Paleoclimate dynamics: Questions and Applications with FESOM and AWI-ESM

FESOM days 2020, Dec 7

Gerrit Lohmann and colleagues from paleodyn

Paleoclimate dynamics: identifying driving mechanisms of climate change

- to identify driving mechanisms for climate change
- external forcing and internal variability
- to test models of the Earth system

Paleoclimate dynamics: identifying driving mechanisms of climate change

- to identify driving mechanisms for climate change
- external forcing and internal variability
- to test models of the Earth system
- Applications: Selected time slices & periods
- Questions & Challenges
- Model developments with FESOM & AWI-ESM

The last 120,000 years

Lohmann et al. (2020) based on NGRIP, 2004; Berger, 1988; Köhler et al., 2017; Archer and Brovkin, 2008

Deglacial Hosing: Ocean response

Deglacial Hosing: Ocean response

Lohmann et al., Paleoceanography. 2020

Deglacial Hosing: Ocean response

AWI-ESM1

Lohmann et al., Paleoceanography. 2020

Glacial dynamics

Govan et al., Nat comm

Climate model ?

6/16

Govan et al., Nat comm

Umesh Dubey, Paul Gierz

FESOM Resolution (45.0 ka BP: 82,820 2d Nodes)

FESOM Resolution (57.5 ka BP: 79,847 2d Nodes)

60

80

100

120

140

20

-50

Model development NW Pacific

Fig. 7. a)-b): Modeled mean zonal velocity in the western equatorial and subtropical Pacific for a setup with coarse (Fig. 4c) and high resolution (c) in that region.

Patrick Scholz in BMBF Lohmann, Tiedemann SiGePax

What happens if the West Antarctic Ice Sheet is collapsed?

Stand alone Ice Sheet Model: RIMBAY

Sutter et al., 2016, GRL

AWI-CM (coupled Atm-Oc-sea ice)

What happens if the West Antarctic Ice Sheet is collapsed?

AWI-CM experiment for the LIG with the new gateway

Austral summer

Stabilizing effect by sea ice & surface cooling, however warm subsurface water

Antarctic Ice Sheet: Melting from below

Key processes of solid Earth, ice, ocean & their interaction

- ocean (eddy-)transports and mixing
- ocean-ice-shelf interaction
- rheology of solid Earth: Geometry and sea level

AMOC with Greenland (& AA)

L. Ackermann

Current Model Developments

Integration of ice sheets

Solid Earth VILMA

PISM-PICO

Modular ESM (esm-tools.net)

-> Talk of Paul Gierz

Slide from PalMod project

Current Model Developments

13/16

Tides: Pengyang SONG, catalytic role of tides in paleoclimate changes

Mixing: Shizhu Wang (2019), Effect of Non-breaking Surface Wave-induced Mixing

on Upper Oceans in Glacial and Interglacial Climates

BGC and Tracers

O-18, C-14

Current Model Developments

13/16

Tides: Pengyang SONG, catalytic role of tides in paleoclimate changes

-> Talk of Pengyang SONG

Temperature difference along 30S

Summer

CTRL - World Ocean Atlas 2013

Nonbreaking surface wave -CTRL

Nonbreaking surface wave & Shortwave penetration -CTRL

FESOM1+non breaking waves

Wang et al., 2020, JAMES

Reservoir age correction procedure to convert from ^{15/16} ¹⁴C years to calendar years.

Dating: The "backbone" of paleoceanography

FESOM2-14C

Lohmann et al., Paleoceanography. 2020

Paleoclimate dynamics: identifying driving mechanisms of climate change

The Crosphere

Feedbacks with ice sheets Variable land-sea mask Solid Earth model for sea level Incorporation of ice cavities (CR) Permafrost with AWI Potsdam <u>Tracer models</u> O-18, C-14, others Fast C-cycle

AMOC and mixing

Tides, waves, signal propagation

Paleoclimate dynamics: identifying driving mechanisms of climate change

The Crosphere

Feedbacks with ice sheets Variable land-sea mask Solid Earth model for sea level Incorporation of ice cavities Permafrost with Potsdam <u>Tracer models</u> O-18, C-14, others Fast C-cycle

AMOC and mixing

Tides, waves, signal propagation

Opportunities:

testing model under different conditions beyond the past 100 years Formalize paleo tests before model releases (PMIP4 already), common high-resolution-runs

Learning about the dynamics of the system Share experiences and developments AWI-CM meetings (since 2018)

Model versions

- AWI-ESM1.1 AWI-CM1 + vegetation (PMIP4)
- AWI-ESM1.2 with ice sheet model PISM (Gierz et al., Ackermann et al., Niu et al., 2020)
- AWI-ESM2.1 α : Sidorenko et al. + vegetation (Holocene, LGM runs)
- AWI-ESM2.1 β : Sidorenko et al. + vegetation + fast radiation in ECHAM6, JSBACH (about 90 y/day)
 - ~10 applications: MIS3, Glacial inception, partially coupled runs, LIA ini, Miocene, Cretaceous, artificial solar eclipse, Ozone etc.
- AWI-ESM2.1/2 with ice sheet model PISM & ocean improvements (under discussion)

Resolution: T63 in the atmosphere, COREII mesh in the ocean