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Abstract

In order to make risk informed decisions in the simulation-based design and development
of aircraft components, uncertainties in the simulation results must be taken into account.
This concerns high-consequence decisions regarding financial risks, operational safety and
ultimately human lives. A field which combines a variety of possible uncertainties with
complex modeling demands and great impact on the system performance and safety is the
simulation of combustion in aeroengines. Since the quality of the fuel spray significantly
influences the combustion process, the formulation of boundary conditions for the spray after
primary atomization introduces a major source of uncertainties in such simulations. Due to
the high computing time for their quantification these uncertainties are not explicitly taken
into account at the moment.
Although the future need for uncertainty quantification in combustion simulations is

recognized in the scientific and engineering community, only a few studies regarding its
application can be found in the literature. Therefore, this work aims at applying state of the
art methods for uncertainty quantification to simulation problems involving turbulent spray
combustion. Special emphasis is placed on the quantification of uncertainties in the simulation
results due to incomplete knowledge in the construction of the spray boundary conditions.
Possible uncertainties in the input and output quantities are characterized from a probabilistic
perspective. The propagation of the uncertainties through the complex simulation problems
is analyzed using an efficient, non-intrusive workflow involving surrogate modeling. In this
approach, the high fidelity simulation model is replaced by a model of reduced fidelity over
a limited parameter range. This drastically reduces the computational burden for complex
simulations when facing a large number of uncertain inputs.

The method is applied to two test cases with different complexity. At first, the probabilistic
workflow is applied to a well characterized laboratory scale spray flame burning liquid ethanol.
The reduced complexity of both the experimental apparatus and the steady-state simulation
enables an in-depth analysis of the problem under consideration. Uncertain input parameters
are prioritized in a screening study, which allows for a reduction of the parameter space. Two
different surrogate modeling methods are compared and analyzed. The computation of the
probability bounds reveals extensive uncertainties regarding the gas phase temperature over
the reaction zone. In a sensitivity analysis, the majority of this uncertainty is traced back to
the uncertainties in the spray cone angle of the atomizer.

In order to assess the methodology for uncertainty quantification in an engineering relevant
problem, a semi-technical spray burner reflecting characteristics typically found in modern
aeroengine combustors is considered. To overcome the need for costly experimental data
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for the spray boundary conditions, an algebraic primary breakup model is incorporated and
the resulting reduction in prior knowledge is compensated through probabilistic modeling
and uncertainty quantification. Due to their importance in the design process, temperature
distribution and flame position are considered as the main quantities of interest. Moderate
uncertainties are found in the results for the gas phase temperature as well as the flame
position. The predictive capacity of the simulation under the given uncertainties is appraised
using accuracy metrics for uncertain observations.

Both test cases successfully demonstrate the potential of uncertainty quantification in the
simulation of turbulent spray combustion. From the first test case it is concluded that the
identification and adequate characterization of sources of uncertainties should be systematically
included in the design of validation experiments. The second test case clearly demonstrates
the added value of uncertainty quantification when only limited information regarding the
spray boundary conditions is available as this lack of knowledge is reflected as uncertainties in
the simulation results. This allows for a quantitative identification of risks when comparing
the simulation results with predefined performance targets. With these additional information
at hand, simulation-based decision-making in the design and development process can be
supported and ultimately extended towards virtual certification for high consequence scenarios.



Kurzfassung

Um risikobehaftete Entscheidungen in der simulationsbasierten Entwicklung von Flugzeugkom-
ponenten treffen zu können, müssen Unsicherheiten in den Simulationsergebnissen systematisch
mitberücksichtigt werden. Dies betrifft insbesondere Entscheidungen mit weitreichenden Kon-
sequenzen hinsichtlich finanzieller Risiken, Sicherheit im Betrieb sowie letztlich Menschenleben.
Eine Anwendung der simulationsbasierten Entwicklung, der eine Vielzahl an Unsicherheiten
mit komplexen Simulationsmodellen und einer großen Auswirkung auf die Systemleistung- und
Sicherheit kombiniert, ist die Simulation von Verbrennungsprozessen in Triebwerksbrennkam-
mern. Da die Qualität des Brennstoffsprays den Verbrennungsprozess signifikant beeinflusst,
sind Unsicherheiten in den Randbedingungen für das Brennstoffspray eine Hauptquelle für
Unsicherheiten in solchen Simulationen. Aufgrund des hohen Rechenzeitaufwands für deren
Quantifizierung werden diese Unsicherheiten momentan noch nicht mit in die Simulation
einbezogen. Auch wenn die Notwendigkeit der Quantifizierung von Unsicherheiten in Verbren-
nungssimulationen bereits identifiziert wurde, lassen sich nur wenige Anwendungsbeispiele in
der Literatur finden.
Ziel dieser Arbeit ist daher, aktuelle Methoden zur Quantifizierung von Unsicherheiten

auf Simulationsprobleme aus dem Bereich der turbulente Sprayverbrennung anzuwenden.
Ein besonderes Augenmerk liegt hierbei auf der Quantifizierung von Unsicherheiten in den
Simulationsergebnissen aufgrund von unvollständigem Wissen bei der Konstruktion der
Sprayrandbedingungen. Mögliche Unsicherheiten in den Eingangs- und Ausgangsgrößen
werden mittels Wahrscheinlichkeitstheorie charakterisiert. Die Ausbreitung der Unsicher-
heiten durch die komplexen Simulationsprobleme werden mit einem effizienten, nichtintrusiven
Workflow analysiert, welcher auf Surrogatmodellen aufbaut. Durch den Einsatz von Surrogat-
modellen wird das komplexe Simulationsmodell in einem eingeschränkten Parameterbereich
mittels eines Modells reduzierter Komplexität approximiert. Dieses Verfahren reduziert den
Rechenaufwand drastisch, insbesondere bei einer hohen Anzahl an unsicheren Eingangsgrößen

Die Methodik wird auf zwei Testfälle mit unterschiedlicher Komplexität angewandt. Zuerst
wird eine Ethanolsprayflamme im Labormaßstab betrachtet, für die umfangreiche exper-
imentelle Daten vorliegen. Der einfache Aufbau des Experiments sowie die Möglichkeit,
diese Flamme mit stationären Simulationen bereits gut abbilden zu können ermöglicht eine
detaillierte Analyse des Testfalls sowie der verwendeten Methodik. In einer Screening-Studie
werden die unsicheren Parameter der Simulation priorisiert, woraus sich eine Reduktion auf
die einflussreichsten Parameter ergibt. Anhand des Testfalls werden zwei unterschiedliche Sur-
rogatmodelle verglichen und analysiert. Durch die Berechnung der Wahrscheinlichkeitsgrenzen
für die Temperaturprofile können umfangreiche Unsicherheiten in den Simulationsergebnissen
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im Bereich der Reaktionszone identifiziert werden. Mittels einer anschließenden Sensitiv-
itätsanalyse kann der Hauptteil dieser Unsicherheiten auf Unsicherheiten hinsichtlich des
Öffnungswinkels der Spraykegels zurückgeführt werden.
Um die Methodik zur Quantifizierung von Unsicherheiten auch in einer technisch rele-

vanten Problemstellung zu bewerten, wird anschließend ein drallstabilisierter Spraybrenner
betrachtet, der einige der wesentlichen Eigenschaften moderner Triebwerksbrennkammern
aufweist. Um kostspielige Experimente zur Charakterisierung der Sprayrandbedingung zu ver-
meiden, wird ein algebraisches Primärzerfallsmodell zur Berechnung der Sprayrandbedingung
verwendet. Die daraus resultierende Datenlücke wird mittels Wahrscheinlichkeitstheorie als
Unsicherheit charakterisiert. Aufgrund ihrer besonderen Bedeutung im Entwurfsprozess von
Brennkammern werden die Flammenposition und die Temperaturverteilung als Hauptindika-
toren betrachtet. Die systematische Quantifizierung der Unsicherheiten zeigt moderate
Unsicherheiten der Simulation hinsichtlich der Flammenposition und Temperaturverteilung.
Anhand von Genauigkeitsmetriken wird schließlich die Vorhersagefähigkeit der Simulation
unter den gegebenen Unsicherheiten abgeschätzt.
Beide Testfälle zeigen erfolgreich das Potential von Methoden zur Quantifizierung von

Unsicherheiten in der Simulation turbulenter Sprayverbrennung. Aus dem ersten Testfall kann
gefolgert werden, dass die Identifizierung und umfassende Charakterisierung möglicher Quellen
von Unsicherheiten in den Entwurf von Validierungsexperimenten eingeschlossen werden soll-
ten. Der zweite Testfall zeigt deutlich den Mehrwert der systematischen Quantifizierung
von Unsicherheiten auf, wenn nur begrenztes Wissen hinsichtlich der Sprayrandbedingungen
vorhanden ist. Da diese Wissenslücke klar in den Simulationsergebnissen wiedergespiegelt
wird, können aus dem Vergleich mit den geforderten Leistungsparametern Risiken quantitativ
identifiziert werden. Mit dieser zusätzlichen Information kann die simulationsbasierte Entschei-
dungsfindung im Entwicklungsprozess systematisch unterstützt und schließlich ausgeweitet
werden, beispielsweise auf die virtuelle Zertifizierung von Flugzeugkomponenten.



1. Introduction

With the ever increasing availability of high performance computing capacities over the past
three decades, numerical modeling and simulation of physical processes has emerged as a
powerful tool for a variety of problems faced in both research and engineering.

For example, by the end of the 20th century, the design process of an aircraft engine required
90 % of rig tests and 10 % of computational fluid dynamics simulations [164]. By now, these
numbers are almost inverted, resulting in a noticeable cost reduction in the development
programs due to the lower number of experimental rig tests [144]. Furthermore, modeling
and simulation offers the potential of a reduction in turnaround time in the design process
as multiple concepts and scenarios can be investigated in parallel given adequate computing
capacities. This enables an agile development process which is able to react to changing
requirements concerning the final product. Thus, further inclusion and advancement of
modeling and simulation in the design cycle might also be a competitive advantage from the
economical perspective.

In general, the simulation-based design process aims at demonstrating the compliance of a
novel design concept with predefined performance targets through modeling and simulations.
These targets cover for example load limits for structural safety, increase in system efficiency
or regulatory policies regarding pollutant emissions. On the basis of the simulation results,
decisions regarding a redesign, advancement to the next design stage or even a market entry
are made. Obviously, this concerns decisions with high financial risks and potentially even
risks regarding human safety.

An example of such a decision is shown in Fig. 1.1. A quantity of interest is required to lie
within a specific interval, depicting the performance target. In the case of an aeroengine, the
quantity of interest could be thought of as the concentration of a pollutant at the combustor
exit. At first (Fig. 1.1 (a)), simulation results without uncertainties are reported as a point
measure. The simulation result is within the performance target and hence complies with the
requirement, but uncertainties in the simulation results due to model errors or uncertainties in
the simulations inputs are unknown. In the second case (Fig. 1.1 (b)) associated uncertainties
were systematically assessed. This reveals possible simulation results outside the performance
target which correspond to risks regarding the decision making process. Only on the basis
of this additional information, a risk-informed decision to take the risk of failure or invest
further efforts in reducing the uncertainties can be made.
For this purpose, uncertainty quantification (UQ) aims at quantitatively characterizing

the uncertainties in simulation results. In recent times, probabilistic methods have become
increasingly popular for the treatment and quantification of uncertainties [84, 135, 206]. In
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Figure 1.1.: Simulation based decision making.

this approach uncertain quantities are treated as random variables which can be characterized
by probability density functions or intervals to portray their probabilistic behavior. As
a result, minimum/maximum or confidence intervals can be reported in addition to the
simulation results to support the decision makers (see Fig. 1.1 (b)). This finally enables novel
approaches towards the design process such as uncertainty-based design [283] or uncertainty-
based optimization [101, 280] in which an optimal design under the given uncertainties is
achieved.

The broad term uncertainties include, inter alia, approximations in the model formulation,
application of the model outside the validation range, and incomplete knowledge about model
parameters or boundary conditions [177]. From a practical viewpoint the latter refers to the
common issue that inputs to the simulation might be difficult or impossible to measure in
accompanying experiments. In the most severe case, some inputs are unknown beforehand - a
situation typically found in industrial design processes as the inputs might depend on the
final design.
Historically, UQ methods were first established for risk mitigation in the nuclear indus-

try [176]. Due to the impossibility of extensive physical testing, probabilistic simulations were
used to identify scenarios for severe accidents of nuclear reactors [8] or to asses the safety and
reliability of nuclear warheads [241]. In recent time, these methods have advanced towards
other safety critical fields such as the design of aerospace vehicles [225, 283] or medical decision
making [13].

Due to their efficiency and their utility for representing and propagating large uncertainties
through complex models, surrogate-based UQ methods have drawn increasing attention [172,
254]. For the application to CFD problems most results were reported using Polynomial
Chaos Expansion (PCE) [128, 283] and Gaussian Process based sampling [68, 281].
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1.1. Uncertainties in the simulation of turbulent spray
combustion in aeroengine combustors

Due to the outstanding volumetric and mass energy density, liquid fuels represent the
predominant source of energy for aeroengines [197]. Therefore, spray combustion is the
paramount thermo-chemical process in such combustors, involving the strongly coupled sub-
processes of formation of a liquid spray through atomization, vaporization of droplets, mixing
of the fuel vapor and finally chemical reaction. Figure 1.2 provides a simplified schematic of
the interplay of these mechanisms in a conventional Rich-Quench-Lean (RQL) combustor.
Coming from the compressor stage, air enters the combustor through a diffuser which

reduces the air velocity and hence the pressure loss. A portion of the air passes through a
succession of swirlers into the primary combustion zone. Here, liquid fuel is injected through
carefully designed atomizers, creating a spray of small droplets. A strongly swirling flow
allows for an enhanced mixing of the evaporating fuel with fresh air and burned products,
and stabilizes the subsequent combustion process. Downstream of the flame, secondary air is
injected to quench the rich combustion zone. Towards the combustor exit, the combustion
products are further diluted with cold air from the secondary stream, thereby reducing the
exit temperature to a level that is acceptable to the turbine [131].
Requirements regarding safe operation of such combustors include reliable relight at high

altitude, cold-day ignition and lean blowout limits [54]. In the presence of increasingly
strict regulatory policies, reduction of pollutant emissions is of major concern [133]. Clearly,
these requirements represent critical performance targets in the design process of a novel
combustor. In order to make a simulation-based verdict regarding the compliance with these
performance targets, models from the fields of fluid mechanics, droplet dynamics, heat transfer
and chemical kinetics are required. Although enormous progress has been made [81, 99, 200],
current computer models still struggle with the prediction of these coupled and unsteady

Vaporization

Combustion

Fuel injection &
atomization

Turbulence-spray
interaction

Figure 1.2.: Thermo-chemical processs in an aeroengine combustor (adapted from [202]).
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phenomena [50]. The high modeling demand in combination with the complex geometry of
aeroengine combustors still requires supercomputing capacities to keep the computing time at
a maintainable level [51, 60]. Despite the fact that such models are capturing physical and
chemical processes with increasing accuracy, doubts on the reliability of the simulation result
remain and hinder the application of numerical simulation to its fullest potential.

The various models involved require input in the form of modeling constants. Typically, these
constants are calibrated against results from simplified testcases. Therefore, the application
to a full scale combustion system introduces uncertainties regarding the adequacy of the
modeling constants. Furthermore, boundary conditions are required to complete the modeling
system. This includes for example data for the mass flow, temperature and turbulence degree
at the combustor entrance or local heat flux at the combustor walls. While some of these
information might be available from measurements, others rely on empirical correlations,
simplifications or assumptions.
It is well known [46, 131, 202] that fuel preparation is one of the processes with a major

influence on engine safety and operability. Subsequent processes from evaporation up to
pollutant formation strongly depend on the quality of the spray [129]. This must be reflected
in accurate boundary conditions regarding droplet size, velocity and local volume flux1.
However, this data is difficult to acquire from experiments [259] or relies on expert opinion
and experience in early stages of the design process. The influence of incomplete knowledge
regarding the spray boundary condition on simulation results was mentioned for example by
Eckel et al. [51], Ruoff et al. [217], or Pei et al. [181] but no systematic assessment in terms of
uncertainties in the simulation results was reported. The inclusion of this information would
significantly aid in identifying critical scenarios regarding the aforementioned performance
targets in the design process of aeroengine combustors. For this reason, comprehensive
quantification of uncertainties arising from the specification of spray boundary conditions is
identified as the key issue for the work at hand.

1.1.1. Spray boundary conditions

Three methodologies to infer boundary conditions for the spray can be differentiated, namely
direct simulation of the primary atomization process, phenomenological modeling of the
primary atomization or reconstruction from experimental data.
Although direct simulation methods such as VOF-based interface tracking [238] or level

set [152] coupled with DNS or LES offer full insight into the atomization process and
thereby detailed information about the resulting dispersed spray, the computational expense
associated with the neccessary spatial and temporal resolution currently limit its application
to fundamental problems and testcases [86].
As a consequence, phenomenological models with reduced computational requirements

have been developed over the past decades [12, 53, 103, 262]. They aim at statistically
describing the esssential features of the initial breakup process based on geometric quantities

1For further details on spray boundary conditions see Sec. 2.4.
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of the atomizer, properties of the liquid under consideration or main features of the flow field
which are predetermined or extracted during simulation runtime. The assumptions made
in the derivation of the model regarding the underlying physical process, and the variety of
different breakup mechanisms [86] limit each of these models to a specific range of application,
i.e. different types of atomizers. Therefore, models have been proposed inter alia for plain
jets [198], pressure-swirl atomizers [231, 234] or prefilming airblast atomizers [26].

In the case of reconstruction from experimental data [56, 195], spray boundary conditions are
specified with respect to prior experimental characterization of the dispersed phase. In most
cases, this data is only available at further downstream locations, since droplet measurements
close to atomizers are difficult to realize due to the presence of non-spherical droplets and
liquid ligaments [259]. Consequently, such boundary conditions require further calibration to
match downstream experimental data.
For the work at hand, spray boundary conditions from experimental data as well as a

phenomenological breakup model are considered.

1.2. Literature review
Although the future need for UQ in combustion simulations is recognized in the scientific
community [99, 200], only a few studies regarding its application can be found in the literature:
The role of sensitivity and uncertainty analysis in combustion model validation was highlighted
in the work of Mueller et al. [169] and Johnson et al. [108]. UQ was utilized in the analysis
of sub-phenomena of combustion including acoustics [7], chemical kinetics [194, 237], fuel
evaporation [203, 217] and combustion instabilities [11]. A study regarding uncertainties in
spray boundary conditions was reported by Van Dam et al. [265] for a non-reacting testcase.
The influence of uncertainties in chemical kinetics on a flamelet based Large Eddy Simulation
(LES) of a methane jet flame was analyzed through stochastic collocation by Mueller et
al. [167]. Pei et al. [181] conducted global sensitivity analysis for a URANS model of the
Engine Combustion Network Spray A case to deduce the influence of spray parameters on
integral quantities such as ignition delay and flame lift off height. Mueller et al. [168] and
Tang et al. [257] combined PCE and LES of single phase flow to quantify the influence of
boundary conditions on soot evolution and forced ignition, respectively. PCE based UQ was
applied to an LES of a turbulent methane/hydrogen bluff-body flame by Khalil et al. [119]
focusing on LES modeling parameters, e.g. Smagorinsky constant Cs. 1D marginal PDFs of
mean axial velocity and temperature at a position in the flame were presented, showcasing
the computational efficiency of PCE based UQ. Results from PCE based UQ were also
reported by Masquelet et al. [148] for an industrial scale aviation gas turbine combustor. For
the construction of the PCE, they conducted a series of flamelet based LES, assuming fast
evaporation of the fuel and therefore neglecting the multiphase spray regime.



6 1. Introduction

1.3. Objective and structure of the work
The literature review presented in the previous section reveals that comprehensive quantifi-
cation of uncertainties in the simulation of reacting multiphase flows still remains a major
research challenge. Therefore, the work at hand aims at applying state of the art UQ meth-
ods to typical problems in the simulation of turbulent spray combustion. Special emphasis
is placed on the uncertainties arising from the specification of spray boundary conditions.
Two testcases of different complexity are considered. The resulting portrayal of associated
uncertainties in the simulation results would aid in advancing towards model based decision
making in problems involving spray combustion.

The dissertation is organized as follows. Chapter 2 provides an overview on computational
methods for the simulation of turbulent spray combustion.

Chapter 3 summarizes the fundamentals of uncertainty quantification for complex simula-
tions. The focus is put on a comprehensive toolchain for UQ including surrogate modeling.
In Chapter 4, this toolchain is applied to an academic testcase consisting of a laboratory

scale flame burning liquid ethanol. The testcase can be attribute to a benchmark case in the
validation hierarchy2. Different methods for surrogate modeling are analyzed and compared.

A further advanced simulation problem is examined in Chapter 5. The semi-technical
swirl-stabilized spray burner involves essential features of combustion in aeroengines and
resides between benchmark and subsystem case. The application of UQ methods to a complex,
scale-resolving simulation problem is demonstrated including quantitative measures for the
predictive capabilities under the given uncertainties.

Finally, conclusions regarding the two testcases are drawn in Chapter 6 and recommendations
for future developments are derived.

2See Appendix A



2. Computational methods for the
simulation of turbulent spray
combustion

This chapter provides an overview of the computational methods required for the simulation
of turbulent spray combustion. For further details, the reader is referred to the textbooks of
Kuo [124] and Poinsot [186] as well as the review paper by Jenny et al. [107]. All methods
are selected and discussed with respect to use cases related to gas turbine combustion in aero-
engines and stationary power generation. In such systems, liquid fuel is injected, evaporated
and mixed in a carrier gas phase - primarily air - prior to combustion. As liquid fuel and
gaseous air constitute different thermodynamic phases, i.e. different states of matter, the
occurring phenomena are characterized as multi-phase flows.

2.1. Modeling approaches for multi-phase flows
In general, multi-phase flows can exist in many different forms such as bubbly flows in chemical
reactors, slurry flows in gasification, sediment transport in river beds or fluidized beds in
coal combustion [123]. However, the thesis at hand focuses at the particular case of dispersed
sprays, a multi-phase system in which a dynamic collection of microscopic liquid droplets are
transported in a gas.

From such a liquid spray, a single droplet moving in an airflow with velocity ug is considered.
Due to momentum exchange between the droplet and the airflow, coupling effects between
the two phases occur. The velocity or momentum response time τV relates to the timescale at
which the droplet responds to a change in ug. On the other hand, τF is a local characteristic
timescale of the gas flow field. The ratio between the two timescales then defines the
non-dimensional Stokes number of the droplet:

St ≡ τV
τF

(2.1)

The Stokes number allows for a classification of the interaction between droplet and airflow.
For St << 1 the droplet follows the streamlines of ug closely, whereas in case of St > 1 the
trajectory of the droplet will not be affected by changes in ug.

Furthermore, based on the Stokes number a qualitative estimate of the whole spray can be
made by considering the average time between droplet-droplet collisions τC in the spray as τF
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Figure 2.1.: Trajectory of a droplet in a gas crossflow from different numerical approaches.

in Eq. (2.1). The spray is interpreted as dilute if StC < 1 and dense if StC > 1. In a dilute
dispersed phase flow, the droplet motion is controlled by the fluid forces, i.e. drag and lift,
while in a dense flow, the droplet motion is controlled by inter-droplet collisions. In the case
of a spray evolving from a typical gas turbine atomizer, the atomization process of the fuel
takes place in the dense regime, whereas the transport, evaporation and mixing is typically
associated with the dilute spray regime [61]. Note that simulation methods for dense sprays
are out of scope of this thesis and are only discussed in brief.
While the continuous gas phase in dispersed spray simulations is typically modeled using

well known conservation equations for continuum fluid mechanics in an Eulerian reference
frame, different modeling frameworks are available for the simulation of the dispersed liquid
phase. A comparison of the two most common approaches is shown in Fig. 2.1 for the
aforementioned example of a single droplet in a gas flow.
The Euler - Euler approach describes both phases using conservation equations in an

Eulerian reference frame, i.e. by observations in fixed co-ordinates of a computational mesh.
Both phases are seen as a continuous medium, each inter-penetrating the other. Therefore,
a conservation equation for the cell volume fraction V of the liquid phase is required. In
Fig. 2.1 (a) blue regions depict grid cells with V 6= 0, indicating that the droplet is moving
trough these cells. The trajectory of the droplet is then derived from all cells with V 6= 0.
Since both phases are described in the same reference frame, a single numerical solver can
be used for the full multi-phase system by adding the additional conservation equations for
the liquid phase. In principle, the Euler-Euler approach is applicable to the entire range
of multi-phase flows, including the dense, intermediate and dilute regime. However, this
generality comes at the difficulty in prescribing suitable inter-phase models for the flow regime
under consideration [233] and the necessity of a high spatial resolution when dealing with
dilute flows in order to accurately capture droplet trajectories. Therefore, this approach is
more attributed to dense multi-phase flows.
On the other hand, in the Euler - Lagrange approach as shown in Fig. 2.1 (b), individual

droplets from the dispersed phase are tracked through the flow domain by solving the droplet’s
equation of motion in a Lagrangian reference frame, i.e. a reference frame following the
trajectory. The Lagrangian equation of motion relates the rate of change of the droplet’s
velocity to the sum of forces acting upon it. This allows for a precise tracking of the trajectory
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Figure 2.2.: Coupling effects in a dispersed multiphase flow system [233].

and the evolution of the droplet’s time history due to evaporation, condensation, collision
or wall interaction. Since an individual equation of motion is solved for each droplet, it
is relatively easy to account for a distribution of droplet sizes as typically found in sprays.
However, as sprays in technical applications can consist of millions of droplets [129] it may
become computationally expensive to allow the trajectory of every particle to be calculated.
Commonly, droplets with identical properties are therefore summed up to computational
parcels replacing the original droplets in the solution procedure. Thus, a representative sample
of parcel trajectories is calculated to yield sufficient statistics. Limitations of the Euler -
Lagrange approach are found in problems with high droplet densities (dense flows) and small
grid cells, since the volume fraction of the dispersed phase is commonly neglected in the
continuous phase [50]. As this thesis is focused on applications in the reacting dilute dispersed
spray regime, the Euler - Lagrange approach is adopted in the following.
Typical applications in gas turbine relevant spray combustion are considered two-way

coupled, meaning that there is a mutual effect between the flows of both phases. Coupling
applies to all quantities in the carrier gas phase and dispersed phase and is driven by the
mutual exchange of mass, momentum and energy. For example, during evaporation, liquid fuel
is transferred to the gas phase and converts to fuel vapor while the evaporation process results
in a loss in enthalpy in the dispersed phase. Fig. 2.2 displays a schematic of the constitutive
quantities in both phases and generalized coupling effects in dispersed multi-phase flow. In
the following sections, modeling of each phase and their implementation in the simulation
platform used in this work will be detailed.

2.2. Gas phase governing equations and turbulence
modeling

In principle, the following set of conservation equations for mass (Eq. (2.2)), species (Eq. (2.3)),
momentum (Eq. (2.4)), and energy (Eq. (2.5)) fully describes a compressible, turbulent reacting
gas flow involving Ns species in conservative form. Detailed derivations of the governing
equations are given in the work of Versteeg [267] or Gerlinger [79]. Indices i,j indicate spatial
coordinates whereas α = 1..(Ns − 1) is a counter for the number of species. ρg and h denote
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the density and enthalpy of the gas, respectively. τ , jαi and qi are the stress tensor, diffusive
mass flux and heat flux. Source terms on the right hand side comprise volume forces fi and
radiative sources Sr. In the presence of an evaporating or condensating spray, SSp denotes
sources from the spray in the respective quantities.

∂ρg
∂t

+ ∂

∂xi
(ρgui) = SSpρ (2.2)

∂

∂t
(ρgYα) + ∂

∂xi
(ρguiYα) + ∂jαi

∂xi
= Sα + SSpα (2.3)

∂

∂t
(ρgui) + ∂

∂xj
(ρguiuj)−

∂τij
∂xj

+ ∂p

∂xi
= ρgfi + SSpρu (2.4)

∂

∂t
(ρgh) + ∂

∂xi
(ρguih)− Dp

Dt − τij
∂ui
∂xj

+ ∂qi
∂xi

= ρguifi + Sr + SSph (2.5)

Note that the species conservation equation is given in terms of mass fractions

Yα = mα

m1 +m2 +m3 + ...+mNs

= mα

mtotal

. (2.6)

For the calculation of the gas density an ideal gas is assumed. Therefore, the ideal gas law of
a mixture is defined as

ρg = pg

RTg
∑Ns
α (Yα/Mα)

, (2.7)

with the specific gas constant R and the molar mass M .

2.2.1. Modeling of turbulent flows

For some simplified cases, analytical solutions of the system Eq. (2.2) - Eq. (2.5) are avail-
able [229]. However, in the vast majority of engineering problems, turbulence plays a significant
role, leading to strong nonlinearities in the system of governing equations which prohibits the
derivation of analytical solutions. These problems can only be tackled by means of further
modeling and numerical, i.e. approximate, solution methods.
In general, turbulence is described as a chaotic and random state of motion in which

velocity and pressure change continuously with time within substantial regions of a flow [192].
Three-dimensionality and rotational structures with a wide range of length and time scales
further characterize turbulent flows. The onset of turbulence in a gas flow with dynamic
viscosity µg, is found above a critical Reynolds number Recrit where Re is defined as

Re ≡ ρgugl

µg
. (2.8)

In this definition, l is a certain characteristic length scale of the flow, for example the
hydrodynamic diameter in the case of pipe flow or wingspan in case of airfoils. The Reynolds
number equals the ratio of viscous to inertial forces of the fluid. Thus, above Recrit viscous
forces exceed the damping effects of the inertial forces causing turbulent motion.
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Figure 2.3.: Schematic turbulent kinetic energy spectrum according to Hinze [98].

Despite the irregular and statistical nature of turbulence, a certain spectral distribution of
turbulent energy can be observed in turbulent flows. Fig. 2.3 displays an idealized turbulent
flow spectrum, dividing the range of turbulent kinetic energy E(kw) into three distinct
regions [98, 122]. In the integral scales L turbulent energy is extracted from the mean flow
establishing the so called large eddies which are then transferred to higher wavenumbers and
thus smaller scales in the inertial subrange. Finally, in the viscous range turbulent energy is
dissipated into internal energy by molecular viscosity and thus vanished. This dissipation
mechanism takes place at length scales below the characteristic length scale η of the dissipation
range, which is proportional to the molecular viscosity of the gas.
Based on these findings, different modeling strategies for turbulent flows have been estab-

lished. By resolving the entire spectrum of turbulent motion from Fig. 2.3, Direct Numerical
Simulations (DNS) [162] provide the most detailed insight into the mechanism of turbulence.
However, due to the very high computational cost of DNS this method is still limited to
low Reynolds numbers and simple geometries. Applications to fundamental multi-phase
combustion problems are found for example in the work of Borghesi et al. [19] or Domingo et
al. [44].

