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In order to achieve a more simulation-based design and certification process of jet engines
in the aviation industry, the uncertainty bounds for computational fluid dynamics have to be
known. This work shows the application of machine learning to support the quantification
of epistemic uncertainties of turbulence models. The underlying method in order to estimate
the uncertainty bounds is based on eigenspace perturbations of the Reynolds stress tensor in
combination with random forests.

I. Introduction
As a compromise between computational time and accuracy, Reynolds-averaged Navier-Stokes (RANS) simulation is

still the workhorse in industrial design of turbomachinery, since the replacement of RANS by scale-resolving simulations,
e.g. direct numerical simulations (DNS) or large eddy simulations (LES) cannot be expected for design optimization
simulations in the next years. The derivation of the RANS equations reveals an unclosed term, called the Reynolds stress
tensor. This tensor has to be approximated in Computational-Fluid-Dynamics (CFD) simulations by applying turbulence
models. The prediction accuracy of the simulation is highly dependent on these kinds of models, which compute the
effect of turbulence flow physics on mean flow quantities. Although RANS-based models, such as linear eddy viscosity
models (LEVM), are widely used for complex engineering flows, they suffer from the inability to replicate fundamental
turbulent processes. Turbulence models are one of the main limitations in striving for reliable, environmentally friendly
designs, due to general simplifying assumptions during formulation of closure models. These simplifications are the
result of data observation and physical intuition, leading to a significant degree of epistemic uncertainty.

In recent years, the interest in uncertainty quantification (UQ), leading to more reliable simulation results, has
grown. Different approaches try to account for the uncertainty of the turbulence model at different modelling levels [1].
Generally, one distinguishes between parametric and non-parametric approaches. While the parametric uncertainties
arise from the chosen closure coefficients and their calibration process, non-parametric methodologies directly investigate
the uncertainties on modeled terms in the transport equations of the turbulence model. It is expected, that the possible
solution space, with respect to the uncertainty of the turbulence model, is larger for the non-parametric approaches [2].
The group of Professor Iaccarino proposed an eigenspace perturbation framework, which is based on the inability of
common LEVM to deal with Reynolds stress tensor anisotropy [3, 4]. This methodology belongs to the non-parametric
approaches, since it tries to account for the uncertainty due to the closure model form itself. The emergence of machine
learning strategies guided the path towards data driven approaches also for the turbulence modelling community [1].
Heyse et al. enhanced the uncertainty estimation based on the eigenspace perturbation approach by adding a data-driven
method [5]. In our previous work, we already demonstrated the possibility to use this data-driven perturbation approach
for the eigenvalues of the Reynolds stress tensor and validated our implementation [6]. DNS data of a turbulent
channel flow was used to train a machine learning model and its enhancement in relation to a data-free method for
the quantification of uncertainties was evaluated. As soon as it gets to industrial design applications, more complex
flow phenomena, such as flow separation due to adverse pressure gradient and reattachment, emerge. Additionally, the
prediction accuracy of RANS turbulence models is significantly reduced in the presence of these flow phenomena.

In order to obtain a more robust and trustworthy quantification of uncertainties for future design application, we
investigate this recent data-driven extension for flow configurations featuring flow separation with DLR’s CFD solver
suite TRACE . TRACE is being developed by the Institute of Propulsion Technology with focus on turbomachinery
flows and offers a parallelized, multi-block CFD solver for the compressible RANS equations [7]. We present the
functionality of the eigenspace perturbation methodology and present its implementation.
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To further advance the data-driven methodology towards relevant turbomachinery flows, additional data sets from
scale-resolving simulations of relevant test cases will serve as training a machine learning model. These test cases
include flow physics, such as adverse pressure gradient, separation and reattachment. We will explain the machine
learning approach and the verification of the trained model in detail. Finally, the data-driven perturbation approach to
estimate the epistemic uncertainty of turbulence models is applied for an airfoil test case featuring a small separation
zone on the suction surface.

II. Eigenspace perturbation framework

A. Motivation and goal
RANS turbulence models are utilized in order to determine the Reynolds stress tensor 𝜏𝑖 𝑗 = 𝑢′𝑖𝑢

′
𝑗

in terms of mean
flow quantities 𝑢𝑖 = 𝑈𝑖 = 𝑢𝑖 − 𝑢′𝑖 . The motivation for injecting perturbations to the eigenspace of the Reynolds stress
is the inability of LEVM to account correctly for the anisotropy of Reynolds stresses. This is due to the Boussinesq
assumption, approximating the turbulent stresses in similar manner to the molecular viscous stresses. The Boussinesq
approximations reads

𝜏𝑖 𝑗 = −2𝜇𝑡
(
𝑆𝑖 𝑗 −

1
3
𝜕𝑢𝑘

𝜕𝑥𝑘
𝛿𝑖 𝑗

)
+ 2

3
𝑘𝛿𝑖 𝑗 , (1)

where the turbulent kinetic energy is defined as 𝑘 = 1
2𝜏𝑘𝑘 and summation over recurring indices within a product is

implied. The strain-rate tensor is denoted as 𝑆𝑖 𝑗 and the eddy viscosity, which derived from the transport equations of
the turbulence model, is represented by 𝜇𝑡 .

Based on the epistemic uncertainty, which is introduced into turbulence models by choosing the actual closure
model [1], the perturbation approach tries to derive and quantify the effects on quantities of interest (QoI), e.g. the
pressure field, by modifying the anisotropy of turbulence within physical limitations. The implemented framework for
uncertainty quantification of turbulence models seeks to sample from solutions, which are the result of perturbed states
of the Reynolds stress tensor. In this manner a CFD practitioner may get the chance to estimate the sensitivity of some
QoI regarding the uncertainty bounds of the turbulence model. In the following section we explain how to obtain a
perturbed state of the Reynolds stress tensor and how to apply machine learning in order to get a better uncertainty
prediction.

B. Data-free approach
The symmetric Reynolds stress tensor can be expressed by applying an eigenspace decomposition as

𝜏𝑖 𝑗 = 𝑘

(
𝑎𝑖 𝑗 +

2
3
𝛿𝑖 𝑗

)
= 𝑘

(
𝑣𝑖𝑛Λ𝑛𝑙𝑣 𝑗𝑙 +

2
3
𝛿𝑖 𝑗

)
. (2)

Equation (2) includes the split into the anisotropy tensor 𝑎𝑖 𝑗 and the isotopic part of 𝜏𝑖 𝑗 . The eigenspace decomposition
provides the eigenvector matrix 𝑣 and the diagonal eigenvalue matrix Λ, where the eigenvalues represent the shape
and the eigenvectors the orientation of the tensor. Emory et al. [3] propose a strategy to perturb the eigenvalues and
eigenvectors in equation (2), resulting in a perturbed state of the Reynolds stress tensor

𝜏∗𝑖 𝑗 = 𝑘

(
𝑣∗𝑖𝑛Λ

∗
𝑛𝑙𝑣

∗
𝑗𝑙 +

2
3
𝛿𝑖 𝑗

)
. (3)

The eigenvalue perturbation (determining Λ∗) makes use of the fact, that every physical, realizable state of the Reynolds
stress tensor can be mapped onto barycentric coordinates

x = x1𝐶
1
2
(𝜆1 − 𝜆2) + x2 (𝜆2 − 𝜆3) + x3𝐶

1
2
(3𝜆3 + 1) with 𝜆1 ≥ 𝜆2 ≥ 𝜆3 , (4)

which is essentially a linear transform according to x = B𝝀 (𝝀 being a vector containing the three eigenvalues 𝜆𝑖)
[8]. Figure 1(a) shows the three limiting states of the Reynolds stress tensor, represented by the one-, two- and
three-component (isotropic) turbulent state (1C, 2C and 3C) in the corners of the triangle (x1C, x2C, x3C). Thus, Professor
Iaccarino’s group [4] defined the eigenvalue perturbation as a shift in barycentric coordinates towards each of the
limiting states to location x∗, according to

x∗ = x + Δ𝐵
(
x(𝑡) − x

)
. (5)
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The relative distance Δ𝐵 ∈ [0, 1] controls the magnitude of eigenvalue perturbation towards the corner state x(𝑡) ∈
{x1C, x2C, x3C}. The perturbed eigenvalues 𝜆∗

𝑖
can be remapped by

𝝀∗ = B−1x∗ . (6)

.

