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Abstract: Among advanced therapy medicinal products, tissue-engineered products have the poten-
tial to address the current critical shortage of donor organs and provide future alternative options in
organ replacement therapy. The clinically available tissue-engineered products comprise bradytrophic
tissue such as skin, cornea, and cartilage. A sufficient macro- and microvascular network to support
the viability and function of effector cells has been identified as one of the main challenges in devel-
oping bioartificial parenchymal tissue. Three-dimensional bioprinting is an emerging technology that
might overcome this challenge by precise spatial bioink deposition for the generation of a predefined
architecture. Bioinks are printing substrates that may contain cells, matrix compounds, and signaling
molecules within support materials such as hydrogels. Bioinks can provide cues to promote vascular-
ization, including proangiogenic signaling molecules and cocultured cells. Both of these strategies are
reported to enhance vascularization. We review pre-, intra-, and postprinting strategies such as bioink
composition, bioprinting platforms, and material deposition strategies for building vascularized
tissue. In addition, bioconvergence approaches such as computer simulation and artificial intelligence
can support current experimental designs. Imaging-derived vascular trees can serve as blueprints.
While acknowledging that a lack of structured evidence inhibits further meta-analysis, this review
discusses an end-to-end process for the fabrication of vascularized, parenchymal tissue.

Keywords: tissue engineering; regenerative medicine; bioprinting; vascularization; biomaterial;
bioink; additive manufacturing; bioartificial organs

1. Introduction

Fabrication biotechnology and tissue-engineering research have opened a future per-
spective for bioartificial organ fabrication. A critical global shortage of donor organs
requires the development of alternative treatment strategies [1]. Even though current
research provides opportunities to extend the donation pool to post mortem donation after
unexpected circulatory death by extracorporeal membrane oxygenation (ECMO), there is
still a supply and demand mismatch [2,3]. Tissue engineering envisions potentially replac-
ing or rather supplementing the current gold-standard allograft tissue transplantation and
manufacturing logistic templates for cell therapy [1,4]. To date, however, there are no autho-
rized tissue-engineered products (TEPs) of parenchymal bioartificial organs or parenchymal
tissue [5–7]. Other TEPs have already been authorized as advanced therapy medicinal
products (ATMPs) by the European Medicines Agency (EMA) and the United States Food
and Drug Administration (FDA) [5–7]. The small number of authorized TEPs includes
products such as keratinocyte-containing scaffold sheets for traumatic burns, chondrocyte
spheroids for cartilage defect regeneration, and autologous stem cells for corneal defect
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regeneration [5–12]. In contrast to such bioengineered bradytrophic and almost completely
avascular bioartificial tissues, the scaled generation of solid parenchymal tissue with long-
term viability and function still represents a major challenge in tissue engineering [4,13–17].
Based on existing study evidence, it is considered that constructs with dimensions of more
than 100–200 µm need an endogenous vascular perfusion system to provide oxygen and nu-
trient supply and discard metabolic byproducts [18–21]. In parenchymal organ replacement
therapy, all constructs need to be scaled to dimensions that need endogenous perfusion
systems to achieve the necessary number of cells [15,18,21,22]. Thus, a major limitation
central to any cell therapy approach is the establishment of perfusing vascularization in a
TEP that supports cell survival, integration, and function [4,7,13,15,22,23]. At this moment,
the objective is twofold: (i) acceleration of the process towards an anastomosis between
bioartificial graft and host vasculature and (ii) the establishment of sufficient intragraft
vascular density. The extensive vascularization of bioartificial tissue is a prerequisite for
the long-term function of most transplanted cells [23]. Technological advancements such as
three-dimensional (3D) bioprinting have led to intensified research interest in this interdis-
ciplinary field [7]. Bioprinting enables the reproducible creation of 3D hierarchical tissues
by the precise deposition of bioinks [4,13,14,21,22,24]. Bioinks are comprised of living cells,
matrix compounds, signaling molecules, and logistic support materials [4,24] (Figure 1a).
This broad definition includes simple monomaterial encapsulation systems for a single
cell type but can extend to complex formulations of various materials combined with a
variety of cell types and signaling molecules in a multibioink construct. The functionality
of the desired bioartificial tissue can rely on one or more cell types, hereinafter called
effector cells. Most commonly, biomaterials utilized as a support material in bioinks are
hydrogels [21,24] (Figure 1a).
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Figure 1. Overview of bioink elements and common bioprinting platforms. (a) Bioink composition.
The main elements of bioinks are cells, support materials—mostly hydrogels—signaling molecules,
and matrix compounds. (b) Jet-based drop-on-demand bioprinting enables droplet-based bioink
deposition. Droplet formation and deposition can be induced, for example, thermally induced air
pressure or piezoelectric pressure. (c) Microextrusion bioprinting is based on bioink filament extrusion
to fabricate constructs in a layer-by-layer fashion. Bioink extrusion is facilitated by pneumatic or
mechanical forces (piston or screw system). (d) Laser-assisted bioprinting enables bioink deposition
on a receiving substrate layer by pulsed-laser-induced forward transfer (arrow) via an energy-
absorbing layer.

This review outlines bioink and bioprinting strategies for vascularization in an end-to-
end manufacturing process. We will highlight concepts for the fabrication and integration
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of macro- and microvascularization. The intention is to allocate concepts to the respective
stages—before, during, and after bioprinting—in the tissue fabrication process. Additional
adjuvant processes will be discussed in this context. Moreover, we attempt to consolidate
evidence from various experimental approaches by providing an integrated concept for
bioprinting of vascularized parenchymal tissue.

1.1. Highlights

A broad overview of pre-, intra- and postprinting strategies for the biofabrication
of vascularized parenchymal tissues in an end-to-end process based on state-of-the-art
study evidence.

A review of bioink development strategies and material deposition strategies to
bioprint vascularized tissue.

A discussion of an exemplary manufacturing process model for a fabrication and
decision model for bioink development for future tissue-engineered products.

1.2. Outlook

The bioprinting of vascularized tissue is challenged especially with regards to pro-
ducing small vascular networks and capillary-like structures. The integration of signaling
molecules promoting vasculogenesis and angiogenesis, as well as cellular self-assembly
strategies, might address limitations.

The combination of different material deposition techniques in different stages of
the bioprinting process might facilitate the production of smaller, more natural vascular
sturctures in biofabricated tissues.

Computer-aided tissue engineering by means of vascular tree modeling, in silico
experiments, and flow simulation might help avoid trial-and-error approaches in data-
driven bioconvergence research.

The combination of different material deposition techniques in different stages of
the bioprinting process might facilitate the production of smaller, more natural vascular
sturctures in biofabricated tissues.

2. Methodology

A literature survey was conducted in the PubMed/MEDLINE database to identify
pertinent publications about bioink and bioprinting strategies for the vascularization of
bioartificial tissue. ((bioprinting[Title/Abstract]) OR (3d-printing[Title/Abstract]) OR
(bioink*[Title/Abstract]) AND ((vascular*[Title/Abstract]) OR (vessel[Title/Abstract])) was
used as a search term. Study evidence published in the last 5 years and English language
articles were focused. The last database access was carried out 26 June 2022. Based on
these initially identified studies, extensive cross-referencing was performed. High-impact
journals relevant to the field of research were searched to find additional study evidence.