By exploiting the assumption of scale separation, Large Eddy Simulation (LES) [185] aims
at resolving the large, energy containing turbulent structures (see Fig. 2.4 (c)) which strongly
depend on the problem and geometry under consideration. The dissipation in the fine scales
is then provided by an appropriate dissipation model. As a well resolved LES should be able
to resolve approximately 80% of the turbulent kinetic energy budget to meet up with the
scale separation restrictions [192], computational expenses of such simulations are still high.
Nevertheless, LES has emerged as an important research tool in combustion science with
applications ranging from lab-scale [51, 62, 209] to realistic combustor geometries [60, 276].

In contrast, Reynolds Averaged Navier-Stokes Simulation (RANS) [186] solves only for the
mean values of the fluctuating quantities and incorporates the influence of the turbulence
on the mean values by means of a turbulence model (Fig. 2.4 (a)). Consequently, the
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Figure 2.4.: Resolved and modeled part of the energy spectrum from different simulation
approaches (adapted from [221]).

computational costs are drastically reduced compared to the aforementioned approaches
allowing for short simulation turnaround times. Therefore, RANS has been established as
the predominant simulation method in industrial applications [33]. However, since significant
aspects of turbulent combustion such as local ignition and extinction, flame turbulence
interaction and mixing are inherently unsteady phenomena and strongly coupled to local
turbulence, the absence of resolved turbulent structures in RANS gives rise to extensive
modeling demand and reduces the precision of such simulations [20].
In an effort to overcome these restrictions especially in industrial turbulence simulations,

hybrid URANS/LES methods have been developed in the past decade [186]. In broad terms,
hybrid methods set out to selectively use either URANS or LES simulation approaches in
the flow domain based on certain criteria. This allows for a reduction in spatial resolution
as turbulence is only resolved in regions where necessary, e.g. sheer layers, swirling flow
or strongly detached flow (Fig. 2.4 (b)), whereas near wall or low turbulence regions are
modeled using cost-effective URANS methods. The variety of available hybrid methods (e.g.
DES1 [246], VLES2 [249], DDES3 [247]) stems from the definition of the transition criterion
between URANS and LES regions which can be based for example on wall distance, turbulent
scales or grid spacing. In this thesis, the Scale Adaptive Simulation (SAS [156]) method is
used, details are given in Sec. 2.2.4.

2.2.2. RANS modeling

Conservation equations for RANS simulations are obtained by averaging the instantaneous
set of governing equations Eq. (2.2) - Eq. (2.5). This averaging is based on the Reynolds
decomposition which is given for an arbitrary fluctuating quantity Q as

Q = 〈Q〉+Q′ with 〈Q′〉 = 0, (2.9)

where 〈Q〉 denotes the mean or mathematical expectation of Q and Q′ its fluctuation. However,
in the case of variable density flows as found in combustion problems, a density-weighted

1Detached Eddy Simulation
2Very Large Eddy Simulation
3Delayed Detached Eddy Simulation
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formulation known as Favre averaging is preferred [186], defined as

Q = Q̃+Q′′ and Q̃ = 〈ρ Q〉
〈ρ〉

, (2.10)

where Q̃ is the Favre average of Q and Q′′ the fluctuation with respect to the Favre average. Ap-
plying these definitions to Eq. (2.2) - Eq. (2.5) yields the system of unsteady Reynolds Averaged
Navier Stokes equations for mass (Eq. (2.11)), species (Eq. (2.12)), momentum (Eq. (2.13))
and energy (Eq. (2.14)):

∂ 〈ρg〉
∂t

+ ∂

∂xi
(〈ρg〉 ũi) =〈

SSpρ
〉

(2.11)

∂

∂t

(
〈ρg〉 Ỹα

)
+ ∂

∂xi

(
〈ρg〉 ũiỸα

)
− ∂

∂xi

(
Dα

∂Ỹα
∂xi

+ 〈ρg〉 ũ′′i Y ′′α
)

=

〈Sα〉+
〈
SSpα

〉
(2.12)

∂

∂t
(〈ρg〉 ũi) + ∂

∂xj
(〈ρg〉 ũiũj)−

∂

∂xj

(
〈τij〉 − 〈ρg〉 ũ′′i u′′j

)
+ ∂ 〈p〉

∂xi
=

〈ρgfi〉+
〈
SSpρu

〉
(2.13)

∂

∂t

(
〈ρg〉 h̃

)
+ ∂

∂xi

(
〈ρg〉 ũih̃

)
−
〈

Dp
Dt

〉
−
〈
τij
∂ui
∂xj

〉
− ∂

∂xi

(
λ

cp

∂h̃

∂xi
+ 〈ρg〉 ũ′′i h′′

)
=

〈ρg〉 ũifi + 〈Sr〉+
〈
SSph

〉
. (2.14)

In steady state simulations, ∂/∂t = 0. Note that due to the averaging, additional unclosed
terms appear in the RANS system:

• Reynolds stresses 〈ρg〉 ũ′′i u′′j

• Reynolds enthalpy and species fluxes ũ′′i h′′ and ũ′′i Y ′′α

• Reynolds averaged species source term 〈Sα〉

Unclosed enthalpy and species fluxes are treated by using a gradient diffusion model [79,
186]. For the Reynolds stresses and species source terms, a variety of turbulence [274] and
combustion models [186] are found in the literature, respectively. RANS models used in this
thesis are detailed in the following sections.

Boussinesq hypothesis and eddy viscosity concept

The assumption that the Reynolds stresses 〈ρg〉 ũ′′i u′′j are proportional to the mean strain rate
tensor Sij gives way for the most common RANS turbulence models [274]. According to the
Boussinesq hypothesis [192], the proportionality between the two quantities is controlled by a



14 2. Computational methods for the simulation of turbulent spray combustion

scalar factor µt, the so called eddy viscosity:

〈ρg〉 ũ′′i u′′j = −µt
(
∂ũi
∂xj

+ ∂ũj
∂xi
− 2

3δij
3∑

m=1

∂ũm
∂xm

)
+ 2

3 〈ρg〉 kδij (2.15)

In this equation, δij is the Kronecker Delta and k the turbulent kinetic energy. Thus, the
RANS turbulence modeling problem is reduced to appropriately choosing µt.

Two-equation turbulence models are utilized in this thesis. From dimensional analysis, they
assume that µt can be expressed as a product of a turbulent velocity scale ϑt and a turbulent
length scale Lt [274].

2.2.2.1. Standard k − ε turbulence model

In the standard k-ε turbulence model [111], ϑt and Lt are expressed by the turbulent kinetic
energy k and the turbulent energy dissipation ε:

ϑt = k1/2, Lt = k3/2

ε
. (2.16)

Therefore, two equations must be solved in addition to the RANS set of equations. The
transport equation for k can be directly derived from the Navier-Stokes equations and is given
as

∂ρk

∂t
+ ui

∂ρk

∂xi
− ∂

∂xi

[(
µ+ µt

σk

)
∂k

∂xi

]
= Gk − ρε. (2.17)

Source terms on the right hand side represent the production (Gk) and dissipation (ρε) of k.
In contrast, the ε transport equation is empirical:

∂ρε

∂t
+ ui

∂ρε

∂xi
− ∂

∂xi

[(
µ+ µt

σε

)
∂ε

∂xi

]
= Cε1

ε

k
Gk − Cε2ρ

ε2

k
. (2.18)

The definition of µt reads

µt = CρgϑtLt = Cµρg
k2

ε
. (2.19)

Standard modeling constants for Eq. (2.17) - (2.19) are given by Launder and Sharma [125]:

Cε1 = 1.44, Cε2 = 1.92, Cµ = 0.09, σk = 1.0, σε = 0.3. (2.20)

2.2.3. LES modeling

As mentioned in Sec. 2.2.1, LES relies on the separation of resolved turbulent structures and
unresolved sub-grid scales. This separation is formally realized by means of spatial filtering of
the governing equations [132]. Thus, a turbulent quantity Q is separated into a filtered part
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Q and a sub-grid contribution Q′:

Q = Q+Q′. (2.21)

Considering only homogeneous spatial filtering the general filtering operation can be written
as a convolution integral in the three-dimensional space R3

Q(~x) =
∫
R3
G(~x,~y,∆(~x)Q(~y))d~y, (2.22)

∆(~x) denoting the filter width and G being the filter kernel. Similar to Reynolds averaging, a
density weighted formulation (Favre filtering (̃..)) is used in varying density flows:

Q̃ = ρgQ

ρg
. (2.23)

Although a broad variety of explicit filter kernels is available in the literature [219, 220], most
practical implementations use the grid itself as an implicit filter which resembles a top hat
filter [41, 72]. This strategy is also adopted in the used simulation platform (see Sec. 2.6).
According to Deardorff [40], the spatial varying filter width ∆ then equates

∆ = (∆x∆y∆z)
1
3 . (2.24)

Applying the filtering operation of Eq. (2.22) to the system of equations (2.2) − (2.5)
gives the filtered conservation equations for mass (Eq. (2.25)), species (Eq. (2.26)), momen-
tum (Eq. (2.27)) and energy (Eq. (2.28)) for the large structures:

∂ρg
∂t

+ ∂

∂xi

(
ρgũi

)
=

S
Sp
ρ (2.25)

∂

∂t

(
ρgỸ α

)
+ ∂

∂xi

(
ρgũiỸ α

)
− ∂

∂xi

ρgDα
∂Ỹ α

∂xi
+ ρg

(
ũiYα − ũiỸ α

) =

Sα + S
Sp
α (2.26)

∂

∂t

(
ρgũi

)
+ ∂

∂xj

(
ρgũiũj

)
− ∂

∂xj

(
τ ij − ρg

(
ũiuj − ũiũj

))
+ ∂p

∂xi
=

ρgfi + S
Sp
ρu (2.27)

∂

∂t

(
ρgh̃

)
+ ∂

∂xi

(
ρgũih̃

)
− Dp

Dt − τ ij
∂ũi
∂xj

+ ∂

∂xi

(
qi − ρg

(
ũih− ũih̃

))
=

ρgũifi + Sr + S
Sp
h (2.28)
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The process of filtering introduces a closure problem for the unresolved Reynolds stresses
ρg
(
ũiuj − ũiũj

)
similar to the RANS method since the velocity components uj are unknown

and ũiuj 6= ũiũj.

WALE sub-grid scale model

Unresolved sub-grid Reynolds stresses are computed by the zero equation WALE (Wall-
Adapting Local Eddy-viscosity) model [173]. Similar to to the RANS approach discussed in
Sec. 2.2.2 the eddy viscosity concept is adopted to relate the unresolved sub-grid Reynolds
stresses to quantities of the resolved flow:

ρg
(
ũiuj − ũiũj

)
= −µt

(
∂ũi
∂xj

+ ∂ũj
∂xi
− 2

3δij
3∑

m=1

∂ũm
∂xm

)
+ 2

3ρgksgsδij. (2.29)

An algebraic relation for µt is given by

µt = ρg (Csgs∆)2 (SdijSdij)
3
2(

S̃ijS̃ij

) 5
2

+
(
SdijSdij

) 5
4

, (2.30)

where Sdij denotes the traceless symmetric part of the square of the velocity gradient tensor.
For the presented calculations, a modeling constant Csgs = 0.5 is used [105, 173].

2.2.4. Hybrid URANS/LES model: Scale Adaptive Simulation

From the class of hybrid URANS/LES methods the Scale Adaptive Simulation (SAS) approach
as introduced by Menter and Egorov [156, 158] is utilized for the thesis at hand. The general
SAS concept relies on dynamic transitioning between URANS and LES based on the ratio of
turbulent length scale Lt to the von Karman length scale LvK . The transition is achieved by
introducing a source term to the transport equation of the dissipative turbulence scale. Thus,
SAS can be applied to a variety of eddy viscosity turbulence models [157].
The SAS formulation in the used simulation platform relies on the k-ω-SST4 turbulence

model [154, 155] in which transport equations for the turbulent kinetic energy k (Eq. (2.31))
and the specific dissipation rate ω (Eq. (2.32)) are solved,

∂ρk

∂t
+ ∂

∂xi
ρkui −

∂

∂xi

[
(µ+ Ck1µt)

∂k

∂xi

]
= G− Ck2ρkω, (2.31)

∂ρω

∂t
+ ∂

∂xi
ρωui −

∂

∂xi

[
(µ+ Cω1µt)

∂ω

∂xi

]
= Cω3

νt
G+ Cω2ρω

2 + 2ρ(1− F1) ∂k
∂xi

∂ω

∂xi
. (2.32)

The set of equations (2.31) and (2.32) defines an equivalent set of equations for turbulence
closure modeling as introduced in Sec. 2.2.2.1, but expressed in terms of turbulent kinetic

4Shear Stress Transport
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energy k and turbulence frequency ω. The eddy viscosity µt is calculated by

µt = Cµρk

max
(
Cµω,

√
2SijSijF2

) . (2.33)

In these equations, G is a production source term, Ci are modeling constants and F1, F2 are
blending functions to adjust ω depending on wall distance. For a thorough discussion of the
k-ω-SST model and its modeling constants in the context of the used simulation platform,
the reader is referred to the work of Ivanova [105].

Dynamic adjustment of the k-ω-SST model to an LES like formulation in high turbulence
regions is realized by the introduction of an additional source term FSST−SAS to the ω transport
equation (Eq. 2.32))

FSST−SAS = max
[
CF1kS

2 Lt
LvK

− 2
CF2

k max
(

1
ω2

∂ω

∂xj

∂ω

∂xj
,

1
k2

∂k

∂xj

∂k

∂xj

)
, 0
]
. (2.34)

CFi are modeling constants, Lt =
√
k/ω is the turbulent length scale, LvK is the von Karman

length scale and S denotes the norm of the strain tensor.

LvK = max

κ
√

2SijSij√
∂2ui
∂x2
k

∂2ui
∂x2
j

, Cs

√√√√ κζ̂

βω2/βk − γ2
∆

 . (2.35)

This formulation allows for LvK to adjust to the already resolved scales in a simulation and
provides a length-scale, which is proportional to the size of the resolved eddies [156] with
consideration of the local grid spacing. In unsteady flows, the source term FSST−SAS therefore
increases and µt is damped by ω, as evident from Eq. (2.33). Ultimately, the dissipating effect
of the turbulent viscosity on the resolved fluctuations is reduced.
Appropriate spatial resolution in high turbulence regions of the simulation domain is

required to ensure the transition into the LES mode in Scale Adaptive Simulations. Different
criteria have been proposed [38, 192] to verify suitable grid resolution. In this work, the ratio

µr = µt
µ

(2.36)

defined by the turbulent viscosity µt and the molecular viscosity µ is considered. In the LES
region of an SAS, µr should be in the order of O(101) [105].

2.3. Lagrangian modeling of dispersed sprays
Transport and vaporization of liquid droplets in the Lagrangian reference frame are computed
by solving ordinary differential equations (ODEs) for the location, velocity, diameter and
temperature along the droplets’ trajectory. Detailed derivations of the ODEs are given for
example in the textbook of Schwarzkopf et al. [233] or Clift et al. [31].
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2.3.1. Governing ODEs of a particle

Particle motion According to Newton’s second law, the rate of change in particle velocity
~up is equivalent to the sum of accelerations ~ap acting on the particle:

d~up
dt = ~ap = 3

4
cd
dp

ρg
ρl
|~ug − ~up| ·

~urel︷ ︸︸ ︷
(~ug − ~up)︸ ︷︷ ︸

~ad

+
(

1− ρg
ρl

)
~g. (2.37)

In this equation, drag force ~ad due to the relative velocity ~urel between particle and gas flow as
well as gravitational force ~g are considered. A spherical drag law based on the drag coefficient
cd of the particle is assumed. The particle position ~xp is then directly related to the particle
velocity

d~xp
dt = ~up. (2.38)

Particle diameter and temperature Mass conservation for the particle taking into account
changes in liquid density dρl/dt and mass flow ṁvap leaving the particle due to vaporization
gives the ODE for the rate of change in particle diameter dp:

d(dp)
dt = − dp

3ρl
dρl
dt
− 2
ρl

ṁvap

πd2
p

. (2.39)

Similarly, an ODE for the rate of change in particle temperature Tp can be obtained from an
energy balance including surface heat flux q̇ = Q̇/A and vaporization heat flux q̇vap.

dTp
dt = − 6

d3
p

q̇vap︷ ︸︸ ︷
jm,vap∆hvap +q̇

ρlcp,l
(2.40)

The vaporization heat flux is calculated from the massflux jm,vap = ṁvap/A and the specific
enthalpy of vaporization ∆hvap, where A denotes the particles’ surface.

In case of a multi-component liquid (e.g. kerosene), the rate of change in particle com-
position Yα,l must be considered by applying a relation for the species balance:

dYα,l
dt = 6

ρlπd3
p

ṁvap (Yα,l − ζα) . (2.41)

In this equation, ζα = ṁα,vap/ṁvap describes the ratio between the species and total vapor
mass flux.

2.3.2. Vaporization models

Various vaporization models of different fidelity were proposed in the literature [28, 161, 228],
providing analytical expressions for the vapor mass flow ṁvap and heat flux q̇ in Eqs. (2.39)-
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ṁvap = ∑∑∑
ṁα,vap

Q̇

T∞g

Y ∞α

r∞T r∞α

Tp Yα
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T Sg , Y
S
α

Spherical droplet

Vapor film

Figure 2.5.: Spherical symmetric solution of evaporation in quiescent ambience (adapted from
Eckel [50]).

(2.41). As the main purpose of the used simulation platform is the analysis of technical
combustors burning complex aviation fuels, computational efficiency and the ability to account
for a multitude of components in the liquid fuel are the main requirements in the selection
of suitable vaporization models [50, 202]. Two modeling strategies for vaporization are used
in the present study: A discrete component model, in which each component in the liquid
is treated individually and mapped to a corresponding species in the gas phase; and the
continuous thermodynamics model (CTM) which approximates properties of similar classes
of components by probability density functions.
Both models are based on the film theory suggested by Abramzon and Sirignano [2, 239].

In this concept, isolated spherical droplets in quiescent ambience are considered. As shown in
Fig. 2.5, it is assumed that each droplet with radius rp is surrounded by a quasi steady-state
air-vapor film with radius r∞. Through this film, heat and mass transfer takes place by heat
conduction and molecular diffusion of the fuel vapor. For computational efficiency, a time
dependent but spatially uniform temperature of the droplets’ interior is presumed (rapid
mixing model). Therefore, the derivation of governing equations for droplet evaporation
reduces to the analysis of heat and mass transfer in the air-vapor film and the solution
becomes spherical symmetric over the droplet [2]. Effects of convection from relative velocity
between droplet and gas are taken into account by correlations [31] for the enhanced heat
and mass transfer.

A comprehensive derivation, discussion and analysis of the two vaporization models is given
in the work of Rauch [202]. In the following, essential equations for the calculation of Q̇ and
ṁvap are outlined.
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Discrete component vaporization

Under the aforementioned assumptions, the conservation equations for mass, species mass,
and heat flow in the film described in radial coordinates (f = f(r)) can be simplified to:

1
r2

∂

∂r
(ρurr2) = 0 (2.42)

1
r2

∂

∂r
(ρurYαr2 + jαrr

2) = 0 (2.43)
1
r2

∂

∂r
(ρurhr2 + qrr

2) = 0 (2.44)

In the following, superscripts (..)S and (..)∞ denote quantities at the droplet surface and
ambient, respectively (see Fig. 2.5). By integrating Eqs. (2.42) and (2.43) over the film
thickness and introducing a modified Sherwood number Shα [2, 239] for the non-dimensional
species mass transfer rate, the equation for the vapor mass flow rate can be deduced:

ṁvap = 2πrpShαρgDαln(1 +BM). (2.45)

Dα is the diffusion coefficient of species α and BM the Spalding mass transfer number defined
by

BM = Y S
α − Y ∞α
ζα − Y S

α

, (2.46)

with the ratio ζα between the species and total vapor mass flux. Likewise, the heat flow Q̇

results from integrating the conservation equation (2.44) and defining a Spalding heat transfer
number BT :

Q̇ = ṁvap

∑
ζαcp,α(T∞g − T Sg )

BT

. (2.47)

Rearranging this equation and equating with Eq. (2.45) provides a relation between BT and
BM involving the Nusselt number Nu for the non-dimensional heat transfer rate:

BT = (1 +BM)φ − 1 with φ = Shα
Nu

ρgDα

λg

∑
ζαcp,α. (2.48)

For the calculation of physical properties of the gas film (e.g. cp,α = cp,α(T,Yα)), reference
conditions following the 1/3 rule [102, 282] are considered to account for varying temperature
and mass fraction over the gas film. Therefore, reference conditions are defined as

Tref = T Sg + 1
3(T∞g − T Sg ), (2.49)

Yα,ref = Y S
α + 1

3(Y ∞α − Y S
α ). (2.50)

The discrete component vaporization model is especially suitable for binary liquids (e.g.
ethanol) or mixtures with a moderate number of components since detailed physical properties
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Figure 2.6.: Measured distillation curve for Jet-A (POSF10325). Data extracted from Saggese
et al. [222].

of each component within the mixture must be specified and the computational burden
increases with each component. However, the determination of all components and their
respective properties in a complex technical fuel (e.g. jet fuels, Diesel) might be unfeasible
due to the vast number of components and the varying composition within the specification
range [202]. A strategy to overcome this limitation is the definition of a single component
surrogate, expressing mean properties of the multi-component mixture as succesfully demon-
strated for Jet A-1 by Rachner et al. [196]. The major drawback of this method is the inability
of a single component surrogate to represent the temperature dependent distillation curve as
shown in Fig. 2.6 for Jet A-1. Through this mechanism, components of different volatility
evaporate at different temperatures which massively influences subordinated physical and
chemical processes, e.g. sooting propensity, as discussed by Saggese et al. [222].

Continuous thermodynamics model

Especially in the case of complex fuels with a large number of mixture components, an
alternative modeling strategy is achieved by transforming the discussed discrete description of
the fuel composition into a continuous formulation through the Continuous Thermodynamics
Model [94, 256]. In the CTM framework, mixture components with similar chemical structure
(e.g. n-alkanes, aromatics) are grouped into fuel families5 and family properties are described
by a probability density function over a characteristic distribution parameter I. Depending
on the availability and quality of experimental data, molar mass, normal boiling point or
carbon atom number are possible distribution parameters [202]. With this approach, spectral
properties of a multi-components mixture (e.g. latent heat of vaporization, vapor pressure,
density) are reflected in the vaporization model. For all physical properties of the liquid, a
continuous formulation is required in the CTM model. In addition to the governing equations
of a particle as introduced in Sec. 2.3.1, only two additional ODEs for the distributions’

5In the following, fuel families are given the subscript (..)ff
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Figure 2.7.: CTM description of the discrete n-alkane fuel family by a Γ-PDF (adapted from
Rauch [202]).

parameters θff and ψff (see following) must be solved. This reduces the computational
burden drastically in comparison to the discrete component model, in which each additional
component requires additional ODEs. Coupling of the CTM vaporization model to the gas
field species is realized by assigning one equivalent gaseous species for each fuel family.
Following the findings of Whitson et al. [272] and Cotterman et al. [35], distribution

functions fff (I) based on the Gamma function Γ are used in the implementation of the CTM
model at hand [45]:

fff (I) = (I − γff )αff−1

β
αff
ff Γ(αff )

e
I−γff
βff . (2.51)

The Gamma function Γ(αj) is defined as:

Γ(αj) =
∫ ∞

0
tαff−1e−tdt. (2.52)

From the normalization condition over fff relations between θff , σff and ψff of a family and
the distributions’ parameters αff , βff and γff are obtained, where θff , σff , ψff denote first
moment, second moment and variance, respectively.

θff = αffβff + γff

σ2
ff = αffβ

2
ff (2.53)

ψff = θ2
ff + σ2

ff

Consequently, the distributions’ parameters θff , σff and ψff of each family must be fitted
against experimental data. An example for the n-alkane fuel family in a jet fuel is shown in
Fig. 2.7. The molar weight is chosen as the distribution parameter I in Eq. (2.51).
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The vaporization equations in the CTM model resemble the discrete component model with
fuel families replacing the discrete species in Eqs. (2.45) − (2.48). Details and full derivations
of the CTM equations are given in Rachner et al. [199].

2.4. Specification of boundary conditions for the dispersed
Phase

For practical spray combustion simulations, the particle ODEs from Eqs. (2.37) - (2.41)
require initial and boundary conditions for the particles diameter, velocity and position. These
boundary conditions describe the state of the dispersed phase after primary atomization
of the liquid fuel. Three methodologies to infer this data can be differentiated, namely
direct simulation of the primary atomization process, phenomenological modeling of the
primary atomization or reconstruction from experimental data. For the work at hand, spray
boundary conditions from experimental data as well as a phenomenological breakup model
are considered. Both approaches are detailed in the following, including a brief overview on
primary atomization and the characterization of dispersed sprays.

2.4.1. Remarks on liquid atomization and disperse sprays

The process of a liquid continuum disintegrating into small droplets is commonly referred to
as atomization [129]. After atomization, the collection of fine droplets forms a dispersed spray.
Although there are a multitude of mechanisms involved into the atomization process, the
classic atomization theory subdivides them into sheet or jet instabilities, ligament formation
and droplet formation [31].
An example involving these three categories is depicted in Fig. 2.8 for the case of spray

formation from a pressure-swirl atomizer. In this type of atomizer, internal swirl vanes
(not shown) produce rotational motion of the liquid inside the atomizer. This causes the

Pressure swirl atomizer

Sheet formation

Sheet instabilities

Ligament formation

Droplet formation

Spray
cone angle

Figure 2.8.: Schematic of the atomization process (adapted from Kang et al. [113]).
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formation of a liquid film along the inside walls of the injector as the liquid is forced against
the walls. After ejection from the atomizer orifice, rotational forces transform the film into
a conical sheet which decreases in thickness due to mass conservation as it progresses from
the atomizer. Then, the relative velocity between liquid sheet and surrounding gas enhances
aerodynamic instabilities such as Kelvin-Helmholtz waves on the sheet and eventually breaks
the liquid into ligaments [231]. Finally, ligaments shatter into droplets according to the
Rayleigh mechanism [129]. Once the liquid forms droplets, the spray behavior is mainly
determined by drag, collision, coalescence and secondary breakup [231]. This is in accordance
with the assumptions for Lagrangian modeling of droplets (see Sec. 2.3) and determines the
location at which spray boundary conditions for the dispersed phase should be placed.
Due to the heterogeneous nature of the atomization process, the ligaments formed by

the various mechanisms of sheet disintegration vary widely in diameter and length [129].
Consequently, the final droplets after atomization also vary in size and the resulting spray
must be seen as a polydisperse collection of droplets with a characteristic size distribution
about some arbitrarily defined mean value. For combustion and heat transfer problems, a
common mean diameter is given by the Sauter Mean Diameter (SMD) which relates the total
volume of all droplets Di in the spray to the respective total surface of all droplets:

SMD = D32 =
∑
iNiD

3
i∑

iNiD2
i

. (2.54)

A number of size distributions for the description of sprays have been proposed in the
literature [129], mostly based on empirical considerations and fitting with experimental data.
Since no single distribution can represent all drop size data, it is usually necessary to test
several functions to achieve an optimal fit. As an example, the most popular distribution
function for technical sprays is the Rosin-Rammler function [215] for which the volume PDF
is defined as

f3,RR(D) = CRRD
q−1exp

[
−
(
D

m

)q]
. (2.55)

In this equation, m is the mean value of the distribution and q characterizes its spread, while
CRR is a normalizing constant to ensure

∫∞
0 f3(D) dD = 1. Commonly, Rosin-Rammler

distributions are expressed through the volume CDF

F3,RR(D) = 1− exp
[
−
(
D

m

)q]
, (2.56)

where F3,RR denotes the fraction of total volume contained in droplets of diameter less than
D. The influence of q and m on the Rosin-Rammler PDF and CDF is shown in Fig. 2.9 (a)
and (b), respectively.

In addition to the polydisperse nature of droplet size, the atomization process also induces
a velocity distribution on the droplets. For example, in sprays from pressure-swirl atomizers
(see Fig. 2.8) it is observed [56, 245] that large droplets maintain the high velocity of the
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Figure 2.9.: Rosin-Rammler droplet distribution functions for different q and m parameters.

liquid sheet after atomization while small droplets tend to couple to the slower local induced
airflow as a result of their lower Stokes number.

2.4.2. Reconstruction from experimental data

Figure 2.10 illustrates the general methodology for the reconstruction of a spray boundary
condition from experimental data. While this experimental data is available at an axial
distance XPDA from the atomizer, the boundary condition should be placed at a further
upstream location XBC. As mentioned before, it is assumed that the disintegration and
breakup of the liquid sheet issuing from the atomizer is completed at XBC. Especially in the
case of pressure-swirl atomizer, the spray cone can be expected to be axially symmetric [56].
Therefore, the boundary condition is prescribed as a radial profile which is rotated around
the symmetry axis to form a starting plane.
Typically, experimental data from Phase Doppler Anemometry (PDA) is given in terms

of radial measurement positions at which droplet distribution QPDA and velocity UPDA is
characterized, respectively. In the boundary condition plane, particles start from radial

Atomizer

XBC

XPDA

r

QPDA(D)r=ri
~UPDA(D)r=ri

QBC(D)r=ri
~UBC(D)r=ri

Figure 2.10.: Schematic of the methodology for the reconstruction of a spray boundary
condition from experimental data. Blue dots depict droplets.
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Figure 2.11.: Typical airblast atomizer as considered in the PAMELA model.

starting locations which are projections of the PDA measurement locations according to the
intercept theorem. For each starting location, the drop size distribution must be specified as
an optimal fit for the experimental data. In order to compensate the deceleration of droplets
in the gas field after injection, a weighting factor kU is introduced as

UBC = kUUPDA. (2.57)

In addition, radial shifting of the droplet size distribution due to dispersion and partial
evaporation between XPDA and XBC is accounted for by a weighting factor kSMD for the
droplet distribution function:

QBC = kSMDQPDA. (2.58)

Both kU and kSMD need to be calibrated against the experimental data.

