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Abstract—Swarm robotics has gained an increasing attention
in applications like extraterrestrial exploration and disaster
management, due to the ability of simultaneously observing
at different locations and avoiding a single point of failure.
In order to operate autonomously, robots in a swarm need to
know their precise poses, including their positions, velocities and
orientations. When external navigation infrastructures like the
global navigation satellite systems (GNSS) are not ubiquitously
accessible, the swarm of robots need to rely on internal mea-
surements to estimate their poses. In this paper, we propose a
cooperative 3D pose estimation framework, based on the insights
of sensor characteristics that we gained from outdoor swarm
navigation experiments. A decentralized particle filter (DPF)
operates on each robot to estimate its pose via fusing radio-
based ranging, inertial sensor data, control commands and the
pose estimates of its neighbors. This framework is integrated
in the swarm navigation ecosystem developed at the German
Aerospace Center (DLR), and is unified for both simulations
and experiments.

I. INTRODUCTION

The European Union envisions swarm robotics as one of
the top ten significant innovation breakthroughs by 2038 [1].
Research in the field of swarm robotics have been on the
rise since 2003 [2]. Compared with a single robot system, a
robotic swarm is resilient to failures and enables simultaneous
observation of phenomena, such as radio waves, gas sources,
or acoustic signals in different locations. In addition, robots in
a swarm can collaborative adapt their formation according to
varied environment and objectives, which is essential for au-
tonomous missions like search-and-rescue and extraterrestrial
exploration [3]. As an example, a conceptual lunar swarm ex-
ploration mission is depicted in Figure 1. A swarm of robots,
also known as agents, form an array, known as a low frequency
array (LOFAR), to observe radio bursts from Jupiter. After
this mission, the swarm needs to reshape its formation so
that it can better observe the homing signal to return to the
mission base. In such a mission, swarm navigation, which
is with respect to (w.r.t.) a navigational frame, and control,
which is w.r.t. the body frame of each individual agent, are
tightly coupled. Therefore, both the positions and orientations
of agents in navigational frame need to be precisely known,
in order to apply navigational-to-body frame transformation.
When global navigation infrastructures like global navigation
satellite system (GNSS) are not ubiquitously accessible, a

Figure 1: A conceptual lunar swarm exploration scenario, where
swarm’s formation has to be autonomously adapted for LOFAR and
return-to-base missions.

local navigational frame can be defined by static nodes like
landers and sensor boxes. These nodes are often referred to as
anchors. The swarm of robots can rely on local observations
to collaboratively estimate their poses, including positions,
velocities and orientations, w.r.t. the local navigational frame.
These observations may include agent-to-agent and agent-
to-anchor ranges, inertial measurement unit (IMU) data and
control commands. For a robotic swarm with a multitude of
agents, a decentralized pose estimator with low complexity
is advantageous. The theory and algorithms of cooperative
positioning have been well studied for example in [4], [5] and
[6], [7], respectively. Time plays an important role in swarm
navigation as discussed in [8]. The imperfection of clocks
[9] has to be considered particularly when propagation time
based ranging schemes like time of flight (ToF) are applied. In
[10], simultaneous localization and synchronization has been
proposed. Regarding orientation estimation, in [11] the three
most commonly used mathematical representations of orien-
tation in three-dimensional (3D) space have been thoroughly
discussed. In [12] the advantageous quaternion representation
is used in a Kalman filters. Quaternions are also introduced as
a rotation group SO(3) manifold. Optimization for orientation
estimation can be directly done on manifolds as shown in
[13]. Concerning fusion, particle filters are often used to
approximate posterior distributions on non-linear and non-
Gaussian estimation problems [14]. In [15], [16] distributed
particle filterings (DPFs) with reduced complexity have been



proposed for localization in large-scale networks.

Despite the extensive study on each above mentioned
aspect, a comprehensive system-level guidance to build a
swarm enabling cooperative pose estimation is still missing.
In this paper, we introduce a cooperative 3D pose estimation
framework, based on the insights we gained from assembling
a swarm navigation system and conducting outdoor experi-
ments. A DPF operates on each robot to estimate its pose via
fusing radio-based ToF ranging, inertial sensor data, control
commands and the pose estimates of its neighbors. This
framework is integrated in the swarm navigation ecosystem
developed at the German Aerospace Center (DLR), and is
unified for both simulations and experiments.

