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Abstract

Vertical Landing (VL) Reusable Launch Vehicles (RLVs) must rely on performing and robust Guidance, Navigation
and Control (GNC) algorithms, that are normally tested and verified in closed-loop high-fidelity simulators. This paper
introduces the Vertical Landing Vehicles Library (VLVLib), a new Modelica-based tool for the advanced physical modeling
and simulation of VL RLV dynamics. Modelica, an acausal open-source object-oriented modeling language, is exploited to
produce a multibody vehicle model where multiple effects can be easily added, modified or switched in complexity. At the
same time, it offers a modular modeling methodology to quickly adapt to vehicle changes or potential new features during
the development process, with benefits in terms of project speed and costs. The way Modelica features are exploited is
detailed throughout the paper. At its current development status, the library is able to account for, in more detail, four main
effects relevant for the GNC robustness tests: (1) propellant slosh dynamics; (2) Thrust Vector Control (TVC) dynamics;
(3) landing legs deployment disturbances; (4) touchdown dynamics. They are modeled and integrated so to allow an easy
generation of a vehicle model that holds a prescribed fidelity level for each sub-system, and can be compiled and exported
and harmoniously integrate other simulation environments (e.g. Simulink). The potential of VLVLib is demonstrated with
representative examples as applied to CALLISTO reusable rocket demonstrative mission.
Keywords: Advanced modeling, Modelica, Simulation, Reusable Launch Vehicles, GNC, Verification

1. Introduction
Reusable rockets, technically addressed as Vertical

Take-off, Vertical Landing (VTVL) Reusable Launch Ve-
hicles (RLVs), are nowadays imposing themselves as the
cheaper and most viable way to access space [1]. The
(currently partial) reusability concept has been techno-
logically and commercially proven for the first time by
SpaceX [2] with its Falcon 9 (Figure 1). December 21st,
2015 marked the formal beginning of the reusability era for
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rockets at industrial level. On this track, several other com-
panies followed this example, like Blue Origin or Rocket
Lab [3]. Nowadays, the entire SpaceX’s Falcon 9 program
is founded on an impressive frequency in launches per year.
The keys of success are surely multiple, but it is undoubted
that one of the most preeminent ones is the Guidance, Nav-
igation and Control system. Reusable rockets performance
and reliability requirements fulfillment strongly depend on
its "quality". Its design normally relies on model-based
methods which exploits appropriate mathematical models
to capture the relevant vehicle dynamics. Based on it,
the final algorithms design can provide the highest stabil-
ity margins and match the mission specifications. Such a
model is referred to as "synthesis model" and typically ne-
glects some effects that are foreseen to have little impact on
its behavior or can possibly be counteracted by the control
system.

For Validation and Verification (V&V), the Guidance,
Navigation and Control (GNC) system must be tested in
presence of nominal and perturbed vehicle and environ-
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Fig. 1: SpaceX’s Falcon 9 reusable rocket at landing [4].

mental conditions. Moreover, it is important to use more
complex vehicle models to assess the degradation in perfor-
mance and robustness in presence of closer-to-real dynam-
ics. They are usually referred to as "simulation models".
This is why a simulation model can be seen as a much more
complex version of the synthesis model. In the following,
the best strategies to obtain high fidelity models (from a
GNC engineering V&V perspective) are discussed.

1.1 Adopting physical models for RLV’s high-fidelity dy-
namic simulations

Within the GNC world, the state-of-practice environ-
ment for dynamic simulations is Simulink, a Matlab ex-
tension with several blockset allowing the user to develop
and simulate dynamic models [5]. Simulink is convenient
for rapid prototyping, for building up more complex dy-
namic models, as well as for testing of the whole GNC
architecture and implementing requirement checks or per-
forming Monte-Carlo campaigns. Simulink is a ‘causal’
or ‘block-oriented’ modeling environment. Causal models
define the relation between different dynamical elements
solely by the output of one block being fed into the input
of another block. From the point of view of the numerical
solver, at each instant of calculation, the values of the state
variables are considered known, while the unknowns are
the derivatives of the state variables.

Despite Simulink is designed for easy integration with
control systems (which are inherently causal), its main
limitation consists in the blocks having a unidirectional
data flow. As such, certain "objects" cannot be dealt with
directly. Electrical machines or gearboxes, for example
may have a direct or indirect power flow. In such cases,
several manual steps are required to transform the equa-
tions to a form implementable on Simulink. This separates
the implementation from the actual physical phenomenon
and/or the system architecture. Above all, it offers very
poor reusability of the elementary components, inducing
a major rework of the whole set of underlining equations
as soon as the system configuration changes. These state-
ments are especially justified for launch vehicles where
some specific (sub-)dynamics may (or may not) be added
to the overall vehicle model depending on the required
fidelity level. Furthermore, certain models requiring alge-
braic constraints are largely unfeasible or cumbersome to
implement in Simulink. Lastly, the fidelity level of each
sub-component may not be exchangeable with ease, as well
as modeling cross-coupling between different physical do-
mains.

Acausal modeling, on the other hand, is based on equa-
tions instead of assignment statements. It is often referred
to as physical modeling because is very well suited for
representing the physical structure of modeled systems.
Therefore, acausal environments can be used to overcome
these limitations and give additional modeling flexibility.1
Modelica modeling language [6,7] is a open-source acausal
Object-Oriented Modeling (OOM) language for large sys-
tem descriptions. It enables a clear representation of
physical meaning within an object-oriented structure; fur-
thermore, OOM delivers modularization and component
reuse features, thus achieving a greater model adaptiveness
against changes. The class concept and inheritance prop-
erty are the keys for reuse of modeling knowledge in Mod-
elica. The ‘inheritance through modification’ property via
the so-called ‘modifiers’ renders reusing the models even
more straightforward and the implementation concise. A
free Modelica Standard Library (MSL) exists [8] to facil-
itate the user with several basic components belonging to
different physical domains. This also enables a relatively
accessible creation of multibody models, crucial aspect of
this work [9].

This approach has been used already, for example, in ve-

1For maximum compatibility with Simulink environment, one can
consider Mathworks SimMechanics payware add-on package. Even in
this latter way, some issues exist: above all, SimMechanics hides the mod-
els implementation to the user. This compromises flexibility, adaptability
and, to some extent, comparisons with other models.
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hicle re-entry scenarios via a guided parafoil, lunar landing
mission or modeling slosh dynamics [10–12]. For similar
reasons, several libraries have been created, like the DLR
Flight Dynamics Library [13] or the Space Flight Dynamic
library [14]. Modelica has been already used to describe
launch vehicle dynamics and control [15], stage separa-
tion [16], or trajectory optimization [15]. The language,
therefore, can well suit the creation of a high-fidelity RLV
models.

1.2 VLVLib: a new tool for advanced RLV modeling
This work aims at presenting the Vertical Landing Ve-

hicles Library (VLVLib) Modelica library. Its purpose
is to enable high-fidelity modeling of Vertical Landing
(VL) RLVs, achieved by implementing specific dynamics
deeply affecting VL RLVs2. Currently they are: (i) propel-
lant slosh; (ii) the Thrust Vector Control (TVC); (iii) the
landing legs deployment; (iv) and the ground contact. In
this way, they can concur in determining a more accurate
overall vehicle dynamics. The key point is to exploit OOM
to deliver a high flexibility to the user such that: (i) new
models can be created easily by inheriting a basic vehicle
model; (ii) this new model can include specific dynamics
at user’s will; (iii) these dynamics can be easily exchanged
according to the required fidelity level3.