2.4.3. Prefilming airblast atomization: The PAMELA model

In state of the art aeroengine combustors, liquid fuel is mainly fed and atomized by means of
pre-filming airblast atomizers [131] due to their ability to ensure a fine spray of droplets over
a wide operating range and hence stable performance of the combustor [130]. A sketch of a
pre-filming airblast atomizer and the associated atomization concept is shown in Fig. 2.11 (a).
The liquid fuel is spread out as a thin concentric film along the atomizer wall (the pre-filmer).
Here, the film is sheared by a high-speed airflow which is introduced through an inner swirler
system. Finally, the film disintegrates into droplets at the tip of pre-filmer, which is referred
to as the atomizing edge.
The PAMELA (Primary Atomization Model for prEfilming airbLAst injector) model [26,

27] provides a droplet size distribution characteristic for the spray from such atomizers. In
this phenomenological model, the distribution is calculated from a few parameters of the
atomizer, namely the thickness ha of the atomizing edge, the film length Lf and the mean air
velocity UG alongside the film. Fig. 2.11 (b) illustrates these parameters as a detail of the
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pre-filming airblast atomizer. For the work at hand, the global formulation of the PAMELA
model is utilized, i.e. calculations based on steady-state mean values.

Constitutive equations for the PAMELA model were derived from the analysis of an academic
experiment of liquid film breakup at an atomizing edge [77, 170] consisting of a planar wing-
shaped pre-filmer over which a liquid film was atomized. Simultaneous measurements of
the film length, air velocity and resulting spray established a database for a wide range of
operating conditions and two different fuels.
In this database, a strong linear correlation between D32/ha and Weha is observed:

D32

ha
= C1√

Weha
. (2.59)

Weha denotes the Weber number with respect to the atomizing edge ha

Weha = ρgha(rρUG)2

σ
(2.60)

and rρ is the ratio of liquid and gas densities:

rρ =
√
ρl√

ρl +√ρg
. (2.61)

It is assumed that the spray after the atomizing edge follows a Rosin-Rammler distribution
with parameters qPAM and mPAM. In this case, a relation between D32 and the distribution
parameters is given by

DRR
32 = m

Γ(3/q + 1)
Γ(2/q + 1) (2.62)

(see Lefebvre [131]). Combining Eqs. (2.62) and (2.59) yields:

mPAM = C1
ha√
Weha

Γ(2/q + 1)
Γ(3/q + 1) (2.63)

in which C1 is a calibration constant. As mentioned before, q describes the dispersion of
the drop size in the spray. Therefore, this parameter cannot be formally linked to a single
measurement value [27]. A correlation function for q is obtained from fitting of the Rosin-
Rammler distribution to the sprays from the database and comparison with the aerodynamic
Weber number Weδ based on the boundary layer thickness δ at the atomizing edge:

Weδ = ρgδU
2
G

σ
(2.64)

The thickness δ is defined according to the work of Gepperth et al. [77] as

δ = 0.16 Lf

Re
1
7
Lf

with ReLf = UGLf
νg

. (2.65)
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Table 2.1.: Fitting constants in the PAMELA model.
C1 [ - ] C2 [ - ] C3 [mm] C4 [ - ]

2.01 9.74 5.99 1.77 · 10−2

The correlation for qPAM finally reads

qPAM = C2√
Weδ

+
(
ha
C3

)2

+ C4. (2.66)

Again, C2,C3,C4 are calibration constants. Constants for the PAMELA model from fitting
against the experimental database are summarized in Tab. 2.1.

2.5. Combustion modeling
Turbulent combustion as found in most technical systems [183] is an intrinsically complex
process involving a large range of chemical time and length scales [186]. The specification of
the source term Sα 6= 0 in the species transport equation (2.3) is therefore only attainable
through additional modeling effort. This is further amplified by the assumptions made for
the derivation of averaged or filtered governing equations in the (U)RANS and LES context,
respectively.

From a chemical perspective, a combustion process can be described by a reaction mechanism
consisting of a finite set of kinetic forward an backward reactions

Nsp∑
α

ν ′α,rCα
kb−⇀↽−
kf

Nsp∑
α

ν ′′α,rCα (2.67)

for Nsp species Cα, with ν ′α,r, ν ′′α,r denoting the stochiometric coefficient of the reactant and
product in reaction r, respectively. kf and kb are the forward and backward rate coefficients.
However, this might incorporate thousands of reactions and species [269], especially in case of
complex hydrocarbon fuels [37]. Since the computing time increases significantly with each
additional species and reaction [78], reduced or skeletal mechanisms incorporating only the
most important reactions and species for the use case under consideration are mostly utilized
in 3D combustion simulations [186]. The reduction comes at the cost of a loss in generality
or even failure to accurately predict specific phenomena, e.g. ignition [37] which is strongly
driven by the formation of chemical radicals [266]. Therefore, reduced mechanisms have to be
selected with respect to the conditions (e.g. stochiometric range, temperature, pressure) of
the reacting system. In the simplest case of a global reaction mechanism only the net reaction
of the fuel and oxidizer to stable products6 is considered [10, 271].
Within this thesis, two combustion models are used: The Eddy Dissipation Model [143],

which is based on global chemistry for reduced simulation complexity, and the Finite rate

6e.g. CO2 and H2O in case of hydrocarbons
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chemistry model [79] for non-equlibirium effects and detailed chemistry. Both models are
discussed in the RANS context, remarks on LES are made at the end of this section.

2.5.1. Global chemistry: Eddy dissipation model

On the basis of the Eddy breakup model first proposed by Spalding [248], the Eddy Dissipation
Model (EDM) assumes that in most technical applications, the chemical reaction rates are fast
compared to the mixing [123]. Hence, the reaction rate is controlled by the rate of intermixing
of fuel- and oxygen containing eddies and the reaction zone is seen as a collection of fresh
and burnt gaseous pockets transported by turbulent eddies. With this assumption, chemical
equilibrium prevails. The reaction rate - and therefore the chemical source term - is assumed
to be inversely proportional to the turbulent time scale τt [143]:

〈Sα〉 ∝
1
〈τt〉

. (2.68)

Incorporating an ω based RANS turbulence model7 for the calculation of τt, the averaged
EDM source term reads

〈Sα〉EDM = Mα

Nr∑
r

(
ν ′′α,r − ν ′α,r

)
〈ρ〉C1

1
βkω̃︸ ︷︷ ︸
〈τt〉

min
(

ỸE
ν ′E,rME

, C2

∑
ỸP∑

ν ′′P,rMP

)
. (2.69)

C1 = 4 and C2 = 0.5 are modeling constants and YE and YP denote mass fractions of educts
and products. To account for increased ω̃ values close to walls leading to unphysical behavior,
1/ 〈τt〉 is limited to 1/2500 s in the used implementation of the EDM [207].

Important limitations of the EDM are the restriction to a few global and irreversible
reactions of the fuel, and the inability to account for non-equilibrium effects. The latter may
produce erroneous results in case chemical kinetics limit the reaction rate [207].

2.5.2. Finite rate chemistry

In contrast to the EDM, the Finite Rate Chemistry (FRC) modeling approach is based on
the key idea that mixing processes of gas mixtures are much faster than kinetically controlled
mechanisms [112]. Therefore, fuel and oxizider can exist together in the reaction zone [186]
and the model is able to account for non-equilibrium effects and detailed chemistry. This
addresses the shortcomings of the previously introduced EDM. However, the FRC model
requires the computational expensive evaluation of kinetic reaction rates kr and the solution of
Nsp−1 additional transport equations for each species Cβ but the last one, which is calculated
from the sum of species.

7See Eqs. (2.31) − (2.33) in Sec. 2.2.4.
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The FRC model computes the averaged source term 〈Sα〉FRC by summing over all forward
and backward reactions of the considered reactions mechanism (see Eq. (2.67)):

〈Sα〉FRC = Mα

Nr∑
r=1

(
ν ′′α,r − ν ′α,r

) 〈kf,r〉 Nsp∏
β=1

[Cβ]ν
′
β,r − 〈kb,r〉

Nsp∏
β=1

[Cβ]ν
′′
β,r

 . (2.70)

The concentration [Cβ] of the species Cβ is defined as

[Cβ] = 〈ρg〉 Ỹα
Mα

. (2.71)

The reaction rates kf and kb are calculated using the Arrhenius function [269]

〈kr〉 = Ar 〈T 〉br exp −
Ea,r
R〈T 〉

)
, (2.72)

with the pre-exponential factor Ar, the temperature exponent br and the activation energy
Eα,r.

Note that, since chemical timescales in a detailed reaction mechanism can vary by orders of
magnitude, the system of equations resulting from Eq. (2.70) is prone to numerical stiffness [79].
This term denotes the fact that numerical methods for solving the system are unstable, unless
an extremely small integration step size is chosen. The present implementation of the FRC
model therefore utilizes additional source term splitting and preconditioning [79, 92] to
overcome this limitation.

2.5.3. Turbulence-Chemistry interaction

Owing to the fact that the FRC source term in Eq. (2.70) is calculated based on averaged
properties of the flow, the influence of turbulent fluctuations - specifically in temperature and
species - are not taken into account. Therefore, this modeling approach is also referred to as
laminar chemistry. However, in turbulent flames, turbulence-chemistry interaction (TCI) can
lead to significant deviations from the assumption of laminar chemistry [151] due to strong
non-linearities in the source term Sα. The general modeling problem of turbulence-chemistry
interaction in RANS simulations can be summarized as

〈Sα (φ)〉 6= Sα (〈φ〉) with φ = (T,Y1,Y2,..,YNsp). (2.73)

For the thesis at hand, a probability density function (PDF) method [79] is included to
account for turbulence-chemistry interactions in the FRC model. Under the assumption that
the turbulent fluctuations of φ are stochastic, the averaged source term 〈Sα〉 for turbulent
chemistry is inferred from integrating the source term Sα over all possible states of φ, weighted
by their respective probability which is expressed through a joint-PDF P(φ):

〈Sα〉 =
∫ ∞
−∞

Sα(φ̂)P(φ̂)dφ̂. (2.74)
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Although methods exist for the direct calculation of P(φ) at each position of the reaction
zone (transported PDF [189, 190]), the associated computational burden still limits their
application to academic test cases [65]. As an alternative, the used TCI model assumes the
shape of P(φ) a-priori (assumed PDF/aPDF [79]). Thus, only a few low order moments of
P(φ) have to be transported and calculated over the reaction zone.
For the temperature8, a Gauss distribution is assumed:

Pmod,T (T̂ ) = 1√2πσT0

exp
(
−(T̂ − 〈T0〉)2

2σT0

)
+ Cminδ(T̂ − Tmin) + Cmaxδ(T̂ − Tmax). (2.75)

The Dirac functions δ limit the temperature to [Tmin;Tmax] to avoid unphysical temperatures
caused by the general definition of PGauss in ]−∞;∞[. The scaling factors Cmin and Cmax
are given by the normalization condition over Pmod,T .
To reflect the intermittency in turbulent fluctuations of species [79], a β-PDF is assumed

for PY :

Pmod,Y (Ŷ ) = Γ(∑Nsp
α=1 βα)∏Nsp

α=1 Γ(βα)
δ

1−
Nsp∑
α=1

Ŷα

 Nsp∏
α=1

Y βα−1
α , (2.76)

with
Γ(βα) =

∫ t=∞

t=0
tβα−1 exp−t dt (2.77)

and

βα = Yα

∑Nsp
β=1 Yβ(1− Yβ)

σY
− 1

 . (2.78)

In order to define the shape of both distribution functions (2.75) and (2.76), the variances

σT =
〈
T ′2
〉

and σY =
Nsp∑
α=1

〈
Y ′2α

〉
(2.79)

have to be known over the reaction zone. Therefore, two additional transport equations for
convection, production and dissipation of σT and σY need to be solved within the TCI model.
Further details on the additional transport equations and the implementation of the aPDF-
TCI model in the simulation platform are given in the work of Di Domenico [42] and Blacha [16].

In this section, combustion models have been described in a RANS context, i.e. based
on averaged quantities. The use of the FRC model in LES requires a filtered formulation Sα
of the chemical source term in Eq. (2.70). Furthermore, since LES is able to resolve parts
of the turbulence-chemistry interaction, the aforementioned TCI model is only used for the
unresolved sub-grid scale interaction. Filtered equations for the FRC model and a discussion
of the TCI model for sub-grid scale interaction are detailed in the work of Eckel [50].

8Quantities with turbulence-chemistry interaction are indicated by ˆ(..).
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2.6. Simulation platform
The simulations for the work at hand are performed using the DLR in-house simulation
platform THETA/SPRAYSIM [50–52] which implements the discussed models. The simulation
platform consists of the two codes THETA and SPRAYSIM for the gaseous and dispersed
phase, respectively. By analogy with the generalized coupling effects in a dispersed multiphase
flow as shown in Fig. 2.2, Fig. 2.12 provides a summary of the simulation platform and its
sub-modules.

THETA (Turbulent Heat Release Extension of the TAU Code) [42, 43] is a 3D finite volume
solver for structured and unstructured dual grids that has been optimized for combustion
problems typical for gas turbine combustion [16, 48, 136, 207]. Since gas velocities and Mach
numbers9 in gas turbine applications are moderate [131], THETA is based on an incompressible
formulation of the governing equations from Sec. 2.2. Due to this assumption, the following
simplifications hold:

• Viscous dissipation τij ∂ui∂xj
is neglected in the energy equation (2.5)

• The substantial pressure derivative is approximated as Dp
Dt ≈

dp
dt

• Density is calculated w.r.t the reference pressure as ρ(p,T ) ≈ ρ(pref ,T )

Incompressible modeling results in a weak coupling of pressure and velocity. For steady-state
simulations, the SIMPLE algorithm for pressure-velocity coupling is used, whereas in transient
cases, a projection based method is applied. A variety of second order accurate spatial and
temporal discretization schemes are available.
The ODEs for Lagrangian particle tracking are solved in SPRAYSIM [53, 126, 196] via

a predictor-corrector scheme with automatic adaption of order and step size. In addition
to the models discussed in Sec. 2.3, droplet secondary atomization is included by Tanner’s
Cascade Atomization and Breakup (CAB) model [258] in combination with the droplet
deformation law of Schmehl [230]. Furthermore, unresolved turbulent dispersion of droplets
is accounted for using a variant of the Gosman-Ioannides model [87] for RANS simulations
and the SGS dispersion model of Bini and Jones [15] in LES cases. For a discussion of both

Gas field

Turbulence

Species transport

Chemical reaction

THETA

Particle transport

Particle dispersion

Secondary breakup

Evaporation

SPRAYSIM
Sρ, Sα

Sρu

Sh

Figure 2.12.: Schematic of the simulation platform for turbulent spray combustion.

9Mach number relates the local gas velocity to the local speed of sound



2.6. Simulation platform 33

models, the reader is referred to Eckel et al. [49]. In the particle tracking approach realized in
SPRAYSIM, particles or droplets with equal properties are replaced by numerical parcels and
given a representative liquid loading to speed up computation. The phase coupling relies on a
point source approximation. In this simplification parcels are assumed to be discrete points
providing point sources and point forces to the gas field [107]. Source terms are exchanged
between the two codes online at each iteration or timestep via iterative two-way coupling [50].
Derivations of the spray source terms Sρ, Sα, Sρu, Sh are given in the work of Eckel [50].





3. Fundamentals of Uncertainty
Quantification and Probabilistic
Modeling for complex Simulations

This chapter outlines the fundamentals of uncertainty quantification in complex simulations
and the associated probabilistic modeling approaches. For the sake of brevity, only the most
essential elements of probability theory are discussed. Fundamental definitions are summarized
in Appendix B. A comprehensive introduction to this topic is given in the compedium of
Durrett [47].
The general uncertainty quantification approach for the dissertation at hand follows the

framework proposed by Roy and Oberkampf [216], additional information is available in their
textbook [177]. For an in-depth review of probabilistic modeling with an emphasis on spectral
methods, the reader is referred to the work of Le Maître and Knio [128] or Sudret [253].

3.1. Types and sources of uncertainties
From a theoretical point of view, sources of uncertainties of a given simulation model can
be subdivided into three major categories, namely model form uncertainties, numerical
uncertainties and input uncertainties [177].
As pointed out by Oberkampf [177] the term model can have a wide variety of meanings

depending on the field and context. Therefore, in the following discussion, the term simulation
model M refers to a rather abstract definition of a mathematical model with arbitrary
complexity, which aims at approximating the behavior of a physical system SP through a
mathematical description. The output ofM is driven by a finite vector of input variables
x = {x1, x2, x3, ..,xnx} with nx components:

M(x) ≈ SP for x ∈ DV . (3.1)

The assumptions made in the derivation ofM limit x to a validation domain DV , although
extrapolation to a wider application domain DA is commonly accepted [260]. Model form
uncertainties then stem from the process of abstraction and formulation of the mathematical
models while approximating the physical system SP by the simulation model M. These
uncertainties are commonly estimated using model validation [216], i.e. by means of a
comparison of the simulation results with experimental measurements over the validation
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domain DV . Associated uncertainties are further amplified when applying the model to
conditions for which validation data is not available (application domain DA). Model form
uncertainties of the used vaporization models have been studied by Rauch [202].
The fact that most simulation models consist of a set of non-linear differential equations

requires numerical - i.e. approximate - solution methods in the computation of model
outputs, thereby causing numerical uncertainties. They include discretization errors from both
temporal and spatial discretization of the continuous model formulation, insufficient iterative
convergence of the numerical solver and round-off errors in the computing system [210].
Therefore, numerical uncertainties are inherently present in the simulation of turbulent spray
combustion. The latter two sources of uncertainties, namely convergence and round-off errors,
are assumed to be negligible in the simulation platform under consideration due to previous
and ongoing verification and validation efforts. Discretization errors can be assessed using the
grid convergence method proposed by Roache [211].

Input uncertainties comprise uncertainties in all data required to fully specify the model, i.e.
constitutive parameters and modeling constants of the model as well as inputs for the model
defined by the environment in which the model is evaluated. Model inputs are subdivided
into initial conditions, boundary conditions and geometry representation. In many situations,
this data cannot be exactly specified due to a lack of experimental data or measurement
uncertainties. Furthermore, in early design stages parameters may not be known beforehand
as the exact definition of geometrical dimensions and resulting boundary conditions will be
subject to the design process. For the identification of input uncertainties, it is therefore
advisable to consider an input as uncertain unless there is strong evidence that the uncertainty
in the input will result in minimal uncertainty in the quantities of interest (QoIs) [216].

As identified in the introduction (see Sec. 1.1), uncertainties arising from the specification
of spray boundary conditions are the key topic for the work at hand. Such uncertainties
can be assigned to the category of input uncertainties. Therefore, in the following, special
emphasis will be placed on the treatment of input uncertainties.

3.2. Probabilistic model definition
By virtue of the simulation model from Eq. (3.1), a vector q = {q1, q2, q3, ..,qnq} consisting of
nq quantities of interest1 q is observed, which results in the mapping

x : 7→ q =M(x). (3.2)

Due to this general definition,M can also consist of several sub-modelsMs,i ⊂M, which
contribute to the mapping in Eq. (3.2). Note that, due to the complexity ofM in typical
simulation applications, this mapping is only known through pointwise evaluations

q(i) =M(x(i)) (3.3)

1In the following abbreviated as QoI
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Figure 3.1.: Modeling of the physical system evaporating droplet (SP ) by the simulation model
quasi-steady state droplet evaporation (M).

for which the simulation is run [253]. In the following, the mapping from Eq. (3.2) and the set
(x(i),q(i)) are referred to as a deterministic model and a deterministic simulation, respectively.
This is motivated by the fact that the values for the dependent variable q are completely
determined by the choice of x [208]. In other words, each evaluation ofM with identical
input x will result in the identical output q.
To further clarify these definitions, Fig. 3.1 illustrates a modeling example for droplet

evaporation. The physical system SP consists of a single, isolated Jet A fuel droplet in a
flow field of hot gas. In the presence of the hot gas field, the droplet with diameter D0 fully
evaporates within a time scale τev.. The physical system is approximated by the quasi-steady
state droplet evaporation modelM (see Sec. 2.3.2), thereby causing a model form uncertainty.
The simulation model maps x = {D0} to the respective time scale q = {τev.}. Jet A properties
are accounted for by inclusion of the Continuous Thermodynamics Model (CTM, see Sec. 2.3.2)
as a sub modelMs ⊂M.

However, the deterministic modeling approach is unable to reflect cases in which uncertainties
in x must be included, i.e. simulations with input uncertainties which arise for example from
incomplete or unavailable data. From the mapping in Eq. (3.2) it is obvious that in such
situations, uncertainties in the input x introduce uncertainties in the output which must be
associated with q. In order to account for such uncertainties, it is therefore useful to define a
probabilistic model of the simulation model by introducing a probabilistic description of x via
a random vector X = {X1, X2, X3, ..,Xnx} ∈ Ω, which describes the variability in x over a
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parameter space Ω of uncertain inputs:

X : 7→ Q =M(X) (3.4)

As a consequence, q also becomes a probabilistic quantity Q from which statistical measures
about the output variability - i.e. the output uncertainty due to the input uncertainties -
can be derived. It is important to note that, although the mapping in Eq. (3.4) defines a
probabilistic model, the underlying mathematical descriptionM is still deterministic.

The example from Fig. 3.1 depicts both the deterministic and probabilistic evaluation ofM.
For the deterministic case, the discrete evaluation results in a discrete output, characterized
by a Dirac delta [47]. In contrast, in the probabilistic approach, the output Q is given in
terms of a probability density function P(Q1) = P(τev.) for the random vector of droplet
diameters X = {D0} ∈ ΩD0 . It should be pointed out that due to the non-linear character of
the simulation model, distributions of input and output quantities follow different distribution
functions.

Due to the aforementioned complexity in most simulation models, the efficient exploration
of the mapping from Eq. (3.4) becomes the key challenge in an uncertainty quantification.
Keeping in mind the variety of complex submodels involved (see Cp. 2), the simulation of
turbulent spray combustion still poses major challenges in the quantification of associated
uncertainties. Strategies and methods facilitating this task are discussed in the following
sections.

3.3. Workflow for uncertainty quantification
Uncertainty quantification (UQ) of complex simulation models covers a variety of tasks from
the fields of system analysis, probabilistic modeling or large scale simulation processing. It is
therefore useful to subdivide a generalized UQ analysis into distinct steps, which structure a
workflow for uncertainty quantification. Based on the recommendations of Oberkampf [177,
178, 216], the workflow for the present thesis is given in Fig. 3.2. Three major steps are
identified:

• Step A: Specification consists of the thorough identification of all relevant sources of
uncertainties for the simulation model under the given scenario. The input uncertainties
are then classified either as aleatoric or epistemic and characterized by a mathematical
description, resulting in the vector of uncertain inputs X.

• Step B: Propagation comprises the forward propagation of the uncertain input
through the simulation model, i.e. the evaluation of the probabilistic mapping from
Eq. (3.4).

• Step C: Analysis studies the probabilistic content of the uncertain output Q. De-
pending on the methodology chosen for Step A, different statistical measures (mean,
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Figure 3.2.: Workflow for uncertainty quantification, adapted from Oberkampf [177].

variance, bounds) are derived. Furthermore, sensitivity analysis provides information
on the respective impact of the input parameters onto the response randomness.

3.3.1. Step A: Specification of the UQ problem

Within this step, sources of uncertainties for the modeling problem under consideration are
identified with respect to the aforementioned three categories.
It is important to note that the relevance of an uncertainty must always be assessed with

respect to the given scenario. In the example from Fig. 3.1, this could mean that the effect
of uncertainties in droplet diameter on the evaporation time scale might differ between a
scenario with a hot gas field (e.g. full load operation of the combustor) and a scenario with a
cold gas field and slow evaporation (e.g. cold start ignition of the combustor).

Once all sources of uncertainties are identified, specifically in the case of input uncertainties
a mathematical representation for the vector X of uncertain inputs in the mapping from
Eq. (3.4) must be stated. Here, it is important to distinguish between the different nature
of uncertainties, namely aleatoric and epistemic uncertainties. While the first describes an
inherent and irreducible variation or randomness in a quantity that could be characterized by
a PDF, the latter refers to uncertainties due to a lack of knowledge which can be reduced by
incorporating additional data [63, 177]. Based on this categorization, several methods for the
mathematical representation of input uncertainties have been proposed in the literature: In
the traditional framework of probability theory [188], each aleatoric and epistemic uncertain
input is characterized by a PDF over a respective probability space. Additional information
concerning the belief and plausibility of assumptions is incorporated in the evidence theory2-
based representation of uncertainties [93, 236]. In contrast, interval analysis [117, 165]
is based on the specification of intervals of possible values for mainly epistemic variables.
Further approaches include possibility theory [264] and the application of fuzzy logic [25].
A comparative discussion of methods for uncertainty representation based on simple test
problems has been reported by Helton et al. [96].

For the work at hand, probability theory is adopted for the representation of X. Therefore,
uncertain inputs are characterized by PDFs if adequate data is available or by minimum

2Also referred to as Dempster-Shafer theory.
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Figure 3.3.: Representation of uncertainty in input Xi within a probabilistic approach.

and maximum bound intervals, with the latter of which treated as imprecise probability
distributions [6, 177]. Figure 3.3 demonstrates this method for an aleatoric (Fig. 3.3 (a)) and
an epistemic (Fig. 3.3 (b)) probabilistic input Xi. In contrast to the aleatoric case, where the
probability over Xi is given by a PDF and its respective moments, in the epistemic case, all
values within the interval [Xi,min, Xi,max] are treated as possible realizations with a probability
of unity. Note that this is less definitive than claiming that all values within the interval are
equally possible, i.e. a uniform PDF over the interval [177].

Screening: Morris One At a Time

Due to the high modeling demand in the simulation of turbulent spray combustion, the
dimension nx of the vector of uncertain inputs X from modeling parameters as well as
boundary conditions might become large. It is therefore advisable to conduct an a priori
screening study to identify the most relevant elements of X, i.e. the parameters which cause
high variation in the simulation outcome [270]. Based on the screening results, parameters of
minor influence might be fixed to mean values to reduce the input parameter space for the
following forward uncertainty propagation.
For the work at hand, the Morris One At a Time (MOAT) [166] screening method is

selected, as it provides a robust qualitative measure for parameter importance based on a
relatively small number of model evaluations [224]. In a MOAT analysis, input parameters
Xi from X are varied one at a time with a substantial variation step size ∆M , while the afore
changed parameter remains at the changed value. An elementary effect di associated to this
variation is computed through the forward difference

di = Q (X + ∆Mei)−Q(X)
∆M

, (3.5)

where ei is the coordinate vector of the changed parameter in the respective variable subspace.
For practical computations, trajectories in the input space are constructed from a series of
successive variation steps. An example trajectory for a two-dimensional input space [X1×X2]
is displayed in Fig. 3.4 (a). Details on optimal trajectory placement for MOAT are given in
Saltelli et al. [224].
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After generating r elementary effects, mean µi and standard deviation σi are approximated
by

µi = 1
r

r∑
j=1

d
(j)
i (3.6)

and

σi =
√√√√1
r

r∑
j=1

(
d

(j)
i − µi

)2
. (3.7)

While µi estimates the overall effect of the input Xi on the output, σi ranks the ensemble of
the second- and higher-order effects in which Xi is involved [166]. As an improvement to the
original MOAT method, Campolongo et al. [21] recommended a modified mean µ∗i instead of
µi to overcome the effect of alternating signs in di. µ∗i is defined by

µ∗i = 1
r

r∑
j=1
|d(j)
i |. (3.8)

For interpreting results via the two sensitivity measures, the estimated modified mean and
standard deviation of each input parameter are displayed in the (µ∗,σ) plane. The plotted
values can then be examined relative to each other to see which parameters appear to be the
most important ones.
This is illustrated in Fig. 3.4 (b) for five arbitrary input parameters, alongside a rough

division of the (µ∗,σ) plane into characteristic regions. From this division, it can be concluded
that parameters X2 and X4 have a negligible influence on the output while X1 demonstrates
a strong linear effect. The fact that X3 and X5 both reside in the upper-right portion of the



42 3. Fundamentals of uncertainty quantification and probabilistic modeling

(µ∗,σ) plane leads to the assumption that these parameters interact in their effect on the
output.

3.3.2. Step B: Forward propagation of uncertainties

Techniques enabling the forward propagation of uncertainties through a simulation model are
commonly subdivided into two categories, namley intrusive and non-intrusive methods [128,
177, 253].

Intrusive propagation methods require the reformulation of the models’ governing equations
to incorporate stochastic behavior in the computation of output quantities, e.g. through
stochastic Galerkin methods [127]. Clearly, this demands extensive adjustments in the case
of an existing deterministic simulation code and even specific numerical solvers [128]. Since
the reformulated intrusive modelMI directly results the probabilistic output Q, intrusive
methods are highly effective and can provide a connection between the probabilistic nature of
the output and the underlying physics [104]. Although the use of intrusive methods has been
succesfully demonstrated for test case problems in multi-phase flows [263], intrusive models
remain challenging to implement and difficult to verify for complex simulation problems [104].
In contrast, non-intrusive methods rely on space-filling sampling of the simulation model

over the parameter space Ω of uncertain inputs, which essentially divides the solution of the
probabilistic mapping from Eq. (3.4) into multiple deterministic model evaluations (x(i),q(i)).
Thus,M is treated as a black box and no further adjustments to the model or implementation
are required. Statistical moments of Q are then estimated from the set S ofM sample outputs
S = {q(i),i = 1,..,M}. For example, the expectation E of the probabilistic output Q can be
approximated by

E[Q] ≈ 1
M

M∑
i=1
q(i). (3.9)

The fact that X is propagated through discrete model evaluations results in a discrete
distribution of probabilities for Q, i.e. a histogram of model responses q(i). By considering
a large set of model evaluations, an approximated probability density function P̂(Q) may
be obtained using kernel smoothing techniques [268]. Major drawbacks of sampling-based
uncertainty propagation are the relatively low convergence rate of higher moments [127] and
the curse of dimensionality [14] when facing high dimensional inputs. This requires a large
set of samples which may be impossible for computationally expensive models. Methods to
overcome this limitation are discussed in Sec. 3.4.
Non-intrusive methods are utilized for the work at hand, since the existing simulation

platform (see Sec. 2.6) can be used without further adjustments within this approach.

Sampling methods for non-intrusive uncertainty propagation

To obtain the sampling set S, samples have to be drawn from Ω, taking into account the
probabilistic structure of X. The most classical approach is Monte Carlo sampling (MC) [66],
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Figure 3.5.: Sample sets from a two-dimensional unit square U = U(0,1)× U(0,1).

in which independent samples are drawn at pseudo-random. The addition pseudo refers to the
fact that samples in all computational sampling procedures are generated from deterministic
algorithms, which thereby only provide approximations for sequences of random numbers. In
fact, they are fully determined by their initial value, the so-called seed [174]. Although simple
to implement, crude MC sampling suffers from clustering tendencies due to the independence
of individual samples and a comparably low asymptotic convergence rate in O(1/

√
M) for

the statistical moments [66].
In order to avoid clustering tendencies of crude MC methods, stratified sampling techniques

such as Latin Hypercube Sampling (LHS) [150] divide the input space into segments of equal
probability before drawing the samples. Thus, the range of each input variable is divided into
m equally probable intervals. M = m sampling points are then placed to satisfy the Latin
Hypercube requirements [226], forcing the number of divisions to be equal for each variable.
In practice, MC and LHS lead to the same asymptotic convergence rate in O(1/

√
M) [128].

