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Abstract 

Floods are a natural hazard that can seriously impact the affected communities. Therefore, 

improvements in flood management are necessary to better prevent and manage flood 

disasters. These can be achieved by mapping flooded areas using remote sensing data 

such as Synthetic Aperture Radar (SAR) data. SAR has the advantage of covering large 

spatial extents and operating weather and daylight independently. While conventional 

methods exist to detect water in SAR data, Convolutional Neural Networks (CNNs) have 

produced excellent results. The results, however, do not come without inaccuracies and 

uncertainties. Therefore, Bayesian Convolutional Neural Networks (BCNNs) have been 

developed to estimate the uncertainties of the model.  

This study analyzes the conditions that prevail in misclassified areas. Certain landcover 

classes like bare soil show higher percentages of wrongly labeled pixels. The behavior of 

the estimated uncertainties is also tested over pixels that are wrongly and correctly labeled 

as well as over different landcover classes. It is found that uncertainties are higher over 

misclassified pixels and certain landcover types like bare soil and herbaceous vegetation. 

Based on the findings that uncertainties are elevated over falsely labeled pixels, the pixels 

are turned to their opposite class when exceeding an uncertainty threshold. After the re-

labeling, the performance metrics are compared to the initial metrics. In this study, mul-

tiple setups for relabeling are tested and compared. The approach is found to be working 

in certain areas.  

The study is conducted to confirm the applicability of BCNNs to generate precise flood 

mapping products and to estimate model uncertainties. The relabeling also aims to shorten 

the process of training data creation. Training data creation is a resource-intensive step. 

By improving the results after the classification, less accurate training data might be usa-

ble to train the model. As a result, more training data can be efficiently generated to cover 

more expansive areas globally. The findings provide a basis to create more complete 

models in the future and further assist flood management. 
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Übersicht 

Überflutungen stellen eine Naturgefahr dar, die weitreichende Folgen für die betroffenen 

Gemeinden haben kann. Zur besseren Prävention und zum besseren Verständnis der Na-

turgefahr werden Überflutungskarten genutzt. Diese können aus Fernerkundungsdaten, 

wie Synthetic Aperture Radar (SAR) Daten generiert werden. SAR hat den Vorteil, dass 

es große räumliche Flächen abdecken kann und wetter- und tageslichtunabhängig ope-

riert. Es existiert eine Vielzahl herkömmlicher Methoden der Wassererkennung aus SAR 

Daten. In den letzten Jahren werden in der Literatur zunehmend Convolutional Neural 

Networks (CNNs) genutzt. Die Ergebnisse besitzen aber dennoch Ungenauigkeiten und 

Unsicherheiten. Um die Unsicherheiten eines Modells zu ermitteln, wurden Bayesian 

Convolutional Neural Networks (BCNNs) entwickelt. 

Diese Arbeit analysiert die Gegebenheiten, die in fehleranfälligen Bereichen vorherr-

schen. Es wurde erkannt, dass einzelne Landnutzungsklassen, wie unbewachsener/leicht 

bewachsener Boden fehleranfälliger sind. Es wurde außerdem getestet wie sich die ermit-

telten Unsicherheiten über falsch und richtig klassifizierten Bereichen und über den ein-

zelnen Landnutzungsklassen verhält. Es wurde herausgefunden, dass die Unsicherheiten 

über falsch klassifizierten Bereichen, sowie über Bereichen der Klassen von unbewach-

senem Boden und Kräutervegetation, erhöht sind. Basierend auf der ersten der beiden 

Erkenntnisse, wurden Pixel oberhalb eines bestimmten Unsicherheitswertes in die gegen-

teilige Klasse umgewandelt. Danach wurden die Genauigkeitsmetriken mit den ursprüng-

lichen Werten verglichen. Der Ansatz scheint für bestimmte Bereichen zu funktionieren. 

In dieser Studie wurden mehrere Modellsetups für den Versuch getestet. 

Die Studie wurde durchgeführt, um die Genauigkeit der BCNNs zu prüfen. Das Umwan-

deln von Bereichen mit hoher Unsicherheit zielt auch darauf ab, den Prozess der Trai-

ningsdatengenerierung zu verkürzen. Die Erzeugung von Trainingsdaten ist ein ressour-

cenintensiver Schritt. Durch die Verbesserung der Ergebnisse nach der Klassifizierung 

können weniger genaue Trainingsdaten zum Trainieren des Modells verwendet werden. 

Infolgedessen können mehr Trainingsdaten effizient erstellt werden, um größere Gebiete 

weltweit abzudecken. Die Ergebnisse bilden eine Grundlage für die Entwicklung umfas-

senderer Modelle in der Zukunft und zur Unterstützung des Hochwassermanagementes.  
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1 Introduction 

Natural hazards can have an immense impact on human lives and activities. They are 

associated with natural processes that can have extensive consequences for humans, prop-

erties, and economies. Affected communities often cannot compensate for the damages 

and rely on outside help. Natural hazards can appear in different forms, like earthquakes, 

tsunamis, volcanic eruptions, or flooding (Bokwa, 2013; Bryant, 2005). Floods pose one 

of the most impactful natural hazards on a global scale. They are defined as an increase 

in water level and thus inundating areas usually water-free (Merz et al., 2010; Tsakiris, 

2014). Damages to communities occur when there is an interaction between the flood and 

socio-economic structures. The level of damage is determined by the number of affected 

humans and the property value (Barredo, 2009; Mederer, 2020). According to the Emer-

gency Events Database, riverine flooding events caused financial damages of almost 461 

billion US-Dollars and killed nearly 70 thousand people worldwide in the years 2000 to 

2022 (EM-DAT, 2022). The impact of climate change on future global flooding activity 

has been widely researched. An intensification of the hydrological water cycle is expected 

for all global climate regions. The higher temperatures provide a higher water availability 

over large parts of the globe. Therefore, an increase in the frequency and intensity of 

heavy rain events and resulting floodings is expected during the following centuries (Ta-

bari, 2020). 

Flood assessments can help avoid possible damage and decrease the impact of hazardous 

flooding events. In addition, they provide a data basis for first responders and for other 

forms of disaster management. For example, the size of the flooded areas can be extracted 

to assess a flood. This provides information about the event's location, extent, and spatial 

distribution (Mudashiru et al., 2021). There are several possible applications of flood 

mapping products, one being the near real-time generation of flooding maps. They can 

warn residents and assist first responders (Z. Li et al., 2017; Martinis et al., 2009). An-

other possibility is to create maps after the flood to analyze the event's impact and conse-

quences (van der Sande et al., 2003).  

Remote Sensing data have been widely used as a basis for flood assessment, due to the 

extensive spatial coverage of the data, especially in satellite remote sensing imagery. The 

sensors receive electromagnetic waves and allow assumptions about the imaged surface. 
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Two operational types of remote sensing are used for water surface mapping. Optical 

systems are passive as they only receive radiation in the visible and infrared range (K. Li 

et al., 2020). Radar systems, especially Synthetic Aperture Radar (SAR), actively emit 

and receive radiation in the microwave range. SAR is widely used for flood mapping as 

it operates weather- and daylight-independent. As water possesses a smooth surface, the 

radiation is reflected away from the sensor resulting in low backscatter values returning 

to the sensor, thus appearing dark in the image. This is the basic assumption of water 

extraction from SAR data (Martinis, Kuenzer, & Twele, 2015). While various conven-

tional methods exist, Deep Learning approaches have gained popularity in recent years. 

Convolutional Neural Networks (CNNs) seem well suited for water mappings they speed 

up the mapping process (Helleis et al., 2022). While the developed CNNs achieve high 

overall accuracies, some areas are error-prone. This might be due to similar backscatter 

properties of smooth surfaces leading to overestimations. Other factors, like submerged 

vegetation, have been found to lead to underclassifications as the detectable water surface 

appears smaller (Martinis, Kuenzer, & Twele, 2015). Conventional CNNs also do not 

provide any information about the PRGHO¶V uncertainty per pixel. Their only result is a 

binary water mask. Bayesian Convolutional Networks (BCNNs) have been developed to 

account for this problem and offer data about the uncertainties. They utilize Bayesian 

statistics to turn the deterministic CNN output probabilistic. The uncertainties can be cal-

culated based on the probabilistic output (Hertel, 2022). However, little research has been 

conducted about the properties and the applicability of the generated uncertainties.  

This study examines the spatial distribution and preexisting conditions of error prone ar-

eas and uncertainties of a BCNN built to detect water surfaces in SAR data. It further 

investigates how uncertainties can be used to improve the classification results. This pre-

sumes that uncertainties are higher over misclassified pixels. The following research aims 

to confirm this assumption. By improving the results based on uncertainties, less accurate 

training data might be used. This could lead to lesser resources needed to generate ade-

quate reference data. 
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2 Theoretical Background and the Current State 
of Research 

The following chapter highlights the theoretical basis of Synthetic Aperture Radar (SAR) 

and different image segmentation techniques used to identify water surface areas. This 

includes a review of relevant studies. The chapter focuses on deep learning approaches 

used for image segmentation; the findings serve as a basis for the experiments conducted 

in this thesis.  

2.1 Water Detection in Remote Sensing Data 

Remote Sensing data have been widely used in image segmentation for water area detec-

tion (Brivio et al., 2002; Klemas, 2015; Sanyal & Lu, 2004a). Remote sensing sensors are 

located at a distance to the study object. They are usually satellite-, aircraft-, or Unmanned 

Aerial Vehicle (UAV) - borne. Backscattered electromagnetic radiation detected by these 

sensors can be observed. There is a distinction between optical and radar systems, which 

are used to detect flooded areas and thus provide the data foundation for flood mapping 

(Anusha & Bharathi, 2020; Markert et al., 2018; Mederer, 2020). However, it should be 

noted that remote sensing data can only be used to derive the extent of the water surface, 

not the actual extent of flooding. Therefore, to detect flooded areas, the data must be 

compared with reference data showing the water body at normal water level (Martinis, 

Kuenzer, Wendleder, et al., 2015; Mederer, 2020). 

Optical systems can detect wavelength ranges between visible and infrared light. It is a 

passive remote sensing system, meaning the sensor emits no radiation. Optical sensors 

divide these wavelengths into channels that delineate the wavelength ranges from one 

another (K. Li et al., 2020). Optical images can be used to visually interpret and manually 

map the boundaries between flooded and water-free areas. Infrared channels are particu-

larly suitable for this purpose (Deutsch & Ruggles, 1974; Mederer, 2020; Moore & North, 

1974). There also exists a variety of spatial indices used in optical water detection. Here 

different bands are offset against each other (e.g., Normalized Difference Water Index) 

(Jain et al., 2005; Mederer, 2020; Moore & North, 1974; Munasinghe et al., 2018; Su-

warsono et al., 2013).  
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Additionally, SAR data has been used for water surface detection. SAR systems provide 

the substantial advantage of operating weather and daylight independently. Flooding of-

ten occurs due to heavy rainfall accompanied by high cloud cover. In contrast to optical 

sensors, SAR waves are capable of cloud cover penetration. As a result, almost all ob-

tained SAR data can be used for flood detection and is, therefore, often used for rapid 

flood mapping applications (Lakshmi, 2017; Martinis, Kuenzer, Wendleder, et al., 2015; 

Mederer, 2020).  

2.1.1 SAR Functionality 

SAR sensors emit and receive electromagnetic radiation pulses in the microwave range 

(1 mm - 1 m wavelength). They operate in different frequency ranges of the radar spec-

trum, which are divided into so-called bands. Sentinel-1, used in this study, operates in 

the C-band, corresponding to a wavelength of approximately 5.6 centimeters. In contrast 

to passive systems, it is an active radar system and can send radar beams to specific areas. 

This allows a high temporal and spatial resolution of investigation areas (ESA, 2021; 

Mederer, 2020). The detected radiation contains information about intensity and phase 

difference. In this study, only information about intensity is used to derive water masks. 

SAR systems artificially increase their spatial resolution by summing the echoes of sev-

eral acquired radar echoes, thus simulating an extension of the actual antenna. The result 

is an increase in the spatial resolution in the direction of flight (Bamler, 2000).  

The applicability for water detection is also influenced by other technical properties like 

the chosen frequency band or the polarization. SAR can emit and receive radiation in 

Horizontal (H) and Vertical (V) polarization. This leads to possible emit-receive combi-

nations of HH, VV and the cross combinations HV and VH (Hertel, 2022; Manavalan & 

Ramanuja, 2018; Mederer, 2020). Based on the object of study different polarizations 

might be better suited. In this study, VV and VH polarized data are processed and ana-

lyzed to recognize a broader spectrum of properties. The combination has been found to 

contain optimal information for water detection (Helleis et al., 2022). The Sentinel-1 data 

used in this thesis was acquired using the Interferometric Wide Swath (IW) mode. Here 

the data is acquired by a 250 km swath (ESA, 2021; Hertel, 2022).  
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2.1.2 Scattering Principles 

Depending on the type and structure of the surface, altered signals arrive at the sensor. 

This is because different reflection and scattering mechanisms occur. For example, spec-

ular reflections appear over open, smooth water surfaces, reflecting the radiation away 

from the sensor. As a result, radiation of lower intensity returns to the sensor. As a result, 

the water surface appears in dark coloration and high contrast compared to the surround-

ing areas (Manavalan & Ramanuja, 2018). Based on this fact, water is detected in SAR 

data. Figure 1 illustrates the effects of different forms of backscattering as well as the 

interaction with different land surface types. In addition, it is visible that diffuse scatter 

mechanisms (Diffuse surface scattering, diffuse volume scattering, brag scattering) over 

land as well as over water alter the returned backscatter. These may lead to over- and 

under-classifications of the water extent.  

 

Figure 1: Mechanisms of scattering over different land and water surface types. Diffuse and specular 
components of surface-scattered radiation as a function of SAR incidence angle and surface roughness 

(Martinis, Kuenzer, & Twele 2015). 

Table 1 displays the factors leading to misclassifications of water extents in SAR data 

and their occurrence and impact on the flood classification result. Overclassifications with 
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the highest impact lie over smooth, natural surfaces (e.g., sand dunes, bare ground). The 

areas are confused for water due to their similar backscatter characteristics. The other 

central erroneous region appears behind tall structures like mountains or buildings. This 

issue intensifies the higher the recording angle is. No signal reaches the surface resulting 

in dark areas on the image. Underestimations happen mainly in flooded areas, partly or 

wholly covered by vegetation. The signal never reaches the water surface (volume scat-

tering at tree crowns) or is reflected to the sensor by corner reflections (Martinis, Kuenzer, 

& Twele, 2015).  

