFs and facets of intelligence and, therefore, are not equivalent to zero-order 

correlations (Lipsey & Wilson, 2001). 

We excluded studies during the three screenings if they fulfilled one or more of the 

following seven exclusion criteria: (a) The study was published before January 1, 2000. (b) 

The language of reporting was not English. (c) The subjects were nonhuman. (d) The results 

of the same sample were included in another study. (e) The abstract, full text, and secondary 

sources reporting the results of the study were unavailable. (f) Intelligence was 

operationalized as anything other than math intelligence, numerical intelligence, figural 

intelligence, verbal intelligence, or literacy skills (e.g., emotional intelligence, theory of 

mind). (g) Results were reported only for samples with a medical condition or a disorder or 

for samples with a mean age older than 6 years and 11 months. 

A total of 221 studies were eligible for the next screening step after we applied the 

inclusion and exclusion criteria. The screening was conducted by one of the authors together 

with another graduate coder who had undergone training with a screening manual in 2020. 

After the update in 2021, the coding author worked with the DistillerSR (Evidence Partners, 

2021) artificial intelligence module (for an introduction, see Baguss, 2020). Between 20% and 
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30% of the studies in each screening step were double-screened. Any disagreement was 

settled through discussion among the authors, and the interrater reliability of the coding (𝜅) 

ranged from 93% to 98%. 

After this screening, we conducted a finer-grained screening to identify which studies 

examined EFs and math intelligence in preschool children. Table 2 presents an evidence gap 

map of the frequency of intercorrelations between EF subdimensions and facets of 

intelligence. As we aimed to sort the studies by EF and intelligence facets, we differentiated 

among four categories of EFs: inhibition, shifting, updating, and a composite of multiple EFs. 

Intelligence measures were divided into four categories (subcategories are listed in 

parentheses): standardized intelligence tests (figurative, verbal, or numerical), math 

intelligence tests (standardized math test or math-related test), literacy skills tests (reading 

comprehension, reading fluency, receptive vocabulary, productive vocabulary, language 

fluency, letter identification, or language comprehension), and working memory tests. Of the 

221 studies included in the facet screening, 56 studies reported results for at least one EF and 

math intelligence and therefore met the inclusion criterion for the present meta-analysis. 

Coding of Studies 

Three independent coders extracted data from the full texts and coded data on the 

study, sample, and measurement characteristics for moderator analyses beyond the statistical 

relation between EFs and math intelligence. The following study characteristics were coded: 

publication year (2000–2021), publication status (published study vs. gray literature), type of 

publication (journal article, conference paper, dissertation, or preprint), study background 

(whether the research question of the study was educational vs. clinical), and study design 

(whether the data were longitudinal vs. cross-sectional). The coded sample characteristics 

were children’s mean age (in years), gender composition (percentage of girls in the sample), 

percentage of school students in the sample (samples with 50% or more school students were 

excluded), country of sample origin (e.g., the United States, Spain, and China), continent of 
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sample origin (North America vs. Australia, Asia, and Europe), sample size, preschool status 

of the majority of the children in the sample (prekindergarten, kindergarten, preschool), and 

socioeconomic status of the sample (low, low to medium, medium, medium to high, high). 

We coded socioeconomic status based on either an explicit indication (e.g., “families reported 

a medium-high socio-economic level”; Cueli et al., 2020, p. 239) or, if that was not available, 

a combination of factors (e.g., parents’ education, eligibility for free meals, household income 

in comparison to the national average) rated by two coders. 

For the measurement characteristics of math intelligence, we coded the number of 

items used to assess math intelligence, math intelligence subdimension (basic number 

knowledge, calculation and reasoning, spatial, composite), mode of math intelligence testing 

(paper-and-pencil, verbal, behavioral, verbal and paper-and-pencil, computer-based), whether 

math intelligence was tested with a performance-based test or a third-party rating, whether 

math intelligence was tested in a group setting or individually, and the internal consistency of 

the math intelligence measure (Cronbach’s α). Measurement characteristics of EFs included 

the number of items used to assess EFs, EF subdimensions (inhibition, shifting, updating, or 

composite of at least two of the other subdimensions), type of EF task (e.g., Stroop task, 

Simon task, dimensional change task, span task; see Table S6.1 for descriptions and examples 

of all 15 task types), mode of EF testing (verbal, behavioral, apparatus-based, computer-

based), whether EFs were tested with a performance-based test or a third-party rating, 

whether EFs were tested in a group setting or in an individual setting, and the Cronbach’s α 

value of the EF measure. We considered the study characteristics and sample characteristics 

moderators at the study level and the measurement characteristics moderators at the effect size 

level. The three coders, one of the authors and two graduate coders, had undergone training 

with a coding manual. The two graduate coders showed excellent interrater reliability with the 

coding author (𝜅 = 91% and 94%) for the 23 studies they had double coded. Disagreement 

was resolved through discussion after the interrater reliability estimation. The codebook, with 
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a description of all coded variables and their possible values as well as all data, can be found 

in Supplemental Material S1. 

Twenty-five studies did not report crucial information for the meta-analysis, such as 

the correlation coefficients between EFs and math intelligence. In such cases, we contacted 

the authors and asked them to provide the missing information. After 2 to 6 weeks and a 

reminder, 16 of 25 authors provided the missing information. Therefore, it was possible to 

include 47 studies. From these studies, we extracted 363 effect sizes for a total sample of 

30,481 preschool children. The studies included three gray literature publications. 

Data-Analytic Approaches 

After conducting preliminary analyses for publication bias and influential cases, we 

applied multilevel meta-analysis, which has two major advantages over conventional meta-

analysis, to address RQ1 and RQ2. First, this approach enabled us to include multiple effect 

sizes per study, in contrast to conventional meta-analyses, and enhanced statistical power (see 

Soveri et al., 2017). Second, it is possible to examine heterogeneity and moderator effects at 

the effect size and study levels All data sets as well as the general analytic code for RQ1 and 

RQ2 can be found in Supplemental Material S1 and S3 respectively. To address Research 

Question 3, we performed meta-analytic structural equation modeling (MASEM). 

Supplemental Material S1 and S4 represent the corresponding data set and the analytic code 

for the MASEM approach, respectively. 

Publication Bias and Influential Cases 

In psychological research, nonsignificant results are less likely to be published—a 

phenomenon called publication bias (Egger et al., 1997; Ferguson & Heene, 2012). To avoid 

replicating selectively published findings in the meta-analysis, we assessed the publication 

bias in the present data. We graphically inspected the 363 effect sizes of this meta-analysis via 

contour-enhanced funnel plots.  
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A contour-enhanced funnel plot depicts all effect sizes in comparison to their 

respective standard errors, and different shades of color indicate their level of statistical 

significance (Peters et al., 2008). In cases of publication bias, the plot should be skewed to 

one side at the base of the funnel. Otherwise, the plot should be symmetrical, and studies with 

larger standard errors should be evenly spread around the base of the funnel (Egger et al., 

1997). We performed Begg’s rank correlation test to check for a significant association 

between the effect size estimates and their sampling variances (Begg & Mazumdar, 1994). 

Moreover, Fernández-Castilla et al. (2021) recently extended trim-and-fill analyses to 

multilevel meta-analysis and developed a procedure for obtaining estimates of the number of 

effect sizes that may have been suppressed due to selection bias (𝐿0
+ and 𝑅0

+). Estimates above 

2 (𝐿0
+) or 3 (𝑅0

+), respectively, could indicate the presence of selection bias. 

Extending the baseline (correlated and hierarchical effects [CHE]) model, we 

performed the Precision Effect Test (PET) by estimating the moderator effects of the sampling 

standard errors, the funnel plot test by estimating the moderator effects of the study sample 

sizes, and the Precision Effect Estimate with Standard Error (PEESE) test by estimating the 

moderator effects of the sampling variances. 

Multilevel Meta-Analyses 

For the meta-analysis, we used the R packages metafor (Viechtbauer, 2010), metaSEM 

(Cheung, 2015b), dmetar (Harrer et al., 2019), robumeta (Fisher et al., 2017), and 

clubSandwich (Pustejovsky, 2021). To address all the research questions, we conducted the 

analyses with five data sets: the complete data set (encompassing the entirety of kES = 363 

effect sizes), the inhibition data set (with kES = 137 effect sizes for inhibition as the EF), the 

shifting data set (with kES = 96 effect sizes for shifting as the EF), the updating data set (with 

kES = 107 effect sizes for updating as the EF), and the pooled data set with study-level data 

(i.e., one average effect size per study, kS = kES = 47). To obtain the average effect sizes of the 

pooled data set, we aggregated the correlations between EFs and math intelligence to 
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weighted-average, study-level correlations utilizing the aggregate()-function in the R package 

metafor. This aggregation was based on inverse-variance weighting and accounted for the 

dependencies between the multiple correlations within the studies (Viechtbauer, 2021). 

Specifically, we assumed a within-study correlation of 𝜌 = 0.3 and specified a compound 

symmetric structure to represent this dependency. 

As noted, most of the 47 studies provided more than one correlation and reported a 

relation between multiple EF tasks and multiple measures of math intelligence. Consequently, 

the effect sizes were dependent (Borenstein et al., 2011; Cheung, 2014). Specifically, due to 

the inclusion of multiple correlations within studies and the inclusion of multiple measures of 

EFs or math intelligence in the same study, the dependency structure may be correlational and 

hierarchical (Pustejovsky & Tipton, 2021). To account for these two forms of dependencies, 

we specified a three-level random-effects model with a constant sampling correlation (𝜌) to 

obtain an estimate of the average correlation between EFs and math intelligence in preschool 

children and the respective variance components. Pustejovsky and Tipton (2021) referred to 

this model as the CHE model and emphasized that it is suitable in situations in which the data 

structure may be correlational and hierarchical, and where an informed estimate of the within-

study correlation between effect sizes (𝜌) can be obtained. Compared to multilevel meta-

analysis (Van den Noortgate et al., 2013), the Level 1 sampling errors in the CHE model are 

assumed to be correlated. This assumption provides a suitable representation of the nature of 

the present meta-analytic data. Compared to robust variance estimation (Fernández-Castilla et 

al., 2020), the CHE model quantifies the variance components at the different levels of 

analysis and thus could shed light on the level at which heterogeneity exists or is explained by 

moderators. 

In a review of the existing measurement models describing the structure of executive 

functions, Camerota et al. (2020) found support for average correlations between EF tasks of 

𝜌 = 0.20–0.40. Drawing from existing reviews and influential studies on the relations between 
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EF tasks (Ackerman et al., 2005; Friedman & Miyake, 2017; Jewsbury et al., 2016) and the 

existing meta-analyses on the relations between mathematics skills and EFs (see Table 1), we 

assumed a constant sampling correlation of 𝜌 = 0.30 for the complete, composite, and pooled 

data sets (as they include a broad range of EF and math tasks), and 𝜌 = 0.40 for the inhibiton, 

shifting, and updating datasets (as they include EF tasks assessing only one EF 

subdimension). However, we examined the sensitivity of choosing these values, varying 𝜌 

between 0.20 and 0.60 and examining the effects on model parameters. 

The CHE model without moderators represents a three-level random-effects model 

incorporating 𝜌 as follows (Cheung, 2015a; Pustejovsky & Tipton, 2021): 

Level 1 (Sampling variation): �̂�ij =  θij + ϵij, 

Level 2 (Within-study variation):  θij =  κj + ζ
(2)ij

, 

Level 3 (Between-study variation): κj = β
0
 + ζ

(3)j
, 

where the estimator of the ith effect size, �̂�ij, in the jth study is decomposed into the true effect 

size, θij, and the residuals, 𝜖𝑖𝑗, at Level 1 with 𝜖𝑖𝑗~𝑁(0, 𝑠𝑗
2) and 𝐶𝑜𝑣(𝜖ℎ𝑗 , 𝜖𝑖𝑗) = 𝜌𝑠𝑗

2 for ℎ ≠

𝑖 and 𝑠𝑗
2 representing the average known sampling variance of study 𝑗. At Level 2, the true 

effect size, θij, is then decomposed into the average study-level effect size, κj, and some 

deviation of the effect size, θij, from κj. The variance 𝜏(2)
2  indicates the within-study 

heterogeneity, ζ
(2)ij

~𝑁(0, 𝜏(2)
2 ). Similarly, the average effect size, κj, is decomposed into the 

average population effect, β
0
, and the study-specific deviation to quantify the between-study 

heterogeneity, ζ
(3)j

~𝑁(0, 𝜏(3)
2 ). This three-level approach allowed us to quantify three 

components of variance via restricted maximum likelihood estimation: variance between 

studies (Level 3), variance between the effect sizes within a study (Level 2), and sampling 

variance (Level 1; see Van den Noortgate et al., 2013).  