Lateral propellant slosh dynamics is a deeply studied
phenomenon and a well known factor to consider in the
GNC system design since the early days of large liquid-
fuel rockets [17]. If the propellant contained in a tank
has a free surface, parasitic interactions with its structure
may arise as an effect of the liquid movements. Normally,
these adverse dynamics cannot be neglected and should be
appropriately tackled to avoid critical performance degra-
dation or instability.

The TVC system is essential to provide enough con-
trol authority to any launch vehicle. It is often initially
modeled as a first or second order dynamical system; how-
ever, it is a highly complex system composed by several
components. In this paper, focus is placed on Power-
by-Wire-actuated TVC systems, thus employing Electro-
Mechanical Actuators (EMAs)4 [20,21], and composed by
a mechanical transmission, an electric motor and its elec-
trical drive. Each of these component introduces several
nonlinear changes in the overall actuator dynamics. There-

2The library name does not include "Vertical Take-off" simply to not
restrict its scope of application. For example, a planetary lander can be
potentially modeled with the VLVLib too [12].

3Supposed that multiple models are available for the same component
and they are ‘plug-compatible’ (see Section 2).

4EMAs are used in several rockets already, e.g. Avio’s Vega [18, 19].

fore, a physical model of all these components is beneficial
for GNC or even for a local model-based fault detection
performance verification [22].

In the landing phase, most VL RLVs must eject their
landing legs. This process may destabilize the vehicle be-
cause of the excessive asymmetrically-induced forces and
torques due to an uneven unfolding. It can be caused by
specific aerodynamic conditions or the deployment mech-
anisms itself. As such, the modeling of the landing leg
system is also important. Furthermore, it must be under-
stood how vehicle’s attitude and speed affect touchdown;
this is possible only if contacts are modeled as well, an
aspect rarely addressed in literature [23].

The rest paper is structured as follows: Section 2 covers
the modeling rationale, conceptual structuring, and related
Modelica features enabling the taken choices; Section 3
describes the VLVLib main packages and explains how
to use them to generate a new vehicle model; Sections 4
to 7 explain in details the propellant slosh dynamic, the
TVC system, legs deployment, and ground contact models,
respectively. Section 8 shows representative simulation
results of those dynamics. Lastly, in Section 9 conclusions
are discussed.

2. Library development approach
Hereafter, the key-concepts which drove the library de-

velopment are discussed in detail. Dymola IDE5 has been
used [24]. A certain knowledge of the Modelica language
is assumed: Fritzon [25] covers extensively Modelica prin-
ciples, syntax, main libraries and the compilation and sim-
ulation best practices. The latest Modelica language spec-
ifications can be found in [26].

Nomenclature Being Modelica an object-oriented lan-
guage, almost everything is a class. However, there exist
special types of classes specialized for different contexts
and uses. They are named as: model, connector, record,
block, function, type, package. As the use of these key-
words may cause ambiguity, the italic font will be hereafter
applied when these words associate with the Modelica lan-
guage itself. On the other hand, the class names and objects
are written using a teletype font (Class), while the Mod-
elica keywords are blued too (if, then, else).

2.1 Package classes hierarchy
The VLVLib is composed by several nested pack-

ages. The main and the child packages all have the
encapsulated property, which guarantees that any in-
stantiated class name lookup stops at the boundary of the

5Integrated Development Environment.
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encapsulated package VLVLib
"Vertical Landing Vehicles Library"
import Modelica;
// <...> Other declarations and dyn. equations
end VLVLib;

Fig. 2: VLVLib package root definition. The MSL
(Modelica package) is made available by means of the
‘import’ command.

Control

Ideal
Sensor

Basic 
Plant

Ideal
Actuator

Reference

Fig. 3: Architecture-driven example scheme. Blue con-
nectors are casual, whilst black ones have no direction,
hence acausal. All components can be swapped with
other variants provided the old and new interfaces match.

package itself. As a consequence, each package cannot
include classes from other packages or from the MSL, un-
less they are included via the import command within the
class declaration (see example in Figure 2).

2.2 The architecture-driven approach
The library is designed with modularity and flexibility

as key objectives by adopting the so-called "architecture-
driven approach". Architectures can be defined as models
where a collection of subsystems have been pre-connected.
The composition of the system is carried out by selecting
specific implementations (models) for each subsystem. In
this way, the user only needs to choose the specific model
to use for each particular subsystem. A classic scenario
is depicted in Figure 3 where the fundamental compo-
nents of a closed-loop control system are shown. With
the architecture-driven paradigma, the user can swap the
control, actuator, plant or sensor classes according to the
required fidelity level or simulation needs. This is possible
in Modelica language by declaring a specific component as
replaceable. Such an attribute makes possible to another
model instantiating the first one, to eventually access it and
swap the replaceable component with another one. This

is carried out via the redeclare command, as clarified in
Figure 4.

However, to make the models swapping well defined, the
old and new models must be "plug-compatible". A model
𝑋 is plug-compatible with a model 𝑌 if for every public
variable in 𝑌 , there is a corresponding public variable in 𝑋
with the same name. Furthermore, every such variable in
𝑋 must itself be plug-compatible with its counterpart in 𝑌 .
This can be enforced by making the replaceable component
constrained to have a specific type by using the syntactic
construct constrained by.

A clean, functional and flexible way to address all the
above is to operate as in Figure 5: the model of a specific
complex system can be built with a top down architectural
approach, defining firstly the structure of it, and then adding
specific subsystem implementations. The starting point is
to create a partial model for each architectural component
(e.g. Sensor) just to define its interfaces. An interface
is essentially a formal definition of the constraining type.
Each component must inherit its own defining interface
class (like IdealSensor). Then, another partial model
(SystemArchitecture) defining the system architecture
instantiates all these interfaces classes. They are declared
as replaceable and suitably connected. Note that this model
has no implementation details on its own.6 Finally, in a
new model (such as BaseSystem) the architecture model
is inherited and the interface classes redeclared to be new
classes containing the wanted components implementa-
tion. When a component is redeclared, the new redeclara-
tion supersedes the previous one. The redeclaration is legal
only if the new model shares the constraining type of the
replaceable one (i.e. IdealSensor can be swapped with
Sensor, because they share the same interface, defined by
Sensor itself). In the example, BaseSystem redeclares
the (empty, partial) Sensor model with IdealSensor;
this is legal because IdealSensor is plug-compatible with
Sensor.

2.3 Models export and Simulink integration
Models built by means of the VLVLib are to be in-

cluded within the Matlab/Simulink environment. In the
latter, a whole simulation infrastructure is usually built for
the purpose of developing and testing the GNC system [27].
This may include tools like Monte-Carlo frameworks or an
automated requirement evaluation logic. In this context,
it is possible that functions like frame conversions, envi-
ronment properties or even certain dynamic models, are

6This means that this model cannot be simulated in any way, also
because it is declared as ‘partial’. Partial models cannot get directly
instantiated and must be extended by other models.
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model HierarchicalSystem
BasicPlant plant;
IdealActuator actuator;
replaceable IdealSensor sensor;
// <...> Other declarations and dyn. equations
end HierarchicalSystem;

model SystemWithModifiedSensor
extends HierarchicalSystem(
redeclare SampleHoldSensor sensor);

end SystemWithModifiedSensor;

Fig. 4: Example of component redeclaration. A generic
sensor implementation within HierarchicalSystem is
replaced by another one in the extended model.

already present and do not need to be duplicated in the
form of Modelica code. This is accounted for in the imple-
mentation of the VLVLib. For example, in the VLVLib, the
outputted vehicle states are expressed with respect to a sin-
gle body-fixed frame (states expansion to other frame can
be done within Simulink). Or, certain model parameters
can be implemented as external inputs instead.