 

Table 1: Factors leading to over- and underclassification of flooding areas in SAR data. 
The occurrence and impact of the respective factors are displayed (changed following 
Martinis, Kuenzer, & Twele (2015). 

Overestimation of Flooding 

Factor Occurrence / 
Impact 

Shadowing effects behind vertical objects (e.g., vegetation, topography, anthropo-
genic structures) +++ 

Smooth natural surface features (e.g., sand dunes, salt and clay pans, bare ground) +++ 

Smooth anthropogenic features (e.g., streets, airstrips) ++ 

Heavy rain cells + 
  

Underestimation of Flooding 

Factor Occurrence / 
Impact 

Volume scattering of partially submerged vegetation and water surfaces completely 
covered by vegetation +++ 

Double-bounce scattering of partially submerged vegetation ++ 

Anthropogenic features on the water surface (e.g., ships, debris) + 

Roughening of the water surface by wind, heavy rain, or high flow velocity + 

Layover effects on vertical objects (e.g., topography urban structures, vegetation) + 

Note: Feature range: high +++; medium ++; low + 

 
 

Backscatter effects also vary based on the SAR wavelength the sensor is operating in. 

Longer wavelengths can penetrate canopy covers. This results in possible scattering ef-

fects with branches. As they are penetrating the canopy cover to a lesser degree, an in-

creased effect of volume scattering is detectable for shorter wavelengths. Built-up areas 

are also prone to underclassification. Reasons are the strong double-bounce effects that 

occur whether the area is flooded or not (Martinis et al., 2009; Martinis, Kuenzer, & 
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Twele, 2015). Figure 1 also illustrates the relative backscatter intensity returning to the 

SAR sensor based on surface and backscatter properties. Again, the lower intensity of 

open water areas emerges. 

2.1.3 Conventional Methods for water detection in SAR data 

Therefore, the lower backscatter intensity over open water is utilized to map water ex-

tents. The usage of SAR data for flood detection started with visual interpretation and 

manual digitization of the floodplain (Mederer, 2020; Sanyal & Lu, 2004). Disadvantages 

are the high time consumption, subjectivity of the creator, and poor reproducibility of the 

results. These disadvantages also limit the use of this technique for rapid flood mapping 

as it is barely viable for the rapid digitization of larger areas (Manavalan, 2017).   

Another digital method to map water extents in SAR data is pixel thresholding (Martinis, 

Kuenzer, & Twele, 2015). Most water classification methods perform a binary classifica-

tion based on the backscatter value of each pixel. Each pixel of the SAR data set has a 

value of the measured amplitude or intensity. A threshold value is chosen to separate the 

pixels that represent water and those that do not. All pixels below that value are classified 

as water. The quality of the threshold-based classification depends on the contrast be-

tween water-covered and water-uncovered areas. Due to waves, the increased surface 

roughness of water can lead to poorer classification results (Manavalan & Ramanuja, 

2018; Martinis, Kuenzer, & Twele, 2015). One possibility to determine the threshold is 

supervised determination. Here, the global histogram of the image is manually checked 

for the appropriate threshold value using a µtrial and error¶ approach. Then, the threshold 

is adjusted until a satisfactory classification result is obtained (Brivio et al., 2002; Marti-

nis, Kuenzer, Wendleder, et al., 2015; Mederer, 2020). An advancement of this approach 

is the empirical determination of the threshold value. Here, the threshold is calculated 

based on the statistics of the SAR (Gstaiger et al., 2012; Kuenzer et al., 2013). Further-

more, approaches to calculate the threshold automatically can be found in the literature. 

These can be particularly useful for the rapid generation of inundation maps in the event 

of a crisis (Martinis et al., 2009; Matgen et al., 2011; Mederer, 2020). 

Another approach is the Change Detection method. This method compares multitemporal 

images of the floodplain with reference datasets generated before the flooding event. A 

possible approach here is amplitude change detection. Areas are determined as flooded if 
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a significant decrease in intensity is discovered (Manavalan, 2017; Sumaiya & Shantha 

Selva Kumari, 2018). 

Object-based classification is another technique that is being used. However, only a lim-

ited number of studies have been conducted for water detection in SAR data. In object-

based classifications, individual pixels do not contain information necessary for the clas-

sification. Instead, the SAR data is divided into segments of multiple pixels containing 

homogenous information (Heremans et al., 2003; Herrera-Cruz & Koudogbo, 2009; Me-

derer, 2020). 

2.2 Advances through Deep Learning 

While there exists a variety of different approaches for water detection with SAR data, an 

increase in studies applying Deep Learning methods, especially CNNs, has been ob-

served. The following sub-chapter addresses the theoretical background behind the utility 

of CNNs for water extent detection. In particular, the benefits of using a BCNN are high-

lighted. The findings from the review of these studies are used for further analysis in this 

thesis. 

2.2.1 Convolutional Neural Networks 

CNNs are a form of Artificial Neural Networks (ANN) and belong to the domain of Deep 

Learning. Deep Learning is one of the latest advances in Machine Learning and is a form 

of Artificial Intelligence (AI).  Machine learning approaches aim to identify patterns and 

regularities by employing existing data and algorithms. The generated knowledge can be 

generalized based on the data used to train the model. The models can then be used for 

problem-solving and analyzing previously unknown data (Gevrey et al., 2003). The dif-

ference between Deep Learning and conventional Machine Learning approaches is how 

the models learn. Deep Learning methods try to simulate parts of the human brain's func-

tionality to process information. This works via connections of artificial neurons. De-

pending on the data used for training, the Neural Network can adapt and create new con-

nections between neurons. Deep Learning uses many layers to learn features of the data 

that can be adapted to the data by repeated training. Traditional Machine Learning meth-

ods use handcrafted features (e.g., vegetation indices, texture). Deep Learning and 
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Machine Learning methods can be trained in an unsupervised, supervised, or semi-super-

vised manner. Deep Learning models are especially suitable for large amounts of data 

(Abiodun et al., 2018; Gevrey et al., 2003; Wang, 2003).  

2.2.1.1  Principle and Architecture 

CNNs are a particular form of ANNs and are well suited for object recognition in images. 

The networks utilize the mathematical operation called convolution. The data supplied to 

the model passes a series of layers. A convolutional layer consists of a convolutional 

stage, applied non-linearity, and a pooling stage. During training, the CNN learns the 

values of the filter kernel used for the convolution via backpropagation. The architecture 

of a CNN is defined by the sequence of different convolutional layers the data passes. 

Further information about different CNN architectures used for water detection in SAR 

data can be found in Helleis et al. (2022). The following sections provide an overview of 

the structure of a convolutional layer (Helleis et al., 2022; Hertel, 2022). They also aims 

to explain the functionality of a CNN and the way it behaves during training and predic-

tion. The available data is split into training, validation, and test data. The training data is 

used for the actual training, and the validation data test the improvements in the perfor-

mance of the model during the training process. The test data is used to evaluate the model 

performance after the training, containing data unknown to the model (Keiron & Nash, 

2015). All datasets consist of the input and reference data to which the output is compared.  

2.2.1.2  Convolutional Stage 

During the convolution, a filter is applied pixel-wise over the input image. The filter is a 

kernel consisting of a two-dimensional array of 0 and 1. The filters and their values are 

also referred to as the model's weights (Albawi et al., 2017; Keiron & Nash, 2015). An 

element-wise product between the filter kernel and the pixels lying beneath is calculated 

for each pixel. The resulting values are summed up, and the filter is moved to the next 

pixel. Based on the filter kernel structure, different image properties might be extracted. 

For example, one filter can be applied for edge detection while another extracts other 

texture details (Albawi et al., 2018; Gu et al., 2018). Thus, the application of the filter 

integrates not only information about the pixel itself but also about the surrounding pixels. 

The resulting weighted summation is displayed in a feature map. The convolution is spec-

ified by stride, kernel size, and zero padding. Stride determines the step size at which the 

filter is moved. For example, a value of stride = 1 means the filter is moved one pixel at 
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a time. The filter size can strongly impact the outcome and must be fixed across all oper-

ations in one convolution. Zero padding defines the number of rows and columns con-

taining zeros to be added around the input, thus determining the size of the resulting fea-

ture map. Without zero padding, the feature map size would shrink after each convolution, 

limiting the number of convolutions in a network (Albawi et al., 2017; Helleis et al., 2022; 

Keiron & Nash, 2015). Figure 2 illustrates the element-wise multiplication and summa-

tion of the input data, the filter kernel, and the resulting feature map.  

 

Figure 2: A convolution executed with a 3 x 3 filter kernel and zero padding over a 5 x 5 input (Yama-
shita et al., 2018). 
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2.2.1.3  Nonlinearity 

In the next step, a nonlinearity function, a so-called activation function, is applied to the 

convolution output. The reason to add nonlinearity is to adjust or cut off the output. It is 

a vital part of the neural network. The most used function is the Rectified Linear Unit 

(ReLU) function which is defined as: 

ܽ௜ǡ௝ ൌ ௜ǡ௝ǡݖ�ሺݔܽ݉ Ͳሻ 

 ௜ǡ௝ being the input of the ReLU function at location (i,j). The ReLU function turns theݖ 

negative part to zero and retains the positive part of the input (Albawi et al., 2017; Gu et 

al., 2018; Hertel, 2022). Figure 3 illustrates the ReLU function and the expected output 

based on the input being lower or greater than 0. 

 

Figure 3: ReLU function and the expected results based on the input being lower or greater than 0 (cre-
ated according to Gu et al. 2018). 

2.2.1.4  Pooling Layer 

Subsequently, the pooling layer reduces the dimension of the output while retaining the 

features in the feature map. This also decreases the disk space and computing power 

needed for further processing. A commonly used approach is max pooling, as illustrated 

in Figure 4. The highest value inside the 2 x 2 pooling filter proceeds to the output layer. 

Various pooling methods exist, such as max pooling drop-out, averaging, or summation. 

However, in the literature, max pooling is most commonly used (Helleis et al., 2022; 

Yamashita et al., 2018). 
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Figure 4: Max pooling using a 2 x 2 filter kernel. 

2.2.1.5  Training  

Consecutive convolutional layers construct the CNN. The convolutional layers consist 

mainly of the convolutional stage, the activation function, and the pooling stage. The filter 

kernels are adjusted during training to generate a result that matches the training data. 

The method that is often deployed to update the filters is backpropagation. Here the filter 

values are adjusted to minimize the difference between the output of the model prediction 

and the desired output. This difference is measured using a loss function, also called the 

training loss. The training loss is a metric to assess the model's goodness of fit to the 

training data. It is calculated by the sum of errors for every batch in the training data. The 

definition of a batch is explained below. The direction in which the filter values need to 

be adjusted is determined by the gradient of the loss function (Helleis et al., 2022; Hertel, 

2022; Rumelhart et al., 1986). Cross-entropy and focal loss functions are often used in 

the literature. Cross-entropy loss is conventionally used in classification by deep learning 

models. However, the function tends to perform poorly when there is an imbalance in 

class distribution. This presents a problem for flood detection in SAR data as the water 

class is frequently underrepresented. 

To overcome this problem, weighted cross-entropy functions were developed. Other loss 

functions like weighted cross-entropy loss or focal loss also aim to minimize the problem 

(Hertel, 2022; Yamashita et al., 2018). Additional to the training loss, the validation loss 

is calculated and shows a similar metric. The difference is that the validation loss is cal-

culated for the validation data that was not part of the training process after each epoch. 

Epochs are a hyperparameter that is further explained in the following subsection. The 
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YDOLGDWLRQ�ORVV�VKRZV�WKH�PRGHO¶V�LPSURYHPHQW�DIWHU�WKH�ZHLJKWV�ZHUH�DGMXVWHG�EDVHG�RQ�

the training loss. Furthermore, the training and validation accuracies can be extracted. 

They show how well the model predicts the training data (it is trained with) as well as the 

validation data (it has not seen before) between each epoch (Albawi et al., 2017; Keiron 

& Nash, 2015). 

Hyperparameters are used in the setup of a CNN that greatly influence the desired output. 

One is the learning rate (i) controlling the rate at which the weight values should be 

changed every time they are updated (Jacobs, 1988). The learning rate decay (ii) deter-

mines how much the learning rate should decrease after a certain amount of epochs train-

ing (You et al., 2019). The number of epochs (iii) defines the number of repetitions for 

which the whole training data set is trained. Since updating the weights (filter values) is 

an iterative process, more than one epoch training might be necessary. Choosing the cor-

rect number of epochs also helps in reducing underfitting and overfitting. Both lower the 

PRGHO¶V�DELOLW\�WR�JHQHUDOL]H�IURP�WKH�WUDLQLQJ�GDWD�WR�GDWD�WKH�PRGHO�KDV�QRW�VHHQ�EHIRUH��

Overfitting means the model is too well adapted to the training data, so data outside that 

dataset cannot be predicted well. This happens when the training is conducted for too 

many epochs. This is also demonstrated by a divergence of training and validation loss. 

Overfitting is visible when the training loss decreases further while the validation loss 

increases again. For too few epochs, the opposite occurs, defined as underfitting. The 

model is not well enough adapted to the training data. As a result, the model cannot gen-

eralize to data outside the training data (van der Aalst et al., 2010). To avoid overfitting 

and decrease the probability of underfitting, an early stopping (iv) parameter is set. When 

there is no increase in performance metrics after a set number of epochs, the model fin-

ishes the training process. This is measured by comparison of the validation losses. An-

other parameter to be set is the batch size (v). It determines the number of tiles used for 

training at a time. After one batch, the next one is looked at. The literature generally 

agrees that the optimal batch size for CNNs is between 64 and 512. The value is usually 

set to a power of 2 (He et al., 2016; Simonyan & Zisserman, 2014). This is explained by 

optimized matrix libraries working most efficiently if a power of two is chosen (Martin 

et al., 2013). Some studies use a batch size of a multiple of 10. Radiuk (2017) suggests 

that further investigations on the optimal batch size should be conducted. The batch size 

can also be limited by the physical capabilities of the used computer, as larger batch sizes 

require higher amounts of Rapid Access Memory (RAM) in the Graphics Processing Unit 



2 Theoretical Background and the Current State of Research 24 
 

  
 

(GPU) or the Central Processing Unit (CPU) used for training and predictions of the CNN 

(Mustafa et al., 2019). Further information regarding the functionality of CNNs can be 

found in Albawi et al. (2017). 

