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1. Introduction

When complex programs do not behave as intended, detecting the root cause of the faulty behavior can
become very time-consuming. A common technique for finding the implementation error that causes such bugs
is to track the state of the program in question at different program locations. This allows the programmer to
reason about the way this state will influence the future behavior of the program, or in what way the state
may be defective. Manually tracking this state based on the source code of the program and its output quickly
becomes tedious and outright impossible for programs with sufficiently complex or large data structures.

Debuggers are tools that allow users to suspend the execution of a program at specific locations and they
provide interactive interfaces for inspecting the program’s state at these points of execution [105]. Beyond
this basic functionality, debuggers usually provide many more additional features to aid the debugging process
and increase its effectiveness. For example, users may be able to formulate expressions in the programming
language of a suspended program and evaluate them in its current state. Also, such expressions may be used
to formulate the conditions under which a program is suspended, etc.

Still, in traditional debuggers, such features provide the user with little abstraction of a process’s memory
beyond the vocabulary of the underlying programming language, i.e. objects or variables.

Meanwhile, the implementation of a concept from an application domain can strongly differ from its original
design. This is because mainstream programming languages may lack the necessary expressiveness to realize
the concept within the vocabulary of the language. Furthermore, sometimes programmers may give up the
high-level structure of such concepts in favor of low-level optimizations. For example, on a conceptual level,
B-trees are described through root, leaf, and intermediate nodes. These nodes carry keys in a certain order
and parent-child relationships exist among them. Additionally, complex conditions on their structure must be
upheld during their construction and modification. E. g. a root node must either be a leaf or have at least two
children [64]. Similarly, when a programmer implements B-trees in the programming language Java, they
may realize nodes as instances of a BTreeNode class. Nevertheless, usually, the implementation will make no
explicit distinction between the different kinds of nodes, see fig. 1.1. That is, there will be no separate classes
for roots and leaves, as the type of a node can change during modification of a tree but in Java, changing the
class of an object is not supported. Furthermore, while the implementation in fig. 1.1 does store references to
the children of a node in an array, it does not explicitly model a relation to the parent of a node. Lastly, such
simplified implementations are able to represent invalid data structures. I.e. in this example, a faulty insertion
algorithm can construct a B-tree where the root has only a single child which is not allowed in standard B-tree
definitions [64, Section 6.2.4].

A traditional debugger does not consider how concepts from an application domain map to their Java
implementation. Therefore, during debugging, a user can not query the program state in terms of the
conceptual domain. E.g. a user can not ask the debugger questions of the form “List all B-tree root nodes.” or
“Is there an intermediate node with less than m children?” without translating the question into complex Java
expressions or algorithms.
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Figure 1.1.: Illustration of the contrast between a conceptual view on B-trees (left) and a minimal Java
implementation of B-tree nodes (right).
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Figure 1.2.: Visualization of the representation of simple graphs as adjacency matrices.

In more extreme cases, an implementation might even follow a completely different modeling formalism than
the one typically being used for human understanding. For example, graphs are an abstract structure used to
model and solve problems from many application domains, e.g. computer networks [96], chemistry [111,
107], etc. They consist of vertices that are connected via edges. Yet, applications that utilize graphs might
store them as adjacency matrices instead for space-efficiency reasons, or because adjacency of vertices can be
checked in constant time, or to apply methods from algebraic graph theory, see fig. 1.2. Here, a programmer
can hardly infer the structure of a graph from the in-memory matrices they can inspect in a traditional debugger.
However, this task may become much more straightforward, if it was possible to query the matrices in terms of
vertices, edges and paths. This problem intensifies if we build even richer concepts on top of basic structures
like graphs. For instance, in graph rewriting systems graphs are utilized to represent molecules and explore
their reactions [111, 73].

We conclude that a debugger that can be made aware of the mapping of high-level concepts to their implemen-
tation may ease the process of debugging and even open up possibilities of new methods for the inspection of
program states.

Semantic Debugging Recently, Kamburjan et al. [61, 62] explored the idea of applying technologies of the
semantic web [26, 38, 49] to extract a universal knowledge representation from the state of a program that
facilitates semantic queries. More specifically, they formalized a minimal object-oriented language, called
SMOL, and a tool that extracts such a knowledge base from the state of a suspended SMOL program in the
well-supported RDF graph format [30]. This enables the application of semantic web technologies for analysis
and debugging of SMOL program states and maybe even verification of programs.

In particular, Kamburjan et al. introduce the idea of semantic debugging. The term denotes a debugger
that can leverage domain knowledge to inspect program states. That is, users can query the program state
using terminology and automatic logical inferences from ontologies, i.e. external specifications of application
domains.
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The debugger achieves this feat by applying existing query engines and reasoners from the semantic web field
to user-provided, machine-readable descriptions of the semantic concepts behind program constructs. That is,
users can use the description logic-based OWL language [43] to define these concepts on top of the program
state description provided by the extracted RDF knowledge base. Then they can formulate their queries
either in the well-established SPARQL query language [47] or as inference tasks through OWL. The debugger
executes these queries through SPARQL query engines like ARQ [36] or OWL reasoners like HermiT [40].
Ultimately, this eliminates the need for users to manually inspect the call stack and heap memory.

Kamburjan et al. also demonstrate that such an extracted RDF knowledge base promotes many other appli-
cations. E.g. class invariants [5, Section 7.4.1] that reference concepts from an application domain can be
proven using facts from the knowledge base. They also demonstrate how such a knowledge base may be
queried at runtime to give programming languages reflection capabilities.

1.1. Contributions of the Thesis

This thesis aims to take the first step towards making the benefits of semantic debugging available for real-
world application development. For this purpose, we implement a semantic debugging tool for the Java
programming language, called the Semantic Java Debugger or sjdb.

The sjdb tool provides an interactive, command line-based user interface through which users can

1. run Java programs and suspend their execution at user-defined breakpoints,

2. automatically extract RDF knowledge bases with description logic semantics that describe the current
state of the program,

3. optionally supplement the knowledge base with custom concept descriptions and external domain
knowledge formalized in OWL,

4. run (semantic) queries on this extended knowledge base,

5. resolve the query results back to Java objects and display these objects, and

6. validate constraints on data structures in the SHACL [66] schema language.

Beyond the interactive interface, sjdb also supports automating the inspection of program executions through
a basic scripting language.

As part of this debugging tool, the development of an extraction mechanism for knowledge bases from the
states of suspended Java programs is one of the main contributions of this thesis. This mapping is partially
reversible so that the results of queries can be displayed as Java objects to the user. While there already exist
OWL formalizations for the static structure of Java programs and other object-oriented languages [10, 4,
67, 37], we develop a OWL formalization of Java runtime states to structure the aforementioned extraction
process and give meaning to the resulting knowledge base. Thus, this thesis also lays the foundations for
future applications of semantic web technologies for the dynamic analysis of Java program states.

To realize the mentioned functionalities, we combine and integrate many different technologies into sjdb.
We rely on the Java Debug Interface (JDI) [86, 85] for executing and suspending Java programs, as well as
for access to the state of a suspended program. During the mapping process of a program state to an RDF
knowledge base, we utilize the RDF API of the Apache Jena framework [35] for constructing the base. Through
Jena, we also integrate the query engine ARQ for answering SPARQL queries, and Jena’s SHACL validator.
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Users of sjdb can also formulate queries involving description logic-based inference tasks in OWL. E.g. they
might ask for all instances of an OWL concept, or whether certain axioms are entailed by the knowledge base,
etc. To answer such queries, we integrate the incomplete OWL 1 reasoners of Jena for high-performance
reasoning and the OWL 2 reasoners HermiT [40] and Openllet1 to allow for more complex inference tasks.
The user can interactively switch between these reasoners on-demand.

Additionally, sjdb aids users in the debugging of dynamic behavior via support for breakpoints with description
logic conditions. This way users are able to suspend a program execution only when the program state meets
user-defined satisfiability and entailment conditions.

Moreover, case studies are conducted to demonstrate the capabilities of sjdb, but also to identify its limitations.
We also evaluate the response times and memory requirements of sjdb when confronted with queries and
programs of varying complexity. Since querying and reasoning on knowledge bases can be computation-
intensive, these case studies also give insights into whether the semantic debugging approach is viable for
mainstream programming languages like Java which are much more complex than the SMOL language
presented by Kamburjan et al.

1.2. Structure of the Thesis

Chapter 2 gives brief introductions on description logics, semantic web principles and tools, and other necessary
background information for understanding this thesis.

Next, we explain and discuss the main concepts behind sjdb in chapters 3 to 7 This includes a description of
the workflow behind the tool, a model of the information that is extractable from Java debuggees, a formal
mapping of this information to description logic-based knowledge bases, mechanisms for answering user
queries, and other noteworthy features. Chapter 3 gives a more detailed overview of these conceptual chapters
and chapter 8 presents interesting details regarding their implementation.

We present case studies for the application of sjdb in chapter 9 and also evaluate its capabilities and limitations,
as well as its performance on varying workloads.

Lastly, we summarize our results in chapter 10 where we also examine related work and elaborate on possible
future extensions of the outcomes of this thesis.

1.3. Notation

Grammars We notate grammars in the Extended Backus–Naur Form. Nonterminals are enclosed in a box.
Optional parts of a production are enclosed in square brackets “[T ]”. Parts which can either be omitted
or repeated are annotated with a bar “T ”.▷⊴ �◁nonterm ::=

▷⊴ �◁nonterm | term [optional] repeatable

In general, we will use “[. . .]” and “ . . .” to mark optional or repeatable parts of formulae, terms or code
listings.

1Openllet [63] is an open-source continuation of the Pellet reasoner [103, 92] whose up-to-date version is now being developed in a
closed-source context.
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Domain of a Function Let f : A → B be some function. We write dom(f) to refer to the domain A of f .

Image of a Function Let f : A → B be some function. We write img(f) to denote the image of f , that is,

img(f) := {f(x) | x ∈ A}.

Java Type Abbreviations Regularly, we have to refer to types from the package java.lang which is pre-
defined for all Java programs. Therefore, we abbreviate such references by omitting the java.lang
prefix of the canonical name of these types.

For instance, instead of java.lang.Object or java.lang.Cloneable, we write Object or
Cloneable.

11



2. Background

This chapter presents the necessary information for understanding the remainder of the thesis. Section 2.1
provides an overview of the semantic web. Next, section 2.2 introduces description logic which serves as the
foundation for the formalization of our mapping from Java program states to knowledge bases. Lastly, while
we do presume that the reader is already familiar with the Java programming language, we still clarify some
intricacies of the Java language and Java Virtual Machines in section 2.3. The section also discusses the Java
Debugging Interface (JDI), which allows us to inspect the states of running Java programs.

2.1. The Semantic Web

According to Hitzler, the semantic web is a field of research and not a concrete artifact [49]. Semantic Web
technologies are the tools and methods that arise from this field.

Furthermore, Hitzler performs a survey on the current state of the field and argues that there is currently no
consensus on its concrete subject. However, he identifies that three main perspectives have emerged within
the research community on the question of the subject of the Semantic Web field:

Perspective 1: Enhancement of the World Wide Web The first perspective perceives the Semantic Web as
an enhancement of the World Wide Web (WWW) that will be implemented eventually. The main
difference between this Semantic Web vision and the current WWW is that the Semantic Web aims to
make information on the web understandable for automatic agents, whereas the WWW often serves
natural language text and media that is intended for human consumption.

To realize this Semantic Web vision, data on the web must be annotated with meta-data in a formal
language that admits logic-based automatic reasoning.

Perspective 2: Tooling for Data Processing and Integration Proponents of the second perspective argue that
the Semantic Web is mainly about creating efficient methods and tooling for managing data, integrating
it from heterogeneous sources, and facilitating the re-use of data.

Perspective 3: Foundations of Ontologies & Linked Data This area of the research field investigates the foun-
dations and applications of knowledge representations like ontologies, knowledge graphs and linked
data through W3C standards like RDF, OWL, and SPARQL.

In this thesis we do not take a particular stance on the subject of the semantic web field. Still, our work is
mostly associated with the second perspective: We extract data from the states of programs and apply existing
Semantic Web technologies to represent it in a standardized and flexible exchange format. Furthermore, we
integrate additional Semantic Web tooling into sjdb to process and query this data.

Because we treat the Semantic Web technologies mainly as tools, we do not further discuss the Semantic
Web field here. Instead, we focus on briefly introducing those technologies that are relevant throughout the
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thesis. We give further details on a specific technology or additional technologies only when it is required in a
particular chapter or section.

Section 2.1.1 introduces ontologies and the Web Ontology Language (OWL) as a knowledge representation
language, as well as related technologies like automatic reasoners. Next, we present RDF, the exchange format
in which we store and manipulate OWL-encoded knowledge in section 2.1.2. Lastly, we address the XML
Schema Definition Language (XSD) in section 2.1.3.

2.1.1. Ontologies and OWL

The term “ontology” is borrowed from philosophy. According to Gruber it denotes “a specification of a
representational vocabulary for a shared domain of discourse”, and it consists of “definitions of classes,
relations, functions, and other objects” [44].

When we use the term “ontology”, we refer to knowledge that has been expressed in the Web Ontology
Language (OWL) [43]. The formalization of ontologies is standardized through OWL and it permits the
combination of external ontologies through an import mechanism. Because of this, ontologies are utilized
in the Semantic Web for integrating data from different domains, sharing that data, but also as a schema
language for building knowledge resources.

In this thesis, we utilize OWL 2 DL, a sub-language of OWL, to implement the knowledge bases that we extract
from program states. This way, we can employ OWL-related tooling to combine our knowledge bases with
external, user-provided knowledge, and we can answer semantic queries via OWL 2 DL reasoners.

OWL and Description Logic. OWL 2 DL realizes the description logic SROIQ. The syntax and formal
semantics of description logic (DL) enables us to concisely formalize our work, for example our mapping
from program states to a knowledge base. Therefore, we abstract from OWL 2 DL as the concrete knowledge
implementation language in most sections of this thesis, and instead utilize a SROIQ-based description logic
which we introduce in section 2.2.

Thus, if not specified otherwise, when we use the term knowledge base, we refer to a collection of DL axioms
that is implemented as an OWL 2 DL ontology.

2.1.2. The Resource Description Framework

The Resource Description Framework (RDF) is a W3C standard of the Semantic Web [30]. Its core feature is
an abstract syntax for defining directed, labeled graphs whose vertices and edges can be assigned multiple
types [49]. These graphs are called RDF graphs or RDF knowledge bases and they are specified in terms of RDF
triples. Multiple concrete syntaxes exist for RDF, e.g. Turtle [15].

An RDF triple expresses a subject-predicate-object relation. They can consist of named nodes of the graph,
blank nodes without a fixed name, or literals of a data type. The names of named nodes are so-called
Internationalized Resource Identifiers (IRIs) [33]. IRIs are a generalization of Uniform Resource Identifiers
(URIs) [17] that support a wider range of unicode characters.

RDF is an exchange format for data that is widely supported by Semantic Web tooling. Most importantly,
the OWL standard defines a mapping from the OWL abstract syntax to RDF [88] which makes it possible
to store OWL ontologies as RDF graphs and also distribute other RDF data alongside an ontology. Due to
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this flexibility, our implementation of sjdb constructs, manipulates, and exchanges knowledge bases as RDF
graphs that encode OWL ontologies.

2.1.3. XSD Datatypes

The XML Schema Definition Language (XSD) [93] defines a set of datatypes and associated value spaces.
Furthermore, lexical spaces are defined which contain representations of these values as so-called literals.

OWL utilizes XSD datatypes for storing and representing data [82]. Therefore, we will later introduce a
mapping from primitive Java types to XSD datatypes as part of our mapping from Java program states to
knowledge bases.

2.2. Description Logics

In their textbook, Baader et al. summarize Description Logics (DLs) as follows [12, Chapter 1]:

“Description logics are a family of knowledge representation languages that can be used to
represent knowledge of an application domain in a structured and well-understood way.”

A description logic-based knowledge representation is “structured” through the notion of concepts and roles.
Intuitively, a concept can be understood as a set of individuals with certain characteristics. Roles describe
relationships between the concepts. A concrete situation within the knowledge domain can be specified by
declaring individuals and by assigning them to concepts and roles.

Most description logics are designed to form a decidable fragment of first-order logic [12]. Knowledge that
has been formulated with a DL is “well-understood” since description logics possess precise, set-theory-based
formal semantics. This also means that implicit consequences can be automatically inferred from explicitly
stated knowledge.

Example 1: Pizza Terminology
Let us illustrate the notions of concepts, roles, and individuals using an example based on the well-known
pizza ontology [51].

In this knowledge domain, we know of the concepts of Pizzas and PizzaToppings. Pizzas usually have
toppings. In the pizza ontology, this is modeled by the hasTopping role.

Let us assume a customer named “Bob” has just ordered an individualized pizza with a pepper topping.
Then one can model this situation by declaring the individuals bobsPizza and pepperTopping and make the
following assertions in DL syntax:

Pizza(bobsPizza)
“bobsPizza is a pizza”

PizzaTopping(pepperTopping)
“pepperTopping is a topping”

hasTopping(bobsPizza, pepperTopping)
“bobsPizza has the topping pepperTopping”
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The subsumption operator “⊑” establishes hierarchies between concepts. C ⊑ D declares that the subsumer D
is more general than the subsumee C. Thus, all individuals which belong to the subsumee C are also contained
in D. This operator is the main tool for formulating inferences in description logics.

Example 2: Topping Hierarchy
For instance, we might add the concept SpicyTopping, and we declare that every spicy topping is a pizza
topping:

SpicyTopping ⊑ PizzaTopping.

Now, if we assert SpicyTopping(pepperTopping), then it can be automatically inferred that PizzaTopping(
pepperTopping) must hold, too.

One of the main features of description logics is concept descriptions. That is, DLs provide constructors to
formulate more complex concepts from atomic concepts and role declarations.

Example 3: Pizza Description
One can formalize that a spicy pizza is a pizza that has a spicy topping:

SpicyPizza ≡ Pizza ⊓ ∃hasTopping : SpicyTopping.

(Here, ≡ is a shortcut for applying ⊑ in both directions.)

Some of these constructors just combine existing concepts. E.g. C ⊓ D describes a concept that contains
all individuals that belong to C and D at the same time. On the other hand, quantifiers establish relations
between concepts. For instance, the existential restriction in ∃R : C constructs a concept that contains all
individuals that are in relation to some individual from C via the role R.

Relevance of DLs to this Thesis DLs have been used in databases [19, 94, 104] and for query answering [21,
21, 8]. They also serve as the formal foundation for ontology languages like the Web Ontology Language
(OWL) [81, 56].

In this thesis, we also make use of the description logic OWL 2 DL [82] that constitutes a subset of OWL 2. We
utilize it to give meaning to the data structures we extract from Java program states, see chapters 5 and 6.
On the one hand, we formalize a knowledge domain of Java program states. On the other hand, users can
declare their own application domain on top of this knowledge base of Java states using DL constructors. For
example, the case study in section 9.1.1 showcases how structural requirements for B-Trees can be formulated
in a DL and checked for a Java implementation.

Typical inferencing tasks in which we will make use of automatic DL reasoners include

• checking the consistency of a knowledge base,

• querying whether certain concepts can exist by checking them for satisfiability. This is useful for verifying
invariants of algorithms, see section 9.1.2, and

• enumerating all known individuals belonging to a concept.
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2.2.1. Syntax and Semantics

The semantics of OWL 2 DL are compatible [81] with the SROIQ description logic [54]. There are many
syntaxes for OWL 2 [43]. Some of them are aimed at the exchange of ontologies between tools, like the
RDF/XML syntax [88, 100]. Others, like the functional-style syntax [82], are very close to the structure of the
language and are used in defining its direct semantics [81].

Thus, using the functional-style syntax in this document would allow us to exactly mirror the ontologies
implemented in the sjdb tool and the case studies. However, the functional-style syntax is lengthy and can be
hard to read in the case of longer expressions. Therefore, we decided to utilize a variant of the syntax of the
SROIQ description logic instead. This way, the DL constructs in this thesis will also be easier to comprehend
for those readers who are familiar with description logics literature.

Because OWL 2 DL is an extension of SROIQ, the syntax & semantics of SROIQ do not support all constructs
we require. Therefore, we will slightly extend and modify it. We provide a definition of the modified syntax in
the subsection below which also includes some informal intuitions about the semantics. The formal semantics
are defined in the subsequent section. These definitions and our use of terminology is based on the SROIQ
definitions of Baader et al. [12, Chapter 8] and Rudolph [98]. We leave out many of the finer details and
instead refer the reader to these works.

Syntax

In description logics, expressions are interpreted and inferences drawn in the context of a knowledge base.

A knowledge base is defined via three components, called boxes:

The TBox The TBox establishes the terminology of a knowledge domain regarding concepts, similar to a
database scheme [12].

The ABox The ABox stores assertions that model a specific situation in the knowledge domain.

The RBox The RBox stores axioms describing roles. That is, it marks them as reflexive, transitive, etc.
Furthermore, it stores role inclusion axioms which also allow chaining relations.
Like the TBox, the RBox can be regarded as terminological knowledge.

To refer to concepts, roles, and individuals, names must be declared for them:

Definition 1 (Concept, Role, and Individual Names).
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Individual Names I Individual names refer to singular entities in the knowledge domain. The set of all
individual names is denoted by I.

Concept Names C Concept names refer to a specific concept. A concept is a set of individuals that usually
share a certain characteristic.
The set of all concept names is C. It may not contain the top concept symbol ⊤ nor the bottom concept
symbol ⊥.

Role Names R Binary relationships between individuals are identified with role names. The set of all role
names is R. It may not contain the universal role symbol U.

The sets of individual names, concept names, and role names must be disjoint. However, we still allow punning
and implicitly apply renaming, see section 2.2.5.

In OWL 2, IRIs [33] must be used for all names. In this document, as long as the intention is clear, we will
mostly use shortened names instead.

RBox Syntax To define RBoxes, first, we have to establish the syntax for roles:

Definition 2 (Roles). Let R ∈ R be a role name. Then R− is called the inverse role of R. The symbol U is
called the universal role.

The set of all roles is
R ∪ {R− | R ∈ R} ∪ {U}.

The inverse role R− describes the reverse of the relation represented by R. I.e. R− relates the individual b to
a iff R relates a to b. Note, that the set of roles does not include roles that have been inverted multiple times,
like (R−)

−. U can be understood as the relation that relates each individual to every other individual.

A role can be further characterized via role axioms:

Definition 3 (Role Axioms). Let R1, R2, . . . , Rn, R, S be roles with n ≥ 1. Then the set of role axioms consists
of all statements which have one of the following forms:

Ref(R)

“reflexive role”

Irr(R)

“irreflexive role”

Sym(R)

“symmetric role”

Asy(R)

“asymmetric role”

Tra(R)

“transitive role”

Dis(R,S)

“disjoint roles”

R1 ◦R2 ◦ . . . ◦Rn ⊑ S

“role inclusion axiom (RIA)”

Additionally, we treat the expression

R ≡ S (role equivalence axiom)

as an abbreviation for the following two axioms:

R ⊑ S S ⊑ R.
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Intuitively, a role inclusion axiom (RIA) declares that a role S includes all pairs that are contained in the
composition of the relations R1, R2, . . . , Rn. Please note that a composition of roles can not appear on the
right-hand side of an RIA in SROIQ or in OWL 2 DL1 [82]. If n > 1, we also refer to an RIA as a chain of
roles.

For similar reasons, many more syntactic restrictions are placed on the use of roles and their definition.
However, we will only point them out where necessary.

Now we can define the contents of an RBox:

Definition 4 (RBox). An RBox is a finite set role axioms.

TBox Syntax More complex concepts can be constructed from atomic concepts using concept descriptions:

Definition 5 (Concepts). The set of concept descriptions which we also refer to as concepts is inductively defined
as follows:

• every concept name C ∈ C is a concept description;

• the top concept ⊤ and the bottom concept ⊥ are concept descriptions;

• the expression {i1, i2, . . . , in} for n ≥ 1 and individual names i1, i2, . . . , in ∈ I is a concept description.
Such a concept description is called a nominal concept.

• Let C and D be concept descriptions. Let R be a role. Let n be a non-negative integer, then the following
are concept descriptions, too:

– ¬C (negation),
– C ⊓D (conjunction),
– C ⊔D (disjunction),
– ∃R : C (existential restriction),
– ∀R : C (value restriction),
– ∃R : Self (self restriction),
– (≥n)R : C (at-least restriction), and
– (≤n)R : C (at-most restriction).

Furthermore, we treat the expression

(=n)R : C (exact cardinality restriction)

as an abbreviation for the concept description

((≥n)R : C) ⊓ ((≤n)R : C).

We also use the term cardinality restriction to refer to an at-least, at-most, or exact cardinality restriction.

1In general, role chains on the right-hand side can lead to the undecidability of the logic [78]. However, in some cases, they can be
emulated in SROIQ [25].
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The top concept ⊤ is the concept that contains all individuals, while the bottom concept ⊥ is the concept that
contains no individuals. A nominal {i1, i2, . . . , in} describes the concept that exactly contains the individuals
with the enumerated names. The negation ¬C contains all individuals that are not contained in the concept
C. C ⊓D captures the intersection of the individuals in C and D. Conversely, C ⊔D describes the union
of C and D. The existential restriction ∃R : C describes the concept of all individuals that are in relation
through the role R to some individual from the concept C. The value restriction ∀R : C describes the concept
of individuals for which the role R connects them exclusively to individuals from C. Please note, that this
also includes individuals which do not participate in the role R at all. A concept of all individuals that are in
relation to themselves via R can be constructed with the self restriction ∃R : Self . To describe the concept of
individuals that are in relation via the role R to at least or at most n individuals in the concept C, the at-least
restriction (≥n)R : C or the at-most restriction (≤n)R : C can be used respectively.

When writing down a concept description, one must make it clear in which order the constructors are applied.
Thus, we establish the following notation:

Notation 2.2.1. Parentheses “(. . .)” are to be used to indicate the order of constructor operations. To reduce
the number of parentheses needed for a complex concept description, we establish the following order of
precedence for the above constructors:

1. ¬, ∃, ∀, ≤, ≥, =,

2. ⊓,

3. ⊔.

This for example means, that negation and quantifiers apply to as little as possible, e.g.

¬∃R : ∀S : C ⊔D ⊓ E

is the same as
(¬(∃R : (∀S : C))) ⊔ (D ⊓ E)

However, parentheses may still be used to clarify the order.

To associate concept names with a concept description, concept inclusion axioms must be used:

Definition 6 (Concept Inclusion Axiom). Let C and D be concepts. The expression

C ⊑ D

is a general concept inclusion axiom (GCI). We say “C is subsumed by D”.

We use the abbreviation
C ≡ D (concept equivalence axiom)

to refer to the following pair of general concept inclusion axioms:

C ⊑ D and D ⊑ C.

Now we can define the contents of a TBox:

Definition 7 (TBox). A TBox is a finite set of general concept inclusion axioms.
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ABox Syntax Within an ABox, we declare assertions about individuals to model a specific situation within
the knowledge domain:

Definition 8 (ABox). Let C be a concept description, let R be a role, and let a and b be individuals. We define
the following types of individual assertions:

• C(a) is a concept assertion,

• R(a, b) and ¬R(a, b) are (negated) role assertions,

• a ≈ b and a ff b are (in-)equality statements.

An ABox is a finite set of individual assertions. We refer to individual assertions as axioms, too.

Concept assertions declare that an individual is a member of a certain concept. Role assertions declare that
two individuals are, or are not in relation via a specific role. Finally, (in-)equality statements indicate that
two individual names refer to the same, or to different individuals.

Knowledge Base Syntax We can now define the syntax for specifying knowledge bases:

Definition 9 (Knowledge Base). A knowledge base K is a tuple

(R, T ,A)

where R is an RBox, T is a TBox and A is an ABox.

We retain the separation into boxes within this chapter, however, we will treat a knowledge base as a single
set of axioms in the remainder of the thesis.

Semantics

Knowledge bases are given meaning through interpretations. An interpretation is a possible “world” that
defines the set of all individuals that exist in this world. It also specifies which concepts these individuals
belong to and through which roles they are in relation to each other.

Definition 10 (Interpretation). An interpretation I = (∆I , ·I) is a structure that consists of

• a non-empty set ∆I which is the domain of discourse containing all individuals existing in the world of
I, and

• the mapping ·I that maps
– each individual name i ∈ I to an individual iI ∈ ∆I ,
– each concept name C ∈ C to a set of individuals CI ⊆ ∆I , and
– each role name R ∈ R to a binary relation RI ⊆ ∆I ×∆I .
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The interpretation mapping ·I is extended from role names to roles as follows:

(R−)
I
= {(b, a) | (a, b) ∈ RI}

UI = ∆I ×∆I

Furthermore, we extended it to concept descriptions:

⊤I = ∆I ,

⊥I = ∅,
{i1, i2, . . . , in}I = {iI1 , iI2 , . . . , iIn}

(¬C)I = ∆I \ CI

(C ⊓D)I = CI ∩DI

(C ⊔D)I = CI ∪DI

(∃R : C)I = {i ∈ ∆I | ex. j ∈ CI s.t. (i, j) ∈ RI}
(∀R : C)I = {i ∈ ∆I | fa. j ∈ ∆I with (i, j) ∈ RI we have j ∈ CI}

(∃R : Self )I = {i ∈ ∆I | (i, i) ∈ RI}
((≥n)R : C)I = {i ∈ ∆I | |{j ∈ CI | (i, j) ∈ RI}| ≥ n}
((≤n)R : C)I = {i ∈ ∆I | |{j ∈ CI | (i, j) ∈ RI}| ≤ n}

On the domain of discourse, ◦ denotes the composition of relations and is defined as

RI ◦ SI = {(x, z) | ex. y s.t. (x, y) ∈ RI and (y, z) ∈ SI}

for some binary relations RI and SI .

Ultimately, a user of a DL often wants to know whether a certain axiom holds for a specific interpretation, or
in general. For this purpose, we define the notion of satisfiability:

Definition 11 (Axiom Satisfiability). To express that a certain axiom α is true for a specific interpretation
I we say I satisfies α, or I is a model of α. This notion is formalized through the relation |=, and we write
I |= α. Let R1, R2, . . . , Rn, R, and S be roles with n ≥ 1. Let C and D be concept descriptions and let a and
b be individual names. Then:

Role Axioms

I |= Ref(R) if {(x, x) | x ∈ ∆I} ⊆ RI

I |= Irr(R) if {(x, x) | x ∈ ∆I} ∩RI = ∅
I |= Sym(R) if (x, y) ∈ RI implies (y, x) ∈ RI

I |= Asy(R) if (x, y) ∈ RI implies (y, x) /∈ RI

I |= Tra(R) if (x, y) ∈ RI and (y, z) ∈ RI implies (x, z) ∈ RI

I |= Dis(R,S) if RI ∩ SI = ∅
I |= R1 ◦R2 ◦ . . . ◦Rn ⊑ S if RI

1 ◦RI
2 ◦ . . . ◦RI

n ⊆ SI
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General Inclusion Axioms

I |= C ⊑ D if CI ⊆ DI

Individual Assertions

I |= C(a) if aI ∈ CI

I |= R(a, b) if (aI , bI) ∈ RI

I |= ¬R(a, b) if (aI , bI) /∈ RI

I |= a ≈ b if aI = bI

I |= a ff b if aI ̸= bI

We can now extend the notion of satisfiability to knowledge bases:

Definition 12 (Knowledge Base Satisfiability). An interpretation satisfies a box B, if it satisfies all axioms in
that box:

I |= B :⇐⇒ I |= α fa. α ∈ B.

We also say I is a model of B.

I satisfies a knowledge base KB = (R, T ,A) iff it satisfies all of its boxes:

I |= KB :⇐⇒ I |= R and I |= T and I |= A.

We also say I is a model of KB.

A knowledge base is called satisfiable or consistent if there exists a model for it. It is called unsatisfiable or
inconsistent, if there exists no model for it.

For our semantic debugger, we also encounter the use case of having to determine whether a concept description
is satisfiable in the context of a specific knowledge base. That is, we need to determine whether there is
a model for this knowledge base so that there is at least one individual in that concept. We use a similar
definition, for axioms:

Definition 13 (Satisfiability with Respect to a Knowledge Base). A concept description C is satisfiable with
respect to a knowledge base KB if there exists an interpretation I and an individual iI such that

I |= KB and iI ∈ CI .

An axiom α is satisfiable with respect to a knowledge base KB if there exists an interpretation I such that

I |= KB and I |= α.

Another frequent inference task is to determine whether a knowledge base entails some axiom:

Definition 14 (Semantic Consequences). A knowledge base KB entails an axiom α, written KB |= α, if every
model of KB is also a model of α.
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2.2.2. Common Constructions

Here, we briefly present some well-known DL constructions which we also utilize in this thesis:

Domains and Ranges The concept of all individuals i that are in relation to some other individual via the
role R is called the domain of R and we abbreviate it with Dom(R):

Dom(R) := ∃R : ⊤.

Let i be an individual such that some individual from the domain of R is connected to i through R. Then the
concept of all such i is called the range of R:

Ran(R) := ∃R− : ⊤.

Functional and Inverse Functional Roles In OWL, functional properties connect the individuals of their
domain to at most one individual. In our DL syntax, we declare roles R as functional using the abbreviation
Fun(R):

Fun(R) := Dom(R) ⊑ (≤ 1)R : ⊤.

Similarly, the inverse functional properties of OWL associate every individual from their range with at most one
individual from their domain. We abbreviate this via InvFun(R):

InvFun(R) := Ran(R) ⊑ (≤ 1)R− : ⊤.

Rolification When building role chains for a role inclusion axiom, it is often useful to restrict the connection
of two roles to individuals from a specific concept.

This is done by turning a concept C into a new role RC that connects the individuals of the concept to
themselves. This practice is called rolification and can be formalized as follows:

C ≡ ∃RC : Self .

When formulating DL expressions in the context of a knowledge base KB, we use the abbreviation rolify(C).
That is, if rolify(C) appears in an expression, it refers to the new role RC , and we implicitly assume that the
above axiom has been added to KB.

For example, using rolification we can now introduce a role growsOn that describes that apples grow on trees
as follows:

rolify(Apple) ◦ U ◦ rolify(Tree) ⊑ growsOn.

2.2.3. The Open World Assumption

An information system adopts the so-called closed-world assumption if facts that can not be deduced are treated
as being false. This is often the case with relational database systems.

Conversely, an information system is operating under the open-world assumption if the truth of facts that can
not be deduced is treated as being unknown. In other words, a statement may be true whether or not it is
known to be true. This is the case for most description logics and OWL 2 in particular.
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Example 4
Imagine a customer database implemented with MariaDB, PostgreSQL, or similar technology. We might ask
the database, whether there is a customer with the name “Bob”. If there is no entry for Bob in the database,
the answer will be no.

On the other hand, suppose we use a DL knowledge base KB to implement the system, for example as an
RDF store utilizing OWL 2. Here, we store customer information as ABox axioms. To ask whether Bob is a
customer, we need to check if a concept like

C ≡ Customer ⊓ ∃hasName : {“Bob”}

is not empty.

However, with DL knowledge bases, we do not work with a specific interpretation I for which we could
inspect the extension CI of the above concept. For some concepts, the extension may even be infinitely
large.

We could ask an automatic reasoner to enumerate all individuals i for which KB |= C(i) can be inferred.
However, even if that enumeration is empty, we can not exclude the possibility that some individual belongs
to the concept. That is, unless the knowledge base explicitly includes an axiom stating the opposite (e.g.
∃hasName : {“Bob”} ⊑ ⊥). Similarly, a reasoner will always confirm that C is satisfiable unless such an
axiom is added.

This is because without such an axiom, we can always find a possible model I of KB where CI = {iI} for
some fresh iI ∈ ∆I as long as KB is consistent.

In short, for an implementation of the customer data in description logic, the answer to the question “Is
Bob a customer?” is unknown unless some axioms are added that explicitly specify the status of Bob.

In section 5.2 we will see that the open-world assumption is not always appropriate when modeling Java
program states. In such cases, we have to manually or automatically add closure axioms to close down the
world.

2.2.4. The Unique Name Assumption

Some description logics employ the unique name assumption. That is, if two individuals have different name
symbols, their interpretation must also be different: For a, b ∈ I, if a ̸= b, then aI ̸= bI .