.

(a) Relation between unperturbed and perturbed state

x

x2C x1C

x3C

x∗
Δ𝐵 = x∗−x

x2C−x

.

.

(b) Definition and usage of perturbation strength

x
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𝑝

Fig. 1 Schematic representation of the eigenvalue perturbation approach

The creation of the perturbed eigenvector matrix 𝑣∗ is purely motivated by manipulating the turbulent production
term 𝑃𝑘 = −𝜏𝑖 𝑗 𝜕𝑢𝑖𝜕𝑥 𝑗

. Changing the alignment of the eigenvectors of the Reynolds stress tensor and the strain rate tensor
𝑆𝑖 𝑗 limits the production term to a maximum and minimum value [4]. Maximum turbulent production is obtained by
not changing the eigenvectors of the Reynolds stress tensor, meaning that they are identical to the eigenvectors of the
strain rate tensor 𝑣𝑘𝑆𝑖 𝑗 due to the Boussinesq assumption in Equation (1). Commuting the first and the last eigenvector
of the Reynolds stress tensor leads to minimum turbulent production:

𝑣max =

(
𝑣1𝑆𝑖 𝑗 𝑣2𝑆𝑖 𝑗 𝑣3𝑆𝑖 𝑗

)
→ 𝑃𝑘max

𝑣min =

(
𝑣3𝑆𝑖 𝑗 𝑣2𝑆𝑖 𝑗 𝑣1𝑆𝑖 𝑗

)
→ 𝑃𝑘min

(7)

When combining the eigenvalue and eigenvector perturbation, not only the shape of the Reynolds stress ellipsoid is
modified but also the relative alignment with the principle axes of the mean rate of the strain rate tensor is changed
(orientation). In should be noted, that targeting the 3C turbulent state with Δ𝐵 = 1 results in identical eigenvalues and
consequently the eigenvector matrix cancels out with its inverse. That is the reason, why there will be no distinction
between minimized and maximized turbulent production.
To sum up, the perturbation framework promises to only need five distinct simulations ∈ {(1C, 𝑃𝑘max ), (1C, 𝑃𝑘min ),
(2C, 𝑃𝑘max ), (2C, 𝑃𝑘min ) and 3C}, in order to get the entire information with reference to the epistemic uncertainty of the
underlying turbulence model, if Δ𝐵 = 1 is chosen.

C. Data-driven approach
The data-free approach is a purely physics-based methodology, aiming for understandable uncertainty bounds for

the turbulence modelling community. One of the major drawbacks of the proposed method is the fact, that a user has to
choose the degree of uncertainty by selecting Δ𝐵 before each investigation. The perturbation amplitude, closely related
to the degree of uncertainty, has only to become significant in flow regimes, which contravene the assumptions made in
the formulation of the turbulence model. Thus, enabling a spatially varying perturbation of the Reynolds stress tensor
seems to be worthwhile.

Heyse et al. propose a strategy to combine a random forest model with the forward eigenvalue perturbation approach
[5]. Physical flow features are extracted to train a machine learning model in order to predict the local perturbation
strength

𝑝 = |xData − xRANS | = |x∗RANS − xRANS | , (8)
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as illustrated in Figure 1(b). Forward propagating CFD simulations follow training the model, where the predicted
perturbation strength is used to modify the Reynolds stress towards the same three limiting states as in the data-free
approach. We combine the data-driven enhancement of the anisotropy tensor perturbation with the data-free manipulation
of the eigenvectors of the Reynolds stress tensor, as already described above.

1. Choice of machine learning model
The general concept of machine learning is to approximate the relationship between input quantities (features) and

output quantities (targets) to make prediction under similar conditions. There are multiple approaches to approximate
these relationships. For the sake of interpretability and usability, decision trees are chosen to be the machine learning
model in the presented work. Decision trees (also called regression trees for solving regression problems) learn binary
rules (if/else decision rules) to predict target values based on given features [9]. Decision trees tend to overfitting, which
means that the model is not able to generalize. A machine learning model is able to generalize, if it performs adequate
predictions based on a feature space, that is different than the feature space of the training data. Machine learning
models, which are prone to overfitting feature a high variance. The potential accuracy of a machine learning model is
also dependent on its bias, which is characterized by the difference between the averages of the predictions and the true
values. An inflexible model is not capable to fit the total number of data sufficiently, which is determined as a high
bias of the model. The fact, that an increasing flexibility (lower bias) comes along with worse generalization (high
variance), is known as the bias-variance trade-off. This trade-off describes the aim to choose a machine learning model,
that simultaneously has low variance and low bias [10, 11]. Random forests are based on a number of uncorrelated
regression trees and offer the possibility to handle the bias-variance trade-off, while enabling powerful predictions [11].
For this reason, we have chosen to use this ensemble learning technique. Instead of just averaging the prediction of
individual regression trees, a random forest makes use of two essential key concepts:

• Bootstrapping: Random sampling (with replacement) of the training data for each individual tree, i.e. each tree is
trained on a different data set with equal size.

• Feature Bagging: Random subsampling of features at each decision point (also known as split) for each tree, i.e.
every tree uses a different feature space at each binary decision.

In combination with bootstrap aggregation (bagging), which implies averaging the prediction of a number of bootstrapped
regression trees, the variance is reduced and overfitting is avoided [12]. In this work, the python library scikit-learn [13]
is used to train the random forests and evaluate their predictions.

2. Choice of flow features
Selecting of input features, which are relevant for predicting more accurate perturbation magnitude 𝑝, is critical for

turbulence modelling purposes. It has to be ensured, that the chosen feature list represents physical significance in terms
of the desired target quantity. Wang et al. [14] identified four raw quantities

𝑄 = (S,𝛀,∇𝑝,∇𝑘) (9)

to be a reasonable choice as input data for conducting machine learning based on the LEVM. The two raw input tensors
S, 𝛀 represent the strain rate and the rotation rate, while ∇𝑝 and ∇𝑘 are the gradients of pressure and turbulent kinetic
energy. In our work, we apply 𝑄 as well, and make use of the normalization scheme, derived by Ling et al. [15]. A
normalization factor 𝛽 and the absolute value of each element 𝛼 of 𝑄 according to

𝛼̂ =
𝛼

|𝛼 | + |𝛽 | , (10)

lead to the determination of the non-dimensional raw flow features, which are presented in Table 1.
In order to determine the invariant feature basis of the raw flow features, Wang et al. [14] make use of the Hilbert

basis theorem. This theorem states, that a finite number of invariants belongs to each minimal integrity basis for a finite
tensorial set [16]. In this manner the minimal integrity basis amount to 47 invariants, which are in the following used as
input features for training and evaluating the random forest. We add additional physical meaningful flow features to this
exhaustive list of features based on domain knowledge and physical intuition. The additional raw input features, which
are presented in Table 2, can be computed by providing the turbulent kinetic energy 𝑘 , the specific turbulent dissipation
rate 𝜔, the molecular viscosity 𝜇, the eddy viscosity 𝜇𝑡 , the distance to the nearest wall 𝑑, the local Mach number
𝑀𝑎, the mean velocity𝑈𝑖 and its gradient tensor and the mean pressure 𝑝 and its gradient vector. The normalization
procedure is retained in accordance to Equation (10). Thus, a total number of 56 input features is used for training and
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Table 1 Raw flow features for constructing the invariant basis