3. Bioprinting Technology: A Brief Overview

Bioprinting is a broad term to describe the primarily layer-by-layer deposition of
biocompatible or biodegradable materials together with integrated cells and therapy
agents [13,23]. Although not the focus of this review, a brief introduction to state-of-
the-art bioprinting technologies is provided to aid the understanding of specific bioink
strategies and their relation to vascularization processes (Figure 1b–d). Each bioprinting
modality has distinct requirements for the materials to be used [13,14]. Therefore, bioink
and manufacturing techniques need to be attuned to each other. Primarily, bioprinting
methods include jet-based drop-on-demand bioprinting, microextrusion bioprinting, and
laser-assisted bioprinting techniques (Figure 1b–d).

3.1. Jet-Based Drop-on-Demand Bioprinting Inspired by Inkjet Printing

Inkjet printers are commonly used in a nonbiological context to deposit ink in a 2D
fashion on paper. The first inkjet bioprinters were thus modified commercial inkjet printers
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with bioink replacing standard ink in the print cartridges [25]. An additional z-axis was
introduced by a vertically adjustable print bed [25]. The specific printing features of this
technology are similar to conventional 2D inkjet printing. Low-viscosity bioinks can be
deposited at high speed and with high precision [13,14,23]. The diameter of the ink droplets
ranges from 10 to 150 µm [1,20]. Droplet ejection is controlled via thermal or acoustic
(piezoelectric) forces [25] (Figure 1b). Thus, bioink formulations for inkjet bioprinting
must possess very low viscosities (<10 mPa s [21]) and require immediate, extensive layer-
by-layer crosslinking to form 3D structures [15]. This requirement generally limits the
spectrum of materials eligible for this technology [13]. The requirement of low viscosity
also limits the maximum cell density in bioinks for inkjet printing [13]. However, the
potential of droplet-based jetting can be significantly improved by the use of microvalves.
The ability to actively open and close the valve nozzle means that bioinks can be subjected
to a specific pneumatic pressure. In this way, the range of printable bioink viscosities can
be significantly increased (up to 15 Pa s). At the same time, the survival rate of printed
cells can be increased to up to 96% by selecting suitable nozzle geometries [26]. Harnessing
these advances, artery-like structures with a wall thickness of 425 µm and diameter of 1 mm
could be bioprinted [14]. The droplet-based deposition, however, can lead to uneven, edged
shapes of vessel walls that may result in increased thrombogenicity in vivo [27]. Recently,
Solis et al. reported beneficial effects for vascularization by thermal inkjet bioprinting
inducing a temperature-based overexpression of proangiogenic signaling molecules [28].

3.2. Microextrusion-Based Bioprinting Inspired by Fused-Deposition Modeling

Microextrusion-based bioprinting, also called extrusion-based bioprinting, is inspired
by non-biological 3D printers for the additive manufacturing of, for example, polymers.

3D-printing by fused-deposition modeling is a fast and cost-effective method for
printing various materials [29]. The readaption of printers for bioprinting is not far-fetched.
Although the high temperatures used in conventional 3D-printing are not suitable for
bioprinting, by modification, conventional 3D-printers can be cost-effective microextrusion-
based bioprinters [29]. Removal of the heating element and equipping the printer with a
syringe pump system allows the deposition of bioink formulations [29,30]. Like polymers
in fused-deposition 3D printing, bioink is extruded in the form of a continuous filament
rather than as single droplets (Figure 1c). In layer-by-layer fashion, 3D constructs are
built by the extrusion of bioinks from one or more print heads, the previous layer being
the foundation for the next printed layer [21]. Bioinks are extruded by either pneumatic
or mechanical forces (Figure 1c). Thus, compared to inkjet bioprinting, microextrusion
enables the bioprinting of viscous formulations and higher cell densities [13,17]. However,
viscous material deposition can also cause higher shear stress with a negative impact on cell
viability [16,21,23,31,32]. Crosslinking can be achieved chemically, thermally, by ultraviolet
(UV) light, or based on shear-thinning properties of the bioink. Recently, the development
of in situ crosslinking technology for nonviscous bioinks was reported as a viability-
conserving method in microextrusion [32]. Depending on the nozzle size, resolutions
similar to those in inkjet printing are achieved, mostly at the cost of prolonged print times.
From a technological perspective, a print resolution of up to 10 µm is possible; however,
depending on the composition of the bioink and cellular material, this is not feasible.
Generally, the lowest resolution of such bioprinting platforms is around 100 µm [21].
Microextrusion can be used to create vascular structures, as cells may be able to migrate
within the construct and self-assemble [23]. Experimental direct and indirect bioprinting of
vessel-like channel structures is mostly performed using extrusion-based bioprinting and
is elaborated in the following sections.

3.3. Laser-Assisted Bioprinting

An as-yet less common and more costly technique is laser-assisted bioprinting. Pulsed
laser beams induce the forward transfer of a biological specimen from a donor ribbon
that contains an energy-absorbing layer onto a receiving substrate [13] (Figure 1d). This
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bioprinting modality is characterized by its excellent resolution [14,21]. High-resolution
tubular capillary structures of 10 µm diameter can be fabricated [33]. Bioinks with cell
density of up to 95% or highly viscous support materials (up to 1 Pa s) can be processed,
because this nozzle-free technology avoids clogging of cells and materials [13,33]. Up
to 108 cells/mL can be deposited in a single-cell droplet resolution of up to 5 kHz and
printing speeds of up to 1600 mm/s [33,34]. A drawback of laser-assisted bioprinting
is the complex preparation of donor ribbons, especially for multimaterial, multicellular
experiments [13]. The impact of laser beams on cell function and integrity requires further
investigation [23,35]. Scaling up to manufacture large tissue specimens or structures
resembling the hierarchical vascular tree may be difficult, and to date, there is no evidence
for application of this technology to fabricate large-scale constructs [13,21]. With regard to
vascularization strategies, it is crucial to consider proangiogenic features of both the bioink
and the printing substrate.

