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BISCUIT - Blockchain Security Incident Reporting
based on Human Observations
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ABSTRACT
Security incidents in blockchain-based systems are frequent nowa-
days, which calls for more structured efforts in incident reporting
and response. To improve the current status quo of reporting inci-
dents on blogs and social media, we propose a decentralized inci-
dent reporting and discussion system. Our approach guides users
(security novices) towards a classification of their observations us-
ing a tiered taxonomy of blockchain incidents. Questions based
on previous incidents interactively support the classification. Post
submission a security incident response committee then discusses
these observations on our decentralized platform to decide on an
appropriate response. For evaluation, we implement our model as
a decentralized application and demonstrate its practical suitability
in a user study.
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• Security and privacy → Intrusion detection systems; Dis-
tributed systems security; Domain-specific security and pri-
vacy architectures.
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1 INTRODUCTION
Despite the widely accepted notion that blockchain systems are se-
cure, security incidents arewidespread in permissionless blockchains
today. The impact is often measured in millions of dollars, especially
when Decentralized Finance (DeFi) applications are targeted. Early
famous examples include the DAO attack in 2016 and the Parity
Multisig wallet hack in 2017 [3]. With the exponential growth of
cryptocurrency market capitalization and the emergence of DeFi, at-
tack frequency has increased enough to warrant weekly newsletters
on the latest incidents [14]. While permissionless cryptocurrency-
based blockchains are the primary subject of media coverage, simi-
lar security issues apply to permissioned blockchains [6, 24]. Per-
missioned blockchains often secure high-value real-world assets
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like trade-finance transactions or freight, making them an attractive
target for attackers.

Still, current reporting of blockchain security incidents is mostly
unstructured and centralized in the form of tweets or blog posts
[14]. Structured threat intelligence is hard to find, and security
professionals have to scrape together information from a variety of
sources. To facilitate targeted responses, more structured reporting
and incident response are needed. It is also desirable to decentralize
the incident response process among the stakeholders of a permis-
sioned network, as coordination might be required to properly deal
with an incident.

In practice there are many attack cases where observations by in-
dividual users could help accelerate incident response. Many smart
contract attacks are initially discovered by users alerting develop-
ers towards problems or inconsistencies [14]. However, finding the
appropriate contact information can be difficult as few DApps have
consistent and transparent security reporting policies. Even if it is
found, users have no guidance on how to report their observations
in a structured fashion. Commonly used responsible disclosure
standards focus on disclosure of vulnerabilities, not security issues
in general [20]. A guided security incident reporting process could
benefit all parties affected by an incident. Security experts and de-
velopers benefit from more structured and detailed reports, and
users benefit from a faster resolution of incidents.

There have been efforts by research and practice to detect vulner-
abilities before they are exploited, for example using vulnerability
scanners and security audits [3]. However, the majority of incident
reporting is still done on social media and blog sites. To guide practi-
tioners towards more structured incident reporting and discussion,
this work proposes a novel approach based on the Human-as-a-
Security-Sensor (HaaSS) paradigm [10]. We state the following
research questions:

RQ1. Can human observations support the detection of block-
chain security incidents?

RQ2. How can the incident response process for human-reported
incidents be structured and made tamper-proof?

Based on these research questions, we follow the design science
research methodology [23] to develop a decentralized blockchain
security incident reporting and discussion system. The system fo-
cuses on recording human observations of (suspected) blockchain
security incidents and their subsequent enrichment and discus-
sion by concerned parties. Metadata of the discussion is recorded
on-chain, ensuring transparency in the incident response process.
It also prevents tampering by attackers, which would be possible
when using out-of-band communication channels.

Application contexts. There are two apparent application contexts
for on-chain security incident handling, which we term 𝐶1 and 𝐶2.

In application context𝐶1, consortium blockchains are now being
adopted by large consortia in logistics, finance and other industries
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[24]. As they are used to track physical assets or large financial
transactions, ensuring their security is a major concern. Unlike
traditional centralized IT solutions, the platform isn’t hosted by a
single provider that could be held responsible for securing it. For
this reason, a decentralized security incident handling procedure
is needed, which allows participants of consortium blockchains to
report and discuss possible security incidents.

Application context 𝐶2 concerns decentralized autonomous or-
ganizations (DAOs) on public blockchains. DAOs are common in
the Decentralized Finance (DeFi) space, where protocols are jointly
governed by token holders. This means that token holders must
reach a consensus on decisions that affect protocol operation. Such
a decision might be needed if a critical vulnerability within the DAO
code is discovered and its handling is controversial. Our approach
allows users to report these vulnerabilities and to reach a secure
and transparent consensus on incident handling.

The paper is structured as follows. We first provide some back-
ground on reporting human observations and blockchain threats
in Section 2. Thereafter, we propose our model BISCUIT in Section
3 by introducing preliminaries and a formal description. Section
4 elaborates on our taxonomy for reporting observations, consist-
ing of threats and threat indicators. Section 5 then introduces the
technical architecture to support the incident reports, along with
a description of our implementation on Ethereum. We proceed to
evaluate the implementation with a user study in Section 6 and
discuss the results in Section 7.