II. NETWORK AND OBSERVATION MODELS OF SWARM
A. Network

We assume a network composed of N + M nodes in a
set V), including N agents in set .A and M anchors in set B,
as illustrated in Figure 2. Anchors span a local navigational
frame, referred to as the n-frame, whereas an agent’s body
frame is referred to as the b-frame. Superscript n, b and nb
denote parameters w.r.t. n-frame, b-frame and n-to-b-frame
transformation, respectively. An agent ¢ aims at estimating its
3D pose at time instant ¢, including position pj,, velocity v},
and orientation in unit quaternions q?",?. The unit quaternions
convention does not suffer from the singularity problem as
with Euler Angles convention, or similarly, the yaw-pitch-
roll convention. It is numerically stable compared to the
rotation matrix convention. In addition, the unit quaternions
are preferable when applying consecutive rotations or inter-
polations. Therefore, we choose unit quaternions to describe
the orientations of agents. Besides, due to the imperfection
of the clocks which will affect the ToF ranging, five clock
parameters have to be jointly estimated, including the phase
deviation ¢; 1., the frequency deviation c¢; 2., the constant
frequency drift ; ; and the constant group delays d; T« and
02,rx Within the transmitter and receiver chains, respectively.
The overall state of agent ¢ is then expressed as
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where vec{-} arranges parameters into a column vector. The
angular velocity of agent ¢ w.r.t. b-frame is shown in Figure 2
as yP,, , = vec{wl, wh, wb}. These values can be observed
from a gyroscope or the angular velocity command. The linear
velocity w.r.t. b-frame can be controlled via the command
linear velocity yy, , = vec{v}, v, vb}. Additionally, agent
i conduct ToF ranging measurements d; ; with the neighboring
node j. Lastly, the orientation of the agent q!'? is defined as
the rotation from b-frame to n-frame. l

B. Selection of Observations

Theoretically, an extra observation can only improve the
estimation performance given a correct model. However, in
practice, a selection of the most effective observations is
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Figure 2: Network of a robotic swarm.

preferred to reduce the complexity. We collect measurement
data from an outdoor swarm navigation experiment which is
introduced in [17] and in Section IV-B, and propose a pose
estimation framework with selected sensors according to the
data analysis. The observations that available to our swarm
experimental platform can be grouped into two subgroups.
The intra-node observations consist of IMU, with gyroscopes
and accelerometers with an update rate of 50 Hz, and com-
mand linear and angular velocities with an update rate of
approximately 200 Hz. The inter-node observations are based
on radio links. These are the ToF observations, which use
timestamps on packet exchanges to estimate the distance be-
tween nodes. For a robot equipped with a multi-port antenna,
direction of arrival (DoA) observations can be extracted,
which is discussed in [17] and beyond the scope of this paper.
We replay the data collected over 1080 seconds from the
experiments and employ position or orientation estimation
with individual sensor. The gyroscope and command angu-
lar velocity provide orientation estimates with error around
10degree and 180 degree, respectively. The position estimate
with solely accelerometers or command linear velocity given
the perfect n-to-b-frame transformation experiences an error
around 1000 m and 4 m, respectively. Positioning with only
ranges can achieve a sub-meter accuracy, except occasions
where radio signal is interrupted leading to a outliers up
to hundreds of meters. With this analysis, we identify the
most effective observations are the gyroscope, command linear
velocity and ranges, which we will fused with DPFs.

III. FUSION WITH DECENTRALIZED PARTICLE FILTER

In [15], [18] the authors have introduced DPFs for swarm
localization. In this paper, we extend those DPFs framework to
pose estimation. Instead of a complete lengthy formulation of
DPFs, we only highlight the novel ingredients in state transi-
tion and update. As described in [8], the clock parameters are
rather stable, that can be tracked with a pre-filter in the ToF
acquisition phase. Therefore, we only need to use particles to
represent the posterior probability density function (pdf) of
agent’s position p;',, velocity v;', and orientation q?}g.



A. Rover Mobility

As we discussed before, the gyroscope output y?wmt and
command linear velocity ygvc,t are accurate. Therefore, we
consider them in the mobility model and utilize them in
the transition step of DPF. The position of a robot depends
directly on its velocity state:

p?,t-i-l = p?,t + TVzr‘l,ta 2

where 7' is the time interval. The velocity v7, is the command
linear velocity y?’vc’t rotated by the current orientation:
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where e}, is the corresponding process noise. R?}g is the
rotational matrix from the b-frame to n-frame, which can be
calculated from the unit quaternions q?}t’. The new orientation
is obtained by applying, to the old orientation q?}i, a quater-
nion multiplication with the rotation perturbation, i.e. the
quaternion expression of the accumulative gyroscope output:

T
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where exp, is the quaternion exponential and e;,, , is the
corresponding process noise.

B. Neighboring Agent’s Uncertainty Mapping

Due to the collaborative nature of swarm, the pose uncer-
tainty of an agent will affect the estimation of its neighboring
agents, and propagates through the network. In [6] a factor-
graph approach is introduced to reduce the error propagation
effect. In [5], it has been shown that one can infer the neigh-
bor’s two-dimensional (2D) position uncertainty with Cramér-
Rao bound (CRB) ellipse and project it onto the ranging direc-
tion. In [15], [18] the authors exploit this projection to further
reduce the complexity of DPFs for network localization. In
3D, the covariance cov; of the position posterior pdf, which
is included in the navigation message from agent j, can be
interpreted as an ellipsoid as shown in Figure 3. We define a
so called equivalent ranging variance similarly as in [18]:
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where r; ; is the direction vector between agent 4 and j.
With the equivalent ranging variance, the principal axes of the
ellipsoid are projected as additional uncertainty components,
added to the original ranging variance O'z ;- The equivalent
ranging variance &ﬁ ; 1s used to build an equivalent likelihood
function:
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The weights of particles can then be updated with the
equivalent likelihood function which significantly reduce the

complexity [18].
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Figure 3: A visual interpretation of the equivalent ranging variance.