4. Vascularization in Bioprinted Tissue: Different Approaches to Macro-
and Microvascularization

In nature, the macrovasculature and the microvasculature differ in both structural
composition and function [21,36] (Figure 2a). For the future bioprinting of parenchymal tis-
sue with vascular trees, both systems need to be integrated into the manufacturing process.
Macrovascular structures are required for anastomosis with the host circulation, whereas a
high-density microvascular network is necessary to enable the transfer of oxygen and nu-
trients to the tissue. Artificial macrovascular arteries and veins have very limited transport
and pressure-regulating functions [21]. The walls of arterial and venous vessels comprise
three layers: (i) the inner tunica intima, with an endothelial lining; (ii) the tunica media,
with smooth muscle cells; and (iii) the outer tunica adventitia, containing loose connective
tissue and fibroblasts [21,36] (Figure 2a). Besides the geometric considerations, bioartificial
vascular structures need to maintain resistance to thrombogenicity, immunogenicity, in-
flammation, and foreign-body response [36]. The response of a tissue to bioprinted grafts
is modulated by its chemical, physical, and mechanical properties. To date, bioprinted
macrovascular structures lack mechanical integrity due to insufficient crosslinking of the
mature extracellular matrix (ECM) [36,37]. Bioartificial macrovascular medical products
such as the poly(glycolic acid)-based, decellularized vessel Humacyte® are currently in
phase II clinical trials for arteriovenous fistula creation in selected patients [38]. This sys-
tem has been demonstrated to be noninferior to synthetic vascular grafts [38]. However,
although the engineered vessel has a diameter of 6 mm, primary patency rates of 63% at
6 months and 28% at 12 months indicate the need for improvements [38]. Cell-containing
bioprinted products are yet to be developed [39]. On the other hand, microvascular capillar-
ies enable gas exchange and protein and substrate transport to perivascular tissue [21,40].
The diameters of small vessels such as arterioles, venules, and especially capillaries are
in the small submillimeter range (Figure 2a). While the biofabrication of macrovessels
has already been successful in vitro, the engineering of the microvasculature remains chal-
lenging. The direct or indirect printing of vascular structures cannot be completely scaled
down to reproduce a capillary bed and is mostly limited to the manufacture of structures
larger than 100 µm [39,41–43]. Thus, biomaterials, or rather bioinks themselves, may need
to provide cues that promote vessel formation. Such self-assembly of a microvascular
network can occur either by vasculogenesis (Figure 2b) or by angiogenesis (Figure 2c).
The term vasculogenesis describes the completely new formation of a vascular structure
and primitive vessel network, typically driven by endothelial progenitor cells (EPCs) in
embryonic development [21,44] (Figure 2b). However, vasculogenesis is not limited to
prenatal development [45]. Angiogenesis refers to capillary network formation starting
from a pre-existing vessel, e.g., by sprouting [21,33] (Figure 2c). Both mechanisms need to
be considered in the bioprinting of parenchymal tissue.
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Figure 2. Overview of hierarchical vascular tree and vascular development mechanisms. (a) Partial
representation of arterial vascular tree with dichotomous branching. Arteries and their smaller
downstream branches, the arterioles, present a layered wall structure. Generally, the media containing
smooth muscle cells is more pronounced in arterial vessels. Via the arterioles, blood is transported into
the capillary bed, capable of gas and nutrient exchange. Capillaries consist of a single endothelial layer
enabling permeability. (b) The mechanism of vasculogenesis describes the formation of a primitive
vascular network by endothelial progenitor cells, usually during embryogenesis. (c) Angiogenesis
describes a growth of vessels from the existing vasculature, e.g., by sprouting. Angiogenesis can be a
physiological or pathological process.

5. Strategies before 3D Bioprinting: Material Properties and Bioink Formulation Can
Alter Vascularization Processes
5.1. Physical Properties of Bioink and Geometry of Construct Can Positively
Influence Vascularization

Among other factors, the mechanical and topographical requirements for bioink for-
mulations have to be considered in the attempt to mimic nature and, thus, provide an
optimal microenvironment for cell proliferation [42,46]. Pore size, the interconnectivity of
pores, and geometry are essential parameters influencing the mass transfer of, for example,
oxygen and glucose [4,23,47] (Table 1). After printing, the pore and surface geometry of
bioink materials can promote and accelerate vascularization [4,23,47] with high porosity
and extensive pore interconnectivity, e.g., introduced by the protease-sensitive degradation
of support materials to enhance and accelerate intraconstruct vascularization [47–49] (Table 1).
However, synthetic-polymer-based bioinks do not offer intrinsic interstitial space compa-
rable to the natural ECM [48]. In 3D cell culture experiments, it was demonstrated that
vascular invasion increases with pore size in poly(ethylene glycol) (PEG) hydrogels [48].
This bioink material showed limited cell and vessel invasion at pore sizes of 25–50 µm,
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in contrast to extensive vascularization at pore sizes of 50–100 µm and 100–150 µm [48].
Similarly, chitosan bioink was reported to promote neovascularization at pore sizes ~90 µm,
whereas this process was absent at pore sizes of ~30 µm [49]. At the upper end, pore sizes
of >400 µm did not trigger a greater extent of neovascularization [49]. It is worth noting
that larger pore sizes not only increased the extent or density of neovascularization but
also accelerated the vascularization process [48]. In the context of porosity and pore size
tuning, it is important to consider inflammatory tissue layers as, to some extent, a sign
of foreign-body response, because such tissue layers will decrease the effective pore size
eligible for vascular invasion in vivo [48]. In synopsis, evidence suggests that there is a
lower limit for pore size of ~30 µm under which vascular ingrowth and vessel formation is
reduced. In contrast, there also seems to exist an upper limit of ~400 µm, where no increase
in vascular ingrowth can be found at the expense of reduced graft volume.

In silico modeling for defined architectures can predict postimplantation viability
and function in vivo [50]. Defining a construct geometry in silico is a process commonly
required in all additive manufacturing technologies. Computer-aided design and in silico
analysis of these geometries prior to the manufacturing process itself showed the potential
to improve on trial-and-error experimental approaches [50,51] (Table 1). Previous stud-
ies on the bioprinting of insulin-producing constructs showed the potential of finite element
analysis for simulation of diffusional processes of oxygen, glucose, and insulin outflow [50–52].
The advantage of such approaches was to define boundary conditions, e.g., the filament
thickness of the extruded hydrogel and, thus, the maximum diffusion distance for effector
cells to remain viable and functional [50] (Table 1). We previously showed that without a
sufficiently uniform perfusion system throughout the construct, cells are more likely to
populate the periphery of the bioprinted construct without uniform cell density [50]. Espe-
cially for highly metabolically active cells such as insulin-producing ß-cells, vascularization
strategies are necessary [4].