This is not the case for OWL 2. Therefore, our semantics above also do not make the unique name assumption.
This can sometimes lead to unexpected problems.

Example 5
Let’s assume we have a knowledge base KB that models collections. KB contains the following axioms:

contains(myArray, a) contains(myArray, b)

We would expect that we can derive that myArray contains at least two elements:

KB |= ((≥2)contains : ⊤)(myArray). (2.1)
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However, this is not the case since there is a possible interpretation I of KB that assigns the same individual
to a and b (aI = bI), so myArray only contains at least one element in this interpretation.

In such cases, we have to add axioms that explicitly differentiate individuals. If we add the ABox axiom a ff b
in the above example, then the entailment 2.1 can be derived.

2.2.5. Correspondence between OWL 2 and SROIQ

As mentioned above, OWL 2 is mostly compatible with SROIQ but extends it in some aspects. The official
OWL 2 specification gives no detailed explanation how OWL 2 constructs map to SROIQ and vice versa [43,
81]. However, Baader et al. list the similarities and differences of OWL 2 and SROIQ in detail and explain
how OWL 2 structures and SROIQ expressions correspond to each other [12, Chapter 8]. Rudolph even
describes a translation from SROIQ to OWL 2 [98, Chapter 9]. Due to the extensions made by OWL 2, a
translation in the reverse direction is more complex, but all purely logical axioms (no datatypes, etc.) are still
straightforward to translate [98].

We do not give details on the correspondence between OWL 2 and SROIQ here and specify no mapping
between our DL syntax and an OWL 2 syntax. Instead, we only mention certain aspects that are relevant to
this thesis and otherwise refer to the aforementioned works by Baader et al. and Rudolph.

Changes in the Terminology In OWL 2, the term ontology is used to refer to a knowledge base. Also, axioms
are not separated into boxes. Instead, an ontology is the union of the RBox, TBox, and ABox.

The term class is used to refer to concepts and roles are called properties.

Datatypes and Literals In addition to individuals, OWL 2 utilizes datatypes and literals which are the values
of a datatype. This simplifies the integration of application data like integers and strings into an ontology.
For most of the available datatypes, OWL 2 adopts the value space and lexical space from the XML Schema
Definition Language (XSD) [82, 93].

Regarding reasoning, datatypes are a form of concrete domains [11, 57] that are disjoint from the domain of
discourse of an interpretation. In OWL 2, datatypes are treated similarly to classes and constructors exist
for their intersection, union, etc. There are many restrictions on their use, for example, object properties that
relate individuals must be disjoint from data properties that relate individuals to literals.

Syntactically, we will treat datatypes like concepts and literals like nominals. E.g. the axiom

⊤ ⊑ ∀hasId : xsd:int

encodes that the range of the hasId role is integers only. In the entailment 2.1, we described the class of all
individuals for which the hasName role stores the string “Bob”:

∃hasName : {“Bob”}.

In OWL 2, the values of literals must be enclosed in quotation marks and the type must be annotated like this:
"42"^^xsd:int. Instead, we usually state the value directly and leave out the datatype when the context
makes it clear.
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N(i)⇝ Nconcept(iindividual)

“N acts as a concept.”
N(i, j)⇝ Nrole(iindividual, jindividual)

“N acts as a role.”
C(N)⇝ Cconcept(Nindividual)

“N acts as an individual.”

Figure 2.1.: Example of how implicit renaming is applied to the name N to realize punning.

Punning OWL 2 supports a simple form of meta-modeling called punning. Punning refers to the practice of
using the same name for an individual, a concept, or a role.

Example 6: Punning with Java Classes
Wemake use of punning in section 5.1. In this instance, we translate Java classes into OWL classes. However,
we also create an OWL class that contains all Java classes. When we assert that a certain object is an
instance of java.util.LinkedList, we treat java.util.LinkedList like an OWL class. When we
assert that java.util.LinkedList is a Java class, we treat it like an individual:

java.util.LinkedList(myObject)
“myObject is a linked list.”

Class(java.util.LinkedList)
“java.util.LinkedList is a Java class”

Punning is still compatible with SROIQ . This is because it can easily be inferred from the syntactical
context, whether a name N acts as concept, role, or individual. When translating from OWL to SROIQ,
depending on this context, a fresh name can be chosen instead of N , e.g. Nconcept, Nrole, or Nindividual to
eliminate meta-modeling [79]. In this thesis, we also allow punning in our syntax and implicitly assume such
a renaming scheme, see the example in fig. 2.1.

Furthermore, we introduce a shorthand notation for declaring names as individuals, concepts and roles that
implements the renaming scheme:

C
[︂
N (1), . . . , N (n)

]︂
:= N

(1)
concept, . . . , N

(n)
concept ∈ C

R
[︂
N (1), . . . , N (n)

]︂
:= N

(1)
role, . . . , N

(n)
role ∈ R

I
[︂
N (1), . . . , N (n)

]︂
:= N

(1)
individual, . . . , N

(n)
individual ∈ I.

2.3. The Java Language and Virtual Machine

In this thesis, we aim to implement a semantic debugger for the Java SE 11 Edition of the Java programming
language2.

The language is specified through the Java Language Specification (JLS) [42], and its programs are predomi-
nantly compiled into a bytecode format and executed by the Java Virtual Machine (JVM). The JVM is specified
through the Java Virtual Machine Specification (JVMS) [70]. For most details on the language and the JVM,
we refer to these specifications. However, we do introduce some concepts of the language and behaviors of
the JVM that are important to this thesis in this background section.

2https://docs.oracle.com/en/java/javase/11/
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Section 2.3.1 introduces some Java-related terminology frequently used in this thesis. In section 2.3.2, we
explain why not all parts of a Java program are always present in the state of the JVM during its execution
due to lazy linkage strategies. Section 2.3.3 introduces the Java Debugging Interface (JDI) which is the main
pathway through which sjdb extracts information from the state of a JVM. Lastly, section 2.3.4 gives some
insights into the composition of Java identifiers and canonical names.

2.3.1. Various Terminology

The following is a loose collection of Java-related terms we frequently use in this thesis:

Reference Type Kind The reference types of Java are either classes, interfaces, or array types. Other types
like enum types or the implicitly generated types that lambda expressions instantiate are special cases
of classes. We refer to this differentiation of reference types between classes, interfaces, and array types
as the reference type kind, or type kind in short.

Direct Subtypes When discussing subtyping relationships, we often focus on the direct subtyping relation
as defined in section 4.10 of the JLS. For example, in the following source code snippet, C is a direct
subclass of D, and D is a direct subclass of E. However, while C is a subclass of E by transitivity, it is not
a direct subclass of E:

class C extends D {}
class D extends E {}
class E {}

Code Indices Code indices identify a location in a method, constructor, or (static) initializer. The exact
definition of a code index is implementation-specific, but typically, a code index is available for every
byte code instruction generated for a Java program [2].

2.3.2. Lazy-Linking of Reference Types

The JVM does not automatically fully load all reference types defined in a Java program into its state at
startup. Instead, JVM implementations are permitted to employ so-called lazy linkage strategies [70, section
5.4]. Due to such strategies, information about a type may not be loaded at all in the state of a JVM, or be
loaded at various stages of completeness. If a type is not completely initialized, this also means that those
components of a program that have been defined within this type are also missing from the state. For instance,
this affects methods and the variables defined within them.

We now give an overview of the process of initializing a class as it is described in chapter 5 of the JVMS. The
JVMS divides this process into multiple steps, and due to lazy linkage strategies, not all steps are always
executed:

1. Loading For classes and interfaces, loading encompasses finding their binary representation, for example
in the file system, and loading this representation into memory. For array types, no representation has
to be loaded.
The loading process is carried out by a so-called class loader which can either be the built-in bootstrap
class loader of the JVM, or a user-defined loader.
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Figure 2.2.: The different stages of reference type initialization. A reference type can either not be loaded at
all, or it is only created but not yet prepared, or it is prepared but not yet initialized, or it is fully
initialized.

2. Creating Immediately after loading, the JVM will always create a class or interface from the loaded binary
representation, or fully automatically in the case of array types.
Moreover, the JVM recursively loads and creates direct superclasses and superinterfaces of a type, as
well as the component type of array types if it is not primitive.

3. Linking Linking is the act of combining a created reference type into the runtime state of the JVM. It does
not necessarily take place after creating. However, it does trigger the recursive loading, creating, and
linking of direct supertypes and the component type of arrays.
Linking is again separated into two steps, verifying and preparing:

3.1. Verifying Verifying performs a set of structural correctness checks on a created type. It may cause
recursive loading and creating of other types, but not linking.

3.2. Preparing Preparing creates the fields and methods of a type. If the compiler included information
about source code line locations in the binary representatio of the type, then this information is
also made available here.

4. Initializing During initialization, the JVM executes a special initialization method called <clinit>. It is
generated by the compiler, and it for example calls the static initializers of the class.
Initialization does not necessarily take place after linking.

We can conclude that the information that is available in a given JVM state about a reference type at any time
can fall into one of four categories, see also fig. 2.2.

Definition 15 (Type Initialization Progress). We call the aforementioned categories the initialization progress
of a type and give them the following designations:

Not-Yet Loaded Types These are types that are part of the program source code but no explicit information
is available about them in the state.

At most, their binary name is referenced in the declaration of a field, variable, or method which has not yet
been used. In some cases, it is technically possible to derive some more information about the type from this
name (e.g. whether it is an array type, local class, or anonymous class, etc.) as we will explain in section 4.3.

However, differentiating all cases by analyzing the naming scheme is complex. Also, since such a type can
not have any instances and can not participate in any typing hierarchy of loaded types, there is not much
incentive to introduce this additional complexity. Therefore, we forego deriving additional information from
the names of not-yet loaded types.
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Figure 2.3.: Structure of the JPDA, figure adapted from the “JPDA Structure Overview” [87]. Standardized
interfaces specified in the JPDA are marked in blue .

Created-Only Types Such a type has been loaded and created but has not yet been linked. This situation can
for example arise when a program utilizes a user-defined class loader to load a type without using it.

For such types, the state only contains information about their binary name, class loader, supertypes, and
component types.

Prepared-Only Types Prepared-only types have been prepared but have not yet been initialized. This can for
example happen when the fields of a Class instance are inspected by reflection, but no instance has yet been
created.

In addition to the information available in created-only types, fields, methods, and source code line locations
are accessible for prepared-only types.

Initialized Types For initialized types, the special <clinit> method, i.e. their static initializers have been
executed.

For instance, initialization is guaranteed to occur when an instance of a type is created.

Furthermore, we refer to all types that are either not-yet loaded or created-only as unprepared types. Conse-
quently, we summarize all types that are prepared-only or initialized under the term prepared types.

2.3.3. The Java Debugging Interface

To inspect the state of a JVM, we utilize the Java Debugging Interface (JDI). The JDI is a high-level Java
library for debugging Java applications, and it is part of the Java Platform Debugger Architecture (JPDA).

The JPDA is multi-layered. A JVM implementation that supports the JPDA implements the so-called Java
Virtual Machine Tool Interface (JVM TI) which exposes JVM internals for debugging purposes. On top of the
JVM TI, a JPDA backend is implemented, usually as a library that is included with the JVM implementation.

This backend realizes the debuggee side of the Java Debug Wire Protocol (JDWP) which is the protocol used for
communication between the debugger and the debuggee. It is defined independently of the specific transport
mechanism used for the communication channel between debuggers and debuggees. An implementation of
the debugger side of the JDWP is called a JPDA frontend. Finally, this frontend can be accessed via the JDI.
We illustrate the whole architecture in fig. 2.3.

Through this multi-layered abstraction, the JPDA establishes a standard for implementing Java debugging
infrastructure and enables remote and cross-platform debugging.

The information accessible through the JDI is mostly sufficient for our purposes. Still, in rare cases, the JDI
does not expose certain details about the state of a JVM, even though they are communicated in the underlying
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JDWP. In these cases, we fall back to extracting this information from the implementation details of the JPDA
frontend.

If sjdb was relying exclusively on the JDI it would be independent of the specific Java Development Kit (JDK)
being used to compile it, as long as the JDK implements the JDI. However, since we need to extract information
from the JPDA frontend, sjdb is dependent on the implementation details of OpenJDK 11 [3] which is the
JDK we are using. Nevertheless, to remove this dependency, we could integrate the source code of the JPDA
frontend of OpenJDK 11 into sjdb as future work.

2.3.4. Java Identifiers and Canonical Names

At various points in this thesis, we have to encode Java identifiers and canonical names into different string
value spaces, for example into values of the XSD datatype xsd:string. In some cases, this encoding is
non-trivial. Therefore, we give a brief insight into the makeup of Java identifiers here.

Java identifiers are made up of so-called Java letters and Java digits [42, Section 3.8]. These correspond to
certain unicode code point ranges defined by the specification of the class Character3.

Furthermore, for Java identifiers, the unicode code-point ranges U+0000 through U+0008, U+000E through
U+001B, and U+007F through U+009F are considered ignorable [42, 1, section 3.8, Character.isIdentifierIg-
norable]. That is, “two identifiers are the same only if, after ignoring characters that are ignorable, the
identifiers have the same Unicode character for each letter or digit” [42, section 3.8]. When comparing
identifiers in the remainder of this thesis, we adopt these comparison semantics of the JLS.

Java canonical names consist of Java identifiers that have been joined by “.” characters.

3See the methods isJavaIdentifierStart, isJavaIdentifierPart in https://docs.oracle.com/en/java/
javase/11/docs/api/java.base/java/lang/Character.html.
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3. Concept Overview

We achieve the objective of this thesis, the development of the Semantic Java Debugger sjdb in two major
steps:

1. The state of a suspended Java program is extracted through the Java Debugging Interface (JDI), mapped
to a knowledge base, and augmented with external knowledge formalizations.

2. An interactive user interface combines tooling from the Semantic Web to execute different debugging
tasks on this knowledge base.

We separate these major steps into the following smaller conceptual goals:

Goal I: A formal representation of the information that is accessible through the JDI about the states of Java
program executions.

Goal II: A schema for knowledge bases that describe states of Java program executions, i.e. a DL model of
Java states.

Goal III: A formal mapping from the representation of states of Goal I to a knowledge base that follows the
schema of Goal II.

Goal IV: An answering engine that accepts different types of queries (SPARQL queries, SHACL shape validations,
DL inference tasks) and applies various Semantic Web technologies to the knowledge base of Goal III to
answer them.

Goal V: An interactive, command-line user interface that can run Java programs, suspend them at arbitrary
breakpoints, and combines the achievements of Goals I to IV to answer semantic user queries.

Figure 3.1 illustrates the interdependencies between these goals.

To realize Goal I, chapter 4 introduces a formal grammar whose expressions describe states of suspended Java
program executions.

Definition 16 (Java States & JDI States (Informal)). We refer to the state of a suspended execution of a Java
program in a JVM as a Java state, while we call the expressions of our grammar that formally describe parts of
such states JDI states1.

1A formal definition of JDI states is given in section 4.5.
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Goal V
Interactive, Command-line User Interface

Goal III
Formal Mapping: States to Knowledge Bases

Goal I
Grammar of JDI Information

Goal II
Ontology of Java States

Goal IV
Semantic Answering Engine

The Semantic Java Debugger

Figure 3.1.: Conceptual Goals of the Thesis and their Interdependencies

Chapter 5 depicts our approach to describing Java program states through axioms of description logic. It is a
semi-formal portrayal of the general shape of all knowledge bases generated by our mapping. Hence, this
section fulfills Goal II.

Towards securing Goal III, chapter 6 combines the outcomes of the previous two sections and delivers a fully
formal mapping µ from JDI states to a DL knowledge base. We also point out particular challenges of this
mapping wherever they arise.

Chapter 7 lays out the different types of semantic queries supported by sjdb. While we refrain from diving
into the details of the implementation in this chapter, the section also illustrates the overall internal workflow
of the tool that enables it to answer these different query types. This answering engine integrates multiple
Semantic Web technologies to accomplish Goal IV.

Finally, Goal IV emerges from the implementation of all the previous goals and by combining them with a
Read-Eval-Print Loop (REPL) that allows users to run Java programs, set breakpoints, apply the mapping µ to
suspended executions, and query the answering engine. We give some insights into this implementation in
chapter 8.

3.1. Debugger Workflow

In this section we give a rough overview on how sjdb operates and how users interact with the tool using
a visual guide, see fig. 3.2. The overview is meant to serve as a point of reference for the reader and is not
entirely accurate and we leave out some details. The later chapters will then fill in the details and expand on
some of sjdb’s features.

Users interact with sjdb via a command-line based Read-Eval-Print Loop (REPL). That is, they enter a
command and its parameters, sjdb will evaluate it, and then respond with the result. For the most part, we
abstract from the individual commands in this section and in the thesis in general. However, our evaluation in
chapter 9 will give some examples of the REPL’s commands.
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Figure 3.2.: Rough overview of a typical workflow of the sjdb debugger2.

Following the markers 1 – 7 in the figure, the following are the steps of a typical usage scenario of sjdb:

1 Execution of the Debuggee First, a user provides the Java program they want to inspect, the debuggee. It
can be supplied in a compiled format, or as source code, if it is a single source file. In the latter case,
sjdb will compile the program automatically,
Furthermore, sjdb operates on single snapshots of a program’s state. Therefore users have to define
breakpoints, that is, source code locations at which the execution of the debuggee will be suspended for
inspection.

2 Extraction of the Debuggee’s State Next, sjdb runs the program in a separate JVM process. Once a
breakpoint is reached, the user can instruct sjdb to extract the state of the suspended program through
the JDI.

3 Mapping of the State The debugger maps the extracted state to a knowledge base, a set of DL axioms.
Internally, we represent them as an RDF graph, since the RDF format is compatible with most semantic
web tooling.

2This figure contains material design icons by Google LLC and other contributors: https://github.com/Templarian/
MaterialDesign.
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4 Loading of External Knowledge The user can optionally supply an OWL/RDF-encoded formalization of
external knowledge, e.g. a description of concepts from an application domain or DL axioms that capture
correctness properties.
This external knowledge base is then integrated into the mapping of the program state.

5 Semantic Inspection The user can now interactively inspect the state of the suspended program by asking
semantic queries. For instance, they can define DL inference tasks or SPARQL queries.
The semantic queries are supplied to our answering engine that applies different external query backends
to the generated knowledge base to resolve the queries.

6 Displaying Results The results are displayed back to the user as the names of nodes of the RDF graph.
Unless the user queried for low-level RDF constructs, these names will be equivalent to the names of DL
indiviuals, roles and concepts in the generated knowledge base.

7 Reverse Mapping to Java Objects Since the names of RDF nodes might not always provide sufficient
insights into the Java constructs they represent, sjdb implements a partial reverse mapping. It can map
DL individuals that represent Java objects back to references to these objects. This ability is utilized by
sjdb to display queried Java objects back to the user similarly to traditional debuggers. For instance, it
gives an overview of the string representation of all field values.
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4. Modeling JDI Information

A major challenge in creating a mapping from Java states to knowledge bases is that the JLS and JVMS do not
give a formal model of a Java state. Additionally, at many points, the JLS and JVMS forego precision in the
specification to grant Java compilers and virtual machines a degree of freedom in their implementation.

Therefore, the knowledge bases resulting from our mapping can be thought of as a formal model of Java states.
As the actual contents of the Java states are implementation-dependent, and their high-level description in
the JVMS is imprecise, determining a notion of adequacy for this model is difficult.

To gain confidence that they adequately match the states of JVM implementations, we do not presumptively
formulate a direct definition of our knowledge bases. Instead, we create a formal model of the information
that is accessible through the JDI as a first step. We call such a model of a Java state a JDI state. Then, we
can formally define our knowledge bases through a mapping from such JDI states. We express JDI states as
expressions of a grammar which we explain in this section. However, before we can formulate this grammar,
we need to take care of certain prerequisites in the following subsections.

Java is a rich programming language, and modeling all of its features exceeds the scope of this thesis.
Therefore, section 4.1 gives an overview of Java features that we explicitly either completely exclude from
our considerations or which are modeled only indirectly by treating them as a special case of more general
Java constructs. Also, as execution of a JVM can be suspended at many different points, the section briefly
defines the set of suspended states that we depict in our grammar, and by extension, in the knowledge bases
generated by our mapping.

As outlined in section 2.3.2, the JVM may delay the loading of type information until it is required for the
program execution. Therefore, the information we can extract through the JDI about a Java program is usually
incomplete. Section 4.2 characterizes which information may be missing and under what circumstances.

To uniquely identify components of a JDI state, we define a notion of unique names called Runtime Canonical
Names (RCNs) in section 4.3.

Some of these components share many characteristics and can be handled in an almost identical way in
many cases, for instance, methods and constructors. Therefore, we introduce terminology that unifies such
components under shared names in section 4.4.

Finally, section 4.5 gives the grammar of JDI states and informally indicates the meaning of its expressions.

4.1. Scope of JDI States

As mentioned above, we do not aim to achieve a complete transcription of Java states into knowledge bases.
In particular, we explicitly do not model the following constructs but reduce them to regular classes and
methods:
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Generics After compilation, in the binary format of Java classes and interfaces, type parameters have been
removed through so-called type-erasure [42, chapter 13].
As a simple example, consider the following class:

class MyClass<T extends Cloneable> {
T myField;

}

In its binary representation, the type of the field myField was originally the type parameter T. Type-
erasure replaces it with its leftmost bound, i.e. Cloneable. Hence, at runtime, all instances of the class
would be treated as equivalent to instances of the following class by all type-checking operations:

class MyClass {
Cloneable myField;

}

To limit the scope of our mapping scheme, we do not model generics and will treat all constructs
|C<...>| with type parameters (classes, interfaces, methods, …) as the construct |C<...>| instead.
Here, | · | denotes the application of type erasure as specified in the JLS.
We treat all usages of a parameterized construct C<...> in a program as if the type-erased construct
|C<...>| was used instead. For instance, we treat a variable declaration MyClass<int[]> x; as the
declaration MyClass x;, where MyClass is the type-erased class from the previous example. Method
invocations etc. are handled similarly.
However, information about type parameter declarations and applied type arguments is recorded in the
JVM as so-called generic signatures [42, section 4.7.9]. These signatures are accessible through the JDI,
so information about generics may be added in future continuations of this work.

Enum Types Enum types are a special case of class types that implicitly extend the class Enum. They have a
fixed list of pre-defined instances, called enum constants. Their optional class bodies implicitly define an
anonymous class. Furthermore, enum constants are accessible as implicitly declared static fields of the
enum type. Similarly, enum types implicitly declare a values() method and a valueOf() method.
As these implicit declarations turn the special features of enum types into regular constructs of classes,
we treat them like regular class types for our ontology and the mapping process1.

Lambda Expressions At runtime, the evaluation of lambda expressions results in an instance of an implementation-
specific, automatically generated class C.
We do not explicitly model lambda expressions. Instead, we consider these automatically generated
classes like any regular class. The compilation of a lambda expression may also place the contained
instructions in a so-called synthetic method of the surrounding type, generated by the compiler. We
incorporate these synthetic methods into our mapping like any other method.

Modules Run-time modules are represented as instances of the Module class. In so far, we include run-time
modules as regular objects in our mapping.
However, we do not model any information about modules beyond this.

1While one can determine whether a class was originally declared as an enum type, in general the JDI also makes no distinction
between classes and enum types.
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Instance Initializers Instance initializers can not be directly inspected through the JDI. In practice, they are
compiled into the constructors of a class though neither the JLS nor the JVMS explicitly specify this.
Hence, they do not appear in our JDI state expressions.

Static Initializers The runtime representation of a Java type can have only one static initialization method
called <clinit>. Hence, if a class defines multiple static initializers, they must be merged by the
compiler into <clinit>. Thus, static initializers do not appear in JDI states.
Instead, we include the <clinit> method for every class, if present.

Threads We only consider single-threaded Java programs.

Considered JVM States Neither the JDI nor the JDWP specification seem to place any restrictions on the
earliest point at which the state of a JVM can be inspected. The JVM TI which may be used to implement a
JPDA backend explicitly provides documentation on available JVM capabilities before any bytecode has been
executed, classes been loaded or objects been created. The JDI specification only mentions that “a target VM
[...] is not guaranteed to be stable until after the VMStartEvent has been received” [85, LaunchingConnector
specification].

For simplicity, we only consider states of the execution of a single-threaded Java program that has been
suspended at a code index that corresponds to a source code location.

4.2. Restrictions on Available Type Information

Due to the lazy linking, see section 2.3.2, the information that a Java state stores about types is often
incomplete. Therefore, we first give an overview of what type information is available through the JDI under
which conditions in this subsection.

In some cases, we also briefly discuss what type information must be stored in a Java state, even if it is not
accessible through the JDI. We utilize these findings later in chapter 5 to address modeling concerns when
designing our DL model of Java states.

Reference Types Some information about a reference type is only available for created types. This includes

• the kind of the type,

• its direct superinterfaces, if it is a class or interface type, and

• its direct superclass, if it is a class type.

Some additional information is only present when the class has been prepared. This includes:

• Its fields, and

• its methods.
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Most importantly, only prepared types can be queried globally through the JDI. Information about
unprepared types can only be retrieved by finding a field, variable declaration, method declaration or
array type that makes use of the type.

Class Types The types of its superclasses and superinterfaces are recursively created when a class type is
created [70, section 5.4.5].
The superclasses and interfaces of a created class can be queried through the JDI. Only in the case of
the Object class is no superclass available [70, section 4.1].

Interface Types When an interface type is created, its superinterfaces are recursively created [70, section
5.3.5]. Information about these superinterfaces can be extracted through the JDI.
Although Object is a supertype of any interface, this information is not explicit in the JDI.
Still, the runtime representation of an interface must contain a reference to Object in a so-called
runtime constant pool [70, sections 4.1, 4.4.1, 5.1]. The JVMS does specify though, how and if this
runtime representation indicates that this reference constitutes a supertype of the interface.

Array Types If an array type is created, its component type is created recursively if it is a reference type [70,
section 5.3.3]. However, information about an array type is not necessarily present when its component
type is present.
There is no mention in the JVMS of whether the supertypes Object, Cloneable, or java.io.
Serializable of array types must be loaded and created when an array type is created. Also, no
supertype information can be queried directly through the JDI for array types.
However, the JVMS specifies, that JVM instructions like checkcast will load Object, Cloneable,
or java.io.Serializable if it is necessary for typechecking.

The Object Type We are only considering JDI states where the program has been halted at a code index
that corresponds to a source code location.
Therefore, the type Object must be initialized, which means that all information about the type is
available. This is because at such a location, the static main()method of the program must have started
execution. Then, the class C that contains main() must have been initialized [42, section 12.4]. This
initialization also involves the recursive intialization of C’s superclasses which must include Object.
The JLS confirms this reasoning explicitly in an example [42, section 12.1.3].

Primitive Types Information about a primitive types is available in the JDI, if it is used in a field declaration,
variable declaration, or for any primitive values stored in fields or variables.
The information only contains the name of the type. That is, whether it is an int, boolean, etc.

We conclude that full information about the supertype Object of all reference types is always available
through the JDI in all Java states that we are considering.

Information about other types may only be available, if they are actively used to create values etc. If a type
has not been prepared, this information might also be incomplete and not include fields and methods.

Information about some typing relationships is not explicitly available through the JDI. This includes Object
being a supertype of interfaces and arrays types, and Cloneable and java.io.Serializable being
supertypes of array types.
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4.3. Runtime Canonical Names

In Java, at runtime, reference types are uniquely identified by their binary name and their class loader, or by
the binary name and class loader of the component type, in the case of arrays [42, sections 4.3.4, 13.1]2.

Primitive types are uniquely identifiable by their canonical names [42, sections 6.7, 7.5].

For other components of Java programs, like local variables, neither the JLS nor the JVMS specify unique
names.

Definition 17 (Runtime Canonical Name). We create a notion of canonical names to uniquely identify all
reference types and primitive types, but also all fields, methods, constructors, and local variables in a Java state.
We call these names Runtime Canonical Names (RCNs), and they are defined inductively via the following
case distinction:

Primitive Types For every primitive type, the RCN is the same as its canonical name as defined in the JLS,
section 6.7 [42].

Top-Level Classes and Top-Level Interfaces For every top-level class and top-level interface C, its binary
name is the same as the canonical name N as defined in the JLS, section 6.7 [42].

Suppose C was loaded by the built-in bootstrap class loader of the JVM. Then N is the RCN of C.

Otherwise, if C was loaded by the built-in system class loader of the JVM, then “SysLoader-N” is the
RCN of C.

Lastly, suppose C was loaded by a user-defined class loader. A user-defined class loader is a Java object,
and every Java object is assigned a unique integer i by the JPDA backend.

The RCN of C is “Loaderi-N”. This name can not overlap with the canonical name used for bootstrap
loaded and system loaded classes since the character “-” can not appear in canonical names.

These RCNs are unique, since they indicate the binary name, as well as the class loader.

Array Types Let N be the RCN of the component type of an array type A. Then “N[]” is the RCN of A.

Fields Let f be the name of a field of a class, interface or array type with the RCN C. Then “C.f” is the RCN
of f . This RCN is unique as no two fields declared in a class or interface can have the same name [42,
sections 8.3, 9.3], and array types only have the field length [42, section 10.7].

Methods & Synthetic Methods Let m be the simple name of a method M of a class, interface or array type3
C. Methods may be synthetic, i.e. they have been generated by a compiler and do not appear in the
source code [70, section 4.7.8]. In such cases, the simple name m is implementation-specific, and we
use the name as provided to us through the JDI. We do not consider the special class initialization
method <clinit> here.

Let R be the RCN of the return type of M if M is not a constructor nor an initialization method. Let
T1, T2, . . . Tn be the RCNs of the declared types of the parameters of M4.

2This for example means that you can have two different classes in a Java state with the exact same fully-qualified names and
canonical names.

3Array types only have a clone method [42, section 10.7].
4The declared type of variable arity parameters is an array type, see section 8.4.1 of the JLS.
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Then “C.-R-m(T1,T2,. . .,Tn)” is the RCN of the method M .

This RCN is unique since it encodes the signature of M and no two methods can have an override-
equivalent signature, see section 8.4.2 of the JLS.

Constructors Let M refer to the constructor of a class with the RCN C. Let T1, T2, …, Tn be the RCNs of the
declared types of Ms formal parameters.

Then “C(T1,T2,. . .,Tn)” is the RCN of M . It is unique with the same reasoning as for methods.

The Class Initialization Method Let M be a class initialization method of a type with the RCN C. Then
“C.clinit” is the RCN of M .

This RCN is unique, as there can be at most one class initialization method.

Local Variables & Parameters We treat method parameters and constructor parameters as local variables.
Let v be the name of a local variable V . Let m be the RCN of the method or constructor M that declares
V .

Suppose there is no other variable with the name v declared in M . Then the RCN of V is “m.v”.

Otherwise, let i be the first code index of the scope of V 5. Then the RCN of V is “m.v-i”. This RCN is
unique because no variables with the same scope can share a name. Also “v-i” can not be the name of
another variable since the character “-” is not allowed in variable names.

Member Classes and Interfaces Let M be the simple name of a member class or interface of the class or
interface with the RCN C.

Then “C.M” is the RCN of M .

Anonymous and Local Classes During compilation, an anonymous class C is assigned binary names of the
form “B$i” where B is the binary name of the immediately enclosing type and i is some non-negative
integer that is unique for all anonymous classes directly enclosed by B [42, section 13.1].

Let T be the RCN of the immediately enclosing type of C. Then “T.-Anon-i” is the RCN of C.

A local class with the simple name L is similarly assigned a binary name of the form “B$iL” where B is
the binary name of the immediately enclosing type and i is a non-negative integer that is unique for all
local classes directly enclosed by B.

Let T be the RCN of the immediately enclosing type of L. Then “T.L-Local-i” is the RCN of L.

These RCNs are unique due to the uniqueness of the RCN T , the choice of i and because “-” may not
appear in Java identifiers, so there can be no name overlap between anonymous and local classes.

Lambda Expression Classes Lambda expressions evaluate to instances of automatically created classes at
runtime. Neither the JLS nor the JVMS specify any naming scheme for these classes. They also do not
specify to which class loader they are assigned.

Therefore, we employ the same naming scheme as for top-level classes and interfaces, but use the binary
name of the generated class instead of the unknown canonical name.

5The code indices of the scope of a variable can not be inspected in the JDI, but are communicated in the underlying JDWP protocol.
In our implementation, we rely on implementation details of the OpenJDK JPDA frontend to access this information.
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Unprepared Types If an unprepared type is referenced in the declaration of a variable, field, or method, then
its binary name B is available, even if the type has not been loaded at all.

As explained in section 2.3.2, we do not analyze the names of unprepared types to derive further type
information. Thus, we simply use “Unprepared-B” as the RCN of unprepared types.

4.4. Unified Terminology

Besides their RCN, we make no distinctions between methods and constructors. Hence, for simplicity, we
refer to both as methods from here on.

Similarly, we do not differentiate constructor or method parameters from variables, and refer to them as
variables, too.

4.5. The Grammar of JDI States

We now model the information that we extract about a Java state through the JDI as expressions of the�� ⊵�VirtualMachine production of the following grammar:

Definition 18 (Syntax of JDI State Expressions). Let γ and idx range over the value space of the Java long
type. Let N range over Runtime Canonical Names. Let n range over Java simple names and binary names.
Let v range over the value spaces of primitive java types, and let s range over the JVM-specific runtime
representation of string values of instances of the String class.

Let Types be a map from RCNs to instances of the
�� ⊵�ReferenceType production. Let Objs be a map from long

values to expressions of the
�� ⊵�Object production. Let ≺C

1 be a binary relation between the RCNs of classes. Let
≺I

1 be a binary relation that relates the RCNs of classes or interfaces to RCNs of interfaces. Let Vals be a map
from RCNs to expressions of the

�� ⊵�Value production.
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Then the following grammar gives the syntax of JDI state expressions:�� ⊵�VirtualMachine ::= VirtualMachine(Types,Thread(
▷⊴ �◁Frame ),Objs,≺C

1 ,≺I
1 )�� ⊵�ReferenceType ::= RefType(

RCN(N),

Name(n),�� ⊵�RefTypeKind ,

Fields(
�� ⊵�Field ),

Methods(
�� ⊵�Method )

)�� ⊵�RefTypeKind ::= Class([Iterable(N)]) | Interface |

ArrayType(Component(
�� ⊵�TypeRef ))�� ⊵�Field ::= Field(RCN(N),DeclaredType(

�� ⊵�TypeRef ),
�� ⊵�IsStatic )�� ⊵�IsStatic ::= Static(

�� ⊵�Value ) | NotStatic�� ⊵�Method ::= Method(RCN(N),VarDecls(
�� ⊵�VarDecl ))�� ⊵�VarDecl ::= VarDecl(RCN(N),Name(n),DeclaredType(

�� ⊵�TypeRef ))

▷⊴ �◁Frame ::= Frame(Vals [, this(γ)])�� ⊵�Value ::= PVal(v) | Ref(γ) | null�� ⊵�Object ::= Object(ID(γ),TypeName(N),Vals [,
�� ⊵�ObjectSpecial ])�� ⊵�ObjectSpecial ::= String(s) | Wrapper(v) | Sequence(
�� ⊵�Value )

�� ⊵�TypeRef ::= TypeRef(RCN(N),
�� ⊵�ReferenceOrPrimitive )�� ⊵�ReferenceOrPrimitive ::= ReferenceType | PrimitiveType

We do not describe in detail how such expressions are constructed from calls to the JDI. Instead, we give an
intuitive explanation of the contained information:

The production
�� ⊵�VirtualMachine forms the root of the grammar. Its Types component contains information

on all prepared reference types in the Java state. It is a function that maps the RCN of a reference type to�� ⊵�ReferenceType expressions which give detailed information about the type. We do not include unprepared
types in this map since they can not be looked up globally through the JDI, see also section 4.2.

The Thread(. . .) component holds the stack frames of the single thread that we are modeling. The order in
which the frames are listed indicates their depth on the stack. E.g. the first listed frame is at the top of the
stack, the last one is the frame of the initial invocation of the main() method and it is at the bottom of the
stack. At multiple points in the grammar, Java objects can be referenced by a unique id γ. This unique ID is
provided by the JPDA backend. Objs maps these IDs to

�� ⊵�Object expressions describing the associated object.
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The relation ≺C
1 models the direct sub-class/super-class relationship between Java classes. That is, for the

RCNs NC , ND of classes C and D we have NC ≺C
1 ND iff C is a direct sub-class of D and both class types

have been prepared.