To support our choice of the CHE model as the baseline model, we specified 

alternative models with random effects and a fixed-effects model and compared them to the 
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CHE model. For these comparisons, we examined the following information criteria: Akaike’s 

information criterion (AIC), the Bayesian information criterion (BIC), and the corrected AIC 

(AICc; Cavanaugh, 1997). Smaller values indicate a preference for a model. 

To assess whether variations other than the sampling error existed, we calculated 

Cochran’s Q (Cochran, 1950). A statistically insignificant Q value indicates homogeneity, 

whereas a statistically significant Q value indicates heterogeneity within the distribution of 

effect sizes (Ellis, 2010). To complement this overall heterogeneity test, we calculated the 

level-specific I2 indices. The I2 index quantifies the proportion of variance caused by 

heterogeneity, and it is categorized as low (25%), moderate (50%), and high (75%) 

heterogeneity (Higgins et al., 2003). The I2 indices for levels 2 and 3 in a three-level random-

effects meta-analysis are defined as follows (Cheung, 2014):  

I(2)
2  = 

τ̂ (2)
 2

τ̂ (2)
 2

 + τ̂ (3) 
 2

+ υ̃
          and       I(3)

2  = 
τ̂ (3)
 2

τ̂ (2)
 2

 + τ̂ (3)
 2

 + υ̃
, 

where τ̂(2)
2

 represents the Level 2 variance, τ̂(3)
2

 represents the Level 3 variance, and υ̃ 

represents the within-study sampling variance (Cheung, 2015a). We supplemented these 

indices at the respective levels. 

Moderator Analyses 

To address the second research question, we examined possible moderator effects on 

the relation between EFs and math intelligence by entering the study, sample, and 

measurement characteristics into the CHE model. To facilitate interpretation, we mean-

centered some of the continuous moderators, z-transformed the children’s average age, 

arcsine-transformed proportional measures (e.g., gender composition coded as the percentage 

of girls in the sample; see Schwarzer et al., 2019), and dummy-coded categorical and ordinal 

moderators with more than two categories. The respective mixed-effects meta-regression 

models with the constant sampling correlation 𝜌 and moderator variables 𝐱𝑖𝑗 represented a 

direct extension of the CHE model (Pustejovsky & Tipton, 2021): �̂�ij = 𝐱𝑖𝑗𝛃 +  ζ
(3)j

+  ζ
(2)ij +
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ϵij, with 𝜖𝑖𝑗~𝑁(0, 𝑠𝑗
2), 𝐶𝑜𝑣(𝜖ℎ𝑗 , 𝜖𝑖𝑗) = 𝜌𝑠𝑗

2 for ℎ ≠ 𝑖, ζ
(2)ij

~𝑁(0, 𝜏(2)
2 ), and ζ

(3)j
~𝑁(0, 𝜏(3)

2 ). 

For moderators with many categories, we extended the CHE model by an additional level of 

analysis (CHE + model; Pustejovsky & Tipton, 2021). For instance, to assess the moderator 

effects of the EF task types, we specified a cross-classified random-effects model with the 

level of task type next to the effect size and study levels (Figure 2). This model allowed us to 

explicitly quantify the variance between EF task types.  

Meta-Analytic Structural Equation Modeling 

To examine the joint effects of EFs on math intelligence and test for possible 

differential effects (RQ3), we performed correlation-based MASEM. To distinguish clearly 

between the three EF subdimensions (i.e., inhibiting, shifting, and updating), we excluded 

correlation matrices that contained only composite EF measures. Specifically, we tested four 

structural equation models (see Figure 3) and evaluated their goodness-of-fit to the meta-

analytic data at the study level. Model 1 represented a regression model in which math 

intelligence was predicted by the three EFs. This model quantified the overall variance 

explanation, allowing for differential effects of the EF subdimensions. Model 2 further 

constrained the regression coefficients in Model 1 to equality across the three executive 

functions. This model assumed equal effects on math intelligence (Marsh, Dowson, et al., 

2004). Model 3 represented the three EF subdimensions with a latent variable (i.e., a general 

factor underlying the EFs; Miyake & Friedman, 2012) that predicted math intelligence. This 

model captured the covariation among the three EFs in a latent variable and quantified the 

explanation of joint variance (e.g., Scherer et al., 2018). As in Model 3, Model 4 assumed a 

latent variable of EFs but used the residuals of the EF subdimensions as predictors of math 

intelligence. Model 3 focused on a common latent EF variable as the primary source of 

variance in math intelligence (“common factor model”); Model 4 focused on the residuals of 

EFs as the sources of variation (“residual factors model”). In other words, these two models 

targeted common or unique effects on math intelligence (see also Nguyen et al., 2019). 
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Notably, Model 4 estimated the unique effects after we controlled for the common latent EF 

variable, but not after we controlled for the effect of the common latent EF variable. In fact, 

adding a direct path between the latent EF variable and math intelligence resulted in a model 

that was not identified (𝑑𝑓𝑀 = –1). Following Nguyen et al.’s (2019) procedure, we specified 

a hybrid model that estimated the direct effect of the latent EF variable and the direct effect of 

one EF residual at a time on math intelligence. This model allowed us to include the latent 

variable and the residual effect and resulted in an identified model. We refer to these models 

(one for each EF residual) as hybrid models.1 Supplemental Material S1 and S5 represent the 

corresponding data set and the analytic code for the hybrid models, respectively. 

Correlation-based MASEM allows researchers to synthesize not only single 

correlations but also entire correlation matrices across primary studies to test multivariate 

hypotheses (Cheung, 2015a). Several procedures have been developed to perform correlation-

based MASEM, and they benefit from these advantages (Sheng et al., 2016). In a review of 

these procedures, Scherer and Teo (2020) highlighted that they comprise two key elements: 

pooling of correlation matrices and structural equation modeling based on the pooled 

correlation matrix. Two-stage MASEM pools the correlation matrices utilizing maximum 

likelihood estimation and allows researchers to quantify the between-study heterogeneity of 

the correlation coefficients (i.e., random-effects modeling) in the first stage (Cheung & 

 
1 We also examined alternative modeling approaches to identify Model 4 with an 

additional direct path, such as constraining factor loadings (and ultimately residual variances) 

to equality or fixing the parameters of the EF measurement model to values that had been 

estimated from MASEM of a confirmatory factor analysis model with only the EF 

subdimensions (the two-step estimation approach). However, none of these approaches 

resulted in robust and trustworthy standard errors and, thus, were not considered for further 

analyses.  
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Cheung, 2016). In the second stage, the structural equation model is fitted to the pooled 

correlation matrix utilizing weighted least squares estimation (Cheung, 2015a) but without 

quantifying the heterogeneity of the model parameters. One-stage MASEM performs these 

two stages in one step and utilizes maximum likelihood estimation (Jak & Cheung, 2020). In 

the present meta-analysis, we performed two-stage MASEM to address the third research 

question and compared the resultant model parameters with those obtained by performing 

one-stage MASEM as a sensitivity test. At the time of writing, these two MASEM approaches 

had not been extended to accommodate hierarchical or correlation dependencies among 

correlation matrices (Jak & Cheung, 2020). Therefore, we estimated Models 1–4 based on the 

study-level correlation matrices, combining multiple correlations for the same pairs of 

variables within studies via Fisher’s z-transformation (Borenstein et al., 2011). Thus, each 

primary study contributed only one correlation matrix. This data set and the corresponding 

analytic code can be found in Supplemental Material S1 and S4 respectively. 

To evaluate the fit of the four models, we relied on common guidelines for the 

comparative fit index (CFI), the root mean square error of approximation (RMSEA), and the 

standardized root-mean-square residual (SRMR; acceptable fit was defined as CFI ≥ .95, 

RMSEA ≤ .08, SRMR ≤ .10; e.g., Hu & Bentler, 1999; Marsh et al., 2005). However, these 

guidelines have been validated only on a limited set of specific structural equation models; 

therefore, we did not apply them as “golden rules” (Marsh, Hau, et al., 2004). Model 

comparisons were performed via chi-square difference testing and differences in information 

criteria (Kline, 2015). We performed correlation-based MASEM in the R package metaSEM 

(Cheung, 2015b). 

Sensitivity Analyses 

To evaluate the sensitivity of the results, we examined the effects of (a) including vs. 

excluding the study with the largest sample (Nguyen & Duncan, 2019; more than 17,000 

participants), (b) different choices of the constant sampling correlation ρ between 0.20 and 
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0.60, as previously noted (Fisher et al., 2017), (c) one-stage vs. two-stage MASEM (Jak & 

Cheung, 2020), and (d) unattenuated vs. attenuated correlations with the reliabilities of EF 

(αEF) and math intelligence (αMath) measures (Hunter & Schmidt, 2004). For (d), we 

considered only Cronbach’s α values as reliability coefficients. If Cronbach’s α was not 

provided in a primary study, we used the average reliabilities of all available EF or math 

intelligence measures in the data set. These average reliabilities were obtained with a random-

effects meta-analysis of all available reliabilities for the respective constructs (see 

Supplementary Material S3). 

Evaluation of Primary Study Quality 

Evaluating the quality of the primary-level studies is an important step towards 

crafting an argument for the evidential value of the meta-analytic data (Johnson, 2021). In this 

meta-analysis, we extracted the following quality indicators from the primary studies: 

Publication status (0 = gray, 1 = published), overall sample size N, the reporting of the 

reliability coefficients for the study sample (0 = not reported, 1 = reported), the reliability 

coefficients of the executive functions and math intelligence assessments (Cronbach’s Alpha), 

and the reporting of p-values associated with the EF-math intelligence correlations (0 = not 

reported, 1 = reported). To synthesize these indicators, we created a study quality index as an 

emergent composite variable via structural equation modelling. This model contained the EF-

math intelligence correlation as an outcome variable that is predicted by the quality index (see 

Supplementary Material S7). To identify the model, the residual variance of the composite 

variable was fixed to zero, and the regression coefficient connecting study quality and the 

correlations was fixed to 1 (Henseler, 2021). Creating a composite quality index via SEM has 

several advantages: First, it allows meta-analysts to combine a diverse set of quality 

indicators, such as binary, ordinal, count, and continuous variables, into a single index. 

Second, it handles missing data in the quality indicators efficiently via multiple imputation or 

model-based procedures. Third, the quality indicators receive individual rather than equal 
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weights. Fourth, it accounts for the hierarchical structure of the meta-analytic data (i.e., 

multiple samples or effect sizes per study). After estimating the SEM parameters in the R 

package lavaan (Rosseel, 2012), we extracted the resultant composite index and explored the 

extent to which it explained heterogeneity in the EF-math intelligence correlations. 

Transparency and Openness 

This review’s protocol was not pre-registered. We followed the PRISMA reporting 

guidelines for our systematic review and meta-analysis. We share all Supplemental Material, 

analysis syntaxes, data, the codebook, and the documentation of the systematic search at 

https://osf.io/vn5pe/?view_only=d4a5f0670ca5469599d13828918957ba (Emslander & 

Scherer, 2022).  

Results 

Description of the Included Studies 

The study, sample, and measurement characteristics of all (kS = 47) studies included in 

the present meta-analysis are described in Table S6.3, and the frequencies and missing values 

of the categorial moderators are shown in Table S6.4 in the Supplemental Material. Thirty-

eight of the 47 studies reported multiple effect sizes, ranging from 1 to 36 per study, with an 

average of 8. Overall, the present meta-analysis included 65 samples and kES = 363 effect 

sizes. These effect sizes stem from 44 published journal articles and three gray literature 

items: one dissertation (Ahmed, 2019), one preprint (Costa et al., 2021), and one conference 

proceeding (R. Duncan et al., 2016; see Table S6.3). Figure S6.1 in the Supplemental Material 

displays the number of effect sizes and studies by the country of sample origin. Most studies 

(66%) drew on samples from the United States (representing North America; none of the 

studies were based on Canadian samples), whereas 17% of the studies used samples from 

Europe, 13% drew from Asia, and 4% drew from Australia. All studies were conducted in an 

educational context. Most EF measures (98%) and math intelligence measures (99%) were 

administered in an individual setting, although one study measured EFs in a group setting 

https://osf.io/vn5pe/?view_only=d4a5f0670ca5469599d13828918957ba
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(Ahmed, 2019), and another measured both constructs in group settings (Träff et al., 2020; see 

Table S6.4).  