Description Normalized input 𝛼̂ raw input 𝛼 normalization factor 𝛽

Strain rate Ŝ S 𝜔

Rotation rate 𝛀̂ 𝛀 | |𝛀| |
Pressure gradient ∇̂𝑝 ∇𝑝 𝜌 | |U · ∇U| |

Turbulent kinetic energy gradient ∇̂𝑘 ∇𝑘 𝜔
√
𝑘

Table 2 Physical flow features

Numbering Description raw input 𝛼 normalization factor 𝛽

𝑞1 Q-criterion 1
2
(
| |𝛀| |2 − ||S| |2

)
| |S| |2

𝑞2 Turbulent kinetic energy 𝑘 1
2𝑈𝑖𝑈𝑖

𝑞3 Wall-distance based Reynolds Number min
(√
𝑘𝑑

50𝜈 , 2
)

-

𝑞4 Pressure gradient along streamline 𝑈𝑘
𝜕𝑝

𝜕𝑥𝑘

√︃
𝜕𝑝

𝜕𝑥 𝑗

𝜕𝑝

𝜕𝑥 𝑗
𝑈𝑖𝑈𝑖

𝑞5 Ratio of turbulent time scale to mean strain time scale 1
𝜔

1
| |S | |

𝑞6 Production term 𝑃𝑘 𝑘𝜔

𝑞7 Mach number 𝑀𝑎 -

𝑞8 Eddy viscosity 𝜇𝑡 𝜇

𝑞9 Ratio of total to normal Reynolds stresses | |𝑢′
𝑖
𝑢′
𝑗
| | k

evaluating the random forests. Lastly, when adjusting the input features for training and evaluating the machine learning
model, each feature is standardized by removing the mean and scaling to unit variance by applying a standard scaler
preprocessing functionality of scikit-learn [13].

D. Integration of UQ computation in CFD solver suite TRACE

1. Implementation
The aim of running a CFD simulation with a perturbed Reynolds stress tensor is to obtain a new perturbed solution.

For smooth and time-efficient simulations, it is advisable to start the perturbation from a sufficiently converged baseline
RANS simulation (baseline means standard unmodified turbulence model). Mishra et al. [17] apply a factor to march
the solution based on the perturbed Reynolds stress tensor to a fully converged state. In our implementation, we stick to
the notation and use a factor 𝑓 for the reconstruction of Reynolds stresses in order to be able to achieve fully converged
perturbed solutions. We discuss the necessity and the effect of this factor in II.D.2. The perturbation of the Reynolds
stress tensor was implemented to the existing C code of TRACE and can be subdivided in several steps within each
pseudo-time step of steady simulations:

1) Calculation of Reynolds stresses based on Boussinesq approximation in Equation (1)
2) Determination of anisotropy tensor (see Equation (2))
3) Perturbation of anisotropy tensor within physical realizable limits by selecting Δ𝐵 (see Equation (5)) and whether

the turbulent production term should be minimized or maximized (see Equation (7)).
4) Reconstruction of perturbed Reynolds stress tensor according to

𝜏∗𝑖 𝑗 𝑓 = 𝜏𝑖 𝑗 + 𝑓

[
𝑘

(
𝑎∗ + 2

3
𝛿𝑖 𝑗

)
− 𝜏𝑖 𝑗

]
, (11)

where 𝑓 ∈ [0, 1] is the described moderation factor, adjusting the total amount of newly perturbed anisotropy
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tensor to be considered.
5) Update of the viscous fluxes using perturbed Reynolds stresses explicitly
6) Update of the turbulent production term 𝑃𝑘 = −𝜏𝑖 𝑗 𝜕𝑢𝑖𝜕𝑥 𝑗

using the perturbed Reynolds stresses explicitly

input files

geometry + mesh

solver settings

configuration files

in case of ML:
- baseline RANS
solution

python script

Prepare setup
- adjust UQ parameters
(Δ𝐵, 𝑓 , target state)

create simulation directories

start TRACE
for n timesteps
or until convergence

check for convergence/
termination/failure

evaluate model in case of ML

UQ module in TRACE solver iterations

every time step in each cell

Determine Reynolds stresses
based on Boussinesq

Eigenspace decomposition
of anisotropy tensor

Reconstruct perturbed
Reynolds stresses

Update viscous flux
and turbulent production

RANS update

perturbed
solution

next eigenspace perturbation

convergence

Fig. 2 Implementation of the UQ framework within CFD solver suite TRACE

TRACE has a python interface available, called pyTRACE [18], which can be used to conduct a full set of perturbed
simulations and sample the results of QoI. In case of applying a data-driven perturbation of the Reynolds stresses, the
python script takes also charge of evaluating a previously in preprocessing trained machine learning model based on
extracted mean flow quantities. The high-level python script takes input parameters, containing information regarding
the geometry, mesh resolution and additional solver settings. Furthermore, the set of intended perturbed simulations
is set up, including selecting the turbulence limit state (x(𝑡) ∈ {x1C, x2C, x3C}), the relative distance Δ𝐵 ∈ [0, 1], the
alignment of the Reynolds stress eigenvectors with the strain rate tensor (𝑣min or 𝑣max) and the moderation factor
𝑓 ∈ [0, 1], as described earlier. As illustrated in Figure 2 the integration of the UQ module in the TRACE simulation
run is conducted every time step (steady simulation) in each cell of the computational domain. When the converged
perturbed solution is reached, the python script takes charge of setting up the next desired perturbation.

2. Discussion about restriction of perturbation framework
The eigenspace perturbation methodology, presented in II, is solely motivated on quantifying the epistemic uncer-

tainties of LEVM due to the inaccurate account for anisotropic flow phenomena. Professor Iaccarino’s group [3, 4, 17]
designed this method based on the mathematical derivations of Lumley [19] and Banerjee [8]. These derivations map
the states of the Reynolds stress tensor, when it features one, two or three non-zero eigenvalues, onto corners of a
constructed triangle, called the barycentric triangle. These states are described to be the extremal states of the Reynolds
stress tensor, since the turbulence is only present in one, two or three directions - the corresponding directions of the
eigenvectors.
A CFD practitioner is interested in getting to know the effect of the turbulence model uncertainty on certain QoI, which
is relevant for the design. However, the relation between the one-, two-, and three-component corner of the Reynolds
stress tensor and some QoI is anything but linear. As a consequence, modifying/perturbing the turbulent state of the
Reynolds stress tensor towards the corners does not necessarily lead to an extremal state of QoI. Thus, one can only state
that the perturbation framework seeks to estimate the uncertainty bounds of some QoI.
Nonetheless, we analyzed the relation of barycentric coordinates and QoI for selected flow cases by sampling points
inside the barycentric triangle and propagating the perturbed Reynolds stress tensor in an earlier preinvestigation (not
shown here). Therefore, assessed against currently available data, we agree on the fact, that the corners of the barycentric
coordinate produce adequate estimate of the uncertainty bounds in most of the flow regions. Although, there might be
areas of the flow solution, where the extremal state of turbulence is not corresponding to the extremal state of some QoI.
This observation will be also discussed in the application section (see V).
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Additionally, we would like to discuss the effect of the moderation factor 𝑓 , which was already introduced by Mishra
et al. [17]. The goal of 𝑓 is to achieve a converged simulation based on the perturbation approach. We can agree on the
fact, that this factor is needed for convergence issues, since some perturbed states tend to be unstable. Understandably,
this is the case, for perturbations seeking to decrease the turbulent production term, when aiming for 𝑃𝑘min and/or 3C.
Nevertheless, it is shown in Appendix, that the moderation factor is actually a moderation factor for the prescribed Δ𝐵
in case of purely perturbing the eigenvalues of the anisotropy tensor. Generally speaking, Equation (11) reveals, that
using 𝑓 ≤ 1, helps to stabilize the CFD-simulation, by weakening the effect of perturbation (whether or not eigenvectors
are modified).
Accordingly, users are encouraged to not only stating the prescribed Δ𝐵 but also the factor 𝑓 . Moreover, regardless of the
fact, that damping the effects of the actual perturbation (eigenvalues and eigenvectors) is necessary in certain cases, the
interpretability of the limiting states of turbulence, represented by the corners of the barycentric triangle, gets weaker.