The relation ≺I
1 relates classes to those interfaces they directly implement and interfaces to their direct

super-interfaces. Suppose NX and NI are the RCNs of a class or interface X and an interface J . Then
NX ≺I

1 NI iff X directly implements I or if I is a direct super-interface of X and both types have been
prepared.

A
�� ⊵�ReferenceType expression contains the RCN of a reference type in the RCN(N) sub-expression, and its

binary name in the Name(n) sub-expression. Furthermore, it holds a description of all field and method
members of the type in the sub-expressions Fields(. . .) and Methods(. . .). However, if the type has not yet
been prepared, then the lists in these sub-expressions may be empty.

Additionally, a
�� ⊵�ReferenceType expression contains tokens that indicate its type kind. The Class(. . .) expres-

sion signifies that it is a class, the Interface token displays that it is an interface, and finally an ArrayType(. . .)
expression means that it is an array type. It contains a Component(. . .) construct that gives a reference to the
component type of this array type.

The
�� ⊵�Field production produces expressions which describe a field by its RCN and by a reference to its declared

type. Furthermore, if a field is static, then the value will be represented by the
�� ⊵�Value production and wrapped

in a Static(. . .) sub-expression. If a field is not static, we instead include a symbol NotStatic.

Regarding methods,
�� ⊵�Method expressions store the RCN of a method, and a list of all variables declared in

the method. Not all variables that are declared in the source code may actually be part of this list, since a
compiler might for example omit unused variables.

A
�� ⊵�VarDecl variable declaration expression gives the RCN of a variable and its simple name, as well as a

reference to its declared type.

A stack frame described by a
▷⊴ �◁Frame expression contains a map Vals which associates the RCN of a local

variable with its value. That is, let f = Frame(Vals . . .) describe a stack frame in the current Java state for
a method m. Then Vals(Nvar) = val iff m contains a variable with the RCN Nval and it stores a value in the
frame f that is described by the expression val of the

�� ⊵�Value production. Additionally, if m is not static, f also
contains a this(γ) expression where γ is the unique ID of the object on which m was invoked.

The
�� ⊵�Value production differentiates three kinds of values. Firstly, primitive values are expressed as PVal(v)

where v is from the value space of primitive Java types. Secondly, non-null object references are notated as
Ref(γ) where γ is the unique ID of the referenced object. Lastly, the token null represents a Java null reference.

An
�� ⊵�Object expression represents an object o in the Java state. It carries an object’s unique ID γ in the ID(γ)

sub-expression. The RCN of the type of the object is referenced through a TypeName(N) sub-expression. It
also contains a map Vals that maps the RCNs of fields to their value in the object. To be more specific, let T be
the reference type of which o is an instance. Let f be a field of T or of a supertype of T , and let Nf be the RCN
of f . Then Vals(Nf ) = val iff val is a

�� ⊵�Value expression encoding the value of the field f in o. Optionally, such
an

�� ⊵�Object expression may also contain an
�� ⊵�ObjectSpecial expression e. This is only the case iff the object is

either an instance of String, or a primitive value wrapper class as listed in table 4.1, or an array type.

If o is an instance of String then e = String(s) where s is some JVM-specific representation of the string
value. If o is an instance of a primitive value wrapper class, then e = Wrapper(v) where v is the primitive
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Table 4.1.: Representation of Java primitive types as Java wrapper classes and XSD datatypes.

Java Primitive Type P Java Wrapper Class W XSD Datatype X

boolean Boolean xsd:boolean
long Long xsd:long
int Integer xsd:int
short Short xsd:short
byte Byte xsd:byte
char Character xsd:unsignedShort
float Float xsd:float
double Double xsd:double

value that is wrapped by o. Should o be an instance of an array type then e is an expression of the form
Sequence(v1, v2, . . . , vn).

Each vi is an expression of the
�� ⊵�Value production. They represent every value in the array o in the order that

they appear in the array.

The remaining set of productions allow us to express references to types in the declaration of variables, fields,
etc.

�� ⊵�TypeRef expressions give the RCN of the referenced type and indicate whether it is a reference type, or
a primitive type.

Support for Iterables Besides arrays, the Java class library provides other types of collections, e.g. LinkedList
s or HashSets. Users of sjdb can inspect the contents of these structures through implementation-specific,
internal fields. However, as a usability feature, we want to make at least a portion of these collections easily
accessible. For this purpose,

�� ⊵�Object expressions also contain a Sequence(. . .) expression for those objects
that are instances of a class C that implements the Iterable<T> interface. In this case, the Class(. . .)
expression representing C must also contain a Iterable(N) sub-expression. It gives the RCN N of the element
type that was substituted in for T in Iterable<T> in the declaration of C.

Classes implementing Iterable<T> must provide an implementation of its iterator() method that
returns an iterator over the contents of the collection.

This iterator returns the elements contained in the collection one-by-one when repeatedly calling its next
() method until its hasNext() method returns false. We invoke these methods through the JDI and
represent the resulting values in the order that they are returned by next() as the elements vi in the
Sequence(v1, v2, . . . , vn) expression.

While this approach of extracting elements from collections makes many Java SDK collection types and even
user-defined collections easily accessible for mapping in sjdb, there are multiple caveats:

• The hasNext() method of the returned iterator may never return false. Hence, an iteration over
this iterator may never terminate.

• The objects and their order as returned by the next() method may not be the same for different calls
of iterator().

• One of the mentioned method invocations might not terminate, return null or throw an exception.
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• Any one of the mentioned invocations might have side-effects on the Java state.

Hence, our procedure for extracting elements from Iterables could either terminate prematurely, not
terminate at all or yield non-deterministic results if any one of these behaviors occurs. Also, due to the possible
side-effects, other parts of a JDI state might no longer hold true after inspecting an Iterable. Therefore,
the mapping of Iterables is an opt-in feature of sjdb.
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5. A DL Model of JDI States

In this section, we give a mostly informal description of how we model JDI states as DL knowledge bases
which we will later fully formalize in section 6.2 as the mapping function µ. When we discuss the mapping
of a Java construct here, then we implicitly are only describing the mapping of those parts of a Java state
that are actually available in its JDI state. E.g. we only map reference types that are either prepared or which
appear in the declaration of a field or variable.

Kamburjan et al. present a translation of the minimal object-oriented language SMOL to an OWL knowledge
base [61]. From their work, we adapt the modeling scheme of representing classes as DL concepts, and fields
and local variables as roles. However, we have to extend upon their design to accommodate for several features
of the Java language that do not have a direct equivalent in SMOL. This includes the modeling of sub-typing
hierarchies, interface types, array types, Java Iterables, a treatment of unprepared types, and Java strings.

We uniquely identify Java constructs like classes, fields, variables, etc. by IRIs generated from their RCNs.
This is described in detail for the mapping µ, but in this section we use the simple names of these constructs
for the sake of brevity and for simplification. Similarly, we also shorten the names of objects. In some cases,
we present concepts using UML diagrams. These diagrams are just for illustration and do not represent a
formalization. Instead, we refer to section 6.2 for a DL formalization of the presented ideas.

5.1. Reference Types, Fields & Methods

First let us consider Java reference types, i.e. classes, interfaces and array types. Java reference types describe
the shape of their instances, for what fields they store values, which methods they implement, and what local
variables are declared in these methods.

We model Java reference types as DL concepts and their instances as individuals of these concepts. This allows
us to encode the properties of a reference type as axioms that apply to all individuals of the concept. It also
lets us leverage the notion of subsumption to imitate the sub-typing rules of Java.

By utilizing punning, we also can also treat Java reference types as individuals of a ReferenceType concept and
associate them with the fields and methods they declare. We further divide the ReferenceType concept into the
disjoint concepts Class, Interface, and ArrayType for each type kind, as well as the concept UnpreparedType,
see also fig. 5.1. The concept UnpreparedType captures unprepared types, for which we can not necessarily
retrieve information about their methods and fields. By adding these concepts, we also give users of sjdb the
ability to determine the kind of a type, i.e. whether a concept is a class, or interface or an array.

Furthermore, we use a role hasName to store the simple name of every type.
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Figure 5.1.: The concept of a reference type is divided into the concepts Class, Interface, ArrayType, and
UnpreparedType. We associate the individuals of these concepts with their simple name, fields
and methods.

Example 7
We utilize the following simple Java class to illustrate some of the modeling strategies introduced in this
section:

class MyClass {
OtherType myField;

void myMethod(int a) {
int b = 42;
...

}
}

For instance, if the MyClass type is fully prepared in a state, our mapping generates the following axioms
to declare MyClass as a concept and as an individual of the Class concept:

C(MyClass), I(MyClass),Class(MyClass),
hasName(MyClass,"MyClass"^^xsd:string).

Fields. We model the non-static fields of a reference type as functional roles that connect the instances of
the reference type with the values stored in them, see example 8. We declare these roles as functional since
every object can store only one value for every field. The domain of such a field role is the concept of its
declaring reference type. Its range is the concept that represents the type of the field. If the type of the field
is a reference type, then it may not only store references to objects, but it may also store a null reference.
Thus, we define a special individual null. For fields whose type is a reference type, we then include null in the
range of the field role. Please note, that we use concept equivalence axioms for declaring the domain of field
roles. This is because every instance of the declaring type of the field must have an associated field value. On
the other hand, we can only use concept inclusion axioms for declaring the range. This is because only a part
of the values of the field type may ever be stored by the field.
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Example 8
Our mapping models the field of example 7 as a role using the following axioms:

R(myField), Fun(myField),
Dom(myField) ≡ MyClass,
Ran(myField) ⊑ OtherType ⊔ {null}.

For static fields, we apply mostly the same modeling mechanism. However, we then realize them as roles that
connect the declaring type of a field itself to a stored value, instead of its instances. Hence, their domain is
changed to a nominal concept that contains only the declaring type.

Next, we use punning to model fields also as individuals of a Field concept. Our mapping connects these
individuals to their declaring type via the hasField role.

Example 9
We declare the field myField of example 7 as an individual of the Field concept and as a field of the class
MyClass as follows:

I(myField), Field(myField), hasField(MyClass,myField).

The domain of hasField covers all reference types, that is

Dom(hasField) ⊑ ReferenceType.

We model it like this since interfaces can define constants as static final fields, and arrays possess the
length field [42, section 10.7].

Methods. We model methods as individuals of the Method concept that are connected to their declaring
reference type via role hasMethod, see example 10. Furthermore, we create individuals for all variables
declared by a method and connect them to the method via the declaresVar role. Method parameters are
treated as local variables by our mapping. We will revisit local variables below when we present our modeling
of the program stack.

Example 10
Our mapping generates the following axioms to create an individual for the method myMethod of example 7
and to declare it as a method of MyClass:

I(myMethod),Method(myMethod), hasMethod(MyClass,myMethod).

Moreover, the method is connected to the local variables it declares using the declaresVar role:

declaresVar(myMethod,a), declaresVar(myMethod,b).

Figure 5.2 illustrates our modeling approach so far for the MyClass Java class from the examples.

Lastly, methods in Java can be overloaded, that is, different methods can share the same name. We deal with
this issue by incorporating the RCN of methods which contains their signatures into the individual names we
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Figure 5.2.: Illustration of examples 7 to 10.

generate for them, see section 6.1. Similarly, a method may declare multiple variables with the same identifier
in different blocks. Again, this is solved by encoding the RCN of variables into the names of the individuals we
generate for them.

5.2. Type Hierarchy

Due to the sub-typing rules of Java, any operation that can be performed on a certain type can also be applied
to all values of its sub-types.

Example 11
For instance, consider the following class hierarchy that implements different kinds of messages:

abstract class Message {
int messageId;
String sender;

}
class TextMessage extends Message {
String text;

}
class RichTextMessage extends TextMessage { ... }
class ImageMessage extends Message {
byte[] image;

}

As the super-class Message declares the sender field, the field can also be accessed on instances of its
sub-classes:

void displaySender(Message m) { System.out.println(m.sender); }

...
// This is fine, TextMessage and ImageMessage are sub-types of Message
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displaySender(new TextMessage());
displaySender(new ImageMessage());

To implement such characteristics of Java’s type system, we want the properties we model for reference types to
extend to instances of their sub-types. For example, the domain of a field role should also contain all instances
of the sub-types of the field’s declaring type. Moreover, user-defined axioms should also automatically apply
to sub-types.

Example 12
Again, consider the class hierarchy of Messages of example 11. A user might formulate an axiom that
requires that the sender field is never set to a null reference for all text messages:

TextMessage ⊓ ∃sender : {null} ⊑ ⊥.

Even though the axiom is formulated over the TextMessage class, given the above axiom, the user will
expect that sjdb also detects an inconsistent knowledge base if an instance of the RichTextMessage
sub-class does not define a sender.

To transfer properties to sub-type concepts and to fulfill such expectations, we model Java sub-typing
hierarchies using subsumption axioms. That is, suppose T is a sub-type of U according to the sub-typing
information provided by a JDI state in the ≺C

1 and ≺I
1 relations. Then we include a subsumption axiom of

the form
T ⊑ U

in the knowledge base.

Example
For the hierarchy of the Message class, we generate the following axioms if the involved types are all
loaded:

RichTextMessage ⊑ TextMessage,TextMessage ⊑ Message,
ImageMessage ⊑ Message, and Message ⊑ Object.

Dealing with User-Defined Class Loaders. In Java, users can implement custom class loaders 1. For example,
to load classes over a network connection.

Java even permits loading multiple types with the same name, as long as they are loaded by different class
loaders. To differentiate these types, we incorporate the RCN of a type into the individual and concept names
we generate for it. We omit these details in this section but we describe them in more detail in section 6.1.

Please note, that such customly loaded classes can not lead to disconnected type subsumption hierarchies
since users-defined class loaders can not load classes whose name starts with “java.”2. Hence, they can not
load a custom implementation of java.lang.Object so the implementation of Object that is loaded by

1https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ClassLoader.html
2https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ClassLoader.html#
defineClass(java.lang.String,byte%5B%5D,int,int)
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the bootstrap class loader of a JVM is always located at the top of the type hierarchy and its concept subsumes
all other type concepts.

Example
Suppose a user loads a class SubClassA twice, once using the default system class loader of Java, and
once using a user-defined class loader.

If SubClassA is a sub-class of a class MyClass, then the respective class loaders are also tasked with
loading this supertype. Hence, this can result in two seemingly parallel sub-typing hierarchies:

SubClassA
(User-defined Class Loader)

...
SubClassB

(System Class Loader)
SubClassA

(System Class Loader)

MyClass
(User-defined Class Loader)

myField: int

MyClass
(System Class Loader)

myField: long
exclusiveField: String

Object
(bootstrap class loader)

However, even though these different versions of SubClassA and MyClass share the same binary names,
they truly represent entirely different types. For instance, their fields might have different type declarations,
or some fields might be exclusive to one of them, etc.

Therefore, we also treat them as separate types by assigning them different names in our generated
knowledge bases, depending on their class loader:

Loader42-SubClassA

...
SysLoader-SubClassBSysLoader-SubClassA

Loader42-MyClass
myField: int

SysLoader-MyClass
myField: long
exclusiveField: String

Object

Incidentally, assigning different names to different loaded types of the same name also gives sjdb an advantage
over other Java debuggers. For instance, the user interface of the default jdb debugger that is distributed
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alongside OpenJDK does not differentiate between classes of the same name from different class loaders.
Therefore, sjdb might be more helpful in detecting bugs caused by the use of user-defined class loaders.

Mapping Implicit Typing Information. Certain sub-typing relationships [42, section 4.10] implicitly hold
true in all Java programs but can not be queried through the JDI. For our formalisms this means they do
not appear in the ≺C

1 and ≺I
1 relations of JDI states. However, they are checked by type-checking JVM

instructions, e.g. the instanceof instruction [70, section 6.5].

Let <1 be the direct sub-typing relation of Java. Then the aforementioned implicit sub-typing relationships
are the following:

• If S[] is an array type, S and T are reference types and S <1 T, then S[] <1 T[],

• Object[] <1 Object,

• Object[] <1 Cloneable,

• Object[] <1 java.io.Serializable,

• if P[] is an array type with a primitive component type P, then P[] <1 Object, P[] <1 Cloneable,
and P[] <1 java.io.Serializable,

• if I is an interface, then I <1 Object, and

• an unprepared type is always an (indirect) sub-type of Object.

This information can not be extracted from a JDI state but we still want to represent it in our generated
knowledge bases to provide users with the Java type system semantics they are familiar with. For this purpose,
we always include the corresponding subsumption axioms for the sub-typing relationships in all generated
knowledge bases. That is, we always include the following axioms in every generated knowledge base:

C(Object),C(Cloneable),C(java.io.Serializable),C(Object[]),

Object[] ⊑ Object,
Object[] ⊑ Cloneable,
Object[] ⊑ java.io.Serializable,
Cloneable ⊑ Object,

java.io.Serializable ⊑ Object.

And for every primitive type P, we always include the following axioms in our knowledge bases:

C(P[]),

P[] ⊑ Object,
P[] ⊑ Cloneable,
P[] ⊑ java.io.Serializable.

Here it is again essential that user-defined class loaders can not load their own implementation of types from
the java package. Otherwise, we would need to add multiple versions of the above axioms for every loaded
implementation of the mentioned java.* types.
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Additionally, for every array type S[], if S is prepared and the direct sub-type of a type T, then we include
the axiom

S[] ⊑ T[].

Arrays of arrays are legal types, so in general there are always infinitely many not-yet loaded array types.
However, because we only map those array types and their associated axioms that are actually part of a JDI
state, we only generate finitely many axioms here.

Furthermore, the component types of array types are not necessarily prepared if the array type is prepared.
Instead, component types of prepared array types are only guaranteed to be loaded and are thus not necessarily
globally accessible through the JDI3. If the component type S of an array type S[] is unprepared, we can not
necessarily determine its actual direct supertype and instead generate the axiom

S[] ⊑ Object[]

to incorporate the array type into our model of the Java sub-typing hierarchy. Similarly, if S is an unprepared
type, we add an axiom to at least declare it as a sub-type of Object:

S ⊑ Object.

However, since a unprepared type can not have any instances, we also declare it to be subsumed by the empty
concept ⊥:

S ⊑ ⊥.

We also want to mention that while it is possible to force the loading and preparation of an unprepared type
through the JDI to retrieve more information about it, we refrain from doing so. This is because loading can
change the state of a program in an unknown way as class loaders can execute arbitrary code4.

Lastly, we add
I ⊑ Object.

for every interface type I.

Issues of Modeling Implicit Typing Information. Our above approach comes with some caveats:

Possibly Inadequate Representation of Java States We aim to represent the state of Java programs with
our knowledge base models. The discussed implicit sub-typing information is not provided by the JDI
and also not explicitly part of the runtime representation of reference types according to the JVMS.
Hence, it is questionable, if its inclusion adequately models Java states.
However, by including it we gain a more complete typing model that can transfer generated and user-
defined properties to all sub-type concepts. We argue that this practical benefit outweighs such abstract
criticism.

3Type information about such loaded, but not prepared component types can only be retrieved by locating an instance of the array
type and extracting the information from there. See also our discussion on the loading strategies of array component types on
the OpenJDK discussion mailing list: https://mail.openjdk.java.net/pipermail/discuss/2022-April/006044.
html. We do not perform the necessary in-depth queries and treat such component types as if they have not been loaded at all.

4See also https://docs.oracle.com/en/java/javase/11/docs/api/jdk.jdi/com/sun/jdi/
ClassNotLoadedException.html.
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Possible Inclusion of Not-yet Loaded Types To formulate the subsumption axioms that model implicit sub-
typing relationships, we have to declare DL concepts for all the involved types. Yet, some of these types
(e.g. java.io.Serializable) may not be loaded in the JDI state that is being mapped. Hence, we
are potentially introducing types to the knowledge base that may not actually be present in the state of
a program.
However, we are restricting ourselves to keep the additional information minimal by just declaring the
concepts and the subsumption axioms. Any additional information (e.g. type kind, fields and methods)
has to be filled in by our mapping, if the types in question are actually part of the state.
This approach also fits well with the open world assumption where the absence of information does not
actually mean that it is non-existent.

In the end, the issue of lazy-loading strategies will usually lead to an incomplete model of the type hierarchy
of a program in our generated knowledge bases. We discuss this issue in more detail in section 6.5.

5.3. Primitive Values

In Java, the value of a field, variable or parameter can either be a primitive value, or a reference to an object.

We represent the values of primitive Java types as literals of the XSD data types [93]. That is, the int type is
represented as xsd:int, boolean as xsd:boolean, etc. Table C.2 gives a full overview which XSD types
we use to represent which primitive Java types.

Here, we have to take special care that the value spaces of the XSD types actually cover the value spaces of the
Java types. We discuss our choices and some associated issues in detail in section 6.1.

5.4. Objects and Reference Values

We create an individual o for every object in the JDI state and use a role hasUniqueId to store its unique id γ.
The JDI provides unique ids as long values to us, so we store these unique ids in our knowledge bases as
xsd:long literals. Every object must be an instance of some reference type T and we assign the individual
to the concept of that type. Due to the aforementioned subsumption axioms that simulate sub-typing, the
individual is also automatically inferred to belong to the concepts of all super-types of T.

Furthermore, for every field f of T and its super-types, we add a role assertion f(o, v) where v is the mapping
of the value stored in the field for this object.

Reference values are mostly transparent in Java. That is, one can not directly inspect the actual address of
an object stored as a reference, not even through the JDI5. Section 4.3.1 of the JLS lists all operations on
object references. It shows that at most, one can observe the value of a reference indirectly, for example by
comparing them for equality.

We mirror the design of Java in this regard and do not explicitly model reference values. Instead, as we
mentioned before, fields and variables that store references are roles that range over the union of the concept

5For some Java implementations it is possible to infer the (relative) addresses of objects using the internal and undocumented sun.
misc.Unsafe class. However, this is not officially supported by the language and als not portable across Java implementations.
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of the field or variable type and the nominal that contains just null. That is, with the exception of the
null-reference, fields and variable roles point directly to the individual that represents the object that is
being referenced.

For debugging purposes however, modeling reference values explicitly can be useful, as one could use them
to check if two fields actually reference the same object address. In sjdb users can instead use the unique
object id γ provided by the hasUniqueId role to check if the same or different objects are being referenced.

Example 13
The following Java snipped creates two objects. A TextMessage instance, and a String containing its
sender name:

var x = new TextMessage();
x.id = 42; x.sender = "Max";

Let us assume, the TextMessage instance has the unique object id 0 and the string has the id 1. Ignoring
the local variable x for now, our mapping generates individuals o0 and o1 for the objects and assigns them
to their direct types:

I(o0),TextMessage(o0), I(o1),String(o1).

Furthermore, we add axioms to encode their unique id and field values:

hasUniqueId(o0,"0"^^xsd:long), hasUniqueId(o1,"1"^^xsd:long),

id(o0,"42"^^xsd:int),sender(o0, o1).

Issues with Non-Unique Names. OWL does are not make the unique name assumption, see section 2.2.4.
Therefore, we have to add axioms that allow OWL reasoners to tell objects and the null-reference apart.

First, we specify that the null individual is different from all object individuals:

{null} ⊓ java.lang.Object ⊑ ⊥. (5.1)

Example
In example 13 an axiom sender(o0, o1) was generated that expresses that o0 stores a reference to o1 in its
sender field.

Still, without axiom 5.1, an OWL reasoner could not derive that the generated knowledge base entails that
the sender field is not set to null:

KB ��|= ¬sender(o0,null).

This is because without the axiom, the individual names o1 and null might refer to the same object.
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Next, we declare hasUniqueId as functional and inverse functional. This way, the object id acts as a unique
key for OWL reasoners. I.e. if two individual names are associated with different object ids, then they must
identify different objects. Conversely, if two individual names are associated with the same object id, they
must refer to the same object.

Closure Axioms for Types Due to the open world assumption, we have to close down those concepts that
model types to an enumeration of all objects typed by them.

That is, for every prepared type T , we declare an axiom

T ≡ {o1, o2, . . . , on}

where o1, o2, …, on is a complete enumeration of all individuals representing instances of T and instances of
sub-types of T .

If we do not add such axioms, we can not use automatic reasoners to verify properties that should hold for all
instances of a type because our knowledge bases would not guarantee that there does not exist an unknown
type instance that violates the property.

Example
In example 12 we formulate an axiom that states that the sender field must not be null for text messages:

∃TextMessage ⊓ sender : {null} ⊑ ⊥.

If we add the axiom to a knowledge base, we can use a reasoner to confirm that the knowledge base is not
inconsistent if the axiom is not violated, even without closure axioms.

However, this approach is not always viable. If a knowledge base indeed violates the axiom then we can no
longer interactively debug the knowledge base using inference tasks due to its inconsistencya.

Therefore, a user might want to refrain from adding the axiom to a knowledge base KB during interactive
debugging and instead try to verify whether it is entailed. I.e. they would ask the debugger whether the
following holds:

KB |= ∃TextMessgae ⊓ sender : {null} ⊑ ⊥.

A user will expect this entailment to hold for conforming program states since sjdb should be aware of all
TextMessage instances. Still, if sjdb does not make this knowledge explicit through a closure axiom of
the form

TextMessage ⊑ {o1, o2, . . . , on}

no debugger will confirm the entailment due to the open world assumption.
aEven for inconsistent knowledge bases there are still techniques for paraconsistent reasoning [72] or for repairing inconsistencies
by finding justifications for them [52].

Besides confirming properties, closure axioms are also often necessary when users want to formulate higher-
level concepts based on the vocabulary of our mapping.
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Example
A simple implementation of a node class for binary trees might take the following form:

class Node {
Node leftChild;
Node rightChild;

}

This implementation does not make many tree concepts explicit. For instance, there is no explicit distinction
between roots and leaves. Therefore, users of sjdb might want to formalize the concept of a tree root
and try to query for all its instances. A tree root is a node that is not a child of another tree node. In the
context of this implementation that means that a root is not connected to other nodes via the inverse of the
leftChild and rightChild roles:

Root ≡ Node ⊓ (∃leftChild− : ⊥) ⊓ (∃rightChild− : ⊥).

Still, querying for all instances of the Root concept with a reasoner will never yield results without closing
the Node concept over the enumeration of all of its instances. This is because for any root node candidate,
the reasoner would not be able to confirm if there is not some unknown node that is its parent.

5.5. Arrays

Java arrays are ordered sequences of either primitive values or object references. An array has a fixed size n,
and every one of its elements is identified by an index 0 ≤ i < n. In addition to the axioms that we generate
for all objects, we have to encode the elements of arrays into the knowledge bases we generate.

For every valid index of an array, we generate an individual that represents this position in the array. All
such individuals belong to a concept SeqElement for which we declare multiple roles. We will refer to these
individuals as “sequence elements”. We use a role hasIndex to encode the index of a sequence element. The
roles storesRef and storesPrim respectively encode the object reference or primitive value stored in an element.
Additionally, we apply a role hasSuccessor to all sequence elements but the last one in a sequence. It points to
the next element in an array. Every individual that represents an array object is connected to its sequence
elements via a role hasElement.

We use two different roles, storesRef and storesPrim to encode values since OWL strictly separates roles
that range over individuals (object properties) and those that range over values of data types (data proper-
ties) [82, section 5.3, section 5.4]. Thus, we also separate the SeqElement concept into the disjoint concepts
RefSeqElement and PrimSeqElement so that we can properly specify the domain of storesRef and storesPrim.
Figure 5.3 gives an overview of all involved concepts and roles.

We want the domain of the hasElement role to encompass all array types. For this purpose, we introduce a
concept PrimitiveArray that subsumes the concepts of all primitive types boolean[], int[], etc:

PrimitiveArray ≡ boolean[] ⊔ int[] ⊔ . . .

Then we define the domain of hasElement as the union of Object[], PrimitiveArray and Iterable. We
expand on the reason for including the last type in the domain in section 5.7. Due to the subsumption axioms
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Object[] ⊔ PrimitiveArray ⊔ Iterable
hasElement: SeqElement

PrimSeqElement
storesPrim: PrimitiveType

RefSeqElement
storesRef: java.lang.Object ⊔ {null}

SeqElement
hasIndex: xsd:int
hasSuccessor: SeqElement

hasElement ►
*

1

hasSuccessor ►
0..1

0..1

Figure 5.3.: Central concepts used to model arrays as an informal UML diagram.

we introduced above that are simulating the sub-typing relationships of Java, the Object[] concept covers
all reference-type arrays.

Example 14
Suppose we create an array of integers using the following Java code snippet:

var x = new long[] {42, 43, 44};

Let us also assume, that the created array object is represented by the individual myArray in the generated
knowledge base. Then our mapping generates sequence element individuals e0, e1, and e2 with fresh
individual names:

I(e0), I(e1), I(e2),
PrimSeqElement(e0), PrimSeqElement(e1), PrimSeqElement(e2).

Furthermore, they are associated with myArray and the successor relationship between them is realized
with the following axioms:

hasElement(myArray, e0), hasElement(myArray, e1), hasElement(myArray, e2),
hasSuccessor(e0, e1), hasSuccessor(e1, e2).

Lastly, their indices and stored values are encoded like this:

hasIndex(e0,"0"^^xsd:int), hasIndex(e1,"1"^^xsd:int), hasIndex(e2,"2"^^xsd:int),
storesPrim(e0,"42"^^xsd:long), storesPrim(e1,"43"^^xsd:long), storesPrim(e2,"44"^^xsd:long).

We visualize the generated axioms with the following figure:
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Sequence Closure Axioms Due to the open world assumption, we have to add certain closure axioms for
every array. First, we specify the exact number of elements in an array with an exact cardinality restriction of
the form

{a} ⊑ (=n)hasElement : SeqElement

where n is the length of an array a. If we would not specify this axiom, the debugger would not be able to
check properties that quantify over all elements of an array.

Example
Suppose we want to check the property that the array myArray from example 14 does not contain negative
integers by asking whether the generated knowledge base entails the following axiom:

{myArray} ⊑ ∀hasElement : ∀storesPrim : xsd:nonNegativeInteger.

Even though the array clearly does not contain negative values, without the aforementioned closure axiom,
an OWL reasoner will answer that the property is not entailed. This is because due to the open world
assumption, there might be another array element which stores a negative value but that has not been
explicitly specified.

To alleviate this issue, our mapping generates the following closure axiom for this example:

{myArray} ⊑ (=3)hasElement : SeqElement.

This way, the existence of additional, not explicitly mentioned array elements is excluded.

Specifying just the number of sequence elements for an array is not sufficient. To make examples like the
above one work, we also need to declare storesRef and storesPrim as functional, otherwise an OWL reasoner
can not exclude the possibility that a sequence element stores multiple values. Similarly, we declare hasIndex
as functional, and hasElement as inverse functional. We also declare hasSuccessor as inverse functional. This
way, users can refer to the predecessor of an element through the inverse role hasSuccessor−. By chaining the
hasSuccessor or the hasSuccessor− role, it is also possible to reason about neighbors at any distance.

We can not perform index arithmetic in OWL to check which sequence element of an array is the last one.
Hence, we also add exact cardinality axioms that declare that the last sequence element has no further
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successor, and that the first element has no predecessor. Let us assume the last element and the first element
of an array are represented by the individuals last and first. Then these axioms take the following form:

{last} ⊑ (=0)hasSuccessor : ⊤,

{first} ⊑ (=0)hasSuccessor− : ⊤.

Discussion of our Sequence Modeling Approach. A straightforward approach to modeling collections
in DL is using multiple role assertions. I.e. for every element e of a collection c one adds a role assertion
hasElement(c, e). However, this simple solution is not sufficient for our use case since role assertion axioms
have no order to them, so we would loose this important property of arrays if we modeled them like this.
Drummond et al. [32] propose two approaches to modeling ordered lists in OWL DL. The first is to define a
generic class of list data structures and to describe sequences using this list vocabulary. In such a list structure,
every element of a sequence is represented as an individual with a “head” property pointing to its contents
and a “tail” property pointing to another list that is the remainder of the sequence. A special “EmptyList”
concept represents an empty list and it is used to terminate a sequence.

Drummond et al. [32] find it problematic to represent sequences through such a list vocabulary since it raises
ontological issues. In our case, if we used such a generic list vocabulary, one could argue that our knowledge
base expresses that arrays are lists, or that arrays contain lists, both of which is not correct.

Thus, they propose a second approach. Structurally, the second approach is mostly equivalent to the first,
but instead of using a generic list vocabulary, they connect the elements of a collection with a semantically
appropriate relation. For instance, they model proteins as a chain of amino acids connected through a
“bondsTo” role that replaces the “tail” property.

For sjdb, we are mostly concerned with its usability and aim for a practical solution instead of putting
ontological considerations at the forefront. That is, we want our mapping of arrays to achieve the following
goals:

1. Users should be able to query array elements by their index as this is the access pattern they are familiar
with from Java.

2. The order of array elements should be encoded in a way that can be utilized in DL axioms and tasks.
OWL does not support general integer arithmetic. Thus, the order can not be inferred from element
indices and some other means of encoding the order must be implemented.

3. It should be possible to query the elements of an array without needing to solve computationally intensive
DL reasoning tasks. This way, arrays can also be inspected with a pure SPARQL query engine without
OWL reasoner support.

The first goal is achieved by introducing intermediate sequence element individuals between the array and its
values and defining the hasIndex role for them.

We implement the second goal by the hasSuccessor role. This way we can use sjdb to check conditions on
the ordering of elements.
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Example
Suppose we want to check that an array is not fragmented, that is, all non-null elements of the array must
be in a continuous block at the start of the array. Utilizing hasSuccessor, we can express this property by
stating that a null-element can have only null-element successors:

∃storesRef : {null} ⊑ ∀hasSuccessor : ∀storesRef : {null}.

To eliminate redundant information, Drummond et al. propose to use role chains to infer the association of a
collection with its elements from their successor relation. That is, in our case, we could add the following
axiom to achive this6:

hasElement ◦ hasSuccessor ⊑ hasElement.

However, instead we generate an explicit hasElement role axiom for every sequence element to avoid the need
for costly inferences and realize our third design goal.

In the end, our solution adopts elements of both approaches of Drummond et al.: We are introducing a
vocabulary of sequence elements that is specifically aimed at describing the semantics of Java arrays but which
remains general enough to also be applicable to other types of sequential Java structures, see the mapping of
Iterables below. Furthermore, we enable users to still give meaning to Java arrays within the application
domain of their program by providing user-defined application domain definitions to sjdb that build upon
our sequence vocabulary.

5.6. The Stack

We are modeling Java programs as single threaded, that is, we only map the thread that was initially called by
the JVM to execute the main-method. For this, we create an individual for every frame of the stack of that
thread and assign it to a concept called StackFrame. Furthermore, we apply a role isAtStackDepth to these
individuals to associate every frame with its depth on the stack. Each frame captures the state of a method
execution by holding values for its variables. To model this, we employ the same modeling scheme as for
fields. That is, we apply punning to the individuals we generated for local variables in section 5.1 and also
declare them as roles that connect stack frames to variable values. The domain of these roles is the StackFrame
concept and they range over the type of the respective variable.

Additionally, if a stack frame holds the state of a non-static method, we associate it with the individual that
represents the object behind the this reference of the method execution. For this purpose, we create a role
this that connects stack frames to their this objects.

Example
Consider the following Java program that creates an instance of a class MyClass and calls its method
myMethod from the main method:

class MyClass {
public static void main(String[] args) {

(new MyClass()).myMethod();
}

6We simplify the required axiom here. To prevent cyclic definitions, OWL actually does not permit to formulate axioms of this form.
It is still possible to achieve a similar effect using a transitive role that subsumes hasSuccessor and additional helper roles.
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void myMethod() { }
}

Suppose we are mapping the state of the program at the end of the execution of the myMethod method.
Then we generate the following axioms for declaring the frames of the stack and their depth:

I(f0), StackFrame(f0), I(f1), StackFrame(f1),

isAtStackDepth(f0,"0"^^xsd:int), isAtStackDepth(f1,"1"^^xsd:int).

where f0 and f1 are fresh individual names we generate for the two stack frames.

