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Abstract

Analyses of structural dynamics of biomolecules hold great promise to deepen the understanding
of and ability to construct complex molecular systems. To this end, both experimental and
computational means are available, such as fluorescence quenching experiments or molecular
dynamics simulations, respectively. We argue that while seemingly disparate, both fields of study
have to deal with the same type of data about the same underlying phenomenon of conformational
switching. Two central challenges typically arise in both contexts: (i) the amount of obtained data is
large, and (ii) it is often unknown how many distinct molecular states underlie these data. In this
study, we build on the established idea of Markov state modeling and propose a generative, Bayesian
nonparametric hidden Markov state model that addresses these challenges. Utilizing hierarchical
Dirichlet processes, we treat different meta-stable molecule conformations as distinct Markov
states, the number of which we then do not have to set a priori. In contrast to existing approaches
to both experimental as well as simulation data that are based on the same idea, we leverage a
mean-field variational inference approach, enabling scalable inference on large amounts of data.
Furthermore, we specify the model also for the important case of angular data, which however
proves to be computationally intractable. Addressing this issue, we propose a computationally
tractable approximation to the angular model. We demonstrate the method on synthetic ground
truth data and apply it to known benchmark problems as well as electrophysiological experimental
data from a conformation-switching ion channel to highlight its practical utility.

1. Introduction

Computational prediction of molecular structures
is a long-standing challenge in structural biology.
Recently, novel frameworks for protein [1] and
ribonucleic acid (RNA) structure prediction [2] have
been proposed that greatly enhance the prediction
accuracy and the model applicability compared to
existing approaches. The focus of structure prediction
however lies on static structures. To obtain deeper
insights into molecular processes, it is necessary to
complement such approaches with frameworks that
also take into account the dynamics of molecular
structure.

Both experimental and computational tools exist
to study such conformational dynamics: a prime
example of experimental approaches to this chal-

lenge are analyses of conformational switching of
ion channels via widely adopted electrophysiolog-
ical techniques, such as voltage clamping or lipid
bilayer measurements [3—5]. On the other hand, ion
channel switching can also be studied computation-
ally via, e.g., molecular dynamics (MD) simulations
[6]. The MD framework more generally can also be
used to investigate protein and RNA folding [7, 8].
Experimentally, this can be assessed, e.g., via flu-
orescence quenching [9] or fluorescence resonance
energy transfer measurements [10]. Since in all of
these settings, both experimental and computational
protocols typically yield large amounts of data, their
analysis is a challenge in itself.

To understand the switching dynamics of the sys-
tem under study, one needs to obtain a coarse-grained
description of the continuous system dynamics (e.g.,
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voltages or atom coordinates) in terms of compar-
atively long-lived, meta-stable discrete states corre-
sponding to distinct stable structural conformations
[11]. These are defined by a separation of time scales
between the intra- and inter-state dynamics. In the
context of MD, particularly, the framework of Markov
state models (MSMs) has received much attention
in recent years; besides extensive methodological
research [12—15], MSMs have also been successfully
applied to a wide range of use cases [16—23]. The
classical MSM approach approximates the continuous
simulation dynamics (mathematically expressible in
terms of the propagation operator) directly by pro-
jecting them to a discretized space on which then a
discrete-time Markov chain (DTMC) is constructed.
Importantly, the binning of continuous data into
discrete states introduces correlations and makes the
resulting discrete process generally non-Markovian;
the raw MD data, in contrast, are inherently Marko-
vian, as they originate from the integration of stochas-
tic differential equations (SDE).

To render the resulting discrete dynamics
amenable to MSM analysis, the correlations need
to be reduced via temporal thinning by some lag
time constant [13, 24]. This results in two key
parameters that need manual selection: the lag time
and the state-space discretization. An explicit error
bound for the reconstruction error of the MSM
reconstruction and the true propagation operator
can be derived in terms of these two parameters,
showing that this error can be made arbitrarily small
by either choosing a finer state-space discretization
or decreasing the lag time [13]. This relationship
between state-space discretization and lag time
results in a trade-off problem: one has to balance
between (i) sufficient sampling of the discrete
state-space, viz, a coarse state-space discretization
and (ii) a sufficiently long lag time to render the
resulting process Markovian. To address this issue,
tools such as the Chapman—Kolmogorov test have
been introduced [13]. These tests, however, only
consider the appropriateness of the lag time; the
overall reconstruction error may still be off, resulting
in an MSM not reproducing the long-time dynamics
accurately, as detailed in [25]. Also, the lag time
selection itself is acknowledged to be a major
challenge in practice [26].

The identification of meta-stable conformational
states of the system is then carried out after data
pre-processing given some state-space discretization
and lag time. Typically, this is done utilizing spec-
tral methods such as Perron-cluster cluster analysis
(PCCA) [27] or PCCA+ [28]; other approaches are
however also possible, see e.g., [29, 30]. In general, the
result of this procedure will depend on the chosen lag
time as well as the state-space discretization.
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While the framework as such has seen several
refinements [31, 32] including recent deep learn-
ing extensions [33, 34], they share the two concep-
tual drawbacks detailed above: (i) the data needs
to be thinned with a manually specified lag time,
which is merely a model artifact and deteriorates the
overall temporal resolution, and (ii) the number of
metastable states has to be identified manually.

Both problems can be addressed utilizing non-
parametric hidden Markov model (HMM) frame-
works developed in statistical machine learning
[36, 42, 43]: on the one hand, the introduction of
a latent process to an MSM abolishes the need to
temporally de-correlate the discrete projection of the
data via a lag time [31], which can thus be interpreted
as a generalization of classical MSMs. On the other
hand, nonparametric probabilistic models allow one
to specify distributions on unbounded spaces, such as
an infinite number of topics in topic modeling [35] or
an infinite number of states in a Markov chain [36].