2.2.1.6  Water Detection in SAR Data 

The output generated by a CNN is usually a deterministic sigmoid output. This is the case 

since a sigmoid function is often used as the activation function in the last convolutional 

layer. Consequently, the model's prediction generates a single sigmoid output for every 

pixel. Figure 4 illustrates the deterministic sigmoid output. The Sigmoid values stored in 

each raster output cell should not be taken as a direct representation of probabilistic un-

certainty or as frequentist probabilities. Instead, the values describe how closely a given 

pixel classification matches the training distribution. Values closer to 1 are nearer to the 

class water. For values closer to 0, it is the opposite case. Values around 0.5 are assumed 

to be unclear pixels. Generally, a threshold of 0.5 is chosen, and pixels exceeding this 

threshold are labeled as class water (Helleis et al., 2022; Hertel, 2022).  

 

Figure 5: Deterministic sigmoid output (Hertel, 2022) 

The functionality of this approach has been tested very successfully in multiple scientific 

studies (B. Liu et al., 2019; Nemni et al., 2020). CNNs experienced a substantial increase 

in usage to answer various geophysical research questions. There appears to be good ap-

plicability to detecting water surfaces in SAR data using CNNs. The methodology has 

outperformed various conventional methods (Helleis et al., 2022). Using CNN, Liu et al. 
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(2017) was the first study to generate flooding masks from Radarsat and ERS-1 data di-

rectly. According to Helleis et al. (2022), Kang et al. (2018) described the importance of 

using different scenes as the training, validation, and test data to avoid spatial autocorre-

lation. Liu et al. (2019) tested the impact of using different polarizations as inputs. They 

concluded dual polarizations and VH polarization to produce the most accurate results. 

Nemni et al. (2020) tested the approach, compared to most prior studies, over different 

geographic conditions globally. They also tested multiple CNN architectures and con-

cluded that the U-Net architecture is most suitable for water surface and flood detection 

in SAR data. This hypothesis has been confirmed by multiple other studies (Bonafilia et 

al., 2020; Muñoz et al., 2021; Pai et al., 2020). Most recently, Helleis et al. (2022) com-

pared the effectiveness of multiple CNN architectures for water surface detection and 

compared the results to an operational rule-based processor. The rule-based processor 

conducts water mapping by automatically thresholding the SAR data (Twele et al., 2016). 

The CNN models outperformed the rule-based processor in all conducted experiments. 

However, water surface detection in SAR data faces multiple challenges. These occur 

with the use of conventional methods as well as with CNNs. Multiple conditions hinder 

correct classifications in certain areas. These errors have been recognized to originate 

from different geographical and physical sources. Water detection relies on a sufficiently 

high contrast between water and non-water areas. Water is commonly detected via thresh-

olding as the water generally corresponds to low backscatter values (as mentioned in sec-

tion 2.1.2). However, this is also a characteristic of sand areas in arid regions, which may 

lead to incorrectly detected water pixels (Martinis et al., 2018). Other challenging land 

covers and uses have also been identified, including mountainous regions, due to the pres-

ence of radar shadows, built-up areas, and submerged vegetation, among others (Bertram 

HW�DO���������+HOOHLV�HW�DO���������2¶*UDG\�HW�DO���������:HVWHUKRII�HW�DO�� 2013). While 

those regions are often mentioned in studies, few attempts have been made to quantify 

these areas. Expanding knowledge about preexisting conditions of error-prone areas is 

vital to further improve classification results in those areas. Additional details about the 

advancements of CNNs for water surface detection can be found in Helleis et al. (2022).  

2.2.2 Advancements by Uncertainty Estimations 

CNNs produce a deterministic sigmoid output. This does not consider any uncertainties 

in the prediction, as only binary watermasks are created with a sharp border between 
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water and non-water classes. Uncertainties may originate from different sources. The 

quality of the training data strongly depends on their way of creation. Errors in hu-

manmade and automatically generated watermasks can occur as both rely on the expertise 

and accuracy of their producers. The addition of uncertainties to the binary watermask 

might prove reasonable. Falsely labeled areas could have severe consequences when pro-

vided as a near real-time flooding product. BCNNs might provide a method to generate 

uncertainty estimations for deep learning approaches (Hertel, 2022). 

2.2.2.1  Aleatoric and Epistemic Uncertainty 

Different types of uncertainties mentioned in the literature should be elaborated to better 

understand the uncertainty that can occur in a CNN. In regression modeling, two types of 

uncertainty arise called aleatoric and epistemic uncertainty. Aleatoric uncertainty is as-

sumed to be the randomness of the data that the model cannot explain. Additional data 

and information are not able to reduce this uncertainty. Contrarily, a lack of knowledge 

or data is presumed to be the reason for epistemic uncertainties. The addition of further 

information might be able to decrease this uncertainty. For most applications in Machine 

Learning, only a limited amount of data is available. Thus, epistemic uncertainty can only 

be decreased to a certain point (Hertel, 2022; Hüllermeier & Waegeman, 2021; Kiu-

reghian & Ditlevsen, 2009). Figure 6 provides a schematic overview of both types of 

uncertainty. Even though sufficient information is available in the left figure, the predic-

tion at the marked point possesses an aleatoric uncertainty. This is due to the overlapping 

of the two classes. In the right figure, a lack of available data causes a lack of knowledge 

about the correct hypothesis. This is expressed as a case of epistemic uncertainty (Hüller-

meier & Waegeman, 2021). 

 

Figure 6: Aleatoric and Epistemic uncertainty: Even though enough information exists about the optimal 
hypothesis, the prediction at the marked point possesses an aleatoric uncertainty as the classes overlap 

(left); A lack of available data causes a lack of knowledge about the optimal hypothesis, defined as epis-
temic uncertainty (Hüllermeier & Waegeman, 2021). 
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A way to capture the aleatoric uncertainty is by calculating the range of +/- 1 or 2 standard 

deviations from the mean. This assumes that a relationship between two variables exists. 

The epistemic uncertainty can be estimated by expressing the weights of a model as a 

posterior probability distribution curve. The weights are randomly picked based on the 

distribution curve, and the output varies for each prediction. As a result, the model be-

comes probabilistic. Modern machine learning frameworks allow a combination of those 

two uncertainties. This approach can then be used for uncertainty estimation in CNNs 

(Hertel, 2022; Sountov et al., 2019). 

2.2.2.2  Bayesian statistics and Bayesian inference 

The uncertainty estimations generated for CNNs are based on Bayesian statistics. Bayes-

ian statistics are EDVHG�RQ�WKH�%D\HV¶�WKHRUHP�DQG�are used in data analysis to update the 

available knowledge of a parameter with the information provided by observed data. This 

available knowledge is captured by the so-called a priori distribution. A parameter's actual 

value is considered random since the value is uncertain. Therefore, the prior distribution 

and the information added by new data are used to form a posterior distribution. This 

opens the possibility of directly using the rules of probability to make inferences about 

the parameter (Bolstad & Curran, 2016; van de Schoot et al., 2021)��7KH�%D\HV¶�7KHRUHP�

was first mentioned in an essay by Thomas Bayes in 1763 (Bayes, 1763).  

The Theorem relates conditional probabilities. When given two events A and B, ܲሺܣȁܤሻ 

describes the conditional probabLOLW\�RI�%�KDSSHQLQJ��JLYHQ�WKDW�$�KDSSHQV��%D\HV¶�WKHR�

rem creates a relation between the two conditional probabilities ܲሺܣȁܤሻ and ܲሺܤȁܣሻ. In 

the utilization for Neuronal Networks, the posterior distribution describes the conditional 

probability between a model parameter ߠ and the provided data ߛ (Bolstad & Curran, 

2016; Hertel, 2022; van de Schoot et al., 2021)��%D\HV¶�7KHRUHP�LV, in this case, described 

as: 

 

ܲሺߠȁߛሻ ൌ
ܲሺߛȁߠሻܲሺߠሻ

ܲሺߛሻ
 

 

Where  

ܲሺߠሻ is the prior distribution; it does not include any information about the ob-

served data ߛ. 
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ܲሺߛሻ is the prior distribution of the observed data ߛ and acts as a normalizing 

constant. 

ܲሺߠȁߛሻ is the conditional probability of ߠ, given ߛ. This is the posterior distribu-

tion as the model parameter ߠ is calculated based on the provided data ߛ. 

ܲሺߛȁߠሻ is the conditional probability of ߛ given ߠ. This represents the likelihood 

function. 

 

Bayesian inference describes the probability of the hypothesis being true based on the 

added data. In the case of the deep learning model, the target is to compute the true pos-

terior distribution of a parameter based on the added data. The function of calculating the 

posterior distribution is intractable, as Shridhar et al. (2019) mentioned. Thus, an approx-

imation of the true distribution is necessary. This can be achieved by using variational 

inference. It is possible to approximate the distribution by utilizing a finite number of 

variables. As the approximate distribution needs to be as close as possible to the true one, 

the Kullback-Leibler (KL) divergence is introduced. KL divergence is used to identify 

the resemblance of two distributions and is tried to be reduced as much as possible. How-

ever, it still contains intractable elements. To resolve this problem further, it has been 

proven that minimizing the KL divergence corresponds to maximizing the log evidence 

lower bound (ELBO) (Hertel, 2022; Shridhar et al., 2019). The variational inference may 

be combined with backpropagation as the Bayes by Backprop algorithm introduced by 

Blundell et al. (2015). This means the filter parameters may be represented as a prior 

distribution instead of fixed filter values and can be updated using the Bayes variational 

inference to approximate the posterior distribution.  

2.2.2.3  Bayesian Convolutional Neural Networks 

BCNNs are based on a probabilistic approach towards ANNs and, more specifically, 

CNNs. ANNs are trained deep learning models, and during the training process, the 

weight of each neuronal connection is learned to generate the desired output. This com-

monly happens using the backpropagation algorithm (Gu et al., 2018; Jospin et al., 2022; 

Simonyan & Zisserman, 2014). The weights are updated until a model matching all spec-

ifications set by the hyperparameters is created. The weight values are fixed values after 

training. Given the same input for the prediction, the trained model will always generate 

an identical output (Keiron & Nash, 2015). Bayesian Neural Networks (BNNs) integrate 

a stochastic element. By utilizing Bayesian statistics, the model is not learning a fixed 
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weight value but rather the weight over a probability distribution function. This function 

acts as the prior distribution. During the training process, this distribution is updated using 

Bayesian inference to obtain a posterior probability distribution. As the function is intrac-

table, a variational inference approach is conducted to approximate the true posterior dis-

tribution (Hertel, 2022; Jospin et al., 2022). Once updated, the generated posterior distri-

bution acts as the prior distribution for the next training step. Figure 7 shows the sche-

matic difference between the neurons of a conventional ANN and a BNN. Here the 

weights are not one fixed value, but the weight values get randomly picked in accordance 

with the probability distribution. This generates altering outputs for every prediction of 

the same input turning the model probabilistic (Gal & Ghahramani, 2015; Jospin et al., 

2022). 

 

Figure 7: Schematic structure of a simple ANN and BNN. The weights are fixed values for the ANN, and 
for the BNN, values are along a probability distribution (Jospin et al., 2022). 

For CNNs, the weights are not single values but filter kernels that perform the mathemat-

ical operation of convolution. Those filter kernels are updated during training. BCNNs 

fuse the concepts of CNN and BNN. Therefore, the kernel values are determined as dis-

tribution curves. These get updated during training via the Bayes by Backprop algorithm. 

In this case, the model also possesses a slightly different model setup for each prediction 

resulting in differing results (Blundell et al., 2015; Gal & Ghahramani, 2015; Hertel, 

2022; Jospin et al., 2022).  
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2.2.2.4  Uncertainty estimations by BCNNs 

The BCNN used in this study was introduced by Hertel (2022). The work also included 

estimating two different uncertainty definitions elaborated further in this section. Con-

ventional CNN used for water segmentation generate a deterministic sigmoid output, as 

described in section 2.2.1. Here a single binary watermask is generated, and the model 

setup does not change once the model is trained, regardless of how often a prediction is 

conducted on the input. In contrast, for BCNNs, the setup changes for every prediction 

resulting in altering results. As a result, numerous predictions create a series of different 

sigmoid outputs for one prediction input. Based on this series, a probabilistic sigmoid 

ensemble output is created. This means that for each pixel, multiple sigmoid values are 

generated. The model is also capable of creating a binary watermask. For this purpose, 

the mean of all deterministic sigmoid outputs is calculated, and the watermask is created 

using a threshold. Figure 8 illustrates the difference between deterministic sigmoid output 

and a probabilistic sigmoid ensemble output. 

 

Figure 8: Deterministic sigmoid output (left) and probabilistic sigmoid ensemble output (right) (Hertel, 
2022). 

The probabilistic sigmoid ensemble output by the BCNN can be utilized to estimate the 

uncertainty. The uncertainty is often referred to as the spread of the sigmoid values per 

pixel (Blundell et al., 2015; Hertel, 2022). The uncertainty can be determined by the width 

of a confidence interval around the mean. This interval span can be expressed as  ߤ� േ  ,ߪ�

the uncertainty for each pixel is therefore defined as ሺߤ ൅ ሻߪ �െ�ሺߤ ൅ ሻߪ ൌ  ߤ where) ߪʹ

is the mean and ߪ is the standard deviation). The range of ʹߪ is no fixed definition and 

can be adjusted based on the field of application (Hertel, 2022). The definition also 
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corresponds to approximating the aleatoric uncertainty mentioned in section 2.2.2.1. Fig-

ure 9 illustrates the uncertainty as the range between the red line, marking the confidence 

interval.  

 

Figure 9: Uncertainty based on the spread of the sigmoid distribution. Displayed for a water pixel (left), 
an unclear pixel (middle), and a non-water pixel (right) (Hertel, 2022). 

This definition of uncertainty does not consider the position of the mean. A pixel in which 

the sigmoid distribution lies in a close approximation of either 0 (non-water) or 1 (water) 

might possess the same uncertainty as a pixel with a mean close to 0.5, depicting an un-

clear pixel. This is also recognizable in Figure 9. To account for this problem and to 

consider the position of the mean, Hertel (2022) proposes an extension of the uncertainty 

definition. Here the class probabilities are estimated by the areas under the probability 

function, left and right, of 0.5. Therefore, uncertainty is the probability of a class being 

correctly predicted by the BCNN. The probability can take values from 0.5 to 1, 0.5 de-

scribing the highest uncertainty of an unclear pixel. The approach is visually presented in 

Figure 10. The orange and blue coloration indicates the probability as the area under curve 

for class 0 (orange) and class 1 (blue).  

 

Figure 10: Uncertainty as the probability of a pixel being correctly labeled. Displayed for a water pixel 
(left), an unclear pixel (middle), and a non-water pixel (right)  (Hertel, 2022). 
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These definitions are further referred to as Uncertainty Definition 1 (UD1: Uncertainty 

as the confidence interval range) and Uncertainty Definition 2 (UD2: Probability of a 

class being correctly labeled). 