Figure S6.2 in the Supplemental Material presents the number of effect sizes by EF 

subdimension, math intelligence subdimension, EF task type, EF test mode, and math 

intelligence test mode. The largest number of effect sizes (38%) indicated the relation 

between inhibition and math intelligence (kES = 137), followed by the relation between 

updating and math intelligence (kES = 107) and the relation between shifting and math 

intelligence (kES = 96). Thus, the literature slightly emphasizes the correlation between 

inhibition and math intelligence. Regarding math intelligence, most effect sizes were 

associated with the correlations of EFs and basic number knowledge (kES = 157), calculation 

and reasoning (kES = 105), or a math intelligence composite (kES = 93). The tasks that were 

most frequently used to measure EFs were Stroop-like tasks (kES = 79) to measure inhibition, 

dimensional change tasks (kES = 83) to measure shifting, and difficult span tasks (kES = 50) to 

measure updating. These EF measures were mostly administered verbally (kES = 120) 

followed by apparatus-based (kES = 93) or computer-based (kES = 71) and behaviorally 

(kES = 62). Math measures were administered verbally even more often than EF measures 

(kES = 273; 77% of effect sizes).  

Table 3 shows the descriptive statistics of the continuous moderators. The total sample 

of the present meta-analysis included 30,481 preschool children ranging in age from 3.0 to 6.6 

years. Half of the children were girls (M = 50.4%, SD = 4.2%). Although 46 studies drew on 

samples of children who had not yet entered first grade, 15% of Mills et al.’s (2019) sample 

were first graders. All studies were published between 2007 and 2021 (see Table 3). 

Preliminary Analyses 

Identifying a Baseline Model 

First, we specified and estimated the baseline model (i.e., the CHE model) with the 

respective constant sampling correlations. To support this model, we identified alternative 
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meta-analytic models with different variance components. Table 4 displays the fit statistics for 

the complete data set. Based on these results, we found that the three-level random-effects 

model with a constant sampling correlation best represented the data (CHE in Table 4). 

Consequently, this model served as the baseline model for additional moderator analyses and 

for reporting an overall effect size. The CHE model also served as a baseline model for the 

inhibition, updating, and shifting data sets. Given the small sample sizes of the pooled and 

composite data sets, we chose the random-effects model with robust variance estimation and a 

constant sampling correlation of 𝜌 = 0.30. 

Detecting Influential Effect Sizes 

Outlier analysis identified two of the 363 effect sizes (Ahmed et al., 2018; Mills et al., 

2019) as influential. The confidence interval of these effect sizes exceeded the average 

correlation confidence interval and displayed considerable difference in fits values (DFFITS 

> 0.4 standard deviations), Cook’s (1977) distance values (> 0.15), and covariance ratio (< 1), 

suggesting that these effect sizes should be removed for greater precision (Viechtbauer & 

Cheung, 2010). However, removing these two influential cases yielded a similar average 

correlation as the meta-analysis that included all effect sizes (r̅ = .347 vs. r̅ = .341), showed 

almost equal population variances (τ(2) = .101 and τ(3) = .084 vs. τ(2) = .106 and τ(3) = .085), 

and displayed only marginally different confidence intervals (95% CI [.32, .38] vs. [.31, .37]). 

As a result, we assumed that the meta-analysis was robust against influential cases. 

Furthermore, both effect sizes stemmed from studies drawing on samples larger than the 

median sample size of all 47 studies, exhibited good psychometric quality, and reported core 

study characteristics. Therefore, we refrained from excluding the two effect sizes. 

Analyses of Publication Bias 

The contour-enhanced funnel plots for the five data sets are shown in Figure 4. For the 

complete data, the precision estimate test indicated the presence of publication bias, because 

the sampling errors moderated the overall effect, B = –13.6, SE = 0.6, p < .001. Similarly, the 
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PEESE test resulted in a statistically significant moderator effect of the sampling variances, B 

= –69.5, SE = 3.7, p < .001. The funnel plot test did not suggest any dependency between the 

effect sizes and the sample sizes, B = 0.0, SE = 0.0, p = .58. The two trim-and-fill estimates 

were zero; thus, no extra effect sizes were needed to counterbalance potential asymmetry in 

the funnel plot. However, these trim-and-fill results should be interpreted with caution, as the 

added value of this method is controversial (Duval & Tweedie, 2000; Peters et al., 2007). The 

funnel plots for the complete, inhibition, and shifting data sets yielded nonsignificant 

Kendall’s τ values ranging from –.04 to –.10, providing no evidence of publication bias. The 

Kendall’s τ value in the updating data set, –.15, was statistically significant and suggested 

some evidence of publication bias (see Figure 4). We did not adjust for publication bias in the 

subsequent models. 

Main Analysis: Overall Correlations (RQ1) 

Table 5 reports the results of the meta-analyses for the five data sets: the complete, 

pooled, inhibition, shifting, and updating data sets. To address RQ1, we calculated a three-

level random-effects meta-analysis with the complete data set, which yielded a moderately 

positive average correlation (r̅ = .34) between EFs and math intelligence in preschool 

children. Similarly, the average correlation was r̅ = .40 for the pooled data set (see Table 5) 

and r̅ = .47 for all composite EF measures, testing at least two EF subdimensions. Figure S6.3 

in the Supplemental Material displays a forest plot for the pooled dataset with effect sizes and 

their confidence intervals (see Supplemental Material S3). 

Investigating the three EF subdimensions separately, we found a substantial average 

correlation between inhibition and math intelligence (r̅ = .30), shifting and math intelligence 

(r̅ = .32), and updating and math intelligence (r̅ = .36). However, given the overlapping 

confidence intervals, there was no evidence of statistically significant differences between the 

three average correlations (see Table 5). The complete and pooled data sets and the 

corresponding analytic codes are presented in Supplemental Material S1 and S3, respectively. 
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Heterogeneity and Moderator Analyses (RQ2) 

Heterogeneity Indices 

The effect sizes of the five data sets were highly heterogeneous (pQ < .001; see Table 5 

for the exact Q values). For the three-level random-effects meta-analysis with constant 

sampling correlation of the complete data set, the heterogeneity at the effect size level and the 

study level was 55% and 35% of the total variance, respectively, which was not due to 

sampling error. The univariate meta-analysis of the pooled data set showed high total 

heterogeneity (90%), as did the data set with only composite EF measures (81%). The effect 

sizes of the inhibition, shifting, and updating data sets also varied substantially within and 

between studies (see Table 5). The large heterogeneity throughout the data sets motivated 

subsequent moderator analyses, in accordance with Research Question 2. 

Continuous Moderators 

To explain the heterogeneity (RQ2), we performed a moderator analysis of the 

complete data set, as well as separate analyses for the inhibition, shifting, and updating data 

sets. In the complete data set, we examined a total of seven continuous and 14 categorical 

moderators. Table 6 reports the results of the continuous moderators in the complete data set, 

and Table S6.5 reports the results for inhibition, shifting, and updating data sets separately. 

Publication year, gender composition, age, number of math items, EF reliability, and number 

of EF items did not moderate the relation between EFs and math intelligence. The only 

continuous characteristic that marginally statistically significantly moderated this relation was 

the reliability of the math intelligence measures (B = 0.30, SE = 0.15, 95% CI [–0.01, 0.60], 

p = .055). The higher the reliability of the math intelligence test, the higher the correlation 

with EFs tended to be (see Table 6). This moderating effect was exclusive to the effect size 

level (𝑅(2)
2 = 3%; 𝑅(3)

2 = 0%). 
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Categorical Moderators 

Table 7 displays the results for categorical moderators in the complete data set, and 

Table S6.6 shows the results for the inhibition, shifting, and updating data sets separately. To 

ensure meaningful interpretation of the results, moderators with fewer than four effect sizes 

per category were excluded from the testing (see Bakermans-Kranenburg et al., 2003). This 

criterion was applied to publication type, study background, and math intelligence 

performance test vs. third-party rating. To facilitate interpretability, we reduced the categories 

of the moderators’ mode of EF testing (to verbal, behavioral, apparatus-based, and computer-

based) and socioeconomic status (to low, medium-low, medium-high, and high).  

Most categorical characteristics (publication status, preschool status, socioeconomic 

status, study design, math intelligence subdimension, mode of math intelligence testing, group 

vs. individual math intelligence test, EF performance test vs. third-party rating, and group vs. 

individual EF test) did not show a statistically significant moderating effect on the relation 

between EFs and math intelligence (see Table 7). However, several categorical 

characteristics—country, continent, EF subdimension, mode of EF testing, and EF task 

type— statistically significantly moderated this relation for effect size and study level. The 

country where the study was conducted was identified as a statistically significant moderator 

at the study level (𝑅(2)
2 = 0%; 𝑅(3)

2 = 30%). We found nonsignificant correlations in the two 

studies that drew on samples from Turkey (Söğüt et al., 2021) and Pakistan (Armstrong‐

Carter et al., 2020). All other countries yielded significant correlations, which were especially 

high in studies with samples from Japan (Fujisawa et al., 2019) and the United Kingdom 

(Blakey & Carroll, 2015; Costa et al., 2021). Closely related, the continent on which the study 

was conducted significantly moderated the relation between EFs and math intelligence almost 

exclusively at the study level (𝑅(2)
2 = 0%; 𝑅(3)

2 = 7%). Specifically, studies conducted in the 

United States on the North American continent yielded higher correlations than studies 

conducted in countries on the Asian, Australian, and European continents (see Table 7). The 
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EF subdimension was a significant moderator as well, explaining most variance at the study 

level (𝑅(2)
2 = 6%; 𝑅(3)

2 = 24%). Inhibition, shifting, and updating correlated significantly with 

math intelligence. However, the EF composite showed the greatest relation. Examination of 

the confidence intervals revealed that the EF composite had a significantly stronger 

correlation with math intelligence than inhibition (see Table 7). The mode of EF testing 

significantly moderated the relation between EFs and math intelligence, with descriptively 

higher correlations for behavioral, apparatus-based, and computer-based assessments than for 

verbal assessments. This moderator explained only a small amount of variance between effect 

sizes and none between studies (𝑅(2)
2 = 3%; 𝑅(3)

2 = 0%). The EF task type also showed a 

statistically significant influence on the relation between EFs and math intelligence and had a 

moderating effect at the effect size and study levels (𝑅(2)
2 = 24%; 𝑅(3)

2 = 17%). All EF task 

types exhibited statistically significant correlations with math intelligence. The Simon and tap 

tasks revealed the largest correlations for inhibition, the flexible selection tasks for shifting, 

and the random generation and difficult span tasks for updating (see Table 7). For the data set 

with composite EF measures, there was a statistically significant difference in the effects 

between prekindergarten and kindergarten with higher correlations for pre-K children (B = –

0.07, SE = 0.02, p < .05). For separate results of the categorical moderators of inhibition, 

shifting, and updating, please see Table S6.6. Overall, mostly the location of the sample origin 

and the characteristics of the EF measurement moderated the relation between EFs and math 

intelligence.  

To further test the significant effects of the EF task types, we specified this moderator 

as another level of analysis in addition to the study level. The resultant cross-classified model, 

in which the EF task types represented a fourth analytic level, was favored over the three-

level model with constant sampling correlation (Δχ2[1] = 94.3, p < .001) and resulted in a 

between-task variance of 𝜏(4)
2  = .01, 95% CI [.01, .02]. These results further indicated that the 
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EF–math intelligence correlations varied across EF task types (see Table 4 and Supplemental 

Material S3).  

Meta-Analytic Structural Equation Modeling (RQ3) 

To test the hypothesized models that shed light on the extent to which the three EFs 

explain variation in math intelligence jointly and uniquely (RQ3), we performed a two-stage 

MASEM utilizing study-level data. The analytic code for the MASEM approach and the 

hybrid models can be found in Supplemental Material S4 and S5 respectively. 

Stage 1: Pooling Correlation Matrices 

Excluding the correlations between the composite scores of executive functions and 

math intelligence, we were able to include 38 studies and 120 correlation coefficients based 

on the data of 26,281 children in these analyses. Before pooling the correlation matrices 

across the primary studies, we tested them for positive definiteness, a key prerequisite for 

structural equation modeling (Cheung, 2015a; Kline, 2015). All matrices were positive 

definite and could be submitted to the pooling stage. 

