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Abstract—In the context of real-world path planning appli-
cations for Unmanned Aerial Vehicles (UAVs), aspects such as
handling of multiple objectives (e.g., minimizing risk, path length,
travel time, energy consumption, or noise pollution), generation
of smooth trajectories in 3D space, and the ability to deal with
urban environments have to be taken into account jointly by an
optimization algorithm to provide practically feasible solutions.
Since the currently available methods do not allow for that,
in this paper, we propose a holistic approach for solving a
Multi-Objective Path Planning (MOPP) problem for UAVs in
a three-dimensional, large-scale urban environment. For the
tackled optimization problem, we propose an energy model and
a noise model for a UAV, following a smooth 3D path. We utilize
a path representation based on 3D Non-Uniform Rational B-
Splines (NURBS). As optimizers, we use a conventional version
of an Evolution Strategy (ES), two standard Multi-Objective
Evolutionary Algorithms (MOEAs) – NSGA2 and MO-CMA-
ES, and a gradient-based L-BFGS-B approach. To guide the
optimization, we propose hybrid versions of the mentioned
algorithms by applying an advanced initialization scheme that is
based on the exact bidirectional Dijkstra algorithm. We compare
the different algorithms with and without hybrid initialization in
a statistical analysis, which considers the number of function
evaluations and quality features of the obtained Pareto fronts
indicating convergence and diversity of the solutions. We evaluate
the methods on a realistic 3D urban path planning scenario
in New York City, based on real-world data exported from
OpenStreetMap. The examination’s results indicate that hybrid
initialization is the main factor for the efficient identification of
near-optimal solutions.

Index Terms—multi-objective optimization, three-dimensional,
path planning, hybrid algorithms, evolutionary algorithms, UAV,
unmanned aerial vehicle

I. INTRODUCTION

Applications of Unmanned Aerial Vehicles (UAVs) are be-
coming more and more widespread in our cities. Whereas early
use cases of UAVs mainly considered (nearly) unpopulated
environments, e.g., in agricultural crop monitoring [1] or
power line inspection [2] tasks, urban applications, where
UAVs operate in close proximity to humans, are not far
from becoming very common. Quite recently, the practical
purpose of UAVs has been extended by tasks such as pack-
age delivery [3] or sensor data acquisition in smart cities
[4]. In cities, autonomous flying agents encounter a more
complex environment than in open-terrain applications. Cities
are populated by thousands of people that could be seen

as individual autonomous agents themselves. Therefore, we
can see cities with UAV infrastructure as a huge multi-agent,
human-machine system. As always in such a system, humans
have to be safeguarded against potential threats emanated by
machines. More precisely, the negative impacts that UAVs
have on city residents must be minimized, such as the hazard
of air crashes that could harm people underneath or the noise
pollution generated by a propeller-driven aircraft. For example,
according to Torija et al. [5], noise is the main harm to avoid,
in order to gain social acceptance for UAVs operating in cities.

However, safety and noise protection can not be the single
objective. If so, an optimizer would probably find a global
optimum by ”flying around the city”, which would be a
highly inefficient solution considering travel time and energy
consumption. Therefore, minimizing energy costs, is another
legitimate objective when planning paths through the city.

In this work, we formulate a two-objective, constrained
optimization problem considering smooth, three-dimensional
paths. A path is optimized regarding 1) the noise immission
on the city residents and 2) the energy consumption needed
to follow the path. Additionally, by formulating several safety
constraints, we ensure that the UAVs 1) do not collide with
static obstacles and 2) keep a minimal flight height.

One way of solving an optimization problem with several
(often contradictory) objectives, is to weight and aggregate the
objectives and solve a single-objective problem. This would
require the user to choose appropriate weights for the objec-
tives without knowing how a different weighting influences the
solution. Another way to solve a Multi-Objective Optimization
(MOO) problem is by evaluating solutions independently with
respect to all E objectives. A solution belongs to the so-called
Pareto front in the E-dimensional objective space if no other
solution exists that is 1) better regarding one objective and 2)
not worse regarding the other objectives. The Pareto front is
the output of an MOO approach. The users can then select an
adequate solution by either choosing it manually according to
their needs or by applying a solution selection scheme [6].

