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Distributed Traveltime Tomography Using
Kernel-based Regression in Seismic Networks

Ban-Sok Shin and Dmitriy Shutin

Abstract—Distributed subsurface imaging is of high relevance
for autonomous seismic surveys by multi-agent networks as
envisioned for future planetary missions. The goal is to achieve
a cooperative reconstruction of a subsurface image at each agent
by relying on data exchange among the agents. To this end,
distributed full waveform inversion for high-resolution imaging
has been proposed. However, full waveform inversion always
requires an initial model of the subsurface. To provide each
agent in the network with such a model, we propose a distributed
traveltime tomography. To this end, we integrate a distributed
kernel-based regression of traveltime residuals into traveltime
tomography. By that, each agent computes an approximation of
all time residuals in the network and can perform a traveltime
tomography to obtain a subsurface image locally. We conduct
numerical evaluations for a synthetic subsurface model and the
SEG salt model. The results show that each receiver indeed
achieves a subsurface image that is close to the global result
even for a low network connectivity.

Index Terms—Distributed seismic imaging, travel time tomog-
raphy, inverse problems, seismic velocity analysis, multi-agent
seismic exploration

I. INTRODUCTION

SEISMIC data acquisition on planets has become increas-
ingly relevant during the last decade. Current missions like

InSight or Mars2020 have seismic instruments on their rovers
to record seismic data from Mars [1]. These data are decisive
to gain more insight into the Martian subsurface. Concepts
of multiple rovers have been proposed for future planetary
missions where rovers autonomously explore a subsurface
on Moon or Mars [2]. Here, near-surface objects such as
cavities and lava tubes are of interest since these can serve
as habitats for equipment or humans. However, to enable an
autonomous exploration without the dependence on a central
entity, distributed subsurface imaging is required that provides
each rover with an estimate of the subsurface. Using these
estimates rovers can then be steered to new sampling positions
to improve the image. A well-known geophysical imaging
technique for near-surface problems is traveltime tomography
(TT) [3]. It is used to obtain a first, usually low resolution
image of the subsurface that can be refined by e.g. full
waveform inversion (FWI) [4], [5]. In a classical setting, TT
operates in a centralized fashion, i.e., all receiver data are
collected at one central entity that performs the inversion of
the data. Thus, to employ TT in a multi-agent network without
a central data collector, distributed techniques are required.
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Distributed tomographic algorithms have been considered in
the past, see e.g. [6], [7]. However, all of these works require
either sharing intermediate data with a central master node
or sharing of partial tomographic maps over central cluster
nodes. Different from these works we proposed the adapt-then-
combine full waveform inversion (ATC-FWI) in [8]. Here,
the ATC technique [9] enables each receiver in the network
to obtain an estimate of the global image by cooperating
with neighboring receivers. However, to obtain a complete
subsurface imaging scheme, the ATC-FWI still requires an
appropriate starting model that needs to be provided to each
receiver in a distributed fashion.

To equip each receiver with a starting model we develop a
distributed traveltime tomography, where each receiver obtains
an estimate of the global TT without a central entity. This
can be achieved if residual data, i.e. the difference between
measured and reconstructed traveltimes, are provided to each
receiver. We incorporate a distributed regression into the
tomography that provides each receiver with an approximation
of these traveltime residuals. Numerical evaluations show that
each receiver obtains an image close to the global tomography
image. Even though the estimated residuals do not perfectly
match the true residuals, our proposed scheme achieves model
misfits similar to the global performance.

II. BRIEF REVIEW OF TRAVELTIME TOMOGRAPHY

Traveltime tomography is an imaging technique that obtains
a P -wave velocity model m(x) as a scalar function over
the spatial coordinate x = (x, z) in the subsurface domain
Ω ⊂ R3. It relies on first-arrival times of propagating
waves from one source to NR receivers. TT minimizes the
squared residual between measured traveltimes Tobs,r and
synthesized traveltimes Tsyn,r(m) per receiver r with respect
to the velocity m(x):

min
m
L(m) =

1

2

NR∑
r=1

|Tsyn,r(m)− Tobs,r|2 (1)

The measured traveltimes Tobs,r are picked either automati-
cally or by hand from the seismogram at each receiver r =
1, . . . , NR. Tsyn,r(m) is the synthetically computed traveltime
at receiver r using the estimated subsurface model m. To
obtain Tsyn,r(m) the eikonal equation can be used [10]:

|∇T (x)|2 =
1

m(x)2
, s.t. T (xs) = 0,x ∈ Ω, (2)

where xs ∈ Ω is the source position and ∇ is the spatial
gradient operator. The solution to the eikonal equation pro-
vides an estimate of traveltimes T (x) as a function over the
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spatial coordinate x. The initial condition at source location
xs ensures that the traveltime will be zero there. To solve (2)
various numerical methods exist [11], [12]. In our implemen-
tation, we use the fast sweeping method due to its simplicity
in implementation.