Nonparametric Bayesian HMMs have gained
attention in recent years both in experimental settings
such as analyses of ion channel switching [37, 38] or
single-particle tracking [39] as well as in MD studies
[40, 41]. Inference of the meta-stable trajectories and
the system parameters was however carried out using
sampling techniques such as Markov chain Monte
Carlo (MCMC); while yielding accurate results, these
approaches do not scale well [42, 43]. Even for the
relatively simple problem of one-dimensional ion
channel voltage trajectories, they become computa-
tionally intractable for longer sequences or higher-
dimensional systems.

To address both the conceptual shortcomings of
MSMs and the computational tractability issues of
conventional sampling approaches, we provide in
this paper a scalable nonparametric Bayesian MSM
inference framework for the analysis of conforma-
tional molecule dynamics. We emphasize that this
framework is very widely applicable, including data
generated, e.g., by voltage clamp experiments on ion
channels as well as MD simulations, and can hence
help bridge the gap between theory and experiment.
We note also that in terms of modeling, the transition
between ion channel experiments and MD simu-
lations is gradual, as the measured ion current in
the former can be interpreted as a one-dimensional
reaction coordinate in the latter.

Our method does neither require manual spec-
ification of a lag time to re-establish Markovianity,
nor of the number of meta-stable conformations.
We model the switching dynamics between distinct
structural conformations via a nonparametric HMM
by defining a latent Markov process on a countable set
of states (meta-stable protein or channel conforma-
tions), of which one obtains only noisy, continuous-
valued observations, such as currents or atom
positions. We specify noise models that are appro-
priate for our use cases: in the experimental and
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computational settings described above, observations
typically are real-valued vectors, x € R", or rotation
angles, x € [0,27)". For the angular case, we fur-
thermore propose a novel approximation enabling
computational tractability.

To ensure scalability to large amounts of data, we
resort to variational methods for inference: instead of
drawing samples from the exact posterior distribu-
tion, we approximate the latter in a computationally
efficient way by distributions of known type [44—46].
As we pursue a Bayesian approach, we treat the model
parameters as random variables, specifying appropri-
ate prior distributions and deriving their full posterior
distributions conditioned on all observed data.

In the following, we will first introduce the gen-
eral modeling framework and we will in particular
address the issue of adequate prior distributions. Sub-
sequently, we show how to perform scalable inference
in this setting. Finally, we present our results on
synthetic ground-truth data as well as real benchmark
and experimental data.

2. Methods

2.1. Bayesian nonparametric Markov state

models

We model the conformational molecule dynamics
by utilizing the well-known HMM, consisting of
two joint stochastic processes {Z;, X;:t=1,...,T},
where tis the time index [47]. Note that we use roman
upper case letters Z;, X; to refer to random variables
and the corresponding lower case letters z;, x; to refer
to particular realizations throughout the paper.

The distinct meta-stable conformational states are
represented by the latent Markov states Z, € Z C N;
the observed data (e.g., experimentally obtained
channel voltages or simulated atom positions) are
described by X; € R". The time evolution of this joint
process is given as a DTMC on the discrete state
space Z governed by a transition probability function
IT: Z x Z2—[0,1]. We represent this as a matrix
IT € [0, 1]™", whose kth row 7; :=1II}. specifies the
probabilities for transitions to all possible states [ € Z
from state k € Z,

Tkl — P(Zt = Z|Zt71 = k) = P(l|k) H) (1)

The observation X; at time point ¢ depends only on
the state of the latent process at the same time. This
dependency is given by the observation density

p(xt|Zt:Zt){elwu)e\Z\}) :p(xt‘ezt)) (2)

where {6;:1=1,...,|Z|} represents a set of generic
distribution parameters for each state i. In accordance
with the MSM literature, we interpret the HMM as
a generalization of MSMs [31], and thus refer to this
construct synonymously as hidden MSM.

The key drawback of hidden MSMs regarding
the analysis of conformational switching is that the
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number of meta-stable molecule conformations |Z|
needs to be specified in advance. Typically, however,
this number is unknown. Quite on the contrary, it
is a key quantity of interest that is to be determined
from the data. This shortcoming can be addressed by
utilizing a nonparametric modeling approach, which
allows for countably infinite state spaces. For any
finite data set, |Z| will however be finite and can
hence be learned from the data. In more concrete
terms, we specify a model for potentially infinitely
many distinct molecular conformations; in any given
observed trajectory from simulations or experiments,
only a finite number of these conformations will be
visited, the number of which can then be identified.

To set up a nonparametric HMM, one needs to
construct prior distributions for transition matrices
on countably infinite state spaces and for countably
infinite observation parameters. This can be achieved
via the hierarchical Dirichlet process (HDP) [48], giv-
ing rise to the HDP-HMM [36, 42, 43, 45]. In the fol-
lowing, we provide mainly the relevant definitions; we
however provide an extended background section on
Bayesian nonparametrics in the supporting informa-
tion (https://stacks.iop.org/PB/19/056006/mmedia).
An HDP-HMM is constructed hierarchically in a two-
step fashion:

First, specify a Dirichlet process (DP), which is
a stochastic process taking values in the space of
(discrete) probability measures:

H, ~ DP (o, Hp) (3)

with concentration parameter o > 0 and base proba-
bility measure H, over some space O.

A realization of H; is obtained by drawing inde-
pendent and identically distributed (i.i.d.) samples
0, € © from the base measure Hy,

iid.