It has been shown that Evolutionary Algorithms (EAs)
are well-suited to identify diversified Pareto fronts in MOO
problems, also for multimodal objective functions. On the
downside, EAs need high computational resources and can not
guarantee optimality. In a recent study [7], it was shown that
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the performance of EAs in two-dimensional MOPP problems
can be increased significantly by an advanced initialization
step. However, in order to obtain practically feasible paths
for aerial vehicles while making use of the available phys-
ical degrees of freedom, it is necessary to search paths in
the 3D space. In this work, we solve the MOPP problem
by planning smooth paths in the three-dimensional space.
Thereby, on the one hand, multiple new problems, like an
increased search space dimension, or a higher number of local
extrema, occurs. On the other hand, using three dimensions
gives us the opportunity to find more flexible solutions that
would not exist in 2D. Thus, we propose new formulations
of objective functions and constraints adapted to the 3D
environment. Moreover, we develop a preprocessing step that
is able to integrate those constraints during the advanced ini-
tialization in three dimensions. This initialization step, which
utilizes a bidirectional Dijkstra [8] approach, constitutes the
first part of our hybrid approach. The second part contains
the main optimization step. As main optimizers, we use a
basic Evolution Strategy (ES) [7], the state-of-the-art multi-
objective Non-dominated Sorting Genetic Algorithm (NSGA2)
[9] as well as the state-of-the-art Multi-Objective Covariance
Matrix Adaptation Evolution Strategy (MO-CMA-ES) [10].
For the sake of completeness, we also include the gradient-
based Limited-memory Broyden-Fletcher-Goldfarb-Shanno al-
gorithm with Bounds (L-BFGS-B) [11] in our comparison.

We evaluate the performances of the different approaches
on the formulated MOPP problem on a large-scale, real-world,
three-dimensional UAV path planning scenario in the city of
New York, USA. Moreover, we show that the approaches
with hybridization work more efficiently than those without
advanced initialization. To the best of our knowledge, we
are the first to conduct examinations on the 3D, Pareto-based
MOPP problem regarding large-scale urban scenarios.

The remainder of this paper is structured as follows. In
Section II, we give an overview of the related work in MOPP
problems, categorize different approaches and show how they
contrast with our approach. A short introduction to MOO and
Non-Uniform Rational B-Splines (NURBS) follows in Section
III. After that, we define the problem, objectives, and con-
straints as well as the advanced initialization scheme in Section
IV. The validation of the initialization scheme for different
optimization approaches follows in Section V. Finally, we
conclude the paper and give an outlook to interesting future
investigations in Section VI.

II. RELATED WORK

Several different path planning methods have been estab-
lished over the last years [12] that can, looking at utilized opti-
mization techniques, be roughly distinguished into 1) classical
optimization formulations like Mixed Integer Linear Program-
ming (MILP) approaches [13], 2) sampling-based exploration
like Rapidly-exploring Random Tree (RRT) approaches [14],
3) graph-based search like A* or Dijkstra approaches [15],
or 4) meta-heuristic optimization, like Particle Swarm Opti-
mization (PSO) [16], Ant-Colony Optimization (ACO) [4], or

evolutionary optimization [17] approaches. From other view-
points, path planning problems can be distinguished regarding
the UAV’s environment (rough terrain vs. urban), formulated
objectives and constraints, the strategy to handle multiple
objectives, the path representation, or the spatial dimension
(2D vs. 3D). In Table I, a classification into the different
categories is shown. For the purpose of UAV flights over rough
terrain, Nikolos et al. [18] optimize a 3D B-spline path with
respect to four optimization goals that are: solid boundary
collision avoidance, path length minimization, guaranteeing
safety distance from solid boundaries, and satisfying a mini-
mum curvature radius. However, they aggregate the objectives
and thus only perform a single-objective optimization, loosing
valuable information about the particular, objective-related
characteristics of a path.

Sadallah et al. [19] propose an algorithm for optimizing
paths regarding travel time and obstacle avoidance. They
generate a cost distribution map by applying the Fast Marching
Method (FMM) on an obstacle map two times. A path is
then determined on the calculated map by a gradient descent.
Different Pareto solutions are achieved by varying the satura-
tion weight for the input map. However, changing weights
might in general not always lead to solely non-dominated
solutions in the objective space, as shown in a recent study
[7]. Moreover, the path is only two-dimensional. Especially in
urban applications, adding a z-component to the paths gives
the planner more flexibility in a highly complex and occluded
environment.

