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Extracting graphs from images with computer vision

to represent environmental network information

Digital terrain model Extracted graph Graph with hydrological flow

Figure 1: Using computer vision and graph analysis to detect networks in (Earth observation) imagery and analyze their envi-
ronmental parameters with graph metrics.

ABSTRACT
Remote sensing-based Earth Observation plays an important role
in assessing environmental changes throughout our planet. As an
image-heavy domain, the evaluation of the data strongly focuses
on statistical and pixel-based spatial analysis methods. However,
considering the complexity of our Earth system, there are some
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environmental structures and dependencies that are not possible
to accurately describe with these traditional image analysis ap-
proaches. One example for such a limitation is the representation
of (spatial) networks and their characteristics. In this study, we thus
propose a computer vision approach that enables the representa-
tion of semantic information gained from images as graphs. As an
example, we investigate digital terrain models of Arctic permafrost
landscapes with its very characteristic polygonal patterned ground.
These regular patterns, which are clearly visible in high-resolution
image and elevation data, are formed by subsurface ice bodies that
are very vulnerable to rising temperatures in a warming Arctic.
Observing these networks’ topologies and metrics in space and
time with graph analysis thus allows insights into the landscape’s
complex geomorphology, hydrology, and ecology and therefore
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helps to quantify how they interact with climate change. We show
that results extracted with this analytical and highly automated
approach are in line with those gathered from other manual studies
or frommanual validation. Thus, with this approach, we introduce a
method that, for the first time, enables upscaling of such terrain and
network analysis to potentially pan-Arctic scales where collecting
in-situ field data is strongly limited.

CCS CONCEPTS
• Computing methodologies → Image representations; Im-
age segmentation; • Mathematics of computing → Graphs
and surfaces; Paths and connectivity problems; • Human-
centered computing → Graph drawings; Geographic visual-
ization.
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1 INTRODUCTION
In the field of remote sensing-based Earth observation (EO), imaging
sensors aboard satellites, aircraft, or uncrewed aerial vehicles (UAV)
image or scan the Earth’s surface, collect reflective information and
store the sensed quantities as images. Researchers evaluate this
data (typically stored as three-dimensional arrays) with computer
vision and remote sensing image analysis techniques to identify
spatial patterns of quantified variables and their interdependen-
cies. Especially in environmental sciences, this approach enables an
incredibly vast range of research, reaching across ecological, geo-
logical, meteorological, and oceanographic applications, to name a
few. However, to answer some of the pertinent scientific questions,
spatial and statistical pixel analysis can in times lack complexity
to describe the underlying (environmental) structures of interest.
In such cases, it is then necessary to rethink the way we represent
the available information.

A prominent example, where pixel-based analyses reveal their
inherent limitations, is encountered when we aim to describe net-
works and their characteristics. It is not possible to access raw pixel
information from imagery and make assumptions about a land-
scape’s connectivity, the topology, or the spatial relationship. In
order to analyze network-like structures, we thus need to translate
the information into other data structures, such as graphs. The
challenge is then to find an appropriate method to translate the
image-based information into a graph’s edges and vertices.

In other image-heavy scientific disciplines, such as microbiology
or medicine, similar approaches have been initially explored in
the past decade. For example, researchers have generated graphs
from microscopic images of leaf venation patterns [10, 30], of slime
molds [2], and even of fracturing solids [22]. In EO however, this
methodology has seemingly only gained traction in very recent

years. Here, scientists explored the potential of representing road
networks [16], river pathways [9, 25, 39], or agricultural fields
[38] from satellite imagery as graphs in order to e.g., generate
accurate road maps, describe river topologies, or gather statistics on
agricultural spaces, respectively. However, we see that by adapting
these kind of approaches, we may also gain valuable insights into
processes that have direct implications to our environment under a
changing climate.

In this study, we introduce an imagery-to-graph approach to
investigate characteristic surface features predominantly found in
thawing permafrost landscapes of the Arctic: polygonal patterned
ground. By describing such landscapes and their inherent hydrol-
ogy as (labeled) graphs, we are able to investigate their character-
istic network structures with graph analysis metrics. Our graph
extraction methodology is largely automated, modular, and par-
tially parallelized. We present a three-tiered analytical approach,
which consists of (a) the segmentation of imagery and subsequent
representation of relevant information as graphs, (b) the morpho-
logical terrain analysis based on localized elevation information,
and (c) the characterization of the real-world network based on the
evaluation of graph analysis metrics computed for the extracted
graph.