Next, we pooled the correlation matrices under a random-effects model via the 

tssem1()-function in the R package metaSEM. This model resulted in statistically significant 

between-study heterogeneity of the correlation matrices (𝑄𝐸[114] = 1039.5, p < .001). The 

corresponding pooled correlation matrix, between-study variances, and heterogeneity indices 

are shown in Table 8. 

Stage 2: Structural Equation Modeling 

Model 1 (Regression Model). Fitting Model 1 to the pooled correlation matrix via the 

tssem2()-function in metaSEM resulted in positive and statistically significant regression 

coefficients for inhibition (𝛽𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 = 0.19, 95% CI [0.14, 0.24]), shifting (𝛽𝑆ℎ𝑖𝑓𝑡𝑖𝑛𝑔 = 0.19, 

95% CI [0.12, 0.26]), and updating (𝛽𝑈𝑝𝑑𝑎𝑡𝑖𝑛𝑔 = 0.26, 95% CI [0.20, 0.33]). With a residual 

variance of 𝜎𝑒
2 = 0.79 (95% CI [0.75, 0.83]), about 21% of the variance in math intelligence 

can be explained. Dominance analyses indicated that updating contributed to explaining the 
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overall variance with 10%, while inhibition and shifting contributed less (about 6% each). 

Although this result may indicate that inhibition and shifting have the lowest explanatory 

power, the differences in the average contribution among the three EFs were not substantial 

(see Supplemental Material S4). Model 1 was just identified and exhibited a perfect fit to the 

data. 

Model 2 (Regression Model With Equal Regression Coefficients). Model 2 

assumed equal regression coefficients for the EFs and exhibited a good fit to the data: χ2(2) = 

2.9, p = .23, CFI = 0.999, RMSEA = 0.004, SRMR = 0.018. The overall regression coefficient 

was 𝛽 = 0.21 (95% CI [0.19, 0.24]), and the residual variance was 𝜎𝑒
2 = 0.80 (95% CI [0.76, 

0.83]). Overall, about 20% of the math intelligence variance was explained by this model. 

Given that Model 1 was exactly identified, the chi-square difference test statistic 

corresponded to the chi-square value of Model 2 (χ2[2] = 3.6, p = .16) and indicated that the 

equality of the regression coefficients could be assumed. Thus, for the sample of primary 

studies, there was no evidence of differential effects of the three EFs on math intelligence 

(RQ3). 

Model 3 (Structural Equation Model With a Latent EF Variable). Fitting Model 3 

to the pooled correlation matrix, we obtained fit indices that indicated a close-to-perfect fit to 

the data: χ2(2) = 0.6, p = .75, CFI = 1.000, RMSEA = 0.000, SRMR = 0.008. Factor loadings 

were positive and statistically significant for inhibition (𝜆𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 = 0.47, 95% CI [0.41, 

0.53]), shifting (𝜆𝑆ℎ𝑖𝑓𝑡𝑖𝑛𝑔 = 0.47, 95% CI [0.42, 0.53]), and updating (𝜆𝑈𝑝𝑑𝑎𝑡𝑖𝑛𝑔 = 0.54, 95% 

CI [0.48, 0.60]). The overall regression coefficient was 𝛽 = 0.65 (95% CI [0.58, 0.72]), and 

the residual variance was 𝜎𝑒
2 = 0.58 (95% CI [0.48, 0.66]). Overall, about 42% of the math 

intelligence variance was explained in this model. Therefore, representing EFs with a latent 

variable and thus capturing the covariance among the three EFs explained substantially more 

variance in math intelligence than representing them as distinct but correlated variables 

(RQ3). 
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Model 4 (Structural Equation Model With Unique EF Effects). We further 

specified and estimated Model 4, a model proposed by Nguyen et al. (2019), which describes 

the unique effects of EFs on math intelligence after a common trait shared among the three 

subdimensions is controlled for. This model was just identified and exhibited a perfect fit to 

the meta-analytic data. As in Model 3, the factor loadings were positive and statistically 

significant for inhibition (𝜆𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 = 0.47, 95% CI [039, 0.57]), shifting (𝜆𝑆ℎ𝑖𝑓𝑡𝑖𝑛𝑔 = 0.49, 

95% CI [0.41, 0.57]), and updating (𝜆𝑈𝑝𝑑𝑎𝑡𝑖𝑛𝑔 = 0.51, 95% CI [0.42, 0.61]), and the three EF 

residuals explained 21% of the variance in math intelligence. Furthermore, the regression 

coefficients were positive and statistically significant for inhibition (𝛽𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 = 0.19, 95% 

CI [0.14, 0.24]), shifting (𝛽𝑆ℎ𝑖𝑓𝑡𝑖𝑛𝑔 = 0.19, 95% CI [0.12, 0.26]), and updating (𝛽𝑈𝑝𝑑𝑎𝑡𝑖𝑛𝑔 = 

0.26, 95% CI [0.20, 0.33]), and matched those in Model 1. Similar to Model 2, constraining 

the regression coefficients to equality did not diminish the fit of Model 4 significantly, χ2(2) = 

2.9, p = .23. After their shared variation was controlled for, the unique effects did not differ 

significantly among the three EF subdimensions. Finally, Model 3 and Model 4 exhibited a 

somewhat similar fit to the data, χ2[2] = 0.6, p = .75. Although both models may explain the 

joint relations between EF subdimensions and math intelligence, the unitary Model 3 fit 

slightly better and was more parsimonious, as it represented the data with a smaller number of 

parameters (Kline, 2015).2 

 
2 To further substantiate the unique effects of the EFs, we performed a Cholesky 

decomposition (Dang et al., 2015) and found support for the positive relation between 

inhibition and math intelligence (b = 0.30, 95% CI [0.25, 0.34]), the positive residual effect of 

shifting on math intelligence after partialling out inhibition (b = 0.23, 95% CI [0.17, 0.29]), 

and the unique residual effect of updating after partialling out inhibition and shifting (b = 

0.24, 95% CI [0.18, 0.30]). This decomposition explained about 20% in variance and 

 



EXECUTIVE FUNCTIONS AND MATH INTELLIGENCE 44 

Hybrid Models (Structural Equation Models With a Latent EF Variable and One 

Unique EF Effect). Finally, we estimated three hybrid models specifying the effects of the 

latent EF variable and one residual effect on math intelligence (Nguyen et al., 2019). These 

models exhibited a very good fit to the meta-analytic data (e.g., CFIs = 1.000, RMSEAs = 

0.000, SRMRs ≤ 0.008; see Supplementary Material S5). In all models, the latent EF variable 

was positively and statistically significantly related to math intelligence (𝛽s = 0.60–0.68, p 

< .001); however, each of the three residual effects was statistically insignificant (𝛽𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 = 

–0.02, 95% CI [–0.15, 0.08]; 𝛽𝑆ℎ𝑖𝑓𝑡𝑖𝑛𝑔 = –0.03, 95% CI [–0.24, 0.10]; 𝛽𝑈𝑝𝑑𝑎𝑡𝑖𝑛𝑔 = 0.05, 95% 

CI [–0.06, 0.16]). Thus, in these models, the variation in math intelligence was primarily 

explained by the latent EF variable but not the EF residuals (between 39% and 45% in total). 

Subgroup Analysis  

As the final step, we examined the extent to which the four models applied to two key 

groups of primary studies in the samples: studies with prekindergarten and kindergarten 

children (kS = 19, N = 21,401) and studies with preschool children (kS = 19, N = 4,880). 

Figure 5 shows the meta-analytic structural equation models with model parameters for these 

two subgroups. These models were based on two separate Stage 1 random-effects models. 

Although the variance explanations in Model 1 were similar (20% vs. 21%), the dominance of 

the EF subdimension updating was more pronounced in the studies that included preschool 

children. However, given the few studies in this subgroup, the differences in the regression 

coefficients were not statistically significant (Model 1 vs. 2; for the MASEM syntaxes, see 

Supplementary Material S4). Model 3 revealed a slightly higher variance explanation by the 

latent EF variable for the prekindergarten and kindergarten samples (45%) than for the 

 

represented an approach for extracting unique relations while controlling for what is shared 

by the three EF subdimensions. The equality of the regression parameters remained (χ2[2] = 

3.4, p = .18). 
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preschool samples (39%). Model 4 supported the dominance of shifting in the preschool 

samples after we controlled for the latent EF variable. This model did not exhibit a fit superior 

to that of Model 3 for both study subgroups. Overall, the conclusions drawn for the total 

meta-analytic samples held for the two subgroups of primary studies and revealed a tendency 

toward more pronounced unique effects of shifting for preschool samples. 

Sensitivity Analyses 

Exclusion of a Large Primary Study 

Table S6.7 shows the results of all sensitivity analyses. Comparing the results of the 

complete data set with and without the largest study (both rounded to r̅ = .34; Nguyen & 

Duncan, 2019), we found very similar correlations. Additionally, the confidence intervals of 

the two results were identical (95% CI [.31, .39]). After Nguyen and Duncan’s (2019) study 

was excluded, the heterogeneity between effect sizes remained similar (𝐼(2)
2 = 55% vs. 53%; 

𝐼(3)
2  = 35% vs. 33%), as did the variance in the effect size and study levels (𝜏(2)

2 = 0.01 

vs. 0.01; 𝜏(3)
2 = 0.01 vs. 0.01; see Table S6.7 in the Supplemental Material S6).  

Within-Study Correlation Between Effect Sizes 

We further examined the extent to which the parameters of the baseline model were 

sensitive to the choice of the within-study correlation between effect size (𝜌), varying its 

values between 0.2 and 0.6 (see Supplementary Material S3). Across all data sets, the 

estimates of the weighted-average effect sizes and the Level 2 and Level 3 variance 

components were not substantially affected by the choice of 𝜌. For instance, the effect sizes of 

the baseline model for the complete data were 0.3405 (𝜌 = 0.2), 0.3410 (𝜌 = 0.3), 0.3415 (𝜌 = 

0.4), 0.3419 (𝜌 = 0.5), and 0.3422 (𝜌 = 0.6). The heterogeneity indices were similar, 𝐼(2)
2  = 

37.0% and 𝐼(3)
2  = 53.4% (𝜌 = 0.2), 𝐼(2)

2  = 35.0% and 𝐼(3)
2  = 55.4% (𝜌 = 0.3), 𝐼(2)

2  = 33.0% and 

𝐼(3)
2  = 57.4% (𝜌 = 0.4), 𝐼(2)

2  = 31.2% and 𝐼(3)
2  = 59.4% (𝜌 = 0.5), 𝐼(2)

2  = 29.3% and 𝐼(3)
2  = 61.4% 

(𝜌 = 0.6). Overall, the sensitivity to the choice of 𝜌 was marginal. 
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MASEM Estimation 

Estimating Models 1–4 via one-stage MASEM resulted in the same directions and 

sizes of effects as those resulting from the two-stage approach (see Supplementary Material 

S4). Marginal differences occurred in the estimated standard errors and goodness-of-fit 

indices. However, the conclusions drawn from the four models did not change. The model 

parameters were not sensitive to the MASEM estimation procedure. 

Attenuation of Correlation Coefficients 

Effect sizes were attenuated for their corresponding reliability or, if no reliability had 

been reported, for the average reliability of the EF composite (α composite = .86), inhibition 

(α inhibition = .84), shifting (α shifting = .81), updating (α updating = .90), and math intelligence 

(α math = .84) measures. Comparing the average correlation between EFs and math 

intelligence with unattenuated and attenuated effect sizes revealed a higher correlation with 

attenuated effect sizes (r̅ = .34 vs. r̅ = .40). The average correlation remained statistically 

significant, of moderate size, and positive, meaning that its overall interpretation did not 

change. In addition, the confidence intervals of the results with unattenuated and attenuated 

effect sizes overlapped (95% CI [.31, .37] vs. [.36, .44]). Descriptive comparisons with the 

other data sets yielded similar results. It should be noted that the difference between 

unattenuated and attenuated average correlations (r̅ = .40 vs. r̅ = .49) for the relation between 

EFs and math intelligence in the pooled data set was statistically significant (see Table S6.7). 