Ghambari et al. [20] do Pareto-based multi-objective 3D
path planning in an urban setting minimizing energy and
maximizing the distance to obstacles. In their advanced energy
model, they consider the drone to consume more energy
in higher flight altitudes due to the decreasing atmospheric
density. However, the applied path representation is cell-based,
which can lead to sharp turns and a zigzag-shaped appearance
of the path, again increasing energy inefficiency.

In our work, we want to resolve the described drawbacks of
the state-of-the-art approaches by utilizing three-dimensional,
generalized B-Spline curves as representation in a Pareto-
based, multi-objective, evolutionary optimization that is guided
by an exact preprocessing step. As far as we know, we are the
first to approach this smooth 3D MOPP problem in large-scale
urban scenarios.

III. FUNDAMENTALS

1) Multi-objective Optimization: MOO generally aims to
find D-dimensional solutions z =

[
z1 . . . zD

]T
that mini-

mize or maximize E objective functions

fe(z), e = 1, . . . , E, (1)

that are subject to F inequality constraints

gf (z) ≥ 0, f = 1, . . . , F, (2)

as well as to G equality constraints

hg(z) = 0, g = 1, . . . , G. (3)



TABLE I: Classification of related work in the field of MOPP
problems for UAVs.

Optimization
algorithm

EA [4], [17], [18], [20]–[25]
ACO [4]
PSO [16], [22]

MILP [13]
FFM [19]

Gradient descent [19]
Dijkstra [15]

CFO [26]
RRT [14]

UAV
environment

Rough terrain [15]–[18], [21], [22]
Urban [4], [19], [23], [25], [26]

Objectives
& constraints

Path length [16]–[18], [20]–[26]
Safety, Risk [4], [14], [16]–[21], [23]–[25]
Energy cost [4], [13], [20], [21], [24]
Travel time [4], [13], [14], [19]

Turning angle [16], [18], [22], [26]
Flight height [15]–[17], [21], [22], [26]

Multi-objective
handling

Aggregate &
weight

[4], [14], [16]–[18], [21],
[23], [26]

Pareto-based [13], [19], [20], [22], [24], [25]

Path
representation

Grid-based [4], [14], [19], [20], [24]
B-Spline [15], [17], [18]

Line segments [13], [16], [21]–[23], [25], [26]

Spatial
dimension

2D [4], [14], [19], [23]

3D [15]–[18], [26]
[20]–[22], [24]

Additionally, each element of z can be limited by a lower and
an upper bound

z
(L)
d ≤ zd ≤ z

(U)
d , d = 1, . . . , D. (4)

All solutions of an optimization problem constitute the search
space S. A solution is called feasible if it satisfies every
constraint and variable bound. The feasible region comprises
all feasible solutions. Objective functions map a point in the
search space S into the objective space O. A solution that is
optimal regarding all E objectives is called utopia point zUtopia.
In practice, it does not exist. This is the reason to introduce the
concept of Pareto-dominance. A solution z1 Pareto-dominates
another solution z2 (z1 ≼ z2) if z1 is not worse than z2 for
all objectives and z1 is strictly better than z2 in at least one
objective. The set of non-dominated solutions contains every
solution z that is not Pareto-dominated by another solution.
The set that results from mapping the non-dominated set into
the objective space is called the Pareto set.

2) Non-Uniform Rational B-Splines (NURBS): A NURBS
curve of order p+ 1 is defined by Piegl et al. [27] as

C(u) =

(
np−1∑
i=0

Ni,p(u)wiPi

)(
np−1∑
i=0

Ni,p(u)wi

)−1

, (5)

where
• np is the number of control points,
• p is the degree of the basis function Ni,p,
• Pi =

[
xi yi zi

]T
is the ith control point (assuming a

3D curve) and
• wi is its weight.

The basis functions Ni,p are defined with respect to the
parameter u and a fixed knot vector

U =
[
u0 . . . um

]T
,

containing m+ 1 knots, whereas m = np + p. The De-Boor-
Cox formulas [28], [29], [30] allow to calculate the basis
functions in a recursion.