In the next chapter, we introduce the polygonal permafrost struc-
tures of interest in detail and highlight the relevance of under-
standing the network properties of these vulnerable permafrost
landscapes in the context of climate change. In Chapter 3, we in-
troduce the algorithmic approach and elucidate the requirements
for the graph properties when extracting their structure from the
EO imagery. Then, we showcase the functionality of the methodol-
ogy based on exemplary data from a study site in northern Alaska
in Chapter 4. Finally, we conclude with a synthesis and highlight
potential integration of the introduced methods for future research.

2 BACKGROUND AND MOTIVATION
In the Earth’s global carbon cycle, permafrost soils act as one of
the planet’s major carbon sinks. Permafrost itself is defined as any
ground that stays at or below 0◦ C for at last two consecutive years
[7]. With approximately 800 to 1000 Petagrams of frozen organic
carbon [17, 32], permafrost stores approximately the same amount
of carbon as the Earth’s atmosphere. Permafrost ground covers
circa 15% of the northern hemisphere’s landmass [27], and the
largest domains can be found throughout the Arctic in Scandinavia,
Russia, Alaska, Canada, and Greenland [28]. Globally rising atmo-
spheric temperatures however, initiate warming and thawing of
these soils. Especially in organic-rich ground, permafrost thaw pro-
motes microbial activity and thus triggers the decomposition of soil
carbon [12]. This process in turn allows the release of greenhouse
gases (CO2 and CH4) into the atmosphere, which again leads to
further increasing atmospheric temperatures [26]. Such a carbon
feedback loop can have severe consequence for the environmental
well-being of our Earth. It is thus incredibly important to monitor
these strongly affected landscapes as to gain detailed insights and
prepare for appropriate mitigation strategies.

Permafrost thaw can happen both through abrupt and through
gradual thaw processes and they display in a great variety of ways.
For permafrost that contains large amounts of ground ice, common
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observable consequences are e.g., the initiation and progression
of retrogressive thaw slumps (landslides typical in permafrost re-
gions), coastal erosion, thermokarst lake formation and drainage,
and ground subsidence. In ice-rich ground, a very widespread fea-
ture are regularly patterned ice-wedge polygons [4]. Through ther-
mal contraction of ground in the very cold Arctic winter, frost
cracks form in polygonal patterns throughout the soil. These thin
but deep open fissures fill with meltwater once snowmelts in spring
and nearly vertical ice veins, connected in a polygonal pattern, form
and slightly expand the cracks. This way, over the course of cen-
turies to millenia, the ice veins can grow to large wedge-shaped
ice bodies along the polygonal frost-cracking pattern, which will
alter the morphology of the terrain [15, 21, 24]. In the initial and
stable state, we usually observe low-centered polygons (LCPs), as
the ice wedges (which define the borders of the polygons) elevate
the ground to relative higher elevations compared to the center of
the polygons (see Fig. 2 a). Typically, the elevation difference lies
between 0.1 and 1.3m [19, 34, 40]. However, with ongoing thaw,
these landscapes undergo extensive morphological transition due
to the differential subsidence following melt of ice wedges in the
ground [23]. We then observe landscapes with high-centered poly-
gons (HCP), as seen in Fig. 2 c. With the current warming trends,
these topographical changes can be observed over multiple decades
in undisturbed terrain. In disturbed permafrost terrain on the other
hand, for example in landscapes that have recently experienced
an intense wildfire, the transition from LCP to HCP happens on
considerably shorter timescales of only several years [20]. This
can be ascribed to the burned and removed uppermost organic soil
layer which, in undisturbed terrain, otherwise acts as insulation
for the permafrost below. Liljedahl et al. [23] observed and mod-
eled the implications this morphological change has on the surface
hydrology within the overall very flat landscape. They described
how in LCP terrain, water accumulates in the largely isolated poly-
gon centers, while with ongoing degradation, the surface water
shifts towards the newly formed troughs. Due to a higher thermal
capacity, ponded water in such troughs however promotes further
melting of the ice wedges below and thus the further degradation
of the landscape. Only when ice-wedge degradation has progressed
considerably, and the individual initial troughs have connected to
form a coherent network, will this water be able to drain out of
the landscape, thus slowing or possibly stabilizing the degradation
process.

