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ABSTRACT: In this paper, we compare three different model-based risk measures by ev~uati_ng their 
stengths and weaknesses qualitatively and testing them quantitatively on a set of real lo~g1tudmal and 
intersection scenarios. We start with the traditional heuristic Time-To-Collision (TTC), which we extend 
towards 2D operation and non-crash cases to retrieve the Time-To-Closest-Encounter (TTCE). The 
second risk measure models position uncertainty with a Gaussian distribution and uses spatial occupancy 
probabilities for collision risks. We then derive a novel risk measure based ?n the statistics of spai:se 
critical events and so-called "survival" conditions. The resulting survival analysis shows to have an earher 
detection time of crashes and less false positive detections in near-crash and non-crash cases supported by 
its solid theoretical grounding. It can be seen as a generalization of TICE and the Gaussian method which 
is suitable for the validation of ADAS and AD. 
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1. Introduction 

Current progress in the development of Advanced Driver As­
sistance Systems (ADAS) and Autonomous Driving (AD) is 
based on a broad range of technological and methodological 
advances in the field of artificial intelligence. One objec­
tive of future ADAS and AD is the improvement of road 
safety by foreseeing dangerous situations and supporting the 
driver to behave in an appropriate way mitigating accidents. 
A key component is therefore the capability of situation 
risk assessment. Risk is usually defined as the likelihood 
that a critical event might occur weighted by its probable 
severity, i.e. its potential consequences in terms of damage, 
costs and injuries (l). The main problem with risk estimation 
is its predictive character involving uncertainties (in sensor 
measurements, driver behavior and scene evolution), which 
spread over time and which have to be modeled in a sensible 
way. 

In previous related work, numerous approaches for pre­
diction and risk assessment have been introduced C2>. On 
the one hand, it is possible to calculate risks by detecting 
hazardous driver intentions. For example, the typical steering 
behavior is learnable using image streams in a with convo­
lutional neural networks C3l. Comparing the measured with 
the learned wheel angle, the deviation can be assumed to 
correlate to the current risk. Since only the road structure 
influences the nominal behavior, the resulting risk value in­
dicates curve risk and not collision risk. As an alternative, a 
Bayesian network C4l is employed to classify behaviors into 
typical maneuvers, e.g. drive straight or tum. Training the 
network with accident data would lead to maneuver detec­
tions of vehicles violating traffic rules. Hereby, risks cannot 
be identified for situations which are not in the dataset. 

On the other hand, risk measures are based on future 
vehicle trajectories. The Time-To-Collision (TTC) CS), as one 
example of Time-To-Event (TTX) indicators, is defined as 

the deterministic time until the trajectories of two vehicles 
intersect. For the trajectory prediction, a constant velocity 
model is implicitly given in the respective equations. Vari­
ants of TTC incorporate different velocity profiles, such as 
constant acceleration models C6l. Since TTC only works for 
longitudinal scenarios, its equations have been extended for 
2D operation C7l. Additionally, to overcome the collision as­
sumption in TTC and thus having realistic values in non­
crash scenarios the orientation of the vehicles are taken into 
account. Both drawbacks of TTC are also handled directly 
with the Time-To-Closest-Encounter (TTCE) CS). 

Probabilistic risk prediction presumes critical events to 
act in a defined probability distribution. Gaussian methods C9l 
model a normal distribution for the positions in the pre­
dicted trajectories and calculate the collision probability by 
estimating their overlap. Furthermore to improve the accu­
racy, the distribution variances are separated into longitudi­
nal and lateral components and instead of integrating ana­
lytically, Monte Carlo simulation gives an approximation of 
the overlap (lO). Similarly, the concept of Kamms circle Cl l) 

is used as positional uncertainty to derive a "Worst-TIC" 
as the maximal risk value. With Poisson processes c12> the 
probability to remain accident-free can be calculated out of 
the mean time between critical events, which is dependent 
on the distances of the future trajectories. The risk measure 
follows as the complement of the corresponding survival 
function and allows to consider not only collision risk, but 
also for instance the risk for losing control in curves. 