IV. 3D MULTI-OBJECTIVE PATH PLANNING

We begin by defining the tackled optimization problem in
Section IV-A. The definition of the optimization vector z,
thus the representation of the path, is introduced in Section
IV-B. We formulate the utilized energy consumption and noise
pollution model, which serve as objective functions, in Section
IV-C, before introducing the developed safety constraints in
Section IV-D. Finally, we emphasize characteristics of the
developed advanced initialization in Section IV-E.

A. Problem Definition

We tackle a path planning problem in the cubic, three-
dimensional space, which is given by D = [xmin, xmax] ×
[ymin, ymax]× [zmin, zmax]. We assume a start position vector
xs = C(a) ∈ D and a goal position vector xg = C(b) ∈ D.
The aim of the considered MOPP problem is to find parametric
curves C = {C(u) : u ∈ [a, b]}, so that E objectives
{f1, . . . , fE} are minimized. The defined vector of optimiza-
tion variables z and the objectives are introduced below.

B. Representation

Like in a recent study [7], we use NURBS curves as a path
representation. Here, we adapt them to represent 3D paths by
adding a third component to the control point vectors.

Thus, the vector of optimization variables is given by

z =
[
x1 y1 z1 . . . xnp−1

ynp−1
znp−1

]T
. (6)

In all experiments, we choose the hyperparameter np = 20
(number of control points) empirically to fit to the scenario
size.

With the basis function degree p = 2, the knot vector

U =
[
0 0 . . . 1

np−pk . . . 1 1
]T

,

where k = 0, . . . , np − p, is defined such that the curve is
clamped to the first and last control point. Note that the first
control point xs and the last control point xg are given in the
problem definition and are therefore not optimized.

Moreover, during the optimization, the control point posi-
tions are bounded by the size of the design domain xmin ≤
xd ≤ xmax, ymin ≤ yd ≤ ymax and zmin ≤ zd ≤ zmax.

C. Objectives

In the following, we introduce the modelling of two objec-
tives for our 3D MOPP formulation.



1) Noise: Similar to a recent study [7], this objective is
designed to minimize noise pollution in the city. Torija et al.
[5] show that people perceive the same level of drone noise
less loud and annoying in environments with higher road traffic
noise. Therefore, paths that go over urban streets are assumed
to produce less additional noise pollution to the residents than
paths that go over residential or recreation areas. In a recent
study [7], a two-dimensional noise grid map Fn : N2 → R
was discretized into xres×yres sized cells. Each cell contained
a noise value that represented the noise pollution cost for a
drone passing this specific cell. We expand the 2D grid map
by a z-component with discretization zres, yielding a three-
dimensional grid array F̂n : N3 → R. An exemplary section
through the noise map at height zmin can be seen in Fig. 3d.
In the following, we describe the way to calculate F̂n from
Fn. To account for residents perceiving more noise by low
flying drones than by high flying drones, we scale noise values
dependent on the drone’s flight height, following

F̂n(∆h) = min (Fmax,max (0, f(∆h))) , with (7)

f(∆h) =
−Fmax

z2max

(∆h)2sgn(∆h) + Fmax

with zmax being the maximum flight height, ∆h = Cz(u) −
zmin being the difference between current flight height and
minimum flight height and Fmax = Fn(Cx(u), Cy(u)) being
the 2D noise map’s value at the current xy-position of the
path. Thus, the noise values have their maximum at minimum
flight height and decrease quadratically with increasing flight
height to zero at the maximum flight height.

Finally, the noise objective is determined by calculating the
line integral

fn(z) =

∫
C
F̂n(C(u))ds =

∫ b

a

F̂n(C(u))|C′(u)|du (8)

along the path C over the three-dimensional grid array F̂n.
2) Energy: The quadcopter flies along a three-dimensional