2.4 Information propagation across components
The final vehicle model is composed by dozens of other

models spread throughout several instantiation layers. This
may cause the quantities to be logged to multiply in num-
ber, causing cluttering and making any modification to the
root vehicle class tedious and error-prone. For this reason,
the relevant connectors of a specific model are grouped
into a specific communication interface, called ‘expand-
able connector’ (or ‘bus’). A Modelica connector declared
as expandable has no minimum requirement for informa-
tion to be carried onto. The bus can be expanded to in-
clude additional information, even if they are coming from
connectors of different types. The signals on an expand-
able bus are determined by the connections themselves,
therefore by connecting something to an expandable bus, a
signal is implicitly added to that connector. The Modelica
compiler looks at all the connectors in a connection set and
expands each one so that the carried information is suitably
matched. An expandable bus is defined as in Figure 6.

This feature turns essential when a specific component
implementation has a different interface with its constrain-
ing type (not plug-compatible). As, instead, the expand-
able bus is part of the constraining class, it is enough that
the information carried by it is always defined and legibly
used by other interconnected models. This is adopted in

partial model Sensor
Flange_a shaft; // input connector
RealOutput w; // output connector
end Sensor;

model IdealSensor
extends Sensor;
// <...> Actual implementation of the sensor
end Sensor;

partial model SystemArchitecture
replaceable Sensor sensor
constrained by Sensor;

// <...> Other declarations and dyn. equations
end SystemArchitecture;

model BaseSystem
extends SystemArchitecture(
redeclare IdealSensor sensor);

// <...> Other redeclarations or modifications
end BaseSystem;

Fig. 5: Example of the architecture-driven approach. A
partial model SystemArchitecture builds up the sys-
tem architecture, while BaseSystem model defines the
models populating its replaceable components.

expandable connector ExpandableBus
end ExpandableBus;

Fig. 6: Example of an expandable bus definition. No dec-
laration must be necessarily made within the expandable
connector, as the connected types are automatically de-
termined at compilation time.

the case of some EMA components and will be further
detailed in Section 5.4 (note nr. 16).

3. Description of the Vertical Landing Vehicles Li-
brary (VLVLib)

The VLVLib is currently based on seven main sub-
packages (see Figure 7) described below, whereas their
logic dependencies are shown in Figure 8.

#1 The Vehicles package contains the full classes im-
plementing user’s vehicle models (e.g. Alina7, Cal-
listo,...). As such, an arbitrary number of them
may be present. However, one main class, called

7ALINA is a lunar lander developed by Planetary Transportation
Systems and meant to enable payload deliveries on the surface of the
Moon [28].
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Fig. 7: Listing of the current VLVLib packages and their first sub-level content.

Generic vehicle
model

"Interfaces"
classes

Specific vehicle model 
(ALINA, CALLISTO,...)

"Test" classes

"Parts" package

"Vehicles" package

"Test" package

"Interfaces" package

"Utilities" classes

"Utilities" package

"PropulsionFluidic"
package "Actuators" package

Dry Body
Ground Contact
Tvc+Engine
Assembly

Tanks assembly
Tank model 
Sloshing models

Legs model
Thrusters model
TVC model
Engine model

Fig. 8: VLVLib packages functional dependencies.

GenericVehicle, is the baseline to define these
specific vehicles in order to adhere to the ex-
plained modeling philosophy. It contains only the
main infrastructural components and interfaces, as
well as the DryBody (representing the propellant-
free structural mass and moment of inertia) and
TanksAssembly classes. To create a new spacecraft,
GenericVehicle has to be extended and (eventu-
ally) augmented with other components of interest
implemented within #2-4 packages. The procedure is
explained in Section 3.1.

#2 Contains spare classes which can concur in building
the GenericVehicle class or other components.

#3-4 Contain the classes necessary to include the tank me-
chanical models, as described in Section 4, and the
actuator dynamics, like the landing legs and TVC sys-
tem, respectively detailed in Sections 5 and 6.

#5 Contains the output bus needed by GenericVehicle.

#6 Includes spare classes to achieve specific functionali-
ties across the whole library.

#7 Contains models for the functional testing of the each
vehicle’s implementation.

3.1 Using the VLVLib to model a custom vehicle
The GenericVehicle class declares all the compo-

nents needed to model a basic vehicle; specific configura-
tions are derived starting from this class. Its diagram view
is depicted in Figure 9. All connectors in this and other
vehicle models must be ‘causal’, or busses made of causal
connectors8: this allows the model to be afterwards com-
piled and embedded in Simulink or other softwares. Aside

8Causal connectors are here intended as those including (or inheriting)
Real, Integer, Boolean or Enumeration types only. In Modelica formal
terms, the connectors do not declare any flow variable.
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Fig. 9: GenericVehicle class diagram view.

from the necessary interfaces, GenericVehicle includes
the following classes:

1. the World class, which defines the inertial frame
(called ‘World’) for referencing all model states and
the gravity field. This is needed to operate with the
MSL’s Multibody library;

2. the DryBody, modeling the dry structural mass and
moment of inertia;

3. the TanksAssembly, to model the propellant distri-
bution and, if activated, the slosh dynamics;

4. the support classes enabling the input of generic forces
and torques acting either on the vehicle-fixed frame or
derived ones (e.g. placed at the overall vehicle center
of mass position).

The components with mechanical interfaces are con-
nected together via the gray wire in Figure 9 which rep-
resents the main vehicle-fixed frame describing vehicle
dynamics. Note that to enable custom implementations
within Matlab/Simulink of gravity gradients, the basic
MSL’s Multibody library gravity models have been dis-
abled; the gravitational acceleration is, instead, an input
of the model. This implementation is described in detail
in [12].

Creating a new vehicle model can be simply done by ex-
tending GenericVehicle, as shown in Figure 10, where
no other component nor connection is added, and the ve-
hicle parameters are simply modified to reflect the vehi-

model Alina "Advanced ALINA spacecraft model"
extends GenericVehicle(
r_ComDry={0.2,0,0}, // dry CoM position

//confidential
m_dry=1000, // dry mass, confidential
tanksAssembly(
nTanks=11, // number of tanks
// position of each tank frame wrt frame_S
r_wrt_S=[0.1, -0.2, 0.7;

0.1, 0.2, -0.95;
0.1, 0.2, 0.95 //...
// Other data
],// confidential

// Init. position of each pendula per mode
anglesYz_t0_mode1 = zeros(nTanks ,2),
anglesYz_t0_mode2 = zeros(nTanks ,2),
anglesYz_t0_mode3 = zeros(nTanks ,2),
// number of sloshing modes per tank
nSloshModes = {3,3,3,3,3,3,3,3,0,0,0}

)
);

end Alina;

Fig. 10: ALINA spacecraft class extends
GenericVehicle. Lines marked with "confidential"
comment have modified values for confidentiality
reasons.

cle properties. Another example is Callisto rocket model
in Figures 11 and 12, which includes additional (and ap-
propriately connected) dynamic models for the TVC sys-
tem and the actuated legs. Note that, even if these latter
elements are declared within Callisto class, they may
be deactivated via the two Boolean flags enableTvc and
enableLegs (defaulted to ‘true’). This possibility goes
under the name of "conditional component declaration"
and adds flexibility to the model9 without implementing
redundant variants.