Let s be the individual that is the mapping of the String[] object that is stored in the args parameter.
Let o be the individual that represents the MyClass instance that is being created in the main method.
The mapping then connects the stack frames with their this object and variable values as follows:

this(f0, o), args(f1, s).

The following figure illustrates the above situation:

5.7. Usability Features

In this subsection we discuss some parts of the mapping that are intended to improve the usability of sjdb as
a debugging tool, but which mostly go beyond plainly modeling a Java state as it is presented through the JDI.

Primitive Value Wrappers

Java provides a group of wrapper classes that allow to store primitive values where only object references can
be used. For example, collections like List employ Java generics and one has to use the Integer wrapper
to store integers in List<Integer> lists.

The values stored in instances of wrapper classes are only accessible through methods and their internal
fields are not officially documented nor standardized. Thus, one can not debug them without relying on
implementation details of the used JDK.

Therefore, as a usability feature, we provide a special mapping for these wrapper classes. Suppose an object is
an instance of one of the wrapper classes Byte, Short, Integer, Long, Float, Double, or Character.

62



Then our mapping generates a role assertion

hasPlainValue(o, v)

where o is the individual representing the object and v is the mapping of the primitive value that is being
wrapped by the object. This way, we make wrapped primitive values easily accessible.

Example
Consider the following code snippet:

var x = Integer.valueOf(42);

Suppose the object referenced by x is mapped to the individual o. Then our mapping also generates the
following axiom making the wrapped integer value available through hasPlainValue:

hasPlainValue(o,"42"^^xsd:int).

Java Strings

In Java, strings are instances of the String class. Its API provides access to the UTF-16 characters that form
the string only through method calls. The fields that actually hold this data are not standardized. Hence,
inspecting string values during debugging is tedious and non-portable when employing just our standard
mapping. One has to rely on the implementation details of the JDK that is being used.

To alleviate this problem, we extend the hasPlainValue role of the previous section to strings. That is, if some
object o is a String instance, then we connect it with hasPlainValue to an xsd:string value that encodes
the Java string.

Example
Consider the following code snippet:

String x = "Hello World";

Suppose the object referenced by x is represented by an individual s in the mapping of the state that results
from such a statement. Then we encode the string value of s into the knowledge base as follows:

hasPlainValue(s,"Hello World"^^xsd:string).

Nevertheless, the value space of xsd:string does not cover the value space of Java strings completely.
Therefore, if there is no xsd:string equivalent for a Java string we forego the encoding of the string into
the knowledge base. We reason that this is acceptable considering that xsd:string is able to represent
Java strings in most practical use cases. Also, this is only a usability feature. If no xsd:string encoding is
possible then a user can still fall back to inspecting the internal fields of the String class.

We give further details on which Java strings have a xsd:string representation in section 6.1.
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Java Iterables

While arrays form Java’s foundation for storing collections of values, in practice, often a data structure from
Java’s Collection hierarchy7 is used instead. For instance, implementations of java.util.List may be
used if the collection needs to be dynamically resizable or java.util.Set if it shall not contain duplicate
elements.

We argue that it would be detrimental to our debugger’s usability if it does not provide easy access to the
elements of such frequently used collections. Also, any user-defined application domains reasoning over the
elements of collections would have to rely on internal fields and other implementation details, making them
non-portable. We resolve such matters by generating the same sequence construction we use when modeling
arrays for all objects whose class implements the Iterable interface. Since Iterable is a superinterface
of Collection, this covers all collection types of the Java Class Library.

Iterable provides access to the elements of a collection through an iterator object. To build our sequence
construction, we iterate over this object which also establishes an order for the elements.

The iteration procedure is part of our JDI state formalization since we perform the iteration using the JDI and
because it simplifies the formalization of our mapping µ. The procedure can potentially alter the state of a
program, which is why we implement this as an opt-in feature of sjdb. We briefly discuss the procedure and
such issues in more detail in section 4.5.

7https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Collection.html
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6. Mapping Java States to Knowledge Bases

We give a mapping µ from JDI states to knowledge bases in the shape of our DL model of Java states. This
mapping relies on a set of helper functions that we introduce in section 6.1. We present the mapping µ itself
in section 6.2. This mapping relies on a fixed set of axioms B that we add to every knowledge base regardless
of the concrete JDI state being mapped. This set of axioms is explained in section 6.3. Lastly, as the typing
information present in a JDI state is usually incomplete, see section 4.2, we give an overview of what typing
information the user can expect to be present in the knowledge bases generated by µ in section 6.5.

6.1. Helper Functions

The mapping µ relies on a few helper functions and a sub-typing relation which we define first:

Encoding Java Names into XSD Strings. We write

(·)str

to denote the encoding of a Java canonical name or simple name into an xsd:string literal.

We have to take care that strings of the xsd:string type are actually able to store the characters of a Java
identifier. Strings of the xsd:string type can store any unicode characters except for certain code-point
ranges. The set of allowed characters in xsd:string values is restricted to those that match the Char
production rule from the XML standard [20]. This production rule excludes the following ranges of unicode
code-points: The control code U+0000, the permanently unassigned code-points U+D800 to U+DFFF, and
the code points U+FFFE and U+FFFF [93, Section 3.3.1].

Java canonical names and simple names, which are the same as Java identifiers, avoid these ranges, except for
the code-point U+0000.

However, the code-point U+0000 falls into the range of ignorable characters, see also section 2.3.4. Hence, the
encoding of canonical names or simple names into xsd:string values, can be achieved by simply leaving
out all ignorable characters. This choice is appropriate as the resulting string value is still considered the same
as the original identifier by the JLS definition of identifier equality [42, section 3.8].
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Creating IRIs. As our implementation uses the OWL language to implement the knowledge bases produced
by the mapping µ, all concept names, individual names, and role names must be IRIs.

We encode various components of JDI states into such names, and we denote this encoding by (·)IRI. We define
it as follows:

γIRI := “run:objectγ” where γ is a unique Java object id,
N IRI := “prog:N” where N is an RCN,
P IRI := X where P,X is a pair of a primitive type name and an XSD type name as assigned in table 4.1.

depthIRI := “run:framedepth” where depth is the depth of a stack frame.

We use a prefix prog: for static structures that are the same for every JDI state of a program, like the RCNs of
classes. The prefix run: is used for objects and stack frames whose existence instead depends on the concrete
JDI state.

If an IRI assigned by ·IRI contains symbols that are not permitted in IRIs or have a special meaning, we
implicitly assume it to be percent-encoded [17, section 2.1]. We do not encode ignorable characters of Java
identifiers within RCNs with the same reasoning as before.

Encoding Primitive Values into XSD Values Spaces. Let v be a primitive Java value of the type P . We write

vxsd

for the literal that represents v in the value space of X with X being the XSD datatype assigned to P in
table C.2.

Again, we must take care that the value spaces of the primitive Java types and the XSD types coincide, see
tables C.1 and C.2. Here, the choice of using the XSD type xsd:unsignedShort to represent values of
the Java char type is not optimal. This is because char values are usually represented to users as single
characters, not as numbers. Thus, a xsd:string value containing a single character might seem to be a
better option for capturing char values. Yet, the set of allowed characters in xsd:string values is restricted.
Meanwhile, any integer value in the range from 0 to 65535 can be stored in a char value without restriction.
Thus, we choose xsd:unsignedShort whose value space matches that range over xsd:string.

Furthermore, both, the XSD floating point types and the Java floating point values are based on the 32-bit and
64-bit precision IEEE 754 floating-point numbers. Yet, the JVMS permits JVM implementations to internally
utilize even more precise floating point numbers with extended exponent ranges under certain conditions [70,
section 2.3.2]. In the context of debugging, the JPDA does not specify, how floating point values with extended
precision are handled. However, the JDWP transmits float values and double values as values of exactly
four and eight bytes respectively. Thus, values from the extended ranges must be converted to 32-bit and
64-bit IEEE 754 numbers when being inspected via the JDI.

We conclude, that our choice of using the XSD floating point types for representing Java floating point types
can correctly represent the floating point values supplied by the JDI, though they may not exactly match the
precision with which they are actually stored in a JVM.
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Encoding Java Strings into xsd:string. Let s be the implementation-specific runtime representation of a
Java string. We write

sxsd

for the literal that represents the encoding of s in the value space of xsd:string. If s contains unicode code
points not allowed in the value space of xsd:string, then sxsd is undefined.

Determining Type Initialization Progress. Let

VM = VirtualMachine
(︁
Types, . . .

)︁
be an expression of the

�� ⊵�VirtualMachine production of the JDI states grammar.

The function progressVM is defined for the RCNs of reference types and ranges over the symbols Unprepared
and Prepared. It determines whether the type of a given RCN has been prepared or not:

progressVM(N) =

{︄
Unprepared if N /∈ dom(Types),
Prepared otherwise.

Constructing a Sub-Typing Relation. A JDI state provides us with the relation ≺C
1 which encodes the direct

sub- and super-class relationships of prepared Java classes. It also provides us the relation ≺I
1 which encodes

direct sub- and super-interface relationships of prepared interfaces and classes.

However, we want our mapping to also model sub-typing information that is not directly queryable through
the JDI as explained in section 5.2.

Again, let
VM = VirtualMachine

(︁
Types, . . .

)︁
be an expression of the

�� ⊵�VirtualMachine production of the JDI states grammar. Then, we inductively define
the direct sub-typing relation ≺VM

1 of the JDI state VM as follows:

• If S ≺C
1 T , then S ≺VM

1 T .

• If S ≺I
1 T , then S ≺VM

1 T .

• If RefType(RCN(I),Name(n),K, . . .) ∈ img(Types) with K = Interface, and if there is no RCN J such
that I ≺I

1 J , then
I ≺VM

1 java.lang.ObjectIRI.

• Suppose A is the RCN of a prepared array type, i.e. RefType(RCN(A),Name(n),K, . . .) ∈ img(Types)
with

K = ArrayType
(︃
Component

(︂
TypeRef

(︁
RCN(S), kind

)︁)︂)︃
.

– If its component type is primitive, i.e. kind = PrimitiveType, then

A ≺VM
1 java.lang.Object,

A ≺VM
1 java.lang.Cloneable, and

A ≺VM
1 java.io.Serializable.
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– Otherwise, if the component type is a reference type, i.e. kind = ReferenceType then

A ≺VM
1 T [] if S ≺VM

1 T for some RCN T .1

– Also, if A = java.lang.Object[], then

A ≺VM
1 java.lang.Object,

A ≺VM
1 java.lang.Cloneable, and

A ≺VM
1 java.io.Serializable.

• Lastly, if progressVM(S) = Unprepared for some RCN S, then S ≺VM
1 java.lang.Object.

Furthermore, let ≼VM
1 be the reflexive and transitive closure of ≺VM

1 .

The above inductive definition follows our type hierarchy modeling concept in section 5.2. Factoring it out
into the relations ≺VM

1 and ≼VM
1 greatly simplifies the definition of the mapping µ.

6.2. The Mapping µ

The mapping µ recursively processes the structure of JDI states. Therefore, we separate the definition of µ into
different cases, one for each kind of expression of the grammar of JDI states that can be reached via recursion.

In most cases, µ maps these expressions to sets of DL axioms. To simplify the definition of µ, we do not
differentiate between TBox, ABox, and RBox axiom sets here. Instead, the resulting knowledge base is defined
by the single set of axioms µ(Σ) for a JDI state Σ. This matches our implementation, as OWL also does not
differentiate between axiom boxes. Furthermore, we do not declare the sets of concept names C, individual
names I, and role names R separately from the axioms as we did when we introduced description logics
in section 2.2. Instead, we include name declarations in the axiom set, i.e. we write C(N), I(N), or R(N)
respectively to declare a concept name N ∈ C, individual name N ∈ I, or role name N ∈ R. Then the
aforementioned sets of names are the smallest sets such that they satisfy these name declarations.

Mapping the Root Expression

We start with defining the mapping for expressions of the root production
�� ⊵�VirtualMachine which is the union

of the mapping of its components and the base set of axioms B:

µ
(︂

=:VM⏟ ⏞⏞ ⏟
VirtualMachine

(︁
Types,

=:T⏟ ⏞⏞ ⏟
Thread(. . .),Objs,≺C

1 ,≺I
1

)︁ )︂
:=⎛⎝ ⋃︂

R∈img(Types)

µ(R,VM)

⎞⎠
⏞ ⏟⏟ ⏞

1

∪µ(T )⏞ ⏟⏟ ⏞
2

∪

⎛⎝ ⋃︂
o∈img(Objs)

µ(o,VM)

⎞⎠
⏞ ⏟⏟ ⏞

3

∪ B⏞⏟⏟⏞
4

1We are slightly abusing notation here. T [] indicates the RCN of the array type with the component type T . This RCN of course can
be slightly different depending on whether the array type has been created yet or not.
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The image img(Types) of the Types map contains expressions R describing all created reference types. From
these expressions, the µ(R,VM) terms produce axioms describing every created reference type ( 1 ). Un-
prepared types will be handled by other parts of the mapping, if their names appears for example in the
declarations of variables, etc. The µ(T ) recursion maps the stack frames of the single thread that is being
executed by the JVM ( 2 ). The µ(o,VM) terms map every object in the JDI state ( 3 ). We pass the full
VM root expression down to recursive invocations of µ since many parts of the mapping need to look up
information in the maps Types and Objs, as well as query the typing hierarchy through the relations ≺C

1 and
≺I

1 .

The last component of the union, B ( 4 ), contains axioms that are always included in a mapping independent
of the JDI state. We explain the contents of B in section 6.3.

Mapping Prepared Types

Next, we map the prepared reference types present in the Types map of the state:

µ

(︃ R⏟ ⏞⏞ ⏟
RefType

(︂
RCN(N),Name(n),K, Fields((Fi)i∈I),Methods((Mj)j∈J)

)︂
,VM

)︃
:= {I(N IRI), hasName(N IRI, nstr),C(N IRI)}

∪
⋃︂
i∈I

µ(Fi,R)

∪
⋃︂
j∈J

µ(Mj ,R)

∪ {N IRI ⊑ N IRI
super | N IRI

super ∈ S}

∪
⋃︂

Nsuper∈U
µUnprepared(Nsuper)

∪ {N IRI ⊑ {γIRI | γ ∈ typedObjs}}
∪ µ(K,R)

where

S = {Nsuper | N ≺VM
1 Nsuper}, and

U = {Nsuper ∈ S | progressVM(Nsuper) = Unprepared}, and
typedObjs = {γ | (γ,Object(. . . ,TypeName(Nγ), . . .)) ∈ Objs and Nγ ≼1 N}

1

2

3

4

5

6

7

1

2

3

4

5

6

7

First, the mapping declares the reference type being mapped as an individual N IRI, that has a name which is
its binary name n ( 1 ).

We make use of punning (see section 2.2.5) and declare N IRI as a concept as well.This way, we can later map
objects which are typed by this reference type as individuals of this concept.

Next, we apply µ recursively to the fields and methods of the type ( 2 and 3 ).
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We collect the RCNs of all direct super types of N in a set S and model the sub-typing relation through
subsumption ( 4 ). Those super-types which are prepared are contained in the Types map of VM and will
eventually also be mapped by this case of µ. To add the proper axioms for those super-types which are not
prepared, we collect them in a set U and apply the mapping µUnprepared to them ( 5 ), which will be explained
further below.

Moreover, we add a closure axiom that declares the type concept to be equivalent to the enumeration of all
instances of the type and the instances of its sub-types2 ( 6 ). Some properties can not be verified and some
concepts not be queried without such axioms, see section 5.4.

Lastly, we generate axioms depending on the specific type kind K ( 7 ). We also pass the type expression R
along as the recursions needs access to the type’s RCN N .

Now, we attend to the mapping of the different type kinds:

Mapping Type Kinds

If a reference type is a class, interface or array type, then we declare it as such by declaring it as the member
of the Class, Interface, or ArrayType concept respectively:

µ
(︂
Class(. . .),RefType

(︁
RCN(N), . . .

)︁)︂
:= {Class(N IRI)},

µ
(︂
Interface,RefType

(︁
RCN(N), . . .

)︁)︂
:= {Interface(N IRI)}, and

µ

(︄
ArrayType

(︃
Component

(︂
TypeRef

(︁
RCN

(︁
NComp

)︁
, kind

)︁)︂)︃
,

RefType
(︁
RCN(N), . . .

)︁)︄
:= {ArrayType(N IRI)} ∪ U

where

U =

{︄
µUnprepared(NComp) if progressVM(NComp) = Unprepared,
∅ otherwise.

For array types, if their component type is unprepared, we additionally call µUnprepared to add axioms describing
this situation.

Mapping Fields

We now describe the case of mapping a single field of a reference type:

2Please note, that we are slightly abusing notation here: A nominal is a fixed syntactic construct and our use of a set-builder notation
with a predicate is not entirely formally correct but it transports the intuition that the nominal contains all object IRIs for which
the predicate holds.
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µ

(︄
Field

(︃
RCN(N),DeclaredType

(︂
TypeRef

(︁
RCN(Ndeclared), kind

)︁)︂
, isStatic

)︃
,

RefType
(︂
RCN(Nsurround), . . .

)︂)︄
:= {R(N IRI), Fun(N IRI), I(N IRI), Field(N IRI), hasField(N IRI

surround, N
IRI), }

∪A ∪B ∪ C

where

A = {Ran(N IRI) ⊑ N IRI
declared ⊔ {null}} if kind ̸= PrimitiveType

A = {Ran(N IRI) ⊑ N IRI
declared} otherwise.

B = {Dom(N IRI) ⊑ {N IRI
surround}, N

IRI(N IRI
surround, µ(val))} if isStatic = Static(val)

B = {Dom(N IRI) ⊑ N IRI
surround} otherwise.

C = µUnprepared(Ndeclared) if progressVM = Unprepared,
C = ∅ otherwise.

11

2

3

4

2

3

4

To map a field, we first declare it as a functional role ( 1 ). Additionally, we use punning to declare it as an
individual that is a field and which is connected to its immediately surrounding type by the hasField role.

Then, we define that, as a role, the field ranges over its declared type Ndeclared ( 2 ). If Ndeclared is not primitive,
then the field might also store null references, so we add null to the range.

If the field is static, then we define its domain as the nominal that contains its declaring reference type
Nsurround as the only individual ( 3 ). Also, we apply the field role to connect the declaring type to the mapping
µ(val) of the value that is stored in the static field. Otherwise, if the field is not static, then the declaring type
acts as a concept and we declare it as the domain of the field. This will allow us to use the field role to connect
all object instances of the declaring type to the distinct values they store in the field.

Lastly, if progressVM(Ndeclared) = Unprepared indicates that the declared type Ndeclared of the field has not yet
been prepared, we invoke µUnprepared that returns a set of axioms that declares Ndeclared as an unprepared
type ( 4 ).

Mapping Methods

We map the methods of reference types as follows:

µ

(︃ =:M⏟ ⏞⏞ ⏟
Method

(︂
RCN(N),VarDecls((vi)i∈I)

)︂
,RefType

(︂
RCN(Nsurround), . . .

)︂)︃
:=

{I(N IRI),Method(N IRI), hasMethod(N IRI
surround, N

IRI)} ∪
⋃︂
i∈I

µ(vi,M)
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Our mapping of methods first declares them as individuals and adds them to the Method concept. Moreover,
they are connected to their immediately surrounding type via the hasMethod role. We also recursively call µ
to generate axioms for every variable declaration vi of the method.

Mapping Variable Declarations

To every local variable, we apply the following mapping:

µ

(︄
VarDecl

(︃
RCN(N),Name(n),DeclaredType

(︂
TypeRef

(︁
RCN

(︁
Ntype

)︁
, kind

)︁)︂)︃
,

Method
(︂
RCN(Nmethod) . . .

)︂)︄
:={I(N IRI),Variable(N IRI), declaresVar(N IRI

method, N
IRI), hasName(N IRI, nstr),

R(N IRI), Fun(N IRI),Dom(N IRI) ⊑ StackFrame}
∪A ∪B

where

A = {Ran(N IRI) ⊑ N IRI
type ⊔ {null}} if kind ̸= PrimitiveType,

A = Ran(N IRI) ⊑ N IRI
type otherwise, and

B = µUnprepared(Ntype) if progressVM(Ntype) = Unprepared,
B = ∅ otherwise.

1

2

1

2

3

4

3

4

For a variable declaration, we first declare the variable as an individual of the Variable concept ( 1 ). As such,
we add an axiom that connect the variable to its surrounding method via the declaresVar role. Additionally,
we formulate a hasName role assertion that stores the RCN of the variable. The variable is also declared as a
functional role whose domain is within the concept of all stack frames and whose range is within the concept
of the declared type Ntype of the variable ( 2 ). Similar to the mapping of fields, we add null to its range if the
variable type is a reference type ( 3 ). Also, again if the type of the variable has not yet been loaded, we add
axioms describing this circumstance by invoking µUnprepared ( 4 ).

Mapping Unprepared Types

We formalize the mapping of unprepared types with the µUnprepared helper function:

µUnprepared(N) = {I(N IRI),UnpreparedType(N IRI), hasName(N IRI, Nstr),

C(N IRI), N ⊑ java.lang.ObjectIRI

N IRI ⊑ ⊥}
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It declares unprepared types as individuals of the UnpreparedType concept. Besides declaring their name via
the hasName role, we assert no further information about them as individuals.

However, as they must be reference types, Object must be a supertype for them, so we declare them as
concepts that are subsumed by java.lang.ObjectIRI.

Also, an unprepared type can not have any instances in the JDI state, so we also declare its concept to be
subsumed by the empty concept ⊥.

Mapping the Main Thread

We map the single thread that we are considering for sjdb by recursively mapping its frames:

µ
(︂
Thread(F0, F1, . . . , Fn)

)︂
:=
⋃︂

0≤i≤n

µ(Fi, i)

As the depth of a frame is indicated by the order in which they are listed in a Thread(. . .) expression, we have
to pass along the index i of the frame into the recursion. Notably, we start counting indices at 0 as this is also
the indexing scheme used by the JDI.

Mapping Stack Frames

To every stack frame of the main thread, we apply the following mapping:

µ
(︂ =:S⏟ ⏞⏞ ⏟
Frame(Vals . . .), depth

)︂
:=

{I(s), StackFrame(s), isAtStackDepth(s, depthxsd)}
∪ {N IRI

var(s, µ(val)) | (Nvar, val) ∈ Vals}
∪ This

where s = depthIRI and
This = {this(s, γIRI)}

if this(γ) ∈ S, otherwise This = ∅.

1

2

1

2

3

The mapping declares every stack frame as an individual of the StackFrame concept ( 1 ). Additionally, we
annotate each frame individual with its depth in the stack using the isAtStackDepth role.

For every variableNvar of the frame that stores a value expression val according to the map Vals, we recursively
map val ( 2 ). Additionally, we declare a role assertion Nvar(s, µ(val)) that uses the variable Nvar as a role to
link the stack frame to the mapping of the value. Notably, this is a case where µ(val) does not produce a set of
axioms, but the name of an object individual, or a literal from an XSD datatype in the case of primitive values.
Moreover, if there is a this(γ) sub-expression in the frame expression S ( 3 ), then the frame belongs to a
non-static method invocation on an object with the unique id γ. In this case, we add an axiom that connect
the frame to this object via a this role assertion.
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Mapping Values

We map primitive values to the literals of XSD datatypes. Null references are mapped to the special individual
null that is already declared as part of the base set B. Lastly, object references Ref(γ) containing the unique
ID γ of an object are mapped to the name of the object. As mentioned above, the names of objects are IRIs
generated from their unique IDs:

µ(PVal(v)) := vxsd,

µ(null) := null,
µ(Ref(γ)) := γIRI.

Mapping Objects

We map every object in the JDI state using the following function:

µ

(︃ O⏟ ⏞⏞ ⏟
Object

(︂
ID(γ),TypeName

(︁
Ntype

)︁
,Vals, . . .

)︂
,

VM⏟ ⏞⏞ ⏟
VirtualMachine

(︁
. . .Objs, . . .

)︁)︃
:= {I(γIRI), N IRI

type(γ
IRI), hasUniqueId(γIRI, γxsd)}

∪ {N IRI
field(γ

IRI, µ(val)) | (Nfield, val) ∈ Vals}
∪ U

where

U = {hasPlainValue(γIRI, vxsd)} if Wrapper(v) ∈ O,

U = {hasPlainValue(γIRI, sxsd)} if String(s) ∈ O and sxsd is defined,
U = µ(S, Ntype, γ,VM) if S = Sequence(. . .) and S ∈ O,
U = ∅ otherwise.

1

2

1

2

33

To map an object o, we first declare γIRI as the name of an individual that we use to represent the object ( 1 ).
The individual is added to the concept N IRI

type of the type of which o is a direct instance. Due to the subsumption
axioms we add for subtyping relationships, this immediately implies that γIRI also belongs to the concepts of all
mapped supertypes of Ntype. Using a hasUniqueId role assertion, we also associate the unique id γ of the object
with the γIRI individual. Since the hasUniqueId role is functional and inverse functional, this role assertion
turns γ into a unique key to identify this individual representing o. Next, we map the values contained in the
fields of o according to the map Vals in the same way as we map the variables of a stack frame above ( 2 ).
That is, every field is used as a role N IRI

field to associate the object individual γIRI with the mapping µ(val) of the
value.

In the final part of the object mapping, we check whether the object is a direct instance of a primitive value
wrapper class, or an instance of String, or an array, or the instance of a class implementing Iterable ( 3 ).
In the first case, we associate the object with an XSD literal representing the wrapped primitive value using the
hasPlainValue role. In the second case, if the Java string can be represented in the value space of xsd:string,
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we associate the object with the corresponding xsd:string literal, again using hasPlainValue. In the last
two cases, the object expression contains a Sequence(. . .) sub-expression, and we delegate the mapping to
another recursive application of µ. If none of the cases apply, no further axioms are added to the mapping of
the object.

Mapping Sequences

We map sequences Sequence(val0, val1, . . . , valn−1) of values as follows:

µ(

Sequence(val0, val1, . . . , valn−1),

Ntype, γ,VirtualMachine(Types, . . .)
) := {{γIRI} ⊑ (=n)hasElement : SeqElement}

∪
⋃︂

i∈{0,1,...,n−1},
ei=run:elementi_of_γ

{I(ei), hasElement(γIRI, ei), hasIndex(ei, ixsd)} ∪ HasSucc ∪ IsEnd ∪ ElemType

where

HasSucc = {hasSuccessor(ei, ei+1)} if i ̸= n− 1,

HasSucc = ∅ otherwise, and

IsEnd = {{ei} ⊑ (=0)hasSuccessor− : ⊤} if i = 0,

IsEnd = {{ei} ⊑ (=0)hasSuccessor : ⊤} if i = n− 1,

IsEnd = ∅ otherwise, and

ElemType = {RefSeqElement(ei), storesRef (ei, µ(vali))} if the element type is primitive∗,
ElemType = {PrimSeqElement(ei), storesPrim(ei, µ(vali))} otherwise.

∗The type of the elements of the sequence is primitive iff

Types(Ntype) = RefType

(︄
. . . ,ArrayType

(︃
Component

(︂
TypeRef(. . . ,PrimitiveType)

)︂)︃
, . . .

)︄
.

1

2

1

2

3

4
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3

4

5

6
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First, we create a closure axiom that specifies the exact number of elements stored in the sequence. We
express this axiom by stating that the nominal that contains only γIRI is subsumed by the concept of individuals
that have exactly n elements ( 1 ). Here, γIRI is the individual that represents the array or Iterable object
containing the sequence. Next, for every index i of the sequence, we create an individual ei with a unique
IRI “run:elementi_of_γ” formed from the index i and the unique id γ ( 2 ). These individuals are used
to represent information about the elements of the sequence. We connect each ei to γIRI via the hasElement
role and associate it with its index i via the hasIndex role. Next, we encode role assertions for the utility
role hasSuccessor. As long as it is not the last element, every ei is associated with its successor ei+i with a
hasSuccessor role assertion ( 3 ). Additionally, we add a closure axiom for the first element that states that the
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first element has no predecessor. That is, the nominal that just contains e0 is subsumed by the concept of
those individuals that are connected to exactly zero individuals by the inverse of hasSuccessor ( 4 ). We add a
similar closure axiom for the last element en−1 to state that it has exactly zero successors. Finally, we declare
each ei to be a sequence element and connect it to the value stored in the sequence at index i. That is, if it is
a sequence of object references, we declare ei to be a RefSeqElement that stores the individual resulting from
the recursion µ(vali) via the storesRef role ( 5 ). Similarly, in the case of an array of primitive Java values, we
declare ei to be a PrimSeqElement and use the storesPrim role instead ( 6 ). We use two distinct roles here
since OWL separates data properties and object properties.

To differentiate between a sequence of object references and a sequence of primitive values, we look up the
type Ntype of the sequence using the Types map ( 7 ). If it is an array type referencing a primitive type as its
component type, then it must be a sequence of primitive values. Otherwise, the sequence can only be an array
of object references, or an Iterable that can also only iterate over object references.

Omitted Mapping Details. Our mapping formalization µ has been slightly reduced to the most important
axioms. Its implementation in sjdbmaps some additional information that might be useful in some debugging
scenarios, but is not essential. This includes for example the source code path and the line numbers of methods
and variables, or information about access modifiers (public, protected, etc.).

We also leverage the lack of a unique name assumption to generate aliases for all objects referenced by
variables in the top stack frame. As alias names we use the names of these variables together with a special
prefix. This makes the top stack frame easier to query and inspect for users.

Furthermore, sjdb uses custom concepts SeqElement<T> instead of SeqElement for the type T of elements
stored in a sequence and establishes a typing hierarchy via subsumption axioms for them. The hierarchy is
similar to the hierarchy explained in section 5.2.

6.3. The Base Set of Axioms B

We now describe the set B of base axioms that we add to the result of every mapping, independent of the
concrete JDI state. Since B contains many axioms, we organize it into a union of multiple subsets BX :

B :=
⋃︂

{Btype−kinds, Bpredec−typing, Bfields, Bmethods, Bvars, Bstack, Bseq, Bnull, BhasUniqueId, BhasName}

Type Kinds Btype−kinds introduces the concepts of the different type kinds and their relationships:

Btype−kinds := {
C(Class),C(Interface),C(ArrayType),C(UnpreparedType),C(ReferenceType),

ReferenceType ≡ Class ⊔ Interface ⊔ ArrayType ⊔ UnpreparedType

Class ⊓ Interface ⊑ ⊥,Class ⊓ ArrayType ⊑ ⊥,ArrayType ⊓ Interface ⊑ ⊥
}

1

2

1

2
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That is, the concept of all reference types is the union of classes, interfaces, array types and unprepared types
( 1 ). As no Java type can be of multiple type kinds at the same time, we also declare the first three concepts
to be disjoint ( 2 ).

Base Types As we explained in section 4.2, the type information that is available through JDI states is not
necessarily complete. Because we aim to represent the state of a Java program execution as it is, we do not
attempt to fill in type information that is missing, but only map the information that is available. However,
we make a few selected exceptions to this rule. The supertypes of arrays and interfaces can not be directly
queried through the JDI, but they are defined in the JLS. Hence, if an interface or array type is mapped, we
still model this supertype relation, see also sections 5.2 and 6.5. For this purpose, we declare some type
concepts and array typing rules that generally hold true in Java in Bpredec−typing:

Bpredec−typing := {C(java.lang.ObjectIRI),C(java.lang.Object[]IRI
),

C(java.lang.SerializableIRI),C(java.io.CloneableIRI),

java.lang.Object[]IRI ⊑ java.lang.ObjectIRI,java.lang.CloneableIRI,

java.io.SerializableIRI,

java.lang.CloneableIRI,java.io.SerializableIRI ⊑ java.lang.ObjectIRI,

PrimitiveArray ≡ boolean[] ⊔ long[] ⊔ int[] ⊔ short[] ⊔ byte[]
⊔ char[] ⊔ float[] ⊔ double[],

PrimitiveValue ≡ xsd:boolean ⊔ xsd:long ⊔ xsd:int ⊔ xsd:short ⊔ xsd:byte
⊔ xsd:unsignedShort ⊔ xsd:float ⊔ xsd:double

}

1

2

3

4

5

1

2

3

4

5

That is, we first declare concepts for Object, Object[], java.io.Serializable, and Cloneable ( 1 ).
Then, we mirror the Java subtyping rules for arrays by declaring the concept of Object[] arrays to be
subsumed by the concept of Objects, java.io.Serializables, and Cloneables ( 2 ). Furthermore, as
they are interfaces, java.io.Serializable and Cloneable are subtypes of Object which we mirror in
the subsumption axiom 3 . Next, we subsume all primitive array types under the concept PrimitiveArray ( 4 ),
it will be used to define the domain of the hasElement role. Lastly, we declare the concept of all primitive
values as the union over the XSD datatypes we use to represent them ( 5 ).

Fields, Methods, and Variables The concepts of fields, methods, variables, and related roles and axioms are
included in Bfields, Bmethods, and Bvars respectively:
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Bfields := {C(Field),R(Field),
Dom(hasField) ⊑ ReferenceType,
Ran(hasField) ≡ Field,
InvFun(hasField)

}

Bmethods := {C(Method),R(hasMethod),
Dom(hasMethod) ⊑ ReferenceType,
Ran(hasMethod) ≡ Method,
InvFun(hasMethod)

}

Bvars := {C(Variable),R(declaresVar),
Dom(declaresVar) ⊑ Method,
Ran(declaresVar) ≡ Variable,
InvFun(declaresVar),

Variable ⊑ ∃hasCodeIdx : xsd:long
}

Here, we also define the properties of the hasField, hasMethod, and declaresVar roles, i.e. their domains and
ranges, and whether they are functional or inverse functions.

The Stack Bstack declares the concept of a stack frame and the this role that connects stack frames with the
object that correspond to the this reference of the frame, if the frame does not belong to a static method:

Bstack := {C(StackFrame),R(this),Dom(this) ⊑ StackFrame,Ran(this) ⊑ java.lang.ObjectIRI, Fun(this)}

Sequences The subset Bseq contains concepts, roles and axioms related to defining sequences of elements,
like arrays:
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Bseq := {C(SeqElement),C(RefSeqElement),C(PrimSeqElement),
RefSeqElement ⊔ PrimSeqElement ≡ SeqElement,RefSeqElement ⊓ PrimSeqElement ⊑ ⊥,

R(hasElement), InvFun(hasElement),

Dom(hasElement) ⊑ PrimitiveArray ⊔ java.lang.Object[] ⊔ java.lang.IterableIRI,

Ran(hasElement) ≡ SeqElement,
R(hasIndex), Fun(hasIndex),
Dom(hasIndex) ≡ SeqElement,
Ran(hasIndex) ⊑ xsd:int,

R(storesRef ), Fun(storesRef ),
Dom(storesRef ) ⊑ RefSeqElement,

Ran(storesRef ) ⊑ java.lang.ObjectIRI ⊔ {null},

R(storesPrim), Fun(storesPrim),

Dom(storesPrim) ⊑ PrimSeqElement,
Ran(storesPrim) ⊑ PrimitiveValue,

R(hasSuccessor), Fun(hasSuccessor), InvFun(hasSuccessor),Asy(hasSuccessor),
Dom(hasSuccessor) ⊑ SeqElement,
Ran(hasSuccessor) ⊑ SeqElement

}

1

2

1

2

The concept SeqElement of sequence elements is the disjoint union of elements of object reference sequences and
primitive value sequences ( 1 ). We declare the hasElement, hasIndex, storesRef , storesPrim, and hasSuccessor
roles and their domains, ranges and other properties ( 2 ). Particularly, storesRef ranges over the union of
Objects and the nominal containing null because sequences may store null references instead of objects.