path that can be partitioned into horizontal and vertical com-
ponents. For our energy consumption model, we assume the
drone’s speed for vertical components to be much smaller than
the constant cruise speed vc for the horizontal components,
which we set to vc = 14m/s. Hence, time and energy for
flying along a vertical segment of length Lz are considered
higher than for flying along a horizontal segment of length
Lxy of the same length. In vertical descending maneuvers,
the downwash effect has to be considered. Consequently, we
assume the vertical descending speed vd = 1m/s to be smaller
than the vertical climbing speed vc = 2m/s, thus consuming
more time and energy. To conclude, in our energy model, we
consider the length of the flown path and its partitioning into
horizontal parts Lxy , as well as upward segments Lz,↑ and
downward segments Lz,↓, leading to the energy cost function

fe(z) =
1

2
mv2cruise + ce (Lxy + 10Lz,↑ + 15Lz,↓) , (9)

containing the mass m of a drone, which we set to m = 1.2kg.
Based on the energy consumption models by Reid [31], we

determined the parameter ce to be ce = 9.12J/m, depending
on the constant of gravitation g = 9.81m/s2, the density of
air ρair = 1.225kg/m3, the drone mass m, and some other
drone parameters that we exemplary set to cd = 0.6 (drag
coefficient), Ad = 0.1m2 (drag area), nr = 4 (number of
rotors) and rr = 0.1m (radius of a rotor).

D. Constraints

To be able to consider constraints gf (z) during the opti-
mization, we add them as so-called soft constraints to one of
the objective functions (in our case to the energy cost function
fe(z)), yielding the constrained energy cost function

fe,C(z) = fe(z) + ξ
√

H(−gf (z))gf (z)2, (10)

with H being the Heaviside function and ξ being an arbitrary
large number, ensuring that f

e,C
(z) ≫ fe(z) when the con-

straint is violated.
1) Minimum Flight Height: Except for the start and landing

sequence, the quadcopter is supposed to fly above a minimum
flight height zmin. We ensure this by the inequality constraint

g1(z) =

np−1∑
i=1

(zi − zmin) ≥ 0, (11)

with zi being the z-coordinate of the ith control point.
2) Static Obstacle Collision Avoidance: For safe maneuvers

in cities, the drone’s path must either overfly or circuit static
obstacles like buildings. We introduce a twofold collision
avoidance constraint g2(z) = goverfly(z)+gcircuit(z). It allows
the optimizer to make use of both actions (overflying and
circuiting) to adapt paths that lead through obstacles.

• To allow overflying, we utilize the city’s height map Fh :
N2 → R. Each cell of this grid map is assigned the height
of the tallest building located in the respective cell. The
overfly inequality constraint then appears to

goverfly(z) = Cz(u)− Fh(Cx(u), Cy(u)) ≥ 0, (12)

punishing all dangerous waypoints Cdanger(u) of the
path C(u) that lie beneath the height of the respective
height map entry Fh(Cx(u), Cy(u)). Additionally, we
save all dangerous waypoints for the next calculation.

• A better choice to avoid tall buildings during path plan-
ning might be to fly around instead of over the obstacle.
So far, we have only created a drift for the optimizer to
fly over buildings. For the drift to fly around buildings,
we introduce an obstacle grid map Fo : N2 → R. The
obstacle grid map is a discrete potential field with zero
potential at free cells and a non-zero potential at occupied
areas. The potential depends on the distance to the nearest
free space and is expressed by the number of separating
cells. With this, we have

gcircuit(z) = −Fo(Cdanger,x, Cdanger,y) ≥ 0, (13)

as an inequality constraint that creates a drift of dangerous
waypoints along the horizontal plane in the direction
towards free space areas.



E. Advanced Initialization

1) Extension to 3D: The contribution of this paper is to
show that the hybrid approach for 2D Multi-Objective (MO)
path planning [7] can also be applied to the 3D case. The main
idea of the hybrid approach is to find good initial solutions
for each objective in a preprocessing step by the use of the
exact, graph-based (but not MO-suitable) bidirectional Dijkstra
solver. The good initial solutions are then used as start vectors
in a MO-suitable algorithm. In this way, a more diversified
Pareto front with higher Hypervolume can be obtained faster.
However, in the 2D hybrid approach [7] the calculation of
all objectives was based on grid maps. By this means, the
preprocessing could be done by the following steps. First the
grid was converted to a graph (S1), then the initial solutions
were calculated for every objective individually (S2A) and
finally for different weighted sums of the objectives (S2B) by
weighting, aggregating and normalizing the grid maps.