4. Propellant sloshing model
From the GNC perspective, it has been demonstrated

that a pendulum model is enough to approximate the fluid
dynamics of interest as soon as the sloshing natural fre-
quencies are not excited [29–31]. The vehicle motion is
therefore represented by a multibody model, where a rigid
body representing the dry vehicle is flanked by an equiv-
alent mechanical model of the fluid in each tank. Three
modes of oscillation are largely sufficient to characterize
the main disturbances produced on the vehicle, as higher
sloshing modes have a small impact on the whole dynam-

9When the condition is false, the component and all related connec-
tions are removed. Naturally, the resulting model must be well-posed.
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model Callisto "Advanced Callisto dynamic model"
extends GenericVehicle(
tanksAssembly(
// <...> Tanks assembly model parameters

);
VLVLib.Parts.TvcEngineSystem.Variants.TvcSystem_v1 TvcSystem if enableTvc;
VLVLib.Actuators.Legs.LegsAssembly legsAssembly if enableLegs;
Modelica.Blocks.Interfaces.RealInput Thrust[3](unit="N") if enableTvc;
Modelica.Blocks.Interfaces.BooleanInput deployCmd if enableLegs;
Modelica.Blocks.Interfaces.RealInput beta1(unit="rad") if enableTvc;
Modelica.Blocks.Interfaces.RealInput beta2(unit="rad") if enableTvc;
parameter Boolean enableLegs = true;
parameter Boolean enableTvc = true;

equation
// <...> "connect" statements between components

end Callisto;

Fig. 11: Callisto class Modelica code.

Fig. 12: Callisto class diagram view.

ics.
What follows is extensively treated in [12]. The devel-

opment requirements for the sloshing model are:
1. the vehicle model shall address the sloshing phe-

nomenon without altering the single tanks MCI10
static properties (see Eqs. 1 and 2);

2. the model shall not make any planar motion assump-
tion;

3. the fuel draining effect shall be considered, i.e. slosh-

10Mass, Center of Mass, Inertia.

free surface

k-th tank

Vehicle
CoM

Fig. 13: Representation of the employed pendulum equiv-
alent model.

ing parameters are considered as slowly time-varying;
4. the capability of including up to three sloshing modes

per tank shall be given;
5. the capability to stop the sloshing motion during sim-

ulation under non-accelerated phases shall be given.

4.1 The sloshing model
The equivalent model characteristic parameters corre-

spond to one specific mode of liquid oscillation at a specific
tank filling level, and depend on the liquid properties and
tank geometry [32]. They can be obtained with CFD meth-
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ods [33] or analytically for simple tank shapes [34], and
then validated experimentally [35].

Figure 13 illustrates the tank model together with the
main reference frames. The model distinguishes between
the sloshing and the non-sloshing parts of the liquid: the
liquid mass 𝑚liq is split between the single pendulum
masses 𝑚𝑖 , with 𝑖 ∈ [1, 2, 3] being the sloshing mode,
and the mass𝑚0 representing the idle liquid. Furthermore,
ℎ0 and ℎ𝑖 are the non-sloshing body and the 𝑖-th pendulum
hinge height with respect to the bottom of the tank; 𝑚𝑖

and 𝑙𝑖 are the mass and arm length of the 𝑖-th pendulum.
Parameters 𝑚0, 𝐼0, ℎ𝑖 , 𝑙𝑖 and 𝑚𝑖 are provided with respect
to discrete tank filling levels and have to be interpolated
during the simulation. The frame FS is a vehicle-structure-
fixed frame conveniently chosen, whereas Ftank𝑘 is a frame
at the bottom point of the 𝑘-th tank, with 𝑘 = 1, 2, ..., 𝐾 .
The whole liquid inertia in a tank 𝐼0 is considered and
placed together with the non-sloshing mass 𝑚0. The gray
body in Figure 13 models the dry vehicle: the mass and
moment of inertia have been labeled with 𝑚dry and 𝐼dry.
The depicted position of the overall vehicle’s center of
mass is influenced by the idle masses distribution, but also
by each pendulum motion.

To ensure the model validity, the static properties of the
liquid must be preserved at every time instant for every
𝑘-th tank. Hence,

𝑚0 +
∑︁
𝑖

𝑚𝑖 = 𝑚liq, (1)

𝑚0ℎ0 +
∑︁
𝑖

𝑚𝑖ℎ𝑖 = 0. (2)

Despite Figure 13 planar depiction, each modeled pendu-
lum is enabled to move in three dimensions.

Damping is included as well as function of the vehicle
longitudinal acceleration and the damping coefficient. The
latter is derived by the tank shape and liquid properties and
is not further described here [32].

4.2 Library implementation
The main implemented library components are:

1. a class for the tanks assembly (TanksAssembly);

2. aTank class where the discussed three sloshing modes
are included;

3. a Pendulum class describing one sloshing mode.

The Pendulum class is responsible for modeling the
pendulum for slosh dynamics representation. It is allowed

Fig. 14: Tank class diagram view.

to move in the 𝑥 − 𝑦 and 𝑥 − 𝑧 planes by means of a univer-
sal joint which allows two rotational degrees of freedom
at the hinge point. As from requirements, the model can
adapt to the slowly-varying sloshing parameters changes
by means of prismatic joints: they allow for the transla-
tional motion of the model elements to reflect the changes
in hinge height and pendulum arm. A rotational damper
is added at the pendulum hinge point in order to simulate
energy dissipation. This component can also act in syn-
ergy with a rotational spring, to stop the sloshing motion
when a flag suppressSloshing is set to ‘true’ and restore
the pendulum neutral position at \ = 0. When this hap-
pens, the damping coefficient and the spring stiffness pass,
respectively, from 𝐶\ and zero to suitable high values.

The Tank class instantiate the three pendula and mod-
els the static liquid (Figure 14). It class uses CustomBody
component to represent the nonsloshing body with a vari-
able mass 𝑚0 and a variable inertia 𝐼0.

Three pendulum model instances have been used for
embedding the three sloshing modes: they are conditional
components, such that the number of pendula depends onto
the (nSloshMode) parameter (Figure 15). Note that is
possible to exclude sloshing effect (removing all pendula)
by setting nSloshModes=0. The parameters 𝑚𝑖 , 𝑙𝑖 , ℎ𝑖
and 𝐶\ are provided as external inputs to each pendulum
model.

The TanksAssembly class is meant to instantiate as
many Tank components to model the complete vehicle
tanks configuration. To do so, the Tank class has been
declared as a nTanks-long vector, with nTanks = 𝐾 being
the prescribed number of tanks. The tank- and sloshing-
related parameters are accordingly inputted to every ele-
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model Tank "Tank model"
Sloshing.Pendulum pendulum1 if nSloshModes >= 1
Sloshing.Pendulum pendulum2 if nSloshModes >= 2
Sloshing.Pendulum pendulum3 if nSloshModes == 3
// <...>
end Tank;

Fig. 15: Conditional declaration of three Pendulum com-
ponents within Tank class. The single pendulum mod-
els are instantiated (and its connections activated) for
specific values of parameter nSloshModes.

model TanksAssembly "Tanks assembly"
// <...> All declarations
equation
for i in 1:nTanks loop
connect(frame_struct , tank[i].frame_S);
connect(tankBus.liq_vec[:, i],tank[i].liq_vec);
end for;
// <...> Other connect statements
end TanksAssembly;

Fig. 16: Recursive connections within TanksAssembly.

ment of the classes vector. With this implementation, there
is no need to manually reinstantiate as many tank compo-
nents as needed by the specific vehicle configuration. The
code structure for recursive connections in Figure 16.

5. Thrust Vector Control modeling
The TVC system needs two direct-drive11 Electro-

Mechanical Actuator (EMAs) to deflect the engine’s thrust
direction. The detailed modeling of the engine thrust dy-
namics is currently not implemented, it is assumed that the
produced thrust magnitude is a model input.