Liljedahl et al. [23] described the phenomenon on very detailed
scales based on local field investigations in Alaska, Canada, and
Russia and verified their findings with high-resolution satellite
imagery from dates between the 1950s and 2009. As polygonal
patterned ground is widely distributed in the Arctic, a scalable
mapping approach is needed for investigations on pan-Arctic scales.
In [20], the authors investigated the ground subsidence and increase
in roughness of thawing ice-wedge terrain using laser scanning-
based elevation data and very high resolution satellite data in a fire
scar in northern Alaska between 2009 and 2014. While it is possible
to upscale this approach to larger areas (given data availability), it
does not provide very detailed insights into the hyper-local process,
but broadly quantifies rates of subsidence and roughness changes
for larger spatial entities only. Further studies have also investigated
the morphology (and changes therein) of polygonal landscapes,
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Figure 2: (a) Undegraded ice-wedge terrain is characterized
by low-centered polygons (LCP), with water accumulating
in the isolated polygon centers. (b) With ongoing thaw and
increased ice melt, soil above ice wedges subsides to lower
elevations, initiating landscapes with high-centered poly-
gons.Water accumulates in the newly formed troughs along
the polygon borders. (c) When thawing continues further,
more troughs initiate between polygons and network con-
nectivity increases, allowing water to drain from the land-
scape. The right column shows multi-spectral aerial images
of the permafrost terrain in the respective stages of degrada-
tion. Imagery taken with the DLR Modular Airborne Cam-
era System (MACS) on board AWI’s Polar-6 plane in North-
west Alaska in July 2021.

however, again, none of them have enabled the quantification of
very local details over large study areas [19, 34, 40].

While we are generally interested in the bigger picture of Arctic
permafrost thaw, it is important to consider that also very local
processes can have far-reaching impacts to extensive landscapes.
In the scenario of ice-rich permafrost terrain, it is the initiation of
single troughs above ice wedges that can considerably change the
topology of polygonal networks and thus influence the hydrology,
and subsequently the biogeochemistry, of entire catchments. It is
therefore evident that methods to quantify the described changes,
need to both be able to capture the very fine details, and simultane-
ously be scalable for investigating very large spatial domains (up
to pan-Arctic scales).

We believe that the detection of the polygonal networks from
EO data and their representation as graphs can achieve exactly this.

3 ALGORITHMIC FRAMEWORK
In order to adequately represent and analyze the polygonal thaw-
affected landscapes as graphs, we introduce a highly modular, three-
tiered approach. In the first module, we use traditional computer
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vision algorithms on elevation information (digital terrain models,
DTMs) represented as grayscale images to extract the topology of
the polygonal networks and build them as graphs. For the second
module, we investigate the topographical surroundings of each
segmented trough and infer the morphological parameters of chan-
nel height and width using computer vision and function analysis.
We then populate these results into the graphs as edge parame-
ters. And lastly, we investigate (hydrological) characteristics of the
network by leveraging traditional graph analysis metrics. Our ap-
proach is entirely implemented with Python and mainly relies on
the joblib [36], networkx [13], numpy [14], opencv [5], scikit-image
[35], scipy [37], and sknw [42] libraries.

3.1 From Images to Graphs
In order to represent the polygonal permafrost network as graphs,
we represent each trough (channel at the edge of two polygons)
as a graph edge and each intersection of troughs at the polygons’
corners as vertices. Prior to building the graph of the ice-wedge
network however, we need to establish the topological requirements
that are necessary to accurately represent the underlying real-world
properties:

• Planarity. Since we are looking at the Earth’s surface, troughs
are not allowed to cross paths without meeting at a trough
intersection. This needs to be reflected within the graph.

• Directionality. As water flow generally follows the surface
gradient, each edge E has a clear directionality. E is therefore
represented by an ordered pair of vertices (s, t), for which
s always lies at higher elevations than t . The directionality
thus represents the direction of hydrological flow in the
landscape.

• Acyclicity. Again, considering the downslope gradient of
surface water flow, the graph must invariably be acyclical.

As we define the edges and vertices from data represented in two-
dimensional space, the condition of planarity is fulfilled. Any seem-
ingly crossing troughs are already on the same plane and would
thus create a new intersection and therefore define the location of
another vertex. Further, considering that the network in question
is based on physical surface properties, and the directionality of
E is inferred from the relative height h of s and t , the condition of
acyclicity is inherently given. Any cycle in the graph would thus
imply the existence of a Penrose staircase situation. For edges E
with hs = ht , we nevertheless set a directionality and define it
based on the condition of acyclicity remaining preserved.

In order to satisfy these conditions when extracting the graph,
we make use of a methodology previously introduced by Xiaolong
and Christensen [42] which converts image skeletons into vertices
and edges. An image skeleton is a topological representation of
morphological shapes in a binary image [33]. To identify the skele-
tons of the troughs, we must thus first binarize the underlying data,
to have it represent the troughs as foreground class and any other
landscape as background.

