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Abstract— Transportation mode detection from smartphone
data is investigated as a relevant problem in the multi-modal
transportation systems context. Neural networks are chosen as a
timely and viable solution. The goal of this paper is to solve such
a problem with a combination model of Convolutional Neural
Network (CNN) and Bidirectional-Long short-term memory
(BiLSTM) only processing accelerometer and magnetometer
data. The performance in terms of accuracy and F1 score on
the Sussex-Huawei Locomotion-Transportation (SHL) challenge
2018 dataset is comparable to methods that require the process-
ing of a wider range of sensors. The uniqueness of our work
is the light architecture requiring less computational resources
for training and consequently a shorter inference time.

Index Terms— mode detection, self-supervised learning,
deep learning, SHL dataset, BiLSTM, batch normalization

I. INTRODUCTION

Smartphones have become ubiquitous over the last decade.
In a before unseen dimension, users carry Inertial Measure-
ment Units (IMUs) with them in every phone. The utilized
MEMS accelerometers, gyroscopes, and magnetometers can
provide sensor data [1] for a multitude of applications like
motion monitoring, indoor positioning, and transportation
mode detection.

Here addressed is the problem of transportation mode
detection from smartphone sensor data, which can be viewed
as a classification problem with walking, bicycling, going
by car, etc. as classes (see Fig. 1). The information about
the transportation mode of a user is crucial for improved
decision-making and urban transport planning [2], [3]. The
knowledge of a traveler’s transportation mode is imperative
for targeted advertisement and to automate the transportation
surveys [4]. The traditional interviewing is expensive and
time-consuming which can be replaced with an efficient
and automated way of data collection and classification.
Transportation mode detection can also support the coarse
position estimation of a user once the correct mean of
transportation is known [2], [3].

Fig. 1. Scenario of transportation mode detection problem.

1Institute of Transportation Systems, German Aerospace Center (DLR),
Berlin, Germany. Qinrui.Tang@dlr.de

2Institute of Transportation Systems, German Aerospace Center (DLR),
Brunswick, Germany.

Mode detection problem was solved with both traditional
machine learning methods and deep learning methods. With
traditional machine learning methods, feature extraction and
expert knowledge are usually required. The former requests
extra workloads and the required expert knowledge in the
design process and the limited applicability to similar prob-
lems with e.g. slightly different sensor set-ups appear as
disadvantages. By applying deep learning, many researchers
can obtain high accuracy or F1 after testing their models,
but use a wide range of sensors (accelerometer, gyroscope,
magnetometer, linear accelerometer, gravity, orientation, and
ambient pressure). An increased number of sensors poten-
tially requires more pre-processing, data storage, and also
network training time.

Therefore, in this paper we aim to propose an approach
with fewer input signals. Specifically, a model combining
CNN and BiLSTM on only accelerometer and magnetometer
measurements is suggested. Comparable accuracy and F1

scores to approaches with more input signals are demon-
strated on the Sussex-Huawei Locomotion-Transportation
(SHL) dataset1. The main contributions of this paper are:

• using fewer sensors and computational resources com-
pared to much previous work,

• obtaining comparable results without using feature ex-
traction and post-process such that the workload of
modeling is relatively light.

The outline of the paper is as follows. In Section II we
present related work. The methods of data pre-processing
and the experiment results can be seen in Section III and
Section V, respectively. The details of the proposed model
are described in Section IV.

II. RELATED WORK

A. Traditional machine learning methods

Traditional machine learning methods have been applied
to solve the problem with good performance (e.g. high
accuracy). Sauerlaender-Biebl et al. [5] use GPS and ac-
celerometer data as inputs to predict transportation modes
with Fuzzy rules and achieve relatively high accuracy in
practice. If the data collected from accelerometer, gyroscope,
magnetometer, linear accelerometer, gravity, orientation, and
ambient pressure are used, XGBoost [6] and Random For-
est [7] are proved as effective methods. Support Vector
machines is also a classical method in this problem (e.g. [8])
and frequently regarded as a benchmark compared with
deep learning methods. Usually traditional machine learning

1http://www.shl-dataset.org/activity-recognition-challenge/



methods require to extract features in time an frequency do-
main [9], which means expert knowledge and extra workload
are critical.

B. Deep learning methods

Meanwhile, Deep learning methods attract attention. Deep
neural networks (DNNs) with fully-connected layers for
mode detection have been documented in [10], with con-
siderable accuracy improvements over traditional machine
learning methods.