The EMA operates thanks to the synergism of three
main components: a Mechanical Power Transmission
(MPT), meant to transform in the most efficient way a
rotatory motion into a translational one; an Electric Mo-
tor (EM), here considered as a PMSM12, to produce the
mentioned rotational motion; the Power Drive Electronic
(PDE) part meant to suitably power the EM using the avail-
able the on-board electric current source; a control logic
meant to achieve the reference EMA elongation, thus en-
gine deflection. The overall architecture is shown on a
plane in Figure 17, but the off-plane direction is also con-

11There is no reduction gearbox to make the EMA more compact.
12Permanent Magnets Synchronous Machine

sidered in the implementation. The proposed modeling
strategy is based, with minor differences, on the incre-
mental prototyping approach presented in [36, 37], where
several models with different fidelity levels are described
for each component. They are briefly recalled below.

5.1 The control system
The EMA synthesis model transfer function 𝐺 (𝑠) can

be expressed as:

𝐺 (𝑠) = 4𝜋2/𝑝2
(𝑀𝑚 + 𝑀𝑠)𝑠

, (3)

where 𝑀𝑠 is mass reflecting engine’s inertia, 𝑀𝑚 is the
mass reflected at load level by the motor rotor inertia, and
𝑝 is the lead of the roller-screw.

The control system objective is to regulate the EMA
screw position, given the reference input 𝑋𝑐. The adopted
scheme is represented in Figure 18, where an architecture
with an inner (motor angular velocity𝜔𝑚 control) and outer
(position 𝑋𝑠 control) loops is proposed. The inner and
outer controllers are simply proportional ones, given each
loop has already an integral action. The motor currents
dynamic, being faster than the inner loop, is shown with
a unitary gain. The control gains are tuned by simply
imposing a damping ratio and natural frequency to the
second order system resulting by the composition of the
two loops.

Generating the necessary torques via the electric motor
requires a third internal control loop managing the motor
three-phase currents. The overall control scheme is shown
in Figure 19 and the details of such a standard implemen-
tation can be found in [38]. The current dynamics can be
simplified as the one of a simple brushed DC motor as

𝐺𝑚 (𝑠) =
1

𝑅𝑚 + 𝐿𝑚𝑠
, (4)

where 𝑅𝑚 and 𝐿𝑚 are the motor windings resistance and in-
ductance, respectively. The need of a PI controller is com-
mon and arises from the fact that there exist back electro-
motive forces and cross coupling terms (see Section 5.3),
here intended as disturbances for control design.

Lastly, the EMA-engine structure is not infinitely stiff.
This introduces several elastic effects, for example at the
structural anchorage point, the nut-screw transmission or
the screw-engine connection mechanisms. This can be rep-
resented as an equivalent spring-damper system including
all these compliances. As such, it is possible to include
a load sensor at the screw-engine connection point in or-
der to include, within the control system, a force feedback
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compensation law which would dampen the parasitic os-
cillations [39]. This is normally carried out by applying
a notch filter to the sensed force which would pass only
the relevant frequencies to be compensated for, and, after a
suitable conditioning, injecting an additional torque to 𝐶∗

control command.

5.2 Mechanical Power Transmission modeling
The MPT is in charge of transforming the EM rotary

motion into a linear one. The considered transmission is
a roller-screw, proven to accept higher loads than the ball-

screw one. In the following, the implemented models are
discussed.

5.2.1 Functional MPT model
The functional model simply considers a perfect con-

version of the motor torque and angular speed into a force
and linear velocity. This can be expressed simply by:

𝐹𝑠 =
2𝜋

𝑝
𝐶𝑚, 𝑣𝑠 =

𝑝

2𝜋
𝜔𝑚. (5)

where 𝐹𝑠 and 𝐶𝑚 are the transmitted force and the motor
torque, respectively, and 𝑣𝑠 the stroke linear velocity.

5.2.2 Basic MPT model
The basic MPT model considers the nut-screw inertia,

friction and structural stiffness effects. Friction force is
here considered as viscous and linearly dependent on the
relative screw velocity. The elastic and damping forces rel-
ative to the nut-screw transmission are linearly dependent
on relative position and velocity respectively.

5.2.3 Advanced MPT model
In the advanced MPT model, the screw friction is mod-

eled in more detail and the backlash (with preload) effect
is included. The former can be expressed as:
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𝐹 𝑓 = 𝐹𝑐𝑙 + 𝐹𝑝𝑣𝑟 + 𝐹𝑠𝑡 exp (−𝑑𝑠𝑡𝑣𝑟/𝑣ref) (6)

where 𝐹𝑐𝑙 is the Coulomb friction constant force, 𝐹𝑝 is
a friction force proportional to the screw relative velocity
𝑣𝑟 , 𝐹𝑠𝑡 and 𝑣ref are the Stribeck force and reference speed
respectively, and 𝑑𝑠𝑡 modulates its exponential decay.

Backlash is a "lost motion" happening within a mechan-
ical transmission component, whereas preload is an elastic
force occurring "while the motion is lost" [8,40]. Formally,
the two combined effects are captured by a length-less com-
ponent with terminals absolute positions expressed as 𝑥1
and 𝑥2, and whose produced elastic force is

𝐹𝑒 =


𝑘𝑒 (𝑥𝑟 − 𝑥0), 𝑥𝑟 > 𝑥0

2𝑘𝑒𝑥𝑟 , |𝑥𝑟 | ≤ |𝑥0 |
𝑘𝑒 (𝑥𝑟 + 𝑥0), 𝑥𝑟 < 𝑥0

(7)

where 𝑥𝑟 = 𝑥2 − 𝑥1 is the relative displacement, 𝑥0 is the
backlash displacement, and 𝑘𝑒 a stiffness parameter. At
the same time, its damping force is similarly expressed as

𝐹𝑒 =


min(𝐹𝑒, 𝑑𝑒𝑣𝑒), 𝑥𝑟 > 𝑥0

0, |𝑥𝑟 | ≤ 𝑥0
min(−𝐹𝑒, 𝑑𝑒𝑣𝑒), 𝑥𝑟 < −𝑥0

(8)

where 𝑣𝑒 = 𝑑
𝑑𝑡
(𝑥𝑟 ) and 𝑑𝑒 is a damping coefficient.

5.3 Electric Motor modeling
The EM physical principles are the combination of ef-

fects acting in different physical domains: electrical, mag-
netic and mechanical. As such, the EM motor model choice
affects the PDE interconnected model as well. Three EM
models are proposed.

5.3.1 Level 1 EM model
This is the simplest model, where the demanded torque

is purely applied to the rotor moment of inertia.

5.3.2 Level 2 EM model
In this case, the PMSM is described considering the

stator phases, but using space phasor transformation and a
rotor-fixed Air-Gap model at implementation level. The
three-phase equations of a permanent-magnet isotropic
synchronous machine can be written as:

𝑣𝑠,1 = 𝑅𝑠𝑖𝑠,1 + ¤Ψ𝑠,1 (9)
𝑣𝑠,2 = 𝑅𝑠𝑖𝑠,2 + ¤Ψ𝑠,2 (10)
𝑣𝑠,3 = 𝑅𝑠𝑖𝑠,3 + ¤Ψ𝑠,3 (11)
Ψ𝑠,1 = 𝐿𝑠𝑖𝑠,1 + Ψ𝑝𝑚 (12)
Ψ𝑠,2 = 𝐿𝑠𝑖𝑠,2 + Ψ𝑝𝑚(\𝑚 − 2