0, ~Hy, fork=1,2,..., (4)

and assigning to each 6y a probability mass oy via a
stick-breaking process:

€k 4 Beta (1, @)

k-1
ox = GkH (1—¢),
=1

where Beta(r,s) is the beta distribution with
shape parameters r,s >0 [47]. Equation (5) is
compactly written as o ~ GEM(a), short for
Griffiths—Engen—McCloskey process [48]. A sample
H; ~ DP(«, Hp) accordingly reads

fork=1,2,...,
(5)

Hy = ZUk59k, (6)
k=1

where &y, denotes the Dirac or point measure at
Ox [49], 89, (0) = 1 if 0 = O} and 0 otherwise. This
procedure results in valid discrete probability mea-
sure, [dH; =1, determining a prior distribution
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over conformational states: each k represents one
distinct conformation, with oy its probability and 6y
its associated parameterization.

In the second step, H; serves as base measure of
another, subordinate DP: because H; is discrete, all
samples drawn from this subordinate DP have shared
support. We consider independent draws

5Hl+f59k>
B+¢& )’

with the stickiness parameter £ > 0, on which we will
elaborate in the next paragraph. Decomposing

T ~ DP (ﬂ-i—f, (7)

m ~ GEM (8 + €),

iid. o+ o (8)
e

with the point measure at index k yields

=) UISLI. )
=

As the support of all m; are the shared atoms
{01,0,,...} drawn in equation (4), each 7, can be
understood as a realization from a probability distri-
bution over a row of a ‘countably infinite transition
matrix’ I1:

Zt‘thl = Zt—1» {ﬂ—k} ~ Tz -

Each element of the set 0 € {6, 6,, ...} corresponds
to one latent state k, that is, one molecular confor-
mation, and parameterizes the respective observation
distribution,

p(xt|Zt = Z {91) 0,, .. }) = p(xt‘az[)~

In other words, the two-step HDP-HMM construc-
tion (i) defines the molecular conformations via
the measure Hj, and (ii) determines their transition
dynamics via all 7.

The stickiness parameter introduces a
self-transition bias, that is, it extends the sojourn
times within each state. For & =0, the classical
HDP is recovered [48]. The sticky HDP-HMM has
been shown to counter-balance the sensitivity of
the classical HDP-HMM to within-state variability,
which results in a tendency to introduce redundant
states all pertaining to the same ground-truth state;
see, e.g., [42]. This is exactly the setting we are
interested in, as we are aiming specifically at the
analysis of meta-stable states potentially exhibiting
a high level of intra-state variability. Note that
in comparison to classical MSMs, the stickiness
parameter can be understood as a bias towards larger
time scales that is to be set by the experimenter.
Importantly, our approach does not discard any
information, but retains all available data points;
the stickiness represents only a bias, but no strict
truncation of resolvable time scales. Hence, the
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minimum time scale this approach is able to resolve
is the native time scale of the data points. As with
all hyperparameters, we set £ empirically; see the
supporting information for details.

The above definition allows us to formulate
the full model distribution. Denoting with
Xy = {xls .. X} and 2 p:={z,..., 27} the
ith of a total of I observed trajectories and with
X[,r) = {x[ll)T], . ,xfl)ﬂ}, 2z, = {z[ll‘ﬂ, . ,szT]},
the collection of all trajectories, we can write

p(x[l,T]) Z[I,T]) 9) H) U)

|1Z] I
= p@)[ [ p(mlo)p@0 ] [ pzDp(xi 121, 0)
k=1 i
< [[pGilzi 1 hp(i2, 0), (10)

t=2

with some initial distributions p(z}), constituting a
tully Bayesian nonparametric HMM.

2.2. Observation models and conjugate priors
To fully specify the HDP-HMM, it remains to set
up the observation distributions p(x:|6,,) for the
required spaces x € R" and x € [0,27)" as well as
the corresponding prior distributions Hy. For the
purpose of inference, it is beneficial to choose priors
that are conjugate to the respective likelihoods: a
prior of a specific functional form f parameterized
by v, p(0]y) =:f(6,), is said to be conjugate to a
given conditional probability distribution p(x|0) if
the resulting Bayesian posterior distribution p(f|x) =
p(x|0)p(0)/p(x) is of the same functional form as the
prior, p(f|x) = f(6,4"), with updated parameters ~'.
This property simplifies inference, because the com-
putation of the posterior distributions then reduces to
computing the parameter updates v — 7.
Real-valued data. A versatile model for coordi-
nate data x € R" as often obtained through MD
(e.g., 3D atom positions) as well as electrophysiolog-
ical experiments is the multivariate normal (MVN)
distribution,

p(x:|0) = N (x|, X), (11)

with the mean vector p € R" and the covariance
matrix X € R"*". Generally, we interpret the raw
data as noisy observations of the discrete latent con-
formational states. The MVN is well suited for this
purpose due to its unimodality as we aim to identify
well-discernible, meta-stable states. For ion channel
voltage data, typically x; € R, which is covered by
equation (11) as a special case n = 1. Note that
normal observation models are frequently used for
biophysical experiments [37, 38, 40]. We can hence
cover both MD simulation data as well as experimen-
tal voltage trajectory data with the same observation
model.
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For the MVN, a conjugate prior exists termed the
normal inverse-Wishart (NIW) distribution, which
defines a joint distribution over means y and covari-
ances X:

NIW (1, 30> A\, ¥, )
=N (ulpo, Z/N)IW ([T, ), (12)

with the inverse Wishart (IW) distribution [47]. We
combine the likelihood equation (11) with the con-
jugate prior equation (12) to specify the HDP-HMM
for real-valued data.