2 BACKGROUND
We first introduce some preliminaries, starting with the human-as-
a-security-sensor (HaaSS) paradigm. We elaborate on the state of
current automated blockchain threat detection systems and why
they fail to prevent novel attacks. Finally, we state our contribution
to research.

The HaaSS paradigm. In information security, there have been
approaches for a while that try to involve people in security. For
example, almost all email systems provide the possibility to re-
port spam and phishing emails, which is used to block similar
emails in the future. However, this has only been done very selec-
tively and for specific problems, and humans have continued to
be seen primarily as a problem that should be excluded from IT
security as far as possible. However, this view has become outdated,
and there is a paradigm shift from human-as-a-problem to human-
as-a-solution [36]. In this course, the human-as-a-security-sensor
paradigm emerged, attempting to actively involve humans in the
security process, as they can be superior to technical security so-
lutions in many situations [10, 33]. Especially security incidents
that leave no or very limited usable technical traces, one has to rely
on information provided by humans to be considered. However,
this raises new problems. For example, people find it challenging to
record security incidents in a structured way, especially if they are
not Security Experts. Therefore, it is necessary to provide assistance
that provides some structure without overwhelming the human.
This problem has already been addressed in first approaches in the
literature [32].

Blockchain threat detection. In blockchain research and practice,
most attention has been given exploitation of smart contract vul-
nerabilities [3]. Many different tool-based automated approaches
for detecting and mitigating common vulnerability classes have
been proposed. They can be classified into two categories: proac-
tive defenses used to prevent attacks, and reactive defenses for
previously unknown or hidden vulnerabilities. Proactive defenses
include specific languages focused on security, programming best
practices, vulnerability scanners and hardening measures applied
to the blockchain itself or the smart contract. Reactive defenses aim
to prevent exploitation by verifying execution results at contract
runtime. They monitor execution and and initiate countermeasures
if a violation is detected.

The aforementioned proactive and reactive defenses require the
contract developers to implement these security measures before
deploying the contract. In practice, the main precautions being
taken are vulnerability scans, security audits and bug bounty pro-
grams. However, these measures may miss novel vulnerabilities,
as evident from numerous successful attacks in the Decentralized
Finance (DeFi) ecosystem. These attacks are often not only related
to software bugs, but require deep understanding of DeFi business
logic. Detecting such attacks is difficult with automated systems
[3, 34]. Early tool-based approaches for detection like the Forta net-
work1 and BlockEye [34] use rule-based systems to flag suspicious
transactions. However, these systems may miss attacks that are not
caught by rules or generate a significant amount of false positives.
For such zero-day attacks, sharing intelligence on Twitter and blogs
is common practice 2.

Contributions. This work focuses on providing a structured pro-
cess for users to report human observations of blockchain threats.
In summary, we provide the following contributions to research:

• a process for integrating human observed incidents in smart
contract incident response

• a taxonomy for blockchain security threats for use in incident
reporting

• a decentralized incident discussion model for incident re-
sponse without a central decision-making entity

3 THE BISCUIT MODEL
This Section introduces our conceptual approach and formal model
for the BISCUIT prototype (Blockchain Security Incident Reporting).
We begin by stating our goals and establishing some definitions in
Section 3.1.

3.1 Preliminaries
3.1.1 Goal. Ideally, the goal of detecting an attack would be to stop
it and prevent any malicious consequences. However, few attacks
on smart contracts can be prevented through reactive defense [3].
The near-immediate and immutable effects of a blockchain transac-
tion make it difficult to reverse attacks. One possibility is to post
another transaction to overtake the attacker before their transaction
is committed (front-running). Another is a hard fork of the under-
lying blockchain, which is unlikely unless attack consequences are

1forta.network
2blockthreat.io
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Figure 1: Process steps and roles of the Incident Reporting Flow

as severe as Ethereum’s DAO hack [3]. Hence, the main goal of
incident detection is to minimize damage by reducing funds lost or
restoring them as possible.

3.1.2 Requirements. To ensure proper support of incident detec-
tion by human observations (RQ1), we state several requirements.
Learnability Users should be able to accomplish their tasks the
first time they use the incident reporting tool.
Transparency Anyone with access to the affected blockchain
should be able to see incident reports.
Integrity Incident reports should be protected from unautho-
rized tampering.

3.1.3 Roles. There are three types of participants involved in the
incident reporting and response process. Security Novices and Se-
curity Experts represent a well-known distinction from literature
[1] in terms of corporate security. The Security Committee is intro-
duced as a collective term for all Security Experts responsible for
security incident handling.

Security Novices are users who do not necessarily have deep se-
curity knowledge. These are usually every employee of a company
or, in our case, any DLT user. We assume some basic knowledge
regarding blockchain concepts, meaning the user is able to under-
stand block and transaction details. such as the ability to read and
understand transaction activity using a blockchain explorer.

Security Experts are users who have more in-depth security
knowledge and therefore a deeper understanding and a broader
view of security issues in DLT. An expert can evaluate if a report is
an incident, and whether it should be shared with other experts in
the Security Committee. He therefore has the necessary permissions
to publish security incidents reported by novices.