3𝜋) (13)
Ψ𝑠,3 = 𝐿𝑠𝑖𝑠,3 + Ψ𝑝𝑚(\𝑚 − 4

3𝜋) (14)

where 𝑣𝑠,1−3 and 𝑖𝑠,1−3 are voltages and currents per phase,
𝑅𝑠 and 𝐿𝑠 are the stator resistance and inductance respec-
tively, Ψ𝑠,1−3 is the magnetic flux per phase, Ψ𝑝𝑚 is the
flux linked with the stator due to the permanent magnets
depending on the rotor position \𝑚. By applying now the
Park transformation, we can express the above equations
in a stationary reference frame13; this transforms the three-
phase machine into a two-phase machine, equipped with
two windings fixed with the stator and orthogonal each
other, expressed as 𝑑 (‘direct’) and 𝑞 (‘quadrature’):

𝑣𝑠,𝑑 = 𝑅𝑠𝑖𝑠,𝑑 + ¤Ψ𝑠,𝑑 − ¤\𝑚𝐿𝑠𝑖𝑠,𝑞 (15)
𝑣𝑠,𝑞 = 𝑅𝑠𝑖𝑠,𝑞 + ¤Ψ𝑠,𝑞 + ¤\𝑚𝐿𝑠𝑖𝑠,𝑑 + ¤\𝑚Ψ𝑝𝑚 (16)
Ψ𝑠,𝑑 = 𝐿𝑠𝑖𝑠,𝑑 + Ψ𝑝𝑚 (17)
Ψ𝑠,𝑞 = 𝐿𝑠𝑖𝑠,𝑞 (18)

The expression of the torque [38] for such a machine is
given by

𝐶𝑒𝑚 = 𝑛𝑝Ψ𝑝𝑚𝑖𝑠,𝑞 , (19)

where 𝑛𝑝 is the number of pole pairs, and justifies how, in
the control strategy only the quadrature current is used to
produce a torque14.

5.3.3 Level 3 EM model
The most advanced Level 3 EM model replicates the

Level 2, but adds several dissipative effects: 1. friction
losses; 2. core losses (only eddy current losses, no hystere-
sis losses); 3. permanent magnet losses. Their equations
are those implemented already in the machine losses MSL’s
package15. As for the friction, the friction torque 𝜏 is:

𝜏/𝜏ref = (+𝜔/𝜔ref)𝑎 for 𝜔 > +𝜔lin (20)
−𝜏/𝜏ref = (−𝜔/𝜔ref)𝑎 for 𝜔 < −𝜔lin (21)

13One axis has the same direction of the first winding magnetic axis.
14The direct current can be exploited for field weakening operations so

to control the machine’s operating regions. However, this goes beyond
the scopes of this paper.

15More specifically, Electrical.Machines.Losses.
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where the angular speed is 𝜔, 𝜏ref is the reference torque
at the reference angular speed 𝜔ref, 𝑎 is a coefficient de-
pending on the machine ventilation, and 𝜔lin defines the
angular speed range in which the function is considered to
be linear. Let us define the core power losses 𝑃core as:

𝑃core/𝑃ref = (𝑉/𝑉ref)2 (22)

where 𝑉 is the actual phase voltage and the subscript −ref
has the same meaning as before. Lastly, permanent magnet
losses are modeled dependent on current and speed. The
permanent magnet losses are just considered through an
equivalent braking torque at the shaft. The permanent
magnet loss torque is

𝜏mag = 𝑃′
ref/𝜔

′
ref (𝑐 + (1 − 𝑐) (𝑖/𝑖ref)𝑎

′ ) (𝜔/𝜔ref)𝑏 (23)

where 𝑖 is the current of the machine, the parameter 𝑐 desig-
nates the part of the permanent magnet losses independent
of current. The dependency of the permanent magnet loss
torque on the stator current is modeled by the exponent 𝑎′.
The dependency of the permanent magnet loss torque on
the angular velocity is modeled by the exponent 𝑏.

5.4 Power Drive Electronics modeling
The PDE are meant to feed the EM model appropriately.

There are four PDE models: PDE Level 1 and 2 would be
compatible with Level 1 EM model, whereas PDE models
3 and 4 would fit only EM Level 2 and 3 models16.

5.4.1 Level 1 PDE model
The input torque is transferred directly to the output.

There is no dynamics introduced.

5.4.2 Level 2 PDE model
The torque has a second order dynamics expressed as

𝐶𝑒𝑚 (𝑠) =
𝜔2
𝑖

𝑠 + 2b𝑖𝜔𝑖𝑠 + 𝜔2
𝑖

𝐶∗ (𝑠) (24)

where 𝜔𝑖 is the current loop natural frequency and b𝑖 its
damping factor.

5.4.3 Level 3 PDE model
In Level 3 PDE model the input torque is transformed

into the quadrature current 𝑖∗𝑠,𝑞 = 𝐶∗/𝐾𝑡 , where 𝐾𝑡 is the

16 Note that, at implementation level, this means that the interfaces
(connectors) are not always the same. In particular: "PDE Level 1-
2 ↔ EM Level 1" would use a simple Real signal propagating the motor
torque, while "PDE Level 3-4 ↔ EM Level 2-3" would use a multi-phase
electrical interface.

Fig. 20: TvcSystem_v1 class diagram view.

motor torque constant, that constitutes the reference for
the current closed loop, as in Figure 19. The direct and
quadrature controllers output the respective reference volt-
ages, 𝑣𝑠,𝑑 and 𝑣𝑠,𝑞 . These are finally back-transformed
into 3-phase via a reverse Park transform and fed into a
perfect voltage source representing the inverter dynamics
for operating the EM. The currents 𝑖𝑠,𝑑 and 𝑖𝑠,𝑞 are ob-
tained via Hall sensors on the inverter output after a Park
transformation.

5.4.4 Level 4 PDE model
Level 4 PDE model adds to the Level 3 implementation

the Pulse-Width-Modulation (PWM) and inverter dynam-
ics. Duty cycles for voltages 𝑣𝑠,1−3 are obtained, based on
the DC voltage source available17. Then, a PWM signal
is produced and fed into a 3-phases inverter model. The
latter is composed by two transistors and two anti-parallel
free wheeling diodes per phase. Diodes and transistors
switching dynamic is modeled as well as in [38].

5.5 Library implementation
The full implementation of the TVC system re-

lies on models spread in different sub-packages.
The EM, PDE and MPT model variants are con-
tained within VLVLib.Actuators.TVC package.
Within the latter there are four main sub-packages:
ElectroMechanicalActuator, Assemblies,
Interfaces and Tests. The first implements the
discussed EMA components together with the control
system, while the seconds creates suitable interconenctions

17In launch vehicles this is usually a LiPo or thermal battery.
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model TvcSystem_v1
extends VLVLib.Parts.TvcEngineSystem.Architecture.TvcArchitecture(
ema1(emaBody(
redeclare TVC.Components.ElectroMechanicalActuator.ElectricalMotor.Motor_level1 motor,
redeclare TVC.Components.ElectroMechanicalActuator.MechanicalTransmission.MPT_1dof_functional mpt)
),
ema2(emaBody(
redeclare TVC.Components.ElectroMechanicalActuator.ElectricalMotor.Motor_level1 motor,
redeclare TVC.Components.ElectroMechanicalActuator.MechanicalTransmission.MPT_1dof_functional mpt)
),
redeclare VLVLib.Actuators.Engine.Engine_v1 engine,
spherical_ema1NozzleAttachment(w_rel_a_fixed=false, z_rel_a_fixed=false),
spherical_ema2NozzleAttachment(w_rel_a_fixed=false),
engineBay(
redeclare TVC.Components.ElectroMechanicalActuator.PowerDriveElectronics.Pde_level2 pde1,
redeclare TVC.Components.ElectroMechanicalActuator.PowerDriveElectronics.Pde_level2 pde2 )

);
end TvcSystem_v1;

Fig. 21: The TvcSystem_v1 class code.

between those. The third sub-package implements the
necessary expandable busses to connect the components
and store each component’s variable to output. Lastly, the
Test package implements unit tests.