Despite these works, a theoretically grounded, gener­
alizable, yet efficient risk measure for ADAS and AD is 
still missing. Risks on the behavioral level C3,4l are based on 
machine learning algorithms and their accuracy is highly in­
fluenced by the available data. In this paper, we therefore de­
rive the model-based risk measures TICE, Gaussian method 
and survival analysis and compare them in simulations with 
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Scene prediction Risk over predicted time Overall future risk 

Fig. 1. General approach for collision risk prediction of two traffic participants. 

the purpose of analyzing their properties for an application 
to ADAS and AD. Each measure is a representative of a 
broader family cs,9,i2i and has been enhanced so that they 
can deal with temporal and spatial uncertainties. The de­
picted results are based on a conference paper published in 
FAST-zero 2017. (!3) In the next Section 2, we outline the 
properties of a suitable risk measure and the general steps 
for its computation. Section 3 gives a detailed introduction 
of the three chosen risk measures and in Section 4 we show 
their performance and robustness on a set of longitudinal and 
intersection scenarios. Finally, in Section 5 we discuss future 
possible research areas. 

2. Requirements and Framework 

As a starting point, we consider dynamic collision scenar­
ios (i .e. a traffic scene with two traffic participants TPI , TP2) 
at an arbitrary moment in time t. Beginning at t, the target is 
to estimate the risk of a critical event that could happen at 
a future time t + s, that is at a temporal distance s into the 
future. We assume the events to be disruptive and to have no 
duration, so that they can be fully characterized by their time 
t + s, if they happen at s into the future. 

Since most of the commonly used risk measures do not 
address severity explicitly, we will concentrate on risk as 
an event occurrence probability. However, severity can be 
included into the argumentation in a straightforward way. An 
indicator for risk is then the probability function Pe(s;t ,t,,.t) 
that a critical event will happen during an interval of size 
f\,.f around a future time t + s. As a probability it should be 
positive and appropriately normalized, so that PE( s; t , l',.t) E 
[0, l ]. With a collision of time fE (time until a collision 
occurs sE), if a collision is imminent (at SE ➔ 0), it should 
be lims-+0 PE(s;t, t,,.t ) ➔ land if no collision ever occurs, it 
should be lims➔oo PE(s;t ,ill) ➔ 0. 

A compact risk measure R(t) would comprise, for each 
point in time t, the entire accumulated expected future risk 
contained in PE(s;t,ill), s E [0, 00]. There are several possible 
ways to gain such a measure, e.g. by extracting the maximal 
expected risk 

R(t ) := maxs>oPE(s;t ,t,,.t ) 
or using an appropriatedly accumulated risk 

(I) 

R(t) := [, PE (s; t ,ill) . (2) 
s= O 

The latter is a cleaner form because it comprises the full 
future event probability, but it requires a more careful deriva­
tion due to proper normalization considerations. Addition­
ally, heuristically motivated risk measures often directly es­
timate R(t) without PE(s;t , l',.t) (see Section 3.1). Again here, 
it should be guaranteed that R(t ) E [0, I] and R(t) ➔ 1 for 
collision at SE ➔ 0 and R(t) < 1 for no collision at any time. 
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A risk estimation framework consists of three compo­
nents as depicted in Fig. 1. In a first step, a prediction of 
how the situation will evolve in the future is performed. In 
our notation, designating z as the state vector of a scene, 
the predicted sequence of future scene states is given by 
Zr:r+s· The prediction can thereby be modeled at different 
levels of detail depending on the geometry, kinematics and 
interaction. For example, a low-level prediction would treat 
vehicles as dynamic entities and use constant acceleration, 
velocity or turn-rate assumptions in kinematic equations. On 
a next level, road geometries could be taken into account 
to constrain the paths on which vehicles can drive. The 
outcome of the prediction is a selected set of possible future 
trajectories for each involved vehicle. 

In a second step, the time evolution of the scene Zr:r+s 
is evaluated in terms of criticality by extracting features 
which are indicative of risk. For collision risk, the predicted 
trajectories are compared for each point in predicted time 
s to obtain the spatiotemporal proximity dr:r +s between the 
vehicle trajectories. This leads to an instantaneous risk 
function or in features like the time to and distance at the 
point of maximal risk, resp. the time until the event SE 
and the predicted proximity dr+sE at that time. Afterwards, 
the event probability PE ( s; t , ill ) can be calculated from 
the instantaneous risk function. The third step comprises 
retrieving the risk measure in form of a scalar risk function 
R(t) according to Eq. (1) or (2). 