Multiple approaches to segmenting EO imagery or elevation
data to identify polygonal troughs have been published in the last
several years [1, 3, 41, 44].Most of them rely on convolutional neural
networks (standard CNN, Mask R-CNN, U-Net) and the introducing
studies showed high prediction accuracies for locating the polygons

(or the troughs in-between). While these approaches where highly
reproducible for the investigated locations in the respective studies,
the algorithms unfortunately did not transfer well to other study
sites, including ours, and could not accurately segment the troughs
from any other landscape feature. Thus, we introduce an analytical
algorithmic approach to achieve the segmentation that relies on
traditional computer vision and morphological image analysis:

(1) Thresholding. In HCP landscapes, we can assume that troughs
always lie at relative lower elevations than the polygons. We
therefore use an adaptive threshold to segment the troughs
from the polygons. Instead of binarizing the DTM based on
a global thresholdTд , the adaptive thresholding method con-
volves a kernel kw withw being the user-defined width of
the kernel, over the image and computes individual thresh-
olds Tk for each investigated neighborhood Nk based on
Tk = mean(Nk ) − C . C is an optional scalar and used for
finetuning. When calculating the mean of Nk , we further
weight the pixels based on a Gaussian distribution from the
kernel’s center pixel. The output represents the likely trough
pixels as foreground (1) and any other pixels as background
(0).

(2) Cleaning. Especially in relatively flat areas of the landscape,
the adaptive threshold introduces impulse noise. We elim-
inate this pepper noise (individual foreground pixels in-
midst of a background cluster) by assuming that any iso-
lated trough pixels or smallest clusters thereof are noise
and assigning these pixels to the background class. To elimi-
nate any salt noise (individual background pixels in-midst
of a foreground cluster), and to connect troughs that might
have just missed being connected by a few pixels, we use
morphological closing. This means growing any clusters of
foreground class by x pixels at the outer edges and subse-
quently eroding the structure by x pixels again. Connections
that were initiated with the growing, do not separate again
when eroding.

(3) Skeletonization. Once the noise is brought to a minimum,
the troughs should be adequately represented by the fore-
ground class of the binary image and can be skeletonized
using Zhang’s method [43]. For this step, we consider the
8-neighborhood. That is, we allow both straight and diagonal
connections for the skeleton pixels.

Following this analytical approach, we achieve segmentation accu-
racies that are on a par with the above-mentioned machine learning
approaches (cf. Chapter 4) [1, 3, 41, 44]. Furthermore, this approach
eliminates the need of large (labeled) training sets and therefore
requires far less expert knowledge for inference. However, given
the modular setup of our introduced methodology, the usage of
alternative trough segmentation algorithms is nevertheless still
possible for the interested user. The only requirement to compute
the skeleton (from which the graph needs to be drawn) is a binary
representation of the data, where all trough pixels need to belong
to the foreground class.

From the skeleton of the trough network, we can then infer the
underlying graph as follows: Each foreground pixel and its eight
immediate neighboring pixels are investigated. Any foreground
pixel that neighbors exactly two other foreground pixels will be



From Images to Hydrologic Networks - Understanding the Arctic Landscape with Graphs SSDBM 2022, July 6–8, 2022, Copenhagen, Denmark

considered as edge pixel. All other foreground pixels will be repre-
sented as vertices. Vertices that are connected by edge pixels will
be connected by an actual edge in the graph. Generally, we aim to
simplify the representation of the landscape, however, we must not
forget that we still intend to represent it as accurate as possible. We
therefore retain the information on the original path of the trough
in pixel coordinates as edge weights.

All steps of the first module scale with O(n ·m) with n andm
being the height and width of the input terrain image in pixels.

3.2 From Terrain Properties to Graph
Parameters

As we are not only interested in the topology of the network as a
whole, but also in the morphology of the individual troughs, we
must determine their width and depth from the terrain model as
well. This information is particularly of interest for multi-temporal
investigations of a landscape. A fast eroding trough, i.e., a trough
for which its depth and width are increasing over time, is likely
to connect with neighboring troughs in the near future. We thus
determine averages for both parameters for each channel and store
the information as weights in the corresponding edge.

To determine the depth and width of a trough, we look at cross-
sectional elevation profiles (transects) at each pixel p along the
channel’s course of pixels. All transects are located approximately
perpendicular to the course of the channel. The perpendicularity is
determined based on the alignment of the immediate predecessor
p − 1 and the immediate successor p + 1 of pixel p under investi-
gation. Figure 3 visually conveys the five possible cases of pixel
constellations (and their π/2-rotation-symmetrically equivalent
settings) and how we extracted the respective transects.