2.2.2.5  Application of BCNNs and Uncertainty Estimations 

Implementing the Bayesian approach to CNNs has opened the possibility of comprehen-

VLYHO\�HVWLPDWLQJ�WKH�XQFHUWDLQW\�RI�D�PRGHO¶V�SUHGLFWLRQ. This uncertainty can originate 

from various sources. For example, the reduction of inaccuracies of CNNs for water de-

tection is limited by the quality and completeness of the training data. This can lead to 

severe consequences in operational applications, for example, in medical imagery and 

flood maps provided to the first responders in case of an emergency. Uncertainty estima-

tions might prove an important step to further understanding the models' inaccuracies.  

Bayesian uncertainty was first successfully applied to CNNs by Gal & Ghahramani 

(2015). They approximated the posterior distribution with Bernoulli variational distribu-

tions and determined the uncertainty by calculating the variance over multiple predic-

tions. Shridhar et al. (2019) produced uncertainty estimations using variational inference 

for the posterior approximation. BCNNs have also been used in the field of remote sens-

ing. Landcover classifications have been conducted in hyperspectral data using Bayesian 

modeling (Haut et al., 2018; Joshaghani et al., 2022). Dera et al. (2020) proposed Bayes-

SAR, a BCNN, to perform image classification in SAR data and retrieve the uncertainty 

estimations based on the variance of the results. Their analysis confirmed highly reliable 

uncertainty values generated by the BCNN. The findings suggest that areas of higher un-

certainty correlate with wrongly labeled areas. This also corresponds to findings in other 

studies (Wei & Chen, 2021). The methodology proposed by Hertel (2022) is the first 

approach to utilize BCNNs for water and flood mapping in SAR imagery. He developed 

a BCNN and a Monte Carlo Dropout Network to derive watermasks and the correspond-

ing uncertainty estimations from Sentinel-1 data. The study also introduces the UD2 men-

tioned in Section 2.2.2.4. His thesis aimed to display an approach to integrating uncer-

tainties into map products.  
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3 Research Objectives 

 
The following section highlights the research gaps that became evident in Chapter 2. Fur-

thermore, the research conducted in this study is described in detail, particularly the re-

search questions that address how to fill the research gaps.  

There exists a wide range of methods for water and flood mapping. In most cases, the 

research aims to extend the applicability of existing knowledge to respond to flood events. 

Flooding can represent a threat to society and the environment. As mentioned in Chapter 

1, there is an increase in the intensity of heavy rainfall events predicted, resulting in more 

severe flooding. A series of different methods to utilize SAR data for flood mapping has 

been developed, as described in chapter 2. Especially the advancements in the field of 

deep learning have led to mapping products that are more quickly generated and more 

accurate than those created by conventional methods. A recent development has been 

made in the introduction of BCNNs. By providing uncertainty estimations, additional in-

formation is provided. However, very little research has been conducted on how well the 

models perform globally and what conditions persist in error-prone areas. Also, there is 

little knowledge about the further applicability of uncertainty estimations. This study aims 

to close these knowledge gaps. An analysis of the performance of the model is conducted. 

The behavior of uncertainty values over different preexisting conditions is analyzed. This 

thesis also introduces a way to improve the water surface classification results in SAR 

data based on the retrieved uncertainties. This approach follows the findings of Redekop 

& Chernyavskiy (2021). The study aims to answer the following research questions: 

1.  Do misclassified pixels lie within specific classes of land cover? 

2. Are misclassified pixels correlated with increased uncertainty? 

3. Do pixels with higher uncertainty tend to lie within certain land cover classes? 

4.  Does changing pixels with a high uncertainty to the opposite binary class improve 

classification results? 

5.  How do the results differ depending on the chosen uncertainty definition? 
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4 Data 

This chapter describes the data used in this study. The training data for the BCNN consists 

of Sentinel-1 data and the corresponding digitized valid or reference water masks (4.1). 

The Sentinel-1 data contains information about the backscatter intensity for the two po-

larizations, VV and VH. The matching ground truth mask was obtained by manual digit-

izing using comparable Sentinel-2 data. This dataset was developed by the Natural Haz-

ards team of the department Geo-Risks and Civil Security at the German Aerospace Cen-

tre (Wieland et al., 2022). In addition, a global landcover dataset was obtained to analyze 

the spatial distribution of wrongly labeled pixels and uncertainty values (4.2). 

4.1 Global Sentinel ± 1 Dataset and Reference Data 

To train a CNN to detect water surfaces on a global scale, a training dataset with globally 

distributed scenes is required as input. The scenes should cover different climate zones, 

altitudes, and landcover types. This is necessary for the model to be able to learn and 

adapt to different conditions and provide the possibility to be deployed in various scenar-

ios. The dataset used to train the BCNN in this study consists of 76 globally distributed 

Sentinel-1 scenes that are Level-1 IW ground range detected (GRD) (Wieland et al., 

2022). The selection of suitable scenes was made using a stratified random sample fol-

lowing Wieland & Martinis (2019) to cover a reasonable number of geographically di-

verse regions (Helleis et al., 2022; Hertel, 2022). The method is based on a global biomes 

map with a minimum of 370 km between each scene (Olson et al., 2001).  

Sentinel-1 is a radar satellite mission consisting of two satellites orbiting the earth at an 

altitude of 693 km with a 12-day repeat cycle. Level-1 GRD Sentinel-1 scenes comprise 

the SAR data projected to ground range by utilizing an earth ellipsoid model (ESA, 2021). 

The scenes are radiometrically calibrated and geometrically corrected following Twele et 

al. (2016). By comparing the data to the area of the resolution cell on the ground, 

backscatter intensity values in SAR images are calibrated. Values describing the Normal-

ized Radar Cross Section (NRCS) are the result of calibration. This transformation makes 

it possible to characterize different aspects using the backscatter data. Additionally, the 
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polarization information (VV and VH) is kept and used as additional training inputs (e.g., 

Hertel, 2022). 

For the generation of the corresponding watermasks, additional Sentinel-2 data is gath-

ered. Their acquisition lies within a 30-day range around the acquisition date of the Sen-

tinel-1 scenes. They are used to create ground truth masks. These binary masks are created 

by applying 2WVX¶V�PHWKRG to the Normalized Difference Water Index (NDWI) (Helleis 

et al., 2022; Hertel, 2022; Otsu, 1979). The automatically created watermasks are manu-

ally checked for errors. This is being done to guarantee the highest possible data quality 

used for the training. Errors might be caused by the temporal gap between Sentinel-1 and 

Sentinel-2 data. The pixels are labeled as invalid to compensate for areas where Sentinel-

2 data was unreliable. Unreliable pixels may be identified due to cloud cover in a scene 

or WKH�SL[HO¶V�SUR[LPLW\ to the edges of the scene. Since Sentinel-1 operates independent 

of weather conditions, invalid pixels are only detected in the Sentinel-2 data.   

The dataset comprising 76 Sentinel-1 scenes is preprocessed by being split into 60% train-

ing scenes, 20% validation scenes, and 20% test scenes. The splitting happens on a scene 

level to avoid spatial autocorrelation when the data is split on a sub-level. As mentioned 

in section 2.2.1, the training data is used for the actual training process, and the model 

uses the validation data to evaluate the learning progress during the training. Using the 

test scenes, the performance of the final model to detect the target class can be assessed 

with data that the model has not seen before. The training and validation scenes are tiled 

into 256 x 256 pixel tiles. Tiling is applied to the SAR data and the corresponding refer-

ence water masks, resulting in 102.676 training tiles and 46.663 validation tiles. Predic-

tions are performed on the whole image of the 18 test scenes. Figure 11 illustrates the 

global distribution of the scenes and highlights the variable geographic conditions in 

which they are found. 
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Figure 11: Global distribution of the training, validation, and test Sentinel-1 scenes (Hertel, 2022). 

4.2 Copernicus Global Landcover Data 

This study conducts experiments to provide insight into the spatial distribution of wrongly 

labeled pixels and estimated uncertainties generated by the BCNN. The data used for the 

evaluations is a globally available landcover dataset. Landcover and land use provides an 

excellent overview of various regional and local conditions. A global dataset also pro-

vides comparability between the scenes used to evaluate the model performance. As land-

cover products need to cover large spatial areas, in-situ measurements are costly and can 

only produce point estimates that need to be interpolated (Buchhorn et al., 2020). Most 

landcover data are derived from satellite remote sensing to compensate for this. There 

exist a variety of available data. Data like the CORINE Land Cover product (for Europe) 

or the National Land Cover Database (for the United States of America) provide land-

cover information on a national or continental scale (Bossard et al., 2000; Homer et al., 

2020; Rigge et al., 2021). Global landcover products are also available, like the Global 

Land Survey (GLS) or the Copernicus Global Landcover (CGL) data (Buchhorn et al., 

2020; Gutman et al., 2013). Copernicus Global Land Service Land Cover Map at 100m 

(GCLS-LC100) data is used in this study. GCLS-LC100 is a global landcover product 

developed by the European Copernicus service with a 100m spatial resolution. The da-

taset was created for 2015 ± 2019 and made available in 3 different collections. The da-

taset is selected for this study since the existing GCLS-LC100 data matches the years of 
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acquisition of the Sentinel-1 data. It should be noted that using an annual landcover prod-

uct raises certain limitations. Landcover is variable over a year. This variability also 

strongly depends on the climate zone (Allan et al., 2014). The data and the achieved re-

sults are to be seen in this context. 

The GLCS-LC100 product is created using the PROBA-V sensor. PROBA-V is a satellite 

constructed by the European Space Agency to provide data that can be used for vegetation 

monitoring. The input data for the actual landcover classification is not the complete 

backscatter information but t10 Vegetation Indices that are calculated (Buchhorn et al., 

2019, 2020). Additionally, 270 metrics like geomorphological features and descriptive 

statistics are generated following Zhai et al. (2018) and Eberenz et al. (2016). Since the 

CLCS-LC100 algorithm does not classify water surfaces and built-up areas, additional 

data is fused after the initial landcover classification. This data consists of the JRC Global 

Surface Water dataset and the World Settlement Footprint created by the Germany Aer-

ospace Centre (Buchhorn et al., 2020; Marconcini et al., 2019; Pekel et al., 2016). In 

further preprocessing, less relevant metrics are dropped to create the optimal dataset for 

the classification.  

The reference data used for model training was collected and created by 20 trained experts 

via the Geo-Wiki platform (Buchhorn et al., 2020; Fritz et al., 2012). The optimized train-

ing data is used as the input of the supervised classifier. First, a Random Forest Classifier 

is used as the base classifier. Next, a discrete landcover map and information about class 

probability and vegetation coverage per pixel are created (Buchhorn et al., 2019). In the 

final step, the result is combined with auxiliary data, consisting of water surface, built-up 

areas, and snow data. The discrete landcover map consists of 25 different classes. After 

classification, an extensive accuracy assessment is conducted. Table 2 displays the num-

ber of taken samples, the achieved overall accuracy, and the corresponding confidence 

intervals for all continents. An overall accuracy of 80.2% +/- 0.7% is achieved, the latter 

being the confidence intervals at 95% confidence levels. Concerning class-specific accu-

racies, permanent water, bare soil, snow/ice, and forest achieve high accuracies of over 

85%. Herbaceous vegetation, built-up areas, and cropland reach moderate accuracies be-

tween 70% and 85%. Shrubs, herbaceous wetland, and moss/lichen have lower accuracies 

of under 65% (Buchhorn et al., 2020). These accuracy assessment results are noted for 

further analysis in this study as two remote sensing products are involved, both prone to 

specific errors. 
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Table 2: Number of taken Accuracy Assessment samples, achieved overall accuracy and 
corresponding confidence intervals for each continent (Buchhorn et al., 2020). 

 Number of Samples Overall Accuracy (%) Confidence    
Intervalls ± 

Africa 3,613 80.1 2.0 

Asia 3,071 83.3 1.5 

Northern Eurasia 2,976 79.8 1.6 

Europe 3,120 80.4 1.6 

North America 2,843 77.1 1.7 
Oceania &  
Australia 2,951 81.9 1.9 

South America 3,017 79.6 1.5 

 

The GLCS-LC100 data used in this study is retrieved using Google Earth Engine (GEE). 

GEE is a platform for the easy analysis and acquisition of geospatial data (Gorelick et al., 

2017). The data is acquired for all 18 test scenes. All test scenes' extent and resolution are 

used as additional parameters for the GEE download. As the extents between the Sentinel-

1 scenes and the GLCS-LC100 data do not perfectly align, a clipping of the data is per-

formed. For further analysis, the data must be perfectly matched. Some of the 22 initial 

classes are summarized to clarify the results better. In detail, the 12 different forest classes 

are summarized into the classes open forest and closed forest. This leads to a total of 12 

landcover classes. Their definitions are outlined in Table 3. 
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Table 3: Summarized GLCS-LC100 landcover classes used in this study (changed fol-
lowing Buchhorn et al. (2020)). 

Land Cover Class Definition 

Shrubs 
These are woody perennial plants with persistent and woody stems without any 
defined main stem being less than 5 m tall. The shrub foliage can be either ever-

green or deciduous. 

Herbaceous 
Vegetation 

Plants without persistent stems or shoots above ground and lacking definite firm 
structure. Tree and shrub cover is less than 10 %. 

Cultivated 
Vegetation 

Lands covered with temporary crops followed by harvest and a bare soil period 
(e.g., single and multiple cropping systems). Note that perennial woody crops 

will be classified as the appropriate forest or shrub land cover type. 

Urban and Built-up Land covered by buildings and other man-made structures. 

Bare Soil Lands with exposed soil, sand, or rocks and never has more than 10 % vege-
tated cover during any time of the year. 

Snow and Ice Lands under snow or ice cover throughout the year. 

Permanent 
Water Bodies Lakes, reservoirs, and rivers. Either fresh or salt-water bodies. 

Moss and Lichen Moss and lichen. 

Herbaceous Wetland Lands with a permanent mixture of water and herbaceous or woody vegetation. 
The vegetation can be present in either salt, brackish, or fresh water. 

Closed Forest Tree canopy >70 %, mix of closed forest types. 

Open Forest Tree canopy 15-70 %, mix of open forest types. 