The Security Committee is a set of Security Experts respon-
sible for handling reported security incidents. The aim of the Se-
curity Committee is to make a decision regarding an appropriate
response. Who constitutes the committee is application and context-
dependent. For C1, a sensible choice could be administrators of the
organizations’ blockchain nodes. In C2, it could be the members of
the decentralized development team of a DApp, or shareholders of
a Decentralized Autonomous Organization (DAO).

3.2 Formal model
In order to support incident reporting, it is first necessary to capture
which elements of an incident can be observed by humans and
therefore reported. A frequently used model for this is provided
by NIST [13]. In a similar form, the model has already been used
in the context of the human-as-a-security-sensor paradigm [32]
and is also used in incident reporting, though in a more complex
form and thus not suitable for the use case in this work [19]. The

goal of the approach is to capture the information of the incident
as structured as possible in the form of a normalized incident. As
presented in prior work [33], this enables an automated conversion
into a common incident reporting format such as STIX. Derived
from this, a normalized incident consists of four binary vectors, each
representing the elements that can be reported by a Security Novice:
Sources ⃗⃗

𝑠 that triggers the incident, events that occur during the
incident ⃗⃗𝑒 , affected entities ⃗⃗

𝑎 that are influenced negatively by the
incident, and an impact

⃗⃗
𝑖 that indicates how serious the incident is

considered to be by the Security Novice. Thus, the incident results
from the concatenation of the vectors:

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝑖𝑛𝑐 =

⃗⃗
𝑠 ⌢ ⃗⃗

𝑒 ⌢ ⃗⃗
𝑎 ⌢

⃗⃗
𝑖

with every element that has been reported has a value of 1 and
every element that has not been reported has a value of 0:

𝑠𝑖 , 𝑒𝑖 , 𝑎𝑖 , 𝑖𝑖 ∈ {0, 1}

3.3 Incident Reporting Flow
The Incident Reporting Flow (see Figure 1) aims to provide a way to
report security incidents in a DLT in a structured way, and to find an
appropriate response to them without relying on a central decision
point. It consists of six steps executed by different roles, with the
first three steps executed off-chain and therefore locally, e.g., at a
company. The initial reporting of the security incident, thus the
triggering of the process, is done by a novice. The subsequent two
steps are performed by an expert within a company. Only the last
three steps, which serve the discussion and decision-making for an
appropriate response, are processed on-chain. Thereby, the entire
consortium can participate. A detailed description of the process
steps is given in the following paragraphs.

Reporting. The process begins when the user of the DLT notices
an event that he considers to be a security incident. The process
itself is then triggered by the user reporting this security incident.
To enable the reporting process to be as structured and complete
as possible, the user is supported in two stages.

In the first stage, possible security incidents or classes of security
incidents that can occur on a DLT are provided in the form of
a taxonomy. With the help of the taxonomy, the user can work
his way down from very general classes to very specific security
incidents without losing the overview. In addition, the structured
reporting allows for subsequent machine processing and similarity
calculation that are needed in the next stage. Each element of the
taxonomy corresponds to one element of the binary incident vector⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝑖𝑛𝑐 . Thus the result of this stage is an instance of the incident vector
(
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝐼𝑁𝐶 𝑖𝑛𝑖𝑡 ) with each element selected by the user with a value of 1.

2022-03-09 15:10. Page 3 of 1–10.
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The next stage of reporting is based on the assumption that secu-
rity incidents in many cases have some similarity to past security
incidents. Thus, similar to a recommender system [17, 35] (instead
of similar products, similar incidents are suggested) the user can be
assisted in completing or correcting the reported security incident.
The reported data is compared with past incidents (

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝐼𝑁𝐶 𝑝𝑎𝑠𝑡 ) by

calculating the similarity of the reported incident and each past
incident in a database containing n incidents:

𝑠𝑖𝑚(
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝐼𝑁𝐶 𝑖𝑛𝑖𝑡 ,

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝐼𝑁𝐶 𝑝𝑎𝑠𝑡,𝑖 ) 𝑖 ∈ [0, 𝑛]

For calculating the similarity, different measures are applicable. In
recommender systems research, for example, the cosine similarity
is often used for similar problems [17]. The questions are generated
based on the differences to the most similar incidents. By answering
these questions, the user can refine or correct the data, which results
in a corrected version of the reported incident

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝐼𝑁𝐶 𝑐𝑜𝑟𝑟 .

Enrichment & Approval. In this phase, the local organization’s
Security Expert receives the report and contributes additional infor-
mation from the perspective of a privileged user. Due to elevated
or administrative privileges the potential security insight can be
enriched with deeper insight or discarded if it is only a temporary
technical issue. Otherwise, the Security Expert approves the inci-
dent to publish it to the entire Security Committee. Thereby, he
validates that the report does not contain any sensitive informa-
tion and thus does not violate company policies. The approval step
can be skipped in the permissionless context 𝐶2, enabling direct
submission of incidents by users for discussion by the Security
Committee.

Incident Discussion. Published incidents are available to the Se-
curity Committee. Each member can contribute their view on the
incident through authenticated comments 𝑐 . Besides viewing the
structured incident data provided by the incident issuer, Security
Experts can add their own intelligence through attachments. They
can also propose an update to the now shared incident by uploading
an incident update. This update remains a proposal until a config-
ure threshold 𝑡𝑣𝑜𝑡𝑒 of upvotes for the proposal has been passed, at
which point the original incident reference is replaced as part of
the voting transaction. Similarly, users can propose to update the
default status of the incident to one of the following states. Status
updates must be approved with the same voting threshold 𝑡𝑣𝑜𝑡𝑒 .