With advances in deep learning, more complicated models
have been constructed, but the models mainly focus on
Convolutional Neural Networks (CNNs) with time-series
inputs [3], [11]. A Long Short-Term Memory (LSTM) com-
bined with CNN with good performance on two different
data sets is documented in [12].

The employed sensors in the contemporary approaches
differ.

A combination of accelerometer, gyroscope, and mag-
netometer is used in [10]. Further linear accelerations and
orientations, derived from the IMU measurements, are em-
ployed in [12]. With additional gravity and ambient pressure,
a total of 7 input signals are processed in [11]. Processing
techniques including Hidden Markov Models (HMM) [11],
[13] and Majority Voting (MV) [7], [14] are applied to
improve the accuracy or F1 scores at the price of increased
computations.

III. DATASET AND DATA PREPROCESSING

A. Dataset and Sensors

The publicly available dataset, known as the University
of Sussex-Huawei Locomotion (SHL) dataset [15] contains
a total of 8 annotated main modes i.e. Still, Walk, Run,
Bike, Car, Bus, Train, and Subway. In this paper, for the
training and evaluation, we have used a subset of this dataset
which was used for the SHL challenge in 2018. The data
provided for this challenge comprises 271 hours of training
data and 95 hours of test data. The given data is segmented
into non-overlapping frames of length 1-minute, and frames
are randomized to reduce the temporal dependency among
them. Each frame consists of 6000 samples, i.e. 60 seconds
of data recorded with a frequency of 100Hz. The training
set consists of 16310 labelled frames in total. As each
frames consists of 6000 samples, the total size of training
data used for each sensor is 16310 × 6000 indicating the
sample-wise transportation activity. The dataset contains the
values of accelerometer, gyroscope, magnetometer, linear
accelerometer, gravity, orientation (quaternions), and ambient
pressure. In this paper, we use only accelerometer and mag-
netometer measurements for transportation mode detection,
while keeping the computational complexity low.

An accelerometer records the earth’s gravity and the
acceleration of the device along three axes ( x-, y-, and z-
axis) [1]. Fig. 2 shows the acceleration values for different
transportation modes measured along x-axis. The trend of
mode ”Still” is relatively stable but acceleration values are

non-zero due to the influence of gravity. When the smart-
phone user moves, the value as they are combined effect of
earth’s gravity becomes more fluctuating and noisy.

A magnetometer is used to measure the strength and
direction of the magnetic field along x, y, and z axes
of the used device [1]. The magnetometer measurements
are influenced by both the earth’s magnetic field and the
presence of magnetic materials in the surroundings, such
as other electrical devices. In an indoor environment, the
measurements are badly affected by such devices. Simi-
larly, the magnetometer measurements are distorted by the
electromagnetic field when smartphone users are in a car,
bus, subway, or train. These modes are easy to distinguish
from other transportation modes as shown in Fig. 3, the
magnetometer values along the x-axis for each transportation
mode. The trends of car, subway, and train differ, especially
with values on the negative axis as compared to the modes
like still, walk, run, and bike. A similar pattern follows along
the y-axis and z-axis of the measured data.

B. Data segmentation and labelling policy

In the used dataset, a time window of duration 60 seconds
is used to assign the labels to raw sensor values. The same
time window is used during the testing and evaluation phase.
We have investigated the effects of varying the window
length on the performance of the model if any, as described in
Sec. V. One-hot encoding is used for the labels while training
our model. But due to the data segmentation process, a time
window can have more than one mode of transportation. To
address the conflict among the labels, the majority labelling
policy is used as explained in [11]. When there is more
than one label in a given time window, the label with the
maximum time duration is assigned to the whole window.
For example, in a time window of 30 seconds, if the
transportation mode ”Still” occupies more than 15 seconds
and the other modes occupy fewer than 15 seconds, the label
of this time window is assigned as ”Still”.

C. Smoothing and downsampling

Raw values received from an IMU are known to suffer
from bias and noise [1]. Smoothing is one of the techniques
to remove the random and unwanted variations from the data.
We use a central moving average algorithm which is a special
Savitzky-Golay filter [16] and averages an odd number of the
nearest neighbors of a data item. The number of the nearest
neighbors, m = 5, is predefined as explained in [3].