Seas Oceans, seas. Can be either fresh or salt-water bodies. 
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5 Methodology 

The following chapter describes the methodology of the experiments conducted in this 

study. First, the setup of the used BCNN is explained (5.1). Then, it will be addressed 

which CNN architecture is being used. Furthermore, the hyperparameters used for the 

model are outlined. Next, the uncertainty definitions and the methodology used to quan-

tify the uncertainty are illustrated. This uncertainty analysis is performed for the correctly 

and wrongly labeled pixels and the different landcover classes of the GLCS-LC100 data 

(5.2). Next, a methodology is introduced to use uncertainty estimations to optimize the 

results obtained from the BCNN (5.3). Finally, this chapter's last section provides an over-

view of the trained models and the performance metrics used to evaluate the BCNNs 

predictions (5.4 and 5.5). 

The experiments were conducted using Python scripts. A static version of the code base 

is provided as a repository under:  https://gitfront.io/r/user-1618937/HXJvhZE2zo6c/ma-

mederer/. For access to the GitHub repository please contact the author. 

5.1 Setup of the Bayesian Convolutional Neural Network 

This section outlines the setup of the used BCNN. The BCNN utilized in this study was 

first introduced by Hertel (2022). The BCNN has a modified U-Net architecture. The U-

Net architecture is displayed in Figure 12.  

 

Figure 12: CNN U-Net architecture (Hertel, 2022). 

https://gitfront.io/r/user-1618937/HXJvhZE2zo6c/ma-mederer/
https://gitfront.io/r/user-1618937/HXJvhZE2zo6c/ma-mederer/
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The dimensions of the convolutional layers are first reduced by a 2 x 2 max pooling and 

later increased by 2 x 2 upsampling. For BCNNs, the weights or filter values of the con-

volution are not fixed values but rather probability distributions. These act as the prior 

distribution for the Bayesian inference approach. The convolutional layers are initialized 

with a standard normal prior distribution ܲ ሺݓሻ �ൌ �ܰሺͲǡͳሻ, where ݓ describes the weight. 

The distribution is approximated during the forward passes using a flip-out estimator 

(Hertel, 2022; LaBonte et al., 2019; Wen et al., 2018). The loss function is described as 

the Evidence Lower Bound (ELBO). It is a combination of cross-entropy and KL-diver-

gence (Hertel, 2022). The hyperparameters visible in Table 4 are used for the model's 

setup. A detailed explanation of all parameters can be found in section 2.2.1.5.  

 

Table 4: Hyperparameters used for the setup of the BCNN (changed following Hertel 
(2022)). 

Parameter Setup 

Initial learning rate 0.0001 

Learning rate decay 0.5 / 7 epochs 

Maximum epochs 100 

Early stopping 10 

Batch size 16 

Prior distribution ܰ�ሺͲǡ ͳሻ 

 

This setup is used for two of the three trained models. The reasoning for this and the other 

setups can be found in sections 5.3 and 5.4. The predictions are conducted 32 times to 

create a probabilistic sigmoid ensemble output. Based on this output, the uncertainties are 

estimated, extracting the uncertainty definitions 1 and 2. The uncertainties are used for 

further analysis in this study. The model was created using the Python TensorFlow frame-

work (Abadi et al., 2016; Ghemawat et al., 2016; Hertel, 2022; vanRossum, 1995).  

5.2 Identification of error-prone regions of the BCNN 

There are multiple error sources when extracting water surface areas from SAR data. 

Over- and underestimations can happen when surfaces alter the backscatter, as explained 

in section 2.1.3. No experiments have been conducted to detect error-prone areas of water 

detection in SAR data using a BCNN. This study introduces a method to quantify the 
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proportion of wrongly labeled pixels over different types of prevailing conditions. The 

experiment uses the binary segmentation result of the BCNN and the GLCS-LC100 land-

cover data. The binary water masks are derived by thresholding the mean sigmoid values 

from all 32 predictions made by the BCNN. The proportion ܲሺܿݓሻ of all wrongly labeled 

pixels lying within one landcover class is calculated by: 

 

ܲሺܿݓሻ ൌ
݌ݓܿ
݌ݓ

 

 

Where 

 Number of misclassified pixels in a class ݌ݓܿ

 Total number of misclassified pixels in all classes ݌ݓ

 

This experiment is conducted to detect the error-prone areas for water detection in SAR 

data mentioned in the literature. In addition, this methodology aims to answer whether 

misclassified pixels tend to lie within certain landcover classes. 

5.3 Uncertainty Analysis 

The BCNN developed by Hertel (2022) produces uncertainty estimations next to the bi-

nary output. As mentioned in section 2.2.2.4, the model produces uncertainties based on 

two definitions, representing different interpretations of the probabilistic ensemble out-

put. The prediction of the input for one model is conducted 32 times, as mentioned in 5.1. 

For every pixel, 32 sigmoid outputs are generated. This is utilized to determine the un-

certainties. Definition 1 is the range of ± 1 standard deviation around the mean. Definition 

2 also takes the position of the mean into account. It is defined as the probability of a class 

being correctly labeled. Definition 1 can take values between 0 and 1, with 1 presenting 

the highest uncertainty. The probabilities of Definition 2 can take values from 0.5 to 1, 

with 0.5 constituting the lowest probability and, thus, the highest uncertainty. The uncer-

tainty analysis conducted in this experiment compares the results of the different models 

that are trained (see section 5.4) as well as the two uncertainty definitions. The uncertainty 

definitions are subsequently referred to as UD1 (spread of values) and UD2 (spread and 

position of mean). 
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5.3.1 Uncertainty Distribution over correctly and wrongly labeled pixels 

Two different types of uncertainty analyses are conducted in this study. The first aims to 

answer the research question of whether misclassified pixels correspond to increased un-

certainty values compared to correctly labeled pixels. This is also a primary hypothesis 

for the methodology introduced in section 5.3 to improve the classification results based 

on the obtained uncertainty estimations. Quantitative and qualitative diagnostics are con-

ducted in this experiment. Prior to the analysis, the prediction results are split into pixels 

that are True Positive (TP), False Positive (FP), True Negative (TN), and False Negative 

(FN). The four classes are commonly used for the accuracy assessment of remote sensing 

products (Foody, 2002; Story & Congalton, 1986). This separation of cases is done by 

comparing the prediction water mask to the reference mask created with the methodology 

described in section 4.1. The statistics of the uncertainty values are calculated. The mean, 

median, Quartile 1 (ܳଵ), Quartile 3 (ܳଷ) as well as the Interquartile range (ܴܳܫ) are ob-

tained. ܳଵ and ܳଷ are representing the 25th and 75th percentiles of the data, respectively. 

The IQR is a measure of statistical dispersion used to gain insights into the spread of the 

data. It is defined as the difference between ܳଷ and ܳଵ, ܴܳܫ� ൌ �ܳଷ െ ܳଵ. Boxplots are 

created using Python and the Matplotlib library to visualize this information. They display 

the median, ܳଵ and ܳଷ as the bounding boxes and the whiskers as 1.5 times the IQR from 

both bounding box boundaries (ܳଵ and ܳଷ) (McGill et al., 1978). The width of the box is 

set to present the proportion of the class in the complete data. The boxplots visually pre-

sent the uncertainty distributions over the areas containing TP, FP, TN, and FN pixels. 

To further visualize the uncertainties over misclassified and correctly classified areas, 

map products are generated to provide information about the spatial distribution of the 

uncertain areas. The maps contain the Sentinel-1 data, the reference water mask, and the 

corresponding Sentinel-2 data to allow a visual, qualitative interpretation of the location 

of highly uncertain areas. The figures also display maps of the binary prediction result of 

the model and the corresponding uncertainty values. To provide further visual infor-

mation about the uncertainties, the pixels are classified to resemble the classes Accurate 

and Certain (AC), Accurate and Uncertain (AU), Inaccurate and Certain (IC), and Inac-

curate and Uncertain (IU). This is done following the approach by Hertel (2022). Pixels 

are labeled as uncertain when the uncertainty values exceed 0.1 for UD1 and when they 

fall below 0.95 for UD2. 
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It should be noted that the generated map results may vary heavily based on the chosen 

threshold. The threshold is chosen based on the findings of Hertel (2022) and from visual 

interpretations of the results of this experiment. The boxplots were created using Python 

and the Matplotlib library, and the maps were created in QGIS (Hunter, 2007; QGIS De-

velopment Team, 2022; vanRossum, 1995).   

5.3.2 Uncertainty Distribution over different types of landcover 

The second part of the uncertainty analysis returns uncertainty distributions over different 

underlying land cover conditions. Similar to the approach in 5.2, the experiment is con-

ducted based on correlating the GLCS-LC100 landcover data with the prediction results 

of the BCNN. Here, the uncertainty values over the different landcover classes are ana-

lyzed. For this purpose, the descriptive statistics mean, median, ܳଵ, ܳଷ, and ܴܳܫ of the 

uncertainty values are calculated over each land cover type. Boxplots, structured as men-

tioned above, are created for better visualization. The uncertainty analysis is conducted 

for both uncertainty definitions.  

5.4 Result optimization 

Uncertainty estimations have been used to provide additional information about the per-

formance of a BCNN and its limitations. This section introduces a method developed by 

Redekop & Chernyavskiy (2021). This thesis implements their approach for the first time 

for water detection in SAR data and serves as an extension of the initial workflow. 

Training data for the training of CNNs and BCNNs suffer from label noise. Label noise 

describes inaccuracies in the creation of reference data that is used in the training process. 

The noise can have multiple origins. The primary sources of the label noise are human-

made mistakes, inter-observer variability due to human subjectivity, and errors in the au-

tomatic generation of reference data (Redekop & Chernyavskiy, 2021). There have been 

attempts to compensate for label noise by reweighting the image (Foody, 2002; Ren et 

al., 2018). As there is an increased number of methods, a reduction of label noise has been 

achieved by presenting the areas of high uncertainty to an expert for relabeling. This ap-

proach can also be made automatically, as Köhler et al. (2019) introduced. They used the 

produced uncertainty estimations to detect and remove noisy labels iteratively. This 
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approach was extended by Redekop & Chernyavkiy (2021) and applied to binary seg-

mentation results. They improved the binary classification results by implementing the 

information from the uncertainty estimations. In their study, they created noisy data. This 

data was then used to train the Deep Learning model and retrieve the binary predictions 

and uncertainty estimations. Areas of high uncertainty were then relabeled to their oppo-

site binary class. The primary hypothesis of this approach is that areas of high uncertainty 

are misclassified. This label improvement possesses the advantage that the reference data 

does not have to be absolutely accurate. This could save time and resources when creating 

training data while guaranteeing high model accuracy (Redekop & Chernyavskiy, 2021). 

Their approach is modified and tested for the applicability of optimizing watermasks cre-

ated using SAR data and a BCNN. 

5.4.1 Creation of label noise  

To test their approach, Redekop & Chernyavskiy (2021) generated artificial noise in their 

training data. They used a low-vertex polygon approximation to introduce noise. This 

approach is also tested in this study. To create the noisy labels, the Visvalingam-Whyatt 

algorithm was used (Visvalingam & Whyatt, 1993). The algorithm is used for line sim-

plification by removing vertex points in a line. This is achieved by a technique called 

effective area for progressive simplification of lines. The effective area is calculated by 

forming a triangle between three consecutive line points. The smallest area between three 

points along the line is compared to a set threshold. The point without adjacent points is 

removed if the area lies below that threshold. The test is then repeated with the second 

largest triangle. This process is repeated until all triangles under the threshold are elimi-

nated. Figure 13 illustrates the point removal and the resulting simplification of the line. 

The algorithm was chosen based on its simplicity and good performance. It was applied 

to the whole training and validation dataset. This provides comparability of the results of 

the models trained with the simplified and original data.  
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Figure 13: Line simplification using the Visvalingam-Whyattt algorithm (Melnyk & Shokur, 2016). 

The Visvalingam-Whyatt algorithm was applied using QGIS, and the tolerance Parameter 

establishing the area threshold was set to 200 m2. 

5.4.2 Uncertainty estimation and Morphological filtering 

In their study, Redekop & Chernyavskiy (2021) trained their model for 30 epochs to de-

termine their approach's optimal training duration. They determined this as the epoch 

where the velocity at which the mean cumulative uncertainty decreases reaches its highest 

point. This point is marked as the point where the uncertainty over the wrongly labeled 

regions is the highest. Therefore, this would be the point where the optimal data for the 

relabeling process would be generated. This was the case after just one and two epochs 

of training. According to their findings, the two different BCNNs are trained using the 

simplified data as training and validation data. According to the findings of Redekop & 

Chernyvskiy (2021), one model is trained for just one epoch, and the other is trained for 
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a maximum of 100 epochs with an early stopping set at ten epochs. This is done to confirm 

whether the shorter training is more suitable for this application.  

Before relabeling the predictions, a mask of the pixel positions to be relabeled is created. 

All pixels above or below (depending on Uncertainty Definition 1 or 2, respectively) a 

chosen uncertainty threshold were selected, and a binary relabeling mask was created. 

The relabeling mask determines the position of the pixels that are relabeled. During the 

experiment, it was discovered that there are overestimations of highly uncertain pixels in 

the border regions of the mask. This was determined visually and by trial-and-error. The 

findings mean that there are pixels that would be relabeled to the false label that can be 

found in a pattern around regions that are IU and should be relabeled. Maps visualizing 

this phenomenon can be found in section 6.3 and Appendix B. Therefore, it is assumed 

that shrinking the area of the relabeled pixels might improve the results further. For this 

purpose, morphological erosion filtering was applied to the relabeling mask before rela-

beling the data (Heijmans & Ronse, 1990). Erosion is one of the two basic morphological 

filters, the other being dilation. The purpose of erosion is to shrink the size of objects in 

a binary image. Objects are pixels that contain a value of 1. The reduction does not only 

apply to foreground pixels at the outer border, but it also leads to an enlargement of ex-

isting holes in the object. The erosion operator takes two inputs, one of which is the binary 

input. The other one is a filter kernel consisting of 0 and 1. This filter is called the struc-

turing element and impacts the result of the morphological operation. The filter is applied 

to all pixels from the top left to the bottom right, comparable to the convolutional filter. 

The difference lies in the mathematical operation. When the filter is applied to a pixel, it 

checks whether all surrounding pixels lying beneath the filter are foreground pixels (value 

in the binary mask = 1). If the structuring element fits entirely into the surrounding pixels, 

the value is left as it is, else it is set to 0 (Dorst & van den Boomgaard, 1994; Heijmans 

& Ronse, 1990; Schavemaker et al., 2000). In this study, different filter kernels are tested 

to check their impact on the results of the relabeling. 