Angular data. Another natural and widely used
way in MD of specifying the spatial arrangement of
complex molecules are the dihedral angles between
adjacent atom or molecule planes [50]. Hence, data
are often angular and constrained to the unit circle,
x; € [0,2m)". Observation models particularly suited
for these spaces are von Mises (vM) type distributions
[51, 52]. Since it is customary to characterize amino
acid chains such as proteins by sets of pairs of torsion
angles (¢;, 1;), we focus on the two-dimensional case
here; the extension to multiple pairs is then straight-
forward. We utilize a well-known and in the context
of protein modeling established parameterization of
the bivariate vM distribution [53] for x; = (¢, ) €
[0,27)?,

p(&,¥[0) = BVM (x:[C, v/, K1, i, i3)
=: ¢ (K1, k2, Ki3) exp{r1 cos(¢ — ¢)
+ Ky cos(p — v)
— k3 cos(p—C— v +v)}, (13)
where

(K1, Koy Ki3) = (2m)* [Io(ﬁl)fo(ﬁz)fo(ﬂa)

+2ZIk<m)Ik(nz)Ik(n3)] (14)

k=1

and I; is the modified Bessel function of the first kind
and order i. The location parameters ¢ and v control
the position of the mode of the distribution, as can be
seen from the trigonometric terms in equation (13).
The parameters x1, k2, k3 specify the spatial correla-
tions. Note that marginalizing over ¢ and setting k; =
k3 = 0 recovers the conventional one-dimensional
vM distribution,

exp{r, cos(p —v)}

PI9) = 2mly(K2)

(15)

While analytical expressions for a conjugate prior
exist also for the bivariate vM distribution [51], the
infinite sum of Bessel functions in equation (13)
renders the normalizer ¢ intractable in a Bayesian set-
ting. Computing the exact posterior vM is hence not
possible, as this requires computing integrals over all
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k parameters in equation (14). Additionally, this dis-
tribution is not guaranteed to be unimodal; intricate
conditions exist on the relation of the concentration
parameters K1, k2, <3 to achieve unimodality [52]. For
high concentration values in specific regimes, how-
ever, it is known that the bivariate vM distribution is
well approximated by a bivariate normal distribution
[51]. This is unsurprising, as in general, vM-type dis-
tributions and normal distributions are tightly linked:
the former can be constructed from the latter [54]. To
ensure tractability and interpretability, we utilize this
circumstance and propose an approximation via

BVYM (x;|C, v, K1, gy 13) = N (|1, ). (16)

The mode position ¢, v roughly corresponds to the
mean vector u; the covariance depends on the k-
parameters. The precise analytical expressions for
these dependencies are rather involved and not rel-
evant to our approximation—we hence refer the
interested reader to [51, 52] for an in-depth analysis.
As we focus on systems exhibiting distinct, separable
meta-stable states, we in fact expect peaked angular
distributions, for which this approximation is valid.
To gain a better intuition, see also figure 1, where
we compare a one-dimensional vM with the corre-
sponding normal distribution; as is immediately clear,
for high concentration values the approximation
error becomes negligible. Additionally, equation (16)
allows for straightforward debugging: as long as the
probability assigned to the area outside the unit circle
is small, the approximation can be assumed valid; vice
versa, it deteriorates if this probability becomes non-
negligible. We consequentially accept this error in the
observation model to arrive at a tractable expression.
Note that the gained tractability may greatly aid the
practical utility of the framework, as it is otherwise
also customary to resort to 3D coordinates to avoid
mathematical complexity, disregarding crucial struc-
tural information about the biological problem [40].
In the following, we refer to our approximation as the
approximate vM model.

2.3. Scalable inference of meta-stable states

The goal of Bayesian inference is to compute the pos-
terior distribution over the latent sequences z; ] and
the model parameters given the observed trajectories
X[1,T]>

p(Z[l,T]) 9) H) U‘x[l,T])
_ Pz 0)p (2 n [T)p(6)p (o) plo)

B p(x1,1)
(17)

This distribution cannot be evaluated analytically. In
principle, one can employ standard sampling tech-
niques such as MCMC and obtain the posterior
empirically [36]. In our case, however, the typically
large data sets from simulations or long-duration
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Figure 1. Comparison of a one-dimensional vM with the approximate vM model. Left: inferred approximate vM (red dashed
line) for N = 1000 data points generated from a low-concentration vM (x = 0.3, blue line). Gray shaded area: unit circle. Red
shaded area: probability mass outside the unit circle boundaries. Right: inferred approximate vM for N = 1000 data points
generated from a high-concentration vM £ = 10. No significant probability mass is placed outside the unit circle.
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experiments (see, e.g., the discussion in [37]), render
this computationally infeasible, because every draw
from the posterior requires one full pass through the
data.

To alleviate these computational issues, we uti-
lize a variational inference (VI) approach. The core
idea of VI methods is to cast the inference task
as an optimization problem. We briefly lay out the
general method, but refer the interested reader to,
e.g., [44]. The objective is to find an approximate
(or variational) distribution g* that minimizes the
Kullback-Leibler (KL) divergence to the exact poste-
rior p, equation (17):

q* (z,p, 1L, 6, 0) = argmin, KL (q(z0,m, 11,6, 0)

< ||p (20,11, 1L, 0, o'lxp1,1) ) -
(18)

This KL divergence is still computationally intractable
because of the evidence p(x[;,n}) in the denominator
ofequation (17). The evidence is in principle obtained
by integrating over all unobserved model compo-
nents, p(x) =>_, [ p(x,211,60,0)d0 dlIdo, which
requires a summation of | Z|T terms, each of which
contains the full integrals over the parameters 1I, 0
and o and hence is impossible to compute for realistic
state space sizes and sequence lengths.

