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Abstract The calibration of the relative pose between rigidly con-
nected cameras with non-overlapping fields of view (FOV) is a
prerequisite for many applications. In this paper, we focus on
the subtleties of experimental realization of such a calibration op-
timization method presented in [1]. We evaluate two strategies
to adapt a given optimization process to find better local min-
ima. The first strategy is the introduction of a quality measure for
the image data used for calibration, which is based on the pro-
jection size of known planar calibration patterns on the image.
We show, that introducing an additional weighting to the opti-
mization objective chosen as a function of that quality measure
improves calibration accuracy and increases robustness against
noise. The second strategy to further improve accuracy is a care-
ful data acquisition of pose pairs used for the calibration. We in-
tegrate the above strategies into different setups and demonstrate
the improvement both in simulation and real-world experiment.
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1 Introduction

Extrinsic camera calibration comprises the estimation of the relative
pose between cameras with non-overlapping FOV. Especially, in the car
industry, the calibration of cameras mounted on the car with vastly dif-
ferent FOV is ubiquitous [2], [3].

Different classifications of the existing calibration methods, together
with detailed analyses and discussion of the methods could be found
in [1], [4]. In principle, our proposed strategies are suitable for any
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setup that builds an objective function based on the reprojection error
of 3D-2D point correspondences constrained by 3D-3D closed-loop pose
transformation AX = YB. Here, we restrict ourselves to the following
two setups given in Fig. 1(a) and Fig.1(b).
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Figure 1: Illustration of two setups that could apply our proposed strategies.
The red arrows appearing in the above figures indicate that the objects with red
arrows overlaid have to be moved or placed into different positions during the
calibration procedure.

The first setup presented in [5] uses a movable calibration rig that
rigidly links two planar calibration patterns whose relative pose is un-
known (see Fig.1(a)). By changing the pose of the calibration rig relative
to the camera, the initial estimation of X and Y can be recovered by
solving AX = YB. The initial values are then applied to minimize the
objective function based on the reprojection errors from all measure-
ments. Similar to the first setup, the second setup in [1] (see Fig.1(b))
introduces high accuracy tracking system ‘OptiTrack’, so the two pat-
tern boards used for recovering the relative pose to camera pairs could
be accurately localized within the tracking system after aligning their
coordinate frames with that of the tracking targets attached to them.
In this case, the 3D-3D closed-loop pose transformation is formulated
as AX,;= YB, where X, is obtained from the tracking system. The ex-
trinsic could thus be solved and optimized using the reprojection error
based objective.

Though Liu’s setup needs extra infrastructure and additional interac-
tion, the calibration patterns could be detected reliably with sub-pixel
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accuracy, which provides true scale information and could be further
included in the optimization process. Meanwhile, the camera rig does
not have to be moved during calibration, which is a big advantage, es-
pecially for mobile vehicles. However, the limited pose change of the
calibration targets could result in instability [4]. Applying a large-range
measuring system in the second setup is generally more accurate but
the setup complexity and the costs are high.

2 Problem statement and optimization strategies

In [1], the optimization problem of Liu’s setup is formulated as follows:

n m o
(Rx,tx, Ry, ty) = argmin Y 3 I3+ leil?), (@)
Rxtx Ry ty 527 o 1=1

where Ry, tx, Ry, ty are the unknown rotational and translational
matrix to be optimized, i.e. the relative pose between two calibration
patterns X and the camera pair Y. m and o stand for the amount of
the fiducial features from corresponding patterns, and n is the number
of the collected pose pairs. €5 and € are the reprojection errors from
different camera frames. This optimization problem is non-convex, so
the iterative optimization can only guarantee to converge to a local min-
imum and a proper initialization is needed in order to reach a good es-
timation. In this paper, we use initial values for X and Y applying the
method in [6] beforehand.