3. Theory of Risk Measures 

3.1. Time-To-Closest-Encounter (TICE) 

The family of TTX-based risk measures are proximal 
safety indicators based on the time left until a critical event. 
In particular, the well-known TIC represents the time re­
maining until two vehicles will engage in a collision if they 
continue driving along the same path according to some 
prediction model CS) . A usual assumption is that both TP's 
drive with constant longitudinal velocities v1 ,2· In this case, if 
they start driving at t with longitudinal positions l 1,2, the time 
of collision / time of critical event will be at SE = TIC = 
-t,,.f j t,,.v, with t,,.t := 11 -12 and l',.v = v1 - v2• However, 
TIC is rather limited for complex scenes, because (i) it is 
only applicable to longitudinal resp. ID scenarios and (ii) 
it presumes that a collision will happen with certainty, so 
that near-crash cases cannot be evaluated. Several extensions 
of TIC to 2D have been developed C7l, but generally lack 
justification both from theoretical as well as from empirical 
side. 

For deriving a risk measure with TIC, the heuristic as­
sumption is made that the overall risk of a predicted collision 
at a time SE into the future decreases with increasing tempo-
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ral distance to the event if nothing changes. When there is 
more time left until the incident, there is a larger chance for 
other things to happen (either voluntarily or unvoluntarily) 
which might lead to a different future evolution of the scene 
and to an avoidance of the event. An in-depth explanation 
is described later in Section 3.3. The most straightforward 
approach is then to calculate SE in order to get R(t) according 
to 

Rnc(t) ~ [s~r (3) 

with a > 0. To avoid divergence and to fulfill the normaliza­
tion conditions from Section 2 we introduce a small constant 
e and a steepness constant De so as to retrieve 

Rnc(t) := [ e ] a (4) 
e + DcSE 

3 .1.1. Extension for 2D operation 
Critical events like passing-by at high velocity can not 

be captured by Eq. (4). A logical refinement is given by 
considering not only collision events, but generally the future 
events of highest criticality as a temporal reference. In case 
of collision risk, this leads to the time of closest proximity 
SE= TICE. We moreover separate the TICE-dependent risk 
into two factors : One that handles the temporal decay in the 
usual way and another one that accounts for the increased 
spatial collision danger in case of high proximity. In this way, 
we obtain 

RnCE(t) := ( e )a exp{- d}2 } (5) 
E+DcSE 20" 

with the Euclidean distance dE := d(t + SE) between the 
vehicles at the moment of the critical event and a Gaussian 
variance c,2 . 

In case of a collision, we would retain dE = 0 and the 
spatial term reduces to 1, so that we get back to Rnc(t). 
In case of a near-crash incident, the spatial term can be 
used to quantify how critical the incident was in terms of 
spatial proximity, accounting for uncertainty in the predicted 
positions. As a further modification, we model the fact that 
spatial uncertainty in the predicted positions increases with 
larger prediction times sE (see also Section 3.2). This means 
that for events which lie further away in the future, we will 
consider larger c, 's with c,(t +sE) := DcsE, so that 

RnCE(t) := ( E )a exp{-_A_}· (6) 
E + De SE 2DcSE ---...,.._.,..__ ____ _; 

temporal uncertainty spatial uncertainty 

With a prediction model for the trajectories x, ,2 (t + s) of two 
TP's, we can directly calculate SE = TICE as well as dE at 
that time. In case of constant velocity assumptions 

x1 ,2(t+s) = x1 ,2(t) +v1 ,2s (7) 

we gain 

d(t + s) = ll ru::(t) + Ms ll 

= ✓[~x(t)]2 + 2~x~vs + (M)2s2 

which has its minimum at 

(8) 

(9) 

and which reduces to TIC in the longitudinal case. The 
distance of closest proximity is finally 
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Fig. 2. Collision risk prediction with TICE. 

dE = ✓[~x(t) + ~vsE]2 

{ () _ M [ru:: (t) M ] } 2 
~x t II M ll2 

[ (ru::(t) X M ) X ~VJ 2 

II M ll 2 

= ll ~x(t )lllsin[L(ru::(t),~v]I - (10) 

As a result, using dE from Eq. (10) and inserting it into 
the spatial term of Eq. (6) we have gained a risk measure 
which generalizes TTC to the 2D as well as to non-collision 
cases. Fig. 2 summarizes TICE and its main variables. 

3.2. Gaussian Method 

As a second family of collision risk indicators, we con­
sider approaches based on spatial occupancy probabilities (I). 