5.4.3 Relabeling of the generated masks 

Highly uncertain areas are detected by selecting pixels that exceed or fall below a chosen 

uncertainty threshold (depending on the uncertainty definition). This so-called relabeling 

mask determines the positions of pixels to be relabeled. For the two uncertainty defini-

tions, the creation of the relabeling masks follows the rule: 
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௎௡௖ଵܯܴ �ൌ �ܷ� ൐  ߜ�

௎௡௖ଶܯܴ �ൌ �ܲ� ൏  ߜ�

 

Where 

 .is the extracted relabeling mask  ܯܴ

ܷ is the array containing the uncertainties for Uncertainty Definition 1. 

ܲ is the array containing the probabilities for Uncertainty Definition 2. 

 .is the chosen uncertainty threshold above which the pixel shall be relabeled ߜ

After the generation of the relabeling mask, the erosion filter is applied. Then the predic-

tion data is changed according to: 

 

௡௘௪݌ �ൌ �ͳ� െ݌�௢௟ௗ    , if    ܴܯ௣ ൌ ͳ 

 

Where 

 .௢௟ௗ is the pixel value in the prediction water mask݌

 .௡௘௪ is the pixel value after the relabeling step݌

 

Figure 14 provides further visual details about the relabeling step. It should be noted that 

the erosion filter is applied to the areas of high uncertainty between the detection of the 

highly uncertain areas and the relabeling. 

 

Figure 14: Details of the relabeling step (changed following (Redekop & Chernyavskiy, 2021). 

To evaluate the functionality of the proposed method, different thresholds are tested. The 

experiment also evaluates the effect of three different kernel sizes on the erosion of the 

relabeling mask. After each parameter adjustment, the changes to performance (see 
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section 5.5) are monitored. The proposed methodology was programmed using Python 

and visualized using Matplotlib for graphs and QGIS for map products (Hunter, 2007; 

QGIS Development Team, 2022; vanRossum, 1995). The method aims to improve pre-

diction accuracies even when the training data contains label noise. This could provide 

an approach to investing less time and resources into generating ground truth data for 

model training. It could also provide the opportunity to create reference data over more 

parts of the world. This could support discussion about the generalizability of classifica-

tion results over regions that have previously not been integrated. 

5.5 Trained Models 

This section provides a summary of the BCNNs trained in this study. In total, three dif-

ferent models have been trained and evaluated. The first one (Model A) is trained using 

the best available training and validation data. It utilizes the setup displayed in Table 4. 

The Sentinel-1 data and the reference data, created by NDWI and expert knowledge, de-

scribed in section 4.1, are used for the training process. All 102.676 training tiles and 

46.663 validation tiles are used. 

The second model (Model B) is also trained using the setup illustrated in Table 4. The 

difference lies in the training and validation data. The Visvalingam-Whyatt algorithm 

introduces artificial noise into the data (Visvalingam & Whyatt, 1993). As a result, the 

102.676 training and 46.663 validation tiles used for training and validation possess a 

simplified geometry. 

The final model (Model C) is trained using the simplified geometry training and valida-

tion data. The difference to the second model lies in the setup. Instead of a maximum of 

100 epochs training with ten epochs early stopping, the model is trained for just one 

epoch. This is following the findings of Redekop & Chernyavsik (2021).  

Each model was predicted twice using the 18 test scenes, previously not shown to the 

BCNNs. Then, inside each prediction, the test scenes are analyzed 32 times to generate 

the probabilistic sigmoid output for each of the six predictions. Finally, the two predic-

tions for each model were conducted to produce the uncertainties for both definitions.  
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5.6 Performance Metrics 

Water surface detection in SAR data is prone to numerous error sources. This is the case 

when using conventional and recent Deep Learning approaches. Those errors can occur 

through human or technological inaccuracies. Thus, differences between detection results 

and the ground truth are expected and tolerated to an acceptable degree. Multiple perfor-

mance metrics were developed to detect those erroneous regions and quantify the accu-

racy of the created masks. The overall accuracy of the classifier identifies the fraction of 

correctly labeled pixels. However, this can lead to wrong conclusions for imbalanced da-

tasets. For example, if a scene only contains a small number of water pixels, the overall 

accuracy might be very high since most of the non-water class was correctly labeled. 

Therefore, reporting this metric alone would fail to capture a low accuracy associated 

with detecting the target water class. 

To compensate for this problem, metrics like Precision, Recall, and the F1-Score were 

also included as a part of a set of performance metrics. Table 5 provides an overview of 

the performance metrics used in this study. The Intersection-Over-Union (IoU) further 

describes the intersection ratio between the prediction and reference water mask. It is a 

measure of how well the PDVNV�PDWFK�HDFK�RWKHU��/DVWO\��&RKHQ¶V�.DSSD��ț) is calculated. 

The Kappa coefficient shows the difference between the actual agreement and the random 

agreement between prediction and reference data. All metrics refer to higher performance 

the closer they are to 1. The metrics were chosen based on suggestions by Hertel (2022), 

Cohen (1960), and Sokolova & Lapalme (2009).  

The performance metrics are first calculated to evaluate the three trained models. Then, f 

the relabeling process, the metrics and the change to the initial performance are calculated 

and visualized by line plots generated using Python and the Matplotlib library (Hunter, 

2007; vanRossum, 1995).  
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Table 5: Quantitative metrics to evaluate classification performance (Sokolova & 
Lapalme, 2009). 

Metric Equation Description 

Accuracy 
�݌ݐ ൅ ݊ݐ�

݌ݐ ൅ ݊ݐ ൅ ݌݂ ൅ ݂݊
 Measures the overall accuracy of a classifier. 

Can be misleading for imbalanced datasets. 

Precision 
݌ݐ

݌ݐ ൅ ݌݂
 Fraction of correctly detected water pixels. 

Recall 
݌ݐ

݌ݐ ൅ ݂݊
 Fraction of detected water pixels compared to all 

water pixels. 

F1 Score 
ʹ� ൉ ݊݋݅ݏ݅ܿ݁ݎ݌ ൉ ݈݈ܽܿ݁ݎ
݊݋݅ݏ݅ܿ݁ݎ݌ ൅ ݈݈ܽܿ݁ݎ

 Harmonic mean of precision and recall. 

IoU 
݌ݐ

݌ݐ ൅ ݌݂ ൅ ݂݊
 

Intersection-over-union (IoU) measures the ratio 
of the intersection between the reference mask 

and the prediction mask over their union. 

ț &RKHQ¶V�.DSSD�(Cohen, 1960) Compares the classification result to one 
achieved by completely random classification. 
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6 Results 

In the following chapter, the results of the conducted experiments are presented. This is 

done quantitatively and qualitatively, depending on the research question. First, the learn-

ing behavior of the trained BCNNs and the initial prediction results for the three models 

are evaluated (6.1). Furthermore, the error-prone areas of the models are investigated 

(6.2). Next, the retrieved uncertainty estimations are analyzed. Their spatial distribution 

over misclassified pixels and different land cover types is presented (6.3). Lastly, the ap-

proach to relabel the highly uncertain pixels is tested to improve the prediction results 

(6.4). 

6.1 Initial Prediction Results 

This section examines the learning behavior of the trained BCNNs and presents the initial 

prediction results. Three different models were trained, as described in section 5.5.  

Figure 15 provides insight into the learning behavior of the models. The training and 

validation losses (right y-axis) and accuracies (left y-axis) are displayed over the epochs 

(x-axis). Models A and B performed well during training, as visible through the training 

and validation loss curves. They decrease steeply until reaching a plateau after five to 

seven epochs. Good performance also becomes evident when looking at the training and 

evaluation accuracies. They peak after one to three training epochs and do not improve 

with further training. The early stopping was activated after 12 epochs of training for 

model A and 13 epochs for model B. For model C, training and validation losses and 

accuracies are only single-point values since the model was only trained for one epoch. 

The training loss after one epoch was 4.64, and the validation loss 4.25. The training 

accuracy was 0.93, and the validation accuracy was 0.94. Thus, model C reached a worse 

training behavior than the other two trained models. 
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Figure 15: Training and validation logs for the BCNNs trained with the whole dataset (left) and the sim-
plified data (right). The left y-axis represents the accuracy, and the right y-axis the loss. The x-axis is the 

number of epochs training. 

This result becomes more evident when inspecting the initial prediction results for the 

three models, as shown in Table 6. For each model, two predictions were conducted. This 

was done to extract the uncertainty values for both uncertainty definitions, leading to a 

total of six predictions. They are subsequently referred to by their prediction ID stated in 

Table 6, ranging from 001 to 006.  

Table 6: Initial prediction results for the six predictions using the three models.  
Prediction   

ID Model Unc. 
Def. Acc. Recall Precision F1 

Score IoU Kappa 

001 A 1 0.947 0.775 0.735 0.705 0.618 0.672 

002 A 2 0.947 0.775 0.735 0.705 0.618 0.672 

003 B 1 0.955 0.709 0.744 0.683 0.590 0.655 

004 B 2 0.955 0.710 0.744 0.683 0.590 0.655 

005 C 1 0.932 0.729 0.687 0.653 0.575 0.623 

006 C 2 0.932 0.729 0.686 0.653 0.574 0.623 

 

The performance metrics show the higher performance of model A. The models trained 

with the simplified reference generated less optimal prediction results, across all the met-

rics, except for overall accuracy. Table 6 shows only slight differences in performance 

metrics between the two uncertainty definitions for each model. To better visualize the 

result between the three models, the initial prediction results are also displayed in Figure 

16. Since the difference between UD1 and UD2 is minimal, only the results for UD1 are 
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plotted in the figure. It is visible that there is a step-like decrease from model A to model 

C for the F1-Score, the IoU and the Kappa coefficient. 

  

Figure 16: Initial prediction results for the trained BCNNs, trained and validated using the optimal data 
(Model A), the simplified data (Model B), and the simplified data with one epoch training (Model C). 

6.2 Detection of error-prone areas 

All six predictions were generated over the 18 test scenes. The scenes were previously 

excluded from the training process and represent a range of geographic conditions. The 

experiment regarding detecting error-prone regions was conducted to discover which 

preexisting factors impact the performance of the BCNNs. Table 7 provides an overview 

of the 12 landcover classes derived from the GLC-LC100 data over all 18 test scenes. 

Closed Forest is the most commonly occurring class representing 30.60% of all valid 

pixels, followed by Herbaceous Vegetation with 16.31% and Cultivated Vegetation with 

13.82%. The Snow / Ice and Moss / Lichen classes are notably underrepresented (< 0.05). 
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Table 7: Overview of the proportion of pixels within each landcover class for the 18 test 
scenes. 

Landcover Class Pixel Count Proportion 

Shrubs 148,114,596 4.95% 

Herbaceous Vegetation 488,060,993 16.31% 

Cultivated Vegetation 413,691,605 13.82% 

Urban / Built-up 23,474,590 0.78% 

Bare Soil 236,802,499 7.91% 

Snow / Ice 383,429 0.01% 

Permanent Water bodies 216,703,604 7.24% 

Herbaceous Wetland 119,088,128 3.98% 

Moss / Lichen 537,425 0.02% 

Closed Forest 915,991,775 30.60% 

Open Forest 281,569,594 9.41% 

Seas 148,775,117 4.97% 

 

To provide information about the landcover classes and how they relate to the Sentinel-1 

data the predictions are based on, the backscatter values over different landcover classes 

were analyzed. Figure 17 shows a boxplot for the backscatter values of all 18 test scenes 

over the 12 landcover classes derived from GCLS-LC100. The low backscatter values 

over open water, the assumption on which the water surface is extracted, are detectable. 

There are also lower backscatter values over the classes Bare Soil and Herbaceous Veg-

etation. 

To detect the error-prone areas in the results, the proportion of misclassified pixels within 

each landcover class was calculated concerning the total number of misclassified pixels. 

The results of this analysis are displayed in Table 8. For all three models, the highest 

percentage lies within the class Bare soil. The models trained with the simplified data 

have a higher error rate than model A which was trained with the optimal reference data. 

The class Herbaceous Vegetation was also correlated with high proportions of misclassi-

fied pixels. Here the highest percentage is detected in results generated with model C. 

Similar to the findings in section 6.1, it is noted that there is only a minimal difference 

between the results generated with the two different uncertainty definitions. Thus, the 

table only presents the results for UD1 of each model. 
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Figure 17: Backscatter values over the 12 different landcover classes for all 18 test scenes. 

 
Table 8: Proportion of misclassified pixels over each landcover class to all misclassified 
pixels over all 18 test scenes and for all six predictions.  

Landcover Class Model A Model B Model C 

Shrubs 1.89% 1.61% 2.65% 

Herbaceous Vegetation 26.63% 16.58% 43.10% 

Cultivated Vegetation 5.57% 5.71% 4.95% 

Urban / Built-up 0.09% 0.09% 0.05% 

Bare Soil 30.90% 34.40% 35.21% 

Snow / Ice 0.00% 0.00% 0.00% 

Permanent Water bodies 13.31% 12.11% 5.11% 

Herbaceous Wetland 7.57% 6.77% 3.77% 

Moss / Lichen 0.39% 0.31% 0.15% 

Closed Forest 2.17% 2.16% 1.13% 

Open Forest 3.39% 3.65% 2.09% 

Seas 8.09% 16.61% 1.79% 
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6.3 Uncertainty Analysis 

The following section presents the results of experiments regarding the spatial distribu-

tion of the uncertainties. This is done to provide a knowledge basis on which further anal-

ysis involving the uncertainties can be conducted. The uncertainties were derived based 

on the spread of the predictions per pixel. Each of the six predictions was made 32 times 

for all 18 test scenes to generate a probabilistic sigmoid ensemble, thus leading to 32 

sigmoid values for each pixel. The uncertainty was derived based on two definitions, as 

further explained in section 2.2.2.4.  

6.3.1 Uncertainty values over misclassified pixels  

The first experiment regarding the uncertainty estimation regards their spatial distribution 

over correctly and misclassified pixels. Therefore, the TP, FP, TN, and FN pixels were 

calculated for all predictions. This was done by comparing the predictions with the refer-

ence water mask to evaluate the uncertainty behavior over the four classes. To quantify 

the values, the statistics mean, median, ܳଵ, ܳଷ and IQR were calculated for the uncertain-

ties over TP, FP, TN, and FN pixels. Additionally, boxplots were created for better visu-

alization of the distributions. Figure 18 illustrates the statistics in the form of tables and 

the corresponding boxplots for all six predictions. The statistics for UD1 are displayed on 

the left, and the ones for UD2 are on the right. For all three predictions that generated the 

uncertainty based on UD1, the mean, median, Q1, and Q3 pose a higher uncertainty over 

misclassified pixels (FP, FN). This confirms the hypothesis that there are higher uncer-

tainties detected over misclassified pixels. For UD2, the mean and median also present a 

higher uncertainty over misclassified areas. When looking at the IQR to measure the var-

iability of the data, it is detectable that the IQR is higher over falsely classified pixels. 