As we averaged all available Cronbach’s α values for this attenuation, we refrained from 

interpreting this difference in average correlations to avoid overgeneralizing the unreliability 

of EF measures. Due to the very similar average correlations, identical confidence intervals, 

and comparable heterogeneity, we decided to use unattenuated effect sizes, including the three 

effect sizes reported by Nguyen et al. (2019). Overall, these findings indicate that the meta-

analysis was only marginally sensitive to the specified conditions. 
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Influence of Primary Study Quality 

The composite index of primary study quality ranged between -0.02 and 0.25 and 

deviated from a normal distribution at the two tails (skewness = 0.31, kurtosis = 0.87). On 

average, the quality index was 0.12 (SD = 0.05) with a median of 0.12. Using the quality 

index as a moderator, we found that it explained about 29.1% of the within-study 

heterogeneity, yet no between-study heterogeneity. Primary study quality moderated the EF-

math intelligence correlation significantly (F[1, 361] = 20.2, p < .001), and the respective 

effect was positive (B = 0.05, SE = 0.01, 95% CI [0.02, 0.08]). Hence, primary studies with 

higher quality tended to report larger correlations between EFs and math intelligence. After 

controlling for study quality and considering the cluster-robust standard errors, the effects of 

all other moderators remained and were similar in size and direction (see Supplementary 

Material S7). 

Discussion 

Summary of Key Findings 

To contribute to the debate on the relations among cognitive skills in preschool 

children, we addressed three research questions by performing a meta-analysis of a total of 

363 effect sizes from 47 studies. First, we synthesized the relations between EFs and math 

intelligence in preschool children, differentiating among three EF subdimensions: inhibition, 

shifting, and updating (RQ1). Second, we identified moderators that explain heterogeneity 

within and between studies (RQ2). Table 9 displays the key results for RQ1 and RQ2. Third, 

we examined the differential contributions of inhibition, shifting, and updating to the 

explanation of variance in math intelligence (RQ3). Overall, the meta-analysis provided 

evidence of the relation between math intelligence and EFs as a composite as well as separate 

subdimensions. Moreover, we found that several study, sample, and measurement 

characteristics moderated this relationship and explained variations within and between 

studies. Finally, there was no evidence of differential relations between math intelligence and 
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inhibition, shifting, and updating. After the relation between a latent variable representing the 

EFs and math intelligence was controlled for, none of the EF residuals were related to math 

intelligence. 

Overall Correlations (RQ1) 

The results of the meta-analysis indicated a moderate relation between EFs and math 

intelligence (r̅ = .34, p < .001; see Table 9). Investigated separately, the three EF 

subdimensions—inhibition, shifting, and updating—each showed moderately statistically 

significant relations to math intelligence (r̅ = .30, r̅ = .32, and r̅ = .36, respectively; p < .001). 

Answering Research Question 1, these results indicate that EFs and their subdimensions are 

substantially related to math intelligence in preschool children similarly to other age groups 

(see Best et al., 2011; Cragg et al., 2017; Friso-van den Bos et al., 2013; Peng et al., 2016; 

Yeniad et al., 2013). From a conceptual perspective, this finding corroborates existing 

frameworks that integrate EFs and math skills (Diamond, 2013; Miyake et al., 2000). As they 

share some, but not all, variations, EFs and math intelligence can be differentiated but might 

have several processes in common (Kovacs & Conway, 2016) and be based on a similar 

collection of cognitive and metacognitive skills, which aid children in solving EF and math 

intelligence tasks (Van Der Maas et al., 2006). Similar to the assumptions underlying the CHC 

theory, math intelligence and EFs may represent distinct but related constructs that share some 

common skills. Jewsbury et al. (2016) argued that EFs and facets of intelligence represent 

different facets of general cognition. In practice, this implies that assessing one of the two 

constructs does not make assessing the other redundant, although the performance on one may 

predict the performance on the other to some extent (van Aken et al., 2019). Thus, reducing 

the testing burden for young test-takers by focusing on only one construct may come at the 

cost of insufficient construct coverage. Additionally, this implies that educators should 

promote EFs and math intelligence in young children, as training in one may not necessarily 

transfer to the other (Webb et al., 2018). However, EFs might not be causally related to 



EXECUTIVE FUNCTIONS AND MATH INTELLIGENCE 49 

academic achievement, as suggested by a fixed-effect analysis of longitudinal data on the link 

between inhibition and several achievement measures (Willoughby et al., 2012). Additionally, 

Willoughby et al. (2019) only found a small within-person association between shifting and 

working memory and academic achievement from kindergarten to second grade. The 

transferability of EF training has also been questioned meta-analytically (Melby-Lervåg & 

Hulme, 2013). More research is needed to test the causality and, thus, the transferability of EF 

trainings to evaluate the economic sense of a more general use of EFs in teaching (see, e.g., 

Vaughn et al., 2012). 

Overall, previous meta-analytic research that included mostly schoolchildren and 

adolescents reported somewhat similar relations between EFs as a whole and math skills. For 

instance, Cortés Pascual et al. (2019) observed an effect (r̅ = .37) in primary school children 

(6–12 years old) that was comparable to the present results. This might imply that there is no 

drastic decrease in the strength of the relation between EFs and math intelligence from 

preschool to primary school. After integrating the results for the separate EF subdimensions, 

however, we observed a slight trend of decreasing relations between math intelligence and 

inhibition with older age. The relation between inhibition and math skills seemed to be 

stronger in meta-analyses with younger children and weaker with older children, with 

correlations ranging from r̅ = .34 (Allan et al., 2014; 2.5–6.5 years) to the present result of r̅ = 

.30 (95% CI [.24, .36]; 3–6.5 years) to r̅ = .27 (Friso-van den Bos et al., 2013; 4–12 years). 

The relation between shifting and math skills, while yielding considerably lower average 

correlations, showed more variation over all the meta-analyses we reviewed. We found an 

average correlation of r̅ = .32 for the preschool sample, which is descriptively larger than 

those reported by Yeniad et al. (2013; r̅ = .26; 4–14 years) and Friso-van den Bos et al. (2013; 

r̅ = .28; 4–12) and comparable to that reported by Jacob and Parkinson (2015; r̅ = .34, 3–18 

years). The link between updating and math intelligence did not vary substantially, and the 

correlation of r̅ = .36 identified in the present study was similar to those reported in previous 
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meta-analyses (r̅ = .37, Cortés Pascual et al., 2019; r̅ = .34 and .38, Friso-van den Bos et al., 

2013; r̅ = .35, Peng et al., 2016; see Table 1). Given these similarities, our narrower 

conceptualization of math skills as a facet of intelligence did not result in substantially 

different relations compared to other conceptualizations of these skills. 

As noted previously, one key issue challenging the interpretation of the EF–math 

intelligence relation is task impurity (Nguyen et al., 2019). We addressed this issue in two 

ways. First, effect sizes based on complex EF tasks that required children to engage in 

multiple processes rather than a single EF process were meta-analyzed separately as part of 

the “composite” data set. In this way, possible bias due to task impurity may have been 

reduced in the meta-analyses of the data specific to the EF subdimensions. Second, as a 

common practice, we represented EFs with a latent variable (Model 3) to single out what was 

common across the tasks measuring the three EF subdimensions and what was considered a 

measurement error (Camerota et al., 2020). However, Nguyen et al. (2019) argued that this 

representation may not account for possible task impurity in relation to mathematics skills. 

Thus, we followed their recommendation and examined the EF–math intelligence relation via 

the residuals, that is, the latent variables describing what is unique to each EF subdimension 

(Model 4). In this way, common variation that might be due to overlapping EF processes 

required in the tasks may be controlled for by the single latent EF variable. Although these 

approaches could counter possible task impurity bias to some extent, alternative latent 

variable models allowing for cross-loadings or task-specific factors may construct explicitly 

overlapping EF processes at the level of tasks. To specify and estimate such models, meta-

analytic correlations among EF tasks are needed (Scherer & Teo, 2020). Moreover, 

accounting for the overlap between EF processes does not address the possible impurity due 

to the processes involved in EF tasks outside executive functioning (Friedman et al., 2008). In 

this sense, some processes involved in EFs and math intelligence may also be shared. A more 

detailed differentiation of math intelligence into its subdimensions and a data set providing a 
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sufficiently large sample of correlations at the level of subdimensions are needed to control 

for this form of task impurity via latent variables. 

Heterogeneity and Moderators (RQ2) 

We found substantial heterogeneity in the data between and within studies. Five study 

and measurement characteristics could explain significant amounts of this heterogeneity in the 

relation between EFs and math intelligence: (a) the country and (b) the continent on which the 

study was conducted; (c) the EF subdimension; (d) the EF task type; and (e) the mode of EF 

testing. For the relation between inhibition and math intelligence, heterogeneity was 

explained by the reliability of the math intelligence and EF measures, the continent, the 

inhibition task type, and the mode of inhibition testing. Only the reliability of math 

intelligence measures and publication status moderated the correlation with shifting, and only 

the math intelligence subdimension and the updating task type explained the variability in the 

correlation with updating (Table 9). Regarding RQ2, these findings stress the importance of 

measurement characteristics (compared to study and sample characteristics) as moderators of 

the relation between EFs and math intelligence in preschool children (Table 9). At the same 

time, they contrast some of the moderator effects identified in previous meta-analyses with a 

different conceptualization of math skills. 

Study and Sample Characteristics 

In the present meta-analysis, the only sample characteristics moderating the relation 

between EFs and math intelligence were the country and the continent on which the primary 

studies had been conducted. These results were most likely driven by two studies, drawing on 

samples from Turkey (Söğüt et al., 2021) and Pakistan (Armstrong‐Carter et al., 2020), which 

found nonsignificant correlations between EFs and math intelligence. This finding aligns 

somewhat with the notion that the involvement of EFs in math intelligence differs between 

children from different countries and perhaps cultures (Friso-van den Bos et al., 2013). 

However, we refrain from further interpreting cultural differences in these skills as the only 
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reason for these effects. To the best of our knowledge, such cultural effects have yet to be 

examined in detail. Moreover, 31 of the 47 primary studies included in the present meta-

analysis were conducted in the United States, limiting the possible inferences that could be 

drawn regarding country differences. 

Several promising moderators did not yield statistically significant results. For 

example, children’s age did not statistically significantly explain any heterogeneity in the 

present meta-analysis. Similarly, Cortés Pascual et al. (2019) found that age does not 

significantly moderate the EF–math relation in children between 6 and 12 years of age. One 

explanation for these results could be that the age range was restricted in the present meta-

analysis, as well as in previous ones (i.e., Allan et al., 2014; Cortés Pascual et al., 2019; Friso-

van den Bos et al., 2013; Yeniad et al., 2013). This result contrasts with that of David’s 

(2012) meta-analysis, in which age was identified as a significant moderator. However, we 

can observe the previous trend of younger children exhibiting stronger relations of inhibition 

with math intelligence than older children when reviewing previous meta-analyses. In line 

with previous studies (Bull et al., 2008; Clark et al., 2010), but contrary to one of eight prior 

meta-analyses (Cortés Pascual et al., 2019), the gender composition of the samples did not 

show any moderator effects, probably due to the small variation in this characteristic between 

studies. These results are very plausible, as even in the clearest case of gender composition in 

education—namely, single-sex education—girls and boys are likely to show large differences 

other than interests (Eliot, 2013). 

Executive Function Measurement Characteristics 

Three characteristics of the EF measurement moderated the relation between EFs and 

math intelligence in preschool children. First, this relation varied slightly between the EF 

subdimensions under investigation, such that the correlation was descriptively weaker for 

inhibition, moderate for shifting, and stronger for updating (see RQ2). Similar differences in 

the correlations with math skills between the EF subdimensions have been found in previous 
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meta-analyses (Cortés Pascual et al., 2019; Friso-van den Bos et al., 2013; Jacob & Parkinson, 

2015). In the moderator analysis, we also examined a composite EF score that summarizes all 

EF measures, examining at least two of the three EF subdimensions. With a high correlation 

with math intelligence, the composite EF is likely to be the driver of this moderation effect. 

The relation between this score and math intelligence was stronger than the relations for each 

subdimension individually. This might be because tests yielding a composite score for EFs 

tend to be similar in design to tests of general cognitive ability and, therefore, may overlap 

substantially with math intelligence tests (see, e.g., Yeniad et al., 2013). Additionally, these 

findings are in line with the notion that the differentiation among the three EF subdimensions 

might be greater in the later years of childhood, explaining the small differences between 

subdimensions in the present preschool sample. 