For this purpose, the normalized probability densities for 
the respective spatial positions of two TP's indexed 1,2 are 
described by Gaussian functions 

fi,2(x)= R,exp[-(x-~1'2)
2

] (11) 
2,,,.,....2 2c,, 2 ,.vl ,2 , 

with the mean positions µ 1,2 and variances c,1,2. 1 

A collision at a position x then occurs if both TP's coin­
cide at the same position. Consequently, a way to quantify 
the likelihood of a coincidence/collision at a common posi­
tion x is 

f c(x) := Ji (x)h(x) . (12) 
Because the product of two Gaussians is again a (non­
normalized) Gaussian function , we get 

Sc [ (x- µc)2 ] 
fc(x) = fiiwJ- exp - 2c,J (13) 

with 
1 1 1 

c,2 = c,2 + o:2 ' 
c I 2 

(14) 

2 2 
µ, 0"1 + µ20"2 and 

µc = c,2 + o:2 
I 2 

(15) 

Sc= l exp [- (µi; µ2)2
2 ] . (16) 

✓ 2n( c,? + c,'i) 2( 0"1 + CY2) 

The Gaussian position probability densities encompass 
the final positions of all possible trajectories that lead to 
points x at a certain moment in time t + s. The probability 
that the first TP, driving along its trajectory, is hit by the 

1 For simplicity, we consider here the isotropic ID case, but extensions to 
2D and orientation are straightforward. 
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second TP is eventually given by spatially integrating f c(x) 
over all positions where the first TP can be 

PE(s;t ,ill) ~ L f c(x)dx = Sc . (17) 

3.2.1. From Collision Probability to Risk Measure 
So how do we get from the collision probability fac­

tor (17) to a risk measure as a function of the time t as 
introduced in Eq. (6)? First, we assume the moving TP's 
to follow a trajectory which undergoes certain variations in 
speed and heading. This accounts for mean positions through 
time µ1 ,2(t + s) with spatial uncertainties O°J,2(t + s). For 
<J1,2(t + s) a simple Brownian motion diffusion model with 
a linear increase of uncertainty starting at <J1 ,2 (t) = 0 is used 
according to 

<J[,2(t+s) :=D1,2s. (18) 

When we put Eq. (18) into (17), we obtain 

PE(s;t , flt) ~ 1 exp { - [d(t + s) ]2 } (19) 
✓21r:Dc s 2Dcs 

with a joint diffusion constant De := D 1 + D2 and an "ex­
pected" distance d(t + s) := 11 µ1 (t + s) - µ2 (t + s) 11 -Further­
more, to satisfy the requirements of Section 2 we add a small 
constant £ to the first term and thus gain 

h (s;t , ill ) :=( £ )aexp{ -[d (t + s)l 2 } (20) 
£ + Des 2Dcs 

with a= l / 2. 
Eq. (20) describes the probability that two TP's will be 

at the same position within a future interval around [t + s], 
starting at t and assuming Gaussian distributed positions 
around the TP's mean positions µ 1,2. It can be seen that 
for larger prediction horizons s the overall collision likeli­
hood decreases, because of the larger uncertainty in the TP's 
positions. The square-root dependency a = l /2 is hereby a 
direct consequence of the Gaussian approach and the diffu­
sion spread of the spatial probability densities. However, in a 
scene with allowed and non-allowed areas (road / non-road) 
every time a TP leaves the road area it will already deviate 
from its "normal" prediction, so that the collision probability 
will exhibit a faster decay with s. 

From Eq . (20) we can now distill a risk measure. As a 
conservative approach, we extract the maximal encountered 
future event probability as a risk indicator with 

SE: = argmaxsh (s;t , ill) (21) 
and retrieve for the Gaussian risk indicator 

RGauss(t) := PE(sE;t , flt ) (22) 
or rather 

RGauss (t ) := ( e )a exp{- d}2 } (23) 
£ +De SE 20" 

whereas dE is again the Euclidean distance at the moment of 
the critical event dE = d(t + sE) -

In Fig. 3, the increasing Gaussian position distributions 
are pictured, whereas the overlap between both at the closest 
distance dE is taken for RGauss (t). Eq. (23) has the same form 
as Eq. (6). The difference is in the calculation of SE, which 
in Section 3.1 occurs directly with TICE, whereas here we 
estimate it via the maximized PE ( s; t , ill ). For small diffusion 
constants De -+ 0 or imminent collisions SE -+ 0, the two 
approaches become equivalent. 
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Fig. 3. Collision risk prediction with Gaussian method. 