5.2. Biochemical Properties of Bioink Can Positively Influence Vascularization

In nature, various cell types and the ECM form an organ-specific microenviron-
ment [53,54]. Therefore, one paradigm in tissue engineering and the bioprinting of func-
tional tissue is to resemble this natural microenvironment to maintain the physiological
functionality of effector cells [4,53–56]. There are numerous studies on bioink formula-
tions that specifically support effector cell viability and function [24]. In recent years,
the market for commercially available bioinks has been growing [24]. ECM composition
and structural binding motifs in bioinks can also affect vascularization within bioartificial
tissue [40,46,47,57]. Bioinks, therefore, often contain biomaterials such as collagen and
fibrin, which have been reported to support angiogenic growth due to their binding mo-
tifs [39,58–60] (Table 1). In addition, naturally derived materials such as hyaluronic acid,
dextran, agarose, and gelatin, but also synthetic materials such as PEG, can be adapted
to enable vascularization [47,57] (Table 1). Study evidence suggests enhanced integrin-
mediated adherence of endothelial cells (ECs) by integration of arginine–glycine–aspartic
acid sequencing (RGD) motifs [42,47] (Table 1). Such motifs are present in natural hy-
drogel materials such as collagen, gelatin, gelatin methacrylol, fibrin, and hyaluronic
acid [55,58,61]. In alginate, agarose, and PEG hydrogels, such motifs are missing but can be
added to the bioink formulation [42,62,63]. In a systematic investigation of the viability of
human umbilical vein endothelial cells (HUVECs) in various hydrogels of standardized
concentrations, Benning et al. demonstrated that fibrin, collagen 1, Matrigel, and gelatin hy-
drogels maintain the viability of integrated HUVECs and enable the attachment of cells [64].
In contrast, alginate and agarose do not enable cells to attach, resulting in inferior cell
viability [64]. The same effects were found for cell proliferation, with the latter hydrogels
inhibiting the proliferation of ECs [64]. Interestingly, collagen, Matrigel, and gelatin hy-
drogels showed an inverse correlation of hydrogel concentration to cell proliferation, with
lower concentrations enabling enhanced proliferation [64] (Table 1). EC sprouting for capil-
lary formation was observed only in collagen, Matrigel, and fibrin hydrogels; it was not
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present in gelatin or alginate hydrogels [64]. Although collagen 1 seems to be an excellent
support material in bioinks from a vascularization perspective, concentrations >3 mg/mL
are reportedly too dense to allow capillary formation and sprouting [65]. Furthermore, due
to slow gelation kinetics, extrusion- and droplet-based printability and shape fidelity are
impeded [21,66] and might require other bioprinting techniques, such as laser-assisted bio-
printing [67], or blending with other hydrogels [59,66]. Bioprinting using the decellularized
ECM from vascular tissue as bioink has been reported to provide a better microenvironment
for EC viability and proliferation than type 1 collagen bioink [68]. Thorough processing
of nonautologous ECM specimens is crucial in order to avoid pathogen transfer and host
immune response [21]. In addition to ECM composition, bioinks can also be tuned by
proangiogenic signaling molecules [23]. The most prominent signaling molecule reported
to be integrated into bioinks is vascular endothelial growth factor (VEGF) [4]. Farina et al.
reported a dose-dependent increase in vessel density after loading of bioinks with VEGF
(0.5 µg/mL vs. 5.0 µg/mL) [69] (Table 1). However, high VEGF dosage (5.0 µg/mL) led
to a pathological alteration of vessel structures [69]. In a two-component microencapsula-
tion approach, Weaver et al. demonstrated the applicability of vasculogenic, degradable
hydrogel materials to promote vascularization [70]. The coating of a bioink core with a
VEGF-containing degradable outer layer (10.0 µg/mL) showed enhanced vascular network
formation in vivo [70]. Enhanced surface vessel density around the bioink led to increased
viability of the effector cells in the inner bioink core [70]. Proangiogenic signaling may
be especially helpful for microvascularization and capillary sprouting [47]. After direct
bioprinting of relatively large vessels, integration of proangiogenic molecules (50 ng/mL
VEGF, 30 ng/mL fibroblast growth factor 2) into the surrounding bioink microenviron-
ment led to angiogenesis [47]. After 7 days in vivo, incorporation of VEGF (100 ng/mL)
into a porous collagen 1 construct led to vessel penetration depths of ~200 µm [71]. In
a more versatile experimental model, Song et al. demonstrated microvascular sprouting
from a bioartificial vessel-like structure 300 µm through a support hydrogel in 3 days
by application of a proangiogenic gradient (VEGF 100 ng/mL, phorbol-12-myristate-13-
acetate 600 ng/mL, and sphingosine-1-phosphate 500 nM) [47,72]. However, angiogenesis
400 µm into a collagen matrix surrounding a bioprinted vascular channel has also been
demonstrated without any growth factor supplementation [27]. Comparison of study
evidence and definition of the necessity and optimal dosage of proangiogenic signals is
impeded by several confounding parameters such as hydrogel composition, density, and
culture conditions; standardized studies are required. In this context, it is worth noting
the existence of bioink strategies attempting to bypass the initial critical period before
the sufficient self-assembly of a microvascular network. There are bioink materials or
composites specifically developed to address the insufficient oxygenation of effector cells.
OxySite® is a hydrolytically activated oxygen-producing biomaterial consisting of poly-
dimethylsiloxane and calcium peroxide [52,73,74] (Table 1). Although hybrid constructs
with OxySite® showed improved viability and function in vivo [74], the manufacturing
process was mostly manual and has yet not been scaled up to human application. Incorpo-
ration of OxySite® microbeads [75] into bioinks and application in bioprinting technology
might be a focus for future studies.

In addition to the cell biological functionality, the form stability of applied bioinks
should be taken into consideration [76]. This applies not only to the biofabrication pro-
cess itself, but also to the subsequent tissue maturation phase. Especially for the latter,
cell-driven bioink contraction plays a vital role [77]. Previous studies have shown, for
example, that ECM-derived gels (e.g., collagen or fibrin), which are particularly well suited
for vascularization, contract strongly during prolonged culture and, thus, impede shape
fidelity [78,79]. Their high stress-relaxation capacity and high degree of adhesion-ligand-
binding motifs, which promote cell proliferation and microenvironmental remodulation,
are potential drivers of this effect [80]. Modulation of the stress relaxation response of
bioinks, e.g., by blending with polysaccharide-based hydrogels (e.g., agarose or alginate),
was shown to prevent excessive gel contraction without limiting biofunctionality [78].
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5.3. Cellular Composition in Bioink Can Positively Influence Vascularization

Above, we have described the ability of the bioink-supporting material itself and
alterations of such carrier material by the addition of signaling molecules to enhance
the vascularization of bioprinted tissue. Furthermore, integration of living cells into
the bioink has been found to influence vascularization properties [4]. Besides effector
cells for respective functions of the manufactured tissue, additional cell types have been
studied with regard to the possible promotion of vascularization [15,50,81]. The inner
lining of vessels is built by ECs. Confluent endothelial lining can be detected by VE-
cadherin staining [14,27,47]. Thus, it seems apparent that ECs and their progenitors are
among the most investigated cell types regarding vascularization of the construct [82].
Such additional cell types can be directly integrated in a bioink, housing the effector
cells in a form of coculture [15,50]. Moreover, several bioinks consisting of different
supporting materials specifically adapted to the respective cell compositions can be ap-
plied in combination on a bioprinting platform [14,46]. HUVECs have been extensively
studied for application in biofabrication [14,21,27,33,39,46,47,50,59,63,83–89]. Functional
vessel endothelium produces nitric oxide, thrombomodulin, and tissue plasminogen ac-
tivator, all inhibitors of thrombus formation [36,40]. It has been shown in vitro that
coating of bioink constructs with HUVECs diminishes thrombogenicity in the whole
circulatory system [18] (Table 1). HUVECs are derived from larger umbilical veins. Al-
though there is no evidence from bioprinting studies, their potential to build microvas-
cular networks is a topic of heated discussion [21]. Interestingly, although there is exten-
sive evidence on specific EC subtypes in the vascular system of organs, and extensive
knowledge about differences between ECs depending on the type of vessel, these factors
have rarely been considered in experimental bioprinting approaches [21,40,42,82,90,91].
Organ-specific ECs such as human liver sinusoidal microvascular ECs [92], dermal mi-
crovascular ECs [81], and renal proximal tubule ECs [93] might be worthy of more exten-
sive exploration, as they present the prospect of a superior microenvironment similar to
nature [21,42,90] (Table 1). Some strategies have integrated EPCs instead of mature cells [94,95].
Moreover, substantial effort has been invested in the development of strategies for en-
dothelial and perivascular cell differentiation from human-induced pluripotent stem cells
(hiPSCs) [46,91,96–98] (Table 1). This nearly limitless autologous cell source can be utilized
for patient-specific tissue engineering [46,98]. In addition to ECs, pericytes, smooth mus-
cle cells, and fibroblasts participate in vessel network formation [14,17,36,42,85,86,89,96]
(Table 1). Thus, there is study evidence that coculture with endothelial-stabilizing cells
enhances vessel network formation, e.g., by growth factor secretion and direct cell–cell inter-
actions [33,42,60,63,89,99]. Mesenchymal stem cells, sometimes also referred to as medicinal
signaling cells [100], have been widely used in tissue-engineering strategies with the in-
tention of promoting functional vascularization by VEGF secretion [17,39,42,58,59,101].
Additionally, mesenchymal stem cells have the potential to differentiate to smooth muscle
cells, thereby further resembling the natural vascular cellular composition [42,84,100] (Table 1).
There is little evidence of bioink strategies for bioprinting vascularized tissue that involve
cocultures or the combined application of several proangiogenic cell types. Studies on
the effect of combinations of proangiogenic cell types and their respective quantitative
proportion might be beneficial.
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Table 1. Overview: Bioink properties and composition can influence vascularization.