𝑆0 In discussion
𝑆1 Response initiated
𝑆2 Invalid (not a security issue)
𝑆3 Duplicate
𝑆4 Completed

Decision & Incident Response. Finally, the Security Committee
must come to a consensus on how to deal with the incident. Based
on the jointly provided evidence, the Committee may decide to
discard the incident, or to initiate an incident response action. To
suggest a decision, any Expert may submit a response comment
𝑐𝑟𝑖 to the incident. This comment may contain multiple response
actions 𝑎𝑟𝑖 𝑗 . The committee can vote on 𝑐𝑟𝑖 to approve 𝑎𝑟𝑖 𝑗∀𝑗 ∈ 𝐽 .
If a configurable threshold 𝑡𝑣𝑜𝑡𝑒 is passed, the response actions of
𝑎𝑟𝑖 are considered approved.

4 INCIDENT TAXONOMY

initiates 

causes affects initiates Threat Event Threat Source Entity Expected
Impact 

Attack 

Technical 

Legal 

Environmental 

Actor 

Structure 

Very Low 

Low 

Moderate 

High 

Very High 

Operations 

Assets 

Individuals 

Other Org. 

Nations 

Figure 2: Abstract structure of the taxonomy [33].

To enable structured reporting of security incidents within the
smart contracts, a structured collection of possible incidents is nec-
essary. For this purpose, an existing taxonomy for security incidents
[33] is extended with blockchain-specific incidents. The underlying
structure of the taxonomy is shown in Figure 2. It describes an inci-
dent with four elements. Starting with the sources ⃗⃗

𝑠 of the attack,
which can either be a human actor or a structure such as technical
systems or other elements from the organizations’ environment.
Sources trigger one or more events ⃗⃗

𝑒 . Intentionally caused events
are grouped under attack. The other three classes, Technical, Envi-
ronmental and Legal, contain events that are not necessarily caused
intentionally but are instead of an accidental nature. An event can
also be the trigger for other events. In the context of a security
incident, an event causes damage to (affected) entities ⃗⃗

𝑎 within
the company or outside it. These can be operations, assets (e.g.
machines), individuals, other organizations or even entire nations.
Furthermore, the user can estimate the expected impact

⃗⃗
𝑖 (Very Low

to Very High), which is reflected within the taxonomy. To extend
this taxonomy with blockchain-specific elements, it is necessary
to extend the threat sources and threat events accordingly. The
potential damage in the form of affected entities and impact of the
incident, however, does not differ from those of any other incident.

For the extension of the taxonomy, the extended taxonomy de-
sign process of Kundisch et al. [15] is applied. This process enhances
the prevalent methodology of Nickerson et al. [22], integrating it
with the design science research method of Peffers et al. [23]. The
process comprises two approaches, conceptual-to-empirical and
emprical-to-conceptual. Since the literature (especially Chen et al.
[3]) already provides a comprehensive analysis of possible attacks,
we have chosen the empirical-to-conceptual approach, where the
taxonomy is created from the already existing dimensions, or in our
case, the existing dimensions are integrated into an already existing
taxonomy. Furthermore, the taxonomy intended is descriptive (as
it aims to describe possible incidents) in its nature rather than nor-
mative, which also suggests this approach. As a recommendation
for the determination of objects and characteristics, Kundisch et
al. [15] propose to conduct a literature review. Following this, a
literature analysis is conducted to extend the taxonomy with the
root nodes given by the taxonomy to be extended [33].

4.1 Threat Sources
The existing taxonomy already provides a general structure of
possible sources ⃗⃗𝑠 of security incidents. However, it does not contain
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Table 1: Assignment of blockchain sources starting from
layer 2 of the taxonomy.

Individual

Insider Transactor

Privileged Insider
Peer
Orderer
CA Admin

Outsider External User

Software Blockchain-specific Application dApp
Smart Contract

any blockchain-specific elements. At the lowest level, a distinction
can be made between actors and structures, which can also be the
cause of an incident in the blockchain environment. According to
Putz and Pernul [26], five different roles or classes of actors can be
distinguished in a blockchain system: Certificate Authority (CA)
Admin, Orderer Admin, Peer Admin, Transactor, and External User.
To enable in-depth reporting of incident sources in a blockchain
environment, we assign them to appropriate nodes in the original
taxonomy.

The mapping of the new sources to the existing taxonomy can
be seen in Table 1. Insider attacks are especially relevant in the
permissioned context𝐶1 [25]. For example, a Transactor is a regular
user, has read access to the blockchain, and can submit transactions.
Thus, a transactor is categorized as an insider in 𝐶1. Privileged par-
ticipants responsible for managing components of the blockchain
include Peer, Orderer, and Certificate Authority (CA) Admins. Con-
sequently, these participants are categorized as privileged insiders.
External users, in contrast, do not have privileges and are excluded
from the system by access control to mitigate vulnerabilities. Thus,
the external users are classified in the outsider subcategory. This is
the case for most adversarial actors in 𝐶2.