As a third option, quasi Monte Carlo3 (qMC) methods seek to minimize the spatial
discrepancy of the sampling, i.e. how the spread of the sampling points deviate from a uniform
spread over the input space. Different qMC methods have been proposed, e.g. by Sobol [244],
Halton [187] or Hammersley [95]. Since these methods are based on a sequential calculation
of samples, they hold the favorable property that the sequence for M − 1 is a subset of the
sequence for M , making them easy to extend by adding points to an existing sequence [68].
This is in contrast to LHS, where the entire sampling must be recomputed if an LHS containing
more samples is required. For inputs with high dimension nx, the convergence rate improves
compared to MC and LHS, e.g. in the case of a Sobol sequence to O((lnM)nx/M).
Sample sets from the three sampling methods for a two dimensional unit square U =
U(0,1) × U(0,1) are compared in Fig. 3.5. The qMC samples are clearly more uniformly
distributed while the MC sample set exhibits clusters of points.

Fig. 3.6 illustrates results from non-intrusive propagation of uncertainty for the exam-
ple of single droplet vaporization (see Sec. 3.2). As a test case, the initial droplet diameter
D0 is treated as an uncertain input, following a normal distribution with mean µ = 50 µm

3Also called low discrepancy sequences generators.



44 3. Fundamentals of uncertainty quantification and probabilistic modeling

0 10 20 30
vap [ms]

0.0

2.5

5.0

7.5

10.0

12.5

15.0
Hi

st
og

ra
m

 [-
]

= 13.25, = 2.637 [ms]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F 

[-]

40 60
D [ m]

(a) M = 100

0 10 20 30
vap [ms]

0

10

20

30

40

50

60

Hi
st

og
ra

m
 [-

]

= 13.25, = 2.622 [ms]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F 

[-]

40 60
D [ m]

(b) M = 1000

Figure 3.6.: Non-intrusive sampling of the simulation model for quasi-steady state droplet
evaporation. Histogram for q(i) ( ), histogram for x(i) ( ), empirical CDF for
Q ( ).

and standard deviation σ = 5µm. Thus, the random input variable reads X = N (50,5) µm
over Ω = [20,70] µm. To avoid unphysical results, the normal distribution is truncated by
setting it to minimum and maximum bounds. 100 and 1000 LHS samples are drawn from
X. Results are given in Fig. 3.6 (a) and Fig. 3.6 (b), respectively. The blue histograms
depict model responses q(i), i.e. vaporization time scale τvap from each model evaluation.
Corresponding inputs x(i) are given as black histograms. Furthermore, the approximated or
empirical cumulative distribution function (CDF) Ĉ(Q) is plotted as a red line. Although
the mean and variance of the output are almost identical for M = 100 and M = 1000, the
empirical CDF becomes smoother for the large sample set and the output histograms clearly
resembles a normal distribution. Due to the fact that the input is also sampled from a normal
distribution, it can be assumed that the mapping D0 :7→ τvap =M(D0) is nearly linear over
the considered input space.

3.3.3. Step C: Analysis of the probabilistic output

By analyzing the probabilistic output of the preceding uncertainty propagation, this step clearly
depicts the implications of uncertainties on the simulation outcome. Therefore, acceptance
criteria for simulation predictions may be established, i.e. quantitative information about the
predictive capabilities of the simulation model under the given uncertainties.
Helton et al. [96] pointed out that results of uncertainty propagation must always be

interpreted in the context of the theory from which the uncertainty representation was
derived (see Sec. 3.3.2). A consistent analysis framework when using probability theory
for uncertainty representation is given by Probability Bounds Analysis (PBA) [63, 64, 261].
Concepts of PBA are outlined in this section.
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Figure 3.7.: p-box of a QoI in the presence of aleatoric and epistemic uncertainties, according
to Oberkampf [177].

Finally, the contribution of each uncertain model input Xi on the uncertain output Q
can be assessed and ranked through a posterior sensitivity analysis. Based on the resulting
ranking of importance, strategies for curtailing the predictive uncertainties ofM by reducing
the dominating input uncertainties may be deduced. A wide variety of methods for sensitivity
analysis is available in the literature. For the work at hand, variance-based global sensitivity
analysis using Sobol indices [243] is selected. For a broad perspective of sensitivity analysis,
the reader is referred to the work of Saltelli [223, 224].

Probability Bounds Analysis

Probability Bounds Analysis is based on a strict separation between aleatory and epistemic
uncertainties. While model form and numerical uncertainties are generally interpreted as
epistemic, input uncertainties must be characterized mathematically as either aleatory or
epistemic using a probabilistic approach (see Fig. 3.3). In the presence of mixed input
uncertainties, two-dimensional sampling incorporates the interaction of aleatory and epistemic
uncertainties [177]. This results in an ensemble of CDFs for the Quantity of Interest under
consideration. The widest extent of such an ensemble is interpreted as the probability bounds of
the QoI and probabilistic measures are inferred from the resulting probability box or p-box [63].
Thereby, a p-box expresses that a QoI cannot be displayed as a precise probability under the
given uncertainties, but it is now an interval valued probability [216]. The use of a p-box
for the representation of uncertainties in a QoI caused by input uncertainties also facilitates
the clear portrayal of total output uncertainties for the QoI within a PBA. Since additional
numerical and model form uncertainties are treated as epistemic, they are simply added to
the probability bounds of the p-box [30, 177].

A conceptual example for a p-box as a result from PBA is given in Fig. 3.7. The blue line
represents a CDF for the QoI Q from a single propagation of aleatoric uncertainties through
the model. Further CDFs are obtained by stepwise inclusion of epistemic uncertainties (not
shown for brevity). The red lines indicate the resulting probability bounds from the ensemble
of CDFs. In addition, numerical uncertainties are added to probability bounds, thereby
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Figure 3.8.: p-box from the PBA of the simulation model for quasi-steady state droplet
evaporation. Example CDF ( ), Probability bounds ( ). Subplots show input
distributions.

widening the p-box. From the resulting p-box representation, a range of interval-valued
response or a range of interval-valued probability can be derived for a given probability or
response level, respectively. Stated differently, a fixed value of Q will be observed within
an interval-valued probability [Prmin; Prmax]. Likewise, a given probability level yields a
corresponding interval of response [Qmin;Qmax].
For further clarification, the concept of PBA and p-box representation is applied to the

UQ example of single droplet evaporation as introduced previously. In addition to the
aleatoric uncertain input for droplet diameter4, the droplet temperature TD is considered
as an epistemic input with interval value TD ∈ [290; 330] K. For each computation of a
single CDF, 200 samples are drawn from the input space of aleatoric uncertainties which is
repeated over 40 steps in the epistemic input space. Results from two-dimensional sampling
of the mixed aleatoric/epistemic input are displayed in Fig. 3.8. Three examples from the
ensemble of CDFs and the resulting probability bounds are shown. The p-box now provides
information concerning response and probability levels of the simulation model. For instance,
the probability of an evaporation time less than 15 ms lies in the interval [0.65; 0.82] (green
line). Similarly, it can be deduced that for a probability level of 0.2, evaporation times within
[10; 11] ms are expected (blue line).
Note that in case of purely epistemic input uncertainties, the p-box from PBA simplifies

to an interval of possible values [177]. Numerical and model form uncertainties are then
appended to both sides of the interval.

Precise probability theory

A simplification of the strict PBA approach can be achieved when interpreting uncertainties
with minimum/maximum bounds as uniformly distributed. Thus, these uncertainties are

4D = N (50,5) µm, test case conditions as previously.
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associated with a precise probability distribution function instead of the imprecise charac-
terization through intervals in PBA. This enables the calculation of probability levels for
the uncertain simulation results in cases of purely epistemic input uncertainties. However, it
should be pointed out that these probability levels purely rely on the assumption of uniform
input uncertainties.

Accuracy metrics for uncertain predictions

The quantitative comparison of observations and uncertain predictions, i.e. experimental data
and uncertain simulation results, demands for validation metrics which take into account the
probabilistic structure of the uncertain predictions. Two validation metrics are utilized in the
thesis at hand to evaluate the quality of uncertain predictions:

Deterministic observations In the case of deterministic observations, for example experi-
mental data without measurement uncertainties, the Continous Rankend Probabibilty Score
(CRPS) [83] evaluates the difference between the CDF of the uncertain prediction and the
idealized perfect observation. The CRPS is defined as

CRPS =
∫ ∞
−∞

(CQ(χ)−H(χ− qobs))2 dχ, (3.10)

where CQ is the CDF of the uncertain prediction of a QoI q, qobs is the certain observation
of q and H denotes the Heaviside function. Therefore, the CRPS yields a generalized mean
absolute error in case of uncertain predictions.

Uncertain observations In contrast, the Wasserstein-1 metric W1 is utilized to compare
the probability structure of an uncertain prediction Q with an uncertain observation Qobs. A
typical example for an uncertain observation could be experimental data with measurement
errors. In the Euclidian space, the quantity W1 (Q,Qobs) can be interpreted as the minimum
amount of work that is required to turn the respective distribution CQ into CQobs [108]. In
case of one-dimensional distributions on the real line, W1 can be written in explicit form as

W1 =
∫ 1

0
|C−1
Q (χ)− C−1

Qobs
(χ)|dχ. (3.11)

In this equation C−1
Q and C−1

Qobs
are the corresponding inversions of CQ and CQobs . For further

derivations, the reader is referred to the work of Bobkov and Ledoux [17].

Sensitivity analysis: Sobol indices

The construction of Sobol indices relies on the decomposition of the variance in the model
output Q5 into contributions from each input Xi. As proposed by Sacks et al. [218], the
probabilistic quantity Q is described by a general function f which is driven by the input

5Q is a single QoI from the vector of probabilistic outputs Q
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quantities X:

Q = f (X) = f (X1,X2,...,Xnx) , Xi ∈ [0,1]nx . (3.12)

For ease of computation, Xi are normalized to the interval [0,1]. Sobol demonstrated [243]
that f can be expanded into terms of increasing dimensions

f = f0 +
∑
i

fi +
∑
i

∑
j<i

fij + ...+ f12...nx , (3.13)

where f0 is a constant and all terms f must be orthogonal in pairs [223]. Note that this
decomposition is not a series decomposition, as it has a finite number of 2nx terms. Due to
the orthogonality constraint, the terms f can be calculated using the conditional expectation
E[ · | · ] of the model output:

f0 = E[Q] (3.14)
fi = E[Q|Xi]− E[Q] (3.15)
fij = E[Q|Xi, Xj]− fi − fj − E[Q] (3.16)

It can be demonstrated [252] that the variances V[f ] of the terms f are measures of importance
for the input X. In particular, through expressing V[fi(Xi)] by V[E[Q|Xi]] in Eq. (3.15) and
diving by the total output variance, the first-order sensitivity index Si is obtained:

Si = V[E[Q|Xi]]
V[Q] . (3.17)

Si describes the direct contribution of Xi to the variance of Q. In principle, higher order
indices Sij,...,Sij..nx can be derived from the expansion (3.13) taking into account interactions
between two or multiple inputs. However, for a large input dimension this might become
unfeasible. Homma and Saltelli [100] therefore proposed a total-effect index Si,T

Si,T = V[E[Q|X∼i]]
V[Q] , (3.18)

which includes direct effects of Xi and all interaction effects of Xi with Xj 6=i. As a result, it
follows that Si,T ≥ Si.

For practical computations, Sobol indices are estimated based on Monte Carlo sampling of
the simulation modelM (see Sec. 3.3.2). However, this requires a large sample set to ensure
convergence of the variances. Variance-based sensitivity analysis is therefore often used in
combination with surrogate models, which are discussed in the next section.
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3.4. Surrogate modeling
As pointed out in Sec. 3.3.2, non-intrusive uncertainty quantification requires space filling
sampling of the input space Ω in order to assess the probabilistic mapping from Eq. (3.4).
However, this direct approach is prohibitive for large scale models such as the simulation
of turbulent spray combustion, where each model evaluation requires computing time in
O(104 − 106) CPU hours. A common strategy to overcome this limitation is to replace the
high fidelity simulation modelM by a suitable surrogate model6 M̂, i.e. a model of reduced
fidelity which mimics the behavior of the high fidelity model over Ω. Since surrogate models
rely on a generalized mathematical description of the input-output mapping rather than
physical modeling, computing time reduces drastically. Consequently, a surrogate model
yields a cheap-to-evaluate approximation q̂ for the QoI q under consideration, taking into
account an approximation error ε̂:

q =M(x) = M̂(x) + ε̂ = q̂ + ε̂, ∀ x ∈ Ω. (3.19)

A vast number of surrogate modeling strategies have been proposed and demonstrated in the
literature. Overviews, comparisons and recommendations for model selection are given for
example in the work of Forrester et al. [67, 68], Booker et al. [18] or Yondo et al. [281]. For
the work at hand, surrogate models for the use in uncertainty quantification are categorized
into data-fit surrogate models and stochastic spectral expansions.

Data-fit surrogate models presuppose a model of the form q = M̂(x,θ) in which θ is a vector of
model parameters that have to be adjusted to accurately fit the output of the high fidelity model.
For this purpose, a set of n observation or training points {(x(1),q(1)), (x(2),q(2)),...,(x(n),q(n))}
must be computed from the high fidelity model within Ω. Model parameters θ are then
optimized with respect to the training points. From a mathematical perspective, this is
referred to as a regression problem.

Training points {x(1),..,x(n)}

{q(1),..,q(n)}
Simulation model

(expensive-to-evaluate)
q =M(x)

Surrogate model
(cheap-to-evaluate)

q̂ = M̂(x)

Input parameter space Ω

Figure 3.9.: General framework for data-fit surrogate modeling.

6Also known as metamodel, proxy model or emulator [281].
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The number of training points highly depends on the dimension of Ω (i.e. the number of
inputs), the number of model parameters, the required accuracy of the surrogate model as
well as the nature of the underlying physical problem, and is therefore always case dependent.
As a rule of thumb, Jones et al. [109] suggested a minimum number of n = 10d training points
for a surrogate model with d inputs. In a further analysis, Loeppky et al. [134] confirmed this
recommendation while pointing out that the sensitivity of training data size on the surrogate
model quality must always be examined.
Further attention must be paid for the optimal distribution of the training points over

the input parameter space in order to extract optimal information about the input-output
mapping of the high fidelity model. These distribution rules are referred to as sampling
plans. Although sampling plans from the well established design of experiments theory [163]
can be used, it has been demonstrated [59, 281] that sampling plans with a low spatial
discrepancy should be preferred for surrogate construction. They are generally based on
sparse quasi-random sampling of Ω through LHS or low discrepancy sequences (e.g. Sobol
series, see Sec. 3.3.2).A schematic of the methodology for the construction of data-fit surrogate
models is given in Fig. 3.9.

One of the most common and simplest data-fit surrogate models is the class of polynomial
regression models [171] which approximate the true data trend over Ω by a global polynomial
function. As an extension to polynomial models, Friedman et al. [69] suggested the use of
piecewise polynomial splines which adapt to local trends in Ω, making the resulting Multi-
variate Adaptive Regression Spline (MARS) model more flexible than global polynomials. In
recent time, methods from the emerging field of machine learning7 have drawn increasing
attention for the use in surrogate modeling [85, 120]. They include, amongst others, support
vector machines [36], gradient boosting [70] or artificial neural networks [97]. From this
category, Gaussian process regression [201] is reviewed in depth in the present work.

In contrast to the data-driven approach, stochastic spectral expansions aim at directly
reconstructing the functional dependence of the output quantity on the stochastic input [253],
which makes them popular for the use in uncertainty quantification and stochastic model-
ing [172, 204, 205]. For a generalized stochastic expansion, the probabilistic output quantity
Q is expressed in terms of a series expansion

Q(ξ) =
∞∑
k=0
skΨk(ξ). (3.20)

In this expansion, Ψk denotes suitably selected functionals of the random variables ξ (the
input quantities) and sk are deterministic coefficients which need to be calculated. Thus, a
spectral, i.e. continuous mathematical representation of Q in terms of ξ is achieved from
which statistics about Q can be directly inferred [128].

7Although there is a large overlap in the theoretical foundation of surrogate modeling and machine
learning, the latter specificially relates to purely data-driven modeling of input-output maps, i.e. without
connection to a physical model.
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The main tasks in the construction of a stochastic spectral expansion are the specification
of functionals Ψk(ξ) depending on the stochastic input ξ and the computation of series
coefficients sk from pointwise evaluations ofM. In the present work, spectral expansions
based on generalized polynomial chaos (PCE) [128, 172] are utilized, in which Ψk(ξ) consists
of a basis of orthogonal polynomials. In the PCE approach, the computation of sk can be
traced back to a multidimensional integration problem, which provides a relation between the
expansion accuracy and the required number of high-fidelity model evaluations. Details on
PCE construction are given in Sec. 3.4.2.

3.4.1. Gaussian process regression

Gaussian process regression (GPR) describes a popular class of methods for surrogate modeling.
Due to the broad definition of the underlying stochastic methodology (i.e. the Gaussian
process), GPR can be adjusted to a wide range of statistical modeling problems with arbitrary
input dimension. Applications and theoretical foundations trace back to exploration problems
in geostatistics where it is also known as Kriging [149].

Remark on Bayesian statistical modeling

Gaussian Process Regression is based on a Bayesian approach towards statistical modeling [76].
The term Bayesian describes the basic assumption that a statistical model is constructed
from prior knowledge (e.g. the mathematical shape of the model, estimate about model
parameters) that is updated by the training data to form a posterior model, i.e. a model
after having seen the training data. This concept is illustrated in Fig. 3.10 for the example
of a model parameter θ. The prior distribution P(θ) in Fig. 3.10 (a) represents the initial
knowledge or guess about θ, in this case an arbitrary normal distribution. Training data θy is
observed in Fig. 3.10 (b). Finally, the prior distribution is updated by the training data to
form the posterior distribution P(θ|θy) using the Bayes theorem [47]

P(θ|θy) = P(θy|θ) · P(θ)
P(θy)

, (3.21)
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Figure 3.10.: Bayesian inference of a model parameter θ.
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where P(θy|θ) is the likelihood of observing θy given θ. It is important to note that although
data has been observed, θ is still a stochastic quantity in the Bayesian modeling approach.
This is in contrast to the frequentist approach to statistical modeling, in which data observation
results in a deterministic value for θ that is inferred for example through maximum likelihood
estimation of θy [23].

Therefore, GPR provides not only a point estimate q̂ for an input x, but the full distribution
function P(q̂|x) from which quantitative information about the local regression quality can
be deduced.

Gaussian process

In GPR, the posterior distribution is inferred from a prior consisting of a distribution over
functions - the so called Gaussian process. A Gaussian process GP is completely specified by
its mean function m(x) and the covariance function κ(xi,xj) which models the dependence
between two function values at different input points xi and xj:

f(x) ∼ GP(m(x),κ(xi,xj)). (3.22)

By definition [275], a Gaussian process is a stochastic process8 in which any point x ∈ Rd

is assigned a random variable f(x) and where the joint distribution of a finite number N of
these variables P(f(x1),..,f(xN)) is itself Gaussian. The prior distribution of the Gaussian
process therefore reads

P(f |X) = N (f |µ,K). (3.23)

The vector of prior means µ is commonly set to zero in order to reduce computational costs [232]
in the calculation of posteriors. Thus, the prior distribution is completely determined by
the covariance matrix K which reflects the correlation between all points X in the Gaussian
process computed from the covariance function κ(X,X). A key element in the definition of a
Gaussian process is therefore the specification of a suitable covariance function or kernel. The
choice of the kernel is based on assumptions such as smoothness and likely patterns to be
expected in the data [232]. From the variety of possible kernels found in the literature, the
squared exponential covariance function9 [275] is selected for the present work,

κ(xi,xj) = σ2
f exp

(
− 1

2l2c
(xi − xj)T (xi − xj)

)
. (3.24)

It expresses the favorable property that the correlation between two points decays with
increasing distance between the points. The two hyper-parameters σf (signal variance) and lc
(correlation length-scale) can be varied to adjust the correlation in the prior distribution.

8Roughly speaking a stochastic process is a generalization of a probability distribution to functions [275].
9Also called radial basis function kernel.
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Regression

After having observed training data y, the prior distribution of the Gaussian process P(f |X)
can be converted into the posterior distribution P(f |X,y). New output f∗ for given new input
X∗ is predicted using the posterior predictive distribution

P(f∗|X∗,X,y) = N (f∗|µ∗,Σ∗) (3.25)

which is also Gaussian with mean µ∗ and variance Σ∗. By definition of the Gaussian process
from Eq. (3.23), the joint distribution of observed data y and predictions f∗ isy

f∗

 ∼ N
0,

 K K∗

KT
∗ K∗∗


 . (3.26)

Consequently, µ∗ and Σ∗ in case of noise free data are given by

µ∗ = KT
∗K−1y, (3.27)

Σ∗ = K∗∗ −KT
∗K−1K∗ (3.28)

with the covariance matrices calculated using the kernel as

K = κ(X,X), N ×N, (3.29)
K∗ = κ(X,X∗), N ×N∗, (3.30)
K∗∗ = κ(X∗,X∗), N∗ ×N∗. (3.31)

For further details on derivation and implementation of Eqs. (3.27) − (3.31), the reader
is referred to the textbook of Williams and Rasmussen [275]. In addition to Eq. (3.25),
hyper-parameters of the kernel (here: σf and lc) have to be adjusted with respect to the
training data y. Although this could also be achieved through Bayesian inference, most
practical implementations use global optimization to find the set of correlation parameters
that maximizes the likelihood of the model given the training data y [68, 82].

In the context of surrogate modeling, the mean µ∗ represent the approximation q̂ at x
for which the GP is evaluated. In addition, a confidence interval for q̂ can be computed from
the trace of Σ∗.

Illustrative example

An example of Gaussian process regression for noise-free training data with one input dimension
is given in Fig. 3.11.

The left column shows samples from the prior distribution (dashed black lines) in combina-
tion with the mean (blue line) and 95% confidence interval (gray shade) from the Gaussian
process. As mentioned before, µ is set to zero in the prior. For normal distributions, the 95%
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confidence interval is computed as µ± 1.96σ. Correlation length scale lc increases from the
first to the third row. Clearly, this resembles a decay in frequency of the Gaussian process.
Note that this does not affect the overall properties (mean, variance) of the prior.
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Figure 3.11.: One-dimensional Gaussian process regression with different correlation length
scales lc. GP samples ( ),GP mean ( ), GP 95% CI ( ), training data (×),
true function ( )
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In the right column, training data (red crosses) is observed by the corresponding prior
and the mean and confidence interval from the resulting predictive posterior distribution is
shown. Since the training data is noise-free, the Gaussian process is fixed at these points
and the variance vanishes. For the lowest correlation length scale (first row), the posterior
distribution demonstrates a strong tendency towards the prior mean and variance between
the training data points, e.g. at x = 5 and x = 8. As a consequence, the confidence interval
increases and the mean notably deviates from the the underlying true function (red line).
With increasing correlation length scales (row two and three), the true function is met with
increasing precision and the confidence intervals become more narrow between training points.
Evidently, the correlation length scale amplifies the fundamental assumption of the covariance
function that if points xi and xj are similar by the kernel, the function values f(xi) and f(xj)
at these points can be expected to be similar, too.

3.4.2. Polynomial chaos expansion

This section focuses on the non-intrusive application of Polynomial Chaos Expansion, consisting
of the selection of a suitable polynomial chaos basis, the computation of series coefficients
from high-fidelity model evaluations and the post-processing of the PCE to obtain statistical
measures.

Polynomial chaos

The original polynomial chaos (PC) traces back to the work of Wiener [273] who demonstrated
that any random variable Q with finite variance can be represented as a series expansion

Q =a0Γ0 +
∞∑
i1=1

ai1Γ1(ξi1) +
∞∑
i1=1

i1∑
i2=1

ai1i2Γ2(ξi1 , ξi2) (3.32)

+
∞∑
i1=1

i1∑
i2=1

i2∑
i3=1

ai1i2i3Γ3(ξi1 , ξi2 , ξi3) + ...,

where {ξi}∞i=1 is a set of independent standard Gaussian random variables on a support Ω.
Γp then represents the Wiener PC of order p, and a() are real-valued coefficients. Eq. (3.32)
may be rewritten more compactly in terms of multivariate polynomials Ψk and corresponding
coefficients αk,

Q =
∞∑
k=0

αkΨk (ξ1,ξ2,...) . (3.33)

Due to the orthogonality constraint on Ψk (or Γp) and the fact that each ξ() is Gaussian, it
follows [273] that Ψk must be a basis of multivariate Hermite polynomials [74].

The concept of the Wiener PC was further generalized by Xiu et al. [279] to account for a
broad range of possible distributions ξ. They derived corresponding orthogonal polynomials
Ψk for standard probability distributions ξ using the family of hypergeometric orthogonal
polynomials known as the Askey scheme [5]. Table (3.1) summarizes the most common
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Table 3.1.: Standard continuous probability distributions ξ and corresponding Askey scheme
of continuous orthogonal polynomials Ψk(ξ).

Distribution ξ Density pξ(x) Polynomial Ψk(ξ) Support range
Normal e−x

2/2 Hermite Hek(ξ) ]−∞;∞[
Uniform 1

2 Legendre Pk(ξ) [−1; 1]
Exponential e−x Laguerre Ln(ξ) [0;∞[
Beta (1−x)α(1+x)β

2α+β+1B(α+1,β+1) Jacobi P (α,β)
n (ξ) [0;∞[

distributions and their polynomials in the Askey scheme. The resulting generalized PC (gPC)
enables the use of PCE in UQ problems, where ξ is interpreted as a random variable for the
input and Ψk is selected according to the probability distribution of the uncertain input (see
Sec. 3.3.1).
In practical computations, the infinite series from Eq. (3.33) is truncated in both order p

and dimension n to represent the expansion of an uncertain output f(ξ):

Q = f(ξ) =
P∑
k=0

αkΨk (ξ1,ξ2,...,ξn) =
P∑
k=0

αkΨk (ξ) . (3.34)

While the dimension n relates to the number of input variables, the cardinality P of the PCE,
i.e. the number of terms in the resulting finite PCE, corresponds to

P + 1 = (n+ p)!
n!p! . (3.35)

Computation of the expansion coefficients

For the computation of the expansion coefficients αk in Eq. (3.34), two different approaches have
been proposed in the literature, namely projection methods [80] and regression methods [29].
The former one involves multi-dimensional numerical integration whereas the latter utilizes
linear regression. In the present dissertation, only projection methods are applied and discussed,
for a synopsis on regression in PCE, the reader is referred to the work of Sudret [253].

Due to the orthogonality of the PC expansion, each coefficient αk is simply the projection of
the response Q onto the k-th dimension of Ψk [253]. The spectral projection method exploits
this property to extract each coefficient. Taking the inner product with respect to Ψk of both
sides in Eq. (3.34) yields

αk = 〈f(ξ),Ψk〉
〈Ψk,Ψk〉

, (3.36)

in which 〈•,•〉 is the inner product defined by

〈u, v〉 =
∫

Ω
u(ξ)v(ξ)P(ξ) dξ, (3.37)
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where Ω denotes the support spanned by ξ. For polynomial bases from the Askey scheme,
〈Ψk,Ψk〉 is known analytically, such that only the numerator from Eq. (3.36) requires further
analysis.
By applying definition (3.37), Eq. (3.36) can be rewritten as

αk = 1
〈Ψk,Ψk〉

∫
Ω
f(ξ)Ψk(ξ)P(ξ) dξ. (3.38)

Therefore, the primary computational effort resides in evaluating the multidimensional integral
from Eq. (3.38) which is achieved using efficient numerical integration methods. The order
of accuracy of the numerical integration directly provides a measure for the accuracy of the
PCE. Obviously, an increased order of accuracy requires an increased number of function
evaluation f(ξ), i.e. evaluations of the original modelM.

In general, multidimensional quadrature rules are derived through a tensor product of one-
dimensional quadrature rules, e.g. Gaussian quadrature, Clenshaw-Curtis or Genz-Keister [39].
However, it is observed that quadrature rules from full tensorization are non-optimal in
the sense that their degree of exactness could actually be achieved using a lower number
of integration nodes [128], which resembles fewer evaluations of the high-fidelity simulation
model. This allows for a reduction of the fully tensorized quadrature rule to a so called sparse
grid while preserving the desired level of accuracy. Accordingly, sparse grid tensorization as
proposed by Smolyak [242] has become popular for the use in PCE [118, 128] and is also used
for the work at hand.

For a further enhancement of computational efficiency, nested quadrature rules are advisable
for the construction of multi-dimensional quadrature methods. In this context, nested refers
to the favorable property that integration points for a rule with order O(n) are a subset of
the integration points for order O(n+ 1) which enables efficient adaptation of PCE accuracy.
Fig. 3.12 illustrates the resulting integration points in two and three dimensions when

combining Smolyak sparse grid tensorization with a nested Fejer rule [39]. Two consecutive
grid levels L = 2 and L = 3 are displayed in Fig. 3.12 (a) and (b), respectively. The grid levels
corresponds to different orders of accuracy for the multi-dimensional integration. Clearly, the
L = 2 points are a subset of the L = 3 points due to the nested nature of the integration
rule. In contrast, Fig. 3.12 (c) displays the fully tensorized Fejer rule for the L = 3 case,
highlighting the drastic reduction in integration points by using a sparse grid.

Post-processing of the PCE

After computation of the PCE coefficients, first and second moment of Q can be calculated
directly without further sampling. Due to the orthogonality of the PC expansion, analytical
expressions for the expectation and variance of Q are given by

E[Q] =
P∑
k=0

αk〈Ψ0,Ψk〉 = α0, (3.39)
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Figure 3.12.: Two and Three-dimensional quadrature points of a Smolyak sparse grid using a
nested Fejer rule. Level 2 points ( ), additional Level 3 points ( ), Fully tensorized
points ( ).

V[Q] = E[(Q− E[Q])2] =
P∑
k=1

α2
k〈Ψk,Ψk〉. (3.40)

Although similar expressions can be derived for higher moment of Q, full distributions or
probabilities are usually estimated by means of sampling strategies (see Sec. 3.3.2) [128], i.e.
by sampling of ξ with respect to its density P(ξ) followed by the evaluation of the PC series
from Eq. (3.34) at the respective sample point.