The optimization problem equation (18) can be
however transformed into an equivalent, but tractable
problem. To do so, one re-writes the KL divergence as

KL(q(zp1,11,1L 6, 0) [|p (21,11, 1L 6, o|x1,7) )
= —L +log(p(xp1,11))s (19)
where

L = E gllog p(z;1,11, 0,11, 0, x(1,77) ]
- Eq[log q(z[l,T]) H) 6) 0)] (20)

and E ; is the expectation operator, where the expec-
tation is to be taken with respect to g. This yields a
lower bound on the log evidence, £ < log p(x(1,1)),
since the KL divergence satisfies KL(g||p) > 0 for any
two distributions g, p. Accordingly, the quantity £

is termed the evidence lower-bound (ELBO). Since
the log evidence is constant with respect to the
model parameters, minimizing the KL divergence is
equivalent to maximizing the ELBO. The intractable
computation of the log evidence is hence not needed
to evaluate L.

Without further assumptions, maximization
of equation (20) vyields the exact posterior,
q* = p(zim, 1, 0)x(1,1), but does not provide a
practical way of actually performing the optimization.
To enable a practical computational scheme, we
employ a standard mean-field assumption on the
variational distributions [44]:

12

q(z0,11, 11,0, 0) = q(zn,17) q(0) | [ a(6q(me).
= (21)

This enables a computationally tractable, iterative
coordinate-wise ascent optimization procedure [47]:
one variational factor of equation (21) is optimized
at a time while keeping all others fixed, and one
pass through all variational factors constitutes a VI
iteration. The generic distribution update for any
quantity o € {zp1, 17, {0k} { T }io 0} is obtained as

g(a) o< eXp{Eq\a [In p(x(1,73> 21,73, 11, 0)] } (22)

where E ;o denotes the expectation with respect to
all variational distributions except g(«). Note that
while the ELBO is not convex with respect to all
variational distributions jointly [44], it is convex
with respect to any factor individually [55]. This
coordinate-wise ascent algorithm hence converges to
a local optimum which in general depends on the
initialization of the variational factors. To alleviate
this initialization-dependency, we additionally utilize
amulti-start approach; we run several instances of the
inference algorithm until convergence and then select
the one with the maximal ELBO score as the overall
optimum.

Since the HDP-HMM specifies distributions over
countably infinite objects, VI in this case requires an
additional variational parameter. To be able to instan-
tiate the g-distributions, it is necessary to truncate the
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number of variational states to some maximum num-
ber K. This number could in principle be set to the
number of data points; in practice, for computational
reasons one chooses some number which is large
compared to the expected number of HMM states
[36,42]. Note that this only affects the variational dis-
tributions; the original model equation (10) remains
unchanged [56]. We choose the ‘direct assignment’
truncation method, setting q(z;) = 0 for any z;, > K
[36]. The resulting update equations follow in closed
form, as will be shown in the following. The varia-
tional model then can, but not necessarily does utilize
all clusters up to K [57]. This also allows for straight-
forward debugging, as it is directly apparent whether
all K states are occupied. If g(z;) > 0 for all states z,
one might incur a non-negligible truncation error, as
intuitively speaking more states might be needed to
explain the data, and a double-check with increased
K is due. If however q(z;) = 0 for some states, the
variational approximation is expressive enough and
will not result in a significant truncation error. Note
that the direct assignment scheme can be utilized
for automated search algorithms over the truncation
depths [58].

We provide the detailed mathematical derivations
of all updates as well as the used initializations in
the supporting information and state here only the
update equations.

Latent state sequence. The marginal probabilities
of the sequence of meta-stable states, g(z;), can be
computed by a forward-backward message-passing
algorithm [59]. The forward messages «; and the
backward messages /3, are computed as

a,(z) = exp{E [In p(x,[0:)]}> "o1(z-1)

Zt—1

x exp{E [In p(z|z.—1, 1]}, (23)
Bi(z) = exp{E [In p(x 1|0z, )]} B (ze)
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x exp{E [In p(z¢41|z:, 1)1}, (24)

and yield the marginals via q(z;) o< au(z,)B,(2).
The expectations occurring in these expressions can
be evaluated in closed form because of conjugacy
between the variational distributions over II and
{61, ...,0x} and the corresponding likelihoods. Note
that the forward and backward messages are the only
part of the framework that accepts the trajectory data
x to be analyzed as input. Due to the mean-field
assumption, the remaining variational distribution
updates do not require x.

Transition distributions. The DP can be shown
to be conjugate to the (infinite) categorical distribu-
tions defined by a DP-draw, equation (9) [48]. Note
that this is completely analogous to the finite case,
where the Dirichlet distribution is a conjugate prior
for the categorical distribution. As we constrain the
variational posterior to a maximum of K states, this
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induces a partition on the base measure space © of
equation (9). This allows one to write the prior as
a finite Dirichlet distribution with K + 1 dimensions
corresponding to K states and the ‘rest’ of the state
space where no transitions are observed (see the sup-
porting information for details). Because of conju-
gacy, the updated variational transition probabilities
for the ith row of II then read

q(mil{mix}e) = Dir i1 - > miomi—),  (25)

with the posterior concentration parameters
nij = (Boj + 0;;€)
+Y aZi=jZo1=1i) forj=1,...,K,
t

K
me = = - (1—201»),
i=1

where the Kronecker delta 6;; =1 if i =j and 0
otherwise.