By downsampling the dataset we bring it to a more man-
ageable size and make the learning phase computationally
less expensive as well. We, as described in [12], reduce the
sampling frequency by taking the mean of the data. For
example, if the required frequency after downsampling is
50Hz, from the original 100Hz, every two data items are
merged into one data item. We apply and compare different
downsampling frequencies, details in Sec. V, to explore the
best settings.



Fig. 2. Acceleration recorded along the x-axis of the measurement device for the transportation modes.

Fig. 3. Magnetic field recorded along the x-axis of the measurement device for the transportation modes.

D. Magnitude and jerk calculation

The x-, y- and z- values of an accelerometer and magne-
tometer measurements indicate the quantity and direction of
acceleration and magnetic field respectively [1]. However,
the direction of axes is based on the phone coordinate
system. The values change dramatically if the orientation of
the smartphone is not fixed. Therefore, applying magnitude
aims to eliminate the influence of orientation changes on the
transportation mode detection as mentioned by [3], [10] and
[17] as well. The magnitude of each sensing data, Ms here
s ∈ {Acc,Mag}, is calculated as shown in Eq. (1).

Ms(t) =
√
d2x + d2y + d2z (1)

where d is the data point form x,y and z axis of either a
magnetometer or accelerometer after applying smoothing and
down sampling at a given time t.

Jerk is the rate of change of acceleration [18]. In case of
sudden movements, the acceleration is non-uniform and can
be estimated with the help of the jerk. It is often utilized
in GPS-based mode detection [18], [19] as a significant
factor in safety issues such as critical driver maneuvers and
passengers’ balance in public transport [18]. We aim to
benefit and gain more insights by estimating the jerk and
its effects on the detection of transportation modes if any, as
mentioned by [7]. The same logic is applied to magnetometer

measurements, to calculate the rotation rates between two-
time points around an axis. j⃗s(t) in Eq. (2) donates the jerk
of a data point d⃗ for sensor s ∈ {Acc,Mag}.

j⃗s(t) =
d⃗(t+ 1)− d⃗(t)

∆t
(2)

Here t = 1, 2, 3, ..., n−1 is the timestamp of data points and
∆t is the time difference between two data points.

IV. CNN-BILSTM MODEL

The architecture of our proposed model is shown in Fig 5.
The network is inspired by Liang et al. [3] but compared to
their only one source of information i.e. 1D magnitude of
acceleration, our proposed model is multi-dimensional for 6
parameters. We have used the following parameters: 3D ac-
celerometer measurements, the 1D magnitude of accelerom-
eter measurements, the jerks for 3D accelerometer measure-
ments, 3D magnetometer measurements, the 1D magnitude
of magnetometer measurements, and the change rate for
3D magnetometer measurements. In this paper, we refer to
each parameter as a channel for our network. Our proposed
network has an input layer, 5 1D convolutional hidden layers
handling the local dynamics of time series, a BiLSTM layer,
and 2 fully connected layers. Thus the network has two
major parts i.e. CNN layers and BiLSTM layer. At first,
each of the 6 parameters is processed through 5 convolutional



layers separately and then concatenated together to be fed to
the BiLSTM layer. The overall system architecture, where
conretizing the inputs, model and outputs, is displayed in
Fig. 4.

Fig. 4. System architecture.

For the first part, we gradually increase the number of
filters in the convolutional layers (termed as a filter bank)
and reduce the kernel size in each successive layer. The
filter banks move with a stride size of 1 in each layer. The
convolutional layer has 32 filters with a kernel size of 15.
The second and the third convolutional layer have 64 filters
and a reduced kernel size of 10. Then the fourth and the
fifth convolutional layer have 128 filters with kernel size 5.
After each convolutional layer, a max-pooling layer is added
with pooling size 4 and stride size 2. To solve the internal
covariate shift problem and make the model training phase
stable, batch normalization [20] is applied before the first,
the third, the fourth, and the fifth convolutional layer. Batch
normalization before the second layer does not improve the
performance of the network.

After processing by five convolutional layers, six channels
are concatenated and fed into a BiLSTM layer with the unit
size 128. A BiLSTM consists of two LSTMs: each taking the
input in forward and backward directions, respectively, which
is believed to extract more context information of inputs and
outperforms a unidirectional LSTM.