Note that Eqs. (3.39) and (3.40) also enable the direct computation of the Sobol indices as
introduced in Eqs. (3.17) and (3.18) as a post-processing step of the PCE coefficients without
further sampling [252].
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The aim of this chapter1 is to apply the previously introduced methods for probabilistic
modeling and uncertainty quantification to a simple, well defined test case for spray combustion
involving a single component liquid fuel with well-documented physical properties. This allows
for a detailed analysis and comparison of the methods for sensitivity analysis and surrogate
modeling while keeping the modeling demands and associated uncertainties at a moderate
level.
First, a deterministic reference LES is conducted to validate the selected models. Based

on these results, the numerical setup is simplified to RANS modeling in order to reduce
computing time and enable detailed testing of different surrogate modeling methods for
uncertainty propagation. Key uncertainties in the input parameters of the simulation model
as well as numerical uncertainties are identified followed by a sensitivity analysis to reduce
the parameter space of uncertain inputs. For the propagation of uncertainties, Gaussian
Process based surrogate modeling and Polynomial Chaos Expansion are applied and reviewed
in-depth.

4.1. Test case description
The Delft Spray in Hot Coflow Flame (DSHC) [213] is selected as a test case for the following
investigations. Originally designed as a generic laboratory scale burner to study fundamental
aspects of liquid fuel combustion under MILD conditions, it provides an extensive database of
experimental data for both gaseous and dispersed phase over the reaction zone.
Moderate or Intense Low-oxygen Dilution (MILD) [24] combustion has drawn attention in

recent years due to its potential for a drastic reduction in NOx emissions [277]. This combustion
concept is characterized by a high temperature and intense dilution of the oxidizer stream
with combustion products, resulting in a moderate temperature increase during oxidation.
In technical combustors, dilution is typically realized through either staged combustion or
recirculation of the combustion productions within the combustion chamber [278].
Figure 4.1 provides a schematic of the DSHC burner. The burner consists of a cylindrical

coflow generator with a diameter of 160 mm. The coflow is fed by the lean combustion
of Dutch Natural Gas (DNG) to increase the airflow temperature and dilute the air with
combustion products prior to the primary combustion zone. Resulting temperature and
oxygen concentrations mimic the oxydizer properties found in a combustor operating under
MILD conditions. For the primary flame, liquid ethanol is supplied through a commercial

1Parts of this chapter have been published in [55], [59] and [58]
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Figure 4.1.: Schematic of the DSHC burner and flame image for the HII case (adapted from
Rodrigues et al. [212]).
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Table 4.1.: Mean operating conditions of DSHC HII.

Case Tcf [K] Ucf [m s−1] YO2 [%] Icf [%] mliq. [kg h−1] pinj [bar]

H-II 1400 2.5 9.9 2.0 1.46 11.5

hollow cone pressure swirl atomizer (Delavan WDA 0.5 GPH) installed in the center of the
coflow generator. The atomizer forms a fine spray of ethanol droplets which quickly evaporate
in the hot coflow and feed a stable lifted-off flame above the burner. In the literature [139,
213], the atomizer is reported to have a 0.21 mm exit orifice and a nominal spray cone angle of
60◦. For further reference, a quasi-cylindrical (z,R) coordinate system is included in Fig. 4.1.
The DSHC flame was characterized over a variety of operating conditions using laser

diagnostics [32, 213]. This included Coherent Anti-Stokes Raman Scattering (CARS) for
gas phase temperature as well as Laser Doppler Anemometry (LDA) and Phase Doppler
Anemometry (PDA) for droplet size and velocities. Measurement data was collected along
radial profiles through the reaction zone at different z-positions above the atomizer. In
addition, properties of the coflow after primary combustion were reported at z = 0 mm.
From the experimental database, the so-called HII case is selected. Mean operating

conditions are summarized in Tab. 4.1. Properties with subscript ()cf refer to the coflow
after primary combustion. Low coflow velocity and moderate turbulence intensity result in a
moderate Reynolds number which enables an efficient use of both LES and RANS methods.

The DSHC HII case was widely adopted in the simulation community. In a first study, Ma
et al. [138] used RANS simulations with a Flamelet Generated Manifold (FGM) combustion
model. For a similar setup, Jamali [106] reported results from a variation of spray boundary
conditions. Gallot-Lavallée et al. [73] conducted an LES of different DSHC cases with
a stochastic fields combustion model. In further LES/FGM studies [140–142], Ma et al.
investigated the fundamental flame structure and the stabilization mechanism of the DSHC
flame. The LES reported by Enderle et al [55, 57] contribute to the results discussed in
Sec. 4.3.

4.2. Numerical setup
For all simulations, the FRC combustion model in combination with a detailed reaction
mechanism for ethanol oxidation [214] is used. The mechanism includes 38 species and
228 reactions. The assumed PDF model provides turbulence-chemistry interaction in the
RANS simulation, whereas in the LES it is used for the subgrid temperature fluctuations.
Vaporization of liquid ethanol (C2H5OH) is modeled by the single component vaporization
model.
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Figure 4.2.: Computational domain for the LES simulation and depiction of the grid in a cut
plane. Dots indicate the spatial extent of the spray.

4.2.1. Computational domain and spatial discretization

In the computational domain, only the region above the atomizer is considered while the
secondary DNG burner is not simulated explicitly. Properties of the coflow after secondary
combustion are prescribed through a boundary condition based on the radial profiles of
temperature and its fluctuations, velocity components, turbulence properties and gas phase
composition from the experimental characterization (see Sec. 4.2.2).

LES

The computational domain for the LES is shown in Fig. 4.2 and consists of a cylinder with
diameter d = 0.3 m and height h = 0.3 m. The fully structured grid comprises approximately
1.565 · 106 elements in an O-Grid topology. As evident from the depiction of the grid in
Fig. 4.2, strong clustering of cells is realized in the liquid injection region and alongside the
reaction zone. Cell spacing along the axial (∆z) and radial (∆R) direction is shown in Fig. 4.4
(a).

RANS

Due to the statistical rotational symmetry of the flame [213], the computational domain for
the RANS simulations is reduced to an axisymmetric 20◦ wedge. A region of 300 mm axial
and 150 mm radial extent above the atomizer is included (see Fig. 4.3). For examination
of the discretization accuracy, three different grids are considered, all relying on the same
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Figure 4.3.: Sketch of the computational domain and grid for the RANS simulations. Periodic
symmetry around the z-axis

fully structured, orthogonal grip topology in analogy to the LES grid. The reference grid
consists of approximately 80 · 103 elements, while the coarse and the fine grid incorporate
half and twice the number of elements, respectively. Grid refinement strategies proposed by
Roache [210] were followed in order to keep main characteristics of the grid consistent over
the three levels of resolution. Again, cell spacing is shown in Fig. 4.4 (b).

4.2.2. Gas phase boundary conditions

Since both simulations comprise a radial domain larger than the burner, the coflow inlet is
surrounded by an ambient inflow with U = 0.1 m s−1 to enhance numerical stability. The
coflow from the secondary burner is modeled as a velocity inlet where inlet quantities such
as temperature and species composition are set according to the experimental database.
Figure E.1 in Appendix E depicts the radial distribution of these quantities. In the LES, all
other cylindrical areas are set as outflow with static pressure set to zero whereas in the RANS
simulations, boundary conditions are prescribed as shown in Fig. 4.3.

Modeling of the inlet temperature fluctuations for LES

As evident from the experimental data in Fig. E.1 in the appendix, the secondary DNG burner
causes strong fluctuations in temperature at the coflow exit. Since the secondary burner is
not included in the computational domain, temporal fluctuations in temperature and velocity
at the coflow inlet must be modeled for the use in LES in order to accurately capture the
temperature fluctuations within the flame. For this purpose, the inlet is subject to stochastic,
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Figure 4.4.: Grid cell spacing along the axial (∆z) and radial direction (∆R) in the used
structured grids.

time-correlated forcing for temperature and velocity. This forcing approach realizes turbulent
decay in time. Spatial decorrelation of the turbulent signals due to shear effects is neglected
in the forcing due to the very low bulk velocity of 2.5 m s−1. Time-coherent, stochastic forcing
is realized with a first order Langevin equation [192] for which integral time-scales are inferred
from the experimental characterization of the coflow.
Details of the stochastic forcing approach were reported by Enderle et al. in [57]. A

summary is given in Appendix C. Note that in the RANS simulations, experimental data for
inlet temperature fluctuations serve as boundary conditions for the assumed PDF turbulence-
chemistry interaction model.

4.2.3. Spray boundary conditions

Spray boundary conditions are reconstructed from experimental data as described in Sec. 2.4.2.
PDA data at z = 8 mm is projected onto an injection disk with diameter din = 1 mm at a
distance of zin = 1 mm from the actual atomizer orifice which defines the boundary condition
for the liquid droplets. The distance zin resembles the mean liquid sheet breakup length of the
pressure-swirl atomizer under the given conditions and is derived from preliminary calculations
with the LISA primary breakup model [234]. In the RANS simulation, the injection disk
reduces to a 20◦ wedge according to the computational domain.
As reported by Rodrigues et al. [213], the atomization mechanism of the pressure-swirl

atomizer is greatly influenced by the hot flue gases of the secondary burner. Due to the high
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Figure 4.5.: Spray boundary condition and input parameters at the injection plane.

Table 4.2.: Nomenclature and nominal values for parameters of the droplet boundary condition.
RR = Rosin-Rammler.
D0: Mean droplet diameter in the RR distribution 42.5 [µm]
UD: Starting velocity of fuel droplets 35.7 [m s−1]
ϕ̄: Mean trajectory angle of droplets 30 [◦]
ϕ′: Trajectory dispersion angle 20 [◦]
T̄liq: Starting temperature of fuel droplets 301 [K]
q: Spread of the RR distribution 3 [−]

coflow temperature, flash boiling atomization phenomena are present causing a shortened
liquid breakup length, smaller droplet size and a wider radial distribution, as pointed out by
Ma et al. [140]. Therefore, the mean trajectory angle ϕ̄ of the droplets is augmented with a
dispersion angle ϕ′ which was inferred from calibration against the experimental data. Due
to the absence of detailed data, a constant absolute droplet starting velocity UD and a liquid
droplet temperature Tliq is set. The droplet size spectrum of the polydisperse spray is modeled
by a Rosin-Rammler distribution (see Eq. (2.56)). An illustration of the boundary condition
and its quantities at the injection disk is given in Fig. 4.5. Table 4.2 provides a nomenclature
for parameters of the spray boundary condition and the nominal values for the deterministic
reference simulation.
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4.3. Deterministic reference simulation
For the LES, a constant timestep of ∆t = 10−5 s is set resulting in local CFL numbers
significantly below unity. The simulation is initialized over 10 characteristic flow through
times τh = h/Ūcf and averaged over additional 20τh. The same initializing and averaging
intervals are applied for the liquid phase in which droplet statistics are recorded by means of
registration planes at different heights above the atomizer. In addition to averaging in time,
simulation data is averaged circumferentially in post-processing, which results in symmetric
profiles for the mean data.

4.3.1. Flame structure

An overview of the temperature field in the gas phase is given in Fig. 4.6 by means of transient
and time-averaged contours in the z−R plane. Black scatter dots indicate liquid fuel droplets
(magnified). In the transient snapshot (Fig. 4.6 (a)), a dense droplet region is observable close
to the atomizer exit plane at z = 0 mm. Further upstream, the flame stabilizes in the outer

(a) Transient (b) Time-averaged

Figure 4.6.: Gas phase temperature of the DSHC H-II flame. Black dots represent liquid
droplets. The white iso-line indicates the stochiometric mixture fraction.

flank of the evolved spray cone, causing a clearly lifted flame. The white iso-line represents
the stochiometric fuel/oxidizer mixture fraction, separating the flame front from the inner
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fuel rich region. Few droplets are able to escape from the flame front above z = 40 mm due
to their high initial momentum. Along the center line temperature in the gas phase drops
significantly below the coflow temperature as a result of strong droplet evaporation.

From the time-averaged temperature field in Fig. 4.6 (b) a mean lift-off height of the flame
of hLO = 11 mm is deduced, based on the first axial position where the temperature in the
flame exceeds the coflow temperature of T cf = 1400 K. This is slightly below the experimental
value of hLO,exp. = 13 mm. However, in the experiments the lift-off height was derived from a
more qualitative criterion based on the average flame luminescence from photographs [212].

4.3.2. Gas phase results

A comparison between profiles of mean temperature from LES and experiment at different
heights above the atomizer is given in Fig. 4.7. The general trend of the experimental data is
accurately reproduced by the simulation, peak and minimum temperature magnitude and
position are in good agreement. At the most downstream positions, the simulation predicts a
higher flame spread leading to radial temperature deviations. This tendency was also reported
by [73] and [142].
At all axial positions, three characteristic features of the flame are visible [141]:

• Gas phase temperature drops below the coflow temperature along the center line
(R = 0 mm) due to strong evaporation of fuel droplets and therefore absorption of
enthalpy from the gas field

• An inner and outer flame front characterized by strong radial gradients in temperature

• Maximum temperature increase ∆T = Tmax − T̄cf = 625 K with respect to the inlet
temperature stays below the self-ignition temperature Tsi = 706 K of the mixture

The fact that ∆T < Tsi and Tin = T̄cf > Tsi verifies that the flame is operating in the MILD
combustion regime as defined by Cavaliere et al. [24].
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Figure 4.7.: Radial profiles of mean gas temperature at different heights above the atomizer.
Atomizer exit at z = 0 mm.
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Figure 4.8.: Radial profiles of RMS gas temperature fluctuations at different heights above
the atomizer. Atomizer exit at z = 0 mm.

Results for Root Mean Square (RMS) temperature fluctuations are displayed in Fig. 4.8. As
evident from the plots, the considerable high background level of fluctuations induced by the
secondary burner is met by the simulation. This verifies the modeling of the inlet temperature
fluctuations through the stochastic Langevin equation. At the first two axial positions the
peaks in fluctuation at the flame edge are clearly visible in the simulation results. With
increasing axial distance from the atomizer, the LES matches the general trend of fluctuations
with two characteristic peaks but underestimates the magnitude in the flame region.
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Figure 4.9.: Radial profiles of mean axial velocity of the gas phase.

For a verification of the flow field, radial profiles of mean axial gas velocity are compared
with PDA data from the DSHC database. In the experiment, droplets with a diameter
d < 6 µm were used as tracer particles since their respective Stokes number was well below
unity [212]. Consequently, these droplets closely followed the gas field trajectories. Results
can be found in Fig. 4.9. Again, the simulation correctly reproduces the experiment with
exception of the center line region. Even though measurement data for R < ±2.5 mm is only
available at z = 15 mm, experimental data indicates a slight drop in velocity in this region.
In contrast, the LES shows a further acceleration of the gas along the center line resulting in
a notable overestimation of axial velocity. As shown by Enderle et al. in [55] this could be
caused by the liquid phase due to strong momentum source terms imposed by droplets which
concentrate along the center line.
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4.3.3. Dispersed phase results

A characterization of the dispersed phase from the experiments is given by means of PDA
data for droplet size and velocity components. This data is compared to mean statistics of
computational particles from the dispersed phase solver.
Profiles for the local Sauter Mean Diameter (SMD) from experiment and simulation are

displayed in Fig. 4.10 at different axial positions. The experimental data demonstrates a
radial distribution of mean diameter typically found for a pressure-swirl atomizer as the mean
diameter increases towards outer radii [56, 227]. This tendency is also visible in the LES which
reproduces both maximum SMD and maximum extent of the spray with high accuracy. A
large deviation is identified in the inner region of the spray where the SMD in the simulation
is distinctly below the experiment. However, it should be kept in mind that results for the
dispersed phase are statistical means of a collection of discrete events, i.e. liquid droplets
passing through the registration plane. Therefore, the simulation results must be interpreted
with respect to the radial distribution of liquid mass flux. This means that the agreement
between predicted SMD and experiments should be weighted by the radial distribution of
liquid mass flux. For this purpose, simulation results for the normalized liquid mass flux are
added to the SMD data at z = 20 mm and z = 40 mm. Apparently, regions of high mass
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Figure 4.10.: Radial distribution of Sauter Mean Diameter (SMD) from experiment and
simulation and liquid mass flux from the simulation at different heights above
the atomizer. Atomizer exit at z = 0 mm.
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flux coincide with regions of low discrepancy between simulation and experiment whereas
highest deviation is observed in the presence of almost zero mass flux. Although not added to
the plots for the sake of brevity, this tendency is also found at the other axial positions. It
is therefore concluded that the simulation is able to reproduce the SMD profiles with good
accuracy which also verifies the chosen boundary condition for the liquid phase.
Figure 4.11 summarizes results for the axial and radial velocity components of the liquid

fuel droplets. For comparison with the experiment, the droplet size spectrum is divided into
representative three size classes for small (10 µm ≤ d ≤ 20 µm), medium (20 µm < d ≤ 30 µm),
and large (40 µm ≤ d ≤ 50 µm) droplets. Although all droplets in the simulation are injected
under the simplification of a uniform initial absolute velocity UD = 35.7 m s−1, a dispersion of
axial and radial velocity over the droplet size is clearly visible in the simulation results. Due
to their high momentum, large droplets maintain the initial velocity over the first 30 mm.
This results in too high velocities for this size class until z = 40 mm, indicating a too low
deceleration of the large droplets by the gas field. However, as the axial gas velocity agrees
well with the experiments (see Fig. 4.9), this behavior reveals that the injection velocity for
large droplets should be reduced. In contrast, small droplets in the simulation are in good
agreement with the experiment for both axial and radial velocity. As a result of their low
Stokes number, these small droplets couple to the local gas velocity and are therefore subject
to fast deceleration. The same effect is valid for medium size droplets with exception of the
first measurement location where axial and radial velocities are slightly overestimated by the
simulation.

Based on the results for the gaseous and dispersed phase, it is concluded that the LES
is able to reproduce all relevant effects and properties of the test case under consideration.
Furthermore, this verifies the suitability of the chosen spray boundary condition in combi-
nation with the present modeling approach. The results from this section will serve as a
reference in the following study.
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Figure 4.11.: Droplet velocity components for different droplet size classes. Symbols indicate
experimental data, lines are simulation results.
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4.4. Uncertainty Quantification
In the following, the workflow for uncertainty quantification as detailed in Sec. 3.3 is applied
to the DSHC case. Figure 4.12 provides an overview of the methods related to the three main
steps of this workflow. First, the simulation setup is reduced to a RANS setup and numerical
uncertainties are quantified. Then, uncertainties in the spray boundary condition are identified
from a survey of existing studies on the DSHC case. Most important parameters are ranked
by means of a MOAT analysis. For the propagation of the uncertainties, Gaussian Process
regression and Polynomial Chaos Expansion are tested and analyzed. Finally, probability
bounds are inferred and a posteriori sensitivity is examined through Sobol indices.
Accurate prediction of gas phase temperature is a key factor for the determination of

thermal loads, pollutant emissions and soot distribution in gas turbine applications [131].
Therefore, special emphasis is put on the quantification of uncertainties in the calculation of
gas phase temperature. Thus, the radial profiles of mean temperature as shown in Fig. 4.7 will
be considered as the main Quantities of Interest in the following study. It should be pointed
out that the method demonstrated in this section can be applied to any other quantity of
interest from the simulation.

Boundary conditions
Literature survey

MOAT

X GP Q

X PCE Q

PBA
Sobol
Total uncertainty

A
Specification

B
Propagation

C
Analysis

RANS

Num. unc.

Figure 4.12.: Application of the workflow for uncertainty quantification to the DSHC case.

4.4.1. Reduced simulation model and numerical uncertainties

The reduced RANS simulation model as detailed in Sec. 4.2.1 is used in lieu of the LES
to speed up computation and enable the detailed analysis of mechanisms for uncertainty
propagation. The RANS model drastically reduces the required CPU hours by a factor of 70
for a single computation compared to the LES. For a qualitative assessment of the RANS
model as applied here, a simulation with the same boundary conditions and models as the
deterministic reference is conducted and compared to the LES results.
Radial profiles of gas phase temperature from both simulations are displayed in Fig. 4.13.

Since the RANS simulation model is based on a 20◦ wedge, in the following, all results will be
given along the positive radial axis (R-axis). Due to the radial bias in the experimental data
for gas phase temperature [213], especially in the region of strong gradients, experimental
results for both R < 0 mm and R > 0 mm are included. The RANS is able to reflect all main
features of the flame as discussed in Sec. 4.3.2 and accurately reproduces the experimental
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Figure 4.13.: Radial profiles of gas phase temperature at z = 15 mm and z = 40 mm from
LES and RANS.

data. At z = 40 mm and further downstream, the RANS demonstrates the same tendency
in overpredicting the radial spread of the flame as the LES. Note that this spread is slightly
larger in the RANS than in the LES. A major deviation of the RANS from both experiment
and LES is found at the beginning of the inner reaction zone (R ≈ 5 mm). Considering that
this deviation is present at all axial positions, it is concluded that this must be a systematic
error of the RANS. The absence of resolved unsteady flow structures in the RANS and their
influence on particle dispersion, droplet evaporation and local fuel mixing could be a key
factor causing these deviations. For example, Abani et al. [1] pointed out that RANS models
are prone to errors in the near injector region, where phase-coupling effects play a significant
role. Furthermore, one should keep in mind that the spatial grid resolution in this area for
the LES is well above the RANS. In the next section, it is shown that this area is subject to
considerable numerical uncertainties. Nonetheless, the RANS simulation provides a suitable
accuracy for the following uncertainty study.

Numerical uncertainties

In addition to the qualitative assessment of RANS simulation quality, numerical uncertainties
are systematically quantified. As discussed in Sec. 3.3.1, these uncertainties arise from
discretization error, iterative convergence error, roundoff error and errors due to computer
programming mistakes. The latter two are assumed to be negligible due to previous and
ongoing verification and validation efforts for the simulation platform. From the inspection of
residuals and their convergence, iterative errors are expected to be in the order of machine
accuracy. Therefore, special emphasis is put on discretization errors stemming from spatial
grid resolution.
To evaluate this error, the grid convergence method proposed by Roache [210] is adopted.

It relies on the analysis of multiple solutions from a sequence of grids with decreasing grid
spacing h. For the case considered, a coarse (f3) and fine (f1) mesh with respect to the
reference (f2) is used, keeping the refinement ratio rr = hi+1/hi constant at rr =

√
2. The

influence of grid resolution on the radial temperature profiles is displayed in Fig. 4.14 (a).
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Figure 4.14.: Results from grid convergence study and associated numerical uncertainties of
the RANS simulation model.

Highest sensitivity is found at the beginning of the inner averaged reaction zone (R ≈ 5 mm)
at both axial positions. Apart from that, the solution is nearly insensitive to grid refinement
at z = 40 mm. In order to get a quantitative assessment of sensitivity to grid resolution, the
temperature profiles are extrapolated to a hypothetical infinitely small grid spacing h = 0
using Richardson extrapolation [210]. An observed order of convergence pc is calculated by

pc ≡
log

(
f2−f1
f3−f2

)
log rr

. (4.1)

As Stern et al. [251] pointed out, this equation is not robust especially in cases where the
datapoints fi are nearly constant with change in grid size or when f2 − f1 < f3 − f2. We
therefore limit pc to an interval [pc,min,pc,max] with pc,min = 0.5 and pc,max = 3 as recommended
by Phillips and Roy [184]. The extrapolated solution is then determined by

fh=0 = f1 + f1 − f2

rpcr − 1 . (4.2)

A cubic interpolation is used to transfer the medium and fine grid solution to the coarse
mesh locations. Extrapolated profiles are included in Fig. 4.14 (a). The numerical error
εnum = |fh=0− f2| is low and the reference grid f2 represents an appropriate spatial resolution
of the problem. Based on εnum, numerical uncertainties Unum are estimated using the approach
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proposed by Roy and Oberkampf [216]:

Unum = Fsεnum = Fs|fh=0 − f2|, (4.3)

with a safety factor Fs which is recommended to be 1.25 for extrapolations involving three
or more grids. Resulting uncertainties are included as error bars in the reference simulation
results in Fig. 4.14 (b). Note that the regions of largest numerical uncertainties correspond
to the scope of highest deviation between RANS and LES as found in the previous section.
Here, uncertainties in the magnitude of 300 K are present.

Following the suggestion of Oberkampf et al. [177], the calculated numerical uncertainties
of the simulated temperature profiles are treated as purely epistemic uncertainties and will
be added as an interval to the results of the later propagation of input uncertainties. All
following results will be computed on the reference grid f2.

4.4.2. Step A: Characterization of the input uncertainties

Section 4.3 demonstrated that the used simulation platform is able to reproduce the experi-
mental data with high accuracy using an optimized set of boundary conditions for the spray.
The focus of this section is therefore on identifying the impact of possible uncertainties on
the simulation results.

A detailed characterization of gas phase boundary conditions was conducted in the experi-
ments. Thus, associated uncertainties are deemed to be negligible compared to uncertainties
in the dispersed phase and special emphasis is put on the boundary condition for the dispersed
phase. In the spray boundary condition as defined in Sec. 4.2.3, six parameters remain to be
determined. As the spray characterization in the transition regime from dense to dilute spray
is challenging and subject to large measurement errors [259], the first available data is at a
distance of z = 8 mm from the atomizer orifice.
Furthermore, some reported characteristics of the atomizer are either incomplete (ϕ′),

highly uncertain (Tliq) or potentially wrong (Uliq). For example, Ma et al. [140] pointed out
that using the droplet injection velocity based on the experimental data of the atomizer,
the downstream velocity will be significantly overpredicted. This could be traced back to
cavitation within the atomization chamber, which decreases the discharge coefficient of the
atomizer and hence the exit velocity of the liquid.
Consequently, parameters of the spray boundary condition have to be calibrated against

the downstream experimental data resulting in a best fit for the used simulation methods
and models. As a result, different values for these parameters are found in the literature on
simulations of the DSHC flame. Although in each of the studies a slightly different scheme
for the construction of the spray boundary condition was utilized, main parameters as defined
previously can be identified and compared:

For a RANS simulation with a Flamelet Generated Manifold (FGM) combustion model, Ma
et al. [138] computed the parameters with the LISA primary breakup model [234]. In a similar
setup, Jamali [106] considered slightly different inputs for the LISA model. Gallot-Lavallée et
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Table 4.3.: Spray boundary conditions for the DSHC HII case from literature and uncertain
input space.

D0 [µm] UD [m s−1] ϕ̄ [◦] ϕ′ [◦] Tliq [K] q [-]
Ma et al. [140] 40.0 35-701 35-401 5-151 - 3.0
Ma et al. [138] 41.0 29.5 35 6 301 3.5
Gallot-Lavallée et al. [73] 41.0 -2 30 10 301 3.0
Jamali [106] 41.0 29.5 35 5 301 3.0
Enderle et al. [55] 45.2 35.7 30 20 301 3.0
Experiment [213] - 51.73 304 - 301 3.0
Uncertainty input space ΩBC

Minimum 40 27.3 30 6 300 3.0
Maximum 45 35.7 40 20 310 3.5
Reduced input space ΩBC,r

Minimum 40 27.3 30 6 - -
Maximum 45 35.7 40 20 - -
Constant - - - - 301 3.0
1 Function of droplet diameter
2 PDF from experimental data
3 Liquid velocity at the atomizer exit (Uliq)
4 Nominal value for Delavan WDA 0.5 GPH atomizer

al. [73] conducted an LES with a stochastic fields combustion model and derived a PDF for
the injection angle as a function of the droplet diameter. In a further LES/FGM study, Ma
et al. [140] proposed a conditional droplet injection model for the DSHC case. A calibrated
spray boundary condition for the THETA/SPRAYSIM framework was presented using LES
and FRC by Enderle et al. [55].

Table 4.3 summarizes parameters for the spray boundary condition in the DSHC HII case
from the different authors. As an example for the variation of the input parameters over
the mentioned studies, Fig. 4.5 gives a comparison of the cumulative drop size distribution
from different simulations of the DSHC HII case. Although Rosin-Rammler distribution
parameters D0 and q only vary slightly, the corresponding cumulative drop size distributions
Q(D) differ clearly among the collected simulations.

For the following uncertainty quantification, the six input parameters of the spray boundary
condition from Tab. 4.2 are considered as uncertain. The parameter space of uncertain
inputs ΩBC is constructed from the respective minimum and maximum values found in the
aforementioned literature as they all demonstrated good agreement with the experimental
data of the test case. Since no further information is available, all six input quantities are
treated as purely epistemic interval-valued uncertainties, bounded by the respective minimum
and maximum which are given in Tab. 4.3.
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Figure 4.15.: Cumulative drop size distributions from different simulations of DSHC HII.

4.4.3. Step A: MOAT screening

Although six uncertain parameters have been identified, their contribution to the output
uncertainty, i.e. the uncertainty in the profiles for gas phase temperature, might differ
widely. Thus, the parameter space of uncertain inputs ΩBC could be reduced to the most
important parameters prior to the propagation of the input uncertainties in order to decrease
computational costs. For this reduction, a screening of the input parameter space from
Tab. 4.3 is performed using MOAT sensitivity analysis as described in Sec. 3.3.1. As a result,
the influence of the input parameters on the gas phase temperature can be assessed.

For the MOAT screening, a total of 28 RANS simulations are conducted, resulting in r = 4
elementary effects for each of the six input parameters. According to Saltelli [224], r = 4
is the minimum value to place confidence in the method, while keeping the computational
expense at a minimum. For the analysis of the results, the modified mean as recommended
by Campolongo et al. [21] is used.

MOAT analysis is performed for the radial profiles of temperature at the six axial positions
where experimental data is available (z = 15, 20, 30, 40, 50, 60 mm). This allows for a charac-
terization of the sensitivity with proceeding evaporation and reaction over the flame. At each
axial position, radial data for σ(r) and µ∗(r) is averaged and weighted by the local variance
in temperature from all 28 simulations. Thus, aggregated effects µ∗z and σz are computed by

µ∗z =
∑
r µ
∗(r)V[T (r)]∑
r V[T (r)] and σz =

∑
r σ(r)V[T (r)]∑
r V[T (r)] . (4.4)

For further details on this aggregation approach for sensitivity analysis of spatially distributed
quantities, the reader is referred to the work of Marrel et al. [146].
Aggregated MOAT results at different axial positions are shown in the upper plot of

Fig. 4.16. Data is plotted in a µ∗z - σz space which enables a fast classification of sensitivities:
linear or direct effects increase along the µ∗z axis while non-linear or interaction effects advance
along the σz axis. Consequently, high influence parameters are found on the right and upper
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modified mean µ∗ from MOAT analysis. Labels indicate axial positions.
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portion of the µ∗z - σz space. Labels at the data points in Fig. 4.16 indicate its axial position
in the computational domain.