To minimize cost (1) subject to (2), TT employs an iterative,
gradient-based minimization scheme. To compute the gradient
dL(m)/dm, traditionally ray tracing methods have been used
that linearize the forward calculation of traveltimes. However,
ray tracing techniques can become very cumbersome to im-
plement. Therefore, the use of the adjoint state method for
gradient computation has been proposed [13]. This method is
a general tool to compute gradients in optimization problems
constrained by a parameterized equation. This is achieved by
introducing a new variable - the adjoint-state - that accounts
for the constraint, cf. [14]. Following [10], in our case the
adjoint state variable λ is obtained by solving

∇ · λ(x)∇T (x) = 0 (3)

with additional boundary condition at receiver positions xr

(n · ∇T (xr))λ(xr) = Tsyn,r(m)− Tobs,r, (4)
r = 1, . . . , NR,

where n is the unit vector normal to the surface of domain Ω.
According to (4) we initialize the adjoint state variable with a
scaled version of the time residuals Tsyn,r(m)−Tobs,r at each
receiver position xr. To compute ∇T (xr) one can use one-
sided finite differences for the discretization of the gradient
operator. Then (3) is solved for the inner part of Ω by using
the fast sweeping method as detailed in [10], [13].

After obtaining the adjoint state λ the gradient of L(m)
can be computed as −λ(x)/m(x)3 using the Lagrangian
multiplier method, cf. [10]. However, in [13] the authors that
such gradient computation leads to instabilities due to non-
convexity of the cost function. To obtain a better conditioned
gradient, the authors derive the following gradient calculation
in [13]:

(I − ν∆)m∆ = −
(

λ

m3

)
(5)

where m∆ is a smoothed gradient of the cost L(m), I is
the identity operator, ν ≥ 0 is a parameter that controls
smoothness of the solution and ∆ is the spatial Laplace
operator. Again, to solve (5) wrt. m∆, e.g. finite differences
can be used to discretize the Laplace operator. We point out
that the gradient calculation (5) is valid for one source only. In
case of NS sources a separate adjoint state variable λs needs
to be computed for each source s according to (3) and (4).
Then the gradient m∆ can be computed as a solution to

(I − ν∆)m∆ = −
NS∑
s=1

(
λs

m3

)
. (6)

With the gradient m∆, an iterative scheme such as gradient
descent can be used to update the model m[k] at iteration k:

m[k+1] = m[k] − µ ·m∆ (7)

with step size µ > 0. In each iteration k, traveltimes Tsyn,r,
adjoint state λs, and gradient m∆ are computed based on m[k].

III. DISTRIBUTED TRAVELTIME TOMOGRAPHY

Traditional TT is a centralized scheme: it assumes availabil-
ity of measured traveltimes Tobs,r of all receivers at one central
entity to solve (3) and (4) for λ. In the following, we propose
a method that computes m(x) at each receiver without access
to all traveltimes but by data exchange among receivers.

A. Seismic network model

First, we introduce the seismic network model to define
topology of the seismic network of geophones. We consider
a seismic network of NR geophone receivers. We describe
the topology of the network by a graph G = {R, E} with
a set of nodes R = {1, 2, . . . , NR} for the receivers and a
set of edges E = {(r, ℓ)|r, ℓ ∈ R} for wireless connections
among the receivers. The graph G is undirected and strongly
connected, i.e., each receiver can be reached by any other
receiver in the network over multiple hops. Each receiver r
has a neighborhood set Nr that contains all receivers that
can exchange data with receiver r including receiver r itself.
Moreover, each receiver r is located at a fixed Cartesian
position denoted by xr = (xr, zr), r = 1, . . . , NR with the
x- and z-coordinate. Fig. 1 illustrates the seismic network for
a line topology common in 2D seismic surveys.

N3 = {2, 3, r}

1 2 3 r NR

Fig. 1: Network of NR nodes with neighborhood set N3 of node 3.