C. DPF Integrated in Swarm Navigation Ecosystem

The 3D cooperative pose estimation framework has been
integrated into the swarm navigation ecosystem developed in
Robot Operating System (ROS) [19]. The DPF flowchart and
the overall system diagram can be seen in Figure 4. The
framework has been unified for three different modes:

« Simulation mode: A simulator is created, optionally with

a physics engine in Gazebo, which provides a virtual
world to test large-scale swarm navigation algorithms.
An example of the simulated world is depicted at the
bottom left of Figure 4.

o Post-Processing mode: Experiments with for example the
DLR rover fleet (shown at the bottom of Figure 4) can be
recorded and replayed for post-processing, which allows
comparing and validating different estimation algorithms.

o Real-Time mode: The estimator has been adapter to
work in real-time so that it can directly output 3D pose
estimation for other mission objectives like the LOFAR
experiments planned for summer 2022 on volcano moun-
tain Etna [19] (shown at the bottom right of Figure 4).

All three modes have been validated with experiments.

IV. VALIDATION
A. Large-Scale Swarm in Simulation

Large-scale 3D swarm navigation simulations are con-
ducted, with four anchors and 25 agents as shown in Figure 5.
The anchor nodes are visualized as red spherical markers, the
ground truth poses of agents are visualized as tri-color tri-
axial markers, and the estimated positions are shown as green
spherical markers surrounded with particles. The particles are
color coded according to their weights. All the mentioned
markers have a small line connecting them to the grid, which
represents the z = 0 plane. The grid indicates 10 meter blocks.
The simulations have been run with a prediction rate of 5H z
and 5000 particles with and without the neighbor’s uncertainty
mapping. additive white Gaussian noise (AWGN) has been
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Figure 5: Simulation: 3D navigation of a large swarm with 25 agents.

introduced in the ranging measurements with a standard
deviation of 4 meters. Agents make random walks traveling
up hundreds of meters within 400 seconds of simulation time.
It can be seen that the nodes further away from anchors
have larger positioning errors due to unfavorable geometry.
The positioning root mean square errors (RMSEs) with and
without the uncertainty mapping are plotted in Figure 6. Two
main performance improvements by the uncertainty mapping
can be seen. Firstly, the uncertainty mapping leads to a faster
convergence at the beginning. Secondly, when agents travel far
with unfavorable geometry, their position uncertainty affects
other agent less by applying the uncertainty mapping.

B. Swarm 3D Pose Estimation Experiments

In the summer of 2020, a measurement campaign was
conducted in a grass field in Poecking, Germany. The swarm
in the campaign consists of four rovers as agents and three
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Figure 6: Positioning RMSE of the simulated swarm.

sensor boxes as anchors, as shown in Figure 7. Agents are
named magellan, drake, dias and vespucci. All three rovers,
except magellan, are mobile and controlled with command
velocity messages. The measurement campaign has been
recorded for 1080 seconds, with the ground truth poses from
real-time kinematic (RTK), ranging measurements, IMU data
and command velocities. In Figure 8 a convergence of 3D pose
estimation can be seen, except the orientation of magellan,
which is unobservable since that rover has been stationary
from the beginning. The positioning and orientation RMSEs
of vespucci are shown in Figure 9, comparing the proposed
sensor fusion approach and the range-only approach in [15].
For position estimation, during normal operation, sub-meter
positioning accuracy is achieved. However, there are two
problematic time-windows. The first one is at around 120s,
where anchor2 resets its internal clock and large discontinu-
ities are observed in the ranging measurements.The second
one is at approximately 850s, where vespucci drives far
away from all the anchors. There is a 40s period where it
has limited connectivity to most of the nodes. Within these
time -windows, the range-only approach suffers from a large
positioning error up to 40m, which is reduced to less than
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Figure 8: 3D pose estimation with DPF.

10 m by sensor fusion. For orientation estimation, the sensor
fusion also brings in a significant improvement from 1 ~ 2
radians with range-only to around 0.1 radians. In addition, the
rolling angle can be precisely estimated by sensor fusion but
is unobservable with range-only approach.

V. CONCLUSION

In this paper, we introduce a robust and decentralized 3D
pose (position, velocity, orientation) estimator for a robotic
swarm. Agents fuse gyroscope, command linear velocity, radio
ranges and neighbor’s estimates to obtain a precise pose
estimation. A DPF is proposed with neighbor’s 3D positioning
uncertainty mapping which reduces error propagation effects
with low complexity. The DPF is integrated in the swarm
navigation ecosystem developed at DLR. This ecosystem
can be flexibly configured for large-scale simulation, post-
processing and real-time missions. A sub-meter positioning
accuracy and 0.1 radians orientation accuracy are achieved in
an outdoor swarm navigation experiment during normal oper-
ation. The proposed sensor fusion framework is additionally
robust against ranging outliers.
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