Observation  distributions. Due to conjugacy
between the MVN observation likelihoods and
the corresponding variational NIW distributions,
the variational posterior of the observation model
parameters

q(0k) = NIW (g, 2| pho.> Mo P> ), (26)

where
/\Mo + ITx;
- T A > A - >\ > - >
ok At Qe k +Qw wm=v+Q
>\(Qk - IT) T
Upy=—= + My + Sp + Uy
k A+ Qr o fg k k 0
(27)

Recall that I is the number of trajectories and T is the
number of time points; 1y, A, U, v are the parameters
of the prior distribution Hy and

_ 1 i i _ i
Xy = ﬁ;xtq(zt —k), Q= ;q@t = k),

MN-T ) §
My = - - ,
(S won Xk — poj) Xk — o)
Z i i A+I-T
Sk = |:q(Zt = k)xtxt’T — )\—’_QkaXZ]

it

(28)

For the approximate vM model, we deal with the

periodicity by projecting the data into an interval
[—m, +] around each mean:

x’t‘ —xp — 27 - sgn(xy — fok)- (29)

Note that this necessarily leads to an underestimation
of the covariance, as we treat the data as if it were
produced by a normal distribution, where in reality,
it has been generated by a vM; data outside of [0, 27)
do not occur. This is tolerable for two reasons: first, as
detailed above, we assume the data to be peaked for
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Figure 2. Inference on synthetic data generated from an HMM with 3 states and 2D normal observation noise. For visualization
purposes, only one of the 10 simulated sequences is shown. (A) Left: ground truth data. Coloring indicates the corresponding
latent state z, for each data point x,. Right: inferred state assignments. Coloring is based on the MAP estimate of the latent state.
Diamonds and dashed ellipses indicate the ground truth means and covariances. The latter are represented by the 1 — o
covariance ellipses. Black crosses and solid ellipses indicate the inferred variational means /1, and expected variational
covariances W, /(v, — 3). (B) Top: ground truth latent sequence z(;, 7. Bottom: reconstructed marginal probabilities. Every row

z € {1,2,...,10} indicates the posterior probability to be in state z at time point £, ¢(Z, = z) € [0, 1]. Inset: average state
occupation {(q(z)) = (IT)~'>_,,q(Z! = z) for all z. Coloring indicates latent states.

Time

our approximation to hold; if this assumption is valid,
the probability mass outside the interval [—m, 7] is
negligible, cf figure 1. Second, due to the well-known
mode-seeking property of VI methods, we anyway
incur an underestimation of uncertainty, to which
equation (29) should add little [44].

Top-level stick-breaking measure. Setting up
the transition distributions p(m|o) as above
(cf ‘transition distributions’) as K + 1-Dirichlet
distributions results in the relation between p(mi|o)
and the stick-breaking measure 0 ~ GEM(«) being
non-conjugate [36]. Hence, a closed-form update
for o is not available. It is customary to instead
utilize a point estimate q(o) = d,+(0), rendering
the expectation in equation (22) tractable [36]. The
optimum still has no closed-form solution, however;
thus, we utilize a gradient optimization scheme and
update 0 <— 0" + wV+ L. To set the step size w, we
utilize a back-tracking line search algorithm [64].

3. Results

We apply the laid-out framework to a range of differ-
ent data sets. First, we demonstrate the framework on

ground truth 2D HMM data to provide an intuition
about its functionality. We then apply the model
to synthetic continuous-valued SDE data generated
from a standard three-well benchmark potential often
utilized in the MSM literature [13, 15, 31] and
demonstrate its ability to learn a readily interpretable
discrete structure from continuous dynamics. Subse-
quently, we show that our vM approximation works
well on synthetic 2D vM data and then employ
this approximation on a standard MD benchmark
dataset from the protein alanine dipeptide [15, 33,
60, 61]. Lastly, we show the model’s utility on a large
dataset from voltage clamp experiments on the viral
potassium channel Kcvppey—1 [62]. We provide the
parameters used to generate all synthetic data in the
supporting information.

3.1. Synthetic HMM data
To demonstrate the method, we set up a cyclic three-
state HMM with transition probabilities

099 001 O
IT= 0 099 0.01]. (30)
0.01 0 099
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Figure 3. Inference of meta-stable states of 2D SDE dynamics. (A) The heatmap shows the potential landscape used to simulate
the continuous dynamics (brighter colors indicate higher values). Colored diamonds and ellipses indicate the inferred variational
means and 1 — o ellipses of the expected variational covariances W, /(v, — 3), cf equation (32). Inset: average state occupation
(q(2)) = aT)! Zi,tq(Zz" = z) for all 3 identified meta-stable states. (B) Top: part of one simulated trajectory (X;-component in
black, X,-component in orange). Bottom: corresponding latent sequence reconstruction; label colors indicate the variational

From this HMM, we generate 10 independent latent
sequences zfl)T] consisting of 1000 time points
each. Each observation x! € R? is drawn from a
normal distribution with anisotropic covariances,
X~ N(x;'|uzi,22§ ). We provide the values of all
Fhis EZ}- in the supporting information. As discussed
above, we utilize a multi-start scheme to alleviate
the problem of local optima; we run 10 randomly
initialized instances until convergence and pick the
one with the highest ELBO value as the optimum.
The method accurately recovers three latent states,
as shown in the inset of figure 2(B). We show the
inferred marginals g(z!) of one latent state sequence
in figure 2, demonstrating also the accurate recov-
ery of the ground truth sequence. In particular, the
maximum a posteriori state assignment z, of each data
point x; defined via

Z?/IAP = argmax,, q(z). (31)
precisely matches the corresponding ground truth.
Accordingly, also the inferred posterior means i,
and expected covariances (black crosses and circles in
figure 2)

E[X,] = _ ¥ , (32)
v,—n—1

with n = 2 the dimensionality of the system, faith-
fully resemble their true counterparts (diamonds and
dashed ellipses in figure 2). Note that the labels of the
inferred states of course do not need to correspond
to the ground-truth labels; this is an interpretation
to be done by the experimenter after convergence
of the model. We hence show in figure 2 explicitly
the trajectories of all K states, of which only 3 are
significantly occupied. In all following figures, we will
omit all unoccupied states.