B. Distributed kernel-based regression of time residuals

To obtain a subsurface model m the residuals τr =
Tsyn,r(m) − Tobs,r of all receivers are decisive. If these are
available locally at each receiver r, the adjoint state λ in
(3) and the gradient m∆ in (5) can be computed locally
and by that, a tomographic model update can be performed.
To make these time residuals accessible by each receiver
we use a distributed regression scheme that provides each
receiver with an approximation of the time residuals only by
data exchange among connected receivers. The distribution
of time residuals over the receiver position xr is highly
nonlinear. Thus, we employ the kernel distributed consensus-
based estimation (KDiCE) algorithm proposed in [15] that
enables a distributed regression of nonlinear functions.

In kernel-based regression a linear combination of kernels
κ(·, ·) is used to approximate a nonlinear function. Among
various kernels the Gaussian kernel is the most popular one
due to its universal approximation property [16]. For two
input samples x1 and x2 the Gaussian kernel is defined
as κ(x1,x2) = exp

(
−||x1 − x2||22/(2σ2)

)
where σ is the

bandwidth that controls the width of the kernel shape. To ap-
proximate a nonlinear function, a linear combination of kernel
evaluations for a set of input samples is used. In our case,
the input samples are the receiver positions {xr}NR

r=1. Then a
kernel-based approximation at input x is performed via the
inner product g(x)Tw where w ∈ RNR contains combination
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weights and g(x) = [κ(x,x1), . . . , κ(x,xNR)]
T ∈ RNR con-

sists of kernel evaluations between a position x and receiver
positions {xr}NR

r=1.
The quantity to be approximated at each receiver is the

vector of all residuals in the network: τ = [τ1, τ2, . . . , τNR ]
T ∈

RNR . To apply kernel-based regression for the distributed
approximation of τ , we introduce a weight vector wr ∈ RNR

per receiver r. This weight vector defines the receiver-specific
combination weights for the regression, i.e., each receiver ob-
tains its own approximation of the time residuals τ . Following
[15] we formulate the distributed regression problem

{w⋆
r |r ∈ R} = argmin

{wr|r∈R}
||τ −Gwr||22 (8a)

s.t. wr = wℓ, r ∈ R, ℓ ∈ Nr. (8b)

Matrix G ∈ RNR×NR is a symmetric Gram matrix where the
r-th row is the vector g(xr)

T = [κ(xr,x1), . . . , κ(xr,xNR)]
with r = 1, . . . , NR. Problem (8a) aims at approximating τ
in the least-squares sense via adaptation of wr. The matrix-
vector product Gwr then gives an approximation of the
residuals τ . Constraint (8b) enforces equality between weights
of receiver r and of neighboring receiver ℓ. It is a consensus
constraint ensuring that all weight vectors converge to the
same solution. Problem (8) can be solved with the KDiCE
algorithm proposed in [15]. It is based on the alternating di-
rection method of multipliers (ADMM) to achieve a distributed
solution of wr. The algorithm consists of the following update
equations (see [15] for the derivation):

z[k+1]
r =

ε

|Nr|
∑
ℓ∈Nr

w
[k]
ℓ

ε
− u

[k+1]
ℓr , (9a)

u
[k+1]
rℓ = u

[k]
rℓ −

(
w[k]

r − z
[k+1]
ℓ

)
/ε, (9b)

w[k+1]
r =

[
g(xr)g(xr)

T +
|Nr|
ε

INR

]−1

×(
Tobs,rg(xr) +

∑
ℓ∈Nr

z
[k+1]
ℓ

ε
+ u

[k+1]
rℓ

)
. (9c)

Parameter ε > 0 is a positive step size of the ADMM that
controls priority to achieving consensus in the network. Vari-
able z

[k]
r is an auxiliary variable that acts as an intermediate

estimate of the weight vector w
[k]
r while u

[k]
ri is a Lagrange

multiplier that ensures convergence to a consensus solution
over the network. In each iteration k, receiver r needs to
exchange variables zk

r ,w
[k]
r and u

[k]
ri with receivers in its

neighbor set Nr. With (9a) - (9c) all weight vectors wr

converge to the central least squares solution of (8a). After
obtaining weight vectors w

[k]
r , we can approximate the time

residuals in τ via τ̂ r = Gw
[k]
r per receiver r. With the

approximated time residuals, each receiver r is now able to
compute a gradient m∆,r and update its subsurface model mr

locally. For parameter selection, the kernel bandwidth σ needs
to be small enough to capture variations of the residuals over
the receiver positions. Here, values in the range of σ = 1 give
a sufficient approximation. For step size ε in ADMM, values in
the area of 100 are necessary to give a good regression. Lower
values give priority to satisfying the consensus constraint first,
cf. (9b), and might slow down convergence.