Second, the EF task type significantly explained heterogeneity within and between 

studies. The extent of the explained heterogeneity was so great that a cross-classified random-

effect model in which EF task type was the fourth level suggested substantial variation across 

the EF task types. The present meta-analysis categorized more than 70 EF tasks into 15 

distinguishable categories. The strongest relations to math intelligence were found for the 

composite task type (which measures at least two EF subdimensions), tap and Simon tasks 

(which measure inhibition), and random generation and difficult span tasks (which measure 

updating). These results are not surprising; the composite, random generation, and difficult 

span tasks are very close in structure to math intelligence tasks and require individuals to 

handle numbers, especially in updating tasks such as the backward number span task (Peng et 

al., 2016). This is another example of task impurity (Friedman et al., 2008), which describes 

the common phenomenon that one task requires multiple EF subdimensions, making a clear-

cut interpretation more difficult. Overall, the results reflect the vast variety of EF tasks used in 

the field and simultaneously draw attention to inconsistencies related to measuring EFs at an 

age at which children cannot read. 
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Third, the mode of EF testing moderated the relationship between EFs and math 

intelligence at the effect size level, with very small descriptive differences among verbal, 

behavioral, apparatus-based, and computer-based testing. Looking more closely into the 

single EF subdimensions, we found that this moderation effect occurred only in inhibition 

tasks, and not in shifting or updating tasks. Therefore, inhibition drives the overall moderator 

effect. The higher effects for behavioral, apparatus-based, and computer-based testing might 

also be due to their overlap with common actions involving math intelligence. The source for 

this speculation is the similarities between the behavioral tap task and counting on one’s 

fingers, for instance, or the computer-based shape school task and preschool geometry 

puzzles. Although this finding might raise the question of how testing mode-general vs. 

mode-specific inhibition is, we should not overinterpret it, as the mode of EF testing 

explained only a very small amount of variance between effect sizes and none between 

studies. Previous meta-analyses had somewhat similar findings for working memory domains 

(David, 2012; Friso-van den Bos et al., 2013; Peng et al., 2016). Overall, this indicates the 

disadvantage of verbal (inhibition) testing compared to the other modes of testing for 

preschool children. 

Model Testing: Explaining Variations in Math Intelligence (RQ3) 

Utilizing the analytic framework of correlation-based MASEM, we substantiated the 

evidence that the EF subdimensions statistically significantly and jointly explain variation in 

math intelligence via testing and comparing several structural equation models (Models 1–4). 

Examining the joint effects via multiple regression (Model 1), we found that all EFs exhibited 

statistically significant relations with math intelligence and that these relations did not differ 

among the EF subdimensions (Model 2). Representing EFs as a single latent variable (Model 

3), we obtained a strong and positive effect on math intelligence, an effect much larger than 

the EF factor loadings. An alternative interpretation of this finding might be that math 

intelligence tests are better single measures of general EF than any single EF measure, 
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because the common variance of inhibition, shifting, and update, can be better explained by 

math intelligence than with any one of the EF subdimensions. Further testing with a broader 

set of measures representing the constructs more comprehensively is needed to corroborate 

this finding conceptually. 

Finally, we examined the unique effects via the EF residuals (Model 4) and found 

positive and statistically significant path coefficients that did not differ between the three EF 

subdimensions. Overall, the variance explanations in math intelligence were substantial, 

ranging from 21% to 42%. Of the three EFs, updating descriptively, but not statistically 

significantly, explained more variance than inhibition and shifting. This trend may point to 

possible overlaps in the processes or assessment methods involved in updating and math 

intelligence tasks and supports previous findings (Bull & Lee, 2014). Despite the 

interpretation of these overlaps as method effects or commonalities among the processes 

involved in EFs, another interpretation lies in the domain specificity of EFs, bringing together 

these two elements. Specifically, Peng et al. (2018) sought evidence of the domain specificity 

of working memory dimensions (numeric, verbal, and visuospatial) and argued that working 

memory operates through domain knowledge, skills, and procedures in task-specific 

situations. This perspective aligns with the situational model by Doebel (2020), who 

considered the development of EFs to be a set of skills activating specific knowledge, beliefs, 

values, norms, and preferences. Thus, EFs are directed at meeting the demands and goals of 

specific tasks. In this sense, the shared EF process and specific task demands cannot be 

strictly separated. 

From a substantive perspective, several findings are worth noting. First, the evidence 

of uniform relations with math intelligence if the three EF subdimensions are considered 

jointly may indicate the unitary (rather than multifaceted) nature of the EF construct. 

Gonzalez et al. (2020) argued that uniform relations to external criteria are key to establishing 

that constructs may represent the same underlying processes or traits. Although the present 
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results allow for this conclusion, this criterion is not sufficient to establish that the three EFs 

are the same. Additional evidence of the factor structure of EF measures across samples, 

contexts, and time is needed to substantiate this conclusion (Marsh et al., 2019). However, to 

generate such meta-analytic evidence, item- or subscale-level correlation matrices are needed, 

and the diversity of EF assessments across studies limits the possibility of such research 

syntheses (Karr et al., 2018). The present meta-analysis revealed small-to-moderate 

correlations among the three EFs. At the same time, there is some existing evidence of the 

unitary nature of EFs for preschool children (Garon et al., 2008; Nelson et al., 2016). These 

observations highlight that relations to external criteria (i.e., math intelligence) may not 

represent the only source of information for or against the unity of the three EFs. 

Second, the MASEM results did not support the differential relations to math 

intelligence identified in experimental and longitudinal studies of EFs (Cragg & Gilmore, 

2014; Jacob & Parkinson, 2015). One possible reason for these divergent results may be the 

way in which math skills were operationalized in the present study. In contrast to measures of 

school performance and educational achievement, we conceptualized math skills within the 

intelligence framework, defining them as math intelligence. In this sense, the uniform 

relations between EFs and math intelligence align with mounting evidence of substantial 

relations between EFs and general intelligence (Jewsbury et al., 2016). The strength of these 

relations is comparable to that reported for EFs and other intelligence measures (Friedman & 

Miyake, 2017). Thus, to meaningfully interpret the EF–math link, researchers must carefully 

consider the conceptualization of math skills. 

Third, Model 3 revealed a strong relation between the single latent EF variable and 

math intelligence, with a regression coefficient that was higher than the factor loadings of the 

EF subdimensions. Reviewing the data from a smaller set of primary studies, Nguyen et al. 

(2019) obtained the same results as we did in the present meta-analysis. This result may have 

several explanations and implications. From a substantive perspective, the results may 
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highlight that the processes common to the three EFs and the processes captured by the math 

intelligence assessment tasks overlap substantially (Kovacs & Conway, 2016). In other words, 

the two constructs may be based on a common set of cognitive and metacognitive or mutually 

reinforcing skills that support children in performing the respective assessment tasks (Van Der 

Maas et al., 2006). Similar to the notion of “g” in describing what is considered common 

across intelligence tests, these overlapping processes may also be considered indicators of a 

general factor underlying EFs and math intelligence (Webb et al., 2018). Identifying what is 

common across the EF subdimensions and math intelligence could aid in understanding 

possible transfer effects between the two constructs (Melby-Lervåg et al., 2016). From a 

measurement perspective, the high structural parameter connecting the single latent EF 

variable and math intelligence may also be due to a misrepresentation of the EF construct. 

Despite a very good fit to the meta-analytic data, the reflective measurement model in Model 

3 may not represent the true EF structure. In fact, Rhemtulla et al. (2020) showed that 

common factor models can introduce severe bias to the structural parameters in structural 

equation models, for instance, if the true model is a formative rather than a reflective 

measurement model. Similarly, Camerota et al. (2020) argued for considering alternative 

representations of EFs, for instance, as composites. 

Fourth, after what was shared among the EF subdimensions was controlled for, the 

residuals were statistically significantly and positively related to math intelligence in Model 4. 

This finding is in line with some of the results reported by Nguyen et al. (2019). Of the nine 

empirical studies the authors reviewed, two supported Model 4 and showed the same pattern 

we observed in the meta-analysis. The positive relations between the EF residuals and the 

measure of math intelligence indicate that unique effects might exist. However, these unique 

effects did not differ among the three EF residuals, possibly due to the limited number of 

studies included. This finding calls into question the extent to which the possible unique 

processes underlying the three EF subdimensions are substantively unique. Although there 
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was a slight preference for Model 3 over Model 4 in the pooled meta-analytic data set (Model 

3 was more parsimonious and showed a descriptively better fit than Model 4), both models 

described the data well and shed light on different aspects of the EF–math intelligence 

relation.  

To further test for the uniqueness of the EF effects, we also adopted Nguyen et al.’s 

(2019) hybrid models, in which the relationships between the EF residuals and math 

intelligence were controlled for the effect of the latent EF variable—that is, what is common 

to all three EF subdimensions. These models supported the dominance of the latent EF 

variable, as none of the residual effects existed. Similar to Nguyen et al.’s (2019) 

observations, “latent EF was a very robust predictor of math” (p. 282), and this latent variable 

accounted largely for the EF–math intelligence relationship. 

Fifth, we observed a tendency toward more differentiated relations among the EF 

subdimensions and math intelligence for the preschool samples than for the prekindergarten 

and kindergarten samples. Although age ranges in preschool, prekindergarten, and 

kindergarten differ between countries, this result may inform the discussion on the 

differentiation of EFs and other cognitive skills over time (Lerner & Lonigan, 2014). 

However, a much broader age range is needed in future meta-analyses to investigate the 

possible breaking points at which differentiation occurs. 

From a methodological perspective, the MASEM approach offered a powerful 

procedure for jointly describing and examining the relations among the four constructs and 

exploring the fit of different models. This allowed us to obtain additional evidence of the 

relations between EFs and math intelligence beyond univariate relations (Cheung, 2015a). In 

addition, we were able to evaluate the fit of structural equation models representing different 

assumptions (Cheung & Cheung, 2016). Specifically, in the meta-analysis, we followed extant 

modeling approaches, assuming either correlated but distinct EFs or a unitary EF construct 

(Friedman & Miyake, 2017). However, as noted previously, correlations among EF and math 
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intelligence indicators at the level of tasks or task paradigms (Lehtonen et al., 2018) could 

shed more light on the structure of EFs and the extent to which math intelligence may be 

incorporated into this structure. Based on such meta-analytic data, finer-grained models could 

be tested, such as models that assume a general factor underlies EFs and math intelligence and 

specific factors representing their unique components (Friedman et al., 2008). In this way, the 

relationship between EFs and math intelligence could be described factor-analytically and 

may inform existing factor models that incorporate EFs and other intelligence measures 

(Jewsbury et al., 2016; Webb et al., 2018). However, the preference for one or another factor 

model depends on the assignment of the indicators to the respective latent variables 

(Ackerman et al., 2005). Therefore, establishing clear EF assessment frameworks and 

examining the sensitivity toward the choice of alternative frameworks are key (Oberauer et 

al., 2005). 

Finally, although the choice of the four models and the hybrid models we tested via 

MASEM was based on different theoretical assumptions on the EF–math intelligence 

relationship, we could not support the preference for one model over the others. In this sense, 

all four models were useful for examining the joint relations between the EF subdimensions 

and math intelligence from different perspectives. Models 1 and 2 focused on direct joint 

relations and their equality across EF subdimensions; Models 3 and 4 focused on the effect of 

a single EF variable or, respectively, the unique effects of the EF subdimensions. Although 

these models are commonly specified in EF research and exhibited a very good fit to the 

meta-analytic data, they may oversimplify the complex relationship between EFs and math 

skills and be subject to task impurity bias (Camerota et al., 2020; Nguyen et al., 2019). 

Therefore, we encourage researchers in the field to evaluate multiple models rather than a 

single model for describing the EF–math relationship, consider alternative representations of 

the respective EF and mathematics constructs, such as composite scores or formative 

measurement models (Rhemtulla et al., 2020), and examine in greater detail the processes that 
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are common or unique to EFs and math skills (Cragg & Gilmore, 2014; Kovacs & Conway, 

2016). 

Limitations and Future Directions 

Several limitations of the meta-analysis are worth noting. First, there are several 

limitations inherent in the inclusion/exclusion criteria and the language restriction. Thus, the 

results are limited to preschool children without a diagnosed medical condition or disorder. 