This is the case for all six predictions independent of the estimated uncertainty definition. 

Looking at the boxplots and statistics, it becomes apparent that the uncertainties calcu-

lated using UD2 have low variability, close to 1. This becomes evident as the median is 

1 for all three models. 
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Figure 18: Uncertainties over TP, FP, TN, and FN pixels for all 18 test scenes. 

Mean 0.091 0.143 0.019 0.145  0.985 0.901 0.997 0.902 
Median 0.082 0.134 0.005 0.145  1 1 1 1 
Q1 0.061 0.104 0.003 0.045  1 0.844 1 0.844 
Q3 0.111 0.170 0.011 0.215  1 1 1 1 
IQR 0.050 0.066 0.008 0.165  0 0.156 0 0.156 

Mean 0.129 0.157 0.018 0.164  0.981 0.902 0.997 0.909 
Median 0.116 0.147 0.005 0.156  1 1 1 1 
Q1 0.088 0.111 0.003 0.064  1 0.844 1 0.844 
Q3 0.156 0.191 0.011 0.232  1 1 1 1 
IQR 0.068 0.081 0.009 0.168  0 0.157 0 0.156 

Mean 0.046 0.127 0.029 0.142  0.9927 0.924 0.994 0.916 
Median 0.027 0.126 0.011 0.138  1 1 1 1 
Q1 0.009 0.093 0.007 0.052  1 0.906 1 0.875 
Q3 0.061 0.16 0.023 0.212  1 1 1 1 
IQR 0.052 0.067 0.016 0.159  0 0.094 0 0.125 

001 002 

003 004 

005 006 
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For UD1, higher variability is detected over correctly classified pixels. Figure 18 visual-

izes the distribution of the uncertainty values over TP, FP, TN, and FN pixels. It is a 

summary statistic for all 18 test scenes and all six predictions. This experiment does not 

provide an overview of the distribution at the scene level. For this reason, two scenes are 

also selected. The scenes and one zoomed sub-area within these scenes are visually as-

sessed. Four classes are calculated to provide a better overview of the spatial distribution 

of the highly uncertain areas. They represent pixels that are AC, AU, IC, and IU. Pixels 

are labeled uncertain if the uncertainty exceeds 0.9 for UD1 or falls below 0.95 for UD2. 

Figures 19 and 20 provide an overview of test scenes 75 and 89 used as examples. The 

map provides the Sentinel-1 data, the generated ground truth mask, and the corresponding 

Sentinel-2 data. The scenes were chosen as examples as both demonstrate different geo-

graphical conditions as visible in the Sentinel-2 imagery. A table, as well as the corre-

sponding overview maps containing information about all 18 test scenes, can be found in 

Appendix A. 

Scene 75 is located in Russia close to the Ukrainian border and displays a coastline at the 

Sea of Azov. The coast region is mainly covered by agriculture. Scene 89 is located in 

Qatar. It depicts an area south of the capital Doha and lies at the Persian Gulf. It is a 

coastal area; the western part is mainly covered by the sea, while the western part consists 

of sand dunes and the coastline. The geographical conditions and their impact on the pre-

dictions of the BCNNs are further discussed in Chapter 7. Figures 21 ± 24 show the maps 

products generated to visualize the prediction results and the spatial distribution of the 

uncertainty values. Figures 25 and 26 show a zoomed-in detail of scene 89. This is done 

to provide further information about the uncertainties. The map products for all scenes 

can be found in Appendix B. It also includes a more detailed map for Scene 31.  
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Figure 19: Overview of test scene 75 

   

Figure 20: Overview of test scene 89 

 
  

Scene ID Valid Pixels Main Landcover Acquisition Date 

75 188,259,427 Cultivated Vegetation 11-09-2019 

Scene ID Valid Pixels Main Landcover Acquisition Date 

89 137,534,256 Sea 10-04-2020 
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Figure 21: Visualization of highly uncertain areas for Scene 75 and UD1.: Prediction results (top), accu-
racy and certainty information (second row), uncertainty values (third row), and boxplots of uncertainties 

over TP, FP, TN, and FN (bottom). 
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Figure 22: Visualization of highly uncertain areas for Scene 75 and UD2.: Prediction results (top), accu-
racy and certainty information (second row), probability values (third row), and boxplots of probabilities 

over TP, FP, TN, and FN (bottom). 
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Figure 23: Visualization of highly uncertain areas for Scene 89 and UD1.: Prediction results (top), accu-
racy and certainty information (second row), uncertainty values (third row), and boxplots of uncertainties 

over TP, FP, TN, and FN (bottom). 
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Figure 24: Visualization of highly uncertain areas for Scene 89 and UD2.: Prediction results (top), accu-
racy and certainty information (second row), probability values (third row), and boxplots of probabilities 

over TP, FP, TN, and FN (bottom). 
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Figure 25: Visualization of highly uncertain areas for a zoomed-in detail in Scene 89 and for UD1.: Senti-
nel-1 data, target segmentation and Sentinel-data (top), Prediction results (second row), accuracy and cer-

tainty information (third row), and boxplots of uncertainties over TP, FP, TN, and FN (bottom). 
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Figure 26: Visualization of highly uncertain areas for a zoomed-in detail in Scene 89 and for UD2.: Senti-
nel-1 data, target segmentation and Sentinel-data (top), Prediction results (second row), accuracy and cer-

tainty information (third row), and boxplots of uncertainties over TP, FP, TN, and FN (bottom). 

 



6 Results 67 
 

  
 

In Figure 21, higher uncertainties in water areas of the prediction and the ground truth of 

Scene 75 can be detected for predictions 001 and 003. This also becomes evident when 

looking at the corresponding boxplots, as there is an elevation in the uncertainties over 

TP pixels. In contrast, the uncertainties for prediction 005 appear close to the boundary 

between water and non-water and in wrongly labeled areas. This can also be seen on the 

boxplot as there is a difference between the uncertainty levels of correctly labeled and 

misclassified pixels, the latter being higher than the former. For UD2 in Figure 22, the 

uncertainty appears to be higher only in the aforementioned border region. There is very 

little widespread uncertainty detectable compared to UD1.  

Similar results can be found for Scene 89 in Figures 22 and 23. The uncertainties are 

elevated over open water areas for predictions 001 and 003 and appear higher over mis-

classified pixels in prediction 005. This, again, is also detectable in the matching boxplots. 

In Figure 23, the uncertainty seems to be elevated in the boundary regions of the water 

areas. The detailed view in Figures 24 and 25 magnifies those findings. Prediction 005 

appears to provide the highest uncertainties over misclassified pixels and has the sharpest 

contrast of the uncertainties between correctly and wrongly labeled pixels. 

6.3.2 Uncertainty values over different landcover classes  

This section presents the analysis results regarding the distribution of uncertainties over 

different landcover types. This experiment was conducted by creating boxplots of the 

uncertainty values over the 12 landcover classes of the GCLS-LC100 dataset. The analy-

sis was applied over all 18 test scenes and for all six predictions. Figure 27 displays the 

boxplots for the uncertainty values derived by UD1. The boxplots for UD2 are not shown 

in this section as the boxes, and the whiskers all lie close to a probability of 1 and are thus 

not visible in the plots.  
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Figure 27: Distribution of the uncertainties for UD1 over the 12 landcover classes. 

 
 
  

001 

003 

005 
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In all three boxplots, elevated uncertainty values can be detected over the classes Herba-

ceous Vegetation, Bare Soil, Permanent Water, Moss and Lichen, and Seas. The boxplots 

for predictions 001 and 003 show similar results. For prediction 005, differences from the 

other predictions are recognizable. There are higher uncertainties over the Herbaceous 

Vegetation class and lower uncertainties over the water classes Permanent Water and 

Seas. Despite its higher uncertainty values, it is also noted that the Moss and Lichen class 

is strongly underrepresented in the data. For UD2, the results were similar to what is 

presented in Figure 27. For predictions 002 and 004, there were higher uncertainties in 

Bare Soil, Herbaceous Wetland, and the water classes. For prediction 006, there were also 

higher uncertainties in the class Herbaceous Vegetation detectable. 

6.4 Result optimization based on uncertainties 

The final experiment in this study regards optimizing the prediction results based on the 

estimated uncertainty. On the basis of the findings in this study and the recommendations 

of Redekop & Chernyavskiy (2021), the experiments were only conducted for the predic-

tion with uncertainty estimations for UD1. The reasoning is further discussed in section  

7.4. A particular focus lies on the analysis of Prediction 005, which used model C, which 

was trained with the simplified data for one epoch training. Prediction 005 was chosen by 

visually assessing the boxplots in Figure 18. The difference between the means of the 

uncertainties for correctly and falsely classified pixels appears to be the highest. This 

means the uncertainties are higher over misclassified areas than the other predictions. The 

experiment also directly compared other predictions to confirm the choice. Figure 28 il-

lustrates the progression of performance metrics based on the threshold above which the 

pixels were relabeled. The threshold was tested in 0.01 steps, and the metrics were calcu-

lated after each relabeling step. The analysis was done for all 18 test scenes and displayed 

the result for the whole model without applying morphological filtering. It is visible that 

the results worsen first for all predictions until they reach their initial prediction results. 

Only the Recall improves slightly for the predictions 003 and 005. 
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Figure 28: Performance metrics changes based on the chosen threshold for relabeling (0.01 steps) for Pre-
dictions 001, 003, and 005.  

001 

003 

005 
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Figure 29 shows the results for Prediction 005 as the difference between the performance 

metrics after the relabeling and their initial performance. In addition, this performance 

change is illustrated after an erosion filter is applied to the relabeling mask. The used 

filter is a square structuring element with a size of 50 x 50 pixels.   

 

Figure 29: Change in performance metrics compared to the initial performance after relabeling for all 18 
scenes and Prediction 005. No filter applied (left) and a square kernel (k=50) erosion (right). 

Figures 30 and 31 provide further information on how different kernel sizes impact the 

relabeling process on a scene and on a more detailed basis. Figure 30 shows the effect of 

three different erosion filters applied to the predictions of scenes 75 and 89 for Prediction 

005. Figure 31 illustrates the experiment in the detail area in scene 89. Here four different 

kernel sizes are compared. The graphs without an erosion filtering of the relabeling mask 

are also provided for comparison. The most considerable performance improvement can 

be achieved at an uncertainty threshold of 0.04 and 0.05 and a kernel size of 50 pixels for 

the square structuring element. Figure 32 shows exemplarily how the relabeling appears 

in a map product. The prediction water mask, the ground truth mask, and the masks after 

the relabeling process are provided. The figures illustrate the effect of the erosion filtering 

applied to the relabeling mask.  

  

No Filter k = 50 
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Figure 30: Relabeling for Scene 75 (left) and 89 (right). Change in performance metrics compared to the 
initial performance for prediction 005. No filter applied (top) and a square kernel erosion with dimen-

sions: 25 x 25 (second row), 50 x 50 (third row) and 75 x 75 (bottom). 
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Figure 31: Relabeling for the zoomed-in detail of Scene 89. Change in performance metrics compared to 
the initial performance for prediction 005. No filter applied (top) and a square square kernel erosion with 

dimensions: 25 x 25 (middle left), 50 x 50 (middle right), 75 x 75 (bottom left) and 100 x 100 (bottom 
right). 

k = 75 k = 100 

k = 50 k = 25 

No Filter 
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Figure 32: Maps of the conducted relabeling for scene 89 and a threshold of 0.05. Prediction (top left) and 
ground truth (top right) compared to relabeled masks without morphological filtering (middle left) and 

applied erosion to the relabeling mask with a square structuring element with kernel size: 25 x 25 (middle 
right), 50 x 50 (bottom left) and 75 x 75 (bottom right).  

Prediction Ground Truth 

No Filter k = 25 

k = 50 k = 75 
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7 Discussion 

Floodings are a relevant geographic topic in natural hazards and threaten socioeconomic 

and ecological structures and conditions. Deep Learning methods and SAR data are being 

utilized to minimize the adverse effects of flood events and improve existing management 

systems and flood mapping products. This study conducted experiments to determine how 

specific methods can improve flood mapping further. In detail, an analysis of the uncer-

tainty estimations generated by a BCNN was performed. The results of the conducted 

study, presented in Chapter 6, are discussed in the following chapter. First, the model 

performance and the prediction result are mentioned (7.1), as well as the results of detect-

ing the error-prone areas of those predictions (7.2). Then, the uncertainty analysis (7.3) 

and the relabeling of the predictions based on the uncertainties (7.4) are reviewed.  

7.1 BCNN performance 

Three different BCNNs were trained. The differences in the models can be found in the 

used training data and the model setups. Model A, trained with the best available training 

data for 12 epochs, produced good results that align with the findings of Hertel (2022). 

The other two models performed stepwise worse for most performance metrics, as seen 

in Table 6 and Figure 16. Model B was trained with the simplified data for 13 epochs, 

and model C with the simplified data for just one epoch. Model C performed the worst 

across all performance metrics except for the Recall, where model B performed slightly 

worse. Especially for the three metrics, F1-Score, the IoU, and the Kappa coefficient the 

stepwise decline is detectable. 

The weaker performance also becomes evident in the training and validation losses and 

accuracies. By training only one epoch, the losses are higher compared to the final losses 

of models A and B. This also confirms the presumptions that worse training data produces 

worse results than the optimal data and fewer training epochs decrease the performance 

even further. This also matches the findings of Redekop & Chernyavsjiy (2021). The 

models produced uncertainty estimations based on both uncertainty definitions. The pre-

dictions were made for all 18 test scenes and all models, resulting in six predictions. There 

were only minimal differences in the performance metrics between the two predictions 
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for each model. The 32 individual predictions for one model prediction yielded different 

results. However, the ensemble mean of the prediction generated very similar results for 

the same model and input. This can lead to the conclusion that the model produces con-

sistent results and offers the possibility to generate uncertainty estimations. This further 

proves the functionality of the approach by Hertel (2022).  