For each measurement pair (A;, B;), both markers have to be in the
FOV of the cameras such that all the coordinates of the fiducial feature
projections can be extracted without outliers and with a certain accu-
racy. In practice, collecting a proper set of measurement pairs is chal-
lenging because of the rigid coupling of the patterns. With the assistance
of the customized calibration device, a minor change in pose A, or B;
would lead to an unpredictable change in the other, which indicates the
hardness of capturing both calibration patterns with high resolution.

Fig.2(a) demonstrates the relationship between the calibration rig
pose relative to the camera pair and the captured resolution qual-
ity. In Fig.2(b) an example is given to further explain this problem,
which shows very imbalanced projection sizes of two different projec-
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Figure 2: When the calibration pattern from one side of the rig is placed near to
the camera, an image with high resolution will be captured, while the calibra-
tion pattern from the other side would be captured with comparatively lower
resolution and vice versa. In this example, the left image gives a larger pro-
jection size of the pattern, hence higher resolution than the right image. When
both images are corrupted by the same level noise, the left one is less sensitive
to noise and produces a better pose estimation.

tions within one pose pair measurement. This discourages the objec-
tive function from including all the measurements and treating them
equally.

Considering the unpleasant imbalance of the measurement quality
which leads to the diversity of the projection size within one measure-

ment pair, we introduce the additional weightings /\;4/ " to the objective
(1) that are proportional to the projection size of the planar patterns,
which leads to:

(Rx,tx,Ry,y) = argmin Z)\AZ” \|2+)\BZ|\ .

Rx,tx,Ry ty ;3

The weighting A\ used for the reprojection error related with A; is
chosen to be the square root of the projection size S(B;) related with
reprojection B, normalized by the full image size S,,q, and vice versa:

/\;4 =V S(Bi)/smam (3)
)‘ZB =V S(Ai)/smaw7 (4)

The reason for choosing such weighting lies in the replacement of A;
with YB,;X~!. The reprojection error produced from A; now depends
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on its replacement YB,; X! which has the measurement B, inside, so
the quality of B; influences the reprojection error of A;: B; with good-
quality should have more influence on the optimization and this leads
to a higher weight \!. The same happens with the replacement of B;.

Except for the measurement quality, another major practical issue to
reach accurate calibration results is a proper set of measurement pairs
covering the six degrees of freedom of the poses X and Y, which indi-
cates the spatial distribution of pose pairs also influences the calibration
results. This requires that images of the calibration objects should be
taken from as many different poses as possible. However, generating
a pose pair set with good-quality and comparatively scattered spatial
distribution which are essential for accurate calibration is subtly tricky.
Therefore, instead of including all collected pose pairs, our second strat-
egy picks out a subset with comparatively scattered pose pairs and good
measurements. In this case, compromises have to be made between
pose change variety and measurement quality.

3 validation on simulated dataset

3.1 Synthetic Dataset

As illustrated in Fig.1(a), a customized calibration device is introduced
to assist the calibration procedure, except that all the true transforms are
exactly known in the simulation.

To generate the synthetic dataset, an exhaustive searching program is
first run based on known ground truth and camera intrinsic parameters
to produce a ‘pose pair bank” which consists of over 12,000 pose-pairs.
All pose pairs in the bank meet the following requirements: Each pose
pair in the bank is different from the rest both in translation and rotation
so that the pose pairs in the bank span the whole possible measurement
space; The projection size of the calibration object generated by the cor-
responding pose pair must exceed a certain threshold, which guaran-
tees the minimum quality of the measurements. In this experiment, the
threshold is set to 0.14 of the full image plane. The synthetic measure-
ments are then generated based on ‘pose pair bank’: First, the true pose
pairs are randomly extracted from the bank; The noise-free 2D coordi-
nates obtained through the projection process are then corrupted with
Gaussian noise; In the end, the noise-corrupted 2D coordinates are used
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to recover the noisy pose pairs which will be taken as the measurements
of A; and B;.

3.2 Error metric

X and Y represent the estimated solutions which are calculated by ap-
plying different calibration methods. The ground truth of X and Y is
known in the simulation environment, so the estimated X and Y could
be directly compared based on the following error metrics. Since the
error metric calculation of X and Y is the same, only the X is taken as
the example.