Algorithm 1 Distributed Traveltime Tomography (D-TOMO)

1: Set parameters σ, ε, µ, ν

2: Initialize starting models m
[0]
1 = m

[0]
2 = . . . = m

[0]
NR

3: for TOMO iteration k ← 1, NTOMO do
4: for receiver r ← 1, NR do
5: Get traveltimes Tsyn,r per source with (2)
6: Get residual τr = Tsyn,r − Tobs,r per source
7: end for
8: for source s← 1, NS do ▷ Distributed regression
9: for KDiCE iteration [k]← 1, NKDiCE do

10: Compute z
[k]
r per receiver, exchange with Nr

11: Compute u
[k]
rℓ per receiver, exchange with Nr

12: Compute w
[k]
r per receiver, exchange with Nr

13: end for
14: for receiver r ← 1, NR do
15: Approximate residuals τ̂ r = Gw

[NKDiCE]
r

16: Store residuals τ̂ r per source
17: end for
18: end for
19: for receiver r ← 1, NR do ▷ Local model update
20: Compute adjoints λr,s per source with (3) and (4)
21: Compute gradient m∆,r with (10a)
22: Update model: m[k+1]

r = m
[k]
r − µ ·m∆,r

23: end for
24: end for
25: return Local model m[NTOMO]

r ,∀r ∈ R

C. Receiver-specific traveltime tomography

We now describe the key steps of the proposed algorithm
with the pseudo-code summarized in Algorithm 1. Based on
the cooperatively estimated residuals τ̂ r we can compute a
local adjoint state variable λr,s(x) for each shot position xs at
receiver r. Each receiver computes a traveltime map Tsyn,r(x)
over the complete domain Ω based on its local subsurface
model mr. For the initial state we need to assume a starting
model for mr, e.g. a vertical gradient between a minimum
and maximum velocity. Then each receiver determines its local
time residual τr = Tsyn,r−Tobs,r and the distributed regression
of these residuals is performed following (9a) - (9c). After that,
each receiver initializes its adjoint state variable λr according
to (4) where the right-hand side of the equation now employs
the estimated time residuals τ̂ r. Then the complete adjoint λr

is computed using the fast sweeping algorithm as detailed in
[10]. For multiple source positions, we compute one adjoint
state variable λr,s per source s. Then for NS sources gradient
computation and local model update per receiver r follow

(I − ν∆)m∆,r = −
NS∑
s=1

λr,s

m3
r

, (10a)

m[k+1]
r = m[k]

r − µ ·m∆,r. (10b)

After the local model update, each receiver synthesizes new
traveltimes Tsyn,r(x) and updates its local residual τr. This
initiates a new cycle with a distributed regression of traveltime
residuals and a local tomography update. To guarantee stable
convergence, step size µ needs to be chosen according to



4 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. XX, NO. XX, JUNE 2022

(a) True velocity model
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Fig. 2: (a) True velocity model and (b) background velocity as starting model.

the underlying P -wave velocity model. Since values in the
gradient m∆,r can be very small, normalization to [−1, 1] is
helpful. Then µ can be in the range of 100 - 500 if P -wave
velocities reach several 1000m/s. For ν we found that values
in the range of [103, 106] give good results for the gradient.