E. Data sets for training, testing and applying the machine learning model
As already described in I, the final well-trained machine learning model should be sensitive to flow phenomena

such as adverse-pressure gradient, separation and reattachment due to the known shortcomings of the LEVM in these
regions. Consequently, it is reasonable to use data sets for training, which contain these flow situations as well. We
are continuously striving for extending our database, which contains various flow cases for machine learning. For the
presented worked, we used the following flow cases:

• DNS of turbulent channel flow at 𝑅𝑒𝜏 ∈ {180, 550, 1000, 2000, 5200} based on Lee and Moser [20]
• DNS at 𝑅𝑒𝐻 ∈ {2800, 5600} and LES at 𝑅𝑒𝐻 = 10595 of periodic hill flow based on Breuer et al. [21]
• DNS of wavy wall flow at 𝑅𝑒𝐻 = 6850 based on Rossi [22]
• DNS of converging-diverging channel flow at 𝑅𝑒𝜏 = 617 based on Marquillie et al. [23]
All the DNS and LES data of the described test cases are generated using incompressible solvers. In order to

simulate these incompressible flows using the compressible solver TRACE without a low-Mach preconditioning, the
simulations are scaled (adapting dimensions of the geometry and/or molecular viscosity) to an incompressible Mach
number of about 0.1, while preserving the intended Reynolds numbers. The two-equation, linear eddy viscosity Menter
SST 𝑘 − 𝜔 turbulence model is selected as the baseline model for all conducted RANS simulations [24]. In order to
obtain steady state solutions, an implicit time marching algorithm is applied. A flux difference splitting approach is
employed to discretize the convection terms making use of a second order accurate Roe scheme in combination with
MUSCL extrapolation.
To evaluate proper features as input parameters based on the RANS simulations of the listed flow cases, we conducted a
mesh convergence study for each of these. Although the mesh convergence studies are not presented here due to the
scope of the paper, we affirm, that we only used RANS simulation data, which shows sufficient grid convergence using
a low-Reynolds resolution (𝑦+ ≤ 1) at solid walls. The perturbation magnitude 𝑝 can be determined accordingly to
Equation (8) by comparing scale-resolving and RANS solution. In order to generate that intended target quantity of the
random forest, the scale-resolving data has to be interpolated onto the RANS data points for every test case. Due to
numerical issues some RANS data samples may be located outside the barycentric triangle in terms of anisotropy tensor
(see Figure 1). Therefore, we included the opportunity to remove these samples from the training or testing sets. The
final application of the UQ perturbation approach is presented for the airfoil test case NACA 4412 at 𝑅𝑒𝑐 = 1.52 · 106.

1. Turbulent channel
Initially, the turbulent channel flow serves as proof of concept in our earlier publications (see [6]). Although, we are

more interested in more complex cases, the channel flow data serves as one of the key properties, what the model should
be able to recognize and predict: turbulent boundary layer with inaccurate anisotropy represented by the LEVM close
to the wall. The configuration for simulating the turbulent boundary layer is sketched in Figure 3. The characteristic
Reynolds number is defined by

𝑅𝑒𝜏 =
𝜌𝑢𝜏𝛿

𝜇
, (12)

where 𝛿 is the channel half-height and the friction velocity is known as 𝑢𝜏 =
√︁
(𝜏𝑤/𝜌) with 𝜏𝑤 = 𝜇 𝜕𝑈

𝜕𝑦
|𝑦=wall. The

turbulent channel flow is homogeneous in the streamwise direction 𝑥 and the spanwise direction 𝑧. A constant pressure
gradient 𝜕𝑃/𝜕𝑥 is applied to balance the skin friction at the wall. We use the available RANS grid cells in one half of
the channel at the five different Reynolds numbers as subsequent data points for training the random forest.
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Fig. 3 Turbulent channel flow simulation

2. Periodic hill
The flow over periodic hills features flow separation from curved surfaces, recirculation and a subsequent reattachment

on the flat bottom of the channel. Since the Reynolds number has a strong impact on the actual size of the separation
bubble, it is worthwhile to add three different Reynolds number flows to our training set. The Reynolds number based
on the bulk velocity𝑈𝐵, evaluated at the crest of the hill, and the hill height 𝐻 is defined as

𝑅𝑒 =
𝜌𝑈𝐵𝐻

𝜇
. (13)

For simulating the periodic hill configuration, periodic boundary conditions are applied as illustrated in Figure 4. A
constant pressure gradient 𝜕𝑃/𝜕𝑥 is applied to move the fluid through the configuration. The available scale-resolving
data sets of the periodic hill only contain data at certain slices (𝑥/𝐻 ∈ {0.05, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0}).
Consequently, the RANS solution is sliced at these locations accordingly. The scale-resolving data is interpolated onto
the wall-normal RANS data positions, in order to generate the desired target quantity for the machine learning model.
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Fig. 4 Schematic periodic hill setup
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3. Wavy wall
The wavy wall test case is confined by a plane wall and a wavy surface, which is sketched in Figure 5. In former

experimental settings, the desired flow situation was generated by stringing together multiple hills and valleys, described
by a cosine function. For the CFD simulations (DNS and RANS) periodic boundary conditions in streamwise direction
can be applied. In order to adjust the intended Reynolds number of 𝑅𝑒𝐻 = 6850, based on the bulk velocity and the
mean channel height evaluated on the hill crest (accordingly to Equation (13)), a constant pressure gradient 𝜕𝑃/𝜕𝑥 is
used. Since the available DNS data set is two-dimensional covering the entire domain size, we use all available RANS
grid cells as subsequent data points for training the random forest.

(a) Relative dimensions and sketch of the flow
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slip conditions/inviscid walls are applied in spanwise direction
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Fig. 5 Schematic wavy wall setup

4. Converging-diverging channel
The configuration of a converging followed by a diverging section is an ideal test case to investigate the effect of an

adverse pressure gradient with and without curvature. The flow separates slightly at the diverging part at the lower wall
but not on the flat top wall, as shown in Figure 6. Similar to the DNS, the inflow boundary conditions are derived from a
fully developed turbulent boundary layer at 𝑅𝑒𝜏 = 617. A constant mass flow rate is prescribed at the outflow of the
domain, which was derived based on the domain size and the bulk quantities of the streamwise velocity and density of
the inflow profile. Since the available DNS data set is two-dimensional as well, we are able to provide all available
RANS grid solution points as subsequent data points for training the machine learning model.

5. NACA 4412 airfoil
In order to demonstrate the application of the UQ framework with and without a machine learning model, the

near-stall NACA 4412 airfoil is chosen in the presented work. This test case is a NASA benchmark case for testing
turbulence models, featuring boundary layer separation close to the trailing edge. The operation condition of this airfoil
is a Reynolds number of 𝑅𝑒𝑐 = 1.52 · 106 based on the freestream velocity 𝑈inf and the chord length 𝑐 and a Mach
number based on𝑈inf of 𝑀𝑎 = 0.09 at an angle of attack of 13.87◦. The CFD results in this paper are compared against
the experimental measurements of Coles and Wadcock [25]. In order to minimize the effect of boundary conditions
on the CFD simulation results, far-field conditions are applied to prescribe the specified flow conditions (see Figure
7). A turbulence intensity of 0.086% and an eddy viscosity ratio 𝜇𝑡/𝜇 of 0.009 is prescribed in accordance with
the description of NASA [26]. The used mesh topology is the so-called C-grid featuring a grid cell resolution of
𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧 = 896, 256, 1, which can be downloaded NASA’s turbulence modeling resource database [26].
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Fig. 6 Schematic converging-diverging setup
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Fig. 7 Schematic NACA 4412 setup

III. Hyperparameter selection based on generalization study
Before the training of the final random forest regression model was conducted, the impact of four different

hyperparameters
• maximum tree depth: maximum number of decision nodes from the root down to the furthest node allowed
• minimum sample count: minimum number of data samples required at a decision node allowed
• maximum number of features: maximum number of features randomly chosen at each decision node allowed
• number of trees: total number of individual decision trees used
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on the accuracy is evaluated. Since the final trained model should be able to generalize for different geometries and flow
conditions, it seems to be reasonable to evaluate these hyperparameters with focus on the generalization capabilities of
the random forest. Therefore, three out of the four available training data sets (see II.E) are used for training, while the
remaining flow case is used to verify the model (see Table 3). Data samples featuring non-physical Reynolds stress
tensors (barycentric coordinates are located outside the barycentric triangle) are removed from each data set.