The energy objective (Eqn. (9)) in this paper is not grid-
based and therefore not suited for the described steps (S1) and
(S2B). Thus, for the graph calculation of the energy objective,
instead of step (S1), we generate an initial 3D graph that is
consistent with the energy model (9) used in this paper. An
exemplary graph section is visualized in Fig. 1. Furthermore,
step (S2B) is omitted in this paper.

Note that we can integrate static obstacles and no-fly zones
in the preprocessing step by removing nodes from the grid
graph that belong to cells with Fo > 0 in the obstacle grid
map.

x

y

z

SQRT(2)

1

15 SQRT(2)

15

10 SQRT(2)

10

Fig. 1: According to the energy model (9), the costs for travelling
along an edge in the energy graph depends on the movement direction
of the agent.

2) Challenges: When working with graph-based shortest
path algorithms, their performance depends on the number of
nodes and edges in the graph. As it can be seen from Fig. 2,
the transition from 2D to 3D graphs comes at the cost of a
massively increasing number of edges. Thus, it is not practical
to use the same resolution xres, yres and zres for the grid graph
in the preprocessing step as it is used in the main optimization.
Instead, we rescale the grid graph to a resolution x̃res, ỹres and
z̃res, respectively. Rescaling is crucial as 1) the preprocessing
is still too slow or consumes too much computing power
if the resolution is too fine, and 2) the found solutions are
too poor to serve as adequate initial solutions for the main
optimization if the resolution is too coarse. We empirically

found
[
x̃res ỹres z̃res

]
=
[
15 15 10

]
to achieve a good

compromise.
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Fig. 2: Comparison of the number of edges in a 2D (8-neighborhood)
and a 3D (18-neighborhood) square grid graph with z = 10 layers.

V. EVALUATION

The urban scenario and the solvers that are used for the
evaluation are introduced in Section V-A and V-B, respec-
tively. After showing the parameters in Section V-C and the
utilized metrics for evaluation in Section V-D, we present the
results of the experiments in Section V-E.

A. Scenario

The evaluation is based on OpenStreetMap (OSM) [32] data
of a map section from New York City (NYC) that is visualized
in Fig. 3a. Visualizations of the derived height grid map Fh,
the obstacle grid map Fo, and a cross section through the noise
grid array F̂n at height z = zmin can be seen in Fig. 3b, Fig.
3c, and Fig. 3d, respectively.
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(b) Height grid map
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(d) Noise grid map

Fig. 3: Used (grid) maps of the NYC scenario. In (a), the lines
indicate the start and end points of routes for the evaluation. For
the scenario indicated by the red line, 3D plots of the paths are given
further below. In (b-d), grid cells with lighter colors indicate a higher
height/obstacle collision severity/noise annoyance value.



B. Solvers

To solve the 3D MOPP, we evaluate different optimiz-
ers. Next to a straightforward implementation of an Evolu-
tion Strategy (ES) [7], we choose two state-of-the-art multi-
objective, evolutionary algorithms, 1) the NSGA2 (Non-
dominated Sorting Genetic Algorithm) [9] as well as 2) the
MO-CMA-ES (Multi-Objective Covariance Matrix Adaptation
Evolution Strategy) [10].

Furthermore, we also solve the problem with the gradient-
based optimizer L-BFGS-B [11], a variant of the widely-used
L-BFGS algorithm [33], which is capable of incorporating
variable bounds. Please note that the L-BFGS-B algorithm
is not capable of handling more than one objective at once.
Therefore, to maintain comparability, we use a weighted
aggregation approach in order to calculate a Pareto front.
We calculate the necessary weights according to an Adaptive
Weight Determination Scheme (AWDS) [34].

To show the advantage of the hybrid approach, each solver
is tested both with and without the advanced initialization step.
In the following, the hybrid algorithms are denoted with the
H. prefix.

C. Parameters

In Table II, we give an overview of the most important
parameters for each approach. Parameters that were not intro-
duced by us are set to standard values from literature [9], [10].
We compare the solvers for 30 different routes in the described

TABLE II: Setup of the optimization methods used in the paper.