3.3. Survival Analysis 

In Sections 3.1 and 3.2, we have seen two extensions of 
standard risk measures which try to circumvent some of their 
deficits. In particular, dealing with uncertainty over time and 
space as well as a generalization to 2D enables the use of risk 
measures in a broader range of situations. However, neither 
TICE nor the Gaussian method provide a solid theoretical 
explanation, but rather motivated heuristics. In this Section, 
we describe a risk measure based on a grounded approach for 
the statistics of rare events and first passage time problems. 
This risk measure is also able to deal with uncertainties, but 
differently to the previously presented ones it provides full 
interpretability in terms of (normalized) probabilities and it 
considers additionally the situation history. 

Accident occurrences are modeled as a thresholding 
process based on a Poisson-like event probability 0 2). For 
an exemplary vehicle, in a sufficiently small time interval 
of size flt the so-called instantaneous event probability 
is characterized by an event rate -r- 1 (units: events/sec) 
according to 

A ( ) A - I 
l event flt : = 'r ill . (24) 

The term instantaneous event probability denotes the fact 
that this probability does not (yet) take the history into 
account. 

The survival probability function S(t + s; t) indicates the 
probability that the vehicle will survive from t until t + s, i.e. 
that it will not be engaged in an event like an accident. From 
Eq. (24), we can directly derive the survival probability after 
a small time interval flt if the survival probability at t' was 
s (t'; t ) 

S(t' + ill ;t) = S(t' ;t ) [l - -r- 1flt] (25) 

so that with the starting condition S(t; t ) = 1 we get 

S(t + s;t) = exp{ - -r- 1s} (26) 

which describes the homogeneous survival probability for 
constant -r- 1. 

The real risk event modeling occurs by a proper param­
eterization and variation of the time-varying -r- 1 (t) resp. its 
state-dependent analogous function -r- 1 ( z1) with -r- 1 (t) = 
-r- 1(z1 ) . In -r- 1(z1), we include all the risk factors with the 
context information in the state vector z1 . Correspondingly, 
in dangerous situations the event rate will be higher than in 
harmless situations. For temporally varying -r- 1 (t ), Eq. (26) 
modifies to 

S(t + s; t) = exp{ -15 -r- 1 (t + s' ) ds'} . (27) 

The states have been left out here for simplicity of the 
derivations . If we include them back, we acquire the state­
dependent survival probability function 
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Fig. 4. Collision risk prediction with survival analysis. 

S(t + s;t ,Zr:t+s) = exp{- L' -r- 1(z1+s') ds'} (28) 

which defines the probability that a vehicle survives during 
[t ,t + s] without being involved in a critial event and which 
depends on the entire state vector sequence Zi:r+s· 

3.3.1. From Survival Probability to Risk Measure 
To quantify the risk of an accident between the ego-car 

and another car, the (time-varying!) spatial risk instanta­
neous collision event rate -r; 1 ( z) is modelled by 

-r- '(z) = -r- 1 e- f3co11 lx,- x2J (29) 
coll coll ,0 

with constants -re-;;-,(_0 and f3eoll · While the scale factor -rc-;;-,:,0 

is chosen so that l.,vem ( 11t , z) of each other car approaches 
1 at collision, the steepness factor f3eou is used to model the 
position uncertainty originated from several possible sources 
like sensor inaccuracy, state prediction errors, unexpected 
driver behavior or unknown vehicle sizes. With f3eoll, closer 
proximity leads to higher -re-;;-l(z) and accordingly to a re­
duced probability of "surviving". 

The approach is consistently extensible to different types 
and sources of risk by using a composed event rate like 

-r- 1 (z) := '"o' + -re-;;-,: (z) + -re-;;i' (z) + ... 
- I - I ( ) = '"o + -rerit z (30) 

which can comprise the terms related to critical events, such 
as vehicle-to-vehicle collisions -re-;;-J, losing control in curves 
-re-;;/ and others. The escape rate -r01 plays a special role: 
It contains all (unknown and non-critical) "escape" events 
which might lead to the case that the currently predicted 
future gets invalid and later critical events lying further away 
in the future cannot occur any more. For instance, if we 
assume constant velocity in the prediction and the collision 
will occur at TIC = 10 s, each disturbance, voluntary or 
involuntary action away from the constant velocity assump­
tions that occurs within [t, t + TIC] will prevent the collision 
to happen (the driver will "escape" from the collision). 