Physical properties and geometry

Porosity
High porosity and pore interconnectivity increases mass
transfer [4,23,47]

Pore size
Larger pore size leads to increased neovascularization and
accelerated vascularization process [48]

Architecture (in silico modeling)
Adaption of model to boundary conditions such as maximum
diffusion distance of nutrient flow might enable uniform
perfusion

[50–52]

Biochemical properties

Structural binding motifs
RGD motifs promote endothelial cell adherence [42,47]
Motifs can be offered naturally or added to bioink formulations [42,55,58,61–63]
Hydrogel concentration
Lower collagen, Matrigel® and gelatin concentrations enable
enhanced proliferation

[64]

Proangiogenic signaling molecules
VEGF addition causes dose-dependent increase in vessel
formation [23,69]

Oxygen-producing bioinks
Critical oxygen-supply before self-assembly of
microvasculature
OxySite® can address locally insufficient oxygenation

[52,73,74]

Cellular composition

Endothelial cell coating
[18]Diminished thrombogenicity

Organ-specific endothelial cell sources [77,88,89]
More natural microenvironment [21,42,90]
Human induced pluripotent stem cells (hiPSCs) [46,91,96–98]
Autologous cell source for patient-specific tissue engineering [46,98]
Pericytes, smooth muscle cells and fibroblasts
Endothelial-stabilizing cells for co-culture

[33,42,60,63,89,99]Growth factor secretion and cell–cell interactions promote
vascularization
Mesenchymal stem cells (MSCs)
VEGF secretion promotes functional vascularization [17,39,42,58,59,101]
Differentiation into smooth muscle cells to resemble a natural
cellular environment [42,84,100]

6. Strategies during 3D Bioprinting: Modifications in Material Deposition Enable
Fabrication of Vessel-like Networks
6.1. Application of Sacrificial Material and Sacrificial Writing into Functional Tissue for Vascular
Network Integration