In addition to individual actors, software can be the source of a
security incident. According to Shirvas et al. [30], two main types
can be distinguished in the blockchain environment: decentralized
applications (dApps) and smart contracts. There is currently no
suitable class in the existing taxonomy, which is why the category
Blockchain-Specific Application has been added. Both dApp and
Smart Contract can thus be subordinated to this category on layer
3 of the taxonomy.

4.2 Threat Events
To build our taxonomy of threat events ⃗⃗𝑒 , we aggregate vulnerability
information from various sources obtained in the literature review.
Rameder conducts an extensive classification of smart contract
vulnerabilities [27], based on a number of other works such as the
DASP TOP 10 [21], the Smart Contract Weakness Classification
Registry [31] and other surveys [3]. We also include other types of
attacks not specific to smart contracts based on relevant literature
[7, 18, 26, 28, 29].

Table 2 lists the new event classes that have been incorporated
into the taxonomy. Because of the large number of possible events,
not all of them can be listed in this paper, and therefore Table 2 only

Table 2: Assignment of blockchain events to taxonomy ele-
ments.

Nefarious
activity /
Abuse

Malicious Environment, Transactions or Input
Network partitioning attack
Transaction Malleability
Timejacking Attack
Malicious Consensus Behavior
Consensus Configuration Exploitation
Framework Vulnerability Exploitation
Identity Provider Compromise
Mining Pool Attack

Denial of
Service

Frozen Ether
Ether lost in transfer
DoS with block gaslimit reached
DoS by exception inside loop
Insufficient gas griefing
Gas costly loops
Gas costly pattern
High gas consumption variable data type
High gas consumption function type
Under-priced opcodes

Authentication
and
Access Control

Credential compromise
Cryptographic vulnerabilities
Sybil attack
Unauthorized operations

Social
Engineering

Address Manipulation
Homograph attack

Software Bugs

Blockchain/Environment Dependency
Exception & Error Handling Disorders
Arithmetic bugs
Bad Code Quality and Language Specifics
Dependency vulnerabilities

Technical Blockchain ecosystem issue

contains the upper levels. The complete taxonomy is published in
the GitHub repository3.

The event types mentioned in the literature can essentially be
assigned to the two categories Technical and Attack. Depending on
whether there is an active malicious action behind the underlying
event or whether the event was triggered unintentionally.

The Nefarious Activity/Abuse category concerns unintended
abuse of software logic. Within this category, Malicious environ-
ment, transactions or input covers vulnerability exploits caused by
inadequate consideration of a zero-trust environment [27]. In this
attack, network participants may attempt to partition blockchain
network routing [26, 28]. The goal of such an attack is to tamper
with peer communication or the consensus protocol. Threats ex-
ploiting the consensus mechanism include malicious consensus
behavior and manipulation of the consensus configuration [26].
Malicious consensus behavior includes the following attacks: Con-
sensus Delay [26], Alternative History / Double-spending Attack
[29], Transaction Reordering, Block Withholding, and Collusion
[7]. Manipulation of the consensus configuration can take the form

3github.com/biscuitsecurity/frontend/tree/master/taxonomy
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of a batch time attack or block size attack [24, 26]. In addition
to smart contracts, the blockchain framework itself may contain
exploitable vulnerabilities. An example would be a vulnerability
caused by an Unrestricted Chaincode Container or within a frame-
work dependency like CouchDB [7]. In addition, the framework’s
identity provider may be compromised as the result of a CA, boy-
cott or blacklisting attack [26]. Here, the certificate authority of a
blockchain is not trustworthy or does not operate correctly and
is therefore either an attacker itself or enables attackers to exploit
vulnerabilities. In proof-of-work blockchains, mining pools may
attack the network by discarding/withholding blocks or engaging
in selfish mining [18].

Denial of Service attacks aim to disrupt the availability of
individual systems. Various attack points or vulnerabilities are often
exploited for this purpose. Conventional network-based denial of
service attacks are already covered by the existing taxonomy. A
comprehensive classification of blockchain-specific denial of service
attacks on smart contracts is given by Rameder [27]. These incidents
predominantly exploit vulnerabilities in the transfer of Ether or
vulnerabilities within the determination of transaction fees (gas).
For example, weaknesses in smart contracts are exploited in order to
interrupt transactions or lock ether (frozen ether) [3]. An example
of exploiting vulnerabilities within the transaction fees to carry out
denial of service attacks is that transactions whose costs exceed
the maximum gas limit of a block are not executed [8]. Exploiting
this vulnerability in a smart contract can prevent some transactions
from being executed.

Incidents that relate to Authentication and Access Control
within the blockchain are include known categories that exploit
cryptographic vulnerabilities and compromise access credentials.
Examples include quantum computing threats [5], hash collision
resistance attacks, and digital signature vulnerabilities. In contrast,
sybil attacks are specific to distributed systems. Thereby, the net-
work is attacked by creating multiple fake identities to gain dispro-
portionately great influence.

Ivanov et al. [12] provide an overview of possible Social En-
gineering attacks in the blockchain environment or specifically
through the exploitation of Ethereum smart contracts. A distinc-
tion can essentially be made between address manipulation and
homograph attacks. In the case of address manipulation attacks,
properties of public addresses are chosen in a way that the user is
deliberately deceived. Homograph attacks exploit the similarity of
symbols in certain fonts to mislead the user.