The proposed configuration for the depth of the network,
and the number of neurons in the input and subsequent layers
represent the used training data well. The data finally is
processed by two fully-connected layers. The first layer has a
unit size of 128 and the second one has a unit size of 8 which
is the same as the number of transportation modes. The
output after this fully-connected layer is the probability of
transportation modes. The mode with the highest probability
is labeled as the predicted transportation mode. The selection
of an appropriate activation function is a critical part of the
design of a neural network. We have used Rectified Linear
Unit (ReLU) for the hidden layers owing to its capability to
overcome the vanishing gradient problem [21]. As we have a
multi-class classification, for the output layer we use softmax
to output the series of values, i.e. the probability of each
class which sums to 1.0. The loss function of the proposed
model is Mean Squared Error (MSE) to measure the average

Fig. 5. Proposed CNN-BiLSTM model.

of the squares of the errors. To reduce the loss for each
epoch, an Adaptive Moment Estimation (Adam) [22] is used
as the optimizer. Unlike classical stochastic gradient descent
which can only maintain a single learning rate, Adam can
adapt the learning rate to achieve better performance. Lastly,
to handle the issue of overfitting on training data, dropout
and regularization are two widely accepted techniques. We
however found that for our case L2 regularization applied in
the first fully-connected layer performs better as explained
in Sec. V.

V. EXPERIMENT

In our experiments, we evaluate the performance of the
proposed network with varying the downsampling frequen-
cies and the time window length on the SHL dataset [15].
We also compare the results with previous work and other
machine learning-based approaches.

The model is implemented with Keras. For training the
network, the originally provided train dataset is split into
a sub-training set and a sub-validation set with a ratio of
9:1 by using Stratified Shuffle Split [23]. In which the label
distribution of the sub-training set and the sub-validation
set are the same. The test set is the same as the original
SHL challenge dataset. To address the problem of overfitting,
we use the early stopping strategy during the training phase
while monitoring the loss and accuracy on the sub-validation
set. The hyperparameters of our model, details mentioned in
Sec. IV, and their selected values are listed in Tab. I.

To evaluate and compare the performance of our proposed
network with state-of-the-art methods, we use precision,
recall and the macro-averaged F1 score [24] as shown in



TABLE I
PARAMETERS FOR THE CNN-BILSTM MODEL

Parameter Value
L2 regularization 0.001

Learning rate 0.0001
Minimum learning rate 0.00001

Factor of reduced learning rate 0.2
First order moment weight in Adam 0.9

Second order moment weight in Adam 0.999
Batch size 100

Eq. (3).

F1 =
1

C

C∑
i=1

2 · recalli · precisioni

recalli + precisioni
(3)

Where C is the number of transportation modes.
During the training phase, the model is initialized with

random weights so the value of evaluating metrics can
change in different runs of the training. To better evaluate the
model, the values of metrics are estimated using the mean
of 10 different training sessions. Meanwhile, we also test
whether these 10 metrics follow a Normal distribution using
a Shapiro-Wilk test method [25]. By doing so, the outliers in
the training results can be detected. If an outlier is found, we
train the model again and replace the outlier with the new
evaluation result until no outliers are found.

A. Evaluation on time window and downsampling frequency

Our proposed model is tested with different lengths of the
time window and downsampling frequencies. At first, we
test the time window length of 60 s as originally provided
in the SHL dataset [15]. Then we reduce and evaluate the
window lengths of 30 s, 20 s, 10 s and 5 s, as 60 s is integer
multiple of these window lengths. The used downsampling
frequencies include 100Hz (i.e. no downsampling), 50Hz,
25Hz, 20Hz, 10Hz, 5Hz and 1Hz.

First, it is worth to noticing the computing efficiency of
this model. After we count the running time on the test set,
it takes 1.57 milli second per frame with 1 GPU on NVIDIA
GPU- GeForce GTX 1080 Ti.

Fig. 6 shows the prediction accuracy on the test set with
the mentioned window lengths and downsampling frequen-
cies. As the length of time window increases from 5 s to
60 s, the average accuracy of transportation mode detection
increases. The highest accuracy of 91.21% is observed with
a window length of 60 s and frequency of 100Hz, i.e. when
no downsampling is performed. For the remaining time
windows, downsampling frequency 50Hz shows relatively
higher accuracy. It is noticed that when downsampling fre-
quencies range from 20Hz to 50Hz of time window length
60 s, the accuracy values are quite similar. Then a One-Way
ANOVA [26] is applied to see whether they have significant
differences in statistical view and we found they do not differ
from each other in the confidential interval of 95%. It is also
interesting to see when downsampling frequencies jump from
1Hz to 5Hz, irrespective of window length, the increase in
accuracy is significant.