In recent years, sacrificial or fugitive inks have been used especially for integrating
vessel-like networks into bioprinted tissue constructs (Figure 3a, an overview about sac-
rificial bioprinting is provided in Table 2). Sacrificial inks can be bioprinted to shape
a template that serves as ‘negative’. Gelatin [14,22,27,39,47,63,83], alginate [87,102,103],
Pluronic® F127 [68,85,86,104–107], agarose [108], poly(vinyl alcohol) [109], and carbohy-
drate mixtures [43,88] can serve as sacrificial inks. In a next step, sacrificial templates
are embedded in low-viscosity bioinks containing effector cells, which then can be ade-
quately cured [110]. After sufficient crosslinking, the sacrificial materials are removed [110].
Removal can be accomplished by dissolution with a solvent [14,47,85,86,103,106,110,111],
temperature regulation [14,27,46,83,104–106,110], or pH regulation [58,85], leaving a mi-
crofluidic network of patterned microchannels or even vascular tree-like channels in the
construct [22,47,83,87,110]. Perfusion of such a network with ECs and their subsequent par-
tial adherence has the potential to result in coating of the inner wall [27,47,63,83,87,105,111]
(Figure 3a). Other studies reported a method in which ECs (8–20 × 106/mL) were directly
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integrated into the sacrificial gelatin core [14,27,46]. Instead of direct perfusion, the liquified
sacrificial ink was cultivated for 2–4 h to allow EC attachment, resulting in a confluent layer
after 4 days of cultivation [14]. Luminal diameters below 10 µm are found in the capillary
bed [112]. However, even though such small-scale network resolutions might be possible
by application of other technologies, EC perfusion resulted in clogging [113]. The smallest
fabricated perfusable microvessel had a diameter of 50 µm [113]. EC coating depends on
many parameters, such as the surface roughness and biocompatibility of the effector bioink,
cell density, seeding time, and culture conditions [68]. After perfusion and adherence of
ECs, a confluent cell lining is found on smooth wall surfaces [47]. A smooth endothelial
lining is promoted by perfusion flow culture rather than static culture [27]. A special use of
sacrificial material can be found in embedded bioprinting platforms (Figure 3a, an overview
is provided in Table 2). Especially soft hydrogel bioinks (<100 kPa) are subject to gravity-
induced shape loss when printed without support [21]. The use of support baths, which
mitigate the influence of gravity on the bioinks’ dimensional stability, offers a potential
solution. For instance, the Feinberg group introduced the technique of freeform reversible
embedding of suspended hydrogels (FRESH) in several publications in 2015 [114]. The
basic idea is to use viscoelastic support baths of sacrificial material (e.g., gelatin micro-
spheres) as a ubiquitously supporting three-dimensional print bed [114] (Figure 3a). The
support bath material needs to possess the yield stress behavior of Bingham plastic fluids
to allow the extruder to move through the gel without resistance, while at the same time,
the support material solidifies around the extruded bioink to alleviate gravity-based shape
loss. The developed system supports the shape fidelity of the extruded bioinks until the
curing process is finished [114] (Figure 3a). After complete curation, the support bath can
be liquified and completely removed from the construct [71,114] (Figure 3a). Resolution
of bioink deposition by embedded bioprinting is dependent, among other factors, on
microsphere homogeneity and size [114]. Larger and heterogeneous microspheres in the
support bath will restrict the resolution to larger-diameter filaments with variable morphol-
ogy [71,114,115]. It was reported that bioink resolutions of 20 µm diameter can be achieved
by means of this system [71]. In addition to beneficial effects on the shape fidelity of bioink
structures, the support bath can contain cell culture medium and, for example, growth
factor supplements to prevent dehydration and to provide nutrients or oxygen during the
printing process for the maintenance of cell viability. For example, perfluorocarbon-based
support baths have been shown to not only provide mechanical support but also enable
the exchange of respiratory gases, essential during prolonged printing processes [116]. The
support bath itself can initiate a curing process by ionic, enzymatic, UV-, or pH-dependent
gelation [71,87] (Figure 3a). A comprehensive overview on bioink and support bath ma-
terials applicable for embedded bioprinting has been provided by Shiwarski et al. [115].
Bioprinting a combination of several bioinks in one support bath is possible. However, the
gelation mechanism initiated by the support material must be suitable for all embedded
bioinks [115], so free combination is not possible. Obviously, the cross-linking mechanism
must not be effective on the support bath itself. The described approach was used for direct
bioprinting of patent, perfusable vascular structures with an inner diameter of 1.4 mm and
a wall thickness of 300 µm [71]. Therefore, a bioink of collagen type I and a myoblastic
cell line were applied [71]. Furthermore, more complex, perfusable vascular trees were
directly bioprinted based on an MRI-templated multiscale vasculature mesh [71]. The mesh
included branched vessels with a resolution of up to 100 µm [71]. Extrusion-based bioprint-
ing enabled three-generation branching with a minimal channel diameter of 30 µm [107].
Bioprinting of small-scale microvasculature (e.g., capillaries of 5 µm diameter) is technically
not possible by means of the direct extrusion-based method. Lee et al. described the direct
incorporation of the FRESH support bath microspheres themselves into the construct to
promote neovascularization in vivo by increased porosity [71]. In this context, another
approach is to bioprint sacrificial microchannels in effector bioink baths (Figure 3a, an
overview is provided in Table 2). Shear-thinning, self-healing bioink formulations allow
printing of hydrogel in hydrogel [31,47,87,107,117]. Such viscoplastic bioinks that are tun-
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able depending on shear force can be manufactured using supramolecular encapsulation
systems [31,47,117]. The integration of perfusable, vessel-like channels in bioartificial tissue
(or effector bioink) is referred to as sacrificial writing into functional tissue (SWIFT) [83]. A
bulk volume of ~400,000 merged organoids developed separately was compacted in a gel-
based 3D culture with high cellular density similar to that of natural tissue—exceeding the
cell density of bioinks eligible for extrusion-based bioprinting [83]. A microchannel system
is introduced into this effector cell gel by extrusion of sacrificial bioink [83,87]. Skylar-Scott
et al. adapted this concept, initially studied in avascular, viscoplastic, ‘self-healing’ hy-
drogels, for bioprinting vessel-like structures directly in functional tissue blocks [83]. The
embedded bioprinting of gelatin sacrificial bioink (5% w/v) resulted in a continuous and
interconnected channel system within the bulk gel [83] (Figure 3a). During printing, it
is essential for the sacrificial bioink to have a shear yield stress significantly higher than
the embedding volume to ensure high shape fidelity of the channel structures [83]. In
this study, channel structures with a diameter range of 1 mm to 400 µm were achieved.
Smaller channel structures could not be achieved due to the inherent characteristics of the
embedding bulk volumes with organoid structures of ~200 µm in diameter [83]. Besides
embedded bioprinting of sacrificial bioink, the authors also demonstrated the applicability
of the concept for effector cell-containing bioinks, thus expanding the potential for the
precise spatial deposition of bioinks within the construct [83].
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Figure 3. Bioprinting strategies to fabricate vascularization. (a) Embedded bioprinting into a (func-
tional) viscoplastic support bath. Viscoplastic microsphere fluids present self-healing properties with
fluid-like regions and shear-thinning effects directly along the moving microextrusion nozzle. Direct
printing and subsequent in situ crosslinking of vascular bioink enables fabrication of free-form struc-
tures with high shape fidelity. Crosslinking can be initiated by the support bath, e.g., chemically. The
microextrusion and subsequent dissolution of sacrificial bioinks after previous curing of the functional
support bath can create hollow channel networks. Such networks can be perfused with endothelial
cell solution for cell adherence and formation of an endothelial lining. (b) Coaxial microextrusion
bioprinting using concentric nozzles enables simultaneous printing with different bioinks with a
core–shell or layered cross-section. (c) Multinozzle bioprinting technology with fast high-frequency
switching can fabricate continuous filaments from multiple materials. (d) Self-assembly of capillaries
from bioprinted vessel-like structures. The cultivation of bioprinted tissue constructs can provide an
environment that further enhances vascularization by self-assembly. Therefore, relevant angiogenic
signals might need to be integrated in bioinks before printing.

6.2. Coaxial Printing Technology for Vessel-Like Structure Fabrication

McGuigan and Sefton developed a modular concept for the manufacture of an inter-
connected, random-pattern perfusion system for bioink modules [18]. In their concept,
small cell-containing collagen tubes were manually manufactured and, subsequently, each
module was coated with HUVECs [18]. The HUVEC-coated tubes were arranged in an
external tubular housing. The authors demonstrated the feasibility of a perfusable, random-
pattern system with vessel-like endothelial lining. However, a tree-like vascular network
could not be generated and bioprinting on the capillary scale was not possible [18]. Ad-
ditionally, the construct lacked a macrovascular connection anchor. The natural vascular
tree dynamically alters flow rates and, thus, the pressure differences and shear stresses at
the endothelial lining along its branches [40]. Exceeding the shear stress thresholds of ECs
(5–50 dynes/cm3 depending on vascular origin [118]) can lead to phenotypical remodeling
with a subsequent alteration of physical and biochemical reactions to hemodynamic fac-
tors [18]. Coaxial bioprinting has the potential to address these limitations (an overview
is provided in Table 2). In the context of this review, coaxial printing is defined as the
simultaneous, separate extrusion of different bioinks via one print head, usually by concen-
tric extrusion nozzles (Figure 3b). It offers precise control over the spatial distribution of
multiple cell types or signaling molecules, thus allowing the creation of gradients within
and around the bioprinted construct. Liu et al. utilized coaxial bioprinting technology
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for the one-step manufacturing of coated filaments by coaxial extrusion of a bioink core
containing effector cell clusters and a bioink shell containing vascular progenitor cells [119].
Two concentric nozzles with an inner diameter of 450 ± 15 µm for the core filament and
1045 ± 25 µm for the shell filament were mounted on one cantilever print head, but were
accessed and served by two independent mechanical extrusion systems [119]. The core–
shell ratio and the filament thickness, respectively, can be regulated by printing speed and
extrusion pressure in addition to the static relation of the concentric nozzles [85,119,120].
Direct bioprinting of vessel-like luminal structures with EC-containing shells of differ-
ent diameters was reported in several studies [68,84]. Gao et al. bioprinted vessel-like
tubes using a coaxial bioprinting setup [68]. By coaxial extrusion, a sacrificial core of the
triblock copolymer polyethylene–polypropylene–polyethylene Pluronic® F127, and Ca2+