Thus, the results do not generalize across all possible samples of preschoolers and do not 

allow one to test specific disadvantages in EFs and math intelligence due to medical 

conditions or disorders. Including clinical studies might have been especially interesting, 

because EFs are impaired in children with specific disorders (Broadley et al., 2017; Kingdon 

et al., 2016; Lai et al., 2017). As we restricted our search to English records, a mono-language 

bias might be present, which limits the generalizability of our results (Johnson, 2021). Future 

meta-analytic research should, therefore, test the robustness of the meta-analytic evidence 

across multiple languages. Further, we excluded studies published before the year 2000, 

potentially missing otherwise eligible studies and their contribution to evidence formation in 

the field. 

Second, 66% of all included studies used American samples. Although 34% of the 

included studies examined samples from Asia, Australia, or Europe, the study pool did not 

include samples from South America or Africa. Therefore, further evidence of samples from a 

broader spectrum of countries is needed to be able to generalize the present findings further 

and test for cultural differences in cognitive processes (Imbo & LeFevre, 2009). Third, the 

study pool was too small to investigate all the moderators of interest. This was partially due to 

the strict inclusion and exclusion criteria applied during the study selection. For example, we 

had to exclude eligible clinical studies that did not report crucial results for the healthy control 

group. Therefore, we encourage researchers to extend and update this meta-analytic sample to 

examine additional moderators of the EF–math link. Fourth, the categorization of EF task 
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types in the meta-analysis represented a compromise between precision and manageability 

due to the large variety of possible categorizations in the extant EF literature (Baggetta & 

Alexander, 2016; Garon et al., 2008). In line with Miyake et al. (2000), we did not explicitly 

distinguish between tasks measuring hot and cool EFs, which might have explained further 

variations between task types (Brock et al., 2009). In the same vein, we could not distinguish 

clearly between pure working memory tasks and updating tasks and thus subsumed them 

under the updating category. Future meta-analyses should try to examine these two constructs 

separately if the reporting precision of primary studies allows. To account for the 

methodological overlap between EF and math intelligence tasks, the content of a task (e.g., 

whether a span task uses numbers, letters, or pictures as stimuli) should be coded and 

examined as a methodological moderator in future research. To further enhance precision, n-

back tasks and difficult span tasks could be investigated separately in accordance with meta-

analytic findings (Redick & Lindsey, 2013) if enough effect sizes are available. Generally, 

variation between task definitions is a well-known phenomenon in EF research and has led to 

divergent findings in the relations between EFs and other cognitive abilities (Ackerman et al., 

2005; Friso-van den Bos et al., 2013; Lehtonen et al., 2018). A clear and consistent 

framework of EF tasks for different age groups and comprehensive reporting in primary 

studies might be the much-needed solutions to this problem. Although it was not possible in 

this meta-analysis due to the small number of primary studies providing intercorrelations 

among math intelligence tasks or subdimensions, we argue that a further differentiation of the 

math intelligence construct, especially in Models 1–4, could provide more detailed evidence 

of the connections between specific EFs and specific math skills. As several meta-analyses 

have demonstrated (Hjetland et al., 2020; Scherer et al., 2020; Yang et al., 2021), hypotheses 

regarding the connections between multifaceted constructs could be tested with a range of 

factor models, such as single-, correlated-, or nested-factor models. To obtain such evidence, 

however, a more detailed reporting of primary studies, especially the correlation matrices 
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containing not only the correlations among EF subdimensions and correlations between EF 

subdimensions and math skills but also the correlations among math skills, is needed. In the 

future, finer-grained reporting could further allow researchers to tease apart the multiple 

facets of EFs and math intelligence, as well as partial out the influence of general intelligence, 

which could not have been fully achieved with the present data.  

A comprehensive framework of EFs and academic skills could be established in the 

future to streamline EF assessment and account for several trends in the literature. Namely, 

such a framework should aim to explain (a) the very similar correlations across EF 

subdimensions (see Table 1), (b) an age trend of the EF–academics relationship 

increasing/decreasing with age for different EF subdimensions, (c) very small training and 

transferability effects (Kassai et al., 2019; Melby-Lervåg et al., 2016; Melby-Lervåg & 

Hulme, 2013; Takacs & Kassai, 2019), and (d) the domain specificity of EFs in task-specific 

situations (Doebel, 2020; Peng et al., 2018). Such a framework would introduce exciting new 

hypotheses to test and take the field forward in leaps and bounds.  

Similar to the present study, new research helps to create a solid basis for this 

comprehensive framework. Spiegel et al. (2021), for instance, recently examined the 

relationship between EFs and reading, language, and mathematics in primary school children. 

The authors’ findings suggest that a simple age trend—that EF subdimensions diverge, but 

their link to academic skills strengthens with age—is very unlikely. Instead, the predictive 

strength of specific EF subdimensions seems to depend on the developmental stage and the 

exact academic skill being measured. Combined with insights from Peng and Kievit’s (2020) 

review of the mutual effects of cognitive functions and academic skills, these findings provide 

further grounds for a comprehensive framework of EFs and academic skills in the future. 

Conclusions 

The present meta-analysis provides a comprehensive overview of the literature on the 

relation between EFs and math intelligence in preschool children from 2000 to 2021. The 
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present findings suggest that EFs, represented by a composite as well as three subdimensions, 

are positively and significantly related to math intelligence in preschool children. This 

relation testifies to the overlap in some skills and measures and, ultimately, the involvement 

of EFs in solving math intelligence tasks, and vice versa. To some degree, the performance on 

one construct measure could be used to predict the performance on the other. Nevertheless, 

the evidence presented in this meta-analysis does not suggest that assessing one of the two 

constructs may make assessment of the other redundant. In addition to the positive 

correlations, there is substantial heterogeneity within and between studies, suggesting that 

these effect sizes are reproducible across studies. As measurement characteristics, rather than 

sample or study characteristics, primarily explain parts of this heterogeneity, we highlight the 

importance of considering the psychometric quality of EFs and math intelligence assessments 

when interpreting their correlation. When considered jointly, the relations between the EF 

subdimensions and math intelligence were similar for the study-level data. This finding does 

not provide evidence of the differential relations between a single EF and math intelligence 

after the other EFs are controlled for. Further research is needed to establish a comprehensive 

framework of EF task types to streamline the EF assessments clarifying, for instance, the 

impact of age on the relation between EFs and math intelligence. 
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Tables 

Table 1 

Prior Meta-Analytic Findings on the Relation between Executive Functions and Math Skills in Children 

Reference Description and Method Significant moderators (selected) Age range Examined relation kS r̄ 95% CI 

Allan et al. 

(2014) 

Meta-analysis of the link between inhibition and 

academic skills (encompassing literacy & math)  
• EF task type (hot vs. cold) 

• Test mode (behavioral vs. rating) 

2.5–6.5 Inhibition & the development of 

math as a school subject 

75 .34 [.29, .39]  

Cortés Pascual 

et al. (2019) 

Meta-analysis of the link of WM and an EF 

composite score with math performance 
• EF subdimensions 

• Gender composition 

6–12 EF composite & math performance 18 .37 [.30, .42] 

6–12 WM & math performance 11 .37 [.29, .45] 

David (2012) Meta-analysis comparing groups with and without 

math learning difficulties on three aspects of WM 
• WM task type (numerical vs. 

non-numerical) 

• Age 

9–21 Phonological loop           d = -0.36 12 – [-0.58, -0.14] 

9–21 Visuospatial sketchpad   d = -0.59 9 – [-0.87, -0.31] 

9–21 Central executive            d = -0.93 17 – [-1.53, -0.33] 

Friso-van den 

Bos et al. 

(2013) 

Multilevel meta-analysis of the link of inhibition, 

shifting, and updating with math skills 
• Math skills task type  

• WM task type  

• Age 

4–12 Inhibition & math skills  29 .27 – 

4–12 Shifting & math skills  18 .28 – 

4–12 Visuospatial updating & math skills 21 .34 – 

4–12 Verbal updating & math skills 85 .38  

Jacob & 

Parkinson 

(2015) 

Meta-analysis looking at cross-sectional and 

longitudinal data on the EF subdimensions, EF 

composite, and three age groups accounting for 

dependencies by clustering standard errors by lead 

authors 

• EF subdimension 3–5 EF composite & math achievement 26 .29 [.23, .36] 

6–11 EF composite & math achievement 34 .35 [.28, .41] 

12–18 EF composite & math achievement 8 .33 [.25, .42] 

3–18 EF composite & math achievement 60 .31 [.26, .37] 

3–18 Inhibition & math achievement 33 .31 [.25, .38] 

3–18 Shifting & math achievement 17 .34 [.24, .44] 

3–18 Updating & math achievement 40 .31 [.22, .39] 

Peng et al. 

(2016) 

Meta-analysis of the WM-math-skills-link, 

accounting for dependencies of effect sizes with 

robust standard error estimation 

• WM type (e.g., verbal, 

numerical)  

• Types of math skills 

3–52 WM & math skills 110 .35 [.32, .37] 

6–13 Verbal WM                      d = -0.70 43a – [-0.79, -0.61] 
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Swanson & 

Jerman (2006) 

 Multilevel meta-analysis comparing memory 

performance of students with and without math 

disabilities 

• Type of cognitive measure  

• Age 

6–13 Visuospatial WM             d = -0.63 13a – [-0.77, -0.48] 

Yeniad et al. 

(2013) 

Meta-analysis of the links between shifting, math 

performance, and intelligence 
• None, due to the small number 

of included studies 

4–14 Shifting & math performance 18 .26 [.15–.35] 

4–14 Shifting & Intelligence 11 .30 [.18–.41] 

 

Note. Larger positive effect sizes indicate a closer relationship between EFs and math intelligence. Common meta-analysis refers to a meta-

analysis which takes only one effect size per study into account. kS = Number of included studies; Age range = Mean age of the youngest and the 

oldest sample within the meta-analysis in years; EF = Executive function; r̄ = weighted mean correlation; d = Cohen’s d; WM = working 

memory. a = Number of included effect sizes (not studies). 
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Table 2  

Evidence Gap Map of the Number of Studies Measuring EF Subdimensions and Intelligence 

Facets in Preschool Children 

Intelligence Inhibition Shifting Updating EF composite EF sum 

Standardized IQ test 58 37 48 39 102 

 Figurative intelligence 41 28 36 29 77 

 Verbal intelligence 32 17 23 22 57 

 Numerical intelligence 8 3 6 1 9 

Math intelligence 39 21 34 18 56 

 Standardized math test 32 16 28 18 48 

 Math-related test 11 9 10 2 14 

Literacy skills 86 53 60 40 124 

 Reading comprehension 8 5 7 5 15 

 Reading fluency 6 4 4 1 8 

 Receptive vocabulary 60 37 38 31 89 

 Productive vocabulary 24 15 15 10 31 

 Language fluency 11 9 10 4 16 

 Letter identification 22 10 15 11 32 

 Language comprehension 15 9 12 3 20 

Working memory 90 63 95 21 100 

Intelligence sum 160 104 129 65   

 

Note. Darker shaded cells identify sufficient amounts of research to conduct a meta-analysis. 