By multiplying the instantaneous event probability from 
Eq. (24) with the survival probability from Eq. (28) , the 
event probability can be calculated as 

E (s;t , 11t , Zt:t+s) = levem (11t , Zi+s) S(t + s;t , Zt:t+s). (31) 

This is the probability that any type of event ( escape event or 
critical) will happen in an interval oflength 11t around t + s, 
given a state vector history z1:i+s if we start observations at t 
and no event happened during [t ,t + s]. Correspondingly, the 
event density (i.e. the probability of events per time unit) 
after a time s starting at t is given by 

e(t + s; t , Z1:1+s) := E(s;t , ill , Z1:1+s) / 11t 

= -r- 1 (z1+s) S(t + s; t , Zr:r+s) (32) 
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and the total time-accumulated event probability (i.e. the 
probability that any of the events will happen during [t, t + s]) 
by 

A(s;t ,z1:1+s) := 1 s e(s';t ,Z1:r+s' )ds' . (33) 

As a risk measure, we want to take the time-accumulated 
probability of the critical events only. If we separate the 
critical events from the escape events (which "avoid" the 
accidents), we find out that the event density 

e(s;t , Z1:1+s) = -r- 1 (zr+s) S(t + s; t, Zt:t+s) 

= [-ro' + -re~i'(z1+s)]S(t + s;t,Z1:1+s) 

:= eo(s;t ,Z1:t+s) + eeri1 (s;t ,Zt:t+s) (34) 
also separates into two respective terms. Consequently, for 
the time-accumulated event probability 

A (s;t ,Zt:t+s) = Ao(s;t ,Zt:t+s) + Aeri1 (s;t ,Zt:t+s) . (35) 

holds true. The first term quantifies the overall future prob­
ability that critical events will be avoided during [t, t + s], 
whereas the second term expresses the future probability of 
getting involved in a critical event during the same time span. 

Since we are interested in the estimation of the time­
accumulated future risk, we use 

PE(s;t ,11t) := eeri1 (s;t ,Z1:1+s)ill (36) 

as our time-resolved differential risk measure. The integral 
risk measure then is 

R(t) = Aer;,(00;t ,Zr:r+oo) (37) 

It can be shown that the time-accumulated event probability 
integrates to 1, which means 

A(oo;f ,Zt:t+oo) = 1 . (38) 
This is a sensible and necessary normalization condition, 
because for an infinite future a critical event will happen with 
certainty 1. 

Using this information, we arrive at 

RsA(t) = 1- Ao(00;t ,Zr:t+oo) (39) 

= 1 - '"o I 1 00 

S(t + s; t ' Zr:r+s' ) ds' ( 40) 

Overall escape probability 

for our final risk measure. It contains the overall probability 
of escaping a future critical event and its complement quan­
tifies the overall probability of engaging in a future critical 
event. Besides, it is well-behaved in the limiting cases. The 
risk measure automatically approaches 0 if there are no crit­
ical events present, since then the overall escape probability 
approaches 1 and for an imminent critical event, the escape 
probability reaches 0 as there is no time left for any type of 
escape events in terms of avoidance behavior or similar. Fig. 
4 illustrates '"o I as trajectory alternatives changing Zr:t+s, the 
positional uncertainty f3coll and the procedure of integrating 
the survival function S(t + s; t) over the predicted time s 
which among others depends on -re-;;-,; . 

4. Simulation Results 

4.1. Evaluation of Single Longitudinal and Intersection 
Scenario 

For a quantitative comparison, we applied the presented 
three risk measures to real crash cases taken from the Ger­
man In-Depth Accident Study (GIDAS) dataset ci4J. The GI­
DAS Pre-Crash-Matrix contains reconstructed trajectories of 
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two TP's involved in an upcoming collision for longitudinal 
and intersection scenarios on average t = -5 .5 s ahead. In 
order to also quantify the risk for near-crash cases, we ad­
ditionally changed the course of the scene evolution. In the 
longitudinal car-following example, the path of one TP was 
shifted laterally in such a way that the minimal distance is 
dE = 7 m instead of dE = 0 m. There is no collision anymore, 
but a close passing. In the intersection example, we used 
for one TP the Foresighted Driver Model (FDM) (IS), which 
changes the velocity profile v(t) of its trajectory. Accord­
ingly, the TP decelerates and lets the other TP pass to avoid 
an accident. 