The null Individual We declare the special individual null that represents Java null references in Bnull.
To compensate the lack of a unique name assumption, we also explicitly declare it to be different from all
individuals that represent objects. I.e. we express this by declaring the intersection of the nominal containing
null and the concept of all Objects to be empty:

Bnull := {I(null), {null} ⊓ java.lang.ObjectIRI ⊑ ⊥}

Remaining Role Declarations BhasUniqueId contains axioms describing the role hasUniqueId that connects
objects to their unique id provided by the JDI:

BhasUniqueId := {R(hasUniqueId), Fun(hasUniqueId), InvFun(hasUniqueId),

Dom(hasUniqueId) ≡ java.lang.ObjectIRI,Ran(hasUniqueId) ⊑ xsd:long}

BhasName describes the hasName role that we use to store the RCNs of JDI state components:

BhasName := {R(hasName), Fun(hasName),
Dom(hasName) ≡ Class ⊔ Interface ⊔ ArrayType ⊔ UnpreparedType ⊔ Variable,
Ran(hasName) ⊑ xsd:string}
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We declare the hasPlainValue role in BhasPlainValue:

BhasPlainValue := {R(hasPlainValue), Fun(hasPlainValue),

Dom(hasPlainValue) ⊑

(︄ ⨆︂
W is a wrapper

mentioned in table 4.1

W
)︄

⊔ java.lang.StringIRI,

Ran(hasPlainValue) ⊑

(︄ ⨆︂
X is an XSD datatype
mentioned in table 4.1

X
)︄

⊔ xsd:string,

C(java.lang.StringIRI),

java.lang.StringIRI ⊑ ∀hasPlainValue : xsd:string
} ∪ {C(W ),W ⊑ ∃hasPlainValue : X | W,X are an associated pair of types in table 4.1}

1

2

1

2

When applied to strings, it ranges over the java.lang.StringIRI concept ( 1 ). For all individuals of the
wrapper classes of primitive values, it must store a value from the corresponding XSD datatypes ( 2 ). In the
first case, we do not necessarily store a value with hasPlainValue since a Java string might contain Unicode
code points which can not be encoded into an xsd:string. Hence, we use a value restriction quantifier in
this case, and an existential quantifier in the second case.

6.4. A Reverse Mapping

In the next chapter, we introduce an answering engine that can execute semantic queries on the knowledge
bases produced by the mapping we introduced in this chapter. These queries can result in the names of DL
individuals and concepts stored in a knowledge base. However, without further inspection, it might not be
immediately clear to users, what Java constructs and objects they represent. Also users might want to view a
Java object and its field directly, as it is represented in traditional debuggers.

Therefore, we integrate a partial reverse mapping into sjdb that can map a DL individual back to a reference
to the Java object it represents.

Let KB be a knowledge base generated from a JDI state with a root expression of the form

VM = VirtualMachine(. . . ,Objs, . . .).

Then, we define the reverse mapping µ−1
KB,VM from DL individuals to expressions of the

�� ⊵�Object production as
follows:

µ−1
KB,VM = {(i,Objs(γ)) | KB |= hasUniqueId(i, γ)}.

6.5. Guaranteed Type Information

We use subsumption to emulate some properties of typing relationships. As the typing information in the JDI
state is incomplete, so is the subsumption hierarchy that we create, as well as other information about types,
like associated fields and methods.
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In any case, we can at least guarantee the following properties of a knowledge base KB = µ(Σ) resulting from
mapping a JDI state Σ. This is due to the guarantees given for lazy linking strategies outlined in sections 2.3.2
and 4.2 and by our construction µ:

• Let T be the RCN of a reference type that is unprepared, but that is referenced in the declaration of a
variable, field, or method of a prepared type, or referenced as the component type of a prepared array
type. Then T is guaranteed to be declared as a concept, an individual, and as an unprepared type and
its RCN is available:

{C(T IRI), I(T IRI),UnpreparedType(T IRI), hasName(T IRI, T str)} ⊂ KB.

• Let T be the RCN of a prepared reference type. Let U be the RCN of a supertype of T . Then T is
declared as a concept and as an individual. Also, its type kind K is indicated and its RCN is available.
Also U is declared as a concept:

{C(T IRI), I(T IRI),K(T IRI), hasName(T IRI, T str),C(U IRI)} ⊂ KB

where K is the concept Class, Interface or ArrayType respectively.
Also, information about its fields and methods is available:

hasMethod(T IRI, f IRI) ∈ KB, and hasMethod(T IRI,mIRI) ∈ KB

for every field of T with the RCN f or method of T with the RCN m.
Furthermore, KB entails that T IRI is subsumed by the supertype:

KB |= T IRI ⊑ U IRI.

If U ̸= java.lang.Cloneable and U ̸= java.io.Serializable, then U must also be prepared
in the JVM, and the same rules apply to it recursively.

• The type Object must always be prepared in the states considered by us. Thus, the information
mentioned above for prepared reference types must always be available for Object.
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7. Answering Engine

In this chapter, we describe how we answer different kinds of semantic user queries on Java program states.
Section 7.1 presents the different kinds of queries that sjdb supports. In section 7.2 we describe how users
can extend the knowledge bases generated by our mapping with additional concepts and axioms. This also
gives users the opportunity to utilize existing OWL formalizations of application domains. This way, they can
give Java constructs meaning in a specific application domain and query Java states using the vocabulary of
that domain. Section 7.3 presents mapping macros, a mechanism to compensate for the lack of expressivity of
DL in some areas by performing computations through Kotlin functions within sjdb. Section 7.4 describes
the answering engine of sjdb. It combines multiple external reasoners and query engines to answer user
queries. Lastly, section 7.5 introduces DL breakpoints, which enable users to suspend programs at a breakpoint
only if a DL encoded condition is met.

7.1. Query Types

We support the following main types of user queries in sjdb:
SPARQL Queries

(section 7.1.1)
DL Inference Tasks

(section 7.1.2)
SHACL Shape Validation

(section 7.1.3)

We support these query types through external semantic web technologies. Besides these main query types
we also implement other minor query engines. For instance, sjdb supports an “inspect” command that
recursively collects all properties of an individual and returns the resulting graph. However, we do not go into
detail for these minor query types here.

7.1.1. SPARQL Queries

The SPARQL Protocol and RDF Query Language [47] enables users to formulate queries based on triple
patterns. From such patterns, more complex queries can be constructed by conjunction, disjunction, and
negation.

We implement our DL knowledge bases in OWL which has a triple-based representation as an RDF graph [88].
Our implementation utilizes this RDF representation to construct, store, and manipulate our knowledge bases.
Since SPARQL operates on RDF graphs, we can directly apply SPARQL query engines to our knowledge bases.

Example
Let us consider an example of how axioms generated by our mapping algorithm are represented as triples
in RDF graphs.

We remind the reader of example 13 in section 5.4. In this example, our mapping algorithm generates
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axioms that express that there is an instance of a class TextMessage, and how it is connected to the values
in its fields. We briefly illustrate how these axioms are represented as triples in RDF in Turtle syntaxa [15]:

DL Axiom RDF Triple

TextMessage(o0) run:object0 rdf:type prog:TextMessage
String(o1) run:object1 rdf:type prog:java.lang.String
hasUniqueId(o0,"0"^^xsd:long) run:object0 java:hasUniqueId "0"^^xsd:long
hasUniqueId(o1,"1"^^xsd:long) run:object1 java:hasUniqueId "1"^^xsd:long
id(o0,"42"^^xsd:int) run:object0 prog:TextMessage.id "42"^^xsd:int
sender(o0, o1) run:object0 prog:TextMessage.sender run:object1

As we can see, concept assertions C(a) are translated into triples that relate a to C via the property
rdf:type. Hence, if one wanted to query all instances of TextMessage, this could be achieved with the
following SPARQL query

SELECT ?x WHERE { ?x rdf:type prog:TextMessage }

This query will return all entities e such that the triple “?x rdf:type prog:TextMessage” appears in
the RDF graph when substituting e for ?x.

We give some additional SPARQL usage examples in our case studies in chapter 9. For general information
on the representation of OWL in RDF and on SPARQL, we refer to the W3C recommendation describing the
mapping of OWL to RDF graphs [88], and to the SPARQL 1.1 Query Language specification [47].
aWe slightly simplify the generated names of individuals, roles and concepts here

SPARQL when not linked with an entailment regime [41] can only retrieve the information that we express
explicitly through role assertions and other axioms. Thus, as the experiments of section 9.3 seem to corroborate,
answering SPARQL queries without combining it with a reasoner appears less computationally expensive than
solving DL inference tasks. An important difference between SPARQL queries and DL-based queries is that
SPARQL does not adopt the open world assumption. This difference matters in regard to queries involving
negation [31].

Still, in some instances it can be helpful to support basic inference capabilities in SPARQL. For instance,
support for subsumption relations would make sub-typing information available in SPARQL.

Example
Let us again consider the sub-class hierarchy of example 11. It consists of a class Message and its two
sub-classes TextMessage and ImageMessage. Without support for basic reasoning, the SPARQL query

SELECT ?x WHERE { ?x rdf:type prog:Message }

will not return any instances of the class TextMessage, since it requires deriving inferences of the following
form:

TextMessage ⊑ Message,TextMessage(o) =⇒ Message(o).

Thus, we also integrate SPARQL engines with OWL reasoning support into sjdb. The following is a list of all
currently supported SPARQL engines:
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E1: Apache Jena ARQ Apache Jena ARQ [36] implements the full SPARQL 1.1 standard, but also a set of
extensions.

E2: Apache Jena ARQ with Jena OWL Reasoner The Jena ARQ SPARQL engine provides optional support1
for a built-in OWL lite [75] reasoner, which implements a subset of OWL 1. It also includes the more
efficient Jena OWL Mini2 and OWL Micro3 reasoners, although these are restricted to even simpler
subsets of OWL.
All of these reasoners are able to resolve basic subsumption chains as in the above example.

E3: Apache Jena ARQ with HermiT By pre-computing all inferred axioms with the HermiT [40] reasoner and
making them explicit in a knowledge base, sjdb supports SPARQL queries with OWL 2 reasoning. After
pre-computing all inferences, Jena ARQ is used as the query engine. However, resolving all inferences is
a computation-intensive task, and from experience, this appears to be the least efficient SPARQL query
backend supported by sjdb.

E4: Openllet’s SPARQL-DL Engine The Openllet OWL 2 reasoner [63] also provides an efficient SPARQL
engine for a subset of SPARQL but with support for OWL 2 reasoning. It is called SPARQL-DL [102].

7.1.2. DL-Inference Tasks

Using the HermiT [40] and Openllet [63] OWL 2 DL reasoners, sjdb enables users to query a knowledge
base KB by solving a variety of DL inference tasks. For more detailed information on DL inference tasks, see
also section 2.2 on description logic.

The following kinds of tasks are supported by sjdb:

Named Individual Enumeration Given a DL concept description C, sjdb enumerates all named individuals i
for which it can be inferred that i is part of the concept C, i.e.

{i | KB |= C(i)}.

Named Concept Enumeration Given a DL individual i, sjdb enumerates all named concepts C for which it
can be inferred that i is a part of C, i.e.

{C | KB |= C(i)}.

Checking Axiom Entailment Given a DL axiom α, sjdb can check whether a knowledge base entails it, or
not. That is, we compute whether the following holds true:

KB |=? α.

Concept Satisfiability Check Given a DL concept description C, sjdb can test whether C is satisfiable with
respect to KB.

1https://jena.apache.org/documentation/inference/#owl
2https://jena.apache.org/documentation/javadoc/jena/org/apache/jena/reasoner/rulesys/
OWLMiniReasoner.html

3https://jena.apache.org/documentation/javadoc/jena/org/apache/jena/reasoner/rulesys/
OWLMicroReasoner.html
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Consistency Check sjdb can check whether KB is consistent. This check is particularly useful if correctness
conditions have been formulated as DL axioms. In that case, if the state of a Java program violates such
an axiom, then the knowledge base generated by our mapping will be inconsistent, once the axiom is
added.

7.1.3. SHACL Shape Validation

The SHACL shapes constraint language [66] can validate RDF graphs against a set of conditions on their
structure called shapes. As we outlined in section 7.1.1, our knowledge bases are implemented in RDF, hence
SHACL can be applied to them.

For instance, SHACL can be used for formulating correctness conditions of a data structure. Then, sjdb can
be used to validate a Java implementation of the structure against the shape.

Example
In example 12, we formulate a DL axiom that expresses that the sender field of a Message class must be
set to a String object, not null.

The same can be expressed in SHACL using Turtle syntax [15] as follows:

ValidMessage
rdf:type sh:NodeShape ;
sh:property [

sh:path prog:Message.sender ;
sh:class prog:String ;

] .

A more detailed example for applying SHACL to a doubly-linked list data structure can be found in
section 9.3.2.

We are using the Apache Jena framework for validating knowledge bases against SHACL shapes4.

7.2. User-defined Concepts & Application Domains

To effectively debug applications with sjdb using inference tasks or with reasoning-enabled SPARQL, users
have to provide DL-based formalizations of the implemented concepts they want to debug. For instance, in
section 9.1, we formalize the concept of valid B-trees to debug a Java implementation.

Beyond single concepts, there are also DL formalizations of many application domains implemented in OWL.
For instance, SNOMED CT is a widely used [23, 68] reference terminology for clinical terms and it has also
partially been implemented in OWL [34]. FoodKG [48] is a diet-related knowledge graph formalizing dietary
guidelines and recipe suggestion knowledge. The RealEstateCore [46] ontology was developed for energy
usage analysis of smart buildings. Many more examples of application domain formalizations and their uses
can for example be found in the resources track of the International Semantic Web Conference5.
4https://jena.apache.org/documentation/shacl/index.html
5https://link.springer.com/conference/semweb
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The knowledge modeled in these application domain formalizations can potentially be utilized to debug Java
programs operating in the respective domain. We demonstrate this with a simple example in section 9.2
where we debug a pizza recipe generator using the pizza ontology [51].

The question remains: How does sjdb enable the combination of user-defined concepts and application domains
with the Java knowledge bases generated by our mapping?

When users want to specify custom axioms, concepts or supply an application domain definition, they have
to provide them to sjdb as an OWL knowledge base KBuser represented as RDF triples in Turtle syntax. In
practice, sjdb reads this external knowledge base from a file.

Let Σ be the JDI state of a Java debuggee. Then sjdb will generate a combined knowledge base KB as the
union of the mapping µ(Σ) of the debuggee state and all axioms from the user-defined knowledge base KBuser:

KB = µ(Σ) ∪ KBuser.

All user queries will be executed on this combined knowledge base.

7.3. Mapping Macros

The integration of OWL 2 DL reasoners in sjdb enables users to infer additional knowledge beyond axioms
explicitly generated by our mapping µ or explicitly stated in user-provided knowledge bases.

However, the expressivity of OWL 2 DL is limited to preserve its decidability [54, 81]. This is achieved by
placing certain restrictions [82, section 11] on the axioms of OWL knowledge bases. These restrictions are
automatically checked by OWL 2 reasoners like HermiT and usually result in an error if violated.

For instance, only simple roles [54, 58] can be used in cardinality restrictions. A role can for example become
non-simple if it appears on the right-hand side of a role inclusion axiom that chains multiple roles.

However, our case study of section 9.2 shows, that a situation can easily arise where these restrictions prevent
us from connecting our mapping with external domain formalizations. We aim to partially alleviate such
problems by introducing mapping macros to sjdb’s feature set.

Mapping macros resolve inferences that can not be handled by OWL 2 reasoners into explicit axioms that are
inserted into our generated knowledge bases as a part of the mapping process. Thus, mapping macros do not
need to be integrated into existing reasoners, and the produced knowledge is usable with query backends that
do not support reasoning. They must be invoked manually by the user and target only a specific instance of
an inference rule schema. This way, we ensure that the knowledge bases augmented with mapping macros do
not grow too large.

Alternatively, we could have relied on existing rule languages like SWRL [55] that are also already supported
by some OWL reasoners. However, mapping macros are implemented as a part of sjdb and thus provide us
more flexibility as they can realize any kind of Kotlin program.

For now we implement only one macro, “Chain”, that could also have been implemented with SWRL. Still, if
custom mapping macros were to be realized in the future using our plugin system (section 8.3.3), they could
greatly aid users in connecting external domain formalizations with a program state.
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7.3.1. Macro Invocation

For more flexibility, macro invocations are expressed as RDF triples and are not a form of OWL axiom.
Therefore, macro parameters can be any kind of data, as long as it is convertable to RDF. Users can supply
macro invocations to sjdb by including them in the same RDF file through which they also supply external
knowledge bases.

The exact structure of a macro invocation depends on the individual macro.

7.3.2. The Chain Macro

A relation R between Java objects sometimes exist only over multiple role links S1, S2, . . . , Sn. In DL, R can
be expressed via a role inclusion axiom containing a role chain on the left hand side:

S1 ◦ S2 ◦ . . . ◦ Sn ⊑ R.

However, then R is a non-simple role and no cardinality restrictions can be expressed for R. For instance, the
axiom (= 0)R : ⊤ ⊑ ⊥ must not be formulated at the same time.

The Chain macro emits the role assertions that would be implied by the above role inclusion axiom. I.e., for
a given knowledge base KB, the chain macro adds an axiom R(a1, an+1) to KB for every a1 and an+1 such
that eventually6

{S1(a1, a2), S2(a2, a3), . . . , Sn(an, an+1)} ⊆ KB.

The Chain macro can be invoked by an RDF triple of the following form:

R macros:chainsProperties (S1, S2, ..., Sn) .

7.4. The Architecture of the Answering Engine

To answer the different kinds of user queries, we have to combine multiple semantic web technologies, provide
them the query and knowledge base in the correct input format, and process their results. A rough overview of
this architecture of the answering engine is depicted in fig. 7.1. The answering engine consumes the knowledge
base µ(Σ) generated by our mapping for the JDI state Σ of a debuggee program. It also optionally takes
a user-defined knowledge base KBuser as input, see the previous section, as well as the user query. If the
user does not supply a knowledge base KBuser, we simply assume that KBuser does not contain any axioms:
KBuser = ∅. The two knowledge bases are combined into one as the union of their axiom sets. The combined
knowledge base KB and the query are then forwarded to the appropriate query backend which computes the
answer to the query.

After establishing this overview, let us now consider the answering engine in more detail as depicted in fig. 7.2.

The query input data actually consists of three components: The first component is the type of the query, i.e.
whether it is an inference task and what kind of inference task, or whether it is a SPARQL query, or a SHACL

6Currently, no protection against cyclic chains is implemented.
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Figure 7.1.: Overview of the answering engine. We provide a more detailed illustration in fig. 7.2.
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validation task. In practice, sjdb offers a command-line and a scripting interface to users and the query type
is determined by the command entered by the user. For example, there is an “infer” command, a “sparql”
command and a “shacl” command.

The second component of a query input is the query itself. For inference tasks, it is a concept description or
axiom provided in OWL Manchester Syntax [53] or Functional Syntax [82]. SPARQL queries naturally must
be provided in SPARQL syntax, and SHACL shapes are supplied as an RDF graph file in Turtle syntax.

Lastly, the user can optionally choose a reasoner for processing the query. By default, HermiT is used for
inference tasks, and the Jena OWL Micro reasoner is used for reasoning support when answering SPARQL
queries.

Hence, the selected reasoner also decides on the used SPARQL engine, see section 7.1.1. E1 is used when no
reasoner is selected. E2 is used when a Jena Reasoner is selected, and E3 and E4 are used respectively when
HermiT or Openllet are selected.

Our implementation relies on an RDF representation for creating knowledge bases, and for reading user-
defined knowledge bases. After computing the union of both, we enable users to further transform the RDF
graph using a set of pre-defined macros. We explain these macros in section 7.3.

Also, the user-defined knowledge base might declare a set of ontology imports [82, section 3.4]. That is,
a knowledge base built with OWL can gain access to the entities and axioms of another ontology through
imports. These imports are resolved by reading them from files, or downloading knowledge bases from the
internet. When the execution of macros completes, before applying any queries to the knowledge base KB,
we resolve all of its import recursively. That is, KB is replaced by its import closure.

This feature is useful when working with an external formalization of an application domain. A user can
extend on an external knowledge base and add “glue axioms” to establish relations between the concepts of
our Java mapping and the concepts of the application domain, without changing the original definition of the
external knowledge base. We make use of this in the case study of section 9.2.

Now, KB and the query are mostly ready to be passed on to the correct query backend, depending on the
query type. However, in the case of inference tasks, the used OWL reasoners can not process the knowledge
base as an RDF graph. Instead, they require knowledge bases to implement the OWL-API [50]. The OWL-API
views a knowledge base in terms of OWL concepts, roles and individuals, not just as a collection of triples.
Here, we rely on the ONT-API7 library, which implements an OWL-API interface for RDF graphs.

Depending on the query type and backend output, we provide different responses to the user. For some
inference tasks, e.g. an entailment check, sjdb just answers “true” or “false”. For enumeration inference
tasks, a list of concept or individual names as IRIs is reported.

For SPARQL queries, also a list of tuples containing IRIs is returned. Each tuple corresponds to one possible
instantiation of all query variables that matches the query. The contained IRIs are the names of nodes of the
underlying RDF graph. If the nodes represent a DL entity, then the IRI is identical to the name of that concept,
role or individual.

A SHACL validation results in a “yes” or “no” answer depending on whether the RDF graph of the knowledge
base matches the specified SHACL shapes. If it does not match a shape, a validation report [66, section 3.6] is
also returned by the query backend and displayed to the user. It indicates why a shape violation was found.

7https://github.com/owlcs/ont-api/wiki
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7.5. DL Breakpoints

Via semantic queries, sjdb can be used to find defective data structures in a program state. However, for
iterative algorithms, the same breakpoint might suspend a program many times before a faulty state is reached.
We encountered this issue during our evaluation, in section 9.1.2. Every time a debuggee suspends, the user
has to instruct sjdb to build a knowledge base and ask the same query. This process is tedious for the user
and the repeated formulation of the same condition is prone to errors.

To alleviate this issue, we implement DL breakpoints. This feature is inspired by the debuggers of popular
integrated development environments (IDEs) like IntelliJ or Eclipse. When placing a breakpoint, users of
these IDEs can annotate them with a boolean Java expression and the breakpoint will only suspend the
program at the breakpoint when the condition is met. The mechanism is akin to runtime assertions but it
has the advantage that the program is not terminated when the assertion fails so its state is still available for
interactive inspection.

DL breakpoints behave similarly, however, instead of boolean Java expressions, users of sjdb can supply a DL
inference task as the condition for a breakpoint. Supported are satisfiability checks and entailment checks.

We implement DL breakpoints as regular breakpoints via the JDI. Every time the program reaches the location
of the breakpoint and is suspended, sjdb internally maps its state to a knowledge base and performs the
associated inference tasks. Then sjdb keeps the program suspended and returns to interactive mode only if
the breakpoint’s condition is met. Otherwise, it will immediately resume the execution of the program.

Due to this implementation that requires the repeated solving of computationally expensive inference tasks, DL
breakpoints come with a considerable performance overhead and slow down the execution of the debuggee. We
give detailed insights in the response times of knowledge base generation and inference tasks in section 9.3.
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8. Implementation

The sjdb debugger has been implemented in the Kotlin1 programming language. Chapters 3 to 7 already
explain in great detail how the different components of sjdb operate. Our implementation is very close to
the formalization we present in these chapters. Therefore, we forego repeating the details of the mapping
algorithm and other core concepts here.

Instead, we focus on presenting only those components of the implementation that go beyond our conceptual-
ization or where it is not immediately clear how a presented formalism is implemented.

Furthermore, this chapter is intended to serve as a rough guide for the future maintenance of the source
code of sjdb. That is, for the critical concepts of the thesis we point out the names of the Kotlin packages or
classes that implement them. All source code packages of sjdb contain the prefix de.ahbnr.semanticweb.
Therefore, when referencing package names in this chapter, we omit this prefix.

Section 8.1 recounts important libraries and tooling on which sjdb has been built. Section 8.2 gives some
insights on how we interface with the JDI to extract the information from debuggees that we modeled via the
JDI states formalism.

Next, section 8.3 gives additional insights into the construction of knowledge graphs from our mapping and
from additional data sources like user-provided knowledge bases. We also present a plugin system that
facilitates the modification and extension of the mapping process.

In section 8.4, we clarify how sjdb interfaces with the different query backends of the answering engine and
how query answering is tied in with the interactive command interface of sjdb.

To make central components of sjdb available for future re-use in other projects, we split them off into a
library called “jdi2owl”. This separation is documented by section 8.5.

Finally, section 8.6 reports on our testing setup.

8.1. Tools and Libraries

Our implementation targets the JVM backend of the Kotlin language. Therefore, we have access to the Java
Class Library and we can also inter-operate with any other Java library. For building sjdb, resolving its
dependencies, and running tests, we employ the Gradle build tool (https://gradle.org/). We tested
sjdb on Linux systems, but since it is implemented in Kotlin/JVM it should be possible to port it to other
operating systems with just minor adjustments.

1https://kotlinlang.org/
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For debugging other Java processes, we rely on the default implementation of the JDI that is shipped with
OpenJDK 11 (https://openjdk.java.net/). We construct and modify RDF graphs via the Apache Jena
library (https://jena.apache.org/). It also provides the ARQ SPARQL engine, a SHACL validator, and
simple OWL 1 reasoners.

We link to the OWL-API (https://owlcs.github.io/owlapi/), version 5. We require it to supply OWL
reasoners with our generated knowledge bases. Furthermore, we make use of its other utility features like a
linter for OWL.

Speaking of OWL reasoners, sjdb provides full OWL 2 DL reasoning support through the HermiT (http:
//www.hermit-reasoner.com/) and Openllet (https://github.com/Galigator/openllet) rea-
soners.

Since we build knowledge bases as RDF graphs via Apache Jena, not through the OWL API, we also make
use of the ONT-API (https://github.com/owlcs/ont-api/). It implements a two-way translation
between Apache Jena RDF graph models and the OWL ontology interface of the OWL API.

We make use of the Spoon [91] source code analysis library to showcase an extension of sjdb’s mapping
algorithm with source code information through our plugin system.

The Clikt library (https://ajalt.github.io/clikt/) takes care of parsing command line options, but
also of parsing the commands that form sjdb’s REPL. Interactive editing of commands in the REPL, as well as
a command history feature and text coloring of success, warning, and error messages has been realized via
the JLine library (https://github.com/jline/jline3).

Some components of sjdb, like settings or the last constructed knowledge base must be available globally
throughout the program. Others, like a logging system have to be easily replaceable with different backend
implementations. To avoid tight coupling between program components, we rely on the dependency injection
design pattern. For its implementation, we utilize the Koin injection framework (https://insert-koin.
io/).

8.2. JDI Information Extraction

We do not implement the formalism of JDI states as presented in chapter 4 literally. JDI states are only a tool
that enables us to define our formal mapping µ of chapter 6 in an easier to understand and concise manner.
However, for our implementation, it is not sensible to introduce this additional abstraction layer over the JDI
since it requires additional maintenance effort and direct access to the JDI allows for easier experimentation
with new features when implementing the mapping. Also, JDI states are mostly just a reformulation of the
information that is already directly available through the JDI.

Therefore, instead of realizing the JDI states abstraction, we adopt a hybrid approach:

For interactions with the JDI outside of the mapping, we implement a set of utility classes for setting up and
managing the communication between sjdb and a debuggee via the JDI. For instance, we implement a class
JvmDebugger that is responsible for starting JVMs, setting up breakpoints, etc.

Meanwhile, the mapping µ is implemented directly on the JDI, but it is assisted by a second set of classes. These
classes provide those functionalities of JDI states that slightly exceed the information that is directly available
through the JDI, or the functionality that is provided by the helper functions of section 6.1. This encompasses
for example the generation of RCNs, listing of all Java objects, or the construction of the sub-typing hierarchy.
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We judge that this second kind of class is of enough interest to the thesis to warrant a further description
of some of them here. That is, we will discuss the following two implementation details in sections 8.2.1
and 8.2.2: The JvmObjectIterator and the TypeInfoProvider.

Most components for interacting with the JDI and implementing related helper functions are implemented
in the package jdi2owl.debugging of the jdi2owl library that has been separated out from sjdb.
The TypeInfoProvider and related classes can be found in the jdi2owl.mapping.forward.utils
package.

8.2.1. The JvmObjectIterator

The VirtualMachine expressions of the JDI states grammar make all objects in a program’s state accessible
through the map Objs:

VirtualMachine
(︁
Types,Thread(. . .),Objs,≺C

1 ,≺I
1

)︁
.

However, it is not possible to directly query for all objects through the JDI. Instead, we are faced with two
options:

Either, we can list all prepared types in the JVM and then ask the JDI to list all instances of each prepared
type.

Or, we can list all objects reachable by the program. That is, we can traverse the stack and all static fields in the
program to recursively list all objects referenced on the stack, referenced by static fields, or referenced
in fields of other objects or within arrays.

The first option is much simpler to implement, however, the second option allows us to better control what
parts of a program we actually want to map. That is, due to performance concerns, we exclude certain
parts of the Java Class library by default, as well as objects stored in arrays. By collecting objects through
the aforementioned recursive traversal, we can determine in which contexts an object is used and limit the
mapping µ based on this information. We further explain this limiting mechanism in section 8.3.2.

8.2.2. The TypeInfoProvider

JDI states either provide the following information directly, or we infer it through the helper functions and
relations in section 6.1:

• RCN of a type,

• whether a type is prepared or not,

• sub- and super-types.

We implement a TypeInfoProvider class that given a JDI reference to a type returns the above information.
The information is wrapped in instances of a class TypeInfo. It is computed exactly in the way that is
described in the previous concept chapters. Since determining the sub- and supertypes of a type can be
slightly computation intensive, especially for types like Object that are located high in the type hierarchy,
they are only computed on-demand.
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Figure 8.1.: Phases of knowledge base construction, including data sources2.

8.3. Knowledge Base Construction

Our implementation constructs a knowledge base from the state of a debuggee by incrementally adding triples
to an RDF graph. We utilize an RDF graph instead of directly constructing an OWL ontology via the OWL API
since it offers us more flexibility:

1. OWL 2 DL can be fully represented in RDF and the ONT-API library can directly translate it to the OWL
API interfaces required by reasoners.

2. Some of the query backends (SPARQL, SHACL) of the answering engine can only operate on RDF.

3. RDF can represent knowledge outside of OWL constructs. This permits users to combine mapped
program states with external knowledge that is not encoded in OWL.

The construction starts on an empty RDF graph and is divided into seven phases, see also fig. 8.1:

1. Base Axiom Loading In this phase, we add the base axioms defined in section 6.3 to the graph. These
are the same for every debuggee, so we formulated them manually and stored them in a file. The
implementation then simply loads them from the file into the RDF graph.

2. Macro Vocabulary Loading Mapping macros are invoked using an OWL-based vocabulary, see section 7.3.
In this phase, we load this vocabulary into the graph in the same way as in phase 1.

3. Debuggee State Mapping We apply the mapping µ of section 6.2 to the debuggee and add all emitted
axioms to the graph. We explain the implementation of µ in more detail in section 8.3.1. External
mapping plugins are also invoked in this phase, see section 8.3.3.

4. User-provided Knowledge Loading Users can connect the mapping of a state with their own axiom and
concept definitions or even full domain formalizations. We load these definitions as an RDF graph from
a user-provided file in Turtle [15] format. Then we simply add all triples contained in this graph to our
constructed graph.
This phase is skipped, if no file has been provided by a user.

2This figure includes material design icons by Google LLC and other contributors: https://github.com/Templarian/
MaterialDesign.
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5. OWL Import Resolution In this phase, we resolve any OWL imports present in the graph, see section 7.4.
For this we rely on the OWL-API library. The OWL-API interface of RDF graph provided by the ONT-API
can translate in both directions: From changes in the RDF graph to changes in the OWL ontology
representation and vice-versa. Therefore, all imported axioms are translated into RDF triples and
directly inserted into our graph.

6. Macro Execution During this phase, we execute any mapping macros called by the user and insert all
emitted triples into the graph. This phase is the last phase that adds any triples on the graph so that the
macros are executed on a complete graph.

7. Linting During testing, we noticed that one can easily make syntactic errors or other simple mistakes when
manually writing OWL axioms in Turtle format. The same is possible when adjusting the mapping µ or
when implementing a mapping plugin.
Therefore we run multiple linters on the constructed graph in this phase:

• Openllint: An OWL syntax checker that is part of the Openllint reasoner. It also detects OWL
modeling anti-patterns that can have a negative impact on reasoning performance.

• An OWL 2 DL Profile violation checker included in the OWL-API library. OWL 2 DL is a sub-language
of OWL 2 defined through a set of restrictions that ensure its decidability. This linter detects
violations of these restrictions.

If a linter finds an issue, then sjdb only produces warning messages. The construction will still complete.

We divide the responsibilities for the different phases betweem different implementation components. A single
class, GraphGenerator manages the execution of the different phases and calls the appropriate components
in the right order. It is located in the package jdi2owl.mapping.forward.

8.3.1. Mapping Implementation

Our implementation of the mapping µ is very close to our formal definition. It is divided into different
Kotlin functions for each kind of state component, e.g. mapReferenceTypes, mapField, mapMethod
, etc. They call each other while traversing the state. These functions can be found in the package
jdi2owl.mapping.forward.base_mappers.component_maps.

8.3.2. Limited Mapping

The knowledge bases generated by sjdb can grow large, even for trivial programs. For instance, sjdb
produces around 330.000 RDF triples3 which equates to around 220.000 axioms for a simple “Hello World”
program, as depicted in listing 1. Whereas some query backends (SPARQL, SHACL) can easily handle even
large knowledge bases, the performance of OWL DL reasoners diminishes for large knowledge bases, see also
section 9.3.

Many of these triples are generated from components of the Java Class Library4. However, the mapping
of internal parts of these classes, e.g. private fields and methods, is usually not required for debugging
3Without mapping any internal arrays and iterable collections present in the Java Class Library.
4https://docs.oracle.com/en/java/javase/11/docs/api/
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applications. The same holds true even for the public parts of some of its packages, for example, the jdk
package which contains the Java Development Kit APIs.

Similarly, from experience, certain closure axioms seem to negatively influence reasoning performance,
although a systematic study of this effect remains as future work, see section 10.2.

Lastly, arrays and iterable collections can introduce large numbers of objects to the mapping, as well as the
associated sequence modeling axioms.

Therefore, sjdb is able to exclude certain parts of a debuggee’s state from the mapping process and restrict
the generation of certain closure axioms. This feature is controlled through the following mapping settings:

List of Excluded Packages All classes that belong to Java packages on this list are completely excluded from
the mapping process.
This list is empty by default.

List of Shallow Packages For all classes that belong to Java packages on this list, sjdb will only map those
that are marked with the public access modifier.
It will also only map those class members that are marked with a public access modifier. No internal
information about methods in these packages will be mapped, e.g. no local variable declarations are
mapped.
This list is empty by default.

SDK Mapping Limiter This setting is a boolean flag. If enabled, certain packages of the Java Class Library are
treated as if they are on the list of excluded packages. See table C.3 in the appendix for a full list of
these packages.
Furhermore, all packages of the Java Class Library are treated as if they were on the list of shallow
packages, if this setting is enabled.
This setting is enabled by default.

Disable Reference Type Enumeration Axioms If this setting is activated, then the mapping will not generate
closure axioms that enumerate all objects of a certain type. More specifically, sjdb will not generate
the axiom scheme 6 in the mapping case µ(RefType(. . .),VM) in section 6.2.
However, can always generate this part of the mapping on-demand. That is, if a user needs to close
a certain reference type T , then they can interactively request from sjdb to retroactively insert the
closure axiom for T into a generated knowledge base.
This setting is enabled by default.

List of Deeply Inspected Object Sequences By default, sjdb does not execute the mapping of arrays and
iterable collections as formalized in the case µ(Sequence(. . .), . . .) of the mapping µ in section 6.2.
This is because arrays and collections can potentially contain large numbers of objects. Instead, users of
sjdb have to explicitly opt-in into the mapping of sequences. This can be done by adding the names
of fields and variables, prefixed with their declaring type and method, to a list. Any array or iterable
collection referenced by one of these fields or variables will then be fully mapped.
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With the mentioned default values, sjdb is able to reduce the number of triples generated for the aforemen-
tioned “Hello World” program to around 12.000 triples representing about 11.000 axioms.

Please note, that the first two settings, the list of excluded packages and the list of shallow packages can not
be interactively controlled by users of sjdb. The other settings can be changed through user commands.

However, the first two settings are still relevant, since they can be controlled programmatically through the
jdi2owl library component of sjdb.

The mapping settings are stored in the class jdi2owl.mapping.MappingSettings. They serve as the
input for a separate class, jdi2owl.mapping.MappingLimiter that can determine whether a reference
type, object sequence, or method component should be skipped during the mapping process given its JDI
handle. It is called by the mapping functions and the aforementioned JvmObjectIterator.

public class HelloWorld {
public static void main(String[] args) {

System.out.println("Hello World");
}

}

Listing 1: A “Hello World” Java program.