Largest linear and interaction effects are visible for mean trajectory angle ϕ̄ and dispersion
angle ϕ′ although both decrease in magnitude with increasing distance from the spray boundary
condition. It is assumed that the strong interaction effect arises from the fact that both
parameters determine the opening angle of the spray cone. As the effect of the other four
parameters is substantially smaller, a detail of the lower left portion of the µ∗z - σz space
is included in Fig. 4.16 . In contrast to ϕ̄ and ϕ′, the relative influence of liquid droplet
temperature Tliq, droplet starting velocity UD, distribution factor q and mean droplet diameter
D0 rises with increasing z - position . However, in particular Tliq and q only have minor
influence on the temperature when compared to ϕ̄ and ϕ′. It is therefore concluded that
these two parameters can be fixed to the reference values from Tab. 4.2 and neglected for the
following uncertainty quantification. Thus, the parameter space of uncertain inputs ΩBC is
reduced to ΩBC,r comprising ϕ̄, ϕ′, D0 and UD with the respective bounds from Tab. 4.3.

4.4.4. Step B: Gaussian process based propagation of uncertainties

In this section, Gaussian process based regression as detailed in Sec. 3.4.1 is used as a surrogate
model for the RANS simulation model of the DSHC H-II flame. Thus, uncertainties from
ΩBC,r can be efficiently propagated. As GP based surrogate modeling relies on a data-fit
approach, training data is first acquired from the RANS model. Then, GP regression models
M̂GP are constructed based on this training data and model quality is estimated through
cross validation and holdout validation. Finally, uncertainty bounds for the profiles of gas
phase temperature are inferred from space filling sampling of M̂GP over ΩBC,r.

Training data and surrogate model construction

Radial profiles of gas phase temperature are predicted by a series of independent GP models
at each grid point location. The input vector x comprises the four uncertain parameters
which span ΩBC,r. Thus, the GP surrogate model formally reads:

T r,z = M̂r,z
GP (x) = M̂r,z

GP (UD, D0, ϕ̄, ϕ
′) . (4.5)

Following the recommendation of Jones et al. [109], 40 training data points are distributed
over ΩBC,r using a Sobol series (see Sec. 3.3.2). At these points, RANS simulations are run
with the respective input parameters for the spray boundary condition, resulting in the set
of training data S40 = {(x(1),T (1)), (x(2),T (2)),...,(x(40),T (40))}. Additionally, the Sobol series
for the distribution of training data points is extended by 20 additional points, forming a
training set S60 to study the influence of training data size. Projections of the training data
points onto two-dimensional subspaces are shown in Fig. 4.17.

Fig. 4.18 illustrates selected profiles of gas phase temperature from the set of training data.
In addition, the respective sample point in the D0 − ϕ̄ subspace is indicated by colored dots
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in the central plot of Fig. 4.18. From this data it is already evident that the considered
variation in input parameters results in significant variations of the temperature distribution
over the computational domain. Especially the radial position of the peak temperature, which
is connected to the reaction zone of the flame, varies over a range of ∆r = 10 mm at all axial
positions. In contrast, the hot gas temperature from the coflow outside of the reaction zone
(e.g. R > 20 mm at z = 15 mm) is not affected by the variation in droplet starting properties.

Based on the set of training data, Gaussian process regression models are constructed using
the Sandia DAKOTA 6.4 software package [3]. DAKOTA optimizes the Hyper-parameters
of the GP (see Sec. 3.4.1) through a Maximum Likelihood Optimization with respect to the
training data.

As the constructed surrogate models will be used in lieu of the RANS simulation for detailed
uncertainty analysis of the DSHC HII case, surrogate model reliability and quality must
be assessed. The fact that a surrogate model will always be an approximation of the true
simulation model gives rise to an absolute surrogate model prediction error

ε̂ = q − q̂ = T r,zRANS − T
r,z
GP , (4.6)

which is the difference between the prediction of a quantity of interest from the simulation
and the corresponding surrogate model [68]. Two validation and testing techniques, namely
cross validation and holdout validation, are used to estimate ε̂.

Surrogate model validation: Cross Validation

For the purpose of GP model validation, cross validation is conducted during the process of
surrogate model construction. In cross-validation, the set of training data S is split into k
equal subsets Sk followed by the construction of the surrogate model on k − 1 subsets while
keeping the remaining subset for model testing, i.e. computation of the prediction error from
Eq. (4.6). This procedure is subsequently repeated for all subsets. Consequently, the mean
cross-validation error yields

ε̂CV = 1
k

k∑
i=1

ε̂i. (4.7)

In this study, the training data sets are split into k = 40 and k = 60 subsets, respectively.
This corresponds to a leave-one-out cross validation [71].

Radial profiles of mean relative cross validation errors are given in Fig. 4.19. At z = 15 mm,
two distinct peaks are present at R = 5 mm and R = 15 mm which might be related to high
local variance in the training data. Outside of the reaction zone (R > 25 mm) the error drops
to zero as the coflow remains unaffected by the variation in spray boundary conditions. A
more uniform radial distribution of errors is found at z = 40 mm due to the fact that the
radial spread of the flame increases with axial distance from the atomizer and the reaction
zone widens. It should be pointed out that the increase in training set size from 40 to 60 does
not lead to a reduction of cross validation errors.
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As an example of local cross validation data, the surrogate models at (z,R) = (15,10) mm
and (z,R) = (40,20) mm are selected. Results from the leave-one-out runs are shown in
Fig. 4.20 by means of cross validation plots. In the ideal case, all points would line up along
the dashed diagonal. Contrarily, the deviation from the diagonal indicates the single run
cross validation error. Thus, the mean cross validation error as defined in Eq. (4.7) increases
as more points deviate from the diagonal. A minor tendency towards reduced deviation is
shown by the surrogate model based on the S60 sampling set at both position.

Although not shown for brevity, relative cross validation error stays below 2 % at all axial
positions for both training data set which indicates that the constructed models have the
ability to generalize to independent datasets.

Surrogate model testing: Holdout Validation

In addition to the training data sets S40 and S60, a holdout validation dataset SHO comprising
20 points from LHS sampling of ΩBC,r is computed by the RANS simulation model and kept
aside for model testing. Consequently, the constructed GP surrogate models are tested against
new data and the predictive capability can be visualized and quantified.
A qualitative comparison of GP surrogate model prediction and CFD simulation for an

exemplary point from SHO at z = 15 mm and z = 40 mm is given in Fig. 4.21. For
both training data sets, the surrogate models are able to predict the simulation data with
high accuracy at both axial positions. At the transition from the flame front to the coflow
((z,R) = (15,15) mm), prediction quality improves slightly when considering the larger training
data set S60.

In analogy to the mean cross validation error, a quantitative representation of the surrogate
model quality is calculated using the normalized root mean squared error

εGP = ||MGP −M||2
||M||2

= ||T
r,z
GP − T

r,z
RANS||2

||T r,zRANS||2
(4.8)
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Figure 4.21.: GP surrogate model predictions and RANS simulation results at a holdout
validation point from SHO.
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Figure 4.22.: Radial profiles of mean GP prediction error from holdout validation.

which resembles the mean relative deviation between GP surrogate model and RANS data
over the 20 holdout data sets. Radial profiles of the error at z = 15 mm and z = 40 mm are
displayed in Fig. 4.22. Mean error stays below 2.1% for both training data sets. As already
seen in cross validation analysis, maximum error is identified in the flame-coflow transition
region. A marginal enhancement in prediction quality is demonstrated by the S60 training
data with exception of the first radial positions at z = 40 mm. The fact that these positions
are also subject to higher cross validation errors in the S60 data (see Fig. 4.19) implies that
the additional 20 training points in the S60 include points with substantially higher variance
in the temperature data compared to the S40 data set.

In conclusion, the GP surrogate models constitute an accurate approximation of the RANS
simulation model. Keeping in mind that the use of such surrogate models will reduce the
computation time for temperature data by several orders of magnitude, the prediction error
is seen as sufficient for the following uncertainty propagation.

Probability Bounds Analysis

Based on the previous assessment of surrogate model quality, the Gaussian Process surrogate
modelMGP trained by the S40 training data set is used for the forward propagation of input
uncertainties from ΩBC,r, replacing the RANS simulation model. Probability Bounds Analysis
as described in Sec. 3.3.2 is utilized for the interpretation of the resulting non-deterministic
simulation.

Since all input uncertainties were characterized as purely epistemic, minimum and maximum
bounds of the temperature profiles are computed rather than precise distribution functions.
Bounds are obtained by Latin Hypercube Sampling ofMGP over ΩBC,r. Space filling, uniform
sampling over ΩBC,r is required since each sample from ΩBC,r is treated as a possible value
instead of a value associated with a probability when dealing with interval valued epistemic
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Figure 4.23.: GP based uncertainty regions and probability bounds for the temperature
profiles.

uncertainties [177]. 104 samples are drawn from the GP surrogate model within a few minutes
of computing time. Sampling statistics regarding mean µ, variance σ and skewness γ of the
LHS sampling are summarized in Tab. 4.4. All moments are approximated with very high
accuracy using 104 samples. The sample size is therefore seen as sufficient.
Resulting temperature realizations and corresponding bounds are shown in Fig. 4.23. As

a consequence of the PBA framework and the epistemic input, all realizations are assigned
an equal probability of unity. Therefore, the gray area represents the uncertainty region in
the temperature results given the uncertainties in the input. In addition, the deterministic
reference simulation from Sec. 4.3 is indicated by dashed lines. Highest uncertainties exist
around the region of peak temperature at all axial positions highlighting that the spray input
parameters significantly influence the position of the flame. Over all radial positions in the
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Table 4.4.: Sampling statistics over the reduced input space ΩBC,r: LHS / analytical solution.
Input µ σ γ

D0 [µm] 42.5 / 42.5 2.0835 / 2.0833 4 · 10−6 / 0
UD [m s−1] 35 / 35 0.1455 / 0.1455 3 · 10−4 / 0
ϕ̄ [◦] 13 / 13 0.2851 / 0.2851 2 · 10−5 / 0
ϕ′ [◦] 31.5 / 31.5 5.8806 / 5.8801 5 · 10−6 / 0

reaction zone an uncertainty level between 100 K and 1400 K is revealed.

Further discussion and analysis of the PBA results is detailed in Sec. 4.4.6.

4.4.5. Step B: Polynomial chaos expansion based propagation of
uncertainties

In this section, input uncertainties from ΩBC,r are propagated through the test case by using
Polynomial Chaos Expansion. In contrast to the data-driven GP surrogate modeling strategy,
data points for the evaluation of the RANS simulation model are given by the quadrature
points for the calculation of the expansion coefficients.

Sparse grid and PCE construction

In analogy to the GP based propagation of uncertainties, radial profiles of gas phase tempera-
ture are predicted by a series of independent PCEs at each grid point location. The vector of
random input distributions ξ is defined by the four uncertain parameters which span ΩBC,r .
Thus, the truncated PCE formally reads:

T r,z =
P∑
k=0

αkΨk (ξ) =
P∑
k=0

αkΨk (ξUD ,ξD0 ,ξϕ̄,ξϕ′) . (4.9)

In order to apply this formal definition of the chaos expansion to the UQ problem at hand, a
structure for the multivariate polynomials Ψk in Eq. (4.9) must be specified. Since Ψk = f(ξ)
this choice depends on the structure of the random input vector ξ, i.e. the probability
distribution of the uncertain inputs over ΩBC,r. For the construction of the PCE, the interval
valued epistemic uncertainties from Tab. 4.3 are defined to be uniformly distributed over ΩBC,r.
Therefore, a uniform transformation ξi ∼ U(−1,1) is applied, corresponding to Legendre
polynomials for Ψk (see Tab. 3.1).
Multidimensional numerical integration based on the Smolyak sparse grid tensorization

method as detailed in Sec. 3.4.2 is employed for the computation of the PCE coefficients αk.
The nested Fejer rule forms the basis for the multidimensional integration.

In the sparse grid computation, different grid levels are considered, corresponding to different
orders of accuracy of the resulting PCE. A Level-1 expansion (L1) of the four-dimensional
input space ΩBC,r requires nine quadrature points which increases to 49 points for a Level-2
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Figure 4.24.: PCE quadrature points of a Smolyak sparse grid using a nested Fejer rule. Level
1 points ( ), additional Level 2 points ( ).

expansion (L2). Each quadrature point requires an evaluation of the RANS simulation model.
Due to the choice of a nested quadrature rule, points of the L1 expansion are a subset of the L2
points. Note that a Level-2 expansion of the six-dimensional input space ΩBC would require
97 points which emphasizes the importance of a priori sensitivity analysis and reduction of
the stochastic dimension.

Two-dimensional projections of the resulting sparse grids are shown in Fig. 4.24. In contrast
to the pseudo-random distribution from the Sobol series in Fig. 4.17, points coincide in the
two-dimensional projection. Therefore, less points are visible although the total number of
points is similar to the training set S40.

Based on the evaluation of the RANS model at the sparse grid integration points, L1 and
L2 Polynomial Chaos Expansions are constructed using DAKOTA 6.4.
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Figure 4.25.: PCE predictions and RANS simulation results at a holdout validation point
from SHO.

PCE testing: Holdout validation

PCE accuracy is examined through holdout validation against the additional validation data
set SHO from the previous section. This allows for a direct comparison of GP and PCE errors.
A qualitative comparison of radial temperature profiles from RANS simulation and PCE

with different expansion orders at an exemplary holdout test point is illustrated in Fig. 4.25.
Note that this is the same test point as for the GP surrogate model in Fig. 4.21. The PCE
prediction reproduces the RANS simulation data with high accuracy with exception of the
radial position of maximum temperature which is slightly shifted at both axial positions.
Prediction quality marginally improves between L1 and L2 expansion. The same tendency is
also found at the other holdout validation points, which are not shown for brevity.
Radial profiles of the root mean squared PCE prediction error as defined in Eq. (4.8) are

displayed in Fig. 4.26 for the two expansion levels. At z = 15 mm mean prediction error stays
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Figure 4.26.: Radial profiles of mean PCE prediction error from holdout validation.
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below 10 % for the L1 expansion and reduces to 5 % for the L2 expansion. As for the GP
surrogate model, maximum errors are found at the radial positions of maximum temperature
gradients. At z = 40 mm prediction error stays below 2 % for the L2 expansion.

Based on these findings, the L2 PCE is used for the following forward propagation of input
uncertainties.

Probability Bounds Analysis

Probability bounds for the temperature profiles under the given input uncertainties are inferred
from space filling sampling of the PCE in lieu of the RANS model as already detailed in the
previous section. Again, 104 samples are drawn following the same Latin Hypercube sampling
as for the GP surrogate model.
Resulting temperature bounds are shown in Fig. 4.27. Similar uncertainty regions as in

Fig. 4.23 are identified. A comparison of the two surrogate modeling strategies and detailed
discussion and analysis of the output uncertainties will be given in the following section.

4.4.6. Step C: Discussion

In the previous sections, both Gaussian Process and Polynomial Chaos Expansion demon-
strated their potential to enable non-intrusive propagation of uncertainties in a complex
application case for the simulation of spray combustion. The assessment of surrogate model
error using holdout validation verified that this is achieved with minor loss in accuracy
compared to the high fidelity RANS simulation model. Both approaches revealed similar
probability bounds for the temperature profiles when considering input uncertainties.

Comparing the PBA results from GP (Fig. 4.23) and PCE (Fig. 4.27), oscillating bounds in
the PCE results around the peak temperature at z = 15 mm and z = 20 mm constitute the
major difference between the two propagation strategies. These oscillations clearly coincide
with high prediction errors as evident from Fig. 4.26 in which the holdout error peaks at the
aforementioned radial positions. Hence, they are assumed to be a result of outliners in the
uncertainty propagation.
Although prediction errors of the GP surrogate model are slightly lower than in the PCE

case, it should be emphasized that GP prediction quality highly depends on the sampling
strategy for the underlying training data. For the case at hand, this was demonstrated by the
author in [59]. In contrast, PCE construction through sparse grid integration comes along
with a fixed scheme for the evaluation of the high fidelity simulation ensuring a predetermined
approximation order.
Since both strategies for surrogate modeling resulted similar probability bounds, the

following discussion is solely based on the L2 PCE results displayed in Fig. 4.27 and aims at
connecting the considerable uncertainties in the temperature profiles to the input uncertainties
from ΩBC .
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Figure 4.27.: PCE based uncertainty regions and probability bounds for the temperature
profiles.



4.4. Uncertainty Quantification 93

Output uncertainties from PBA

In addition to the output uncertainties, regions exist in Fig. 4.27 where the UQ based
simulation is unable to bracket the experimental data, especially at 5 < R < 10 mm for
z = 15 and 20 mm as well as for large parts of the flame zone at z = 50 and 60 mm. Reason
for this could be further uncertainties which are not included in the analysis, a general model
form error of the used simulation model or uncertainties and measurement errors in the
experimental data which could be larger than reported. Since a major deviation between
RANS and LES as well as notable numerical uncertainties were found in Sec. 4.2 for the inner
flame zone at z = 15 and 20 mm, it is most likely that a modeling error in the RANS is
propagated through the PCE surrogate model.
The fact that even by inclusion of the input uncertainties, the simulation is not able to

capture the spread of the flame at the furthest downstream positions confirms the assumption
from Sec. 4.3 that this is a general modeling error in the used simulation platform.
It should be pointed out that the bias in experimental data for R < 10 mm at z = 30

and 40 mm prohibits a definitive evaluation of simulation credibility at this position as
experimental data for R > 0 mm is within the uncertainty region but not the portion from
R < 0 mm.

Effects of parameter reduction

In order to assess the influence of parameter space reduction on the PBA results, an L2
Polynomial Chaos Expansion of the original parameter space ΩBC is calculated and used for
forward propagation, too. Resulting bounds are compared to the outcome of the reduced
parameter space ΩBC,r in Fig. 4.28. No significant deviations between the two bounded areas
are observable, confirming that the parameter reduction does not affect the results of the
PBA in the case considered. As already suspected in the MOAT analysis, the four parameters
in ΩBC,r essentially contribute to the variance in the temperature profiles. However, it should
be pointed out that this conclusion only applies to the minimum and maximum bounds of
the Quantities of Interest since the inner structures, i.e. the distribution functions of the
output uncertainties, are not explored in PBA for strictly epistemic, interval-valued input
uncertainties.
Computing time statistics for the different methods in the UQ process are summarized

in Tab. 4.5. L2 PCE of ΩBC corresponds to the aforementioned PCE based sampling of
the full parameter space. Based on the statistics, it is deduced that the proposed workflow
of parameter space reduction (MOAT) and sampling of the reduced parameter space ΩBC,r

already results in a notable reduction in computing time, although the parameter space is
only slightly reduced from six to four parameters. Note that this reduction increases in cases
with further parameter reduction.

In the following, results from the PBA over Ωr are again used for further analysis.
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Figure 4.28.: Probability bounds of computed temperature profiles for the full (ΩBC) and
reduced (ΩBC,r) input parameter space.

Table 4.5.: Computing time statistics for the used UQ methods.
Case RANS model evaluations CPU hours [h]
L2 PCE of ΩBC 97 32600
L2 PCE of ΩBC,r 49 16500
MOAT of ΩBC 28 9500
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Posterior sensitivity analysis

To appraise the contribution of the uncertain input parameters to the high variance in the
simulation results indicated by the uncertainty region, first order and total order Sobol’ indices
are derived from the coefficients of the PC expansion. For a simplified interpretation, indices
are aggregated over the radial coordinate by weighting the local index Si(r) with the local
variance in PCE temperature predictions [145]:

Si =
∫
RV [MPCE(r)]Si(r)dr∫

RV [MPCE(r)] dr (4.10)

Aggregated Sobol’ indices Si for temperature at different axial positions are given in
Fig. 4.30. Solid bars illustrate first order indices Si, i.e. the direct contribution of a parameter
to the variance, whereas augmented hatched bars indicate total indices Si,T which include
interactions with other parameters.

The mean injection angle ϕ̄ is identified as the dominant parameter over all axial positions,
causing more than 60 % of the variance in temperature. Close to the injector, the starting
velocity UD of the fuel droplets demonstrates some influence, yet with decreasing magnitude.
The minor influence of the trajectory dispersion angle ϕ′ rises with increasing z-position. It
should be pointed out that differences between Si and Si,T are only observable for ϕ̄ and UD,
which indicates a coupled effect between the two parameters.
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Figure 4.30.: Local Sobol’ indices for temperature at z = 40 mm.

To clarify the influence of ϕ̄, profiles of local Sobol’ indices Si(r) are shown in Fig. 4.30 at
an axial position of z = 40 mm. Highest first order Sobol’ indices for ϕ̄ are present at the
outer flame region (R > 25 mm). Here, influence of other parameters are negligible. As ϕ̄
corresponds to the spray cone opening angle, ϕ̄ primarily determines the radial position of
liquid droplets. In the outer flame region, this is closely connected to the supply of gaseous
ethanol to the reaction zone. Consequently, changes in ϕ̄ shift and stretch the temperature
profile along R and cause high uncertainties in the outer flame region. In contrast, influence of
ϕ̄ decays in the inner flame region and the mean droplet diameter D0 becomes more dominant.
This reaction zone is formed by the fuel rich premixed reaction of ethanol vapor as a result of
strong evaporation of droplets [141]. As D0 is the only uncertain parameter directly connected
to evaporation, it influences the evaporation process in this region and contributes to the
variance in temperature. Note that the discussed phenomena are also found at the other axial
positions.
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Figure 4.31.: Temperature contours in the flame zone for varying ϕ̄ and ϕ′. Upper left plot
shows the corresponding deterministic reference data.

Fig. 4.31 provides a global perspective towards the influence of ϕ̄ and ϕ′ on the flame
position. Contours of gas phase temperature for varying ϕ̄ and ϕ′ are shown, as well as the
deterministic reference data (upper left plot). For better visibility, only data exceeding the
coflow temperature is shown, i.e. the flame zone. Mean droplet trajectories are indicated
by gray dots. Clearly, the flame shifts towards higher radii with increased cone angle ϕ̄.
Furthermore, with increased dispersion angle ϕ′ the flame thickness widens, especially at the
lower axial positions.
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Determination of total uncertainty

Finally, total uncertainty in the considered simulation is determined using the method of
composite probability boxes (p-boxes) as introduced in Sec. 3.3.3. Due to the functional
nature of the output Quantity of Interest, this is only illustrated exemplarily at three distinct
points in the simulation domain. Results are presented in Fig. 4.32. A p-box consists of
the cumulative distribution function (CDF) of the QoI which was obtained by propagating
the input uncertainty with the help of the PCE surrogate model. Furthermore, numerical
uncertainties Uncnum and PCE prediction errors εPCE from Sec. 4.4.1 and Sec. 4.4.5 are
appended to both sides of the CDF. This is motivated by the epistemic nature of these
uncertainties [210]. Again, the CDF from input uncertainties is given as brackets without a
probability structure inside the p -box as a result of the interval-valued input. Owing to the
deterministic approach, results from the reference simulation (see Sec. 4.4.1) are shown as
Dirac pulses (dashed vertical lines).
At all three positions total predictive uncertainty is primarily due to the uncertainties

in the simulation inputs. Additional PCE uncertainty is visible at the first two positions,
while numerical uncertainties are negligible compared to the magnitude of Uncin. Even
when considering all three types of uncertainties, experimental data at (z,R) = (40,17) mm
(Fig. 4.32 (c)) cannot be met by the simulation which further affirms the presence of a general
model form error. While the deterministic simulation accurately meets the experiment in
Fig. 4.32 (b), the uncertainty quantification reveals notable uncertainties of 500 K at this
position.
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Figure 4.32.: Total uncertainty in temperature predictions characterized by probability boxes:
( ) Uncin, ( ) Uncin + Uncnum, ( ) Uncin + Uncnum + UncPCE, ( ) det. ref.
simulation, (•) exp. R > 0 mm



5. DLR Standard Spray Burner

In this chapter, uncertainty quantification and probabilistic modeling are utilized to enhance
the prediction quality of a simulation model when only limited knowledge regarding the spray
boundary condition is available. The testcase under consideration reflects characteristics
typically found in aero-egine combustors. This includes, among others, a complex multi-
component fuel, pre-filming airblast atomization, flame confinement through combustor walls
and a swirl-dominated flow field for the purpose of flame stabilization. Certainly, all of these
aspects increase the modeling demand and the simulation complexity compared to the DSHC
case from Chapter 4.
In order to validate the simulation setup, a deterministic reference simulation using all

available information from the experimental characterization is conducted, in which unknown
parameters of the spray boundary condition are calibrated against the experimental data.
Then, the calibrated spray boundary condition is replaced by a simple algebraic model for
primary atomization. This gives rise to uncertainties in the model inputs which are propagated
through the simulation by Polynomial Chaos Expansion. The clear portrayal of the output
uncertainties finally allows for an assessment of the prediction quality of the simulation model.

5.1. Test case description
The DLR Standard Spray Burner (SSB) serves as a test case for the application of UQ
methods to a semi-technical combustor under aero-engine relevant conditions. The SSB has
been investigated experimentally by Grohmann [89] for a variety of single component fuels [88]
as well as conventional Jet A fuel [22].

Figure 5.1 provides a sketch of the experimental apparatus. The combustor consists of two
main parts: an air nozzle equipped with a pre-filming airblast atomizer and a rectangular
combustion chamber. In the air nozzle, an inner and outer swirler consisting of quadratic swirl
vanes provide air for secondary atomization and the formation of a co-rotating swirling flow
inside the combustion chamber. Geometrical swirl numbers of Swi = 1.17 and Swo = 1.22
were reported for the inner and outer swirler, respectively [91]. In the center of the air
nozzle, a primary pressure-swirl injector (Schlick Mod. 121) ejects fuel droplets onto the
pre-filmer surface on which a liquid film evolves and finally disintegrates into a fine spray at
the atomizing edge. At the exit plane, the inner and outer air nozzles have a diameter of
Di = 8 mm and Do = 11.6 mm, respectively. The quadratic combustion chamber with a cross
section of 85 mm× 85 mm and a height of 169 mm facilitates optical access to the reaction
zone through four quartz glass windows. At the top, the cross section of the combustion
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Figure 5.1.: Sketch and details of the swirl-stabilized Standard Spray Burner (adapted from
Grohmann [89]).



5.2. Numerical setup 101

Table 5.1.: Operating conditions of the baseline Jet A-1 case.
Fuel Jet A-1
Fuel temperature Tf 303 [K]
Fuel mass flow rate ṁf 850 [g/h]
Oxidizer Air
Air pressure pair 1.0 [bar]
Air temperature Tair 323 [K]
Air volume flow rate V̇air 200 [l/min]
Global equivalence ratio φ 0.8 [−]
Thermal input Pth 10.2 [kW]

chamber reduces to a duct (chimney) with 40 mm in diameter to ensure well defined outflow
conditions.
The comprehensive experimental database for the SSB includes a characterization of the

flow field from PIV, temperature profiles over the reaction zone obtained by CARS and
dispersed phase data from PDA. Furthermore, a qualitative portrayal of the reaction zone
is available from the line-of-sight integrated signal of CH∗ chemiluminescence. Due to the
challenges for PIV in the presence of additional fine fuel droplets, PIV was only conducted
for the non-reacting flow field.
In the work of Grohmann, a variety of operating conditions were investigated, ranging

between 200 and 600 l/min air flow rate and air pre-heat temperatures up to 423 K. By
variation of the thermal input, global equivalence ratios of φ = 0.6 and φ = 0.8 were realized.
All experiments were conducted on an atmospheric test rig. For the work at hand, the baseline
case for Jet A-1 as summarized in Tab. 5.1 is considered.

5.2. Numerical setup
The strongly swirling flow inside the SSB not only supports the favorable feature of enhanced
fuel-oxidizer mixing and stabilization of the flame but also causes a hydrodynamic instability
called precessing vortex core [90] (PVC). This term describes a highly transient, coherent
structure found in the center of a swirling flow [255]. It has been shown [75] that steady-state
RANS simulations using linear-eddy-viscosity turbulence models as discussed in Sec. 2.2.2 fail
to reproduce such complex three-dimensional, unsteady flow features. It is therefore advisable
to use an unsteady, scale resolving simulation approach. Although Eckel et al. [51] reported
encouraging results for the SSB baseline case using LES, the associated computational burden
restricts its application for UQ studies. As a consequence, a hybrid URANS/LES method
based on the Scale Adaptive Simulation (SAS) approach (see Sec. 2.2.4) is utilized for the
present study.
The compositional complexity of Jet A-1 [46, 202] is captured by the CTM vaporization

model from Sec. 2.3.2. It approximates the wide range of species via distribution functions
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Figure 5.2.: Continuous description of Jet A-1 composition using 3Γ-PDFs. GCxGC data
(bars), CTM fuel families (lines).

and representative species families. A Γ-PDF is chosen as distribution function and three
species families are considered, namely normal-alkanes, cyclo-alkanes and mono-aromatics.
The three PDFs are then calibrated to match the corresponding GCxGC chromatograhpy
data [126]. A comparison between experimental data (bars) and CTM approximation (lines)
is shown in Fig. 5.2 for the distribution of molar mass fraction over the normal boiling point.

After vaporization, species from the CTM fuel families are mapped to equivalent species in
the gas phase. Normal-alkanes, cyclo-alkanes and mono-aromatics are assigned to normal-
decane, iso-octane and toluene, respectively. These species form the main fuel species in a
detailed reaction mechanism comprising 49 species and 300 reactions. The mechanism is
based on the work of Slavinskaya et al. [240] and has been optimized for enhanced stability
and computational speed using a linear transformation method [160]. Furthermore, a sub-
mechanism for the formation of the OH∗ radical by Kathrotia et al. [115] is included. Although
in the experiment, the reaction zone was qualitatively characterized by the signal of the
CH∗ chemiluminescence, OH∗ and CH∗ are known to be closely located over a wide range
of equivalence ratios [51, 193]. Chemical reactions and source terms are computed by the
Finite Rate Chemistry combustion model in combination with the assumed PDF approach.
It serves as a subgrid-scale closure in the LES regions and models the turbulence-chemistry
interaction in the URANS regions. For the sensitivity analysis in Sec. 5.4, computational speed
is increased by using the Eddy Dissipation Model instead of the detailed FRC combustion
model. In this case, only global reactions for the three main fuel species are considered. These
reactions are derived from the general scheme for hydrocarbon fuels proposed by Westbrook
and Dryer [271].
Convective and diffusive terms are discretized through a second-order accurate central

differencing scheme (CDS) while for the temporal discretization a second-order Three Point
Backward (TPB) method is employed. A constant time step ∆t = 5 · 10−6 s is set ensuring
CFL numbers below unity. For all cases, the simulation is initialized over τinit = 0.1 s before
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Figure 5.3.: Distribution of grid spacing in a central plane.

temporal statistics are collected over consecutive τavg = 0.1 s. This is based on an estimation
of the integral time scales inside the combustor and previous test simulations.