Following this approach, we distinguish between straight and
diagonal transects which, although each capturing the same num-
ber of pixels lp have different real-world lengths lt . lt is therefore
dependent on the orientation of the transect as well as the spatial
resolution r of the underlying data and follows

lt =

{
lp · r for cases a, b, d, and e of Fig. 3
lp · r ·

√
2 for case c of Fig. 3.

(1)

As these channels are real-world structures, each transect is unique
in shape. However, it is possible to approximate and thus describe
the profile with a Gaussian function

f (x ; µ,σ 2) =
1

√
2πσ 2

e
(x−µ )2

2σ 2 , (2)

µ being the location and σ the scale of the distribution. The distri-
bution’s full width at half maximum (FWHM, FWHM = 2

√
2ln2 ·σ )

and f (µ) are then considered as proxies for the transect’s width
and depth respectively.

While fitting the Gaussian function to the extracted elevation
profiles scales with O(e), e corresponding to the number of edge
pixels, it is nevertheless rather compute intensive. By providing
bounds to possible values for σ (based on typical real-world widths
of the troughs) we managed a computational speed-up of already
more than 300%. We further implemented data parallelism and
distributed the curve-fitting processes to all available cores of the
CPU. We used the joblib.Parallel library [36] with the loky backend

Figure 3: Cross-sections for investigating the trough mor-
phologiesmust ideally be placed perpendicular to the course
of the troughs with s = [p − 1,p,p + 1]. For each transect
(blue arrow) at trough skeleton pixel p (green, center pix-
els in each example), we thus investigate the respective lo-
cations of the two neighboring skeleton pixels p − 1 and
p + 1 (also green) in respect to p. We identify five possi-
ble pixel-constellation scenarios (plus their π/2-rotation-
symmetrically equivalent settings). For each setting, the ori-
entation of the transect is shown by a dashed red line. In a,
b, and c, the transect is strictly perpendicular to the tangent
of s in p, while d and e have transects perpendicular to paths
s = [p−1,p] and s = [p,p+1], respectively [31]. Figure adapted
from Rettelbach et al. [31], licensed under CC BY; Licensee
MDPI, Basel, Switzerland.

to enable multi-processing over concurrent Python worker pro-
cesses. Our code largely relies on Python objects and is therefore
not thread-safe under the Python Global Interpreter Lock. Thread-
ing could therefore not accelerate computation, and we accepted
the slightly larger communication overhead that is necessary with
the loky backend.

3.3 From Graphs to Hydrology
In this thirdmodule, wemake use of common graph analysis metrics
to infer hydrological properties of the thawing permafrost land-
scape based on the previously extracted graph with its populated
edge parameters. In particular, we are interested in the following
metrics:

• Number of edges. This corresponds to the number of troughs
in the landscape. It allows a first estimate of the size of the
hydrological network. As we also retained information on
the original course of the trough’s pixels, we can further
retrieve the total length of all established channels and thus
quantify the amount of all possible waterways.

• Node degree. This metric gives an estimate of the complexity
of hydrologic connectivity within the network. Landscapes
represented by graphs with a higher number of vertices
(nodes) with degree 1 (i.e., dead ends), are likely in transition.
The edges connected to these vertices represent troughs that
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have likely only recently initiated and thus have not yet fully
connected to other troughs in the vicinity.

• Number of sources and sinks. A source vertex in a directed
graph is a vertex that only features outgoing edges; a sink
vertex only incident edges. This definition can be directly
mapped to the hydrologic context with out-/in-flowing sur-
face water. Locations of source vertices are assumed to be
drier, whereas locations of sink vertices would be consid-
ered more likely to inundate (disregarding vertical drainage
through the soil).

• Number of connected components. In the graph, each con-
nected component corresponds to a hydrologically isolated
network. Small isolated components with only few edges
are likely to have only recently formed. Water in these areas
is not able to drain from the landscape until further troughs
have initiated and connected with nearby components.