8.3.3. Plugin System

In section 4.1 we limited the scope of the JDI information that we are considering in our mapping process.
We also point out in our discussion of related work (section 10.1), that there are many opportunities for
extending our mapping algorithm.

Therefore, we added a plugin system to the jdi2owl library that permits the modification and the extension
of the existing mapping process. Plugins for jdi2owl can be developed in one of two modi: Either completely
separate from the existing mapping scheme, or by hooking into the existing mapping functions.

The first option provides more flexibility but it is harder to implement because the plugin only receives a JDI
handle to the debuggee state as input. Therefore, the plugin has to implement a custom traversal algorithm
for the state, or build upon on the JvmObjectIterator. On the other hand, the second option makes it
easier to introduce very simple extensions to the mapping as the traversal of components is pre-determined
and full context information about the type, method, or variable that is currently being mapped is provided.

We now briefly describe the implementation of the plugin system. Figure 8.2 provides a visual guide to the
involved classes and interfaces:

Abstraction of Mapping Algorithms. A Mapper interface abstracts from a concrete mapping algorithm. It
specifies a method extendMethod that consumes build parameters like a handle to the current debuggee as
input, as well as a handle to the RDF graph that is currently being constructed. The default mapping functions
are called by the classes ClassMapper, ObjectMapper and StackMapper that implement this interface.
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«interface»
MappingPlugin

+getMappers(): List<Mapper>
+getListeners(): List<BaseMappingListener>
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GraphGenerator
+GraphGenerator(mode: MappingMode)
...

MappingWithPlugins
+MappingWithPlugins(plugins: Collection<MappingPlugin>, ...)

BaseMapping

«interface»
MappingMode

+getMappers(): List<Mapper>

«integrates listeners»

«supplies mapping listeners»«supplies mappers»

«supplies mappers»

«runs mappers»

«supplies mappers»

Figure 8.2.: Class diagram of the plugin system and abstraction of default mappings.

Furthermore, we define an interface MappingMode that can supply mappers to the GraphGenerator that
we mentioned previously. Two classes implement MappingMode: The class BaseMapping that only supplies
the default mappers, and the class MappingWithPlugins.

The class MappingWithPlugins then can load Mapper instances from plugins in addition to the default
mappers.

All of these classes and interfaces are defined in the package jdi2owl.mapping.forward.

Creation of Plugins. A plugin can be created by implementing an interface MappingPlugin. It contains a
method getMappers that must be overridden to list all Mappers implemented by the plugin. By implementing
such a Mapper, a plugin of the first type can be realized that is independent from the default mapping. Since
plugin mappers are always executed after the default mapping, they can also change triples that have been
added to the current RDF graph by the default mapping.

Furthermore, the MappingPlugin interface specifies a method getListeners that can be overridden to
return instances of base mapping listeners. These listeners are called by the functions of the default mapping
and they can be used to implement the second kind of plugin.

Plugins can either be loaded programmatically by passing them as constructor input to the MappingWithPlugins
mapping mode, or dynamically from the class path.

All of the plugin interfaces are defined in the package jdi2owl.mapping.forward.pluginapi.
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Implemented Plugins. We implement a trivial plugin of the first kind called DummyMapperPlugin as a
separate project in the jdi2owl source distribution. It is loaded dynamically from the class path as part of
the test suite of jdi2owl and only inserts a single triple into the constructed RDF graph.

Furthermore, sjdb includes a plugin SourceInfoPlugin in the package
sjdb.mapping.forward.extensions.sourceinfo. It is loaded programmatically and annotates meth-
ods with their source code location and line number using the Spoon [91] library for Java source code analysis.
It is an example of the second kind of plugin that hooks into the default mapping function for methods.

8.4. Answering Engine and REPL

For our answering engine, we have to combine multiple external technologies (SPARQL engines, OWL reasoners,
SHACL validators). However, they do not share a common query interface:

Both, the Apache Jena ARQ SPARQL query engine and the Openllet SPARQL-DL engine support the
QueryExecution interface of Jena but they interact differently with OWL reasoners. Both, the HermiT
reasoner and the Openllet reasoner implement the OWLReasoner interface of the OWL API. However, the Jena
OWL reasoner does not implement an OWL API interface, instead it realizes an inference-capable interaction
interface with RDF graphs. The SHACL validator of Jena implements its own interface.

We conclude that the technologies are too different to implement a common, meaningful query interface that
abstracts over all of them. Instead, we create a common API for each type of technology which automatically
selects the right backend depending on user settings.

We integrate this API into a class called KnowledgeBase which also holds a reference to the last constructed
knowledge base since we require direct access to it for all types of queries. By dependency injection, it also has
access to the current global settings of sjdb, represented by the SemanticDebuggerState class, including
the currently selected reasoner. The class is implemented in the package sjdb.repl.

We now explain the main methods of the API:

getSparqlModel() If no reasoner is selected, SPARQL queries can just be executed on the plain RDF graph.
If a Jena reasoner or the Openllet reasoner is being used, then a special implementation of the RDF
graph capable of on-demand inferences must be initialized from the base graph and a reasoner instance.
Lastly, if HermiT is selected as a reasoner, we have to pre-compute all inferences on the graph with
HermiT before performing SPARQL queries on it.
This method internally realizes this decision tree and returns the appropriate RDF graph so that the
sparql query command implementation of sjdb can abstract from such details.

buildSparqlExecution() This method returns the correct execution engine, depending on the selected
reasoner: Either the Jena ARQ engine, or the SPARQL-DL engine of Openllet.

getShaclModel() This method just returns the SHACL validator of Jena since it is the only validator that
we support.

getDefaultOWLReasoner() This methods returns the OWL API interface of the selected reasoner. The
method is used by those REPL commands that perform inference tasks.
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If an Apache Jena reasoner is currently selected, the method will just return a HermiT instance and
issue a warning to the user that Jena reasoners do not support OWL 2 DL inference tasks and that the
system will fall back to HermiT.

The REPL. Given an input string on the command-line REPL interface of sjdb, sjdb will parse the string
using the Clikt library that determines which command type was called and its options and parameters.

Each command type is implemented as a separate class. There is one for SPARQL queries, one for SHACL
validation and one for inference tasks that delegates the tasks to appropriate sub-command classes for each
kind of inference task. Each query command can then retrieve the correct backend for answering a query
using the aforementioned API.

Additonally, sjdb implements many kinds of non-query related commands. A stop command for defining
breakpoints, a buildkb command for building a knowledge base from a suspended program, commands for
changing settings, etc.

All command classes can be found in the package sjdb.repl.commands and its sub-packages.

Debugging Scripts. Instead of manually entering commands into sjdb’s REPL, one can also note them
down in a text file with one command per line and pass the file to sjdb. This way we realize a simple scripting
language for the debugger which we mainly use for automatic testing and to document case studies.

8.5. The jdi2owl Library

As we pointed out in chapter 1, this thesis is based on an article by Kamburjan et al. who present a mapping
of a minimal object-oriented language, SMOL, to a knowledge base. Semantic debugging is only one of the
applications they envisioned for this technology. They also argue that it could be used for the verification of
class invariants, or to implement internal semantic state access which allows programs to semantically query
their own state. Further applications are suggested by other related work, see section 10.1. For instance,
Alnusair and Zhao map the source code of programs to knowledge bases and propose to build a repository of
reusable software components that can be searched with semantic queries [7].

Due to such potential future applications of our mapping of Java program states, we separate the implemen-
tation of the mapping from the interactive debugger sjdb into a independent library. We call this library
“jdi2owl” and it can be integrated into any JVM-based Kotlin application or Java application.

The jdi2owl library contains functionalities for managing debuggees through the JDI and for extracting
their state, see section 8.2. It also contains our knowledge base construction algorithms and the associated
plugin system, see section 8.3. On the other hand, sjdb implements an interactive, command-line based
debugging interface and our answering engine (section 8.4). As our DL breakpoint feature is dependent on
the answering engine, it is also part of the sjdb application, not the jdi2owl library.
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8.6. Testing

To detect potential defects in our implementation, and by extension in our formalization, sjdb and the
jdi2owl library are distributed with a test suite. Furthermore, the compilation of both projects and the
execution of tests is part of a continuous integration (CI) pipeline that executes any time a new code change is
published as a commit5.

Due to the large number of internal and external software components that form our debugger, we mostly
focus on end-to-end testing. That is, the test suite contains Java programs and debugging scripts and it runs
sjdb as a complete system on these inputs. Still, many of the end-to-end tests focus on a specific aspect of
our mapping. The case studies of sections 9.1 and 9.2 are also part of the test suite.

Finally, for the jdi2owl library, we also perform a few unit and integration tests. For instance, we check the
correct generation of RCNs and our plugin system.

5We are using the git version control system (https://git-scm.com/) and implement the CI pipeline as GitHub workflows
(https://docs.github.com/en/actions/using-workflows).
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9. Evaluation

In this chapter, we demonstrate how sjdb can be leveraged to semantically debug Java applications, but we
also identify some limitations of our debugger. Furthermore, we perform two case studies that evaluate the
performance of sjdb regarding response time and memory consumption.

In section 9.1, we identify defects in an application that implements a B-tree data structure. These case studies
explores what kind of correctness conditions can be expressed and checked with sjdb, but also how sjdb can
effectively debug multiple Java states in sequence using DL breakpoints. Next, section 9.2 demonstrates how
formalizations of external domain knowledge can be harnessed to debug an application. Finally, section 9.3
presents our performance-related case studies.

9.1. B-Trees

The case studies we perform in this section are centered around a data structure called B-Trees [14]. We
consider B-trees in these case studies not only because of their widespread use, for example in filesystems like
btrfs [97], but also because they are defined via a certain set of properties. Some of these properties can be
easily described in DL, others can not be formalized in DL and thus illustrate the limits of sjdb.

We base our definition of B-trees on the definitions of Knuth [64, Section 6.2.4] and Cormen et al. [28, Section
18.1]:

Definition 19 (B-Trees). A B-tree of minimum degree m ≥ 2 is a rooted tree that also satisfies the following
properties:

(B1) Every tree node x is associated with a set of keys.

(B2) Every node has at most 2m children.

(B3) Every node that is neither the root nor a leaf has at least m children.

(B4) The root is either a leaf or it has at least two children.

(B5) A node is either a leaf, or it has n keys if and only if it has n+ 1 children.

(B6) All leaves appear at the same depth.
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(B7) A partial order is defined on all keys and the tree stores them in order. That is, for every node x with keys
k1, . . . , kn we have

k1 ≤ k2 ≤ · · · ≤ kn.

If x has children c1, . . . , cn then we also have

k(c1) ≤ k1 ≤ k(c2) ≤ k2 ≤ · · · ≤ kn ≤ k(cn+1)

where k(c) denotes any key of the child c.

Java Implementation For our case studies, we implement B-trees in Java through two classes: BTree and
BTreeNode.

The former mostly serves as a user interface to the tree. It defines the minimum degree and keeps track of the
tree root. Also it provides an insertion and a traversal algorithm:

class BTree<K extends Comparable<? super K>> implements Iterable<K> {
static int minimumDegree = 2;
private BTreeNode<K> root = null;

public void insert(K key) { ... }
public Iterator<K> iterator() { ... }

}

We give further details on the implemented algorithms in the respective case studies. By employing Java
generics, we abstract from the concrete key type K but ensure that a partial order is defined for it through the
Comparable interface.

The BTreeNode class implements a node of the tree:

class BTreeNode<K extends Comparable<? super K>> {
public K[] keys;
public BTreeNode<K>[] children;

public int size = 0;

@SuppressWarnings("unchecked")
public BTreeNode(Class clazz) {

this.keys = (K[]) Array.newInstance(clazz,
2*BTree.minimumDegree - 1);

this.children = (BTreeNode<K>[]) Array.newInstance(this.getClass(),
2*BTree.minimumDegree);

}
}

It contains an array of keys and an array of children. The array sizes are fixed on instantiation to the maximum
given by definition 19. The absence of a key or child is represented by a null entry in the respective array.
Hence, the implementation also needs to keep track of the current number of keys in the size field.
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9.1.1. Detecting Structural Defects

In this case study we apply sjdb to find invalid B-Tree data structures via a user-defined knowledge domain.

Domain Knowledge To be able to check our B-Tree implementation for structural correctness with sjdb,
we aim to formalize definition 19 into DL using the mapped vocabulary of our Java implementation. We are
using simplified names for DL concepts, roles and individuals in this chapter, since the RCNs generated by
sjdb can be very long.

The automatic mapping of the Java class BTreeNode to a DL concept by sjdb already provides the concept
of tree nodes. Furthermore, the mapping of the BTreeNode.children field provides an association of a
node to its children.

Additionally, we define the concepts of leaves and roots. A leaf is an instance of the BTreeNode Java class
where the array in its BTreeNode.children field contains only null references:

Leaf ≡ BTreeNode ⊓ ∀BTreeNode.children : ∀hasElement : ∀storesRef : {null}.

A root is a BTreeNode instance that has no parent, i.e. it is not connected to any other individual through
the inverses of the roles describing the children array:

Root ≡ BTreeNode ⊓ ∀storesRef− : ∀hasElement− : ∀BTreeNode.children− : ⊥.

However, due to the open world assumption (see section 2.2.3), it can never be determined whether a given
BTreeNode instance is a root, if the BTreeNode concept is not closed over its instances, see also section 5.4.
This is because there might always be another, unknown BTreeNode instance that is its parent.

Hence, we require a closure axiom that restricts the BTreeNode concept to those instances that are present
in the current Java state:

BTreeNode ≡ {i1, i2, . . . , in}

where i1, . . . , in are individuals representing all BTreeNode instances in the current program state.

Although our mapping µ formally generates these axioms, this part of the mapping is deactivated in sjdb
by default for performance reasons, see section 8.3.2. However, we can instruct sjdb via a command to
automatically generate it for us:

> close prog:SysLoader-casestudies.btrees.structure.BTreeNode

In this thesis we always abstracted from the concrete commands of the REPL of sjdb. Thus, we want to at
least showcase some of them in this case study to give an impression of how sjdb is operated by users.
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The B-tree Conditions We now translate the conditions (B1) to (B7) into DL where possible.

There are many possibilities for realizing this but we decided to define a DL concept for each condition that
contains all nodes that fulfill the condition. Then, we can check whether the knowledge base entails that the
concept of all nodes is subsumed by the intersection of all condition concepts, i.e. eq. (9.1).

Alternatively, we could for example also directly formulate the conditions as DL axioms and check the generated
knowledge base for inconsistencies. However, this leads to bad usability since the user will not be able to
perform any other debugging queries on an inconsistent knowledge base.

We now present our translation of the B-tree node conditions:

(B1) We do not need to translate this condition, since the presence of associated keys is ensured through the
Java implementation.

(B2) We can formalize the condition in DL through an at-most restriction on hasElement for the array stored
in the BTreeNode.children field.

B2 ≡ BTreeNode ⊓ ∃BTreeNode.children :
(≤c)hasElement :
∃storesRef : BTreeNode

Here, the user of sjdb must replace c with a concrete numeric value for 2 · m where m is a fixed
minimum degree for the B-trees being considered. This is because OWL 2 DL, the language through
which we implement our knowledge bases, can neither perform arithmetic in cardinality restrictions,
nor can it refer to the literal value stored in the BTreeNode.size field.
Also, please note that an existential restriction over BTreeNode.children is sufficient here instead
of a value restriction: Because fields like BTreeNode.children are functional properties they can
not associate an object with any other field value than the one provided by the automatic mapping.

(B3) For the first part of this condition, we can refer to the previously created Leaf and Root concepts. The
remainder of the formalization is similar to the formalization of (B2):

B3 ≡ Leaf ⊔ Root ⊔ (BTreeNode ⊓ ∃BTreeNode.children :
(≥m)hasElement :
∃storesRef : BTreeNode)

The same holds true for the next condition.

(B4) This is the first case, where the user does not have to manually alter the value in the at-most restriction,
depending on the currently used minimum degree:

B4 ≡ BTreeNode ⊓ (¬Root ⊔ Leaf ⊔ ∃BTreeNode.children :
(≥2)hasElement :
∃storesRef : BTreeNode)

(B5) This is the first condition that can not be formulated. This is because OWL 2 DL can not perform
arithmetic on data properties so we can not directly compute the number of keys k and the number of
children c and check if c = k + 1.
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(B6) For this condition, one would need to compute the depth of leaf nodes. However, OWL 2 DL can not
count the number of role links between individuals or even compute the maximum and minimum of
such counts between two concepts.

(B7) Again, this condition can not be formalized because the mapping does not provide us with a role that
formalizes the partial order of keys.
However, let us assume a partial order for the keys has been (manually) formalized via explicit role
assertions as a closed role ⪯. This is for example possible, if the set of keys is finite. Then, ⪯ can be
declared to be reflexive and transitive. OWL 2 DL forbids to also declare⪯ as asymmetric, but asymmetry
again can be realized by declaring explicit negative role assertions for the finite number of key pairs.
We can also formalize the order of the keys in a node through role chains connecting successive elements
in the BTreeNode.keys array:

storesRef− ◦ rolify(BTreeNode.keys− : ⊤) ◦ hasSuccessor ◦ storesRef ⊑ successiveNodeKeys.

Now, if some tree node stores its keys in an invalid order, an automatic reasoner can detect that the
knowledge base becomes inconsistent if we add the following axiom:

successiveNodeKeys ⊑ (⪯).

However, this construction is not feasible in general as usually no such role ⪯ is available and its
implementation is very tedious. This is also the case in our case study since we are using integers as
keys. Furthermore, this solution would still not ensure a correct ordering of the keys between parent
and child nodes.

We conclude that there is no need to formalize condition (B1) and of the more complex conditions, only
conditions (B2), (B3) and (B4) can be formulated.

For ease of use, we combine these three conditions into the concept ValidNode that contains those B-Tree
nodes that satisfy all three conditions:

ValidNode ≡ B2 ⊓B3 ⊓B4. (9.1)

The Use Case We store four integers into a B-Tree using a (faulty) implementation of the insertion algorithm
by Cormen et al. [28, Section 18.2]. Then we attempt to traverse it and display its contents:

1 var tree = new BTree<Integer>();
2

3 for (var i : Arrays.asList(0, 1, 2, 3)) tree.insert(i);
4

5 System.out.println("Test Point");
6

7 for (var i : tree) System.out.println(i);

The for-loop in line 7 makes use of the Iterable interface of the BTree class and it fails with a null-pointer
exception. Hence, there exists a mistake either in the insertion algorithm or in the traversal algorithm.
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The Debugging Method We first aim to determine whether the insertion algorithm produced an invalid
B-Tree. For this, we first start sjdb, set a breakpoint at line 5, and run the program. This is achieved by
entering the following commands in the interactive REPL:

> stop at 'casestudies.btrees.structure.StructureTest:5'
> run casestudies.btrees.structure.StructureTest

The program halts at the specified location. We then load the definitions of our B-Tree concepts and conditions
and let sjdb build a knowledge base from these definitions and the current state of the program. However,
before we build the knowledge base, we also have to instruct sjdb to map the children and keys arrays,
since sjdb does not map arrays by default:

> domain BTreeStructure.ttl
> mapping set deep <<EOF

SysLoader-casestudies.btrees.structure.BTreeNode.children
SysLoader-casestudies.btrees.structure.BTreeNode.keys

EOF
> buildkb

Since our B-Tree implementation produces trees with a minimum degree of 2, here we substitute the variable
m with 2 in the definitions of the conditions.

As we pointed out previously, the Root concept that is part of our B-tree conditions requires the BTreeNode
concept to be closed. Hence, we instruct sjdb to add the necessary closure axiom:

> close prog:SysLoader-prog:casestudies.btrees.structure.BTreeNode

Now that we have built the knowledge base, we can check whether the constructed tree does violate our
conditions. For this purpose we ask whether the concept of all nodes is subsumed by our definition of valid
nodes. That is, we check whether the following holds:

KB |=? BTreeNode ⊑ ValidNode. (9.2)

On the REPL, this inference task can be expressed like this:

> infer entails 'SubClassOf( prog:SysLoader-casestudies.btrees.structure.
BTreeNode domain:ValidNode )'

This inference task fails, so we know that the insertion algorithm constructed an invalid B-Tree. Hence, we
ask sjdb to list all individuals that are instances of BTreeNode, but not valid nodes:

> infer instancesOf 'prog:SysLoader-casestudies.btrees.structure.BTreeNode
and not domain:ValidNode'

run:object448 as ?i0
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The query does return the individual run:object448 as a result and sjdb stores it in a variable ?i0 for
reference in further queries. Hence, it is a node that violates one of our conditions and the implemented
insertion algorithm must be faulty. By querying sjdb whether the knowledge base entails one of the following
concept assertion axioms, we can determine which condition is violated:

B2(run:object448) B3(run:object448) B4(run:object448).

For this, we run the following commands:

> infer entails 'ClassAssertion( domain:ConditionOne ?i0 )'
true
> infer entails 'ClassAssertion( domain:ConditionTwo ?i0 )'
true
> infer entails 'ClassAssertion( domain:ConditionThree ?i0 )'
false

We can see that only condition (B4) is not upheld. Hence, run:object448 must be a root node with only
one child.

Using a SPARQL query, we retrieve all nodes, as well as the keys stored in them:

> sparql '<<EOF
SELECT ?n ?k WHERE {

?n prog:SysLoader-casestudies.btrees.structure.BTreeNode.keys [
java:hasElement [

java:storesReference [ java:hasPlainValue ?k ]
]

] .
}

'EOF
--------------------------------
| n | k |
================================
| run:object448 | "1"^^xsd:int |
| run:object452 | "3"^^xsd:int |
| run:object452 | "0"^^xsd:int |
--------------------------------
The solution variables are available under the following names:
?n, ?k, ?n1, ?k1, ?n2, ?k2

The query informs us, that there are only two nodes in total and that the key “2” is missing, too. A crucial
step of the insertion algorithm by Cormen et al. that we implemented is the “splitting” of nodes. Splitting
occurs once a node is too full to store an additional key. It creates two new nodes and distributes the old
keys and the new one between them. Since we suspect that the missing node and key might have gotten lost
during splitting, we set additional breakpoints before and after this step.

Using queries similar to the previous ones, we can then confirm that the error lies in the splitting step: In the
implementation we forgot to store a reference to one of the newly created nodes in its parent.
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Conclusion We were able to successfully identify an implementation error for a B-tree insertion algorithm
with sjdb. However, we were not able to supply many of the more complex conditions that must be satisfied
by B-trees to sjdb. This is due to the limited expressivity of OWL 2 DL and the underlying SROIQ logic.

Moreover, identifying which conditions could be formalized and which could not requires the user to be
intimately familiar with these limitations. This is particularly true for conditions like (B7) where a formalization
might be possible in certain special cases.

We also found the usability of sjdb lacking in some aspects. For example, the user must be aware that certain
kinds of queries containing Java concepts require additional closure axioms that must be manually requested
using the close command. This might be unexpected for most users since the debugger’s knowledge of
Java program states should be complete regarding the instances of a type. Furthermore, it is relatively easy
to forget to issue a close command when repeatedly building knowledge bases while stepping through a
program.

Also, even relatively straightforward data accesses require complex query expressions. This is illustrated by
the large SPARQL expression that was used to list the nodes and the values of their keys. In a traditional
debugger, the user can usually evaluate a Java expression in the current program state for this purpose. For
basic data accesses, such expressions are much simpler than SPARQL queries.

Lastly, even conceptually simple queries like enumerating all invalid nodes can take a relatively long time to
evaluate1. We conduct a more systematic study of the runtime performance of sjdb in section 9.3.

9.1.2. Debugging Dynamic Behaviour

In the previous case study, we have utilized the sjdb debugger to detect defects in the structure of data for a
single program state. By contrast, the primary goal of this case study is to investigate if and how semantic
debugging tools can support the debugging of dynamic program behaviour. That is, when stepping through
an algorithm, can the desired behaviour of the algorithm be formalized? Can violations of this behaviour be
detected across multiple states? And, can the source of such an error be identified and corrected?

For this case study, we implement an algorithm to traverse B-trees. The most straightforward approach
to implementing traversal of tree structures is via a recursive algorithm. However, to make the traversal
algorithm easily reusable, we instead create an iterator that implements the java.util.Iterator interface.
Furthermore, due to this mostly iterative approach, the implementation will not be entirely trivial and will
require manually maintaining a stack structure. Also, this time, we will use a correct variant of the B-tree
insertion algorithm.

Requirements A java.util.Iterator needs to implement two methods: hasNext() and next().
hasNext() must return a boolean value that is true iff there remains an element to be traversed in the
sequence being iterated. next() must return the next element in the sequence, if hasNext returns true.

Starting at the root, a B-tree traversal scheme returns the keys of the tree in the following order:

1. If the current node is a leaf node then its keys are returned in order.

1Around 25 seconds for this query.
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2. Otherwise, the children and keys are processed in interleaving order. That is, the traversal scheme is
first applied recursively to the first child, then the first key is returned. Then the process continues like
this with the second child and then the second key etc.

The Use Case We store seven integers in arbitrary order in a B-Tree. Then we traverse it using an iterator
to construct a list containing all the keys. As a B-Tree stores keys in a sorted order, the resulting list should
contain the integers in ascending order. This is tested against a manually constructed list:

var bTree = new BTree<Integer>();
bTree.insert(7); bTree.insert(4); bTree.insert(1); bTree.insert(3);
bTree.insert(2); bTree.insert(5); bTree.insert(6);

var iterator = tree.iterator();
var keyList = new ArrayList<K>();
iterator.forEachRemaining(keyList::add);

assertEquals(
Arrays.asList(1, 2, 3, 4, 5, 6, 7),
keyList

);

However, instead of the list of keys being sorted in ascending order, the traversal produces the sequence 4, 5,
6, 7, 1, 2, 3:

Expected: [1, 2, 3, 4, 5, 6, 7] Actual: [4, 5, 6, 7, 1, 2, 3]

The Faulty Implementation The implementation of the next() method must be able to yield the next
element in order and then suspend traversal until it is called again. We implement this by maintaining a stack
BTreeIterator::stack of tree positions to be processed next. It is analogous to the callstack of recursive
traversal algorithms. To better differentiate this data structure from the call stack of the Java program, we
will call it virtual stack from now on.

The traversal state elements of the virtual stack are instances of a class NodeTraversalState. It stores a
reference node to a node of the B-Tree and the index idx of a key of this node. If node is not a leaf and idx
equals −1 then it signifies that the node is to be visited for the first time in the traversal.

The hasNext() implementation returns true iff the virtual stack of traversal states is not empty. Our
next() method operates like this:

1. We remove a traversal state from the top of the virtual stack. We will call the node referenced by the
node field the current node. We call the key which the idx points to the current key.

2. If the current node is a leaf, we return the current key. If there is a next key, its position is placed on the
virtual stack to be processed next.

3. If it is not a leaf node, we check whether the current node is being visited for the first time (idx < 0).
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a) If so, we put the position of the first key and the first child on the virtual stack, in this order. Then
we recursively call next() so that the sub-tree of the child is traversed first.

b) Otherwise, we put the position of the next key and the next child in this order on the virtual stack
and return the current key.

The next method of the iterator is implemented like this:

1 public K next () {
2 var cu r r en tS t a t e = th i s . s t a ck . pop () ;
3
4 var f i r s t C h i l d = cur r en tS t a t e . node . ch i l d ren [0] ;
5 var i s L e a f = f i r s t C h i l d == nul l ;
6
7 K toReturn = nul l ;
8
9 i f ( i s L e a f ) {

10 // then yield all keys
11 i f ( cu r r en tS t a t e . idx < cur r en tS t a t e . node . s i z e − 2) {
12 th i s . s t a ck . push (
13 new NodeTraversalState<K>(cu r r en tS t a t e . node , cu r r en tS t a t e . idx + 1)
14 ) ;
15 }
16
17 toReturn = cur r en tS t a t e . node . keys [ cu r r en tS t a t e . idx + 1] ;
18 } else {
19 i f ( cu r r en tS t a t e . idx < 0) {
20 th i s . s t a ck . push (
21 new NodeTraversalState<K>(cu r r en tS t a t e . node . ch i l d ren [0] , −1)
22 ) ;
23
24 th i s . s t a ck . push (
25 new NodeTraversalState<K>(cu r r en tS t a t e . node , 0)
26 ) ;
27
28 toReturn = next () ;
29 } else {
30 th i s . s t a ck . push (
31 new NodeTraversalState<K>(
32 cu r r en tS t a t e . node . ch i l d ren [ cu r r en tS t a t e . idx + 1] , −1)
33 ) ;
34
35 i f ( cu r r en tS t a t e . idx < cur r en tS t a t e . node . s i z e − 1) {
36 th i s . s t a ck . push (
37 new NodeTraversalState<K>(cu r r en tS t a t e . node , cu r r en tS t a t e . idx + 1)
38 ) ;
39 }
40
41 // yield the current key
42 toReturn = cur r en tS t a t e . node . keys [ cu r r en tS t a t e . idx ] ;
43 }
44 }
45
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46 i f ( toReturn == nul l ) {
47 throw new RuntimeException (
48 "Trying to continue iteration after end of tree content.") ;
49 }
50
51 return toReturn ;
52 }

The Debugging Method Using the same queries as in the previous case studies or by direct inspection of the
data, we can confirm, that the structure of constructed B-Tree is as expected and without defects.

Therefore, it can be concluded, that the fault must lie within the traversal algorithm.

An established technique for formalizing and checking the behaviour of algorithms are (loop) invariants.
Here, we demonstrate, that such invariants can be formalized in DL and be automatically checked by sjdb to
pinpoint in which execution step the implementation of the traversal algorithm deviates from the formalized
behaviour.

For example, the following condition must always hold after each execution of the next() method:

“The current node is either a leaf, or one of its children is at the top of the virtual stack. ” (9.3)

In DL, we formalize this as a concept PostCondition which contains the top frame, iff the current node is a leaf
or the virtual stack contains one of its children as the top element:

PostCondition ≡ VisitingLeaf ⊔ StackTopIsChild

Here, we can reuse the formalization Leaf of B-Tree leaves from the previous case studies to check whether
the current node is a leaf. That is, we formalize the concept that contains the current frame iff the current
node is a leaf:

VisitingLeaf ≡ {frame0} ⊓ ∃currentState : ∃NodeTraversalState.node : Leaf

To check whether the top of the virtual stack contains a child of the current node, we first have to formalize
some helper concepts first.

The concept containing just the current node is the node which the current frame is inversely related to via
the currentState variable and the NodeTraversalState.node field:

currentState ◦ NodeTraversalState.node ⊑ hasCurrentNode
CurrentNode ≡ ∃hasCurrentNode− : {frame0}

The concept of all children of the current node are thus all non-null nodes which have the current node as a
parent:

ChildrenOfCurrentNodenullable ≡ ∃hasParent : CurrentNode
ChildrenOfCurrentNode ≡ ChildrenOfCurrentNodenullable ⊓ {null}−
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We also formalize the concept of all object sequences which contain a child of the current node as their last
element:

ChildIsLastElement ≡ ∃hasElement :
(=0hasSuccessor : ⊤ ⊓ ∃storesRef : ∃NodeTraversalState.node : ChildrenOfCurrentNode)

Finally, we can formalize the class that contains the current frame, iff the virtual stack contains a child of the
current node as the last element. I.e. the child must be on top of the virtual stack:

StackTopIsChild ≡ {frame0} ⊓ ∃this : ∃BTreeIterator.stack : ChildIsLastElement

We can now check the post-condition (9.3) of next() with sjdb in practice via the following steps:

1. We stop the execution of the program at the locations where a call of next() terminates, or before a
recursive call is made (lines 28 and 51). For this we can use breakpoints.

2. We build a knowledge base whenever the program stops at one of these breakpoints.

3. We check whether PostCondition is satisfiable. Iff it is not, then we have found a violation of the condition.

As explained in chapter 5, to gain sensible results for DL queries, oftentimes closure axioms must be added.
In this case, the closure axioms automatically added for hasElement, hasSuccessor etc. by the our mapping
of Java states are mostly sufficient. However, we are using a role inclusion axiom with a role chain to
define a custom role hasCurrentNode in the definition of ChildrenOfCurrentNodenullable. No closure axioms
restrict hasCurrentNode, hence, we need to close the ChildrenOfCurrentNodenullable class before we check the
satisfiability of the PostCondition concept.

It is quite labor intensive to manually perform the above steps every time the program halts. We recognized this
to be a serious limitation of sjdb. Thus, we extended sjdb with support for DL breakpoints, see section 7.5.

So in conclusion, we automate the checking of PostCondition by setting the following DL breakpoints:

stop <<EOF
at 'casestudies.btrees.iterator.BTreeIterator:28'
--if-unsatisfiable domain:PostCondition
--close domain:NullableChildrenOfCurrentNode

EOF

stop <<EOF
at 'casestudies.btrees.iterator.BTreeIterator:51'
--if-unsatisfiable domain:PostCondition
--close domain:NullableChildrenOfCurrentNode

EOF
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Debugging Results The program is halted by one of the DL breakpoints at line 28 in the first execution
of next(). Using the interactive interface of the debugger, it was possible to quickly find the cause of the
violation of the post-condition.

Querying for instances of the class ChildrenOfCurrentNode and the class CurrentNode reveals the IRIs of all
nodes which are the children of the current node and the current node itself:

> infer instancesOf domain:ChildrenOfCurrentNode
run:object530 as ?i0
run:object541 as ?i1

Using a SPARQL query, one can determine the current top element of the virtual stack:

sparql -- '<<EOF
SELECT ?n ?idx
WHERE {

run:frame0 java:this [
prog:SysLoader-casestudies.btrees.iterator.BTreeIterator.stack [

java:hasElement [
java:hasIndex ?idx ;
java:storesReference [

prog:SysLoader-casestudies.btrees.iterator.BTreeIterator%24
NodeTraversalState.node ?n

]
]

]
]

} ORDER BY DESC(?idx)
'EOF
--------------------------------
| n | idx |
================================
| run:object537 | "1"^^xsd:int |
| run:object530 | "0"^^xsd:int |
--------------------------------

Thus, it can easily be seen that the current top element (the one with the highest index) is not a child, but the
current node itself. Given that prior to the position of the breakpoint a child and the current node are inserted
into the virtual stack, we can derive that the insertion order into the virtual stack is incorrect. As a solution,
we must reverse the order of those statements that insert elements into the virtual stack. I.e., the two push
statements at line 20 must swap positions, as well as the two push statements at line 30.

When re-running the corrected program, the DL breakpoints are no longer triggered. Consequently, the
program now returns the correct result.
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Conclusion We were able to successfully apply sjdb to debug the dynamic behaviour of a program. That is,
we debugged a B-Tree traversal algorithm. We were able to pinpoint the location of incorrect instructions
using DL breakpoints and an invariant formulated in DL.

However, we again encountered usability problems.The formalization of the post-condition is complex and
requires proficiency in the use of description logics and careful consideration of the open world assumption.

Furthermore, building a knowledge base and checking the satsfiability of a DL concept every time a DL
breakpoint is hit is computation intensive and slows down the execution of the debuggee.

9.2. A Pizza Subscription Service

We first mentioned the pizza ontology [51] in section 2.2. It is a well-known ontology that was originally
developed to introduce new users to OWL and the Protégé editor [84]. However, it also regularly serves as
the foundation for examples in semantic web literature.

In this case study, we implement a subscription service that automatically generates new pizza recipes based on
user profiles and delivers these pizzas to customers. Then, we demonstrate how this service can be debugged
by integrating the external pizza ontology with the knowledge bases produced by sjdb.

The Use Case The implementation of the mentioned pizza subscription service contains the classes Pizza
and UserProfile to model pizzas and customer profiles respectively, see fig. 9.1.

The Pizza class contains two fields: base specifies the base of a pizza and the list toppings its toppings.
Bases and toppings are represented as the values of the Java enum classes Base and Topping. The last
three pizzas that have been delivered to a customer are stored in the field recentlyDelivered of the
UserProfile class. There is also a boolean field isVegan which indicates whether only vegan pizzas may
be delivered to this customer.