Parameter Symbol Value

General

map dimensions [xmin xmax] [0 2280]
[ymin ymax] [0 1500]

air space limits [zmin zmax] [50 300]
discretization step

[
xres yres zres

] [
4 4 10

]
# of control points np 20

deg. (basis function) p 2
Method

CMA-ES
init. step size σ 1
# of parents µ 100

# of offspring λ 100

NSGA2

crowding degree ηcrossover 20
crossover prob. pcrossover 0.9

crowding degree ηmutation 20
mutation prob. pmutation 1/D
population size N 100

ES
init. step size [σx,0 σy,0 σw,0]

[
3 3 5

]
# of parents µ 10

# of offspring λ 100

urban scenario. We choose the start and end positions xs and
xg of the routes with the same approach like in a recent study
[7], to obtain a representative set that is evenly distributed in
the scenario space as well as in route distances. The derived
start and end positions are visualized as straight lines in Fig.
3a.

D. Metrics

To compare the optimizers, we use different metrics, which
are shortly described here. The interested reader is referred to
the detailed explanations and formulas in another study [7].

• The Hypervolume (HV) is the area in the objective space
enclosed by all non-dominated solutions and a defined
reference point, which we set to pHV,ref =

[
10 10

]T
.

To be able to compare solvers across different scenarios,
we normalize the achieved HV of all solvers in one
scenario to the best and the worst HV in this scenario.

• The lower the generational distance (GD) metric of a
Pareto front, the closer are the solutions of the examined
front to a reference front. Thus, GD is a metric for the
convergence of a Pareto front.

• The lower the inverted Generational Distance (IGD)
metric of a Pareto front, the closer are the solutions of
a reference front to the examined front. Thus, IGD is a
metric for both, convergence and diversity of a Pareto
front.

Due to the lack of optimal Pareto fronts, in every scenario we
choose the front with the highest HV as the reference front to
calculate the GD and IGD metrics.

E. Results

During the optimization using evolutionary and gradient-
based solvers, the cost function evaluations need the most
computational resources in each iteration. Accordingly, for a
fair basis of comparison, we limit the number of objective
function evaluations to nfun,eval = 40000 for all optimizers,
which corresponds to an evolution of 400 generations for the
evolutionary approaches.

The obtained results can be seen in Table III. We explicitly
show the optimizer’s normalized HV, GD, and IGD metric
after 1000 and 40000 function evaluations, respectively. Addi-
tionally, Fig. 4 gives a more detailed look on the development
of the normalized HV, which is averaged over all runs, in
dependence on the increasing number of function evaluations.
The results clearly indicate the weakness of the standard BFGS
approach, resulting in a final normalized HV of 31%. The
reason for that could be the multimodal character of the
objective functions. The L-BFGS-B solver pushes the paths
into local optima and then terminates. By the use of the
advanced initialization step, the performance of the BFGS
algorithm can be increased significantly1 by 129%.

The same effect can be observed for the other optimizers:
by utilizing the hybrid approach, the solvers’ achieved final
normalized HVs can be increased by 41% (CMA-ES), 26%
(NSGA2), and 17% (ES), respectively. The overall best results
can be achieved by the H. NSGA2 algorithm. Having a look at
the development of its normalized HV in Fig. 4 (orange curve)
in comparison to NSGA2 without advanced initialization (red
curve), we can observe that the hybridization has the biggest
impact in the beginning of the optimization, leading to a huge
difference in the initial normalized HV of both solvers. In
order to further examine characteristics of the solvers after
only a few function evaluations, we show the boxplot for

1Wilcoxon two-tailed rank-sum test: n = 30, P < 0.05,
MNorm.HV,BFGS = 0%, MNorm.HV,H.BFGS = 75%, UBFGS,H.BFGS =
822.



the normalized HV after 1000 function evaluations in Fig. 5.
Regarding the normalized HV, the NSGA2 and H. NSGA2
algorithms differ significantly2.

All hybrid evolutionary approaches show the same bene-
ficial characteristic regarding the GD metric. By looking in
Table III, we can observe that after 1000 evaluations the
hybrid evolutionary optimizers achieve a smaller and there-
fore better generational distance measure than their standard
counterparts. Again, the best performing algorithm is H.
NSGA2 that performs significantly3 better than the standard
NSGA2 algorithm. Finally, we want to have a look at the
performances regarding the IGD characteristic. From Table III,
we can observe that after 1000 evaluations the H. ES approach
achieves the best mean IGD value, differing significantly4 from
the standard ES.