Table 3 Scenarios for hyperparameter study: 𝑥 means part of training data, ◦ means verification data

Scenario

Flow cases I II III IIII

turbulent channel x x x ◦
periodic hill x x ◦ x
wavy wall x ◦ x x
converging-diverging channel ◦ x x x

For each of the first three hyperparameters several different values were studied over a range of the total amount of
individual regression trees, while the other two hyperparameters were set to default values (see scikit-learn documentation
for further information). As an example, Figure 8 presents the effect of the considered hyperparameters on the accuracy
of the model prediction in scenario I, where the accuracy is expressed in terms of the root mean square error (RMSE).
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Fig. 8 Training accuracy (solid) and verification accuracy (dashed) based on RMSE for selection of hyperpa-
rameters in scenario I

The subsequent statements made coincide with all evaluated scenarios as well. With increasing number of maximum
depth of each individual tree, the complexity increases and the rate of overfitting is prone to extend. Because a maximum
tree depth of 15 showed excellent performance for the training and test data, it is preferred compared to a higher value of
20, which increases computational costs (see Figure 8(a)).
The smaller the number of data samples for each decision node, the more accurate the performance on the training data
(see Figure 8(b)). Since the RMSE based on evaluated testing data is not significantly affected on this hyperparameter, a
minimum sample count of 10 is chosen. This enables the model to generalize more, than selecting a smaller value.
A larger number of selected features for each decision node lowers the training error and increases the risk of overfitting.
Since a maximum number of 7 features produces accurate prediction performance for the test data as well (in Figure
8(c) it is actually the best choice), it is selected as inferred hyperparameter.
In terms of total number of individual trees, one can observe a steep drop in RMSE for small numbers followed by
a constant level of accuracy. The computational costs scale linearly with the number of individual trees. Although
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computational costs do not really play a relevant role for our application, as we only evaluate the model once before
each simulation run, we sought for the minimum number of trees for maximized performance of the model. Therefore,
we concluded to use a total number of 30 individual trees for the random forest by evaluating all described scenarios in
Table 3.

IV. Verification of trained machine learning model
Based on the chosen hyperparameters, which was discussed in the previous section, the prediction accuracy of the

random forest should be evaluated on the available data (see II.E). Ten different scenarios based on combinations of the
flow data cases, listed in Table 4, serve as verification of the right functionality and present the accomplishment of the
intended generalization purposes of every model. In order to do so, the RMSE serves as a quantity to compare the
prediction accuracy between different scenarios, while data samples featuring non-physical Reynolds stress tensors
(barycentric coordinates are located outside the barycentric triangle) are removed from the data sets. Although the
prediction accuracy is high for all scenarios, if the flow case, which is chosen for evaluating the RMSE is also part of
the training data set, the accuracy of the trained random forest increases, as expected.

Table 4 Prediction accuracy of random forest: 𝑥 means part of training data, ◦ means not part of training data,
red means data set for evaluation of RMSE

Scenario

Flow cases I Ia II IIa III IIIa IIIb IIII IIIIa V

turbulent channel x x x x x x x ◦ x x
periodic hill

· 𝑅𝑒𝐻 ∈ {2800, 5600, 10595} x x x x ◦ x x x x
· 𝑅𝑒𝐻 ∈ {2800, 10595} x
· 𝑅𝑒𝐻 = 5600 ◦

wavy wall x x ◦ x x x x x x x
converging-diverging channel ◦ x x x x x x x x x

RMSE
(
𝑝pred, 𝑝true

)
0.098 0.010 0.133 0.029 0.095 0.028 0.041 0.051 0.014 0.013

As soon as a trained machine learning model should make predictions on flow cases, for which accurate data does
not exist, judging the model’s prediction in terms of accuracy is hardly possible. In order to build the confidence of a
machine learning model, the coverage of the training data with reference to a newly used, previously unseen case needs
to be evaluated.
One way to do this, is to determine extrapolation metrics, measuring the distance between a test point 𝑚̃ and the training
data feature set 𝑚𝑖 for 𝑖 = 1, . . . , 𝑛 with 𝑛 as the number of training data points. In this paper, we use the Kernel Density
Estimation (KDE) to compute the distance by estimating the probability density

𝑓KDE =
1
𝑛𝜎𝑑

𝑛∑︁
𝑖=1

𝑑∏
𝑗=1

𝐾

(
𝑚̃ 𝑗 − 𝑚𝑖, 𝑗

𝜎

)
, (14)

with being 𝑑 the number of features and 𝜎 the bandwidth, determined by Scott’s rule [27]. In accordance with the work
of Wu et al. [28], we use a Gaussian kernel 𝐾 (𝑡) = 1/

√︁
(2𝜋) exp

(
−𝑡2/2

)
and the distance is computed as follows:

𝑑KDE = 1 − 𝑓KDE
𝑓KDE + 1/𝐴 with 𝐴 =

𝑛∏
𝑖

(
max
𝑗

(
𝑚𝑖, 𝑗

)
− min

𝑗

(
𝑚𝑖, 𝑗

) )
for 𝑗 = 1, . . . , 𝑑 (15)

Due to the normalization of the distance, it is able to measure the distance of 𝑚̃ to the training data with respect to a
uniform distribution. This enables a user to interpret the rate of extrapolation needed based on the training data set. Two
extreme scenarios are represented according to

• 𝑑KDE = 0: no extrapolation is required; the features of the training data set cover the feature of the test point 𝑚̃
• 𝑑KDE = 1: high extrapolation is required; the features of the test point 𝑚̃ are far off the features of the training data.
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Equation (14) increases, if 𝑚̃ becomes close to a concentrated feature space of the training data points and vice versa.
Thus, on the one hand, if 𝑚̃ is close to a concentrated feature space, 𝑓𝐾𝐷𝐸 ≫ 1/𝐴 implies 𝑑KDE → 0. On the other
hand, 𝑑KDE → 1 follows from 𝑓𝐾𝐷𝐸 ≪ 1/𝐴. Put simply, the smaller the KDE distance, the more similarity of the
training and the test set is expected.
Since the extrapolation metric only assesses the closeness of the features between training and test data sets, Wu et al.
[28] demonstrate, that the KDE extrapolation metric can be used to estimate the prediction confidence by quantifying
the correlation between the degree of extrapolation and the prediction accuracy.
In our work, the flow case of the converging-diverging channel serves to present the application of the extrapolation
metric. The rest of the available data (turbulent channel flow, flow over periodic hills and wavy walls) is used for training
individual random forests, while each random forest is evaluated on the converging-diverging channel.
For the computation of the KDE distance 𝑑KDE, only selected input features, which are attributed with a higher feature
importance compared to the others, are considered. The individual feature importance for each of the 56 input features,
is determined after training the final random forest (scenario V in Table 4) using the chosen hyperparameters (see section
III). Here, the permutation feature importance, accounting for the reduction in the model accuracy, when a single feature
value is randomly shuffled, is applied to determine the helpfulness of each feature by scikit-learn’s toolbox [13]. The
selected five most important features, to be considered for determining 𝑑KDE, are the eddy viscosity 𝑞8, the normalized
wall-distance 𝑞3, the Mach number 𝑞7, the turbulent kinetic energy 𝑞2 and the Q-criterion 𝑞1.
Contrary to the work of Wu et al. [28], we cannot confirm a strong correlation between the accuracy of the model,
evaluated by predicting the perturbation magnitude 𝑝 for the converging-diverging channel, and the mean of the KDE
distance 𝑑KDE for different training data sets, as illustrated in Figure 9. However, Figures 10 and 11 present the
explanation for smaller prediction error, when training on the periodic hill compared to the wavy wall. The DNS data
based barycentric coordinates of the converging-diverging channel and the periodic hill cover a similar area in the
barycentric triangle, while the true values of barycentric coordinates for the wavy wall test case are only placed in the
lower range of the triangle. Thus, the derived target quantity, which is the distance in barycentric coordinates, becomes
more frequent in a similar range of absolute value. Even Wu et al. [28] mention, that the correlation between accuracy
and extrapolation metric is less correlated, if the training set is very similar or very different from the test set, what we
might be facing here as well.
Nevertheless, we would like to point out, that the result of the extrapolation metric is highly dependent on the set of
considered features. Thus, it seems reasonable to limit the evaluation of the metric to certain important features for the
random forest. Lastly, we would like to remark, that the prediction of 𝑝 (leading to the RMSE in Figure 9) is done by
the random forest model, which was trained on all 56 input features and the chosen hyperparameters.
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Fig. 9 Relationship between the RMSE of the prediction for the converging-diverging channel and the mean
value of KDE extrapolation metric (standard deviation the extrapolation metric is shown as the horizontal bars)