Unintentional events are categorized as Software Bugs if the
issue can be traced back to errors in the development of blockchain
applications. Other Technical issues may relate to events within
the blockchain ecosystem, including blockchain interoperability,
oracles or off-chain storage.

4.3 Threat Indicators
From a Security Novice’s point of view it is not always easy to
recognize the precise type of attack in the taxonomy. For this reason,
we establish several indicators that represent the outcomes of an
ongoing or past attack that are directly observable by a novice. We
provide some general indicators below, derived from observable
STRIDE elements [16].

Identity abuse. It is observed that a user is impersonated by
someone else, i.e. through a compromised identity.
Service unreachable. Users interact with blockchain applica-
tions using a website or service, which may be unreachable due
to an attack.
Unauthorized modification of data. A user may notice that
data has been changed within the application in a way that is not
compliant with regular usage, for example due to a vulnerability.
Disclosure of information. Confidential information was ob-
served in a non-private context, implying unauthorized disclo-
sure.
For application context 𝐶2 we determine additional indicators

based on an analysis of major attacks within the DeFi ecosystem
and listed hereafter. None of these indicators are indicative of an
attack by themselves. However, the presence of multiple indicators
make an attack likely enough to warrant a report.

Call by contract.The application smart contract is called through
a dedicated attacker smart contract created by the attacker (see
for example the Reentrancy attack [3]).
Flash loan.While flash loans have legitimate usage for arbitrage
and reducing transaction fees, they are also often used as part of
attacks that try to manipulate contract logic.
Transaction frequency spike. Attackers often perform many
transactions within a short period of time.
Failed transactions. Failed transactions targeting the same con-
tract. Attackers may attempt the same attack with similar param-
eters multiple times.
Account creation date. Attackers usually create new accounts
for attacks, so transactions made by accounts created on the same
day are more likely to be used in an attack.
Gas usage. Attack transactions often come with high gas usage
and/or high gas prices (for fast execution) [11].
Tornado.Cash. The coin mixing service Tornado.Cash 4 is pop-
ular among attackers for its ability to anonymize coin flows if
executed correctly. If used after an attack transaction it may
indicate an attempt to launder coins.

5 PROTOTYPE
To evaluate the model, we construct a prototype artifact for partici-
pants to interact with. First, we propose a generalized architecture
for any blockchain based on the current state of the art for de-
centralized applications in Section 5.1. We further describe our
instantiation for Ethereum smart contract incidents in Section 5.2.

5.1 Architecture
The abstract architecture of our framework is shown in Figure 3
and described hereafter.

As detailed in Section 3, incident handling is initiated by a Se-
curity Novice or Expert. They may submit an incident report using
a guided interactive form. This off-chain phase is supported by a
website (frontend A). The client implements the Incident Reporting
process that guides Security Novices towards submitting a structure
incident report. The reported data is sent to a local server applica-
tion B, supported by a local database C. The incident is stored in

4tornado.cash
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Figure 3: Abstract application components.

original and normalized form. After submission the user is then
prompted with several questions, which are used to determine
similar incidents.

The local database serves as intermediate storage for Novice-
submitted incidents. If the local Expert deems the incident report
valid, (s)hemay add additional information using the frontend based
on own knowledge or data only available to privileged users, such
as blockchain node logs. Otherwise, incidents can be discarded if it
is not relevant. This might be the case if the user has mistaken a
scheduled downtime as a security incident, for example.

Valid incidents are approved by the Expert for further discussion
with the Security Committee. They are also added to the local
storage to serve as reference incidents for future reports. After
approval, the incident reference is published to the smart contract
D, thus proceeding to the on-chain phase. The actual incident data
associated with the reference is transferred to the shared storage E.

The on-chain phase consists of a comment-based discussion
among Security Experts. Figure 4b shows the hierarchical structure
of the discussion for a single incident.

5.2 Implementation
We implement the prototype using a three layer approach: a Pre-
sentation, Processing and Storage layer. Figure 4a details the imple-
mentation of each layer.

The Presentation layer A supports both Security Novices and
Security Experts in submitting, enriching and discussing incidents.
It is implemented as an Angular5 single page application.

The Processing layer B provides APIs for the frontend to interact
with the Storage layer. Besides incident reporting, this includes in-
cident matching, which is based on cosine similarity. The backend
is built using Python for its libraries nltk6 (to generate interac-
tive questions) and numpy7 (for cosine similarity). The REST API
endpoints are built using the Flask8 library.

The Storage layer persists incident and discussion data. Local
storage D is implemented using MongoDB and stores incident data
as JSON documents in original and normalized form. Once orig-
inal incidents are enriched by the Security Expert and approved,
they are moved to a separate collection as Reference Incidents. Fu-
ture user submissions are compared to these reference incidents
to improve incident reporting quality. On approval, incident data
is also published to the shared storage E. The shared storage is
implemented using the distributed hash table IPFS9, a commonly
used off-chain DHT database solution. The IPFS reference is used
5angular.io
6nltk.org
7numpy.org
8flask.palletsprojects.com
9ipfs.io

to publish the incident metadata to the Incident Registry smart
contract. Our smart contract is based on Solidity, which currently
is the most widely used smart contract language, and the most
widely studied language in terms of security vulnerabilities due to
the popularity of Ethereum in research and practice [3].