We apply the method of Wunsch et al. in [7] to define the rotation
error. qx denotes the estimated quaternion of X and qx the ground
truth quaternion. The rotation error e% is then defined as:

eg = min{arccos(qx - qx), ™ — arccos(qx - qx)}, 5)

in which ”-” denotes the inner product of two quaternion vectors. Here
the rotation error is represented by the angles returned by arccos and
mapped to [0, 90°].

The estimated translation vector is described as ty, and the ground
truth is t x. The translation error is computed as follows,

ely = [[tx — tx]|. (6)

3.3 Simulation results

The results from the method proposed in [5] as well as after applying
our strategies will be compared. In addition, the calibration results of
the method in [6] are also presented since the above methods take its
estimation of X and Y as initial values. Considering the improvement
brought by the second strategy is not noticeable and would cover the
other results, in what follows we demonstrate the benefits of strategies
individually. For the validation of the proposed quality measure factor,
those methods are labeled as Liu, ‘Weighted Liu’s method” (Wght-Liu),
and Wang.

In the first setting, the measurement number changes from 10 to 60
with the fixed Gaussian noise of 1.0 pixel; In the second one, the added
Gaussian noise varies from 0.2 to 1.2 pixels with a fixed number of 40
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measurement pairs. The results shown below are taken the average of
100 iteration runs. For each iteration, the measurements are extracted
from the ‘pose pair bank’” and processed applying each method. The
calibration results are the average of overall calibration errors. The code
for the calibration model as well as the optimization method is available
onlinel.
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Figure 3: Estimation error with regard to increased number of measurements
and different methods.
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Figure 4: Estimation error with regard to increased image Gaussian noise and
different methods.
Fig.3 and Fig.4 demonstrate the estimation error of Y under different

! https:/ / github.com/zaijuan/ eye-to-eye-calibration.git
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settings. Since the comparison results of X are similar to Y in magni-
tude and pattern, it is unnecessary to present repetitive work.

The above experiment results validate the accuracy and robustness
of our weighting factor strategy: Wght-Liu after applying the weight-
ing factor gives the best results regardless of different settings; With the
increase of noise level, the benefits from applying the weighting factor
become more noticeable.

To demonstrate the importance of the spatial distribution of pose
pairs to the calibration results, measurement sets with the following
characteristics could be generated from ‘pose pair bank’: a). Spatially
scattered pose pair set with larger projection size. b). Spatially clus-
tered pose pair set with larger projection size. c). Scattered distributed
pose pair set with smaller projection size. d). Clustered distributed pose
pair set with smaller projection size. The ‘scattered” and ‘clustered” spa-
tial distributions are comparative concepts. Because all generated pose
pairs are extracted from the bank, each pose pair in the clustered set has
at least the same minimum translational and rotational difference as the
ones in the bank. Since each calibration object has to be placed in the
FOV of its corresponding camera, the measurement space is reduced,
so the pose pairs in the scattered set have comparatively larger while
still limited differences in translation and rotation. Same for the mea-
surement quality. The bad measurements are somewhat bad only when
compared to the good ones, they are still guaranteed the minimum re-
quired quality.

We use those four extreme types of measurement sets to emphasize
the improvement after choosing comparatively scattered pose pair dis-
tribution. For each configuration, the measurement number is set to be
40, and the noise level is 1.0. Fig.5 demonstrates the calibration results
of different methods with different types of measurement sets.

Same as before, a final bundle adjustment with weighting factors is
applied to refine calibration results. Since the relative pose X; between
the calibration patterns for each measurement is known, the replace-
ment of A; and B; now becomes:

A, =YB;X; !, )
B, = Y 'AX,. (8)
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Figure 5: Estimation error with regard to different pose pair configurations and
different methods.

For all methods, spatially scattered pose pairs with better measure-
ment quality (larger projection size) generate the best accurate estima-
tion, while the clustered spatially pose pairs with smaller projection size
result in the worst estimation results. When the measurements have the
same quality level, scattered pose pairs always produce better results
than clustered ones, which implies the calibration methods are more
demanding on the distribution of pose pairs than their measurement
quality.