The models are implemented by mainly exploiting the
1D Mechanics18 and Electrical packages of the MSL.
All model variants extends their respective interface partial
models so to conform to the architecture-driven approach.
On the other hand, the single component variants are stored
in separated models. The same holds true for the simple
engine model, that just includes its inertial dynamics. It is
worth noticing that it is connected to the rocket structure
by means of a spherical joint, on which a suitable structural
stiffness and damping act. The EM Level 2 and 3 models
require a big amount of parameters for the PMSM model
to be correctly defined. For this reason, they are stored
into a record and instantiated in both models. Naturally,
Level 3 modifies the otherwise-zeroed friction parameters
accordingly.

The Assemblies package contains component aggre-
gates: EngineBody, EngineBay and EngineMultibody.
The first models the actuator core, made out of the compo-
sition of the EM and MPT; EngineBay implements the two
PDE units, while EngineMultibody instantiates EmaBody
class and connects it with a prismatic joint (which belongs
to the 3D Mechanics MSL’s package19). Models within
Assemblies do not perform any component redeclaration.

18Precisely Mechanics.Translational and Mechanics.-
Rotational packages.

19That is Mechanics.Multibody package.

This happens only in VLVLib.Parts.TvcEngineSystem
package which contains the actual final implementations
of the complete 3D TVC+Engine system. For example
TvcSystem_v1 model implements Level 1 EM, the func-
tional MPT and Level 2 PDE models (for both EMAs
within the complete TVC system). Figure 20 further ex-
plains the architecture, while the code is shown in Fig-
ure 21.

6. Landing legs deployment model
Landing legs are fundamental for achieving reusability

because they enable a soft touchdown. A few moments
before landing, while the vehicle is facing the last descent
part, the legs must be fully deployed: this is possible thanks
to a mechanism able to release them from their folded
position and push them outwards, such that gravity can
start acting to further extract them and bring them towards
their pre-defined final latching position. Gravity itself is
not sufficient to win the aerodynamic forces, which strongly
depend on the vehicle angle of attack and velocity. For this
reason, an additional force is necessary to make sure that
the deployment is complete and the legs can actually reach
the fully unfolded configuration.

6.1 Leg deployment model
The discussed legs mechanical structure is based on

CALLISTO reusable launch vehicle demonstrator. The
configuration and the analysis of its performance is fully
explained in [41]. In the following, the landing legs system
is modeled only mechanically: in fact, the fluidic mech-
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Fig. 22: Simplified view of the legs model.

anisms20 meant to push out the legs is not considered.
Figure 22 highlights the main model components. The
primary strut can be seen as a telescopic rod enabling the
legs unfolding, which operates thanks to a pneumatic force
𝐹𝑝 . The secondary strut, instead, is in charge of holding
the vehicle in position at touchdown and stand the heat
stress during the deployment. At the deployment com-
mand trigger, a push-off mechanisms provides a minimal
hinge torque to allow the leg to start the deployment; if
this was absent, the gravitational force and pneumatic one
would not cause the deployment angle _ to ever increase.

6.2 Library implementation
The difficulty in implementing a simulation model of

a leg unfolding lies in the fact that the leg mechanical
structure is a closed kinematic chain. Normally, with an
open chain configuration the compiler is able to solve for
the states of the next chain elements based on the current
one. In closed chains, however, for each body there exists
more than one path connecting to a uniquely defined set of
states. Closed chains can be structurally non-singular or
singular. In non-singular closed chains, the model is pre-
processed in such a way that the tree roots are identified
and the algebraic constraints determined.

The main problem of closed chains is that they can eas-
ily generate statically indeterminate systems (more equa-
tions than unknowns), like for example, in planar closed
chains. The software symbolic manipulation applicable to
a generic DAE system can not distinguish between consis-
tent statically indeterminate systems (for which would be
enough to ignore some equations) and inconsistent systems

20In CALLISTO, a Helium-based pneumatic system is used.

Fig. 23: LegSimple class diagram view.

(thus defined by contradictory equations). The structural
singularity of the DAE system is detected and the com-
pilation fails. It is therefore necessary to eliminate the
redundant equations before applying the symbolic manip-
ulation.

The nonlinear algebraic constraint equations arising
from most mechanical loops can be solved analytically
However, it is difficult to perform this automatically. For
this reason, the MSL has implemented a set of components
where a predefined set of joints are already merged and
the resulting equations of motion pre-solved and imple-
mented. In this way, when a joint assembly takes part into
a closed chain, the solver is able to solve for it. The com-
ponent JointRRP implemented in the class LegSimple
(Figure 23) has exactly this role. The same Figure also
shows how the primary and secondary struts are imple-
mented. The release mechanism acts as a torque at point
A generated by a torsional spring which is active only
when the deployment command has been triggered and _
angle is small (e.g. less that 1deg). The deployment com-
mand is a Boolean input which gets latched internally such
that conditional expressions can be used to manage the
force and torque acting on the leg. Note that a connec-
tor frame_ground is present. This allows the leg model
to simulate the ground contact at the tip of the primary
strut. This will be discussed in the next Section. The
model LegsAssembly instantiates the four legs and can be
used at vehicle class root level, as happening in Callisto
model.
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Fig. 24: LegsAssembly class diagram view.

7. Ground contact modeling
The problem of modeling body impacts has been already

addressed in [42,43]. Having an accurate representation of
the behavior of the vehicle when it touches the ground may
provide useful insights into the vehicle stability and the
terminal landing conditions to be fulfilled to avoid vehicle
tipping. This has been already cause of numerous failures
in the early life stage of Falcon 9 rocket [44].

The approach used here is the penalty-based approach
described in [42], where a high elastic and damping force
is applied to the impacting body on the principles of a
spring-damper mechanism. The price to pay with such a
choice is that the simulation model becomes stiff, often
implying a high computational cost.

7.1 Library implementation
The models to simulate ground impact are contained in

the Parts package. Two components need to be instanti-
ated: the Ground and the GroundForce_v1 models. The
Groundmodel contain all the properties for defining where
the "ground" is located. This is fundamentally a fixed trans-
lation with respect to the inertial frame. At the same time,
the reference frame defining the ground can be fixedly or
continuously rotated with respect to the inertial. The same
class also contains the definition of the "vertical" axis ("off-
ground") and the "horizontal" axes ("on-ground") of the
local ground frame. The Ground class defines pervasive
properties of the overall model. For this reason, it has to be
instantiated with the inner attribute, which makes avail-

Fig. 25: GroundForce_v1 class diagram view.

model GroundForce_v1
// <...> All declarations
outer Ground ground;

equation
if elastoGap.contact then
brake_n1.f_normalized = 1;
brake_n2.f_normalized = 1;
else
brake_n1.f_normalized = 0;
brake_n2.f_normalized = 0;

end if;
// <...> Other connection statements

end TanksAssembly;

Fig. 26: Parts of the GroundForce_v1 class code.

able the instantiated component (i.e. ground) to all models
down the hierarchy, provided it is recalled using the outer
command, like in Figure 26.

The class GroundForce_v1 (Figures 25 and 26) uses
the properties defined in Ground. GroundForce_v1
operates as follows: it connects21 the inertial frame to
frame_contactElement (i.e. the physical mechanical
connector that must "expose" to the ground contact), but it
enables all its degrees of freedom (three rotational and three
translational). However, while the three prismatic joints al-
low free motion, they are set to exert specific forces as con-
tact is occurring. On the "vertical" axis, an ElastoGap
model is instantiated: this enables a free motion of the
connected component until the ground is reached. At that

21Connecting two mechanical connectors corresponds to "welding"
them.
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point, a spring-damper mechanism starts acting avoiding
the penetration into the ground of the impacting body. The
contact presence is governed by an ElastoGap Boolean
internal variable. When this is ‘true’, a breaking force
acts on the remaining two translational degrees of freedom
to avoid that the body "slips" onto the (fictitious) ground
surface.