• Betweenness centrality. For every pair of vertices within a
connected component of the directed graph we calculate the
shortest path. We use Dijkstra’s method [11] and take into
account the edge weights describing the real-world length of
each channel. If we assume that water follows the shortest
path1, we can further determine the betweenness central-
ity for each edge. With Brande’s implementation [6], this
metric is defined by Cb =

∑
s,t ∈V

σ (s,t |v)
σ (s,t ) , with σ (s, t) cor-

responding to the number of shortest paths and σ (s, t |v) the
number of shortest paths traversing vertex v , with v , s
and v , t . We expect higher betweenness centralities for
vertices surrounding edges that singly connect two (almost)
isolated networks. These edges pinpoint troughs that are
most likely to be responsible for network drainage and fur-
ther experience higher discharge rates [25]. The latter might
also indicate higher potential for further erosion of trough
walls.

• Network density. The density d gives an estimate of the net-
work flow effectiveness. It is defined asd = ee

ep , with ee being
the number of edges within the graph and ep the number
of all possible edges. In planar graphs ep = 3(n − 1) is valid.
For permafrost landscapes however, Cresto-Aleina et al. [8]
have shown that it is possible to approximate the polygo-
nal patterns with Voronoi diagrams, and we thus assume
ep =

3
2 (n + 1).

While all computational steps in the first two modules of the
introduced approach (Chapter 3.1 and 3.2) generally scale linearly,
the third module with graph analysis algorithms (Chapters 3.3) do
slightly worse. Determining the centrality scales with O(e · logn)
and computing shortest path lengths even requires O(n3).

4 EXPERIMENTS
We conducted experiments with very-high-resolution (1m/px) dig-
ital terrain models derived from laserscanning elevation data. Our
analysis focuses on characterizing the temporal evolution of a de-
grading landscape, and we thus require terrain data from a mini-
mum of two different dates of the same site. Unfortunately, terrain

1We acknowledge that this might not be hydrologically correct. For very flat terrains
(as is often the case in similar permafrost landscapes), we can however assume this
flow behavior as first-order approximation.

models at this high spatial resolution are rather scarce, as acquisi-
tion requires costly campaigns with scientific grade sensors aboard
specialized airplanes or UAV. In remote regions such as the Arctic,
especially repeat surveys are therefore rare. The study area for the
experiments conducted here is thus constrained to approximately
1 km2 in a fire scar (fire burned in 2007) in Northslope, Alaska,
USA. For this site, appropriate laserscanning terrain models at 1m
resolution are available from the summers of 2009, 2014 and 2019.
Fig. 1 shows the digital terrain model of 2019.

We set up our experiments on amodernWindows 10workstation
with Intel(R) Xeon(R) E5-2650 v4 CPU at 2.20GHz and 64GB of
RAM. All code was implemented with Python 3.8.

4.1 From Images to Graphs
Previously, we mentioned that image pre-processing, skeletoniza-
tion, and graph extraction all roughly scale with O(n ·m)with n and
m being the height and width of the input image in pixels. However,
we must acknowledge that the execution time of the morphological
image algorithms on the binarized data also depends on the com-
plexity of the foreground pattern (i.e., the trough network) and the
thickness of the strokes [43]. While implemented in parallel, the
thinning operations are nevertheless an iterative process. For our
input datasets of size 877 px by 730 px, we thus observe runtimes
between 5 and 7.5 s per image for generating the skeleton and ex-
tracting the graph as described in the first module. The input image
of 2009, with fewer troughs to segment, settles at the lower end of
this scale, while the images from 2014 and 2019 with the rougher
landscapes and higher numbers of troughs require slightly more
time.

To validate the accuracy of our analytical trough segmentation
approach, we manually traced the location of troughs from a 300m
by 300m (at 1m2 this corresponds to an input dataset of 300 px
by 300 px) subset of the 2019 input array (Fig. 4 a). We computed
the skeleton of this manual delineation (Fig. 4 b) and overlaid the
automatically segmented skeleton (Fig. 4 c and d). We are only in-
terested in the number of true positives over the number of total
positives and thus declare the accuracy based on the sensitivity.
In this case, the sensitivity yields a result of only 0.17. However,
since we are later looking at transects of length X px (in this study
X = 13, which lie perpendicular to the trough skeleton, described
in Chapter 4.2), we are able to capture information on channel mor-
phologies that are located in the X/2 px-vicinity to each side of the
skeleton (Fig. 4 e). Thus, computing the accuracy for segmentation
considering this larger field of view, we achieve a sensitivity of 0.84.