At every timestep t in the simulation, a constant velocity 
model is used for both TP's to predict the distance dr:r+s for 
future times s. The prediction horizon is set as SH > 5.5 s 
so that the time of crash or near-crash SE is within the 
prediction interval. The sequence d1:r+s represents the input 
for all three risk measures. In this way, they have the same 
prerequisites and if the real trajectory violates the constant 
velocity assumption with an acceleration a(t) -I- Om/ s2 , 

all risk measures are equally impacted. Furthermore, we 
selected the parameter De of TICE and the Gaussian method 
and ro 1 as well as f3coll for the survival analysis such that for 
the maximal risk value of each Rmax > 0.5 holds true in the 
near-crash case. 

Fig. 5 shows the simulation view of a longitudinal crash 
and near-crash case starting from time t = -5.3s until the 
point of maximal criticalty lE = 0 s and plots of the risk 
measures RrrcE(t), Raau,, (t) and RsA(t) . Equally, Fig. 6 sum­
marizes the simulation results for an intersection scenario 
with the interval t = [-5.2s ,Os]. In both scenarios RsA(t) 
approaches 1 faster in the crash case and has a lower Rmax in 
the near-crash case. Compared to RrrcE(t), the performance 
of Raauss (t) is higher, but its robustness lower. The reason 
lies in the square-root dependency a = 1 / 2 in Raauss (t) as 
opposed to a = I , which makes its curve shape flatter at 
t < lE and steeper close to fE. Lastly, only for the longitudinal 
crash case Rrrc(t) can be calculated with the help of Eq. (4). 
It resembles RrrcE(t), but has slightly higher values because 
of the missing spatial uncertainty term from Eq. (6) . 

4.2. Statistical Analysis for Multiple Scenarios 

After demonstrating the general behavior of the risk 
measures, we now test them on a set of 42 scenarios. The 
set consists of 7 longitudinal and 7 intersection scenarios 
from GIDAS, which have not only a crash and near-crash 
case, but also a non-crash case. In the longitudinal example, 
we moved the path of one TP laterally so that dE = 12m 
is reached and in the intersection samples, we set constant 
velocities for both TP with the result that they pass the inter­
section liitl = 2s away from each other. In Fig. 7 the distance 
sequences d(t) are pictured for all 42 test instances, which 
ranges from 120m to Om. The pictured graphs d(t) should 
not be confused with the predicted distances dt:t+s , which 
are calculated at every time step t with the constant velocity 
model and which act as the input of the risk measures. 

When a risk measure crosses a threshold of R11i = 0.7, 
we define it as having detected a crash. An optimal risk 
measure has an early detection time td of the crash in the 
crash cases and has no false-positive detections F P in the 
near- and non-crash cases, which occurs if Rmax > R11, = 0.7 
takes effect. In Table 1, the averaged values of td and Rmax 
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Fig. 5. Comparison of risk measures for longitudinal 
scenario with simulation view and their respective 
curves. Top: Crash case. Bottom: Near-crash case. 

Crash - TICE 

0.8 - Gauss 
- SA 

0.6 
Cc: 

0.4 

0.2 

t = -5 .2s 0 -5 -4 -3 -2 -1 
t [s] 

Near-crash - TICE 

0.8 - Gauss 
- SA 

0.6 
Cc: 

0.4 

0.2 

t = -5.2s 0 
-5 -4 -3 -2 -1 

t [s] 

Fig. 6. Comparison of risk measures for intersection 
scenario. 
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0 

and the accumulated F P / N of each risk measure are listed 
for the 42 test samples. Furthermore, the variances <J1 and 
<JR show the spread of the results . As anticipated from the 
last Section 4.1, the survival analysis has the highest ltd I and 
the lowest R,,,ax and FP/ N. The gaussian method exhibits a 
larger ltc1 I than TICE, but in the near-crash case Rmax and 
F P / N is smaller in TTCE. In general, a crash is detected 
later and there are more false detections in intersection 
compared to longitudinal scenarios. That is because a real 
trajectory with a(t) -/- 0 m/ s2 results into a more parabolic 
curve of d (t) in intersection scenarios (see Fig. 7), which in 
turn causes higher errors in dr:r+s due to the constant velocity 
assumption. Finally, TTC is included as a standard method 
in the ADAS and AD community to measure collision risk. 
However, in the evaluated cases the performance of our 
developed three risk measures has proven to be better and 