We give a short summary of our optimization strategies. The above
calibration results bring some insights into the tradeoff between the spa-
tial distribution of pose pairs and their generated measurement quality:
The combination of scattered pose distribution and larger projection
size produces the best calibration results. However, these two factors
are mutually restricted: Scattered pose distribution implies the diver-
sity of the projection size; While the demand for large projection size
limits the spatial distribution of the pose pair. This further explains
why our introduced weighting factor is important during the optimiza-
tion process: First, it increases the pose change space by allowing larger
varying range of measurement quality; Second, the increased measure-
ment space helps to provide more accurate initial values from solving
AX = YB, which further reduces the calibration error after non-linear
optimization.



68 Z.Liand V. Willert

4 Real experimental results

4.1 Experiment setup

In the real experiment, both Liu’s setup and the setup in [1] are imple-
mented. Those experiments are carried out as follows:

In the first experiment, the calibration rig with two rigidly linked cal-
ibration patterns is placed to a variety of poses relative to the camera
pairs and the corresponding pictures containing the calibration pattern
are taken to recover the relative pose between them. In the end, a mea-
surement set containing different pose pairs A; and B; is generated and
used for different calibration methods.

With the assistance of the tracking system, the unknown relative pose
X between the calibration objects could be accurately recovered. We
name this configuration ‘fixed trackable pattern’. In this case, the col-
lected A;, B;, and the recovered X are used to run a final bundle adjust-
ment (9) including weighting factors similar to (2) to refine calibration
results:

m o

(Ry,ty) = arg min Y (AF Y e 15+ AP Y el B): ©)

vty j=1 =1

The further improvement brought by the tracking system is that the
two calibration patterns do not have to be rigidly linked. This extra flex-
ibility facilitates the improvement of measurement quality since each
calibration pattern could be placed into positions relative to correspond-
ing cameras which generate the best possible estimates. So in the second
experiment (setup), two pattern boards are independently placed to dif-
ferent poses relative to cameras. We describe this configuration as ‘un-
fixed trackable pattern’. A set of A; and B; with better measurement
quality together with the corresponding ground truth of X; obtained
from the tracking system is collected.

Same as before, a final bundle adjustment with weighting factors is
applied to refine calibration results. Since the relative pose X; between
the calibration patterns for each measurement is known, the replace-
ment of A; and B; now becomes:

A, =YB;X; !, (10)
B, = Y 'AX,. (11)
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4.2 Experimental results

We use the same error criteria to evaluate the calibration difference of
different methods. The benchmark is set as the weighted estimation of
configuration “unfixed trackable pattern’. We use the term ‘difference’
instead of ‘error” to indicate that although the ground truth of Y is un-
known, it could be estimated with the highest accuracy applying the
‘unfixed trackable pattern’ configuration.
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Figure 6: Calibration difference of Y with regard to different configurations and
different methods.

Fig. 6 shows the calibration differences of different setups and differ-
ent methods. Although in ‘unfixed trackable pattern” configuration, the
difference between weighted and unweighted estimation is minor since
all patterns are captured with relatively high resolution, we could still
verify that applying weighting factor generates less deviation compared
to benchmark regardless of the configuration.

5 Conclusion and future work

In this paper, we discussed the subtleties of certain calibration meth-
ods and proposed two optimization strategies applicable to calibration
setups that could minimize the reprojection error of 3D-2D point cor-
respondences constrained by rigid 3D-3D closed-loop pose transforma-
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tions AX = YB. First, we introduce an additional quality measure
factor to the objective function, which helps enlarge the measurement
space and improves the calibration accuracy. Hence, instability could
be alleviated and the robustness could be safely guaranteed. Besides,
by carefully choosing a measurement subset the possibility of getting
trapped in a worse local minimum is reduced. In future work, we will
focus on refining the weighting factor, which is now simply based on
the projection area of the calibration pattern.
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