5.2.1. Computational domain and spatial discretization

The computational domain comprises the air nozzle, the quadratic combustion chamber and
the outlet duct. Furthermore, the air plenum from which the preheated air is distributed to
the swirler stages is included to obtain a well defined inlet region.
An unstructured grid consisting of approximately 1.2 million nodes or 5.7 million cells

provides a spatial discretization of the computational domain. The grid mainly consists of
tetrahedral cells augmented with 4 prismatic layers alongside the walls. In regions with a
distinct flow direction (inlet plenum, swirler vanes, outlet duct) hexaedron cells are used.
Figure 5.3 displays the relative distribution of grid spacing over the computational domain.
Smallest cells are found in the swirler region, where element size ranges between 0.4 and
0.6 mm. Additional refinement is also given in the flame zone where the element size is in the
magnitude of 0.75 mm. In the further downstream regions, cell size increases towards 3 mm.
Inlet boundary conditions for the oxidizer stream are summarized in Tab. 5.1. Wall

temperatures were experimentally determined by phosphor thermometry. Following the
results of Eckel [50], the bottom plate of the combustion chamber is divided into three zones
in which the temperature boundary condition is set to constant values of 717 K, 901 K
and 831 K, respectively. At the combustor sidewalls, a temperature profile in dependence
of the axial direction is imposed. Details on the thermal boundary conditions are given in
Appendix F.

5.2.2. Spray boundary conditions

For the deterministic reference simulation, the projection method from Sec. 2.4.2 is used to
obtain a boundary condition for the spray of liquid droplets after atomization. An annulus
with an inner radius of 3.5 mm and an outer radius of 4.5 mm defines the starting positions
of the droplets. To account for the region of primary breakup close to the atomizer edge, the
annulus is placed with an axial offset ∆z = 1.5 mm with respect to the atomizer edge. A
depiction of the starting annulus is given in Fig. 5.4.
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Figure 5.4.: Starting annulus (blue) for the droplets from the spray boundary condition.

Droplet data from PDA measurements at z = 15 mm is projected to 12 corresponding
circumferential starting positions on the annulus. At all positions, a modified logarithmic
Rosin-Rammler distribution function is optimized to fit the experimental data. Furthermore,
droplet velocities and relative mass flow distribution are taken from the PDA measurements.
During simulation runtime, droplets are sampled from the distribution functions and started
at randomly distributed positions on the annulus. In total, 6 · 107 droplets are injected per
second.

5.3. Deterministic reference simulation
Based on the described setup, a deterministic reference simulation is conducted. In order to
validate the modeling setup, only main features for which experimental data is available are
discussed. For a thorough analysis of the SSB baseline case, the reader is referred to the work
of Eckel [50] and Grohmann [89].

Since the quality of Scale Adaptive Simulations strongly depends on the ability of the grid
to locally resolve turbulent fluctuations and thereby switch into LES mode, the local spatial
resolution must be reassessed for each problem under consideration. For this purpose, a first
criterion is given by the ratio rk of resolved to total turbulent kinetic energy. It is defined as

rk = kres.

kres. + kmod.
=

1
2u
′
iu
′
i

1
2u
′
iu
′
i + kmod

(5.1)

where u′iu′i denotes the time-averaged product of velocity fluctuations u′i, while kmod is the
modeled turbulent kinetic energy from the SST turbulence model. According to Pope [191], in
a well-resolved LES this ratio should be at least 0.8, meaning that 80 % of the local turbulent
kinetic energy budget is being resolved. Fig. 5.5 (a) shows the distribution of rk over the
computational domain for the reacting flow. The criterion is satisfied for the most parts of the
domain, with exception of the inlet plenum and the swirler vanes, where a URANS solution is
obtained.
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(a) Ratio of turbulent kinetic energy

(b) Viscosity ratio

Figure 5.5.: Quality criteria for Scale Adaptive Simulation. Depiction in the x− z plane

As a further criterion, the ratio of turbulent to molecular viscosity rµ = µt/µ is calculated.
In LES regions, this ratio should not exceed O(101) [105, 153]. From Fig. 5.5 it is evident that
this is not the case for the core region of the air nozzle, whereas in the combustion chamber,
the criterion is met. Since the primary region of interest is the reaction zone downstream
of the air nozzle, it is concluded that the spatial resolution is sufficient for a Scale Adaptive
Simulation of the SSB.



106 5. DLR Standard Spray Burner

5.3.1. Non-reacting flow: Velocity field

Since PIV data is only available for the non-reacting flow field without spray injection, this
case is considered at first. An overview of the structure of the flow field is given in Fig. 5.6 by
means of contours of absolute velocity in the central y − z plane. In the transient snapshot
(Fig. 5.6 (a)), highest velocities are found inside the air nozzle, specifically at the nozzle exit
where the flow reaches a maximum of |U |max ≈ 120 m s−1. This corresponds to a local Mach
number of Ma ≈ 0.34 which is close to the limit of the incompressibility assumption [186].
The superimposed streamlines (gray lines) display a strongly turbulent and three-dimensional
flow field with vortices shedding from the shear layer caused by the high local velocities at
the exit of the air nozzle.

Figure 5.6 (b) displays the flow field averaged over the simulation runtime. Flow patterns
typical for confined swirling flows [137] are observable: A small central recirculation zone
(CRZ) is formed around z = 0 mm reducing the effective outflow area of the inner nozzle. As
a consequence, velocity is increased along the prefilmer. Furthermore, a negative pressure
gradient along the z − axis causes a backflow and thus a large inner recirculation zone (IRZ)
with a stagnation point at z ≈ 110 mm. Finally, the back-pressure of the walls and the strong
shear layer from the air nozzle establish a counter-rotating outer recirculation zone (ORZ).

(a) Transient (b) Time-averaged

Figure 5.6.: Simulation results for absolute velocity and streamtraces of the non-reacting flow
field.
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Figure 5.7.: Time-averaged profiles of axial (w) velocity component at different axial positions.
Mean (left column) and fluctuations (right column).

Radial profiles of the velocity components from PIV enable a quantitative validation of
simulation results. Figure 5.6 (b) indicates the region for which PIV data is available. A
comparison of the time-averaged axial velocity and the respective RMS fluctuation is given
in Fig. 5.7 by means of profiles along the lateral y-axis. Axial positions between z = 5 mm
and 40 mm are considered as this region contains the main reaction zone in the following
simulation of the reacting flow. For the mean velocity w, simulation and experiment are
in excellent agreement regarding magnitude and radial distribution. As aforementioned, a
backflow along the z-axis (y = 0 mm) is visible. Regarding fluctuations w′, the simulation
underestimates the fluctuation intensity, specifically at z = 5 mm and z = 10 mm. Note
that for the simulation, the displayed fluctuation is the total budget of resolved and modeled
fluctuations:

w′SAS = w′res + w′mod = w′res +
√

2
3kmod. (5.2)

Thus, the underestimation could be a potential imbalance between resolved and modeled
fluctuations as a result of the transition from URANS to LES mode of the SAS model, which
was identified in the previous section.

Further comparison between experiment and simulation is shown in Fig. 5.8 and Fig. 5.9 for
the v and u velocity components, respectively. Again, mean data is accurately reproduced by
the simulation, while fluctuations are slightly too low, especially at the first axial position.
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Figure 5.8.: Time-averaged profiles of v velocity component at different axial positions. Mean
(left column) and fluctuations (right column).
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Figure 5.9.: Time-averaged profiles of u velocity component at different axial positions. Mean
(left column) and fluctuations (right column).
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5.3.2. Reacting flow: Gas phase results

All following results are obtained from the simulation of the reacting flow inside the SSB,
including dispersion and evaporation of the spray. An impression of the combustion process is
given by means of contours of gas phase temperature in Fig. 5.10. The transient snapshot in
Fig. 5.10 (a) shows a wrinkled flame front, indicated by gray contour lines of heat release. In this
flame front, fuel that has been transferred to the gas phase is consumed and local temperature
increases significantly. Maximum temperature ranges in the order of Tmax = 2000 K which
is well below the maximum temperature T adimax ≈ 2250 K in case of an adiabatic equilibrium.
The reaction zone extends from z = 5 mm up to z = 40 mm. Hot gases from the flame front
accumulate in the outer recirculation zone and are partly transported back to the centerline
by large eddies from the inner recirculation. Close to the exit of the air nozzle, these hot
gases mix with the cold air flow. With increasing axial distance from the reaction zone, the
temperature field becomes more homogeneous.

In the time-averaged field of gas phase temperature (Fig. 5.10 (b)), an M-shaped cold inner
zone with axially increasing temperature is visible as well as local hot spots in the outer
recirculation zone. In the vicinity of the walls, the influence of the isothermal boundary
condition is observable.

(a) Transient (b) Time-averaged

Figure 5.10.: Simulation results for gas phase temperature of the reacting flow field. Gray
lines indicate heat release.
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Further insight into the structure of the reaction zone is given by means of time-averaged
images of the CH∗ chemiluminescence from the experiments. Due to the applied measurement
technique, these images show the line-of-sight integrated signal along the optical axis of
the camera (y-axis). For an adequate comparison with the experimental data, the spatial
distribution of OH∗ in an observation box that resides in the reaction zone is integrated along
the y-axis. This results in a corresponding line-of-sight signal (LOS)1. Results from simulation
and experiment are given in Fig. 5.11. Note that in all images from this series, the signal is
normalized to its respective maximum for a better comparison.
Figure 5.11 (a) provides a transient snapshot of the OH∗ LOS from the simulation. A

highly wrinkled structure is visible, mostly ranging from x = −20 mm x = 20 mm, with an
axial extent up to z = 50 mm. Time-averaging of this signal results in the distribution shown
in Fig. 5.11 (b). A slightly lifted-off and V-shaped flame is observed with two spots of high
intensity around x = ±20 mm. Under the assumption of rotational symmetry around the
z-axis, these spots stem from a toroidal zone of maximum reactivity between z = 20 mm
and z = 30 mm, i.e. the main reaction zone. The equivalent experimental result is given in
Fig. 5.11 (c). A broader radial extent of the reaction zone is noticeable as well as a slight tilt
around the y-axis, in contrast to the strong symmetry in the simulation data. In the work of
Grohmann [89] this was traced back to radial asymmetries in the spray distribution (see also
Fig. 5.17).

1Further details are shown in Fig. F.2 in Appendix F.
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Figure 5.11.: Line of sight integrated OH∗ distribution (simulation) and line of sight integrated
CH∗ chemiluminescence signal (experiment).
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Figure 5.12.: Comparison of line-of-sight integrated OH∗ distribution from the simulation ( )
and CH∗ chemiluminescence from the experiment ( ). Contours show relative
levels of 0.3 (solid), 0.5 (dashed) and 0.7 (dotted) maximum intensity.

Figure 5.12 presents a more quantitative comparison of the chemiluminescence LOS. Three
contour levels referring to 30%, 50% and 70% of the corresponding maximum intensity of
the time-averaged signal are drawn. Regarding the axial extent, the simulation agrees well
with the experiment for all three levels. However, as aforementioned, the opening angle of
the V-shaped flame is somewhat lower in the simulation. This tendency was also reported by
Eckel et al. [51]. They mentioned that despite the fact that OH∗ and CH∗ chemiluminescence
are generally located very close to each other in the reaction zone [116], studies from one-
dimensional flame configurations [193] have shown that the peak of the OH∗ profile slightly
shifts towards the lean side, whereas the CH∗ peak appears towards the fuel rich side [51].
In the present configuration, this would correspond to a shift of the OH∗ peak towards the
centerline.

In the experiment, local temperature data was collected along radial and axial profiles
in the y − z plane. CARS measurement positions are included in Fig. 5.6 as red squares. A
comparison of this data with the present simulation is shown in Fig. 5.13 (a) - (e).

At the first two axial positions (Fig. 5.13 (a) - (b)), simulation and experiment agree very
well in the colder inner region (y < ±15 mm) and the slope of the following temperature
gradient is accurately reproduced. This gradient relates to the region of maximum reactivity
(see Fig. 5.12). However, peak temperatures at these positions are overestimated by at
least 100 K. In the vicinity of the walls, the isothermal boundary condition forces a steep
temperature gradient.
At the further downstream position (z = 35 mm, Fig. 5.13 (c)) temperatures from the

simulation are higher than the experimental measurements at all positions, although the
general tendency in the experimental data is replicated in the simulation.

The fact that the simulation is able to predict the inner region around the z-axis with high
precision is also reflected in the axial profile along the center line from Fig. 5.13 (d). Up to
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Figure 5.13.: Time-averaged temperature profiles from simulation and experiment. Mean ( )
and standard deviation ( ) from CARS data.

z = 35 mm the simulation matches the experimental data, demonstrating an almost linear
rise of temperature in this region. Downstream from z = 40 mm, temperature stagnates in
the experiment whereas the simulation predicts a further increase up to z = 60 mm. Due to
this fact, the mean temperature close to the outlet is presumably 150− 200 K higher than in
the experiment. Since this tendency is also found in the axial profile at y = −20 mm, this
could be caused by too low thermal losses in the simulation of the combustion chamber.

Since the experimental data in the axial profile at y = −20 mm (Fig. 5.13 (e)) corresponds
to the outer recirculation zone, the overestimation of temperature in the simulation could be
a result of a too low cooling effect of the isothermal walls at the ORZ. Nonetheless, the axial
slope of the temperature at z < 30 mm is reflected in the simulation.
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(a) Droplet temperature (b) Relative liquid mass flow rate

Figure 5.14.: Instantaneous snapshots of the spray distribution inside the combustion chamber.

5.3.3. Reacting flow: Dispersed phase results

Figure 5.14 provides an impression of the spray dispersion inside the combustion chamber by
an instantaneous snapshot of the liquid droplets. The spray emerges from the injection plane
of the boundary condition above the atomizer in a conical shape. As evident from Fig. 5.14 (a),
the droplets are subject to a fast heat up within the first 20 mm, i.e. the main reaction zone.
Afterwards, some droplets impinge the windows and distribute further downstream as liquid
impingement is treated as fully elastic collisions within the dispersed phase solver. However,
this spatial distribution of droplets must be interpreted with respect to the relative mass
flow in the dispersed phase. This is shown in Fig. 5.14 (b), where ṁliq/ṁliq,0 indicates the
ratio of local liquid mass flow ṁliq to the initial liquid mass flow ṁliq,0 at the spray boundary
condition. It is observable that within the first 20 mm above the atomizer, 50 % of the liquid
fuel evaporates and downstream of z = 40 mm less than 10 % of the initial mass is kept in
the dispersed phase. Therefore, only a small amount of droplets impinge the walls and reach
an axial position greater than 50 mm above the atomizer.

Figure 5.15 reflects the process of multicomponent evaporation of the Jet A-1 droplets inside
the combustion chamber. For this purpose, instantaneous liquid properties of 105 particles
from a single simulation timestep are analyzed. Liquid mass fractions of the three CTM fuel
families are plotted against the droplet temperature. Furthermore, scatter points are colorized
with respect to their axial position. Clearly, droplets with a starting temperature of 320 K
heat up to approximately 400 K before the evaporation process starts. At first, cycloalkanes
evaporate, followed by the monoaromatics and alkanes. This is caused by the difference in
vapor pressure and latent heat of vaporization among the three fuel families [50, 202]. The
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Figure 5.15.: Multicomponent droplet evaporation in the swirl-stabilized spray burner. Scat-
ters represent transient properties of liquid particles.

superimposed axial position confirms that the initial heat up of the droplets mostly takes
place at z < 10 mm.

In order to validate the spray boundary condition, statistics of the dispersed phase are
collected and time-averaged in two registration planes at z = 15 mm and z = 25 mm which are
parallel to the x− y plane. Figure 5.16 provides a comparison between simulation and PDA
data (experiment) for the components of droplet velocity. The three components are defined
with respect to the global coordinate system. Thus, axial, radial and tangential velocity are
derived from the global z, y and x velocity, respectively. Obviously, the droplets experience
a swirling motion in the mathematical positive direction with respect to the z-axis, as they
couple to the gas flow (see Fig. 5.7-5.9). Droplet data from the simulation is subdivided into
three distinct diameters (10, 30, 50 µm) to display the droplet dispersion. A ±10 % margin
is added for a better statistical convergence. Therefore, the three size classes are defined as
10 µm < d < 11 µm (small), 27 µm < d < 33 µm (medium) and 45 µm < d < 55 µm (large).
In contrast, from the PDA measurements only averaged data regarding the droplet diameter
is available.
In general, magnitude and profiles of the velocity components are well reproduced by the

simulation. Concerning axial and radial velocity, best agreement is found regarding the
large droplets. Medium droplets demonstrate the best match for the tangential component.
Similar tendencies are found at z = 25 mm. Corresponding results are given in Fig. 5.16 in
Appendix F.
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Figure 5.17.: Time averaged profiles of Sauter Mean Diameter (SMD) and normalized liquid
volume flux at z = 15 mm.

Further spray characteristics are compared in Fig. 5.17 by radial profiles of Sauter Mean
Diameter (SMD) and normalized liquid volume flux at z = 15 mm. Although experimental
data for the SMD ranges between 17µm and 32µm, the simulation predicts a maximum SMD
of 40µm and a minimum of 15µm. However, the SMD profiles must be interpreted with respect
to the volume flux data for which simulation and experiment are in good agreement. Close to
the z-axis (y = 0 mm), the SMD in the simulation reaches its minimum while the volume flux
drops to almost zero. Therefore, these droplets relate to a very low volume flux. In contrast,
at the positions of maximum volume flux (y ± 17.5 mm), the deviation between experiment
and simulation is in the magnitude of 5 µm. As already pointed out in the previous section,
the experimental data indicates a strong asymmetry in the spray distribution of the prefilming
atomizer. This is also evident from the distribution of normalized volume flux. According to
Grohmann et al. [90], the asymmetry could have been caused by a non-uniform spray cone
created by the primary pressure-swirl atomizer as a result of manufacturing inaccuracies.
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5.4. Probabilistic modeling and uncertainty quantification
The previous section demonstrated that by inclusion of all available experimental information
concerning initial and boundary conditions, the used simulation models are able to reproduce
all aspects of spray combustion in the SSB with high accuracy. However, for a predictive
simulation, the required a priori knowledge about the system under consideration should be
reduced to a minimum in order to obtain an unbiased result. This refers to a model prediction
which is as independent as possible from prior knowledge regarding the simulation results
obtained from the experiment. The reduction in prior knowledge can then be compensated
through probabilistic modeling and uncertainty quantification methods to portray the best
possible prediction given the current knowledge about the system under consideration. For
this purpose, the workflow for uncertainty quantification is applied to the SSB case as detailed
in Fig. 5.18. Relevant sources of uncertainties are identified and characterized, followed by a
MOAT screening to identify potentials for a reduction of the parameter space of uncertain
inputs. Polynomial Chaos expansion is utilized for the propagation of the input uncertainties
through the simulation model. Gas phase temperature, flame position and liquid droplet
distribution are assessed as quantities of interest.

Regarding the deterministic reference simulation of the SSB, extensive prior knowledge was
required to calibrate the spray boundary condition against the available experimental data.
To overcome this dependency, in this section, the reconstructed spray boundary condition is
replaced by data from an algebraic primary breakup model. In this model, characteristics of
the dispersed phase after primary atomization are calculated from geometric quantities of the
atomizer as well as properties of the gas flow. Hence, the dependency of the spray boundary
condition from the experimental data is notably reduced.

Boundary conditions
MOAT

X PCE Q

Prob. levels
CRPS
W1

A
Specification

B
Propagation

C
Analysis

SAS

PAMELA

Figure 5.18.: Application of the workflow for uncertainty quantification to the SSB case. X:
Uncertain input parameters, Q: Quantity of Interest.

5.4.1. Spray boundary conditions from the PAMELA model

The PAMELA primary breakup model as detailed in Sec. 2.4.3 is used for the definition of
the spray boundary condition. As in the reference simulation, droplets start from an annulus
with ri = 3.5 mm and ro = 4.5 mm, placed at an axial offset ∆z = 1.5 mm with respect
to the atomizer edge (see also Fig. 5.4). The PAMELA model provides an SMD D32 and a
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Figure 5.19.: Definition of the velocity vector ~UD at the spray boundary condition. Black
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Blue dots: Droplet starting annulus.

spread factor q for a Rosin-Rammler distribution. Inputs to the model are the atomizer edge
thickness ha, the length of the liquid film Lf along the prefilmer and the mean gas velocity
UG parallel to the liquid film.
For the SSB, the atomizer edge thickness is reported as ha,SSB = 0.1 mm [89]. Based on

the geometry of the prefilmer (see Fig. 5.1) and the nominal opening angle of the primary
pressure-swirl atomizer (θ = 60◦), the location where droplets from the primary atomizer
impinge the prefilmer surface can be reconstructed and hence the liquid film length is estimated
as Lf,SSB = 3.8 mm. Mean gas velocity UG,SSB alongside the liquid film is extracted from the
mean gas field and ranges between 70 and 85 m s−1 as the air flow is accelerated within the
inner air nozzle.

The PAMELA model does not provide data for the velocity components of the droplets after
primary atomization. Therefore, it is assumed that the droplets rapidly couple to the local
gas flow at the starting annulus. This is supported by findings from the reference simulation.
Close to the starting annulus, most droplets had a Stokes number below 10. Therefore, the
velocity vector ~UD of a droplet starting at the boundary condition is derived from the local
vector of the gas velocity. The definition of ~UD is depicted in Fig. 5.19: In the local polar
coordinate system of the droplet, ~UD is determined by the axial angle ϕD, the swirl angle ψD
and the velocity magnitude UD. Respective transformations are detailed in Appendix D.

5.4.2. Step A: Identification and characterization of the uncertainties

Possible uncertainties are identified by analyzing the simulation model for the SSB with
respect to the three main categories (numerical uncertainties, model form uncertainties, input
uncertainties) from Sec. 3.3.1. This demonstrates the identification and characterization of
uncertainties for a complex simulation case.
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Numerical uncertainties

The used SAS turbulence model relies on a dynamic adjustment of the k − ω SST model to
an LES like formulation in high turbulence regions. However, this adjustment depends on
the ability of the grid to locally resolve turbulent structures, i.e. the local grid resolution.
Therefore, SAS simulations are always grid dependent which prohibits a systematic grid
convergence study based on Richardson exptrapolation as in the DSHC case. Systematic
evaluation of the numerical uncertainties in SAS simulations has been recently reported by
Pereira et al. [182] for elementary test cases. An extension of this method to a complex test
case like the SSB is out of the scope of the work at hand and for the current study, numerical
uncertainties are not further investigated.

Model form uncertainties

Since the problem under consideration constitutes a semi-technical combustion chamber, the
difference between the application domain of the used models (subsystem case) and their
validation domain (mostly unit problems or benchmark cases) is significant. Thus, the overall
simulation model for the SSB might amplify model form uncertainties. However, in the
previous section, encouraging results from the deterministic reference simulation have been
shown which demonstrated the capability of the used simulation model.
In addition to the amplification of existing model form uncertainties in the submodels,

model form uncertainties could arise from an incomplete formulation of the overall simulation
model. For example, radiation of the gas phase species as well as spray-wall interaction is
neglected in the used simulation model.

Dedicated treatment of model form uncertainties through extrapolation of the model form
error from the validation domain to the application domain [177] remains a complex issue
and is out of the scope of the work at hand. Major emphasis is put on quantifying the input
uncertainties, specifically in the spray boundary condition.

Input uncertainties

Geometry All geometric dimensions and quantities of the SSB are documented in the work
of Grohmann [89]. Furthermore, the reduced complexity of the geometry in comparison to a
full-scale aero-engine enables the resolution of all geometric features in the computational
grid.
The atomizer edge thickness ha serves as an input to the primary atomization model. As

already mentioned, this parameter is known for the SSB. Uncertainties within the reported
manufacturing tolerance have shown to have no significant effect on the droplet size distribution
calculated by the PAMELA model.

Modeling constants The simulation case under consideration involves a number of sub-
models and thus numerous modeling constants which might affect the simulation results. For
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example, the choice of the Smagorinsky constant Cs in the SAS turbulence model influences
the turbulent damping in the LES regions [105].
In the present study, all modeling constants are set to their respective reference values

for which they were validated. Impact of uncertainties in these parameters are not further
investigated.

Initial and boundary conditions of the gas phase Regarding the boundary condition for
the gaseous phase, a simplification applies to the inlet at the plenum, at which the turbulence
intensity was not measured in the experiments. Therefore, a uniform inlet velocity rather
than synthetic turbulence [121] is imposed. In view of the fact that most of the turbulence
is generated in the swirler stages, this uncertainty should not affect the flow inside the
combustion chamber. Measurement uncertainties below 1.2 % have been reported for the
mass flow rate of the air [89].
Mercier et al. [159] demonstrated that uncertainties in wall temperatures and associated

heat losses can have a significant impact on local and global temperature distribution. In the
present study, temperature profiles from thermometry measurements are utilized. For this
data, Grohmann [89] estimated an error of ±2 %.

Initial and boundary conditions of the dispersed phase Since the velocity vector of the
droplets at the dispersed phase boundary condition is derived from the gas field trajectories,
uncertainties are introduced from the variation of the trajectory angle ψ and ϕ over the
starting annulus. In the flow field, ψ ranges between 55◦ and 63◦ while ϕ varies between
26◦ and 29◦. Furthermore, by applying the absolute velocity U ≈ 60 m s−1 of the gas phase
at the starting annulus to the dispersed phase, droplets start with a significantly too high
momentum and mostly impinge at the combustion chamber walls. Therefore, the droplets’
absolute velocity UD is assumed to be between 25 and 30 m s−1. This is inferred from similar
atomizer configurations [110, 235].

Finally, uncertainties exist regarding the temperature of the liquid droplets at the boundary
condition. In the experiments, the temperature of the fuel in the supply system was measured
at a location close to the primary pressure-swirl atomizer (Tliq,exp = 303 K). However, the
fuel might undergo additional heating during pre-filming atomization due to the surrounding
air flow (Tair = 323 K) as well as radiative heat transfer from the reaction zone. Accordingly,
the droplets’ temperature is estimated to range between Tliq,exp = 303 K and Tair = 323 K.

5.4.3. Step A: Probabilistic simulation model

From the possible uncertainties identified in the previous analysis, only the uncertainties in the
spray boundary condition will be analyzed in detail. In the DSHC case, these uncertainties have
demonstrated to have a significant effect on the flame position and temperature distribution
over the reaction zone. Thus, the input parameters to the PAMELA model are seen as
uncertain inputs to the simulation model.
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Table 5.2.: Parameter space ΩSSB of the uncertain inputs.
Description PDF Unit Source

ϕD axial angle U(26,29) [◦] CFD flow field
ψD swirl angle U(55, 63) [◦] CFD flow field
UD absolute velocity U(25, 30) [m s−1] estimated
UG mean gas velocity U(70, 85) [m s−1] CFD flow field
Tliq liquid temperature U(303, 320) [K] Grohmann [89]

For simplicity, they are all interpreted as uncorrelated uncertainties and characterized by a
uniform distribution function with the respective minimum and maximum from the previous
analysis2. Note that this assumption differs from the strict application of Probability Bounds
Analysis in the DSHC case, but enables insight into the probabilistic structure of the output
uncertainties. Hence, precise probability theory instead of strict PBA is applied, resulting in
a probabilistic simulation model of the SSB. Table 5.2 provides a summary of the uncertain
input parameters which form the input space ΩSSB = [ϕD × ψD × UD × UG × Tliq]. Note that
the uncertainty in the mean gas velocity UG results in SMDs D32 = 29− 35 µm and MMDs
D50 = 35− 41 µm calculated by the PAMELA model.

5.4.4. Step A: MOAT screening

MOAT sensitivity analysis is utilized to identify potentials for parameter reduction in ΩSSB.
Solely for this analysis, the simulation model is simplified by replacing the detailed reaction
mechanism with a global, single-step formulation for the three fuel species [271]. Chemical
source terms are then calculated through the EDC model. This results in a reduction in
computing time by a factor of 25. A comparison for the profiles of mean gas phase temperature
from the deterministic reference simulation (FRC) and the simplified simulation model (EDC)
using the same boundary conditions is given in Fig. F.5 in Appendix F. The general course
of the profiles is well replicated by the simplified model although the magnitude of the
temperature is systematically overestimated by 50− 100 K at the most positions. This is a
known issue when using global reaction mechanisms [180] due to the fact that the formation
and consumption of chemical radicals is not accounted for. Nonetheless, since the MOAT
analysis aims at qualitatively identifying tendencies in the output quantities of interest over a
large variation in the inputs, the reduced simulation model is expected to reproduce these
tendencies.

Preferably, the sensitivity of the combustion process to the variation in the input quantities
is appraised by representative global quantities. For the SSB case, average position and length
of the reaction zone is taken as such a measure, since most other quantities (e.g. temperature
profiles) are assumed to depend on the location of the reaction zone. On the basis of the

2The choice of uniform distribution functions for minimum/maximum data is motivated by the principle
of maximum entropy [114, 253].
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Figure 5.20.: Definition of flame lift-off height hLO and flame length lF for a threshold value
υ = 70 %.

averaged, line-of-sight integrated heat release signal hrLOS
3, the flame lift-off height hlo and

the flame length lF are derived. For this purpose, hlo is defined as the mean axial distance
between the contour υ ·max(hrLOS) and the exit plane of the air nozzle, while lF is defined as
the difference between the mean extent of this contour minus hlo. In this definition, υ is a
threshold value which is set to 50 and 70 %. Consequently, the four parameters hlo,50, hlo,70,
lF,50 and lF,70 are taken as output quantities of interest for the MOAT screening. A depiction
of the parameters’ definition is available from Fig. 5.20.
Sixty simulations within ΩSSB are run, resulting in 10 elementary effects for each of the 5

input parameters. Standard deviations σ against modified means µ∗ in MOAT plots for hLO
and lF are given in Fig. 5.21 (a) and (b), respectively. Sensitivity of the MOAT results on the
threshold value υ can be judged from the comparison of the first and second row.

Although the results are not as clear as in the DSHC case, slight tendencies are observable:
The relative positioning of ϕ, ψ and UD in the MOAT plot is comparable between hLO and lF
as well as between υ = 50 % and υ = 70 %. This might be attributed to the fact that these
parameters constitute the velocity vector of the droplets at the boundary condition and hence
are somewhat coupled at the boundary condition. However, a definitive assessment of their
potential interaction cannot be deduced from the MOAT results. The influence of UG and Tliq.
on both hLO and lF changes significantly between υ = 50 % and υ = 70 % which could be
due to the fact that the choice of υ extracts significantly different regions of the reaction zone,
as indicated by the red contours in the subplots of the heat release signal in Fig. 5.21 (a).
Therefore, the sensitivity of the two regions on the input parameters might differ.