As with most automated image classification or segmentation
tasks, building a ground truth or training data base is a biased task.
Even experts in the field, manually labeling or delineating real-
world images, will introduce biases that could differ from another
expert’s interpretation of the same image. Especially considering
the images in this study, with the dynamic landscapes in transi-
tion, it is difficult to determine at which point a polygon border
has subsided far enough to be considered a trough. Based on the
sensitivity of 0.84 when considering the larger field of view (Fig.
4e), we can interpret that the analytical segmentation algorithm
was slightly more conservative than the expert’s segmentation and
did not pick up on some troughs that are only just initiating. It can
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Figure 4: Validation workflow. (a) Digital terrain model of
the 300m by 300m validation area subset. Darker colored
pixels represent relative lower elevations, brighter colors
represent relative higher elevations. (b) Red lines show the
manually delineated ’ground truth’ as determined by the
authors. The terrain model from (a) is shown in the back-
ground for reference. (c) Blue lines represent the skeleton
of the trough network as computed by the analytical ap-
proach described in Chapter 3.1. The terrain model from (a)
is shown in the background for reference. (d) Manually de-
termined ground truth in red from (b) overlain with auto-
matically extracted skeleton in blue from (c) to visualize the
success of the introduced extraction approach. (e) Manual
trough delineation (in red), overlain by the X/2px-vicinity
of the automatically segmented troughs (faint blue). As we
also investigate the surroundings of the trough skeleton to
analyze trough morphologies (see Chapter 3.2), we consider
the automated trough segmentation to be successful when-
ever the ground truth troughs lie within thisX/2px-vicinity.

Table 1: Comparison of graph metrics describing the trough
network evolution in the investigated permafrost landscape
between 2009 and 2019. Results underline the consistent net-
work growth as well the increasing connectivity over time.

2009 2014 2019
# edges 1292 2428 2585
average node degree 2.15 2.44 2.63
% sources 36.14 26.86 22.96
% sinks 21.73 19.43 13.24
# connected components 72 14 6
betweenness centrality 0.91e-5 1.64e-5 4.96e-5
network density 0.72 0.81 0.88
total channel length [km] 13.45 36.68 40.74

certainly be argued among experts as well, if these onsets should
already be considered troughs. Based on the large range of possible
interpretations of ground truth, we thus accept a sensitivity of 0.84
as sufficient for the ongoing analysis.

4.2 From Terrain Properties to Graph
Parameters

As fitting a Gaussian function through a non-linear least squares
approximation to ep transects is rather compute intensive, we paral-
lelized this task (see Chapter 3.2). We constrained the least-squares
optimizer to 5 · 105 iterations for finding the best fitting parame-
ter. With distributing the optimization to 20 cores we could thus
achieve runtimes of approximately 3.85 · 10−5 · ep seconds.

Fig. 5 shows some exemplary transects with their fitted Gauss-
ian and the parameters of FWHM and f (µ) corresponding to the
trough widths and heights respectively. We further compared the
median morphologies for the three analyzed years and found that
the width has increased from 5.6m to 7.7m between 2009 and 2019.
Within the locations where we found troughs in 2009, the median
trough depth has also increased by 0.05m. However, considering
the slight vertical inaccuracies of the terrain model, this result is
not considered significant.

Manually measuring the troughs’ depths and widths either in the
field or extracting this information from imagery to generate ground
truth values is not clearly defined, as troughs rarely show clear-cut
vertical walls, but usually gently slope into the landscape. Thus,
determining the start and endpoints where to measure the ’true’
depths andwidths can vary fromuser to user, andwe cannot provide
a detailed assessment on the accuracy of the results derived above.
However, our findings are all in line with the observations made by
multiple different experts in such thaw-affected landscapes [19, 34,
40]. This shows that by approximating the trough morphology with
a Gaussian curve, we introduce a robust, transferable, and especially
scalable methodology to better describe trough characteristics in
future studies.

4.3 From Graphs to Hydrology
Analyzing the graphs from the three investigated years (2009, 2014,
and 2019), we found very consistent trends. Table 1 gives an overview
of the graph metrics of interest as described in Chapter 3.3.
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Figure 5: Exemplary cross-sections extracted along four dif-
ferent troughs showing the measured absolute elevation
profiles (as taken from the digital terrain model) and the op-
timized Gaussian function fitted to the data points of the
same color (solid line). The vertical, grey guideline at 6m
represents the center of the transect and thus visualizes the
location of the skeleton pixel that determined the transect
positioning. We observe the Gaussian is able to approxi-
mate transects also for locations where the trough skeleton
pixel did not capture the lowest point of the channel (e.g.,
green/cross and red/circle transects).