7.2 Error-prone areas of the BCNN 

The first experiment conducted with the predictions of the BCNNs aims to answer the 

question of what existing conditions occur in error-prone regions. This is tested over 12 

different landcover classes acquired from the GCLS-LC100 dataset. The highest propor-

tions of misclassified pixels were found over Bare Soil, Herbaceous Vegetation, and the 

water classes. The misclassifications over bare soil also match the presumption that 

smooth, natural surfaces cause overclassification of the water surface areas. Smooth sur-

faces reflect more significant portions of the emitted SAR radiation, thus possessing sim-

ilar backscatter values as water surfaces (Martinis, Kuenzer, & Twele, 2015; Twele et al., 

2016). Figure 17 also shows that the backscatter values are lower over bare soil, which 

further confirms the findings. The class Herbaceous Vegetation also poses lower 

backscatter values over the 18 test scenes. This fact might be the reason for overclassifi-

cation in those areas. In future research, the classes Bare Soil and Herbaceous Vegetation 

should be further separated to gain more detailed insights into variabilities inside those 

classes. For example, Bare Soil merges areas like sand dunes and sparsely vegetated areas 

in one class. There might be significant differences in the error proneness of those sub-

categories (Buchhorn et al., 2020).  

Datasets describing other conditions that can accompany misclassifications can also be 

added to the findings of this study. Those datasets can describe radar shadow phenomena 

or geomorphological conditions like slope or curvature. The slightly elevated proportion 

of misclassified pixels in the classes Permanent Water Body and Seas might be due to 

disturbances of the water detection in the boundary region between water and non-water. 

Here partially or entirely submerged vegetation can lead to misclassifications by the ef-

fects described in more detail in section 2.1.2 (Martinis, Kuenzer, & Twele, 2015; Shen 

et al., 2019). It should also be noted that in this study, one remote sensing product is 

compared to another. Both products are prone to different error sources and only reach 
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certain accuracies. The landcover data used in this thesis achieved an overall accuracy of 

80.2%. However, the accuracy varies for the different landcover classes (Buchhorn et al., 

2020). It is also noted that the used landcover data is an annually generated product that 

is prone to temporal decorrelation. Temporal decorrelation is shown as landcover can 

change over the course of a year (Lavalle, Simard and Hensley, 2011) . Therefore, the 

data might not match the conditions in the Sentinel-1 data. The results of this study are 

always to be assessed with these facts in mind. The landcover data also has a spatial res-

olution of 100 m compared to the 10 m of the Sentinel-1 data. This difference can also 

lead to inaccuracies in the analysis. In future research, it is advised to use data as close as 

possible to the input resolution. The findings of this study confirm the assumptions that 

bare soil has decreased backscatter values and a large proportion of the misclassified pix-

els lie within this class for all six predictions. It also shows that a high proportion of 

misclassified pixels lie within the Herbaceous Vegetation class, over which lower 

backscatter values were also detected.  

7.3 Uncertainty analysis 

The findings of the uncertainty analysis of whether misclassified pixels possess higher 

uncertainties compared to correctly labeled ones and whether there are landcover classes 

prone to higher uncertainties were presented in section 6.3. The analysis is also conducted 

to provide a knowledge basis for the experiments regarding the relabeling of pixels based 

on uncertainty. It is assumed that uncertainties are higher over misclassified pixels which 

are then relabeled. Figure 18 presents the uncertainty distribution results over TP, FP, TN, 

and FN pixels. For all six predictions, there are higher uncertainty values over misclassi-

fied pixels than over correctly labeled pixels. The most considerable difference in this 

regard is detectable for prediction 005. Here the mean and the median are substantially 

higher over FP and FN pixels. Those findings were also explored further in the examina-

tion of example scenes. Scene 75 consists mainly of agricultural areas and the Sea of 

Azov in southeastern Russia. The misclassified areas for the predictions appear to be over 

already harvested fields when visually comparing the areas with the Sentinel-2 data. In 

these areas, the uncertainty also appears higher, as shown in Figure 21. This seems to be 

especially true for prediction 005. For predictions 001 and 003, higher uncertainties can 

be detected over correctly labeled water areas. For the predictions estimated with UD2 
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(Figure 22), higher uncertainties can be found in the boundary regions between water and 

non-water. This finding also corresponds to the conclusion of Hertel (2022), as the un-

certainties for UD2 are high in unclear pixels. That is not the case for pixels where the 

distribution of sigmoid values is either shifted towards water or non-water. As a result, 

the uncertainty estimations generated by UD1 are more spatially spread than those of 

UD2. The findings are also confirmed when visually assessing scene 89 (Figure 23-26). 

The scene displays an arid area in Qatar close to the coast that includes water areas of the 

Persian Gulf. The coastal area consists mainly of dry, sandy plains (Engel et al., 2018). 

The misclassifications in this area most probably occur because of the smooth sand sur-

faces that can lead to overclassification (Martinis, Kuenzer, & Twele, 2015). The uncer-

tainties of UD1 have a more spread-out distribution compared to UD2. When further as-

sessing the uncertainties estimated by UD1, it is visible that for predictions 001 and 003, 

the uncertainties are elevated over correctly labeled water areas. For prediction 005, the 

highly uncertain areas resemble the misclassified ones better. This is visible in scenes 75 

and 89. It is also recognized that IU areas are surrounded by IC pixels. This may also be 

due to the chosen threshold above which pixels are labeled as uncertain. The maps dis-

playing the uncertainties for UD1 show horizontal and vertical patterns. This can be 

caused by the decrease of uncertainties towards the edges of the predicted image, as the 

predictions are conducted on a tile basis (Hertel, 2022). The BCNN adapted by Hertel 

(2022) for SAR-based image segmentation also includes an additional parameter to define 

the overlap of the tiles used for the prediction. The horizontal and vertical phenomena 

might decrease when this value is set higher to include more pixels surrounding each tile 

and thus, increasing the overlap.   

The second part of the uncertainty analysis regards the uncertainties' distribution over 

different landcover types. Higher uncertainties can be found over different landcover 

types, as described in section 6.3.1. The interpretation of the boxplots and the descriptive 

statistics lead to the conclusion that there are elevated uncertainties over the classes Her-

baceous Vegetation, Bare Soil, Permanent Water, Moss and Lichen, and Seas. This 

proves especially for models A and B. Model C shows higher uncertainties over the class 

Herbaceous Vegetation and lower values over the water classes. When assessing the re-

sults visually, there is a similarity between the boxplots for prediction 005 and the 

backscatter values over the landcover classes. Therefore, the classes possessing lower 

backscatter values resemble higher uncertainties. This might be due to the higher 
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misclassifications over those classes and, thus, higher corresponding uncertainty values. 

This concerns the findings of the uncertainty analysis over misclassified areas. This anal-

ysis could also be extended with additional datasets, as only landcover classes are con-

sidered in this study. 

7.4 Applicability of relabeling based on uncertainties 

Based on the findings discussed in 7.3, the uncertainties of UD1 and, more precisely, 

prediction 005 were found to be the most suitable for utilization in the relabeling process. 

Therefore, most experiments were conducted for prediction 005 of model C. For this pre-

diction, the uncertainties are higher over misclassified areas than in the other predictions. 

Model C was trained with the simplified data. This data only shows one level of geometric 

simplification. In future research, the impact of varying levels of introduced noise can be 

analyzed to test their impact on the results further. Here, different error sources in human 

and automatically labeling might be reproduced. In this study, the relabeling of all test 

scenes only led to slight increases in the Recall metric. Compared to predictions 001 and 

003, the increase in performance was the highest for prediction 005 as there was a slight 

increase in the Recall and F1-Score detectable. This seems to confirm the findings of 

Redekop & Chernyavkiy (2021) that one epoch training is more suitable for the relabeling 

process compared to more epochs. Concerning the erosion filtering of the relabeling 

mask, the study shows an improvement in the performance metrics when applying the 

filter to the relabeling mask before relabeling. This can be detected for all scenes and also 

on a more detailed level. 

Furthermore, the influence of different sizes of a square filter kernel was tested. After 

assessing the results quantitatively and qualitatively, it can be assumed that a square filter 

of dimensions 50 x 50 pixels produces the most remarkable performance improvements. 

This accounts for the produced result but may vary when applied to different areas. The 

chosen uncertainty threshold, above which the pixels are relabeled, also needs to be con-

sidered. According to the findings in this study, when applying a 50 x 50 erosion filter, 

the optimal threshold is 0.05, resulting in the highest increase in the performance metrics. 

It is noted that the optimal threshold varies strongly based on the chosen filter kernel size, 

as visible in Figure 31. This research could be extended to assess further the impact of 

different morphological filtering before and after the relabeling and their consequences 
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for the optimal uncertainty threshold for relabeling. This experiment proved the applica-

bility of the proposed method for certain areas. The method might reduce the resources 

needed to create training data for flood mapping applications.    
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8 Conclusions 

This chapter summarizes the results presented in this study. It also provides recommen-

dations for future research building on the results. 

8.1 Summary 

Flood mapping poses a relevant tool to support flood management during and after a 

flooding event. It is, therefore, necessary to provide accurate and timely data. BCNNs 

have produced highly accurate classification results for water detections in SAR data. The 

approach by Hertel (2022) was proven and further tested in this study. Three BCNNs 

were trained using different setups and training data. The training data consists of Senti-

nel-1 data and the corresponding reference masks generated from Sentinel-2 data and by 

expert knowledge. In addition, another training dataset was created using a line simplifi-

cation algorithm to simplify the geometries of the data. As expected, the model trained 

with the best available training data achieved the best prediction results. The second 

model was trained with the simplified training data for 13 epochs and achieved lower 

average performance metrics. The third model was trained with the simplified data for 

only one epoch and achieved the weakest performance among the three models for the 18 

test scenes. 

Regarding error-prone areas, the landcover class Bare Soil achieved high levels of mis-

classified pixels. This is probably due to the smooth surface of sandy and comparable 

areas.  

For the uncertainty analysis, the study has confirmed that the uncertainty values are higher 

over misclassified pixels than correctly classified pixels. This appears to be especially 

visible for the model trained with the simplified data and for one epoch (Model C). The 

difference in the mean values is higher for the uncertainty definition calculated by the 

spread of sigmoid values (UD1). It is therefore concluded that model C and UD1 are best 

suited for improving the results based on the uncertainty.  
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The uncertainty values appear elevated over certain classes like Bare Soil and Herbaceous 

Vegetation. This also matches the experiment's findings regarding the condition of erro-

neous pixels. 

Based on the assumption that uncertainties are higher over misclassified pixels, the pixels 

of high uncertainty were relabeled to their opposite class. The study showed promising 

results. An improvement is detectable in certain areas. The most considerable improve-

ments in the performance metrics were detected for model C and UD1. The results im-

proved further when applying morphological erosion filtering to the mask of the highly 

uncertain pixels. According to the findings in this study, the best results were achieved 

when applying a 50 x 50 erosion filter with an uncertainty threshold of 0.05. This is de-

termined for model C and UD1. It is concluded that the approach might be suitable to 

decrease the resources needed to create appropriate reference data for training. This could 

consequently lead to trained models with data that covers more geographically diverse 

areas. This might also result in more complete models that can be used globally.  

8.2 Recommendations for Future Research 

This study's research questions were mainly answered but still left some parts unan-

swered, and new questions have arisen. These might be subject to future research based 

on the findings in this thesis.  

Additional datasets can be implemented to analyze the conditions of error-prone areas 

and the uncertainties. This could mean extending the experiments to conditions assumed 

to cause difficulties for the model, like radar shadows or submerged vegetation. For the 

landcover data, it might be reasonable to separate the classes Bare Soil and Herbaceous 

Vegetation further to gain more detailed insights on variabilities inside those classes. It is 

also recommended to use inter-annual data to avoid temporal decorrelation. 

Regarding the relabeling based on uncertainty, different degrees of simplification of the 

training data should be tested. This can simulate different error sources that persist when 

creating the data. The difference between different creators of the training data could also 

be tested. Different creators can label the same data to highlight differences between dif-

ferent ways of creation. Future research might further emphasize the impact of different 

morphological filtering before and after the relabeling process.  
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Appendix 
 

A Test Scene Overview 

A.1 Table containing basic information about all 18 test scenes 

 

 

  

Scene ID Valid Pixels Main Landcover Acquisition Date  

23 148,840,000 Bare 2019-08-18  

25 331,838,173 Closed Forest 2019-08-27  

29 148,789,852 Closed Forest 2019-09-02  

31 14,263,341 Herb, Vegetation 2019-09-10  

33 188,234,319 Closed Forest 2019-09-18  

35 176,448,793 Closed Forest 2019-09-16  

47 82,043,578 Herb, Vegetation 2019-01-04  

53 188,190,103 Cultivated Vegetation 2019-04-16  

57 181,540,054 Permanent Water 2019-06-17  

66 135,182,112 Shrubs 2019-08-29  

75 188,259,427 Cultivated Vegetation 2019-09-11  

77 61,804,734 Closed Forest 2019-09-18  

78 172,199,461 Herb, Vegetation 2019-09-16  

80 138,390,797 Herb, Vegetation 2019-10-14  

82 148,834,722 Closed Forest 2019-09-26  

88 129,307,897 Bare 2020-11-24  

89 137,534,256 Sea 2020-04-10  

90 133,872,887 Closed Forest 2020-10-13  
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A.2 Maps of all 18 test scenes with Sentinel-1 and Sentinel-2 and the 
reference data 
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B Accuracy and Certainty Maps 

Scene 23, UD1: 
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Scene 23, UD2: 
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Scene 25, UD1: 
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Scene 25, UD2: 
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Scene 29, UD1: 
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Scene 29, UD2: 
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Scene 31, UD1: 
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Scene 31, UD2: 
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Scene 33, UD1: 
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Scene 33, UD2: 
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Scene 35, UD1: 
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Scene 35, UD2: 

 

 

 



Appendix 114 
 

  
 

Scene 47, UD1: 
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Scene 47, UD2: 
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Scene 53, UD1: 
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Scene 53, UD2: 
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Scene 57, UD1: 
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Scene 57, UD2: 
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Scene 66, UD1: 
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Scene 66, UD2: 
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Scene 75, UD1: 
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Scene 75, UD2: 
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Scene 77, UD1: 
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Scene 77, UD2: 
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Scene 78, UD1: 
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Scene 78, UD2: 
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Scene 80, UD1: 
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Scene 80, UD2: 
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Scene 82, UD1: 
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Scene 82, UD2: 
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Scene 88, UD1: 

 

 

 



Appendix 133 
 

  
 

Scene 88, UD2: 

 

 

 



Appendix 134 
 

  
 

Scene 89, UD1: 
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Scene 89, UD2: 
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Scene 90, UD1: 
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Scene 90, UD2: 

 

 

 



Appendix 138 
 

  
 

Scene 31, Detail, UD1: 
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Scene 31, Detail, UD2:  
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Scene 89, Detail, UD1:  
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Scene 89, Detail, UD2:  
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