The full source code of our implementation is available in multi-
ple GitHub repositories 10.

6 EVALUATION
To determine if our model and prototype meet the goals of research
questions RQ1 and RQ2, we perform a two-fold evaluation. First,
we perform a user study with Security Novices and Security Ex-
perts in Section 6.1. The main goal of the user study is to determine
the suitability of our prototype form and underlying taxonomy for
reporting common threats. Second, we perform a technical evalu-
ation of the prototype to determine usage cost on permissionless
blockchains (context 𝐶2) in Section 6.2.

6.1 User Study
To evaluate the incident reporting model and prototype, we conduct
a user study with a set of Security Novices that are familiar with
blockchain technology, but not necessarily with blockchain security.
We evaluate both application contexts 𝐶1 and 𝐶2 by providing
context-specific scenario descriptions.

Setting. For 𝐶1, the setting is a permissioned blockchain for lo-
gistics tracking, similar to TradeLens. Users are tasked to update
logistics information, but face four separate issues when attempt-
ing to do so. The evaluation for 𝐶2 is set in the Ethereum DeFi
ecosystem. Participants are asked to review transactions by a sin-
gle account to determine applicable threat indicators. Due to the
complexity of Etherscan for Security Novices and time constraints
we only consider two attacks. In total this results in six incident
reports per subject for 𝐶1 and 𝐶2.

Participants. To evaluate incident reporting, we interview seven
participants that have studied and used blockchain applications,
with varying levels of prior knowledge. We asked participants
to rate their own knowledge regarding blockchain on a Likert
scale from 1-7, yielding ` = 3.7, 𝜎 = 1.1. For blockchain secu-
rity knowledge, the self-assessment results were slightly worse at
` = 2.6, 𝜎 = 1.3. Only four of the interviewees had previously used
EtherScan. These results confirm that the interviewees are indeed
Security Novices.

Procedure. For 𝐶1, we provide a textual description of a security
incident. The description includes observations and a screenshot
of the interface. The attack scenarios include a website outage,
identity compromise, consensus algorithm failure and a sybil attack
creating fake identities.

For 𝐶2, we provide the users with the addresses of two real at-
tacks from the public Ethereum blockchain. Both attacks are flash
loan attacks abusing an vulnerabilities in the DeFi applications
Yearn and CREAM Finance. Users can inspect all relevant trans-
action via the EtherScan Blockchain Explorer11. As a guideline

10github.com/biscuitsecurity
11etherscan.io
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Figure 4: Prototypical implementation of BISCUIT.

for transaction inspection, we provide the incident indicators es-
tablished in Section 4.3. The full interview guideline with attack
descriptions is available on GitHub12

Results. Interviews took on average 60 minutes including task
explanations. We observe a negative correlation (-0.55) regarding
interview duration and self-assessed blockchain knowledge, mean-
ing that less knowledgeable novices took longer to complete the
tasks.

As attack sources, the novices identified outsiders and insiders
reliably in the taxonomy. For events, based on the available infor-
mation the users distinguished appropriately between technical
issues and nefarious activity. For 𝐶2, transaction frequency spikes,
failed transactions and high gas usage were reliably identified. Re-
garding affected entities, participants successfully identified the
correct taxonomy elements, although some preferred to note assets
and others individuals. Impact assessments were at most 2 points
apart on our 5 point scale.

We also received useful suggestions towards improving the us-
ability of the prototype. For example, users noted that it was some-
times difficult to find the desired entry in the taxonomy. We im-
proved this navigability issue by adding tooltips for individual
leaves in the taxonomy tree, highlighting their child nodes.

6.2 Technical performance
We investigate the costs of using our smart contract on a permission-
less Ethereum-based blockchain. Costs are relevant for deployments
on permissionless blockchains in 𝐶2, where transaction fees must
be paid for on-chain interactions. The costs for each transaction
function call are shown in Table 3. It is quickly apparent that these
costs are quite high at current exchange rates. However, consider-
ing that the value at stake is often on the order of millions, costs are
still manageable. Options for cost reduction are outlined in Section
7.

12github.com/biscuitsecurity/frontend

7 DISCUSSION
We now discuss the evaluation results with regard to the research
questions and application contexts. Additionally, we take a look at
applicable mitigation options.

7.1 Research questions
We revisit our research questions and discusswhether our prototype
and evaluation results support their fulfillment.

RQ1. Can human observations support the detection of block-
chain security incidents?

Both use case and user study demonstrate that users of varying
knowledge levels are able to contribute to reporting of an incident.
The timeliness of the incident report may be critical, i.e. when the
attacker may do further damage or when it is critical to prevent
cash out. Our approach leaves it to the user to decide whether
detailed or fast reporting is more important. In our model, it is only
mandatory to report a single Event, and only the top level in the
hierarchy must be chosen.

RQ2. How can the incident response process for human-reported
incidents be structured and made tamper-proof?

Structured reporting of incidents is enabled by the hierarchical
taxonomy used during incident reporting. The resulting JSON doc-
ument can later be transformed into applicable CTI formats such
as STIX [33]. Tampering prevention is enabled by storing incident
metadata on the blockchain.