For one, we observe a significant increase in the overall size
of the graphs. Between 2009 and 2019, the number of edges has
doubled in the study region. While directly linked to this increase,
the total length of potential pathways for hydrological surface flow
has tripled in this time period (total channel length). This under-
lines that especially longer troughs tend to initiate only later on, or
that troughs not only grow in depth and width, but also in length.
Further, we also identify a strong increase in the connectivity of the
trough network. The increasing average node degree and the de-
creasing percentage of source and sink vertices (dead-end troughs),
shows that troughs which have initiated in the early years (but
maybe only connected to one polygon intersection), have then
degraded further so that water is able to flow between two intersec-
tions (two nodes). Seeing the remarkable decrease of total number
of connected components in the study area drop from more than
70 to only six components, strongly underlines the increasing land-
scape connectivity, and thus in this scenario, also its degradation.
The metric of network density also gives valuable insights towards
this characteristic. Based on the assumption that the underlying ice-
wedge networks can be approximated with Voronoi diagrams (and
thus correspond to a network density of 1; see Chapter 3.3, [8]), we
assume that the fully degraded network, that is, when all troughs
have initiated, also renders a network density of 1. With 72% of
troughs initiated in 2009, to almost 90% of troughs present ten years
later, we observe a notable step towards maximum connectivity of
the hydrologic network.

Overall, we observe that the majority of the changes witnessed
occurred between 2009 and 2014 but seemed to decelerate in the
years after. This leads to believe that landscape responses to tun-
dra fires are immediate and pronounced, but can stabilize after

several years, underlining observations made with other method-
ologies [18–20]. For further analysis on the environmental changes
observed with this approach, please refer to Rettelbach et al. [31].

5 CONCLUSION AND FUTUREWORK
In this study, we presented a highly modular and automated ap-
proach to analyze digital terrain models, which are represented as
two-dimensional images with grayscale values, for determining
the state of degradation in thaw-affected permafrost landscapes.
With computer vision, we extract elevation information from data
stored as arrays and represent the characteristic polygonal network
landscape as graphs. Simply by reshaping the way we represent
the information, we obtain access to an entirely new suite of analy-
sis methods and thus gain a new perspective with unprecedented
quantitative detail of the geomorphological and hydrological char-
acteristics of these Arctic landscapes. Graphs are further more
efficient in storage properties than images, but we must of course
acknowledge that non-network-related information is lost in the
conversion process. However, the newly derived morphological
properties and network quantities can further be seen as valuable
measures for integration into numerical models of permafrost degra-
dation processes. Both represent important progress for furthering
our understanding of the complex interactions between thawing
permafrost landscapes and our changing climate.

Generally, we aim to enable this type of analysis for the pan-
Arctic scale, however, our approach requires the input data to satisfy
two main characteristics: (i) The elevation model needs to hold in-
formation on the elevation of the bare ground and not on that of
the surface (i.e., top-of-vegetation, infrastructure, buildings). And
(ii), the data needs to be at a very high spatial resolution (≤1m/px),
since we investigate structures with high spatial detail. As it is
currently almost only possible to gather this type of data by aerial
surveys with sensors mounted aboard UAV or aircraft, acquisition
is very costly - both temporally and financially, and it is spatially
limited. To the best of our knowledge, there currently exists no
comprehensive database of appropriate elevation datasets for the
entire Arctic. The best pan-Arctic dataset currently available is the
ArcticDEM [29] with 2m pixel resolution. However, it does not rep-
resent bare ground elevation information, but includes canopy and
snow, as it is derived from stereophotogrammetric processing of
very-high-resolution satellite imagery; thus not satisfying require-
ment (i). Nevertheless, a multitude of local and regional elevation
datasets with appropriate very-high resolution are increasingly
becoming available through various research and mapping projects
in permafrost regions.

In the future, we might gain access to this kind of data across
larger regions either through optimizing the optical properties of
sensor technologies and enabling higher resolutions from satellite-
based missions, or by enhancing already available data through
e.g., super-resolution algorithms. Until then, our methodology can
at least enable valuable insights into areas for which we do have
access to appropriate data already.

Through the highly modular setup, we further promote the in-
terchangeability of single substeps. This allows easy adaptation of
our approach to the user’s individual data pre-requisites or analysis
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needs. For example, a user might prefer a deep-learning-based poly-
gon segmentation method in module 1, or work in a considerably
different area where troughs might be even better approximated
with other non-linear functions (substitution of optimization func-
tion in module 2), or be interested in slightly different network
parameters (addition of graph metrics in module 3).

Overall, we here introduced a largely automated and scalable
approach that considerably facilitates access to new and valuable
insights for permafrost research, and thus enables quantification of
its impact on hydrology, ecology, and the climate.
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