IV. NUMERICAL EVALUATION

A. Synthetic elliptic velocity model

We show numerical results of our proposed distributed
tomography (D-TOMO) algorithm for synthetic traveltime
data. To this end, we generate an isotropic subsurface model
for the P -wave velocity that contains an elliptic anomaly
while the background consists of a vertical velocity gradient
from 1−1.5 km/s, see Fig. 2a. For the starting model we
use the background velocity with the vertical gradient, see
Fig. 2b. Each receiver in the network has the same starting
model available locally. To image the subsurface we use
a line array of NR = 20 receivers and NS = 20 shot
positions. Each receiver is connected to a maximum of two
neighboring receivers, i.e., only the first and last receiver in
the line topology have one neighbor to their left- and right-
hand side. All receivers and sources are located on the surface
z = 0m. For the numerical implementation we use a finite-
difference scheme with a grid-spacing of ∆x = ∆z = 1m.
We compare D-TOMO to its central variant (TOMO). For
both methods we use NTOMO = 20 iterations where D-
TOMO uses an additional NKDiCE = 100 iterations in each
cycle for the distributed regression of the residuals τ . This
number of iterations for KDiCE was necessary to obtain a
good regression of the residuals. A lower number would lead
to worse imaging results. However, since the regression is done
in each tomography iteration, this number directly influences
the communication load within the network. Furthermore, we
normalize the gradient in the model update (7) to [−1, 1] and
use an exponentially decaying step size over the iterations
starting at µ = 250. In the distributed regression stage, we
set ε = 100 and the kernel bandwidth to σ = 1. For gradient
computation in (6) we set ν = 106.

Fig. 3 depicts the imaging results at three receivers in the
line array. As reference, we show the image of the centralized
tomography. The images by D-TOMO are very close to the
central result. For receiver 1 and 20 slight deviations can be
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Fig. 3: Imaging results of D-TOMO at receivers 1, 10, 20 in the line array and
image of centralized tomography as reference after NTOMO = 20 iterations.

(a) NTOMO = 5

5 10 15 20

−2

−1

0

1

·10−2

Rec. index r

τ r
in

s

(b) NTOMO = 20

5 10 15 20

−5

0

5

·10−3

Rec. index r

τ r
in

s

Est.
True

Fig. 4: True and estimated time residuals of 10 receivers in the line array
after 5 and 10 iterations.

observed due to having only one neighboring receiver. Never-
theless, their imaging result is still remarkably close to the cen-
tral result. This is also reflected in the similar misfit numbers
that compares the estimated model to the true one computed
via NMSE = 1

NR

∑NR

r=1 ||m
[k]
r − mtrue||22/||mtrue||22. Fig. 4

depicts the estimated and true time residuals over the receiver
index for 10 receivers after 5 and 20 iterations. In both cases,
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Fig. 5: Cost (left) and normalized misfit (right) of distributed (D-TOMO) and
centralized tomography (TOMO).
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(a) True velocity model
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Fig. 6: (a) True velocity model and (b) background velocity as starting model.
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Fig. 7: Imaging results of D-TOMO at receivers 1, 10, 20 in the line array and
image of centralized tomography as reference after NTOMO = 20 iterations.

the residuals are estimated with high accuracy for receivers
lying in the middle of the array. For residuals at the borders
of the array the approximation degrades. This is due to a
decreasing network connectivity where residuals are not taken
into account in the regression process with the required signifi-
cance. After 20 iterations the network achieves consensus over
the estimated residuals in contrast to 5 iterations. Fig. 5 shows
the cost and normalized model misfit of both methods over the
iteration k. For both curves the performance of D-TOMO lies
very close to that of TOMO. The results demonstrate that D-
TOMO successfully achieves images close to the centralized
result although time residuals are not estimated perfectly.

B. EAGE/SEG salt model

As another example we investigate the SEG/EAGE salt
model which serves as benchmark model in seismic imaging.
We slice out a 2D section of the 3D model and adapt it
to distances over meters to obtain a near-surface model, see

Fig. 6a. For the imaging we use the same setup as before.
However, we change the initial value of the step size to
µ = 200 and set ν = 104. As starting model we again assume
a vertical velocity gradient resembling the background of the
true model, see Fig. 6b. The imaging results can be seen in
Fig. 7. Since TT relies on first-arrival traveltimes we cannot
expect highly resolved images. Therefore, the images appear
rather blurry. Nevertheless, we observe that D-TOMO obtains
images close to the centralized result, in particular for the
middle receiver r = 10. At the first and last receiver, again
deviations can be observed due to low graph connectivity.

V. CONCLUSION

We propose a distributed traveltime tomography to obtain
initial P -wave velocity models of a subsurface at each receiver
in a seismic network. We demonstrate that distributed imaging
results of a synthetic model and the EAGE/SEG salt model by
our method are close to the centralized result. Therefore, our
proposed method can be used to obtain a P -wave velocity
model at each receiver that serves as starting model for a
distributed full waveform inversion such as the ATC-FWI [8].
However, since our method relies on traditional TT, the same
imaging limitations of TT apply to our method and images are
rather limited in spatial resolution.
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