We look at the paths that were calculated after 1000 function
evaluations by each optimizer for the scenario that is depicted
by the red line in Fig. 3a. In Fig. 6, we can see the paths with
the minimal noise values. Whereas the non-hybrid optimizers
(blue, red, brown and gray paths) only find solutions at lower
altitude, the hybrid optimizers found paths (green, orange,
violet, and yellow) with lower noise values at higher flight
altitudes. Similarly, the hybrid approaches also benefit from
the preprocessing step regarding the calculated paths that
achieved the lowest energy consumption values. They are
visualized in Fig. 7. It can be seen that the paths that were
generated by the standard optimizers still lead through static
obstacles, whereas the paths that were generated by the hybrid
algorithms are already nearly collision-free.

TABLE III: Mean results for the evaluation on 30 scenarios.

Norm.HV GD (×102) IGD (×102)
Evaluations 1000 40000 1000 40000 1000 40000
H. CMA-ES 75% 96% 1.4 1.6 0.7 1.0

CMA-ES 23% 68% 4.2 2.5 4.3 2.7
H. NSGA2 75% 98% 0.3 0.3 2.5 1.9

NSGA2 37% 78% 1.0 0.6 5.6 3.9
H. BFGS 58% 71% 1.3 3.0 3.5 3.8

BFGS 13% 31% 0.6 2.0 6.5 5.9
H. ES 80% 90% 0.9 1.3 0.2 1.1

ES 36% 77% 4.1 1.3 4.3 2.3

VI. CONCLUSION & OUTLOOK

In this work, we formulated a three-dimensional Multi-
Objective Path Planning (MOPP) problem in an urban scenario
setting. Paths were optimized regarding two objectives, 1) a
height-dependent noise cost function, and 2) an energy cost
model that includes safety constraints for adherence to a
minimal flight height and static obstacle collision avoidance.
We introduced an advanced preprocessing scheme that is able
to calculate good initial paths in the three-dimensional space.

2Wilcoxon two-tailed rank-sum test: n = 30, P < 0.05,
MNorm.HV,NSGA2 = 37%, MNorm.HV,H.NSGA2 = 95%,
UNSGA2,H.NSGA2 = 843.

3Wilcoxon two-tailed rank-sum test: n = 30, P < 0.05, MGD,NSGA2 =
0.009, MGD,H.NSGA2 = 0.003, UNSGA2,H.NSGA2 = 155.

4Wilcoxon two-tailed rank-sum test: n = 30, P < 0.05, MIGD,ES =
0.047, MIGD,H.ES = 0.0, UES,H.ES = 7.5.
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Fig. 4: For each scenario, the optimizers’ achieved hypervolumes
are normalized to the best and worst achieved hypervolumes. The
normalized hypervolumes are averaged over all 30 scenarios and
shown dependent on the number of cost function evaluations.
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Fig. 5: Boxplots for the normalized HV after 1000 iterations for 8
optimizers on 30 scenarios. One box extends from the lower to the
upper quartile of the data. The black line indicates the median. The
whiskers show the range of the data.

Fig. 6: Examples of the best paths calculated by the optimizers for
the minimum noise value in one scenario.

The initialization scheme was adapted to several state-of-the-
art evolutionary and gradient-based optimizers, called hybrid
solvers. Based on several instances of a real-world scenario
for Unmanned Aerial Vehicles (UAVs) in New York City,
the hybrid solvers were benchmarked against their non-hybrid
versions. The statistical results of the comparison revealed
the advantages of the hybrid approaches over the standard
approaches for all examined metrics. The hybrid approaches
allow the user to find better non-dominated solutions within



Fig. 7: Examples of the best paths calculated by the optimizers for
the minimum energy value in one scenario.

less function evaluations. This is a significant advantage in
real-world applications, where usually the computational re-
sources are limited.

In future studies, we would like to extend the formulated 3D
MOPP to a Multi-objective Multiple Path Planning problem
(MOMPP) that is able to plan the paths for multiple interacting
agents concurrently, avoiding collisions between them.
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