was manufactured simultaneously with a bioink shell of decellularized ECM, alginate,
and HUVEC [68]. Ca2+ enabled the direct crosslinking of alginate, and the subsequent
thermal gelation of collagen portions stabilized the construct to be free-standing even after
the dissolution of Pluronic. The authors demonstrated the feasibility of the concept for
the printing of hollow vessel-like tubes with a wall thickness of 49 ± 21 µm and inner
diameters of 853 ± 18 µm, 507 ± 26 µm, and 247 ± 31 µm [68]. The presence of an intact
endothelial lining without overproliferation was demonstrated after 7 days in vitro [68]
and may lead to faster constitution of an intact confluent endothelial lining than with
perfusion-based cell-coating systems [83,105]. However, the vessel walls were vulnerable
due to either low wall thickness or limited representation of vascular cell types, thus in-
hibiting pump-based perfusion. Sacrificial core filaments stabilize the otherwise hollow
construct until sufficient curing of the material has been achieved [111]. Coaxial bioprinting
platforms have also been modified to crosslink shell structures, mimicking the vascular
wall, by the simultaneous extrusion of ionic crosslinking agents instead of any sacrificial
core filament or by in situ crosslinking [16,32,84,120]. One technological shortcoming of the
coaxial extrusion is the necessity of generating a continuous filament flow to avoid leaks.
Thus, the generation of branching requires further technological advances [16]. In sum-
mary, this bioprinting technology may elicit the generation of at least partially bioartificial
vascular trees. Coaxial bioprinting approaches offer the possibility of splitting the typically
single stream of bioink into multiple bioink filaments extruded simultaneously (Figure 3b).
Different bioink loadings of split channels and different extrusion systems broaden the
flexibility of construct design and precise cell deposition [111]. The cross-section complex-
ity is limited to the arrangement of extrusion nozzles (concentric or parallel) (Figure 3b).
Flexibility might be enhanced by the rapid prototyping and manufacturing of customized
coaxial extrusion nozzles [111]. The layered wall of vascular structures has physiological
significance. Coaxial extrusion is capable of manufacturing such layered tubular structures,
mimicking nature [85,121]. Circumferential multichannel coaxial extrusion systems were
used to manufacture bioartificial luminal vascular tissue with an inner endothelial lining
and an adjacent outer smooth-muscle-cell layer [85,121]. Bosch-Rué et al. described a
triplex coaxial nozzle extrusion system to print layered, luminal, vessel-like structures with
nozzle diameters of 570 µm for the inner sacrificial Pluronic core, 1.15 mm for the middle
endothelial layer and 1.83 mm for the outer muscle layer [85]. Collagen type I in a high
concentration of 20 mg/mL as bioink support material for HUVECs and smooth muscle
cells, respectively, had sufficient shape fidelity to enable the omission of a sacrificial support
bath during printing while maintaining a cell viability of 85.8% at 24 h after printing [85].
Even though a combined wall thickness of 200 µm for the endothelial and muscle layers
was achieved, the maximum burst pressure of 620 mmHg and the maximum flow rate with
shear stress of 10 dynes/cm2 were inferior to natural arteries [85].

Recent technological developments enable the manufacturing of more complex tissues
by multimaterial, multinozzle bioprinting [122,123] (Figure 3c). Versatile extrusion systems
for bioprinting with fast switching of different bioink-containing nozzles generate one con-
tinuous filament outflow of heterogenous, segmental bioink composition [122] (Figure 3c).
By application of this sophisticated extrusion system, the minimal segment of a respective
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bioink along the filament was equal to the diameter (D) of the nozzle, thus enabling a print
resolution of D3.

Table 2. Overview: Bioprinting strategies to fabricate vascularization.

Explanation Advantages Disadvantages Example
Materials

Sacrificial
bioprinting

Deposition of a
material, that can
be removed in a
subsequent stage

Easy removal of
sacrificial material

High degree of
geometrical
freedom

Printed structure
prone to drying
out

Limited to
sacrificial materials
removable under
cytocompatible
conditions

Natural and
synthetic
hydrogels: gelatin,

[14,22,27,39,47,63,83]

agarose, [108]
and alginate [87,102,103]
Pluronic® 127 [68,85,86,104–107]
Thermoplastics:
PVA

[109]

Carbohydrate
mixtures

[43,88]

Sacrificial
Writing

Extrusion of
sacrificial material
into functional
tissue or merged
organoids,
respectively

High cell density,
exceeding
capability of
microextrusion
bioprinting

Native ECM
secreted by
organoids

Limited resolution
of vessel diameter
(400 µm)

Sacrificial gelatin [83]

Submerged
bioprinting

Bioinks containing
cells are
3D-printed into a
support bath (e.g.,
high-density
liquids and
hydrogel slurries)

Placement into
support bath
prevents printed
structure from
drying

Mechanical
support for shape
fidelity and
geometrical
freedom

Large volume of
surrounding
matrix necessary

Postprocessing
(washing) can
damage fine
structures

Perfluorocarbon
Hydrogel slurry:

[116]

gelatin→ FRESH [71]
agarose→ CLASS [124]

Coaxial
bioprinting

Simultaneous
printing of at least
two materials by
same cantilever
axis

Direct printing of
vessel-like
structures with
core and shell

Printing of layered
vessel wall

Challenges in
printing branched
structures

Sacrificial
materials

Ionic crosslinking
agents

[68]

[16,32,84,120]

7. Adjuvant Strategies for Vascularization
7.1. Prevascularization of Transplantation Site to Accelerate Graft Function

Although versatile bioprinting strategies have been studied for the fabrication of
vascular structures within a functional construct, the direct printing of capillary struc-
tures is still limited (Figure 4). Thus, postprinting strategies and cultivation of bioprinted
constructs address augmentation and acceleration of self-assembly of capillary structures
(Figures 3d and 4). In addition to preprinting processes that focus, for example, on the
integration of angiogenic cues in bioink formulations, there are also adjuvant postprinting
strategies to promote vascularization. Several studies have proposed a two-stage approach
enabling sufficient prevascularization prior to effector cell loading [15,69,125–129]. Prevas-
cularization can be induced by in vivo implantation of a foreign body in the weeks leading
up to implantation of the effector-cell-containing bioprinted construct. Local inflammatory
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and immune reactions cause enhanced angiogenesis [15]. CellPouchTM is an implantable
and retrievable device for transplantation and long-term housing of effector cells and
tissue [128,129]. The device is implanted subcutaneously several weeks prior to effector
cell loading into the device [128,129]. The prevascularized housing enabled successful
grafting of thyroid tissue and pancreatic islets in vivo [128,129]. Transient implantation of
a foreign body before effector cell implantation can avoid autoimmunity and foreign body
response while maintaining angiogenic effects [130]. Furthermore, by means of microsurgi-
cal techniques, arterial–venous (AV) loops can be created in vivo. AV loops likewise induce
angiogenesis at the respective site, while at the same time, they can serve as connection
vessels between the graft and the host circulation [15]. Such approaches are intended to
diminish an initial critical period after implantation in which the supply of nutrients to the
effector cells relies solely on diffusional processes until vascularization occurs. Smink et al.
performed the subcutaneous implantation of scaffolds into diabetic mice [126]. Four weeks
after implantation, rat Langerhans islets were injected into predefined channels. However,
the authors showed that even after prevascularization, restoration to normoglycemia took
significantly longer in the scaffold group than in control animals that received direct im-
plantation of islets under the kidney capsule [126]. In addition, a smaller number of islets
was acceptable to restore normoglycemia in most animals of the kidney capsule group.
Although this study showed successful local prevascularization and subsequent vascular
network formation in the scaffold, the extent of vascularization seemed inferior to the
nutrient supply found under the naturally vascularized kidney capsule [126]. Delayed
graft function due to prolonged vessel maturation processes even after prevascularization
was confirmed by other studies [69].
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or microvascularization. Limited printability can be due to lack of resolution, low printing precision,
and/or a long duration of the printing procedure. Small-scale capillaries cannot yet be fabricated by
3D-bioprinting technologies and are subject to self-assembly strategies.