Table 3: Gas consumption for our smart contract methods,
assuming a Gas price of 36 Gwei and 2500 EUR/ETH.

Method Gas Used Ether Euro equiv.
addIncident 211872 0.00763 19.07 €
voteIncident 44837 0.00161 4.04 €
addComment 280831 0.01011 25.27 €
voteComment 54325 0.00196 4.89 €

2022-03-09 15:10. Page 8 of 1–10.
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Table 4: Overview of ex-post mitigation options.

Mitigation Description C1 C2 Timeframe
Front-running Overtake the attacker transaction in mempool by setting a higher gas price x short
Emergency Stop Initiate emergency blockchain or smart contract action to prevent damage x x short
Negotiation Pressure attacker into abort by threatening legal investigations x x medium
Deanonymization Share information about the attacker with exchanges to prevent cashout x medium
Legal action Provide legal authorities with identifying information of the attacker x x long
Hard fork Reset blockchain state to an earlier block before the attack occurred x x long

7.2 Application contexts
In application context 𝐶1, each permissioned blockchain node op-
erator may define their Security Expert and deploy an instance of
the BISCUIT frontend, backend and databases. The smart contract
is shared for the entire network. The Security Committee then con-
sists of the plenum of all Security Experts, discussing and handling
incidents as they occur.

For application context𝐶2, each decentralized application on the
permissionless blockchain may deploy its own instance of the entire
BISCUIT stack in Figure 4a. The DApp developers may represent
the Security Experts. The Security Committee consists of a wider
range of users, for example users with a governance stake in the
protocol or application.

The cost of performing transactions shown in Section 6.2 may
represent a barrier for on-chain reporting or discussion of an inci-
dent. However, considering the costs of incidents in𝐶2, which often
range in the millions of dollars, reporting costs are negligible. The
cost also serves as a spam deterrent. Users will only report observa-
tions they are sure about if they have to pay a small transaction fee
for reporting. Regarding discussion costs, if the Security Committee
deems the cost of discussion too high on a permissionless block-
chain, they may rely on a layer 2 or private sidechain to deploy
the smart contract. Side chains such as Arbitrum13 significantly
reduce costs, while maintaining transparency and integrity through
rollups on the main Ethereum blockchain.

7.3 Incident Response
Once a Security Committee has concluded that an incident is a
legitimate threat, it can initiate incident response. There are sev-
eral options that can be used in practice depending on the type
of blockchain being attacked. Table 4 shows these options along
with the applicable context. A timeframe is given to illustrate the
timeframe during which the mitigation option is feasible. Short
refers to a time window up to one hour, medium up to several days,
and long up to several weeks. Faster responses are preferred, i.e.
for front-running the timeframe is usually only several minutes or
even seconds before the transaction is included on the Ethereum
blockchain14.

8 RELATEDWORK
There are two categories of work related to this paper. The first
category focuses on classification of blockchain security threats,

13arbitrum.io
14dependent on network congestion and gas price set by the attacker

while the second concerns proactive and reactive defenses for inte-
grating humans as part of the blockchain incident security response
process.

Many researchers have worked on taxonomies specific to block-
chain threats [9, 18] and smart contract threats [3]. A smaller num-
ber of works classifies threats specific to permissioned blockchains
[7, 24, 26]. The important role of humans in threat mitigation has
been recognized with regard to humans acting as developers and
users of DLT [9]. Social engineering attacks target human users in
particular. As a result, humans are in the best position to report
such incidents. Several such attacks have been found to be relevant
to Ethereum smart contracts [12]. The authors state that fully auto-
mated detection of such attacks is impossible, as human judgement
is needed to understand smart contract semantics. This further
supports the need for structured reporting of human observations,
augmenting and complementing automated tool reports.

Proactive defenses of blockchain threats include humans as
part of software audits and bug bounty programs. Researchers
have studied blockchain-based bug bounty programs to incentivize
white hats to report information about vulnerabilities in smart
contracts [2]. While conceptually similar, our work focuses on
post-exploitation incident response, whereas bug bounty programs
target pre-exploitation vulnerability reports.

Reactive defenses involve alerting humans, which act as security
analysts to mitigate ongoing threats. Current research includes
online transaction monitoring [4] and visualizations for monitoring,
tailored to blockchain security [24]. However, a generic reactive
approach to decide on a response for arbitrary incidents has not
been discussed so far.

9 CONCLUSION
This research paper proposes a novel decentralized approach for re-
porting blockchain security incidents termed BISCUIT. The model
focuses on learnability for Security Novices, and integrity and trans-
parency for Security Experts. We implement the model using a flex-
ible three-layer approach, combining local and shared components
to support multiple application contexts. The evaluation results
show that the prototype is able to assist users with reporting ar-
bitrary blockchain incidents. The reports provide structured data,
which serves as the basis for incident mitigation discussion and
as a reference for future incidents. Our prototype does not yet in-
clude specific mitigation recommendations, which we consider a
subject for future work. We conclude that our prototype provides a
good starting point for structuring user observations, showing a
path forward towards structured threat intelligence for blockchain
incidents.

2022-03-09 15:10. Page 9 of 1–10.
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