3.2. Stochastic dynamics in a 2D potential
After validating the method, we apply it to a standard
benchmark problem of Markov state modeling, which
consists of stochastic particle dynamics in a 2D poten-
tial landscape with three distinct wells [13, 31, 32].
The dynamics are given by the Ité6 SDE [63]

dX, = —VUXp)dr + QdW,, (33)
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Figure 4. Inference on synthetic vM data utilizing the angular vM approximation. For visualization purposes, only one of the 10
simulated sequences is shown. (A) Left: ground truth data. Coloring indicates the corresponding latent state z, for each data point
x;. Right: inferred state assignments. Coloring according to the MAP estimate of the latent state. Diamonds indicate the ground
truth means. Black crosses and ellipses indicate the inferred variational means 1, , and expected variational covariances

W,/(v, — 3). (B) Top: ground truth latent sequence z(;,7). Bottom: reconstructed marginal probabilities. Every row

10} indicates the posterior probability to be in state z at time point t, g(Z, = z) € [0, 1]. Coloring indicates latent

with the potential function U : R"” — R, some con-
stant dispersion Q € R™" and the standard Brow-
nian motion W. We provide the functional form
of U in the supporting information. Using an
Euler—Maruyama scheme to simulate these dynamics,
we generate 10 trajectories of length T'= 10 000 time
points each. The potential landscape together with
the inferred meta-stable state means /1, , and expected
covariances E [V,] is shown in figure 3.

The reconstruction captures the essential features:
the locations of the potential wells are accurately
identified, where the two deeper wells are fit with
higher precision than the shallow minimum at the
top,

poy = [0,1.5]"
fog = [—1,0]"
to, = [1,0]"

ue, = [—0.07,1.09]"
pd; = [—0.98,-0.03] "
pd, = [0.96,—0.02]"

where the superscript g indicates the variational
parameters and subscripts t,l,7 denote the top
(red), left (blue) and right (green) well in figure 3,
respectively.

The total state sojourn times correspond to the
well depths. The inferred sequence of meta-stable
states accordingly yields highly plausible results, as

can be checked by comparing the components of
the true, continuous process to the inferred discrete
switching process.

3.3. Synthetic HMM data with angular
observations

To demonstrate the method on angular data, we
generate data from the same HMM as before, but
employ a vM observation model. We define two latent
states to generate independent 1D vM observations
along each dimension, cf equation (15); the third
state includes angular correlations and is generated
from the bivariate vM distribution equation (13)
following the sampling scheme of [53]. As in the
non-angular case, we create overlap between the
individual distributions. Additionally, we include
observations that wrap around the period boundary
27 — 0.

As shown in figure 4, our vM approximation
recovers the ground truth means with high fidelity.
Since the ground truth data were generated by
true vM distributions, no ground truth covariance
matrices exist and hence, the inferred covariances
cannot be directly compared to them. We can how-
ever assess by comparison with the plotted data
that the vM approximation produces accurate esti-
mates. In particular, we note that our projection
method equation (29) enables sensible and accurate
periodic continuations across the period boundaries
2w < 0.

10
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Figure 5. Meta-stable states of alanine dipeptide dynamics. Left: coloring indicates the MAP state assignment. Inset shows the
relative proportions of all five states occurring in the data. State 4 (orange) only occurs <1%; we added the orange arrow to clarify
that this also is displayed in the graph. Colored diamonds represent the variational means of the meta-stable states. Ellipses
indicate the expected variational covariances. Annotations refer to known a-helix and -sheet conformations, cf [65, 69]. Right:
expected transition probabilities. Each row shows the transitions probabilities E [7] from one of the five found states to all others,

approximately symmetric.

including the ‘rest’ of the state space (cf equation (25)) indicated by ‘—’. Note that the transitions &' — g and ag — o are
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Figure 6. Conformational states of the viral potassium channel Kcvpgcy_ ;. For illustrative purposes, we constrain the figure to an
interval of T = 1 s, rather than showing the full trajectory. Top: measured current over time. Sampling rate is 5 kHz. Colored
dashed lines represent the inferred posterior means. Shaded regions indicate the expected variational standard deviation. Green:
‘open’ state. Red: ‘closed’ state. Orange: intermediate state. Bottom: inferred latent sequence.

3.4. MD simulation data: alanine dipeptide

We apply the approximate vM model to MD sim-
ulation data from alanine dipeptide provided with
the pyemma package [24].° Alanine dipeptide is a
widely used model system in computational biology
[65—67]. The data are taken from the cited, publicly
available repository, and to the best of our knowl-
edge, are simulated in explicit water using the TIP3P
water model [60]. Notably, plain inspection of the
raw data reveals that the simulated molecule exhibits
meta-stable dynamics, underlining the relevance of
our meta-stability assumption at the outset, see sup-
porting information figure 2. This two-dimensional
dataset describes the molecule dynamics in terms
of the backbone torsion angles (¢,1)) and con-
sists of three independent simulation runs of length
T = 250000 ps with a time step of 1 ps each.

3 Published under the GNU Lesser General Public License v3.0,
https://gnu.org/licenses/lgpl-3.0.en.html.

The energy landscape in terms of ¢ and ¢ exhibits
an intricate fine structure of several local minima.
Due to its wide adoption in the field, several com-
putational frameworks have been applied to this
dataset, yielding partitionings between three and six
different states [15, 33, 60, 61, 68]. As shown in
the Ramachandran plot in figure 5, our framework
identifies five different states that are in line with
the aforementioned literature. By comparison to in-
depth MD studies of this particular molecule [65, 69],
we can match the found states to known a-helix and
B-sheet conformations of alanine dipeptide. Note that
the transition probabilities between the two states o/
and apg are found to be very similar. It would hence
be a valid interpretation of our model results that
these two states could also be lumped together, which
would similarly be in accordance with the literature
[65, 69]. Notably, the runtime was only around 120 s
for one complete optimization run until convergence
on a 2.5 GHz Intel i7 processor.