Julian Eggert et al./lnternational Journal of Automotive Engineering Vol.9, No.3 (2018) pp.I 30-137 

Lon Inter 
120 120 

80 80 

]: ]: 
"<::I "<::I 

40 

0 -6 0_6 

Fig. 7. Variance in distance sequences of extended GIDAS 
dataset. Left: Longitudinal scenario. Right: 

Intersection scenario. 

they work in a broader range of scenarios, i.e. in intersection 
scenarios as well as in near- and non-crash cases. 2 

5. Discussion and Outlook 

In this work, we first extended the heuristic risk mea­
sures TIC and Gaussian method to be able to deal with 
temporal and spatial uncertainty and to fulfill the normaliza­
tion requirements for a general framework of collision ~sk 
prediction. For TIC, we additionally derived a 2D version 
called TICE. In a second step, we introduced a theoretically 
justified survival analysis which separates events into critical 
and escape events and calculates a risk measure by integrat­
ing the probability to survive over the predicted time. Each 
of the three methods precede a prediction step of the scene 
evolution with the output of predicted distances. 

In simulations of longitudinal and intersection scenarios, 
the survival analysis resulted in having the highest perfor­
mance in terms of early detection time in the crash cases 
as well as robustness with less false-positive detections in 
the near- and non-crash cases. The Gaussian method and 
TTCE have similar accuracy, which is reasonable since their 
underlying equations could be shown to be also very similar. 
Furthermore, both can be seen as an approximation of the 
survival analysis without history consideration. 

Procedures to validate ADAS and AD have to be de­
veloped beyond existing safety tests dri_vin~ millions . of 
miles 0 6). Since TIC only works for long1tudmal scenanos 
and has moderate performance, the survival analysis is more 
suitable. In future work, we want to develop a risk indicator 
quantifying the entire experienced risk for long test drives 
and arbitrary driving situations. 

Many motion planning methods act on TIC-based risk 
measures. Enhancements have been made in the FDM ( l4l, 
which uses gradient descent on a modified TICE with pre­
dicted trajectories from a constant velocity model. As an 
alternative, the survival analysis could be employed on mul­
tiple trajectories of arbitrary velocity profiles. The trajectory 
with the lowest risk is eventually chosen as the planned 
behavior. Such an approach that relies on sampling shows 
to be promising and needs to be examined. 

2 Remark: In Table I , TIC has a higher (meaning better) ltdl compared 
to TICE. This might seem unexpected, because we deri~ed TICE to be a 
generalization of TIC. However, the TICE parametnzat10n was optmuzed 
to work in all cases (crash, near-crash and non-crash), whereas the TIC 
implementation specializes on longitudinal crash cases only. 
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Table 1. 
Statistics of risk measures for extended GIDAS dataset. 

Crash Near-crash Non-crash 
Lon Inter Lon Inter Lon Inter 

td [s] -0.47 -0.45 - - -

TICE CJ1 [s] 0.05 0.01 - -

Rmax - - 0.78 0.75 0.62 0.63 
<:JR - - 0.02 0.08 0.01 0.08 
FP/ N - - 7/7 4/7 0/7 2/7 
fd [s] -1.36 -0.85 - - -

Gauss err [s] 0.75 0.39 - -

Rmax - - 0.84 0.82 0.53 0.57 
<:JR - - 0.03 0.11 0.03 0.16 
FP/ N - - 7/7 6/7 0/7 2/7 
ld [s] -1.46 -1.14 - - -

SA CJ1 [s] 0.48 0.23 - -

Rmax - - 0.63 0.63 0.35 0.42 
<:JR - - 0.04 0.12 0.02 0.1 5 
FP/ N - - 0/7 3/7 0/7 0/7 

TIC '" [s] -0.76 - - - -

err [s] 0.16 - -

At last, it is possible to improve the collision risk esti­
mation in general by separating the distance calculation into 
longitudinal and lateral components along the ego_ path ~nd 
weighting the components differently. From our s1mulat1on 
experiences, we expect that this will render the method ~ore 
sensitive yet further reducing the number of false positives 
in near-crash cases. 
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