In conclusion, the results from the MOAT analysis remain ambiguous and prohibit a clear
distinction between influential and minor input parameters. A reason for this could be the

3Since OH∗ is not available from the global reaction mechanism (EDC) the analysis is based on the local
heat release. Especially under atmospheric conditions, the OH∗ radical closely follows the local heat release
rate [175].
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stronger coupling of the effects (e.g. evaporation, mixing and flame stabilization) in a confined
combustion chamber in comparison to an open flame as in the DSHC case. Consequently, the
uncertain parameters might show a tendency of increased interaction, too. Furthermore, the
number of considered main effects could be too low to provide stable means and standard
deviations. This could be improved by increasing the sample size and thus the number of
simulations in the MOAT analysis. For a parameter space reduction, Tliq and UD could be
potentially set to their respective reference value. However, for the following study, ΩSSB

remains unchanged.

5.4.5. Step B: Polynomial chaos expansion based propagation of
uncertainties

Output uncertainties in the probabilistic simulation model are quantified through Polynomial
Chaos expansion. Again, the present study focuses on gas phase temperature since its accurate
prediction plays a crucial role in combustor design. However, additional quantities of interest
from the gas phase as well as the dispersed phase are considered in order to get insight into
the phase-coupling dynamics under the given uncertainties. Formally, the truncated PC
expansion of a Quantity of Interest Q from the probabilistic simulation model reads:

Q =
P∑
k=0

αkΨk (ξ) =
P∑
k=0

αkΨk

(
ξϕD ,ξψD ,ξUD ,ξUG ,ξTliq

)
. (5.3)

Since all uncertainties in Tab. 5.2 follow a uniform distribution function, Legendre polyno-
mials form the basis Ψk. As in the DSHC case, multidimensional integration on a Smolyak
sparse grid is utilized for the computation of series coefficients αk. A Level-2 expansion is
considered, requiring 71 evaluations of the simulation model. Note that in contrast to the
MOAT analysis, the detailed combustion model from the reference simulation is again used.
The fact that precise distribution functions are assigned to all input uncertainties allows

for a computation of probability distribution functions for the Quantities of Interest from
space filling sampling of ΩSSB. For this purpose, 105 samples are drawn from the respective
PC expansion.

5.4.6. Step C: Results and discussion

Gas phase

Resulting temperature profiles from the PCE over ΩSSB are shown in Fig. 5.22 (a) - (e).
The probability structure of the uncertain simulation results is characterized by probability
levels: light gray areas indicate regions with 5% < Pr(T ) < 95%, whereas dark gray areas
represent 25% < Pr(T ) < 75%. The median realization is given by cyan lines. In addition,
results from the deterministic reference simulation from Sec. 5.3.2 are included as dashed
black lines. Most notably, the probability levels clearly reveal a non-uniform distribution of
output uncertainties, despite the fact that all input uncertainties were defined as uniformly
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Figure 5.22.: Non-deterministic simulation results for time-averaged profiles of gas phase
temperature. Error bars ( ) indicate standard deviation of the experimental
measurements.
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distributed. This highlights the non-linear propagation of uncertainties through the simulation
model.

Over all positions, moderate uncertainties in the order of 100−200 K regarding the [5%; 95%]
level are visible. In the z−profiles, highest uncertainties are located at the high temperature
regions (y ≈ ±30 mm) where most of the combustion reactions take place. These processes
are closely connected to the supply of fuel components through spray evaporation, which is
ultimately linked to the input uncertainties at the spray boundary conditions. At the first two
axial positions, the non-deterministic simulation is able to bracket almost all experimental
data. However, at z = 35 mm (Fig. 5.22 (c)) the temperature profile is still overestimated in
the simulation results.
Although the spray boundary condition is symmetric with respect to the z−axis, the

uncertain simulation results in the z−profiles appear slightly asymmetric, especially regarding
the [5%; 95%] level. This could be caused by noisy data for the construction of the PCE due
to incomplete time-averaging in the numerical simulation, insufficient PCE accuracy or a
too small sample size for the precise computation of the local PDF. Since the influence of
time-averaging was investigated in detail for the reference simulation, the asymmetry is most
likely due to local PCE accuracy. For the DSHC case it was demonstrated that the quality of
the PC expansion can vary along a profile of QoIs.
Along the axial profile at y = 0 mm (Fig. 5.22 (d)), all measurement data except for the

last one are included in the uncertainty region. However, the fact that the axial gradient in
the experimental data is almost zero over the last few measurement positions whereas the
temperature in the simulation still rises up to 1800 K confirms that the temperature in the
upper half of the combustor is systematically overestimated in the simulation. As already
mentioned in Sec. 5.3.2, this could be caused by too low thermal losses. Furthermore, as
the present study confirms that this tendency is not related to uncertainties in the spray
boundary condition, it could stem from a general modeling error.
A significant increase in local uncertainty in the y = 0 mm profile (Fig. 5.22 (d)) is found

between z = 40 and z = 80 mm. This coincides with the axial position of possible spray-wall
impingement (see Sec. 5.3.3) after which the droplets are reflected back towards the centerline
region. Presumably, this impingement depends on the droplets’ starting velocity UD and their
axial angle ϕD. Hence, uncertainties in these quantities might influence the spray impingement
location and finally the temperature profiles downstream of the respective location.

The tendency in the z−profiles that highest uncertainties are found in the high temperature
regions is also reflected in the y = −20 mm profile (Fig. 5.22 (e)). Here, the mean of the
experimental data is within or below the 5 % quantile at all positions.

Results for the axial component of gas phase velocity in Fig. 5.23 (a) - (e) demonstrate
that uncertainties in the temperature distribution couple with uncertainties in the gas phase
velocity. As in the temperature profiles, highest uncertainties in the z−profiles are found
around the reaction zone. Moreover, the range of the [5 %, 95%] level increases with increasing
axial distance. This tendency is also present in the axial profiles (y = 0 mm, y = −20 mm;
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Figure 5.23.: Non-deterministic simulation results for time-averaged profiles of axial velocity
in the gas phase.

Fig. 5.23 (d) - (e)) and might be an indicator that the backflow of hot combustion products is
also affected by the input uncertainties.

Dispersed phase

Non-deterministic results from the dispersed phase at z = 15 mm are shown in Fig. 5.24.
The droplet size spectrum is split into the same three size classes as for Fig. 5.16 in the
deterministic reference simulation: 10 µm < d < 11 µm (small), 27 µm < d < 33 µm (medium)
and 45 µm < d < 55 µm (large). Note that non-deterministic simulation results are only
shown for locations at which sufficient time-averaged droplet data is available from all 71
simulations. Otherwise, the PC expansion would be prone to high approximation errors.

Despite the fact that all input uncertainties from Tab. 5.2 are directly linked to the dispersed
phase, output uncertainties in the components of droplet velocity are low, especially for the
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Figure 5.24.: Non-deterministic simulation results for time averaged profiles of droplet velocity
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Figure 5.25.: Non-deterministic simulation results for time averaged profiles of Sauter Mean
Diameter (SMD) and normalized liquid volume flux at z = 15 mm.

medium (blue) and large (green) droplets. The fact that the magnitude of uncertainty increases
towards lower droplet diameters can be explained by their low Stokes number and thus higher
tendencies to couple to the local gas velocity. As aforementioned, output uncertainties are
also present in the velocity components of the gas field. Hence, these uncertainties might be
passed on to the small droplets. In contrast, uncertainties in the velocity components of the
large droplets simply reflect the input uncertainty in the absolute velocity UD of 5 m s−1.

At all radial locations for which uncertain results are available, the simulation results agree
with the experimental data in at least one size class. This verifies the assumption made
in the construction of the spray boundary condition that the droplet starting trajectories
can be derived from the local gas velocities. Through this approach, a similar accuracy of
the simulation regarding the experimental data is achieved, compared to the deterministic
reference simulation in which the droplet velocities were calibrated against experimental data.

Figure 5.25 provides results for Sauter Mean Diameter and normalized volume flux at
z = 15 mm. The radial distribution of the SMD is similar as in the deterministic reference
simulation and shows the same tendency in overestimating the diameter. At the radial position
of maximum volume flux (y ≈ ±17.5 mm) the uncertainty level with respect to the [5 %; 95 %]
interval is in the magnitude of 5 µm which is the range of SMDs provided by the PAMELA
model under the given uncertainty for UG.
The radial position of maximum volume flux appears almost unaffected by the input

uncertainties, confirming that the distribution of droplets is dominated by the gas field in the
SSB case.

For brevity, additional plots for droplet velocities and mean diameter at z = 25 mm are
given in Appendix F. Similar phenomena and tendencies as discussed for z = 15 mm can be
identified.
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Figure 5.26.: Non-deterministic simulation results for flame lift-off height and flame length
with respect to a threshold value υ = 50 %.

Reaction zone

Insight into the probability structure of a scalar quantity of interest under the given uncer-
tainties is provided by the example of mean flame lift-off height hLO and mean flame length
LF. Both quantities are derived from the OH∗ field as described in Sec. 5.4.4 and 5.3.2, using
a threshold of υ = 50 %.
Figure 5.26 summarizes results from space filling sampling of the PCE over ΩSSB through

histograms and the corresponding empirical CDFs ĈLF and ĈhLO . As evident from the
histograms, both QoIs follow a distribution function that resembles a normal distribution,
despite the fact that all input uncertainties are uniformly distributed. As already discussed
for the temperature profiles, this points out that the flame stabilization in the SSB follows a
highly non-linear mechanism regarding the injection of liquid fuel droplets.
Experimental results are indicated by orange dashed lines. In case of LF (Fig. 5.26 (b)),

the experimental value coincides with the mode of P̂LF , i.e. the most probable realization
from the simulation. This should not be confused with the mean realization µLF = 16 mm,
which is greater than the experimental value. Regarding hLO most realizations underestimate
the true lift-off height from the experiment (Fig. 5.26 (a)). From ĈhLO it can be inferred that
80 % of the realizations are below the experimental value.

Remarks on parameter space reduction

The MOAT analysis in Sec. 5.4.4 did not show a distinct importance ranking of the uncertain
inputs and thus, the uncertain parameter space ΩSSB remained unchanged for the propagation
of uncertainties. However, it was speculated that Tliq and UD could be set to their respective
reference values due to the MOAT results. Consequently, the five-dimensional input parameter
space ΩSSB would be reduced to a three-dimensional input parameter space ΩSSB,red..
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Figure 5.27.: Non-deterministic simulation results for time-averaged profiles of gas phase
temperature. Probability levels are given with respect to ΩSSB,red..

In order to shed light on the potential for parameter reduction in the SSB case, results
for the temperature profiles from the propagation of uncertainties in ΩSSB and ΩSSB,red. are
compared from a posterior perspective, i.e. after the uncertainty quantification. For this
purpose, an L2 PCE of the reduced parameter space ΩSSB,red. = [ϕD×ψD×UG] is constructed
using the same approach as described in Sec. 5.4.5. This requires 31 evaluations of the
high-fidelity simulation model in which Tliq is set to 320 K and UD is set to 27.5 m s−1. A
summary of ΩSSB,red. is given in Tab. F.1 in Appendix F.
Figure 5.27 shows non-deterministic results with respect to ΩSSB,red. for the temperature

profiles. For comparison, the bounds of the [5 %; 95 %] probability interval from the full
parameter space ΩSSB are indicated with dashed cyan lines. Only minor differences between
the median realizations from ΩSSB,red. and ΩSSB are visible. However, when comparing the
[5 %; 95 %] probability interval it can be observed that this interval widens distinctly when
considering ΩSSB instead of ΩSSB,red.. Thus, the additional uncertainties in ΩSSB seem to have
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Figure 5.28.: Continuous Ranked Probability Score for the probabilistic temperature pre-
dictions. Full input parameter space ( ), reduced input parameter space
( ).

an effect especially in the low probability regions. Although not shown here for brevity, the
difference in the [25 %; 75 %] between ΩSSB,red. and ΩSSB is smaller than the one identified for
the [5 %; 95 %] probability interval.

For a quantitative comparison of the two non-deterministic simulations, the accuracy metrics
Continous Rankend Probabibilty Score (CRPS) from Eq. (3.10) in Sec. 3.3.3 and Wasserstein-1
(W1) from Eq. (3.11) in Sec. 3.3.3 are calculated for both simulation results.

In the calculation of the CRPS, the mean of the experimental data µexp at each location is
interpreted as a certain observation. The CRPS yields a generalized mean absolute error in
case of uncertain predictions and certain experimental observation. Thus, the measurement
error from the experiment is not taken into account and the CRPS is calculated from the local
cumulative distribution function of the temperature from the non-deterministic simulation and
the mean temperature from the experiment. The local CRPS for the temperature predictions



134 5. DLR Standard Spray Burner

0

100

200

300
W

1 [
-]

z=15mm

(a)

0

100

200

300

W
1 [

-]

z=25mm

(b)

40 20 0 20 40
y [mm]

0

100

200

300

W
1 [

-]

z=35mm

(c)

Radial direction

SSB SSB, red

0

100

200

300
y=0mm

(d)

0 20 40 60 80 100
z [mm]

0

100

200

300
y=-20mm

(e)

Axial direction

Figure 5.29.: Wasserstein metric W1 for the probabilistic temperature predictions. Full input
parameter space ( ), reduced input parameter space ( ).

from the non-deterministic simulation is given in Fig. 5.28 (a) - (e). For the red squares, the
CRPS is calculated from the simulation results taken into account the full input parameter
space ΩSSB whereas for the blue squares, the CRPS is calculated from the simulation results
based on the reduced input parameter space ΩSSB,red.. Note that the CRPS is only calculated
at radial and axial positions for which experimental data is available.
Deviations between the CRPS for ΩSSB and ΩSSB,red. are below 10− 20 K over the most

positions except for the profiles at z = 15 mm (Fig. 5.28 (a)) and y = 0 mm (Fig. 5.28 (d)).
Here, the CRPS mostly reduces when taking into account the full parameter space ΩSSB.
This means that at these positions, it is more likely to observe the experimental data in the
non-deterministic simulation results from ΩSSB than in results from ΩSSB,red..
In order to compare the probability structure of the non-deterministic simulation results

and the experimental data including measurement errors, the Wasserstein-1 metric for the
temperature results is calculated at the same positions as the CRPS. For this purpose, the
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measurement uncertainty and hence the uncertain observation is assumed to follow a normal
distribution N (µexp, σexp). The standard deviation σexp is available from the experimental
database [22].
Results for W1 are given in Fig. 5.29 (a) - (e). The same tendency as for the CRPS is

evident from the profiles of the W1 metric. Again, differences are mainly found in the profiles
at z = 15 mm (Fig. 5.29 (a)) and y = 0 mm (Fig. 5.29 (d)). In terms of W1 this can be
interpreted that even though the input uncertainty as well as the output uncertainty increases
between ΩSSB,red. and ΩSSB (see Fig. 5.27), the probability structure of the prediction from
ΩSSB closer resembles the experimental data at these positions.

In summary, the two metrics confirm that the non-deterministic simulations from ΩSSB and
ΩSSB,red. are both able to predict the experimental data with similar accuracy at the most
positions, although larger probability intervals for the [5 %; 95 %] range were identified in
Fig. 5.27.

Role of the experimental data for the spray boundary condition

For the probabilistic simulation model, the calibrated spray boundary condition was replaced
by an algebraic primary breakup model. Thus, the required prior knowledge was reduced and
the resulting lack in information was characterized as input uncertainties. Results from the
propagation of uncertainties confirm that the probabilistic simulation model is still able to
reproduce all aspects of multiphase combustion in the SSB with high accuracy.

Furthermore, the clear portrayal of output uncertainties and probability levels enhances the
interpretation of the simulation results and helps identify quantities for which the prediction
is highly uncertain (flame lift-off height) or potentially wrong (temperature at z > 60 mm).
This enables model updating and confident application of the model in cases where only
limited data regarding the spray phase is available from the experiment.





6. Summary and conclusions

The work at hand aimed at applying state of the art UQ methods to simulation problems
involving turbulent spray combustion. In such simulations the formulation of boundary
conditions for the spray after primary atomization introduces a major source of uncertainties.
Therefore, special emphasis was placed on the quantification of uncertainties in the simulation
results due to incomplete knowledge in the construction of the spray boundary conditions.
Since non-intrusive uncertainty quantification mostly relies on spaces filling sampling of

the uncertain parameter space, this direct approach was found to be unfeasible for complex
simulations. To overcome this limitation, a workflow for uncertainty quantification utilizing
surrogate models in lieu of the computational expensive simulation was proposed. The present
study successfully demonstrated the application of this workflow for the forward propagation
of uncertainties in two test cases with different complexity.

The Delft Spray in Hot Coflow (DSHC) flame involved an unconfined spray flame burning
liquid ethanol. Uncertainties in key parameters of the spray boundary condition were treated
as epistemic uncertainties with the respective bounds derived from an analysis of existing
simulations in the literature. Uncertainties in the used RANS simulation and the surrogate
models were evaluated by means of solution extrapolation and holdout validation, respectively.
Based on the findings of an a priori MOAT sensitivity analysis, the stochastic dimension of
the input was reduced to the four most influential parameters. Probabilistic bounds of the
Quantities of Interest were then obtained from space filling sampling of the surrogate models.
Both PCE and Gaussian Process Regression resulted in comparable probability bounds.
An extensive uncertainty region around the deterministic reference simulation was revealed.
Regions were identified where the UQ-based simulation is unable to bracket the experimental
data. This was attributed to a general modeling error in the RANS model regarding the
mixing of fuel and oxidizer in the inner flame region. From an a posteriori sensitivity analysis,
the majority of the uncertainty in the temperature profiles was connected to the spray cone
angle of the atomizer which controls the position of the droplets and transport of gaseous fuel
to the reaction zone. The aggregation of all analyzed sources of uncertainties confirmed that
the total predictive uncertainty in this case is primarily due to the input uncertainties.
The DLR Standard Spray Burner (SSB) constituted a simulation problem which reflects

characteristics typically found in modern aeroengine combustors. In order to resolve the
complex three-dimensional and unsteady flow structure, hybrid URANS/LES was utilized. By
inclusion of all available experimental information concerning the spray boundary conditions,
the used simulation setup was able to reproduce all aspects of spray combustion in the SSB
with high accuracy. To overcome the dependency from the experimental data for the spray
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phase - i.e. the need for calibration against existing data -, an algebraic primary breakup
model was incorporated. The resulting reduction in prior knowledge was compensated through
probabilistic modeling and uncertainty quantification methods. The breakup model provided
data for the mean diameter in the spray, but no information regarding the droplet velocities.
The velocity vector of the droplets at the boundary condition was estimated from the local gas
field and treated as uniformly distributed uncertainties. Further uncertainties regarding the
spray boundary condition resulted in a six-dimensional parameter space of uncertain inputs.
Due to their importance in the design process, temperature distribution and flame position
were considered as the main quantities of interest. Results from the MOAT analysis remained
ambiguous and prohibited a clear distinction between influential and minor input parameters.
Output uncertainties in the simulation were then quantified through Polynomial Chaos
Expansion. Moderate uncertainties were found in the results for the gas phase temperature as
well as the droplet velocities. Finally, the potential for a parameter space reduction was further
examined by comparing the uncertain predictions from the full and the reduced parameter
space. For this purpose, accuracy metrics regarding the prediction of the temperature profiles
were calculated.

6.1. Conclusions and outlook
On the basis of these results the following conclusions are drawn:

Role of uncertainties with increasing system complexity Although the SSB case involved
a higher level of complexity compared to the DSHC case, lower uncertainties in the temperature
profiles were identified compared to the latter. Therefore, an increase in system complexity
does not necessarily result in higher output uncertainties. The highly non-linear interplay
between the different sub-phenomena can diminish the effect of input uncertainties which
were found to be important in a simpler test case. Specifically in the SSB, the combustor
walls prevented a shifting of the flame as in the DSHC case. On the other hand, this led to a
potentially stronger coupling of sub-effects which prohibited a definitive verdict in the MOAT
analysis. Finally, it should be kept in mind that uncertainties in the output must always be
interpreted with respect to the uncertainties in the output. This makes a general statement
regarding the role of uncertainties at different levels of system complexity challenging.

Propagation of uncertainties through coupling effects The present work focused on input
uncertainties in the spray boundary conditions. Hence, input uncertainties were primarily
introduced to the dispersed phase of the reacting multiphase system. However, both test
cases revealed that these uncertainties affect quantities of interest in the dispersed and
the continuous phase (e.g. gas phase temperature and velocity or flame position). This
highlighted the propagation of input uncertainties through coupling effects throughout the
thermo-chemical process (see Fig. 1.2). In view of this fact it is important to note that other
input uncertainties which were not considered in the present study need to be studied. For
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example, uncertainties in the chemical reaction rates would alter the temperature field and
thus influence the local evaporation of droplets.

Results from Probability Bounds Analysis (PBA) as opposed to precise probability
theory For the DSHC, case strict PBA was applied and interval valued epistemic uncertainties
were assumed resulting in large intervals of possible realizations for the temperature profiles.
In contrast, uniformly distributed uncertainties were presumed in the SSB case which enabled
the calculation of probability levels for the uncertain simulation results. The latter approach
represented a slight deviation from strict PBA but was in agreement with the precise probability
theory. This yielded a best estimated prediction of the quantities of interest under the given
uncertainties. However, it should be pointed out that this best estimate purely relied on the
assumption of uniform input uncertainties. In contrast, probability bounds from PBA are
known to be larger [177] but always reflect the state of knowledge without further assumptions.
Therefore, the impact of the application of different UQ frameworks needs to be further
studied.

Potential of UQ in the simulation of spray combustion Apart from the clear portrayal
of uncertainties, it was shown that UQ studies can provide guidelines for the improvement
of validation experiments. In the DSHC case, a precise experimental measurement of the
spray mean trajectory angle ϕ̄ would significantly decrease the uncertainties in the simulation
and thus provide a reliable basis for validation studies. However, systematic uncertainty
quantification requires the identification and adequate characterization of all sources of
uncertainties. Therefore, a precise definition of input uncertainties by means of PDFs
should be included in the design of validation experiments. Since these information are
often not available in early stages of a design process, structured approaches such as expert
elicitation [9] should be utilized to avoid biased opinions or subjective estimates regarding
possible uncertainties.
Finally, the SSB case clearly demonstrated the added value of uncertainty quantification

when only limited data regarding the spray boundary conditions is available. With the
additional information concerning the uncertainties in the simulation results, risks can be
identified from the comparison with the requirements and performance targets as suggested in
Fig. 1.1 in the introduction. Thereby, decision-making in the design and development process
can be supported and advanced towards risk-informed decision-making.





A. Definitions and concepts for
verification, validation and
uncertainty quantification

Definitions from the NASA Standard STD-7009A
Credibility. The quality to elicit belief or trust in modeling and simulation results. [250]

Data Pedigree. A record of traceability from the data’s source through all aspects of its
transmission, storage, and processing to its final form used in the development of an M&S.

Input Pedigree. A record of the traceability from the input data’s source through all aspects
of its transmission, storage, and processing to its final form when using an M&S.

Uncertainty. A broad general term used to describe an imperfect state of knowledge or a
variability resulting from a variety of factors, including but not limited to, lack of knowl-
edge, applicability of information, physical variation, randomness or stochastic behavior,
indeterminacy, judgment, and approximation.

Verification. The process of dermining the extent to which a model or simulation is compliant
with its requirements and specifications as detailed in its conceptual models, mathematical
models, or other constructs. [250]

Validation. The process of determining the degree to which a model or a simulation is an
accurate representation of the real world from the perspective of the intended uses of the
model or simulation. [250]

Validation Hierarchy
The construction of suitable validation experiments still poses major challenges due to
the complexity of most modern engineering problems. Therefore, the validation process is
generally broken down into a complexity or validation hierarchy [34, 147] consisting of multiple,
progressively simpler tiers. Within this approach, the accuracy of the modeling results are
compared with experimental data at different degrees of physics coupling and geometric
complexity. A schematic of a validation hierarchy including examples for the simulation of
spray combustion in an aeroengine is given in Fig. A.1.
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Unit Problems

Benchmark Cases
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Droplet evaporation

Spray flame experiments

Combustor

Aeroengine

Figure A.1.: Validation tiers of a system hierarchy according to the AIAA validation guide [4].



B. Fundamental definitions from
probability theory

Random variables A random variable X is defined as a function on a sample space Ω, i.e.
a set of possible outcomes:

X : Ω 7→ R. (B.1)

Hence, X(ω) is an actual outcome with a real value. Informally, a random variable can be
seen as a variable whose values depend on outcomes of a random phenomenon [47]. The
probability that X results the set S is defined as

Pr(X ∈ S) = Pr({ω ∈ Ω|X(ω) ∈ S}). (B.2)

Distribution functions The cumulative distribution function (CDF) CX of a random variable
X is

CX(x) = Pr(X ≤ x). (B.3)

In case of a continuous random variable a probability density function (PDF) PX is defined as

Pr(a < X < b) =
∫ b

a
PX(x)dx with

∫ ∞
−∞
PX(x)dx = 1. (B.4)

Note that CDF and PDF are interdependent:

CX(x) = Pr(X ≤ x) =
∫ x

−∞
PX(x̃)dx̃. (B.5)

Expectation and variance If X has a PDF PX then the expectation E(X) (or first moment
µ) is given as

E(X) =
∫ ∞
−∞
PX(x)dx = µ. (B.6)

The variance of X is
V(X) = E((X − E(X))2) = σ2, (B.7)

also characterized by the standard deviation σ =
√
V(X).

Covariance and correlation As a measure of the joint variability of two random variables
X and Y , the covariance Cov(X,Y ) is introduced as

Cov(X,Y ) = E((X − E(X))(Y − E(Y ))) = E(XY )− E(X)E(Y ). (B.8)
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A positive covariance is one way to quantify that X and Y tend to increase together. A
negative value quantifies a tendency for increases in one to accompany decreases in the
other [179].

The covariance between two standardized variables, i.e. they have mean 0 and variance 1,
is their correlation:

Corr(X,Y ) = Cov
X − E(X)√

V(X)
,
Y − E(Y )√

V(Y )

 . (B.9)



C. Stochastic inlet forcing approach for
DSHC HII

Time-coherent, stochastic forcing at the boundary condition of the secondary burner is realized
with a first order Langevin equation [192] given as

Φ(t+ ∆t) = Φ(t)− Φ(t)∆t
τt

+
√

2σ2∆t
τt

ξN (t). (C.1)

Here, Φ ∈ [T,Ucf ] and τt defines the integral turbulent time-scale upstream of the boundary
condition. τt is predefined by measurements [213]. σ is the standard deviation of the process
and ξN (t) is a random forcing with Gaussian distribution which is independent of Φ and
fulfills the properties

〈ξ(t)〉 = 0,
〈
ξ(t)2

〉
= 1 (C.2)

〈ξ(t)ξ(t′)〉 = 0, t 6= t′. (C.3)

Equation C.1 therefore realizes an ergodic, statistically stationary Ornstein-Uhlenbeck process.
A resulting forcing signal for the temperature fluctuations is shown in Fig. C.1.
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Figure C.1.: Exemplary upstream forcing signal for the temperature fluctuations from Eq. C.1.
Φ = T,∆t = 10−5 s, σ = 100 K, τt = 0.025 s.





D. Definition of the droplet starting
velocity in the SSB

For the simulations with spray boundary conditions from the PAMELA model, the vector
of the droplet starting velocity is defined by the axial angle ϕD, the swirl angle ψD and the
velocity magnitude UD. These quantities are given with respect to the local coordinate system
of the droplet at the boundary condition (see Fig. 5.19). The connection with the axial, radial
and tangential velocity components uax, urad and utan in the local coordinate system is given
by the following transformations.

Calculation of the trajectory angles from the velocity components

ϕD = arctan
(
uax
urad

)
(D.1)

ψD = arctan
(
utan
urad

)
(D.2)

UD =
√
u2
ax + u2

rad + u2
tan (D.3)

Calculation of the velocity components from the trajectory angles

utan =

√√√√ tan (ψD)2 tan (ϕD)2U2
D

1 + tan (ψD)2 tan (ϕD)2 + tan (ϕD)2 (D.4)

urad = utan
tan (ψD) (D.5)

uax =
√
U2
D − u2

rad − u2
tan (D.6)





E. Additional plots for DSHC

0 10 20 30 40 50 60 70 80

600

800

1000

1200

1400

Te
m

pe
ra

tu
re

 [K
]

0

25

50

75

100

125

150

T.
flu

ct
ua

tio
n 

[K
]

0 10 20 30 40 50 60 70 80
R [mm]

0

1

2

3

4

5

Ax
ia

l v
el

oc
ity

 [m
/s

]

0

2

4

6

8

10

Tu
rb

. i
nt

en
sit

y 
[%

]

Figure E.1.: Radial profiles of temperature and velocity at the coflow outlet. Data from the
experimental characterization of the DSHC burner by Rodriues et al. [32].





F. Additional plots for the SSB
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Figure F.1.: Temperature profiles for the isothermal boundary condition in the combustion
chamber.

Table F.1.: Parameter space ΩSSB,red of the uncertain inputs.
Description PDF Constant Unit

ϕD axial angle U(26,29) - [◦]
D swirl angle U(55, 63) - [◦]

UD absolute velocity - 27.5 [m s−1]
UG gas velocity U(70, 85) - [m s−1]
Tliq liquid temperature - 320.25 [K]
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Figure F.2.: Depiction of the line-of-sight integration of the OH∗ signal in the reaction zone.
Observation box ( ) and integration direction along the y-axis
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Figure F.3.: Time averaged profiles of droplet velocity components at z = 25 mm. Simulation
data is split into small ( ), medium ( ), and large droplets ( ). Experimental
data ( ) is averaged over all diameters.
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Figure F.4.: Time averaged profiles of Sauter Mean Diameter (SMD) and normalized liquid
volume flux at z = 25 mm.
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Figure F.5.: Time-averaged temperature profiles from simulations with the EDC and FRC
combustion model for the reference case. Mean ( ) and standard deviation ( )
from CARS data.
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Figure F.6.: Time averaged profiles of droplet velocity components at z = 25 mm. Simulation
data is split into small ( ), medium ( ), and large droplets ( ). Experimental
data ( ) is averaged over all diameters.
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Figure F.7.: Time averaged profiles of Sauter Mean Diameter (SMD) and normalized liquid
volume flux at z = 25 mm.
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