Figure 12(a) presents the two-dimensional distribution of the KDE metric, evaluated based on the five most
important features 𝑞8, 𝑞3, 𝑞7, 𝑞2 and 𝑞1, corresponding to the blue data point in Figure 9 and scenario I in Table 4.
This can be compared with the deviation of the prediction and the accurate values of the perturbation magnitude 𝑝
for the converging-diverging channel in Figure 12(b) (which was not part of the training samples for this scenario).
When comparing spatial distributions of 𝑑KDE and |𝑝pred − 𝑝true |, correlated regions between high KDE distances and
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Fig. 10 Barycentric coordinates for selected flow cases; legend of (b) corresponds to (a) and (c) as well
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Fig. 11 Frequency of target quantity 𝑝 for selected flow cases; vertical axis correspond to (a), (b) and (c)

inaccurate model predictions can be recognized, which was also shown by Wu et al. [28]. There are just less accurate
model predictions in the area 𝑦/𝐻 ≈ 1 and 𝑥/𝐻 > 8, which are not represented by the KDE metric. However, our
observation reinforces the trust in the presented KDE distance, when applied in an adequate manner.

Before the actual application of the data-driven UQ perturbation framework on the flow around NACA 4412 can
be conducted, the prediction of the random forest model for this case should be discussed. Figure 13(a) shows the
evaluated metric distance based on the five most important flow features 𝑞8, 𝑞3, 𝑞7, 𝑞2 and 𝑞1, which are extracted based
on the baseline RANS solution. Solely regions close around the airfoil contain 𝑑KDE ≤ 1. We believe, that this is
due to the very different geometry, Reynolds number and flow situation, compared to the training data. This fact also
manifests, when taking a look at the level of turbulence intensity for the baseline solution. Because far-field boundary
conditions are used, laminar flow is present almost everywhere in the CFD domain. An area with 𝑇𝑢 ≥ 0.01% can only
be identified in the boundary layer around the profile, in the wake flow and around the stagnation point on the pressure
side at 𝑥/𝑐 ≈ 0.035. Since the entire mapping of the Reynolds stress tensor onto barycentric coordinates makes only
sense for relevant turbulent stresses, which are significantly larger than machine precision, the random forest is restricted
to predict values only in the area featuring 𝑇𝑢 ≥ 0.01%. Figure 13(b) shows the restricted random forest prediction for
𝑝 trained on all training cases (scenario V in Table 4) and considering all input features. The decision of restricting
the actual prediction to certain areas in the flow field is purely based on our observations and physical intuition. The
verification of this procedure was numerically justified, by comparing forward data-driven UQ computations based
on model predicted 𝑝. Some simulations contained 𝑝, determined by the random forest, everywhere in the domain,
others only in the area 𝑇𝑢 ≥ 0.01%. Although the random forest is able to predict certain values greater than zero
in the region featuring 𝑇𝑢 ≤ 0.01%, the evaluated flow quantities around the NACA 4412 airfoil did not show any
significant difference (not shown here). Even the KDE distance in Figure 13(a) confirms this procedure, by stating,
that a machine learning practitioner can only trust the prediction in the area with higher values of turbulence intensity.
Thus, these preinvestigations reveal, that restricting the model prediction to certain area closely around the airfoil makes
sense from a physical and a machine learning perspective. However, the presented two-dimensional distributions of
extrapolation metric and model performance reveal, that predicting the influence of a separated region in terms of
anisotropy discrepancy is a very challenging task. This issue might be only overcome with an increasing number of
training data sets featuring varying flow conditions and geometry.
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Fig. 12 Verification of metric for converging-diverging channel
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Fig. 13 Evaluated metric and perturbation magnitude for NACA 4412 profile

V. Application of UQ perturbation framework
The flow around NACA 4412 offers a possibility to demonstrate the general framework of the UQ perturbation

approach, presented in II. Before the actual perturbed solutions and the UQ estimates are discussed, we want to make a
few points on the general RANS performance of the Menter SST 𝑘 − 𝜔 on this configuration at a Reynolds number of
𝑅𝑒𝑐 = 1.52 · 106 and a Mach number of 𝑀𝑎 = 0.09 at an angle of attack of 13.87◦.
The baseline simulation conducted with TRACE is in accordance with the presented RANS solutions using the identical
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turbulence model on the NASA’s turbulence modeling resource site. Although, this test case serves as a turbulence model
validation case, there may be still small discretization errors [26]. Similar to NASA’s observations, when conducting the
steady simulation, CFL = 1 has to be used in order to reach a fully converged steady-state solution with TRACE, which
may be also a consequence of the discretization. The main difference in comparison with the experimental surface
pressure measurements conducted by Coles and Wadcock [25] can be observed at the suction side trailing edge. The
pressure coefficient, presented for example in Figure 14(a), is computed accordingly as

𝑐𝑝 =
𝑝 − 𝑝inf
1
2 𝜌inf𝑈

2
inf

, (16)

while the reference quantities are the ones in infinity, which are prescribed at the far-field boundary condition. It is
important to note, that the reference velocity, used to nondimensionalize the pressure coefficient, is evaluated at a
different location in the experiment and in the CFD setup. Based on the best practice guidelines and in order to retain
similar results compared to the NASA findings [26], we apply the far-field freestream velocity here. To sum up, the used
quantities are𝑈inf = 31.2 m/s, 𝑝inf = 76914.1 Pa and 𝜌inf = 0.9 kg/m3, which can be derived by the specified Mach
and Reynolds number, when choosing appropriate gas properties.