We also implement an enum class Topping whose values represent different kind of toppings, see fig. 9.2.

Furthermore, a class PizzaGenerator realizes the main functionality of implemented service:
Its generatePizza method accepts a UserProfile instance, generates a Pizza instance that fits this
profile through a randomized process, and delivers this pizza.

For the purpose of this case study, generatePizza behaves as follows:

class Pizza {
Base base;
List<Topping> toppings;
...

}

class UserProfile {
boolean isVegan;
LinkedList<Pizza> recentlyDelivered;
...

}

Figure 9.1.: Excerpt from the Java classes Pizza and UserProfile from the pizza subscription service
implementation.
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public enum Topping {
Chicken(),
Ham(),
HotSpicedBeef(),
PeperoniSausage(),
...

final boolean isVegan;

Topping() { this(false); }

Topping(boolean isVegan) {
this.isVegan = isVegan;

}
}

Figure 9.2.: Excerpt from the Java enum class Topping from the pizza subscription service implementation.

1. A pizza base is selected uniformly at random.

2. A list of all toppings is created and randomly shuffled.

3. Toppings that were applied to any recently delivered pizza are removed from the list. For vegan users
only the toppings of the latest delivered pizza are removed. For non-vegan users the toppings of the
last three delivered pizzas are excluded.

4. Three toppings from the shuffled list are selected. If the user is vegan, only vegan toppings are selected.
If the user is non-vegan, it is ensured that at least one selected topping is non-vegan and one is vegan.

5. The pizza is delivered to the customer, i.e. a Pizza instance is created for the selected base and toppings
and added to the recentlyDelivered list.

Here, the central idea is that the generator tries to make the generated pizzas interesting by not using the same
toppings too often. Hence, the generator does not re-use the toppings of the last three delivered pizzas when
generating a new pizza. However, we assume that this particular pizza service does not offer a large variety of
vegan toppings. Therefore, for vegan customers, the generator is restricted not to re-use the toppings of only
the latest pizza.

Connecting the Pizza Ontology and Java States Pizza, PizzaBase and PizzaTopping are central concepts in
the pizza ontology. Furthermore, the pizza ontology models the different types of bases and toppings by sub-
sumption axioms, e.g. DeepPanBase ⊑ PizzaBase or MushroomTopping ⊑ VegetableTopping ⊑ PizzaTopping.
Moreover, the ontology assigns bases and toppings to pizzas through the hasTopping and hasBase roles.

To give the states of our Java implementation meaning within the pizza ontology, we supply the following
equivalence axioms to sjdb:
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Instances of the Pizza Java class represent pizzas:

Pizza ≡ Pizza

Bases and toppings are represented by enum values: Java realizes values of an enum class as instances of
the class. For each value, a static field is created that connects the class to the value. For example, any
object behind the static Base.DeepPan field is a DeepPanBase:

DeepPanBase ≡ ∃Base.DeepPan− : ⊤.

We add similar axioms for the other types of bases and toppings.

The hasBase role is realized by the base field:

hasBase ≡ Pizza.base.

The hasTopping role is realized by the toppings field: The pizza ontology contains cardinality restrictions,
e.g. an interesting pizza is declared to be a pizza with at least three toppings:

InterestingPizza ≡ Pizza ⊓ (≥3)hasTopping : ⊤.

This means we can not use role inclusion axioms to infer hasTopping relationships from the Java state,
i.e.

Pizza.toppings ◦ hasElement ◦ storesRef ⊑ hasTopping.

This is because a role that appears on the right-hand side of a role inclusion axiom is non-simple [82,
Section 11.1] and only simple roles can be used in cardinality restrictions [81, Section 2.5].
Therefore, we use the chain macro feature of sjdb instead, see section 7.3. That is, we add the triple

hasTopping macros:chainsProperties
( Pizza.toppings hasElement<Topping> storesReference<Topping> ) .

to the RDF graph representation of the user-defined ontology that we supply to sjdb. Then sjdb will
automatically create hasTopping(p, t) axioms for every Pizza instance p with toppings t stored in their
toppings field during the mapping process.
In fact, the mapping macro feature of sjdb was developed because we encountered the above limitation
in this case study.

The Debugging Method For this pizza service, a generated pizza is considered to be acceptable if it has
at least three toppings, one of which must be a vegetable. Using the vocabulary of the pizza ontology, we
formalize this notion through the following concept:

AcceptablePizza ≡ Pizza ⊓ ((≥3)hasTopping : ⊤) ⊓ (∃hasTopping : VegetableTopping).

To gain confidence that the implementation indeed upholds this condition, we combine fuzz testing [76] and
DL breakpoints.

That is, we implement the following fuzz testing strategy:
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1. We create 10 instances of UserProfile.

2. For each user instance, we execute 10 testing rounds.

3. In each round, there is a 50% chance that the isVegan status of the user is inverted. Also, we generate
a pizza for this user.

4. Using sjdb, we place a DL breakpoint in the generatePizzamethod directly after the instantiation of
the Pizza class of step 5 of the generation. It will pause the execution of the program, if the generated
pizza is not acceptable, i.e. if

KB ��|= AcceptablePizza(local:pizza)

where KB is the knowledge base generated by sjdb when it reaches the breakpoint.

When we execute this randomized testing strategy, in many cases, the conditional breakpoint will indeed
pause the program which indicates an error in the pizza generation algorithm. The breakpoint is triggered for
pizzas that do have three toppings but are missing a vegetable topping, e.g.

Pizza{base=ThinAndCrispy, toppings=[Prawns, PeperoniSausage, Chicken]}.

Further investigation of the trace of the fuzzing process reveals that the error only occurs when a user that
has been vegan for the last two to three deliveries switches to being non-vegan. That is because the pizza
service offers only eight types of vegan toppings that are all vegetables. Hence, it is possible that all available
vegetable toppings are covered by just three deliveries. Thus, when a user switches to being non-vegan in this
situation, the generator can not select a vegetable topping that has not been recently used.

Conclusion We successfully applied sjdb to find a complex issue in a Java program by utilizing an existing
ontology from the application domain of the program. Moreover, we demonstrated that sjdb can be combined
with other debugging techniques like fuzz testing to uncover errors caused by variations in the input data.

This was possible even though this “pizza ontology” was originally never intended for debugging Java programs.
For this, we only had to add some axioms to connect the ontologies of Java states generated by sjdb with the
pizza ontology. These axioms were of low complexity, though it is a tedious work to add an axiom for every
single topping. Since most of these axioms are of a very similar structure, it might be possible to improve the
usability of sjdb through a mapping macro that can generate them automatically from a template expression.

We did however encounter one complication in this case study: Ontologies that have not specifically been
designed for debugging applications will likely model a relation between an individual and a collection of
objects through a role that directly connects the individual and the elements of the collection. Here, this is the
case with pizzas and their toppings which are directly connected through the hasTopping role.

Meanwhile, within the knowledge bases generated by sjdb for a program state, if a Java object o contains a
collection in a field f , there is no role that directly connects o with each individual i of that collection. This is
because the collection itself is a Java object c that must be represented. Furthermore, to capture the order of
elements in a collection, we generate an additional individual e associated with an index for each element, see
also section 5.5. This results in three layers of indirection between o and each individual i of the collection:

o
f−→ c

hasElement−−−−−−→ e
storesRef−−−−−→ i.
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Bridging this indirection through role inclusion axioms with role chains is often not feasible as illustrated in the
case study. Hence, we had to extend sjdb with the Chain macro feature that can resolve such indirections
during the mapping process, see section 7.3.

9.3. Performance Evaluation

In this last set of experiments we want to evaluate the runtime performance of sjdb. That is, how quickly the
debugger can answer user queries and how much memory it requires to answer these queries.

Naturally, not every query is equally difficult to answer andmany different factors can influence the performance
of sjdb. For illustration, we give a brief overview of such factors that can potentially influence the performance
of sjdb:

Complexity of the Debuggee
Nr. of objects / classes / frames,
nr. of fields, methods, or local
variables per class, complex
inheritance hierarchies, …

Complexity of User Queries
Does the query necessitate
reasoning in OWL? Are

individuals fully enumerated,
or is it an entailment, or
satisfiability task? …

Complexity of User-Defined
Application Domains

Is a user-defined application
domain definition supplied? Nr.
of axioms in the definition,
complexity of the axioms, …

Completeness of the
Knowledge Base

Are arrays being mapped? Is
the mapping of the Java Class
Library being limited? …

…

Due to the time constraints of this thesis, we we can not evaluate the influence of all these factors on the
performance of sjdb. Instead, we restrict ourselves to the following experiments:

Number of Objects & Classes One of the most basic factors influencing the complexity of a Java state is the
number of objects and the number of classes. The number of objects directly influences the number
of individuals that must be considered by queries. Classes influence the number of concepts in the
knowledge base and they dictate the complexity of objects. Both of them influence the size of a knowledge
base. We evaluate the influence of the number of objects and classes in a Java state in section 9.3.1.
Research Questions. This experiment is designed towards answering the following research questions:

• How does the number of instances and classes in a Java program affect the performance of the
most basic functions of sjdb?

• Is it possible to use these basic functions on common personal computer systems given the observed
response times and memory demands?

• Does the number of classes or the number of objects have a stronger influence on the performance?
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• How well do some of sjdb’s basic functions scale for these two variables? E.g. the run time of the
mapping algorithm we presented should scale linearly in the number of classes and instances for
this experiment. Can we confirm such a trend?

Finding Structural Defects As the previous cases studies in sections 9.1 and 9.2 have shown, finding structural
defects in data structures is one of the main use cases of sjdb. Hence, in section 9.3.2, we evaluate the
performance of sjdb on such a task.
Research Questions. This experiment is designed towards answering the following research questions:

• How does sjdb perform in a typical debugging scenario?

• Can one actually use sjdb for debugging tasks on common personal computer systems given the
observed response times and memory demands?

• The answering engine of sjdb provides users with multiple options for formulating queries, e.g.
via SPARQL, SHACL, or as an OWL reasoning task.
How do these options perform in comparison to each other in this scenario?

In our experiments, we measure the following metrics:

System Response Time We measure the time from the complete input of a query to the complete output of
the reply. Hence, we measure the performance of sjdb from the perspective of a user interacting with
the tool, not as a custom-made microbenchmark.
For all measurements, we set a timeout of 60 seconds.

Peak Memory Usage We measure the maximum memory used by the JVM from the start of sjdb until the
completion of a user query. Please note, that this is typically less than the amount of memory allocated
by the JVM, as the JVM may allocate more memory than it actively uses to store objects, stack frames,
etc.
The JVM does provide built-in statistics about peak memory usage that we utilize for this metric. However,
from experience, these statistics are only consistent when retrieving them after a full execution of the
garbage collector. Hence, we execute the JVM with a serial garbage collector and ensure a full garbage
collection is executed before retrieving the peak memory usage values2.

For every metric, we report the average over ten separate measurements. This way we attempt to compensate
for external influences from the operating system scheduling etc. We also take care to completely clear any
caches that might be present in the used reasoners etc. before each run.

2A serial garbage collector is activated by passing the -XX:+UseSerialGC flag to the java command. We use the
GcFinalization class from the Guava Testing library (https://github.com/google/guava) to force the JVM into
a full run of the garbage collector.
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JVM Warm-Up Lastly, we perform a so-called warm-up of the JVM before taking a measurement: As
mentioned before, the JVM may load types lazily only when they are needed. Furthermore, the JVM may
apply optimizations on-the-fly depending on how frequently parts of a program are executed, like compilation
of formerly interpreted methods to native machine instructions [71]. As a consequence, the first initial runs of
a section of a program may be slower than subsequent ones. Hence, to eliminate such influences on the result,
it is common to execute benchmarked code multiple times before taking a measurement. We too perform five
rounds of warm-up when measuring response times.

However, we perform no warm-up rounds when measuring the peak memory use, since leftover objects from
previous rounds may affect the outcomes. Also the process of optimization of a debuggee itself may affect the
memory use.

Setup We list information about the system on which we perform these performance measurements in
appendix B.

9.3.1. Number of Objects and Classes

In this case study, we evaluate the performance of sjdb depending on the number of instances and classes in
a program.

Tasks

We evaluate the performance of three types of tasks:

Generating a Knowledge Base For this task, we evaluate the response time and memory consumption for
mapping the state of a program to a knowledge base.
Typically, users of sjdb should apply its limit-sdk optimization as no insight into the internals of
the Java Class library is required for most debugging purposes. When activated, sjdb does not map the
Java Class Library completely, see section 8.3.2. As we aim to measure the performance for a typical
application of sjdb, we do activate this option for this task.
We also deactivate all linting tools that are normally applied by default to generated knowledge bases.

Querying Instances with SPARQL This task consists of performing a SPARQL query on a mapped program
state to retrieve all instances of a Java class C0. We perform the following SPARQL query on the underlying
RDF graph of the generated knowledge base, that is, without resolving any OWL inferences:

SELECT ?x WHERE { ?x a prog:SysLoader-C0 }

The knowledge base is generated in the same way as for the first task.

Querying Instances with HermiT In this task, we ask sjdb to retrieve all instances of a Java class C0 using
the HermiT reasoner. That is, we ask for all instances of the concept prog:SysLoader-C0.

In the remainder of this section, we abbreviate the above tasks with the following code-names: “buildkb-task”,
“sparql-task”, and “infer-task”.
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Experiments

We measure the performance for these tasks in three types of experiments:

Experiment A In this experiment, we evaluate the performance of sjdb for an increasing number of object
instances, but a fixed number of classes. That is, we evaluate it on a family of Java programs that have
the following form:

class Super0 { }
class C0 extends Super0 {

private static C0 staticRefField;
private static int staticPrimitiveField;

private C0 refField;
private int primitiveField;

public void method() {
C0 refVar = null;
int primitiveVar = 42;

}
}

public class Instances {
public static void main(String[] args) {

var objects = new Object[N];

for (int i = 0; i < N; ++i) {
objects[i] = new C0();

}

System.out.println("Instances created.");
}

}

Here, N is the number of C0 instances we want to be present in the program state. This is ensured by
the for-loop in the main method.
Please note, that we designed the class C0 such that it makes use of a number of features that affect the
mapping. That is, C0 contains static and non-static fields of a a reference type and of a primitive type. It
contains a method and that method also contains local variables of a reference type and a primitive
type. Furthermore, it makes use of inheritance and inherits from the empty class Super0.

Experiment B In this experiment, we evaluate the performance of sjdb for an increasing number of classes.
I.e., we experiment on the following family of Java programs:

// For every i ∈ {0, . . . ,M − 1}...
class Superi { }
class Ci extends Superi {
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private static Ci staticRefField;
private static int staticPrimitiveField;

private Ci refField;
private int primitiveField;

public void method() {
Ci refVar = null;
int primitiveVar = 42;

}
}

public class Instances {
public static void main(String[] args) {

var objects = new Object[M];

objects[0] = new C0();
objects[1] = new C1();
...
objects[M − 1] = new CM−1();

}
}

Here, we create a class Ci for every i ∈ {0, . . . ,M −1} where M is the number of Ci classes that we want
to be present in the program. The classes are uniform in their design, mimicking C0 from experiment A.
We also create an instance for every class Ci to ensure that each one of them is loaded, prepared and
initialized by the JVM [70, section 5.5]. This means that we do not observe the effect of an increase in
the number of classes in isolation, but only in combination with an increase in the number of instances.

Experiment C In the previous experiments, we respectively observed the effect of adjusting the number of
instances N and the number of Ci classes M .
In this experiment we adjust both and equally distribute the instances among the classes. That is, we
apply sjdb to the following program:

// For every i ∈ {0, . . . ,M − 1}...
class Superi { }
class Ci extends Superi {

private static Ci staticRefField;
private static int staticPrimitiveField;

private Ci refField;
private int primitiveField;

public void method() {
Ci refVar = null;
int primitiveVar = 42;

}
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}

public class Instances {
public static void main(String[] args) {

var objects = new Object[N];

int instances = 0;

// For every j ∈ {0, . . . ,M − 1}...
for (int i = 0; i < Ij; ++i) {

objects[instances++] = new Cj();
}

System.out.println("Instances created.");
}

}

where Ij is the number of instances the program creates for each class Cj:

Ij = ⌊N/M⌋+

{︄
1 if j < N mod M,

0 otherwise.

Since we create one instance per class to guarantee that it is loaded, prepared, and initialized, we also
require M ≤ N .

To prevent the created instances from being garbage collected, we store them in an array objects. However,
the mapping of arrays can generate many additional axioms, see section 6.2 and we want to eliminate this
influence on our measurements. Hence, for the inspection of all of the programs listed above, we disable the
mapping of sequence axioms. That is, objects in the array objects will be mapped, but we do not apply the
sequence case µ (Sequence(. . .), . . .) of the mapping function to the array.

For all experiments, we suspend each program at the end of the main method for inspection with sjdb.

Observations

Experiment A. In this experiment, the response times for the sparql task are extremely low, never exceeding
20 milliseconds. There is no clear indication, how strongly the increase in instances affects the response time
for the sparql-task, see fig. 9.3. This is particularly true since external influences like OS scheduling, heat
distribution in the processor etc. may influence response times that are this low.

The infer-task is second fastest, with a seemingly at most linear increase from about 0.21 seconds to at most
0.54 seconds. With this, it is in all cases faster than than the buildkb task which takes between about 0.6 to at
most 0.88 seconds.

Since the response times for the sparql-task were exceptionally low and since later experiments suggest, that
the infer-task generally performs worse than the buildkb-task, we run experiment A again to observe the
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Figure 9.3.: Average response times for experiments A (upper plot) and B (lower plot). The detailed results
are listed in tables C.4 and C.5.
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Figure 9.4.: Response time for experiments A on large N . Again, see table C.4 for the exact measurements.

response times for much larger N . That is, fig. 9.4 shows our results for samples of N between 5000 and
20000 instances.

The response times of the sparql-task stay consistently low, although we can now notice a slight increasing
trend. The response time of the infer-task clearly starts to exceed the buildkb-task at 10000 instances.

Regarding the memory demand, there is not much difference between the buildkb- and sparql-tasks, although
the sparql-task does consistently consume slightly more memory (no more than 20 MiB) than the buildkb-task,
see fig. 9.5. As the knowledge base constructed by the buildkb-task is required by both of the other tasks, it
should serve as a baseline and always require the least memory. We can confirm this expectation in this and
all further experiments. Meanwhile, the infer-task consumes about 60% more memory than the other two
tasks for all measured data points. Furthermore, we observe only a very slight increase in memory demand
for all tasks for an increase in N : That is, an increase of less than 2MiB for the buildkb-task overall, about
4MiB for the infer-task, and about 12 MiB for the sparql-task. Hence it is again unclear, if this increase might
be attributed to external factors, although it is quite clearly visible for the sparql-task.

Experiment B. While the response time of the sparql-task is similarly low as before, the response times of
the other tasks are noticeably higher for all M . The response time for the buildkb-task seems to increase at
most linearly in M . On the other hand, the response time of the infer-task grows clearly superlinearly for the
observed data points.

We re-run the experiment with a slightly increased range of classes M and compute the differences between
subsequent response times, see fig. 9.6.

126



100 200 300 400 500 600 700 800 900 1000
C  instances

160

180

200

220

240

260

pe
ak

 m
em

or
y 

us
ag

e 
[M

iB
]

159MiB
156MiB

159MiB
157MiB

160MiB 159MiB 160MiB 160MiB 160MiB 161MiB
166MiB 164MiB

168MiB 170MiB
172MiB 174MiB 174MiB

178MiB 177MiB 178MiB

254MiB 254MiB 255MiB 256MiB 256MiB 257MiB 257MiB 258MiB 258MiB 259MiB

buildkb-task
sparql-task
infer-task

100 200 300 400 500 600 700 800 900 1000
generated classes

150

200

250

300

350

400

450

pe
ak

 m
em

or
y 

us
ag

e 
[M

iB
]

195MiB

241MiB 243MiB
253MiB 258MiB

270MiB 271MiB
281MiB 283MiB

289MiB

208MiB

245MiB
256MiB 258MiB 262MiB

275MiB 276MiB
285MiB 288MiB

294MiB

272MiB

305MiB

333MiB
346MiB

366MiB

401MiB 406MiB

421MiB

472MiB 476MiB
buildkb-task
sparql-task
infer-task

Figure 9.5.: Peak memory usage for experiments A (upper plot) and B (lower plot). We report a detailed
account of all measurements in table C.6.
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Figure 9.6.: Extended response time measurements for the infer-task (left) and the time difference between
each increase in classes (right). We report the exact measurements in table C.7.

The computed differences seem slightly noisy, even though we compute the average over 40 runs of the
experiment. Still, the result indicates that the differences in response time might increase linearly which
would mean that the response time is quadratic in the number of classes.

The peak memory usage remained almost constant in experiment A for the buildkb- and infer-tasks. In contrast,
we can now clearly observe an at most linear increase in memory demand for these tasks in experiment B.

Experiment C. We report all measurements for experiment C in tables C.8 and C.9.

Again, the response time for the buildkb-task clearly increases with the number of classes, see fig. 9.7. Please
note, that there are no data points whereN < M , as there must be at least one instance per class, as mentioned
above. In the cases where we increase the number of instances for a fixed number of classes, we do not observe
a clear increase in response time.

As the response time seems to behave linearly in the number of classes and instances, we learn a multiple
linear regression model from the given data points. The model predicts the response time t̂ for the buildkb-task
given the number of classes M and the number of instances N . The coefficients of the model reveal, how
strongly N and M influence the response time respectively:

t̂ = 1.68669 + 0.0113 ·M + 0.00035 ·N.

We visualize the model in fig. 9.8.

To learn this model, the coefficients of M and N are chosen such that the sum of square errors is minimal:∑︂
i

(ti − t̂i)
2

where ti is the observed response time and t̂i is the predicted response time for the i-th input program.
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Figure 9.7.: Average response times for the buildkb-task in experiment C.
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Figure 9.8.: Multiple linear regressionmodel for the average response times for the buildkb-task in experiment
C. The red plane visualizes the model predictions, the green points are the actually measured
response times.
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Figure 9.9.: Average response times for the sparql-task in experiment C.

Furthermore, the coefficient of determination [110],

R2 = 1−
∑︁

i(ti − t̂i)
2∑︁

i(ti − t)2

has the value 0.98 for our linear regression model where t is the mean of the actually measured response
times ti. R2 can be interpreted as the proportion of the variability of the predicted t̂i that can be explained by
the linear combination of N and M in the model [24]. If R2 is non-negative, then it ranges over [0; 1] where 0
indicates that there is no correlation between N , M , and the response time. A value of 1 indicates that the
linear regression model fits the measured datapoints perfectly. Since the value R2 = 0.98 is very close to 1,
this gives a strong indication that the response time of constructing knowledge bases is indeed linear in the
number of classes and instances, at least for those kinds of classes and instances that are similar to the ones
we generate in our experiments.

Under the assumption that the relationship between M , N , and t is indeed linear, the learned coefficients
suggest that the number of classes has a 0.0113/0.00035 ≈ 32 times stronger influence on the response time
than the number of instances.

For the response times of the sparql-task, again, no clear trend emerges, see fig. 9.9. The measured response
times again are very low and the observed small variations could be attributed to external influences.

As before, sjdb exhibits much higher response times for the infer task and they seem to behave superlinearly
in the the number of classes and instances, see fig. 9.10. Following the observations in experiment B, we
assume a quadratic relationship between M and the response time for the infer-task and learn a polynomial
model of degree at most 2, to approximate the data. Again, we do this by minimizing the residual sum of
squares between the observed response times and the predicted response times. This is the resulting model:

t̂ = 2.3578 + 4.3774 · 10−5 ·M2 + 6.9343 · 10−7 ·N2.

We visualize the model in fig. 9.11 Again, the coefficients indicate that the number of classes has a much
stronger influence on the response time. Additionally, we compute a coefficient of determination of R2 ≈ 0.99,
thus, the quadratic model appears to fit the measured datapoints well.

Regarding the peak memory usage, all tasks seem to show an at most linear, if not sub-linear trend, see
figs. 9.12 to 9.14.

130



classes 200
400

6008001000

ins
tan

ces

200
400

600
800

1000

tim
e 

[s
]

0
10
20
30
40
50

classes

200 400 600
800

1000

ins
tan

ces

200
400

600
800

1000

tim
e 

[s
]

0
10
20
30
40
50

cla
sse

s

200
400

600
800

1000

instances 200
400

6008001000

tim
e [s]

0
10
20
30
40
50

Figure 9.10.: Average response times for the infer-task in experiment C.
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Figure 9.11.: Polynomial model for the average response times for the infer-task in experiment C. The red
plane visualizes the model predictions, the blue points are the actually measured response
times.
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Figure 9.12.: Peak memory usage for the buildkb-task in experiment C.
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Figure 9.13.: Peak memory usage for the sparql-task in experiment C.
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Figure 9.14.: Peak memory usage for the infer-task in experiment C.
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Conclusions

The Sparql-Task. In all cases, the sparql-task displayed the fastest response times. This is not surprising,
as SPARQL query engines are optimized to query databases of millions of RDF triples in seconds [29]. For
comparison, a generated knowledge base for 5000 classes and 5000 instances as in experiment B contains
only 792,461 triples. Furthermore, the SPARQL task does not involve any OWL reasoning which appears to be
the most demanding query activity, as suggested by our measurements of the infer task. Our observations
suggest, that at least very simple queries on a knowledge base can always be answered in acceptable time for
interactive debugging, if they can be formulated in SPARQL and do not require OWL reasoning.

The Buildkb-Task. The buildkb-task requires at most 15 seconds for constructing a knowledge base for a
program containing a thousand classes and instances. While such a delay would become tiresome during
extended debugging sessions, it is still acceptable.

Due to a high R2 value, a multiple linear regression model seems to fit the relation between M , N and the
response time well, suggesting that the response time is linear in the number of classes and interfaces. This
observed correlation between the model predictions and our measurements is not the same as causation. Still,
this result matches our mapping algorithm from section 6.2 for which the number of generated axioms should
be linear in the number of instances and classes for this program. This is because the mapping generates a
constant number of axioms per class, if the classes are uniform, and also a constant number of axioms for the
instances of these classes since they do not implement the Iterable interface.

Furthermore, the coefficients of the learned model suggest that the number of classes in a program has a
much higher influence on the time it takes to construct a knowledge base than the number of instances. Again,
this matches our mapping algorithm which is more complex for classes than for objects.

The Infer-Task. Unsurprisingly, the infer-task that requires automatic reasoning in OWL tends to be the
least performant in regards to response time and memory.

When analyzing the difference in response time for subsequent increases in the number of classes, an almost
linear pattern emerges, which suggests that the response time is quadratic in the number of classes. However,
this assessment is uncertain due to noise in our measurements. Under the assumption that the relationship is
quadratic, the coefficients of an automatically learned polynomial regression model again suggest that the
number of classes has much stronger influence on the response time than the number of instances.

Since the response time depends on the internals of the HermiT reasoner, it is difficult to assess a cause for this
behavior without performing an analysis of the implementation of HermiT. However, the quadratic behaviour
suggests that HermiT performs some sort of operation between every pair of classes. For example, HermiT
might perform a pairwise test for subsumption of the DL concepts that have been generated for the Java
classes. In our experiments, we query for the individuals of the concept prog:SysLoader-C0 generated
from the C0 class which must also contain all individuals of potential subclasses of C0. The aforementioned
possible subsumption test would be necessary to identify such sub-classes and their instances.

While there is evidence of a quadratic relationship between the number of classes and the response time,
there is no such clear indication for the number of instances, as the differences in response time for changes
in the number of instances are too small to draw a clear conclusion and might also be subject to noise.

Regarding usability, the quadratic behavior is quite problematic, since in a Java program there tend to be many
classes that are unrelated to a user query but whose presence in the knowledge base will negatively impact
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reasoning performance. Indeed, a number of around thousand loaded classes is realistic when debugging
Java applications. For instance, as part of their DaCapo Java benchmark, Blackburn et al. investigated the
complexity of a selection of open-source Java software for which the number of loaded classes ranged between
295 and 1023 classes [18]. Therefore, the measured response times for the infer-task are problematic for real
debugging applications, since we observe response times of about half a minute for 1000 loaded classes. Still,
the response time might be acceptable for more complex queries, while simple queries can be answered using
the faster SPARQL engine.

This presents an opportunity for future improvement of sjdb by providing capabilities for excluding those
classes from the generated knowledge base that are not relevant to a user query, see also section 10.2 on
future work.

Memory Usage. For all experiments and tasks, the memory usage seems to scale well, at most linearly in the
number of classes and instances. However, the peak memory usage of the infer-task could approach almost
half a gibibyte. This might make it hard to use sjdb on older or low-budget devices as it likely has to run
in parallel with other Java development tools like integrated development environments which can already
consume a lot of memory.

Finally, as the tested synthetic programs are far removed from an actual use case, our conclusions may not
generalize well to all programs.

9.3.2. Finding Structural Defects

In this case study, we evaluate the performance of sjdb on an actual debugging task That is, we use it to find
a simple structural defect in a doubly-linked list structure. A doubly-linked list consists of nodes. Each node,
has a backward reference prev, a forward reference next and a data value data:

class Node {
Node previous;
Object data;
Node next;

Node(Object data) { this.data = data; }
...

}

A doubly-linked list is constructed correctly, if the next field of every node but the last points to the next node
in the list and it is set to null for the last node. Similarly, for all elements but the first, the prev field should
be set to its predecessor.

We implement an append method which allows one to append an element to a doubly-linked list such that
all fields are set correctly:

Node append(Object data) {
if (this.next != null)
throw new RuntimeException("Can only append at the end of the list.");
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var nextNode = new Node(data);
nextNode.previous = this;
nextNode.next = null;
this.next = nextNode;

return nextNode;
}

Additionally, we implement a main method which constructs a doubly-linked list of N elements. However, we
implement it such that it sets the prev field of every second node to null and breaks the aforementioned
correctness condition:

public class DoublyLinked {
public static void main(String[] args) {

Node firstNode = null;
{

Node currentNode = null;
for (int i = 0; i < N; ++i) {

var data = Integer.valueOf(i);

if (currentNode == null) {
firstNode = new Node(data);
currentNode = firstNode;

} else
currentNode = currentNode.append(data);

// Break every second node
if (i % 2 == 1) {

currentNode.previous = null;
}

}
}

System.out.println("Nodes created.");
}

}

For this program, we measure the performance of sjdb for four kinds of tasks:

Generating a Knowledge Base This task is the same as in section 9.3.1.

Querying for broken nodes with HermiT We formalize a part of the previously mentioned correctness condi-
tion for doubly-linked lists into an OWL concept ValidNode:

ValidNode ≡ ∃prog:SysLoader-Node.next :
({null} ⊔ ∃prog:SysLoader-Node.prev : prog:SysLoader-Node).
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ValidNode describes those nodes whose next field is either set to null, or it is set to a node whose
prev field must be set to a Node instance.
We query for all instances which violate this simplified correctness condition. That is, we query for the
concept of all Node instances that belong to the negation of ValidNode:

prog:SysLoader-Node ⊓ ¬ValidNode.

It is possible to fully encode the correctness condition in OWL, e.g. by requiring the prev role to be the
inverse of the next role for all nodes but the endpoints. However, we can not encode the full correctness
condition in SHACL, which is why we use this simplified version so that this task remains comparable to
the other tasks below.

Querying for broken nodes with SPARQL We formalize the same simplified correctness condition as before
in SPARQL:

SELECT ?x WHERE {
{
?x prog:SysLoader-Node.next [

prog:SysLoader-Node.previous [ a prog:SysLoader-Node ]
]

}
UNION
{ ?x prog:SysLoader-Node.next java:null }

}

And then we query for its negation:

SELECT ?x WHERE {
?x a prog:SysLoader-Node .
FILTER NOT EXISTS {
{

?x prog:SysLoader-Node.next [
prog:SysLoader-Node.previous [ a prog:SysLoader-Node ]

]
}
UNION
{ ?x prog:SysLoader-Node.next java:null }

}
}

Querying for broken nodes with SHACL In this task, we formalize the simple correctness condition into a
SHACL shape “shapes:ValidNode” and query for all nodes that violate this shape:
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shapes : TailNode
rdf : type sh : NodeShape ;
sh : proper ty [

sh : path prog : SysLoader−Node .
prev ious ;

sh : c l a s s prog : SysLoader−Node ;
] .

shapes : LastNode
rdf : type sh : NodeShape ;
sh : proper ty [

sh : path prog : SysLoader−Node . next ;
sh : hasValue java : nu l l ;

] .

shapes : Ini tNode
rdf : type sh : NodeShape ;
sh : proper ty [

sh : path prog : SysLoader−Node . next ;
sh : node shapes : TailNode ;

] .

shapes : ValidNode
rdf : type sh : NodeShape ;
sh : t a r g e tC l a s s prog : SysLoader−Node ;
sh : or (

shapes : Ini tNode
shapes : LastNode

) .

We abbreviate the aforementioned tasks with the following code-names: “buildkb-task”, “infer-task”, “sparql-
task”, and “shacl-task”. We are suspending the program at the end of the main method to perform these tasks.
Tasks 2-4 are executed on a knowledge base constructed in the same way as in the first task.

Observations

We evaluate the performance of sjdb for the aforementioned tasks forN ∈ {30, 40, 50, 100, 200, 300, 400, 500}
nodes, see figs. 9.15 and 9.17.

We observe that the response times for the shacl- and sparql-tasks are consistently very low, always less than
40ms and they increase only very slightly for larger N . Furthermore, the sparql-task always completes slightly
faster than the shacl-task. The buildkb-task takes between 600 to 800 ms until completion.

The infer-task performs the worst out of all tasks. Starting with a response time of about 6 seconds, it exceeds
a runtime of one minute already for N = 400 and continues to rise rapidly. However, for this limited collection
of datapoints for only up to 500 nodes, we can not derive a clear model of how the infer-task scales in the
number of nodes.

The peak memory consumption ranges between about 159 and 270 MiB. As in the previous section, the
buildkb-task serves as a baseline and always consumes the least memory out of all tasks. However, the sparql-
and shacl-tasks only consume at most 30 MiB additional memory. By contrast, in all cases the infer task
consumes around 60% more memory than the other tasks. There is a noticeable but only very slight increase
in memory demand for increasing N for all tasks.

As it appears that we can evaluate sjdb for the buildkb-, sparql-, and shacl-tasks for much larger N with-
out running into excessive response times, we perform an additional series of measurements for N ∈
{500, 1500, . . . , 9500}, see figs. 9.18 and 9.19. The response time of the sparql- and shacl-tasks remains very
low. The sparql-task does not exceed 0.2 seconds and the shacl-task does not exceed 0.4 seconds. While the
response time does overall increase for these two tasks, the increase seems to remain at most linear. A clearly
linearly increasing trend with a rate of roughly 0.5 ms per node can also be observed for the buildkb-task.

While for the previous range of N the memory demand appeared to behave at most linearly, we now notice
a rapid rise in the memory usage at N = 8500. The maximum memory usage we observe is about 960 MiB
used for 9500 nodes. As before, there is not much difference in memory consumption between the tasks.
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Figure 9.15.: Response time of sjdb when evaluating it on the doubly-linked list program. We report the
exact measurements in table C.10. Additionally, fig. 9.16 offers a more detailed view of the
behavior of the buildkb-, sparql- and shacl-tasks.
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Figure 9.16.: More detailed detailed plot of the response time of sjdb for the buildkb-, sparql- and shacl-
tasks, omitting the infer-task.

Lastly, while the sparql-task always required slightly more memory than the shacl-task for N < 1500, this
trend reverses at N ≥ 1500.

Conclusions

In all measurements the response times of the sparql- and shacl tasks were extremely low requiring not even
one second to complete. Thus checking structural correctness using these two technologies likely scales
well even for large programs. The buildkb-task displays a clearly linear development and the maximum
measured response time was below six seconds even for 9500 nodes. While these small delays are unpleasant
in interactive debugging, they should still pose no serious hindrance to the practical application of sjdb.
On the other hand, queries that require non-trivial OWL reasoning clearly appear unsuitable for interactive
debugging as the infer-task reaches response times of over one minute even for moderate numbers of list
nodes.