8. Simulation Results
In this Section, simulation results are shown for the four

main considered dynamics with representative examples
carried out onto CALLISTO22, a VTVL reusable launch
vehicle demonstrator being developed by DLR, CNES and
JAXA in a trilateral project [45]. Its main objective is to
demonstrate the capability to recover a vehicle with toss-
back trajectory. This goal implies many sub-objectives
for the propulsion system, such as in-flight engine reig-
nition, propellant settling and sloshing management. An
on-board computer has to run suitable robust algorithms
for guidance, control and navigation during all phases for
enabling vehicle stability and a safe landing.

8.1 Sloshing dynamics
To simulate propellant sloshing, the full end-to-end

CALLISTO mission is considered. It has two tanks, one
for the oxidizer (liquid oxygen - LOx) and one for the fuel
(liquid hydrogen - LH2), full at the take off. For both, only
one sloshing mode is accounted for. Pendulum angles for
both tanks obtained from a closed-loop simulation where
the entire GNC system is implemented. This includes the
control laws managing position and attitude, complex nav-
igation algorithms for state estimation and a a guidance
logic to provide the best control references over time.

In Figure 27, LH2 tank pendulum angles with respect to
vehicle’s x- and y-axes are shown normalized. Even at this
GNC system design early stage, the validity boundaries for
the sloshing model are fulfilled, despite not directly visible
in the plot for data confidentiality reasons.

At boostback, the vehicle experiences a null non-gra-
vitational acceleration on its longitudinal axis; in this
phase the liquid undergoes a chaotic motion and spreads
in the tank. From a simulation viewpoint, this im-
plies that the equivalent sloshing model is not valid any-
more, and the pendulum motion must be inhibited via
the boolean variable suppressSloshing. In fact, Fig-
ure 27 evidences how, in the highlighted area where
suppressSloshing=true, the pendulum restores its neu-

22Cooperative Action Leading to Launcher Innovation in Stage Toss
back Operations

tral position and stops oscillating.

8.2 TVC system
The different versions for each EMA sub-component

are shown in terms of step response to a 10mm screw
position command. In the same plots, the difference of
each response with respect to the one obtained using their
respective simplest model is shown. The control scheme
for all the proposed simulations is the same and is the
one described in Section 5.1 and [37]. All parameters are
taken from [37]. In this case, simulations are performed
without any rocket model in the loop. This means that
the vehicle-induced loads (hence the loads produced onto
the TVC system as effect of the vehicle dynamics) are not
considered. Note that the structural compliance is always
modeled, hence there is an elastic (and damping) force
always acting between the screw and the engine model. In
fact, for rocket engines this cannot be neglected and usually
has an high impact on the TVC control system design.

Figure 28 shows the differences between: 1. the screw
position with infinite nut-screw stiffness (no nut-screw
compliance); 2. the screw position with a finite nut-screw
stiffness; 3. the load position with a finite nut-screw stiff-
ness; 4. the load position with a finite nut-screw stiffness
and force feedback compensation active. Only in this Fig-
ure, all simulations are performed without any structural
damping, to demonstrate the capability of the force feed-
back compensation. In the following, this simplification is
abandoned and the damping embedded in the architecture.

Figure 29 highlights the differences between the Func-
tional, Basic and Advanced MPT models. As the friction is
captured with more accurate models, the responses show
less overshoot. Furthermore, the backlash effect (simu-
lated with 𝑥0 = 0.1mm) generates an initial delay in the
Advanced model response, as well as high frequency dy-
namics visible only in the purple line due to some effect
roughly definable as "mechanical chattering".

Figure 30 shows the responses of the EM models: here,
the differences are much more contained. A slower dy-
namics in Level 2 and 3 models is justifiable with the effect
of friction and other power losses.

Figure 31 shows the responses of the PDE models.
Clearly, a difference between Level 2 and Level 1 exists
due to the fact that Level 1 does not implement any dy-
namics. Level 3 and 4 are almost identical, as expected,
due to the high frequency dynamics of the modulator and
converter which can be fairly neglected in almost all GNC
scenarios. However, Level 3 introduces an additional de-
lay with respect to Level 2 due to the inverter diodes and
transistors switching dynamics. Figure 32 also highlights
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Fig. 27: CALLISTO normalized LH2 pendulum angles.

Fig. 28: Stroke position and load position comparison to
highlight the control system performance.

the measured quadrature current 𝑖𝑠,𝑞 as compared to the
controller current setpoint in Level 4 model.

8.3 Legs deployment
To show the legs deployment effects on the vehicle dy-

namics, CALLISTO vehicle is taken again as example.
No real trajectory is simulated; here, the vehicle is freely
falling from an altitude of 13m, with null Euler (3-2-1) an-
gles, angular rates and velocity with respect to the inertial
frame. It is supposed that the legs deployment command
is generated at 0.1s and that each leg receives it with a
sequential delay of 0.1s. More realistic conditions will be
accounted for in subsequent works. Figure 34 shows that
the angular rate of the vehicle is severely affected by the
legs unfolding. Note that vehicle attitude is uncontrolled.

Fig. 29: Stroke position step response with the three dif-
ferent MPT models.

Furthermore, there is no aerodynamic force acting on the
legs which opposes the pneumatic force 𝐹𝑝 . Lastly, the 𝑇𝑠
and 𝐹𝑝 values are not resembling the actual CALLISTO
ones. Despite the simplifications, the effectiveness of the
model is demonstrated and and could be made even more
realistic in the future.

8.4 Ground contact
The simulated scenario is similar to the one before, but

with the presence of a ground model. Due to the non-
null attitude (caused by the legs deployment), the vehicle
touchdown does not happen with the four legs all at the
same time; the final dynamics is captured by the angular
rates shown in Figures 35 and 36. Immediately after the
first legs touch the ground, the vehicle starts wobbling
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Fig. 30: Stroke position step response with the three dif-
ferent EM models.

intermittently onto two legs periodically until this motion
stops, after about 5s. Thus, the vehicle does not undergo
any tipping. However, it is clear how the final stability
depends on the touchdown attitude, but also on the ground-
leg stiffness and damping factors.

9. Conclusions
This paper shows the potential of the Vertical Land-

ing Vehicle Library (VLVLib) written using Modelica, an
acausal object-oriented modeling language. The library
implements several key dynamics of Vertical Landing (VL)
Reusable Launch Vehicles (RLVs) sub-components, in or-
der to produce advanced vehicle models and successively
achieve a thorough GNC system testing, verification and
validation. The modeling and implementation rationale
have been explained and proved successful for maintaining
a big flexibility when creating models with different fidelity
levels, as well as managing a large amount of sub-models
and interfaces. In this sense, Modelica language features,
like inheritance, redeclarations, or fine class name scoping
control, have been exploited at their full extent.

Four main dynamics affecting vehicle overall behav-
ior have been inivestigated and the modeling strategy ex-
plained for each of them. They are propellant slosh dy-
namics, the TVC system, and the landing legs unfolding
and the ground contact dynamics. Simulation results have
been proposed to demonstrate the library implementation
and that the resulting reusable launch vehicle overall model
can be built so to include any of those dynamics of interest.

Fig. 31: Stroke position step response with the four differ-
ent PDE models.

In conclusion, the presented library can perspectively
integrate the GNC simulation, validation and verification
work logic within any stage of a reusable launch vehicle
development process.
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