Table 5 Moderation factor 𝑓 for each perturbed simulation of NACA 4412 UQ estimation

Data-free

Perturbed simulation: (1C, 𝑃𝑘max ) 1C, 𝑃𝑘min ) (2C, 𝑃𝑘max ) (2C, 𝑃𝑘min ) 3C

moderation factor 1.0 0.03 1.0 0.05 0.1

Data-driven

Perturbed simulation: (1C, 𝑃𝑘max ) (1C, 𝑃𝑘min ) (2C, 𝑃𝑘max ) (2C, 𝑃𝑘min ) (3C, 𝑃𝑘max ) (3C, 𝑃𝑘min )

moderation factor 1.0 0.2 1.0 0.2 1.0 0.2
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Fig. 14 Surface quantities for flow around NACA 4412 including data-free evaluation of uncertainty estimates
for Menter SST 𝑘 − 𝜔 turbulence model; legend in (a) applies also for (b)

The data-free uncertainty estimates, presented in Figure 14 are the result of perturbed turbulence model simulations
using a relative perturbation magnitude Δ𝐵 = 1.0 everywhere in the domain, since there is no justifiable physical
reason to reduce the amount of targeting the extremal states of turbulence [3]. Unfortunately, as already discussed
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in II.D.2, the perturbed simulations, trying to minimize the turbulent production, come along with stability issues in
terms of convergence or even completely diverge from the steady solution. That is why, the moderation factor 𝑓 has
to be adjusted in order to retain acceptable, converged simulations. Besides examining the overall residuals of each
simulation, we evaluate the mean blade force in 𝑦-direction in order to distinguish between an unacceptable unstable and
an acceptable steady solution. Based on physical experience and consequent intuition, we apply a threshold of a relative
standard deviation of 2% based on the mean of the overall blade force in 𝑦-direction. Put simply, as one is increasing the
moderation factor 𝑓 for simulations minimizing the turbulent production term (𝑃𝑘min), the standard deviation of the
mean blade force rises. In our investigations, we are able to use our high-level python script (see Figure 2) to march
the moderation factor as high as possible (by steps of 0.1 for 𝑓 ∈ [0.1, 1.0) and steps of 0.01 for 𝑓 ∈ [0, 0.1)). As the
designated solutions still contain small variations, we instrument probes on the airfoil surface and average the solution
in order to get the mean.
Figure 14 presents the uncertainty estimates based on the intended five perturbed target states, using the moderation
factors presented in Table 5. As discussed above, the baseline Menter SST 𝑘 − 𝜔 simulation shows significant deviation
for the prediction of the flow around the trailing edge, attributed to the flow separation. The results of (1C, 𝑃𝑘max ) and
(2C, 𝑃𝑘max ) minimize this gap on the suction side for 𝑥/𝑐 < 0.7, whereas perturbed simulations minimizing the turbulent
production term by modifying the eigenvectors of the Reynolds stress tensor predict an increased static pressure on the
suction side for 𝑥/𝑐 > 0.7. The latter is due to an earlier separation zone because of reduced turbulent kinetic energy.
This can be also identified, when having a look at the friction coefficient

𝑐 𝑓 =
𝜏𝑤

1
2 𝜌inf𝑈

2
inf

, (17)

shown in Figure 14(b).
In should be noted, that targeting the 3C turbulent state with Δ𝐵 = 1 results in minimizing the turbulent production

term [29], which can be seen on the presented surface quantities as well. In contrast, perturbed solutions (1C, 𝑃𝑘max ) and
(2C, 𝑃𝑘max), which do not modify the eigenvectors of the Reynolds stress tensor, completely suppress the separation
bubble. The boundary layers of these simulations reveal significantly increased momentum transfer into their viscous
sublayers.
As already mentioned in II.D.2 the UQ estimated bounds by the perturbation framework is only aiming for the extremal
state of turbulence in terms of Reynolds stress tensor’s shape and orientation. The extremal state of some QoI, in this
case the pressure distribution, need not necessarily coincide with this in all areas. In the range of 0.72 < 𝑥/𝑐 < 0.9 the
baseline solution lies outside of the determined, grey shaded, UQ estimate. On the one hand, this follows from the
non-linear relationship of turbulence extreme states and the subsequent impact on some QoI. But on the other hand, it
follows from the uniform perturbation in the entire domain, whereas the Reynolds stress tensor based on the unmodified
RANS model usually features a distribution along the plane strain line in terms of barycentric triangle. This means, that
each solution point of the unmodified RANS model reveals slightly varying barycentric coordinates. Thus, applying
random spatial sampling inside the barycentric triangle may result in an overarching UQ estimate (which is out of the
scope of this paper).
As already mentioned in section II.C), the random forest predicted perturbation magnitude 𝑝 around the airfoil (see
Figure 13(b)), is forward propagated towards the same three limiting states as in the data-free approach. This means,
that the two-dimensional distribution of 𝑝 is used to determine the respective Δ𝐵 for each target state (1C, 2C and 3C).
This is results in the distributions of Δ𝐵, shown Figure 15. Due to the fact, that the unperturbed RANS solution data
points, which are used as input for the model evaluation, are distributed along the plane strain line, the spatially averaged
relative distance Δ𝐵 is highest for the the simulations targeting the isotropic corner (3C), followed by the two-component
corner (2C) and the one-component corner (1C). In order to reach an acceptable steady solution for each perturbed
simulation the moderation factor 𝑓 is adjusted in the same manner as discussed above for the data-free procedure. Since
the overall perturbation is weaker than using Δ𝐵 = 1, the moderation factor could be increased. Table 5 summarizes the
actual applied values for the data-driven cases as well. Please note, that due to the fact, that Δ𝐵 < 1, there has to be a
distinction between 𝑃𝑘min and 𝑃𝑘max for 3C.

The UQ estimated bands for the surface quantities, shown in Figure 16, become narrower. As the overproduction of
turbulent kinetic energy for the data-free 1C and 2C cases disappears, all data-driven perturbed simulations feature
a separation zone on the suction surface. Moreover, the uncertainty estimates based on (1C, 𝑃𝑘max ) and (2C, 𝑃𝑘max )
are very close to the underlying baseline solution, especially for the pressure coefficient in Figure 16(a).Thus, the
actual width of the data-driven UQ envelope is shaped by (3C, 𝑃𝑘max ) and the simulations featuring minimal turbulent
production on the opposite side.
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(a) Data-driven relative perturbation magnitude evaluated for 1C target state
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(b) Data-driven relative perturbation magnitude evaluated for 2C target state
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(c) Data-driven relative perturbation magnitude evaluated for 3C target state
Fig. 15 Comparison of the effect of identical model predicted perturbation magnitude 𝑝 on the relative
perturbation magnitude Δ𝐵

Last but not least, the fact, that none of the presented UQ estimates envelopes the experimental surface pressure
measurements, needs to be discussed. To start with, as discussed already in the beginning of this section, the CFD
setup seems to come along with certain weaknesses. Additionally, as also mentioned on NASA’s turbulence modelling
resource site [26], there is some inconsistency regarding the determination of the reference velocity in the experiment.
A proposed change of multiplying the reference velocity with 0.93, would increase the accuracy with the experiments on
the suction side, while the CFD prediction on the pressure side would move away from the experiments. Moreover, the
underlying intention of applying the UQ perturbation framework is not to include certain high-fidelity data, whether
it originates from experiments or scale-resolving simulation, into its envelope. The methodology seeks to produce
limiting states of the Reynolds stress tensor, propagates these states through the CFD solution and results in modified
QoI. Consequently, the obtained bands on certain QoI, such as pressure coefficient, can be attributed to the uncertainty
of the turbulence model itself. Anyway, the uncertainty envelopes do not represent confidence or strict intervals at all
[30]. This statement holds especially for the data-driven approach. The described machine learning procedure only
accounts for the spatial varying deviation in Reynolds stress anisotropy, since the turbulence model’s uncertainties are
not uniform across the computational domain. The impact of the discrepancy in terms of anisotropy between RANS and
scale-resolving data on certain QoI, was not part of the machine learning process at all. Thus, it cannot be expected, that
the perturbed turbulence model simulations account for accurate envelopes for selected QoI.
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Fig. 16 Surface quantities for flow around NACA 4412 including data-driven evaluation of uncertainty estimates
for Menter SST 𝑘 − 𝜔 turbulence model; legend in (a) applies also for (b)