Confronted with the comparatively poor performance of the infer-task, we conclude that to clearly assess
the usefulness of sjdb as an interactive debugger, it should be evaluated whether OWL reasoning is strictly
required for semantic debugging, or whether SPARQL and SHACL are expressive enough to formulate most
relevant user queries. That is, additional case studies and maybe even user studies are necessary to identify
those classes of user queries that are essential to semantic debugging.

The memory use reached almost one gibibyte during our experiments. As mentioned in the other performance
case study, such a memory demand may be problematic when sjdb is used in conjunction with other Java
development tools that tend to have a large memory footprint. Furthermore, the sharp rise in memory demand
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Figure 9.17.: Peak memory usage of sjdb when evaluating it on the doubly-linked list program. We report
the exact measurements in table C.11.
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Figure 9.19.: Peak memory usage of sjdb when evaluating it on the doubly-linked list program for large N .
We report the exact measurements in table C.11.
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detected for N = 8500 list nodes suggests that the memory use does not scale well for real programs which
can easily contain list-like structures larger than 8500 nodes. Still, without an extended analysis of sjdb’s
memory usage behavior, we can not identify a clear model for its memory demand in debugging scenarios
such as this one.

9.3.3. Threats to Validity

In this section, we consider possible errors in our evaluation methods and conclusions and how we were able
to address some of them. That is, we discuss the four categories of validity proposed by Cook et al. [27]:
Conclusion validity, construct validity, internal validity, and external validity. More specifically, we consider a
selection of those threats listed in the taxonomy of threats to validity by Ben Othmane et al. [16, Chapter 10].

Conclusion Validity

Conclusion validity concerns the question of whether we can draw conclusions of practical use from the
relationships between measured independent variables, and the outcomes dependent on them.

Statistical Validity and Assumptions. We perform our experiments for a very limited set of instances of our
input variables. For example, we are considering only up to 500 list nodes for the infer-task in section 9.3.2.
Therefore, we can have only very limited confidence that the behaviors and trends we observe continue to hold
true for higher ranges of the input variables. In particular, the regression models we construct in section 9.3.1
might simply be over-fitting the recorded data. Just because our linear or quadratic equations fit the observed
data points well for our specific choice of coefficients, this does not necessarily mean that the time complexity
of sjdb is guaranteed to be linear or quadratic for the evaluated tasks.

Furthermore, some of the variables we select are not truly independent. For example, when we increase the
number of classes in section 9.3.1 we also increase the number of instances for these classes, as we create an
instance for each one of them to ensure that all classes are loaded and prepared.

Lack of Expert Knowledge. We use the technologies of the semantic web, i.e. the HermiT reasoner and the
SPARQL and SHACL engines of Apache Jena mainly as a tool, without deeply investigating their implementation.
Thus, when we for example interpret the quadratic behavior of HermiT in section 9.3.1 as a possible symptom
of subsumption checks then this speculation is informed only by our basic level of understanding of OWL
reasoning. That is, an expert in the field might be able to pinpoint an entirely different cause for our
observations.

Construct Validity – Impact of the Measurement Method

Construct validity is about the design of a study and whether the measured variables accurately represent the
theoretical concept that is being studied. We briefly investigate one aspect of this category of validity, that is,
whether our method of measurement impacts the outcomes.

As we measure the response time by simply comparing timestamps from before and after executing a task,
this measurement method should not impact our results. However, as we mentioned in the introduction to
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section 9.3, we can retrieve reliable peak memory usage statistics from the JVM only after ensuring that a
full run of the garbage collector has taken place. Java does not support a forced execution of the garbage
collector3 and the JVM may also choose to use concurrent and non-deterministic garbage collectors. Hence, in
our experiments, we configure the JVM to use a serial garbage collector and we rely on an external library to
invoke a full garbage collection. Both of these choices may have an impact on the memory usage of sjdb that
might not be present when running the debugger in a default JVM without taking measurements. Still, while
the absolute values measured might be different, the overall behavior and trends we observe in the memory
use should be independent from these influences.

Internal Validity

The outcomes of a case study are internally valid if they depend only on the techniques used in the experimental
setting. For instance, a change in a dependent variable should solely be caused by the set of independent
input variables explicitly considered by the study.

Testing Factors. Events occurring between subsequent measurements might affect their results. In our
case, the JVM might apply optimizations for repeatedly executed code, or the used SPARQL engine or the
OWL reasoner might build caches to more quickly answer queries. We eliminate the first issue by employing
JVM warm-up rounds and the second one by creating entirely new instances of the query engines for every
measurement.

Moreover, the peak memory use might be affected by instances of these query engines left over from previous
measurements that have not yet been garbage-collected by the JVM. Hence, we determine the peak memory
usage on entirely new JVM instances for each measurement we take.

Deficiencies in the Setup. The environment in which we perform our measurements is a personal notebook
computer. Hence, it is not strictly controlled and many external factors can potentially influence our results:
E.g. the operating system might schedule background tasks that affect the overall system performance, or
the performance might drop over time due to cooling issues. We did take care to control and to compensate
for such factors, e.g. by averaging our measurements over multiple executions or by not running demanding
background processes in parallel to sjdb. Still, the potential for such environmental factors to affect our
measurements exists and a change in them might lead to a change in the results.

Ignoring Relevant Factors. A Java class is a collection of many optional components: Fields, methods, local
variables, etc. Our studies do not consider which influence the presence and quantity of each of them might
have on the results. For instance, the axioms generated for fields might have more impact on the performance
of OWL reasoning than others. Hence, our results in section 9.3.1 might change dramatically when including
less or much fields in each class Ci.

External Validity

A study is externally valid if its outcomes are generalizable. That is, do our results apply to all or most
debuggee programs and semantic debugging scenarios?
3One can only request a garbage collection by calling System.gc() which is not guaranteed to cause a full garbage collection.
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Non-Representative Input Data. The programs we experiment on were specifically developed for our case
studies. Thus, they are not representative for real application scenarios. For example, the classes we generate
in section 9.3.1 are all uniform and so are their instances. By contrast, usually every class in an application
specializes in a specific task and consequently classes in real applications tend to differ a lot in their structure.

Also, Java is a rich language and there are many features that affect our generated knowledge bases and OWL
reasoning but which we are not considering. For instance, we are not experimenting on deep class hierarchies.

Furthermore, we only evaluated two very simple kinds of user queries. As the B-tree case study of section 9.1
demonstrates, the queries and correctness conditions one might want to investigate during debugging can be
much more complex. Thus, our results may not apply at all to other kinds of queries.

Representative Setting. As mentioned, the experiments were performed on a personal notebook computer
which is a realistic setting for the use of an interactive debugger.
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10. Conclusion

In this thesis, we implemented the semantic debugger “sjdb” for the Java programming language by mapping
states of Java program executions to knowledge bases formulated in description logic (DL). It enables users to
debug their applications through semantic queries. Our debugger is a continuation of the work of Kamburjan
et al. [61], who introduced such a mapping for the minimal object-oriented language SMOL and presented
semantic debugging as one of its applications.

To define the domain of our mapping, we devise the formalism of JDI states. It is a grammar describing the
information that can be extracted from suspended Java programs through the Java Debugging Interface (JDI).

The mapping itself recursively processes the expressions of this grammar to produce a set of DL axioms. It is
adjustable and extensible through a plug-in mechanism. Notable challenges of the mapping process include
the handling of incomplete type information due to lazy-loading strategies employed by Java Virtual Machines,
and modeling the sub-typing system of Java through a subsumption hierarchy. Furthermore, we introduce the
notion of Runtime Canonical Names (RCNs) to uniquely identify multiple parallel versions of types loaded
through different class loaders, as well as other runtime Java constructs. Additionally, we address issues that
arise when modeling the mostly-closed world of Java program states under the open world assumption of DL.
The Web Ontology Language (OWL) through which we represent our knowledge bases does not adopt the
unique name assumption, thus we also take care to add axioms that differentiate the entities generated by our
mapping.

To give Java constructs meaning within higher-level concepts, users of our debugger can enrich the knowledge
bases produced by our mapping with custom DL axioms and combine themwith external domain formalizations.

We incorporate an answering engine into sjdb which combines multiple technologies of the semantic web. It
enables users to formulate semantic debugging queries as DL inference tasks, in the SPARQL query language,
or as SHACL validation tasks.

We evaluated sjdb in different case studies to demonstrate its use but also to identify some of its limitations.
Uncovering these limitations lead us to integrate DL breakpoints into sjdb, which aid users in the automatic
detection of faulty states. Furthermore, we increase the expressivity of user-provided external knowledge
through mapping macros.

In a set of additional case studies, we investigated the impact of the number of objects and classes in a
Java program state on the response time and memory usage of basic queries. Lastly, we also compare the
performance of different query types on a simple debugging task.
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10.1. Related Work

Knowledge-base assisted Dynamic Analysis & Debugging of Program States. As explained above and in
chapter 1, our work is a continuation of research by Kamburjan et al. on programming and debugging with
semantically lifted states [61, 62]. Kamburjan et al. introduce SMOL, a minimal object-oriented language.
They implement an interpreter for this language that is also capable of mapping the static structure and
runtime states of a SMOL program to an OWL/RDF-based knowledge base. The knowledge base can be further
augmented by combining it with OWL formalizations of external domains. Furthermore, they explore multiple
methods by which such a knowledge base can facilitate the semantic analysis, verification and debugging
of programs. Moreover, they introduce the concept of internal semantic state access, an advanced form of
reflection by which a program can perform semantic queries on its own state and integrate the results into its
computations. Like us, they combine multiple semantic web technologies (the HermiT reasoner, the Jena ARQ
SPARQL engine, and the Jena SHACL validator) to implement an answering engine.

SMOL was invented with the purpose of researching semantically lifted states in mind. Hence, Kamburjan
et al. could build their mapping upon a full formalization of the states of SMOL programs. Also, the mapping
implementation is tightly integrated with the language interpreter, imposing no limits on accessing a program’s
state.

Meanwhile, to avoid a modified JVM or instrumented code, we rely on the JDI for extracting information
about the state of a Java program. While there already exist formalizations of the states of Java program
executions [106, 74, 22, 9], we focus on the information the JDI makes accessible in practice and model it
through the formalism of JDI states. Furthermore, we extend on some of the ideas of Kamburjan et al. on
semantic debugging: There are no class hierarchies in SMOL. By contrast, our mapping models Java’s class
hierarchies, interface extensions, and array sub-typing rules. Furthermore, the mapping of SMOL does not
address the issues caused by the open world assumption and the lack of a unique name assumption in OWL.

Similar to us, Scrocca and Tommasini also build on the work of Kamburjan et al. and envision a Java Knowledge
Interface (JKI) [101]. Like sjdb, the JKI utilizes the JDI to map the static structure and the runtime states
of Java programs to a knowledge base. The JKI is able to integrate external domain formalizations into this
knowledge base, too. Different than sjdb, the mapping must be customly implemented for every debuggee
application using the JKI framework. While this causes significant overhead for the user, it restricts the
knowledge base to those parts of a program’s state that are relevant to the respective semantic inspection
scenario, avoiding the performance issues caused by our large knowledge bases. The JKI also supports the
automatic execution of a reasoning routine every time a debuggee reaches a breakpoint, which is a mechanism
similar to our DL breakpoints. Lastly, Scrocca and Tommasini explore the idea of inter-application inference:
The mappings of multiple applications can be combined into a single knowledge base and reasoning tasks be
executed upon it. The authors argue that this feature may be useful when analyzing multiple micro-services
that form a single distributed system.

Pattipati et al. present BOLD, an ontology-based log debugger for the C programming language [89]. BOLD
maps the execution traces of C prorams to RDF triples and can also abstract them to a knowledge base of
so-called spans that describe the values of variables for different portions of a traced execution. It also maps
the abstract syntax tree (AST) of a debuggee’s source code into this knowledge base. For the purpose of
debugging, BOLD implements a command-line interface that supports SPARQL and reasoner-based queries.

BOLD’s log-based debugging enables backward navigation during a debugging session and facilitates the
identification of bugs through the inspection of the history of changes to a variable’s values. By contrast, our
debugger inspects single snapshots of a program’s state, not the evolution of the state.
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The tracing ability of BOLD is realized through instrumentation of the debuggee, whereas sjdb does not need
to manipulate the program under inspection. Users can select the statements to be instrumented through
SPARQL queries on the mapping of the AST of a program. This minimizes the number of instrumentation
instructions and reduces their impact on the performance of the debuggee. It also limits the number of
generated RDF triples, optimizing the performance of queries.

Pattipati et al. do not deeply discuss the integration of external knowledge into a debugging session, however,
BOLD can load external RDF triples. The authors illustrate that this feature can be used to add information
about external libraries but also to group program functions into semantic concepts.

They also perform a user study on BOLD, comparing it to a traditional debugger. Similar to us, they conclude
that OWL DL reasoning is not suitable for interactive debugging due to its poor performance. Nevertheless,
they argue that the OWL RL fragment [80, section 4] performs sufficiently well for interactive debugging.

Weber et al. introduce semantic object-oriented programming (SOOP) which enables programs to query their
own state through semantic technologies like reasoners. The results of such queries reference actual objects
and data in the application’s current state. Hence, SOOP shares some similarities with the internal semantic
state access introduced by Kamburjan et al. but it is not intended for analysis of a program through an external
debugger like sjdb. The authors implement SOOP as a C++ library that maps classes and their instances
to a knowledge base. For every relevant class and instance, application-specific code has to be written that
instructs the library to apply the mapping.

HOBO [95] by Puleston and Parsia is a framework for modeling ontology-driven applications. It combines a
Java object model and an OWL application domain model into a frame-based [77] model. The framework is
meant for modeling software, not for inspecting production applications. Still, runtime changes in the Java
object model become visible in the frame model and vice-versa. This way, HOBO can be used to explore the
dynamic behavior of the frame-model, but is also able to update it through computations in the Java model
that can not be achieved with DL reasoning. To apply HOBO, the Java object model must be implemented
through classes provided by the framework that establish the dynamic binding between the object model and
the frame model.

Knowledge-base assisted Static Analysis & Representation of Programs. So far, we mentioned works that
map the state of a program execution to a knowledge base representation. There are also articles that center
around representing and analyzing just the static structure of a program, or a programming language.

Kouneli et al. devise an ontology that describes the Java programming language [67]. It is meant to be utilized
in building e-learning applications that teach the language. It captures the Java language in much more detail
than our mapping. For instance, it depicts the concepts of statements and expressions, whereas we refrain
from mapping statements and the internal composition and behavior of a method.

Aguiar et al. create OOC-O, a reference ontology of object-oriented code. It is intended as a vocabulary that
identifies fundamental concepts shared by most object-oriented programming languages. The authors intend
for it to be applied in the context of polyglot programming, i.e. when multiple programming languages are
combined in one software project. For example, programmers could use OOC-O to better understand parts
of such a project written in an unfamiliar language. Integrated development environments could utilize its
unified vocabulary to provide support across languages.

The CodeOntology [10] devised by Atzeni and Atzori is also a detailed, Java-inspired OWL formalization
of object-oriented programming language concepts. However, the authors also implement a tool that auto-
matically translates the source code of a Java codebase into an RDF graph in the CodeOntology vocabulary.
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Constructs like methods can also be connected with semantic information by annotating them with source
code comments that contain links to DBpedia [69] resources. This facilitates expressive and semantic queries
over the source code. Like us, they also model class inheritance structures, but not through subsumption
relationships. Instead, they re-use a semantically more appropriate generic-specific role from the existing
XKOS vocabulary [39].

Alnusair and Zhao also introduce a framework for mapping source code to a knowledge base [7]. To create
an effective search tool for the re-use of software components, they intend to leverage this technology to
create a repository of mapped programs that supports semantic queries. However, unlike CodeOntology, their
framework cannot link external domain knowledge through source code annotations. Instead, it has to be
manually inserted into the created knowledge graphs. Based on their evaluation, the authors argue that only
search queries that make use of such added domain knowledge can improve on the precision of searches.

OPAL [90] is an ontology-based static program analysis framework by Pattipati et al. The authors present a
system that generates static traces of C programs and stores them in RDF graphs. The system also can perform
trace analysis through SPARQL queries. External knowledge can be integrated into these graphs through
user-provided RDF triples, too. The external knowledge can aid the static analysis by providing information
about external libraries or by restricting the value ranges of variables.

OntoDSL [108] is a framework for ontology-assisted design of domain specific languages (DSLs) developed by
Walter et al. For instance, it aids DSL designers by facilitating automatic consistency checks of the designed
languages. However, OntoDSL also provides debugging and analysis tooling to users of the created DSLs. For
example, OntoDSL leverages OWL reasoners to explain invalid DSL expressions to users.

Integration of Knowledge Bases into Programs. So far, we reported on works that focus on representing
programs or their state as knowledge bases. However, there is also a number of works on the topic of integrating
external knowledge formalizations into programs [13].

For instance, Kamburjan et al. continue their work on the SMOL language by developing a lazy, modular,
and type-safe mechanism for loading RDF data into a SMOL program via an object-oriented mapping [60].
They focus on resolving the semantic gap between the object model of RDFS/OWL and the object model
of programming languages: The former focuses on domain modeling and supports multiple subsumption
relations between concepts. By contrast, object-oriented programming languages tend to restrict or forbid
multiple inheritance due to the ambiguities it can introduce in type systems, e.g. in the resolution of method
calls. The authors approach the issue by defining data structures through semantic queries, instead of
introducing one-to-one relations between concepts of a knowledge base and classes of a program.

We mainly operate in the reverse direction, mapping program constructs into description logic, thus we do
not encounter a semantic gap in the same sense: Program constructs and state seemingly can be represented
in DL without issues. However, we do encounter one important mismatch between the two object models:
The open world assumption of DL is not suitable for describing the state of a program which is ideally closed
and fully known.

10.2. Future Work

In this section we point out opportunities for improving and extending upon the sjdb debugger and the
contents of this thesis.
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Mapping Improvements & Static Analyses. Our mapping is not complete regarding the static structure of
a program. For instance, we do not describe the statements forming the bodies of methods, and we do not
model the organization of a program into packages and modules etc. However, there are potential benefits to
the debugger when improving this aspect of the mapping. For example, it could enable users to search for
appropriate breakpoint locations via SPARQL queries. E.g. a user might want to place a breakpoint at every
statement where a method from a certain library is called. Moreover, mapping the bodies of methods opens
up possibilities for combined static and dynamic analyses of program behavior. For instance, sjdb is able to
detect the presence of defective data structures by comparing mapped Java objects to user-defined concepts.
However, when debugging it is also essential to identify the faulty parts of the algorithms that produce these
defective structures. Here, a form of symbolic execution might be able to collect constraints describing all
paths of such an algorithm and translate them into DL concepts. By testing concept membership between
these path concepts and the defective objects, the path that constructed the faulty objects can be located.

The first step towards a more complete mapping of the source structure of a debuggee has already been
established through our plugin system in section 8.3.3 which we used to integrate the static source code
analysis library SPOON [91] into sjdb to annotate mapped methods with their location in the source code.

Next, the aforementioned related works that focus on the mapping of the static structure of programs, e.g.
CodeOntology, OOC-O, or OPAL, leverage established methodologies for designing ontologies [6, 83, 45]. Our
mapping was designed just with its practical application within sjdb in mind. Hence, a comparison of our
mapping with these other works should be performed to identify potential design issues.

Optimization: Ontology Modules. In section 8.3.2, we explain that sjdb by default does not map parts of
the Java Class library, as well the contents of arrays, to reduce the size of the generated knowledge bases and
improve the performance of user queries. Ideally, a user should not need to manually opt-in to the mapping of
these components. Also, in any non-trivial Java project, there are likely many classes outside the standard
class library which are not relevant to a particular debugging task, but for which a user cannot disable the
mapping.

A possible method for identifying only those parts of a mapped knowledge base that are relevant to a user query
are ontology modules [65]: In a recent workshop article [59], Kamburjan and Chen explore the optimization
of semantic queries on the SMOL language by employing the theory of locality-based modules [99]. That
is, given a query and a knowledge base, a smaller subset of the knowledge base, a module, can possibly be
extracted such that it preserves logical consequences in regard to the query. That is, the result of the query
does not change when executing it on the module. The authors extract such modules from the mapping of
the static components of a program to optimize internal semantic state access, see section 10.1. Since DL
queries on our knowledge bases can be quite slow as demonstrated in section 9.3, we also briefly experimented
with the extraction of locality-based modules to speed up queries. However, we did not further pursue this
approach since the extraction itself also appeared quite computation intensive. This computation cost of
module extraction is particularly problematic since we are primarily implementing an interactive debugger
and we do not know the user queries in advance. Hence, a new module extraction has to be performed for
every query.

Still, there are application scenarios where module extraction might be applicable in sjdb and should be
investigated further. For instance, DL breakpoints lead to much slower execution of the debuggee since
they require solving an inference-task whenever the corresponding program location is reached. Yet, their
suspension condition is fixed and known in advance from the moment a DL breakpoint is set. Thus, module
extraction should be applicable to greatly improve the performance impact of DL breakpoints.
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Optimization: OWL DL Profiles. The OWL 2 specification lists three smaller fragments of OWL DL, called OWL
Profiles. They trade off reduced expressivity for improved reasoning performance and an easier implementation.
Pattipati et al., the authors of the BOLD debugger [89], note that the reasoning performance of the OWL RL
fragment is suited for interactive debugging queries. Hence, the performance of sjdb for inference tasks
could also possibly be improved by integrating reasoners for the different OWL Profiles.

Evaluation of Closure Axioms. As we point out in section 8.3.2, sjdb disables many kinds of closure axioms
by default as they appear to negatively impact reasoning performance. However, a systematic study of their
exact effects on reasoner response times was not part of this thesis and remains as future work. Furthermore,
currently, users have to opt-in to the generation of those closure axioms they require for a specific debugging
task. Additionally, the need for a closure axiom may not always be immediately apparent to users. Thus the
usability of sjdb may noticeably improve if the debugger was able to automatically infer when a closure
axiom is required for correctly answering a given user query. This feature is related to the aforementioned
extraction of modules.

Alleviating Limitations of DL Expressivity. To preserve the decidability [54, 81] of OWL DL, there are
certain restrictions [82, section 11] placed on its use, limiting its expressivity. As practical examples, users
can not formulate transitive, asymmetric roles, e.g. formalize acyclic linked lists, or perform unrestricted
arithmetic on array indices.

To some extend, we do enable users to circumvent such restrictions through the plugin mechanism of our
mapping implementation, or mapping macros.

Still, implementing a mapping plugin is work-intensive and it can not be integrated into external domain
formalizations. On the other hand, there exist expressive rule languages like SWRL [55] which can be
represented in RDF and be directly integrated into domain definitions. Hence, adding support for SWRL may
be a sensible extension for sjdb.

Usability Improvements. In its current form, sjdb is difficult to use for multiple reasons: Users must be
familiar with semantic web languages and DL reasoning, the names we generate for Java constructs are long
and complex, leading to convoluted query expressions, and sjdb has to be used through a command-line
interface.

We propose some ideas on how these usability issues can be partially addressed: For instance, sjdb could
permit users to use the simple names of Java classes, variables, etc. in queries. Then, a pre-processor could
resolve them to the RCN-based names used by our mapping. This way, users only have to use complex names
if a simple name can not be uniquely resolved. Furthermore, popular Java development environments like
IntelliJ IDEA or Eclipse provide a plugin system through which sjdb could be integrated in these environments
with a graphical user interface. Lastly, a user study should be conducted to properly assess the usability of
sjdb and the usability of such improvements.
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B. Setup for Experiments

The experiments of chapter 9 have been conducted on the following system configuration:

OS Arch Linux x86_64 (btw)

Kernel 5.17.1

CPU Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz

Memory 31.1 GiB

The case studies are part of the sjdb source distributed with this thesis. The performance measurements can
be repeated using a set of Python scripts in the folder casestudies/performance.
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Table C.1.: Value space definitions of primitive Java types [42, Section 4.2]

Primitive Java Type Value Space Definition

boolean “a logical quantity with two possible values, indicated by the literals true and false”
long “64-bit signed two’s-complement integers”, i.e. integers in the range “from

−9223372036854775808 to 9223372036854775807, inclusive”
int “32-bit signed two’s-complement integers”, i.e. integers in the range “from

−2147483648 to 2147483647, inclusive”
short “16-bit signed two’s-complement integers”, i.e. integers in the range “from −32768

to 32767, inclusive”
byte “8-bit signed two’s-complement integers”, i.e. integers in the range “from −128 to

127, inclusive”
char “16-bit unsigned integers representing UTF-16 code”, i.e. integers in the range “from

'\u0000' to '\uffff' inclusive, that is, from 0 to 65535”
float 32-bit IEEE 754 floating-point numbers with optionally extended exponents [70,

section 2.3.2]
double 64-bit IEEE 754 floating-point numbers with optionally extended exponents [70,

section 2.3.2]

Table C.2.: Value space definitions of XSD types [93, Sections 3.3 and 3.4]

XSD Type Value Space Definition

xsd:boolean “Value space of two-valued logic: {true, false}”
xsd:integer “The infinite set {. . . , 2,−1, 0, 1, 2, . . .}”
xsd:long The restriction of the value space of xsd:integer with the inclusive up-

per bound 9223372036854775807 (= 263 − 1) and the inclusive lower bound
−9223372036854775808 (= −263)

xsd:int The restriction of the value space of xsd:long with the inclusive upper bound
2147483647 (= 231 − 1) and the inclusive lower bound −2147483648 (= −231)

xsd:short The restriction of the value space of xsd:int with the inclusive upper bound
32767 (= 215 − 1) and the inclusive lower bound −32768 (= −215)

xsd:byte The restriction of the value space of xsd:short with the inclusive upper bound
127 (= 27 − 1) and the inclusive lower bound −128 (= −27)

xsd:unsignedShort The consecutive restriction of the infinite set 0, 1, 2, . . . over multiple types until
the effective inclusive upper bound 65535 (= 216 − 1) is reached.

xsd:float A value space definition equivalent to 32-bit IEEE 754 floating-point numbers.
xsd:double A value space definition equivalent to 64-bit IEEE 754 floating-point numbers.
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Table C.3.: Packages that are excluded by the SDK mapping limiter setting of section 8.3.2.

Packages excluded by the SDK mapping limiter

sun
jdk
java.security
java.lang.reflect
java.lang.ref
java.lang.module
java.lang.invoke
java.lang.annotation
java.lang.module
java.lang.reflect
java.net
java.nio
java.util.concurrent

C₀ instances buildkb sparql infer

100 0.63 5.11 · 10−3 0.21
200 0.69 5.24 · 10−3 0.24
300 0.74 6.58 · 10−3 0.28
400 0.73 1.17 · 10−2 0.33
500 0.86 7.07 · 10−3 0.34
600 0.79 8.29 · 10−3 0.36
700 0.79 7.77 · 10−3 0.39
800 0.82 8.8 · 10−3 0.43
900 0.86 1.74 · 10−2 0.54
1,000 0.88 1.23 · 10−2 0.47

C₀ instances buildkb sparql infer

5,000 2.1 3.42 · 10−2 2.26
10,000 2.74 5.24 · 10−2 6.46
15,000 3.87 5.12 · 10−2 18.91
20,000 4.8 7.7 · 10−2 33.1

Table C.4.: Average response time in seconds for experiment A of section 9.3.1.

generated classes buildkb sparql infer

100 1.07 2.63 · 10−3 0.75
200 1.87 3.08 · 10−3 1.77
300 2.64 2.87 · 10−3 3.18
400 3.65 2.92 · 10−3 5.51
500 4.33 3.32 · 10−3 7.69
600 5.73 4.17 · 10−3 9.96
700 6.91 4.17 · 10−3 13.43
800 8.41 3.5 · 10−3 18.6
900 9.14 2.63 · 10−3 24.77
1,000 10.98 2.5 · 10−3 35.37

Table C.5.: Average response time in seconds for experiment B of section 9.3.1.
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C₀ instances buildkb sparql infer

100 158.73 165.64 253.52
200 156.29 163.91 253.71
300 159.32 168.32 254.82
400 157.01 170.06 255.6
500 159.75 172.09 255.86
600 158.51 173.54 256.65
700 160.09 174.39 256.98
800 160.43 177.61 257.64
900 160.33 176.86 258.07
1,000 160.8 178.46 258.77

Generated Classes buildkb-task sparql-task infer-task

100 194.71 208.22 272.44
200 241.04 245.38 304.77
300 243.41 255.82 333.11
400 253.33 257.89 345.89
500 257.86 262.37 366.02
600 270.39 274.77 401.4
700 271.35 276.04 405.53
800 280.82 285.26 420.99
900 283.44 288.01 472.18
1,000 289.19 293.7 476.18

Table C.6.: Average peak memory usage in experiments A and B of section 9.3.1 in MiB.

Generated Classes infer-task

100 0.63
200 1.5
300 2.68
400 4.29
500 6.02
600 8.47
700 11.38
800 16.47
900 22.48
1,000 29.65
1,100 37.79
1,200 44.64
1,300 56.69
1,400 68.83
1,500 82.47

Generated Classes infer-task

100
200 0.87
300 1.18
400 1.61
500 1.73
600 2.45
700 2.91
800 5.09
900 6.01
1,000 7.17
1,100 8.14
1,200 6.85
1,300 12.06
1,400 12.13
1,500 13.64

Table C.7.: Response time in seconds of the infer-task for an extended number of classes in experiment B of
section 9.3.1. We report the average over 40 repetitions of the experiment.
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classes instances buildkb-task sparql-task infer-task

100 100 3.05 0.14 3
100 200 3.27 0.13 3.15
100 300 3.34 0.13 3.29
100 400 3.25 0.13 3.49
100 500 3.55 0.15 3.39
100 600 3.46 0.14 3.6
100 700 3.48 0.13 3.61
100 800 3.4 0.13 3.71
100 900 3.44 0.13 3.93
100 1,000 3.61 0.13 3.79
200 200 4.18 0.13 4.79
200 300 4.16 0.12 4.76
200 400 4.27 0.13 4.89
200 500 4.18 0.14 5.03
200 600 4.29 0.17 5.25
200 700 4.31 0.12 5.28
200 800 4.42 0.13 5.17
200 900 4.37 0.14 5.62
200 1,000 4.37 0.14 5.57
300 300 5.05 0.13 6.56
300 400 5.12 0.14 6.69
300 500 5.34 0.12 6.76
300 600 5.08 0.13 7.18
300 700 5.18 0.13 7.1
300 800 5.17 0.14 7.26
300 900 5.29 0.14 7.28
300 1,000 5.17 0.13 7.28
400 400 5.96 0.12 8.87
400 500 5.88 0.13 9.45
400 600 6.12 0.15 9.41
400 700 5.89 0.12 9.77
400 800 6.03 0.12 9.38
400 900 6.09 0.14 9.58
400 1,000 6.06 0.15 9.86
500 500 7.06 0.12 12.39
500 600 6.95 0.12 12.5
500 700 7.56 0.13 12.73
500 800 7.3 0.13 12.81
500 900 7.21 0.12 13.33
500 1,000 7.23 0.11 13.25
600 600 8.51 0.12 16.4
600 700 8.52 0.11 17.29
600 800 8.43 0.15 16.45
600 900 8.69 0.13 17.13
600 1,000 8.46 0.13 16.92
700 700 9.57 0.11 22.46
700 800 9.56 0.11 22.83
700 900 9.65 0.13 22.75
700 1,000 10.17 0.12 23.35
800 800 11.15 0.11 30.38
800 900 11.17 0.13 30.94
800 1,000 11.38 0.13 30.8
900 900 12.93 0.13 39.43
900 1,000 13.14 0.12 41.08
1,000 1,000 14.77 0.15 51.35

Table C.8.: Average response time in seconds for experiment C of section 9.3.1. We report the average over
10 repetitions of the experiment.
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classes instances buildkb sparql infer

100 100 176.53 190.09 298.25
100 200 178.83 162.61 416.38
100 300 158.61 191.95 417.4
100 400 156.52 159.79 442.06
100 500 159.09 194.48 440.78
100 600 156.27 159.87 317.65
100 700 159.16 196.24 329.47
100 800 156.26 162.65 325.75
100 900 156.33 162.12 323.86
100 1,000 156.59 160.17 329.85
200 200 167.88 193.56 391.99
200 300 189.97 187.6 409.76
200 400 170.09 187.99 517.81
200 500 179.42 189.66 377.79
200 600 183.7 185.64 453.37
200 700 184.11 183.41 549.06
200 800 184.09 181.08 526.42
200 900 174.49 198.25 443.83
200 1,000 184.18 194 481.56
300 300 222.2 221.89 544.68
300 400 233.06 231.98 487.9
300 500 213.91 223.97 583.87
300 600 228.32 234.13 604.96
300 700 219.98 215.06 507.98
300 800 198.98 228.02 508.83
300 900 233.43 226.18 566.39
300 1,000 213.37 218.83 519.61
400 400 240.53 233.14 620.06
400 500 329.78 243.94 606.52
400 600 228.4 340.25 619.49
400 700 223.79 246.63 666.26
400 800 321.74 268.95 587.35
400 900 334.14 320.86 607.24
400 1,000 301.64 289.34 604.18
500 500 264.54 309.76 612.76
500 600 296.65 321.84 676.21
500 700 294.94 286.26 691.54
500 800 321.97 328.62 707.48
500 900 300.69 337.64 657.17
500 1,000 312.25 304.82 690.43
600 600 466.89 392.14 662.85
600 700 410.41 330.28 730.75
600 800 465.99 361.62 723.78
600 900 466.9 474.06 704.52
600 1,000 479.84 348.45 729.43
700 700 485.27 479.95 730.78
700 800 331.08 376.49 741.7
700 900 467.88 380.54 717.8
700 1,000 438.26 426.76 716.98
800 800 417.66 473.24 764.54
800 900 562.41 389.18 754.5
800 1,000 406.25 476.36 755.29
900 900 512.14 558.43 848.34
900 1,000 478.13 549.03 877.27
1,000 1,000 566.47 567.71 899.52

Table C.9.: Average peak memory usage in experiment C of section 9.3.1 in MiB.
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nodes buildkb-task sparql-task shacl-task infer-task

30 0.62 7.48 · 10−3 9.32 · 10−3 5.59
40 0.64 6.46 · 10−3 1.01 · 10−2 5.45
50 0.61 7.07 · 10−3 1.43 · 10−2 6.27
100 0.68 6.88 · 10−3 1.46 · 10−2 9.43
200 0.71 1.06 · 10−2 2.33 · 10−2 20.1
300 0.73 1.07 · 10−2 2.84 · 10−2 38.31
400 0.76 1.45 · 10−2 3.37 · 10−2 70.07
500 0.8 1.72 · 10−2 3.5 · 10−2 95.79

nodes buildkb-task sparql-task shacl-task

500 0.8 1.61 · 10−2 4.26 · 10−2

1,500 1.25 3.19 · 10−2 7.43 · 10−2

2,500 1.96 4.89 · 10−2 0.11
3,500 2.03 5.48 · 10−2 0.16
4,500 2.45 6.9 · 10−2 0.16
5,500 2.9 6.99 · 10−2 0.2
6,500 3.29 8.24 · 10−2 0.22
7,500 4.16 8.03 · 10−2 0.27
8,500 5.02 0.11 0.29
9,500 5.54 0.12 0.33

Table C.10.: Average response time in seconds for the experiments of section 9.3.2. The lower table reports
the results for the second series of experiments on high numbers of nodes where we omitted
the infer-task.
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nodes buildkb-task sparql-task shacl-task infer-task

30 158.88 173.86 161.99 256.66
40 158.88 174.22 162.36 257.58
50 159.01 175.58 163.16 257.9
100 159.33 177.77 167.25 259.1
200 159.94 183.83 175.49 260.99
300 164.43 190.77 184.85 262.66
400 168.78 195.58 193.12 266.62
500 174.65 202.75 202.51 267.96

nodes buildkb-task sparql-task shacl-task

500 174.4 202.56 202.23
1,500 233.45 240.07 238.19
2,500 253.7 259.38 266.05
3,500 288 294.02 308.94
4,500 345.6 351.8 366.35
5,500 414.73 420.79 427.66
6,500 485.14 491.2 511.88
7,500 549.37 555.52 553.96
8,500 775.08 792.15 821.82
9,500 886.9 926.66 956.16

Table C.11.: Peak memory usage in MiB for the experiments of section 9.3.2. The lower table reports the
results for the second series of experiments on high numbers of nodes where we omitted the
infer-task.
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