Fig. 6. Accuracy with different time windows and frequencies.

The results of F1 scores are shown in Fig. 7. The time
window 60 s gets the best F1 scores compared to other
window lengths. The downsampling frequency 20Hz in time
window 60 s gets the highest average F1 score of 90.40%.
Other higher sampling rates 25Hz, 50Hz and even 100Hz
have no significant difference in the F1 score. So, the best
settings to run the proposed model is with downsampling
frequency 20Hz in time window 60 s as it consumes less
training resources compared to higher frequencies. The pro-
posed network shows promising results with the smallest
time window and a moderate downsampling frequency too.
As depicted in Fig. 7, with a time window of 5 s and
downsampling frequency of 50Hz, the F1 score is more
than 80% which means the proposed model can extract
enough features in a short time window length and predict
transportation mode with good F1 scores.

Fig. 7. F1 score with different time windows and frequencies.

Tab. II displays the class-wise confusion matrix, precision,
recall and F1 score with downsampling frequency 20Hz for
the time window 60 s. In the confusion matrix, it can be seen
that the F1 scores of Walk, Run, Bike, and Car are more than
90%, indicating a good classification. However, the F1 scores
of Train and Subway are relatively low. This phenomenon is
also observed in other research papers testing SHL dataset
[15], as train and subway are very similar and prone to miss
classification against each other.



TABLE II
EVALUATION WITH FREQUENCY 20Hz IN TIME WINDOW 60 s

Predicted labels
Still Walk Run Bike Car Bus Train Subway

G
ro

un
d

Tr
ut

h

Still 929 8 0 4 1 10 9 0
Walk 9 722 0 0 0 0 0 0
Run 0 1 336 0 0 0 0 0
Bike 4 0 0 507 0 0 0 0
Car 73 0 1 2 1113 84 2 1
Bus 70 4 1 0 10 805 2 9

Train 96 1 0 0 4 39 457 50
Subway 11 0 0 0 0 1 31 291

Recall(%) 96.7 98.8 99.7 99.2 87.2 89.4 70.6 87.1
Precision(%) 78.0 98.1 99.4 98.8 98.7 85.7 91.2 82.9
F1 score(%) 86.3 98.4 99.6 99.0 92.6 87.5 79.6 85.0

B. Comparison with previous work

Tab. III presents the comparison results with previous
works using deep learning methods. Gjoreski et al. [11]
show better performance while preprocessing, 7 types of
sensors, using complex feature extraction, and deep multi-
modal spectro-temporal fusion. For the classification, they
introduced a meta-model that combines the deep learning and
machine learning-based model followed by a post-processing
step of Hidden Markov Model (HMM) smoothing. By doing
so, their model size is 500 MB. However, our model is lighter
with minimal resources needed to preprocess, and classify
the input data without the need to post-process it. Our
proposed CNN-BiLSTM model, whose model size is only
24 MB, has a light architecture requiring less computational
resources for training and inference. Additionally, We use
data from only two types of sensors.

Tab. IV compares our approach with traditional machine
learning methods. The approach used by [6] shows a higher
F1 score but at the expense of greater complexity due to
using 7 types of sensors (model size 43 MB). Considering
the factors like, the number of sensing data, using the
subset of SHL dataset [15], and not using extensive pre-
processing for feature extraction our model is lightweight and
worthy of recognition in capturing key features of different
transportation modes.

VI. CONCLUSION

In this paper, we focus on solving the transportation mode
detection problem using a CNN-BiLSTM model. The used
dataset to train and evaluate the model is SHL dataset
challenge 2018. We have evaluated different configurations
for the time window lengths and downsampling frequen-
cies of given data to achieve the optimal performance of
the classifier. We can detect and classify the 8 modes of
transportation with high accuracy of 90.61% and an overall
F1 score of 90.40%.

Compared to many previous studies using multiple sensors
as input, our proposed model only uses accelerometer and
magnetometer measurements. Meanwhile, we skip feature
extraction and post-process to save workloads. The experi-
ment results show that the proposed light architecture of the

model can obtain comparable accuracy and F1 score with
even a lower frequency of 20Hz making the deployment of
our model effortless. In future, we want to further investigate
the relatively lower F1 score of the classes i.e. train and
subway and the rationale behind false classification of them
into the transportation mode still.
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