VI. Conclusion and Outlook
The present work aims to consolidate an arisen method in the field of turbulence model uncertainty quantification

with machine learning practices. We demonstrate the possibility to estimate uncertainty bounds for turbulence models
with state-of-the-art methods in DLR’s CFD solver suite TRACE.
The UQ perturbation framework is described in detail, presenting its underlying idea while mentioning its limitations
and what it is not able to do for industrial applications. Additionally, since TRACE is eminent in turbomachinery
industry, designing and implementing a framework to easily conduct uncertainty estimation for turbulence models was a
major goal of this work. Moreover, coupling the data-driven extension with the much-cited UQ methodology including
Reynolds stress tensor’s eigenvalue and eigenvector perturbations and applying it for flow physics featuring separated
flows, adverse pressure gradient and reattachment, was the plausible next step in our research. In our investigations,
we outline tools and methodologies for assessing and analyzing data-driven models, especially in the context of
turbulent flows. We address key points in the field of machine learning such as selection of input features, tuning of
hyperparameters, judging the model’s accuracy and building trust in a trained model, when there is no accurate data
available anymore. In order to predict the desired target quantity for the selected flow cases by the random forest, we
admit, that me might not have to use this abundant number of input features. This is due to the fact, that the considered
cases show certain similarities in terms of input and target quantities. However, if the amount of training data sets
increases even more, covering a wider range of flow phenomena, the machine learning model will likely take advantage
of a larger number of input features.
We confirm, that the perturbation approach to account for turbulence model uncertainties, is a purely physics-based,
comprehensible framework. Nevertheless, it suffers from reduced convergence or even divergence of steady state
solutions. The necessity to moderate certain perturbed simulations by an arbitrary factor, seems unsatisfactory for such
an advanced approach. But we do not see any other remedy for this as well, as even the machine learning does not help
to overcome this particular issue. Moreover, we also agree on the underlying idea to account for spatially varying of
turbulence model uncertainties by using data-driven methodologies to determine certain areas of high deviations from
accurate Reynolds stress anisotropy states. Training a machine learning model to predict this deviation and using its
model predictions for unseen flow configurations, will always help CFD users to get an indication, in which regions
the LEVM assumptions might be violated. However, we believe, based on our experiences with the data-driven UQ
framework (which are not only limited to the NACA 4412 flow case), that the UQ estimates would only help designing
next turbomachinery generations, if the stability issues in terms of convergence for steady state simulation were solved.
As the underlying work of this paper guided us to set up a database for machine learning targeting on turbulence
quantities, we would like to utilize it for future investigations. Currently, we are striving for a data-driven a posteriori
correction of RANS solutions based on corrected Reynolds stresses. This research will be affiliated in the area of
augmented turbulence modelling corrections.
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Appendix

Mathematical effect of the moderation factor 𝑓 in case of pure eigenvalue perturbation
By applying the moderation factor 𝑓 ∈ [0, 1], introduced in II.D.1, the perturbed Reynolds stress tensor can be

expressed as

𝜏∗𝑖 𝑗 𝑓 = 𝜏𝑖 𝑗 + 𝑓

[
𝑘

(
𝑎∗ + 2

3
𝛿𝑖 𝑗

)
− 𝜏𝑖 𝑗

]
= (1 − 𝑓 ) 𝜏𝑖 𝑗 + 𝑓 𝜏∗𝑖 𝑗 ,

(18)

where 𝜏𝑖 𝑗 is the Reynolds stress tensor, which was calculated based on Boussinesq assumption in step 1) (see II.D.1).
Based on the perturbed anisotropy tensor, the reconstructed Reynolds stress tensor is indicated by 𝜏∗

𝑖 𝑗
. The anisotropy

tensor related to this perturbed Reynolds stress tensor can be written as

𝑎∗𝑖 𝑗 𝑓 =
𝜏∗
𝑖 𝑗 𝑓

𝑘
− 2

3
𝛿𝑖 𝑗

=
(1 − 𝑓 ) 𝜏𝑖 𝑗 + 𝑓 𝜏∗

𝑖 𝑗

𝑘
− 2

3
𝛿𝑖 𝑗

=

(1 − 𝑓 )
[
𝑘

(
𝑎𝑖 𝑗 + 2

3𝛿𝑖 𝑗

)]
+ 𝑓

[
𝑘

(
𝑎∗
𝑖 𝑗
+ 2

3𝛿𝑖 𝑗

)]
𝑘

− 2
3
𝛿𝑖 𝑗

= (1 − 𝑓 )
(
𝑎𝑖 𝑗 +

2
3
𝛿𝑖 𝑗

)
+ 𝑓

(
𝑎∗𝑖 𝑗 +

2
3
𝛿𝑖 𝑗

)
− 2

3
𝛿𝑖 𝑗

= (1 − 𝑓 ) 𝑎𝑖 𝑗 + 𝑓 𝑎∗𝑖 𝑗 .

(19)

When just applying eigenvalue perturbation of the anisotropy tensor, 𝑎𝑖 𝑗 and 𝑎∗
𝑖 𝑗

share identical eigenvectors. Thus,
the eigenvalues of 𝑎∗

𝑖 𝑗 𝑓
are

𝜆∗𝑖 𝑓 = (1 − 𝑓 ) 𝜆𝑖 + 𝑓 𝜆∗𝑖 . (20)

The barycentric weights 𝐶𝑖𝐶 , which are used to calculate the barycentric coordinates in Equation (4), can be
expressed in terms of moderation factor:

𝐶∗
1C 𝑓

=
1
2

[
𝜆∗1 𝑓

− 𝜆∗2 𝑓

]
=

1
2
[
(1 − 𝑓 ) 𝜆1 + 𝑓 𝜆∗1 − (1 − 𝑓 ) 𝜆2 + 𝑓 𝜆∗2

]
= (1 − 𝑓 ) 1

2
(𝜆1 − 𝜆2) + 𝑓

1
2
(
𝜆∗1 − 𝜆

∗
2
)

= (1 − 𝑓 ) 𝐶1C + 𝑓 𝐶∗
1C

(21)

𝐶∗
2C 𝑓

= 𝜆∗2 𝑓
− 𝜆∗3 𝑓

= (1 − 𝑓 ) 𝜆2 + 𝑓 𝜆∗2 − (1 − 𝑓 ) 𝜆3 + 𝑓 𝜆∗3
= (1 − 𝑓 ) (𝜆2 − 𝜆3) + 𝑓

(
𝜆∗2 − 𝜆

∗
3
)

= (1 − 𝑓 ) 𝐶2C + 𝑓 𝐶∗
2C

(22)

𝐶∗
3C 𝑓

=
3
2

[
𝜆∗3 𝑓

+ 1
]

=
3
2
[
(1 − 𝑓 ) 𝜆3 + 𝑓 𝜆∗3 + (1 − 𝑓 ) + 𝑓

]
= (1 − 𝑓 ) 3

2
(𝜆3 + 1) + 𝑓

3
2
(
𝜆∗3 + 1

)
= (1 − 𝑓 ) 𝐶3C + 𝑓 𝐶∗
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(23)
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The perturbed barycentric coordinates x∗
𝑓

(modified by the moderation factor 𝑓 ) can be written using Equations 21,
22 and 23 as

x∗𝑓 = x1C𝐶
∗
1𝐶 𝑓

+ x∗2C 𝑓
+ x3𝐶𝐶

∗
3C 𝑓

= x1c
[
(1 − 𝑓 ) 𝐶1C + 𝑓 𝐶∗

1C
]
+ x2c

[
(1 − 𝑓 ) 𝐶2C + 𝑓 𝐶∗

2C
]
+ x3𝑐

[
(1 − 𝑓 ) 𝐶3C + 𝑓 𝐶∗

3C
]

= (1 − 𝑓 ) (x1𝑐𝐶1C + x2𝑐𝐶2C + x3𝑐𝐶3C) + 𝑓
(
x1𝑐𝐶

∗
1C + x2𝑐𝐶

∗
2C + x3𝑐𝐶

∗
3C
)

= (1 − 𝑓 ) x + 𝑓 x∗ .

(24)

Remembering Equation (5) and rearranging leads to

x∗ = (1 − Δ𝐵) x + Δ𝐵x(𝑡) . (25)

The analogy of Equation (24) and (25) reveals the similar effect of adjusting Δ𝐵 or 𝑓 in case of only perturbing the
eigenvalues of the anisotropy tensor. Thus, one can rewrite the actual intended location inside the barycentric triangle as
a relative distance towards the corners

x∗𝑓 = (1 − Δ𝐵 𝑓 ) x + Δ𝐵 𝑓 x(𝑡) . (26)
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