7.2. Generation of a Bioartificial Vascular Tree

Refined extrusion technology and bioprinting platforms allow the direct manufacture
of vessel-like structures down to a diameter of 30 µm [22], or in the case of laser-assisted
bioprinting, 10 µm [33]. In a previous study, it was shown that a scalable, branched, random-
pattern channel network spanning several magnitudes in size could be bioprinted by taking
advantage of the viscous fingering phenomenon [22]. This capability gives rise to a new
challenge, namely, the integration of a 3D vascular tree pattern model for bioprinting. Based
on volumetric imaging of the natural prerequisite, vascular structures can be segmented
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and volume meshes can be generated [46] (Figure 5). However, most volumetric imaging
techniques can only image vascular structures down to a certain size [46]. Smaller vessels
cannot be detected using these imaging technologies [46]. Computed generation of detailed
vascular trees is complex, considering the necessity to provide sufficient perfusion of
all tissue regions. Mathematical approaches using best-fit algorithms for diffusion and
consumption properties can be utilized to analyze the optimal size, distribution, and
orientation of vascular structures [46,131]. Others developed a parametric, algorithm-based
approach for the in silico design of bioartificial vascular trees [106,131]. Lee et al. solved
the problem by application of an iterative approach [71]. First, magnetic resonance imaging
was used to segment large blood vessels. Next, for a subset of the volume, the branching
behavior of the large vessels was translated to the small volume and subsequently scaled
down to engineer MRI-templated multiscale vasculature [71]. However, with further
development of manufacturing technologies, blueprints for tissue-specific vascular trees
might be necessary for computer-aided tissue engineering. This also highlights a different
perspective on parenchymal tissue bioprinting, namely an end-to-end concept all the
way from generative computer modeling to validation of biofabricated constructs in a
standardized manner [106]. A future goal might be the characterization and fabrication
of bioartificial vascular trees derived from parenchymal organ blueprints that show flow
dynamics, mass transport, and, thus, ubiquitous oxygen and nutrient supply (Figure 5).
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3D bioprinting of vascularized parenchymal tissue. Process model for fabrication of vascularized
parenchymal tissue potentially integrating several printing technologies in one fabrication process
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8. Discussion

Bioprinting may have the potential to overcome current challenges in bioartificial
tissue engineering. One major limitation that studies still face is a lack of sufficient vascular-
ization to supply oxygen and nutrients to effector cells [4]. State-of-the-art scaffold-based
tissue engineering mostly relies on initial diffusional supply and is thus restricted in terms
of the spatial dimension of the construct, the number of integrated effector cells, and
long-term function. The evidence presented in this review suggests that fabrication of
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vascularized, functional parenchymal tissue might not be achieved using a single bioink
and one bioprinting technology (Figures 4 and 5). Direct printing of all elements including
the capillary bed may not be feasible (Figures 4 and 5). Vascular self-assembly strategies
can be promoted by specific bioink formulations providing cues for vasculogenesis and
angiogenesis. Such cues can be triggered by coculture with certain endothelial cell types
and proangiogenic signaling molecules. Laser-assisted bioprinting one order of magnitude
higher has the potential to fabricate delicate vascular structures. The combination of tech-
nologies enables generation of vascularized building blocks including effector cells [17,50].
The concept of sacrificial writing into functional tissue (SWIFT), based on previous devel-
opments of embedded bioprinting technologies such as FRESH, seems worthy of more
extensive exploration. Beside SWIFT, bioprinting-assisted tissue emergence (BATE) utilizes
organoid-building stem cells directly placing them in a bath of ECM materials and exploit-
ing cellular self-assembly for tissue formation [132]. In perspective, bioprinting methods
including materials mimicking the natural ECM and self-assembly of organoids producing
the native ECM seem promising [132]. However, rather than depositing sacrificial ink in
a bulk of vascularized building blocks with the intention of promoting bioactive lumen
formation, direct coaxial extrusion of multilayered, hierarchical vessel-like structures might
mimic nature more accurately down to a level of large arterioles and venules and might
provide vascular connection anchors that can be anastomosed with the host circulation.
A translation from experimental studies on the bench towards reproducible, streamlined
processes for bedside application seams feasible, but remains to be developed. Strategies
for vascularization of the construct need to be considered at all steps of the process before,
during, and after printing (Figure 5). Post-printing cultivation can influence tissue and
vessel maturation. Even though it is not within the scope of this review, extensive research
showed that perfusion bioreactors allow dynamic cultivation of printed constructs, thus en-
abling mass transport through a viable matrix [133,134]. Pulsative flow in perfusion-based
bioreactors encourages matrix formation and proliferation [135]. Furthermore, physical
stimuli such as mechanical strain may positively influence tissue maturation [133,134].

Bioprinting approaches for parenchymal organ engineering need to consider many
parameters, each of which impedes standardization. Unlimited possibilities are offered by
different bioprinting platforms with different technologies, by multiple, sometimes simul-
taneously utilized, bioink formulations of different materials and cells, and by the addition
of signaling molecules. To date, structured evidence in the field of tissue engineering or
bioprinting is not always easily accessible, thus hindering the identification of a suitable pro-
cess for bioartificial organ engineering [7]. Many studies, therefore, rely on trial-and-error
approaches investigating their respective objective. Instead, we propose standardized data-
driven decision models for future research, e.g., regarding bioink development (Figure 6).
The development of end-to-end processes from design to post-manufacturing validation
are necessary for future ATMPs. We have identified the need for the structured reporting
of research findings to enable sufficient data curation and structured analysis of existing
evidence for further translation and application in bioink development (Figure 6). Com-
puter simulation and in silico experiments can help to minimize trial-and-error approaches
and define boundary conditions for models to be bioprinted [50]. Furthermore, there are
already tendencies to address the challenges of multiparameter experimental concepts
with the aid of algorithms, machine-learning approaches, and neural networks [136–143].
In the long term, artificial intelligence may support the design and manufacturing of
bioartificial organs [136–143]. We envision data-driven artificial approaches to support all
process stages of bioartificial tissue fabrication. Machine learning has been utilized as a
powerful tool to decrypt the multitude of variables in existing study evidence, such as the
exact formulations of bioink and the printing parameters for efficient experimental design.
Based on natural, organ-specific vascular tree blueprints, algorithm-based approaches
and validation by computer simulation can enable the creation of bioartificial vascular
trees (Figure 5). Lastly, truly functional digital twins of tissues and organs can facilitate
in silico bioprinting. This yields a perspective towards the customization of bioartificial
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tissue for patient-specific TEPs. The ultimate solution to the challenge of vascularization in
bioprinting of parenchymal tissue requires further bioconvergence research.
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