Lighter cells indicate a need for more primary studies. Numbers are based on kS = 221 studies with 

preschool children identified in the screening process.
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Table 3 

Descriptive Results of Continuous Moderators 

Continuous moderator kS  kES M SD Mdn Min Max 

Publication year 47 363 2016.21 1.13 2017 2007 2021 

Gender composition 47 363 50.36 4.23 50 37.59 63.90 

Age (in years) 46 355 4.93 0.84 5 3 6.58 

Reliability of math 

intelligence measures 

22 169 0.85 0.10 0.88 0.46 0.97 

Number of math 

intelligence items 

42 268 32.46 22.51 33 3 120 

Reliability of EF measures 24 63 0.87 0.08 0.87 0.56 0.95 

Number of EF items 39 237 35.52 40.30 20 3 240 

 

Note. kS = Number of included studies; kES = Number of effect sizes; Gender 

composition = Percentage of girls in the sample.  
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Table 4 

Model Fit Indices for the Baseline and Cross-Classified Models 

Variable df LogLik AIC BIC AICc 

CHE model (τ2
(2) and τ2

(3) freely 

estimated, hierarchical nesting, 

r = rho = 0.3)  

3 210.51 -415.01  -403.34  -414.94 

HE model (τ2
(2) and τ2

(3) freely 

estimated, hierarchical nesting) 

3 207.78 -409.57 -397.89 -409.50 

RE model (τ2
(2) = 0 and τ2

(3) 

freely estimated) 

2 -625.45 1254.91 1262.69 1254.94 

RE model (τ2
(2) freely estimated 

and τ2
(3) = 0) 

2 162.39 -320.79 -313.00 -320.75 

FE model (τ2
(2) = 0 and 

τ2
(3) = 0) 

1 -1364.99 2731.98  2735.88 2732.00 

CHE+ model(τ2
(2) and τ2

(3) 

freely estimated, hierarchical 

nesting, r = rho = 0.3) 

4 257.67 -507.35 -491.78 -507.23 

HE+ model (τ2
(2) and τ2

(3) freely 

estimated, hierarchical nesting) 

4 251.49 -494.98 -479.41 -494.87 

 

Note. LogLik = Log-Likelihood; AIC = Akaike information criterion; BIC = Bayesian 

information criterion; AICc = corrected Akaike information criterion; CHE model = three-

level random-effects model with hierarchical nesting and constant sampling correlation; 

HE model = three-level random-effects model with hierarchical nesting; RE model = common 

random-effects model; FE model = fixed-effects model; CHE+ model = cross-classified four-

level random-effects model with hierarchical nesting, constant sampling correlation, and 

executive function task type as an extra level; HE+ model = cross-classified four-level 

random-effects model with hierarchical nesting and executive function task type as an extra 

level.  
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Table 5 

Results of the Meta-Analysis of the Relation of EFs and their Subdimensions with Math Intelligence 

 

Note. Larger positive effect sizes indicate a closer relationship between EFs and math intelligence. r̄ = Weighted average correlation, pooled from 

all effect sizes within the respective study; kS = Number of included studies; kES = Number of effect sizes; τ(2;3) = Heterogeneity at effect size (2) 

and study level (3), respectively; Q = Sum of squared deviations of each effect size’s estimate from overall meta-analytic estimate; I2 

(2;3) = Heterogeneity indices at effect size (2) and study level (3), respectively. 

* p < .001 

 

Relation Data set r̄ 95% CI SE kS kES t τ(2) τ(3) Q I2
(2) I2

(3) 

EF and math 

intelligence  

complete .34* [.31, .37] .02 47 363 21.28 .106 .085 3690.13* .55 .35 

EF and math 

intelligence  

pooled .40* [.36, .44] .02 47 47 21.70    – .117 658.69*    – .93 

Inhibition and math 

intelligence 

inhibition .30* [.25, .35] .02 30 137 12.35 .089 .110 955.49* .36 .54 

Shifting and math 

intelligence 

shifting .32* [.25, .38] .03 20 96   9.94 .063 .124 362.17* .18 .69 

Updating and math 

intelligence 

updating .36* [.31, .40] .02 27 107 14.89 .105 .088 1032.50* .52 .37 
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Table 6 

Results of the Continuous Moderators 

Continuous moderator kS kES B SE 95% CI p 

Publication year 47 363 0.00 0.01 [-0.03, 0.02] .744 

Gender composition  47 363 0.05 0.31 [-0.55, 0.65] .882 

Age (in years) 46 355 0.00 0.01 [-0.02, 0.03] .758 

Reliability of math  

   intelligence measures 

23 169 0.30 0.15 [-0.01, 0.60] .055 

Number of math  

   intelligence items 

42 268 0 0 [-0.00, 0.00] .373 

Reliability of EF measures 13 63 0.11 0.30 [-0.50, 0.71] .730 

Number of EF items 39 237 0 0 [-0.00, 0.00] .840 

 

Note. A significant p-value indicates that there is a statistical difference between the levels of 

the moderator. kS = Number of included studies; kES = Number of effect sizes; Gender 

composition = Percentage of girls in the sample.   
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Table 7 

Results of the Categorical Moderators 

 Moderator kS kES �̅� [95% CI] 𝑆𝐸 𝑅(2)
2  𝑅(3)

2  p 

Baseline (𝐼(2;3)
2 : .55; .35) 47 363 .34 [.31, .37] 0.02 – – – 

Country 47 363 – – .00 .30 .021* 

 United states 31 247 .36 [.33, .40] 0.02 – – – 

 Australia 2 20 .32 [.15, .49] 0.09 – – – 

 Spain 2 21 .28 [.11, .45] 0.09 – – – 

 Netherlands 2 11 .34 [.13, .54] 0.10 – – – 

 United Kingdom 2 22 .37 [.20, .55] 0.09 – – – 

 Sweden 2 9 .25 [.07, .42] 0.09 – – – 

 Japan 1 4 .47 [.25, .69] 0.11 – – – 

 China 3 14 .30 [.14, .46] 0.08 – – – 

 Turkey 1 9 .13 [-.16, .42] 0.15 – – – 

 Pakistan 1 6 .07 [-.14, .28] 0.11 – – – 

Continent 47 363 – – .00 .07 .041* 

 North America 31 247 .36 [.33, .40] 0.02 – – – 

 Asia, Australia, Europe 16 116 .30 [.19, .40] 0.05 – – – 

Publication status 47 363 – – .00 .09 .09 

Preschool status 47 363 – – .00 .02 .31 

Socioeconomic status 38 304 – – .00 .00 .77 

Study design 47 363 – – .00 .00 .58 

Math intelligence 

subdimension 
47 355 – – .00 .08 .06 

Mode of math intelligence 

testing 
46 353 – – .00 .00 .48 

Math performance testing 46 360 – – .00 .00 .46 

Math group testing 46 360 – – .00 .00 .31 

EF subdimension 47 363 – – .06 .24 < .001** 

 Inhibition 32 137 .30 [.26, .33] 0.02 – – – 

 Shifting 19 96 .32 [.25, .40] 0.04 – – – 

 Updating 27 107 .35 [.28, .41] 0.03 – – – 

 Composite 9 23 .45 [.35, .55] 0.05 – – – 

EF task type 46 356 – – .24 .17 < .001** 

 Composite 6 11 .47 [.38, .56] 0.05 – – – 

 Stroop (Inhibition) 19 79 .24 [.05, .43] 0.10 – – – 

 Simon (Inhibition) 10 21 .40 [.20, .60] 0.10 – – – 

 Slow (Inhibition) 2 5 .26 [.03, .49] 0.12 – – – 

 Shape school (Inhibition) 1 4 .38 [.14, .62] 0.12 – – – 
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 Delay (Inhibition) 5 9 .30 [.09, .51] 0.11 – – – 

 Flanker (Inhibition) 4 12 .31 [.10, .52] 0.11 – – – 

 Tap (Inhibition) 6 14 .44 [.23, .66] 0.11 – – – 

 Dimensional change (Shifting) 17 83 .31 [.12, .50] 0.10 – – – 

 Flexible selection (Shifting) 4 14 .37 [.16, .58] 0.11 – – – 

 
Random generation 

(Updating) 

2 8 .45 [.23, .67] 0.11 
– – – 

 Easy span (Updating) 9 18 .30 [.10, .50] 0.10 – – – 

 Difficult span (Updating) 15 50 .39 [.20, .59] 0.10 – – – 

 Last word (Updating) 1 12 .14 [-.08, .35] 0.11 – – – 

 Search (Updating) 2 16 .26 [.04, .47] 0.11 – – – 

Mode of EF testing 45 346 – – .03 .00 .03* 

 Verbal 23 120 .31 [.27, .35] .02 – – – 

 Behavioral 22 62 .37 [.29, .46] .04 – – – 

 Apparatus-based 20 93 .35 [.26, .43] .04 – – – 

 Computer-based 13 71 .36 [.27, .46] .05 – – – 

EF performance testing 46 349 – – .00 .00 .79 

EF group testing 45 347 – – .00 .00 .63 

 

Note. Larger positive effect sizes indicate a closer relationship between EFs and math 

intelligence. A significant p-value indicates that there is a statistical difference between the 

levels of the moderator. I2 
(2;3) = Heterogeneity indices at levels two and three, respectively; 

kS = Number of included studies; kES = Number of effect sizes; r̄ = Weighted average 

correlation; R2 
(2;3) = Variance explanation at levels two and three, respectively. 

* p < .05. ** p < .001  
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Table 8 

Pooled Correlation Matrix Under the Stage-1 Random-Effects Model (kS = 23, N = 5402) 

Constructs 1. 2. 3. 4. 

1. Math intelligence     

�̅� 1.000    

2. Inhibition     

�̅� 0.312 1.000   

95% CI [0.245, 0.379]    

𝜏2 0.020    

𝐼2 85.0%    

3. Shifting     

�̅� 0.381 0.294 1.000  

95% CI [0.311, 0.451] [0.217, 0.371]   

𝜏2 0.007 0.007   

𝐼2 63.1% 60.2%   

4. Updating     

�̅� 0.379 0.279 0.245 1.000 

95% CI [0.323, 0.435] [0.190, 0.367] [0.178, 0.312]  

𝜏2 0.009 0.021 0.001  

𝐼2 71.7% 84.4% 16.5%  

 

Note. Larger positive effect sizes indicate a closer relationship between EFs and math 

intelligence. The pooled correlation coefficients (�̅�) were based on the stage-1 random-effects 

model of the two-stage MASEM procedure. kS = Number of included studies; N = Number of 

included students; 95% CI = Wald 95% confidence intervals, 𝜏2 = Between-study variation of 

the correlation coefficients, 𝐼2 = Heterogeneity index.  

** p < .01. 
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Table 9 

Summary of the Main Findings of RQ1 and RQ2 

Relation (data set) RQ1: Correlations  

r̄ (95% CI) 

RQ2: Significant Moderators 

EF and math 

intelligence  

(complete) 

.34 [.31, .37] ▪ Country: Samples from the United Kingdom 

and Japan showed large effects, samples from 

Turkey and Pakistan small, non-significant 

ones 

▪ Continent: Larger effect for American samples 

▪ EF Subdimension: Order of effects, Composite 

> Updating > Shifting > Inhibition 

▪ EF task type: Largest effects for Composite, 

Tap (inhibition), Simon (inhibition), Random 

generation (updating), and Difficult span 

(updating) tasks 

▪ Mode of EF testing: Order of effects, verbal < 

behavioral ≈ apparatus-based ≈ computer-

based testing 

 

Inhibition and math 

intelligence  

(inhibition) 

.30 [.25, .35] ▪ Reliability of math intelligence measures: Math 

intelligence measures with greater reliability 

showed closer link to inhibition 

▪ Continent: Larger effect for American samples 

▪ Inhibition task type: Largest effects for Simon, 

Shape school, and Tap tasks 

▪ Mode of inhibition testing: Order of effects, 

verbal < behavioral = apparatus-based = 

computer-based testing 

 

Shifting and math 

intelligence  

(shifting) 

.32 [.25, .38] ▪ Reliability of math intelligence measures: Math 

intelligence measures with greater reliability 

showed closer link to shifting 

▪ Publication status: Larger effect for published 

studies 

 

Updating and math 

intelligence  

(updating) 

.36 [.31, .40] ▪ Math intelligence subdimension: Order of 

effects, Basic number knowledge < Calculation 

& Reasoning < Composite 

▪ Updating task type: Largest effects for Random 

generation and Difficult span tasks 

 

Note. Larger positive effect sizes indicate a closer relationship between EFs and math 

intelligence. r̄ = Weighted average correlation.  
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Figures 

Figure 1  

Flowchart Summarizing the Literature Search and Study Selection 

  

Note. kS = Number of studies.
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Figure 2 

Exemplary Structure of a Cross-Classified Model 
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Figure 3 

Meta-Analytic Structural Equation Models (Models 1-4) Representing the Relations between 

Executive Functions and Math Intelligence 

 

 

Note. MATH = Math intelligence, IN = Inhibition, UP = Updating, SH = Shifting, EF = 

Latent variable representing general executive functions. 
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Figure 4 

Contour-Enhanced Funnel Plots of all Data Sets 
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Note. Larger positive effect sizes indicate a closer relationship between EFs and math 

intelligence. Correlation coefficients on the x-axis are plotted against the standard errors on 

the y-axis for every effect size. τK = Kendall’s τ value.
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Figure 5 

Meta-Analytic Structural Equation Models for Prekindergarten/Kindergarten and Preschool 

Samples 

 

Note. Larger positive effect sizes indicate a closer relationship between EFs and math 

intelligence. MATH = Math intelligence, IN = Inhibition, UP = Updating, SH = Shifting, EF = 

Latent variable representing general executive functions. The coefficients for the pre-K and K 

samples are shown first, the coefficients for the preschool samples second. All coefficients 

were statistically significant (p < .05). 
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