11


https://gnu.org/licenses/lgpl-3.0.en.html

10P Publishing

Phys. Biol. 19 (2022) 056006

3.5. Electrophysiological single-molecule ion
channel data

Lastly, we use our method on time course data of
single channel measurements of the viral potassium
channel Kcvppey-_;. It is known that the wild-type
channel switches between an ‘open’ and a ‘closed’
state; mutation of the last amino acid to histidine,
however, leads to the appearance of sublevels between
‘open’ and ‘closed’ [70]. We utilize our method to
quantify these sublevels. The data are obtained using
the planar lipid bilayer technique as detailed in, e.g.,
[5]. The applied voltage is 160 mV at pH = 6 and
data are sampled at 5 kHz over a time span of
T = 60 s, half of which we discard due to apparent
drift. The complete trajectory is shown in supporting
information figure 3. Despite the high noise level in
the measurements, the inferred latent sequence shows
a highly plausible switching behavior, see figure 6:
we find three different states: a ‘closed’ state and
an ‘open’ state as well as one intermediate, subcon-
ductive state. The histidine mutation consequentially
gives rise to one novel channel conformation that
cannot be attained by the wild-type. Importantly, one
full optimization run only took ~25 s for a sequence
of 1.5 x 10°, which is orders of magnitude faster than
the sampling algorithm proposed in [37] for analysis
of such trajectories. Also, conventional methods of
trajectory segmentation [74] require both the pre-
specification of the number of conformational states
as well as their conductivity values, which our method
does not.

4. Discussion

The nonparametric Bayesian Markov state model
framework presented in this work offers a generative
modeling approach for inference of global, meta-
stable states from MD and experimental data. In
particular, this allows the user to leave the number of
conformational states unspecified a priori and rather
learn it from data. This is beneficial as the number
of states in typical computational and experimental
settings is not known in advance. In contrast to the
MSM approach, we (i) neither need to pre-process
the data via discretization and temporal thinning to
re-establish Markovianity, (ii) nor manually select the
number of meta-stable states. Our method impor-
tantly does not deteriorate the temporal resolution of
the data.

As we have demonstrated, the model is able to
reliably identify the relevant meta-stable states of the
system: their number has been sensibly established
in all experiments. The application to the triple-well
potential highlights the utility of this model on purely
continuous data as generated, e.g., by MD. It hence
achieves the central goal of modeling the complex
dynamics via a finite set of readily interpretable
discrete conformational states; in other words, one
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obtains a spatio-temporal clustering of the data. Fur-
thermore, we presented a computationally tractable
approximation to the classical vM distribution that
yields accurate results. Application of this approxi-
mation to the canonical alanine dipeptide benchmark
yielded results consistent with the literature. This is
of special relevance to MD due to the frequent use
of dihedral angles as system coordinates. We stress
that this benchmark problem, albeit consisting of
relatively short trajectories compared to MD stan-
dards, requires the use of VI methods, since MCMC-
type sampling schemes would be computationally
infeasible for this task. We thereby also provide a
scalable alternative for inference on experimental
voltage clamp data, where existing methods all resort
to sampling schemes and hence require runtimes
on much longer time scales than our framework.
This is a significant advance: while nonparametric
methods have been around for quite some time (see,
e.g., [37—40]), the combination with VI is not estab-
lished in the field. Furthermore, the adaptation of
HDP-HMM methods to typical problems is poten-
tially challenging: utilizing a straightforward categor-
ical observation model p(x,|6,,) on discretized data
(see, e.g., [31, 41, 71]). We hence deem it the merit
of our study to adapt the existing HDP-HMM frame-
work to the settings commonly found in biophysical
problems and to demonstrate its potential for bio-
physics. Note that from a technical perspective, the
proposed vM approximation is novel to the best of our
knowledge.

The framework lends itself to further extensions
of practical relevance. One interesting direction is
provided by the fact that in many MD analysis pro-
tocols, some dimensionality reduction is employed,
potentially changing the geometry of the data used for
analysis [72]. We believe that a natural extension of
the presented model is to include observation likeli-
hoods parameterized by neural networks. Akin to the
classical variational auto-encoder this could achieve
an efficient encoding to lower dimensions [73]. We
note that in the field of Markov state modeling,
first approaches to this challenge have been proposed
recently [33, 34]. None of these proposals however
build on nonparametric formulations; the number of
states hence remains to be set and tuned by the user. In
addition, since not only the observation distributions,
but also the transition distributions are parameterized
via neural networks, also the necessity to specify
an artificial lag or thinning time scale is retained.
Another approach from machine learning combines
classical probabilistic models with complex likelihood
functions in a modular way, however compromising
the convexity of the ELBO [75].

Another promising extension are semi-Markovian
models, in which the transition between different
states is still Markovian, but the sojourn times within
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each state may be non-exponentially distributed. Sim-
ilar analyses have already been done for ion chan-
nel data and might hence help to get a detailed
understanding of more complex switching dynamics
[76]. The challenge here is to obtain computationally
tractable inference schemes. Notice that similar ideas
are also already exploited for lumping in conventional
MSM settings [29] and alleviating the lag time issue of
MSMs [26].

We believe that variational nonparametric models
as the one presented in this paper are a natural
match for the requirements of computational and
experimental data analysis in the context of structural
molecular biology and hence see an untapped poten-
tial for applications to biophysical problems.
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