
Frankfurt University Of Applied Sciences
Faculty: Computer Science and Engineering

High Integrity Systems

Master’s Thesis

Response Time Analysis of Tasking Framework Task
Chains

Author: Jathin Sreenivas

Matriculation Number: 1321762

Examiner: Prof. Dr. Christian Baun

Co-examiner: Prof. Dr. Thomas Gabel

Supervisor: Dr.-Ing. Zain Hammadeh

Submission Date: August 25th 2022

I herewith formally declare that I, Jathin Sreenivas, have written the submitted thesis in-
dependently. I did not use any outside support except for the quoted literature and other
sources mentioned in the paper. I marked and separately listed all of the literature and the
other sources I employed when producing this master’s thesis, either literally or in content.
The drawings or images in this master’s thesis were created by myself or provided with a
corresponding source reference. This thesis has not been handed to any other examination
authority in the same or similar form.

Frankfurt Am Main, August 25th 2022 Jathin Sreenivas

Abstract

Multi-core processors have been increasingly utilized in general computing and modern
embedded applications for their potential to maximize system throughput. Parallel frame-
works allow programmers to make the most of parallelism without having the burden of
understanding the underlying architecture. However, real-time systems comprise tasks gov-
erned by stringent timing requirements, which the parallel frameworks do not support. There
is a need to analyze a computation model that adapts both advantages. The analysis of
parallel real-time applications modeled as Directed Acyclic Graph (DAG) tasks scheduled on
multi-core platforms has been intensively studied in recent years. A real-time task can be
modeled as periodic and sporadic tasks. In recent years, sporadic tasks have been modeled
as periodic by considering the maximum arrival frequency as the period. Current studies
provide an analysis of the challenges faced for scheduling real-time tasks modeled as DAG
tasks on multi-core processors where all the subtasks (fragments of the task) are consigned to
and executed by the worker threads of a thread pool by restricting the maximum parallelism
at any point of execution by the number of threads in the thread pool.

However, the existing work dispatches the subtasks to the threads in a non-deterministic
way, i.e., the execution order of the subtasks is not contemplated. The work done here
proves that the intra-task priorities have a notable impact on the worst-case response time.
Furthermore, it confirms that the upper bound of response time computed by modeling
sporadic tasks as periodic is pessimistic. An algorithm is introduced that allows analyzing
a safe upper bound for the response time by controlling the execution order. Moreover, a
function is utilized to model sporadic tasks without maximal arrival frequency to achieve a
less pessimistic result.

An analysis is made to derive a worst-case response time for a task set scheduled by
a preemptive global fixed-priority scheduler, wherein each task has intra-task priorities
assigned. The work is further extended by providing experiments with randomly created
DAG tasks showing that the proposed method outperforms the current state-of-the-art
methods.

iii

Contents

Abstract iii

1. Introduction 1
1.1. Use case scenario . 2
1.2. Contribution and Structure . 4

2. Tasking Framework 5
2.1. Task-Channel Model . 5
2.2. Execution model . 6
2.3. Application Model . 8
2.4. Applications . 8
2.5. Timing analysis of Tasking Framework task chains 9

3. State Of the Art 10
3.1. Directed Acyclic Graph task model . 10
3.2. Intra-task priorities . 11
3.3. Priorities Assignment . 11

4. Preliminary 12
4.1. System Model . 12
4.2. Execution Model . 13

4.2.1. Run-time Behavior . 15
4.2.2. Response Time Analysis . 16

5. Event Driven DAG 20
5.1. Motivation . 20

5.1.1. Event-triggered vs Time-triggered . 20
5.1.2. Sporadic Tasks . 21

5.2. Arrival Curves . 21
5.2.1. Response Time Analysis . 23

5.3. Synthetic Test Case Generation . 24
5.3.1. Algorithm . 25

6. Intra-Task Priorities DAG 26
6.1. Background . 26
6.2. Motivational Example . 27

iv

Contents

6.3. Compute Intra-Task Interference Bound . 30
6.3.1. Algorithm . 30

7. Priority Assignment DAG 36
7.1. Topological Priority Assignment . 36
7.2. Random Priority Assignment . 36
7.3. WCET Priority Assignment . 37

8. Implementation 40
8.1. System Model . 40

8.1.1. Class Diagram . 41
8.2. Event Driven DAG . 42

8.2.1. Arrival Curves . 42
8.3. DAG Generators . 44

8.3.1. Class Diagram . 44
8.3.2. The Erdös-Rényi method and The UUniFast method 45
8.3.3. Nested Fork-Join DAG and The UUniFast method 49

8.4. Priority Assignment . 54
8.4.1. Class Diagram . 54
8.4.2. Topological Priority Assignment . 54
8.4.3. Random Priority Assignment . 55
8.4.4. WCET Priority Assignment . 56

8.5. Intra-task interference Bound Calculation . 58
8.5.1. Class Diagram . 58
8.5.2. Algorithm . 60

9. Experiments 61
9.1. Subtasks with Priority vs. Subtasks with No Priority 61

9.1.1. Using The Erdös-Rényi method . 61
9.1.2. Nested Fork-Join . 66

9.2. Comparing Priority Assignments . 70
9.2.1. Using The Erdös-Rényi method . 70

10. Conclusion 75

11. Future Work 76

A. Appendix: Helper Methods Implementation 77

B. Appendix: Intra-task interference Upper Bound Calculation Implementation 82

List of Figures 86

List of Tables 88

v

Contents

Listings 90

Glossary 91

Acronyms 92

Bibliography 93

vi

1. Introduction

Parallel processing of tasks using current multi- and many-core architectures has proved
advantageous in accelerating task execution, system scalability, and low power consumption.
The significant ramp-up in multi-core processors has led to dramatic changes in programming
paradigms. The usage of the sequential paradigm has been reduced over the past years
due to the advantages of parallel paradigms. The parallel frameworks, e.g., OpenMP, are
up-and-coming for exploiting multi-core processor systems’ advantages. These frameworks
have the capability to split a given task into a set of smaller parallel execution fragments and
dispatch them to workers of a thread pool.

Nonetheless, parallel scheduling of tasks on a multi-core processor is not designed to
satisfy time-sensitive requirements. The migration from the sequential model on single-core
platforms to a parallel model on multi-core platforms poses many challenges to real-time
systems design. Therefore, an analysis of how to ensure maximum attainable parallelism
is required. In real-time systems, tasks are governed by stringent timing requirements,
which introduces a challenge in scheduling as many as possible sequential real-time tasks
on multi-core processors. Therefore, using the advantages of parallel paradigms in multi-
core processors to operate real-time systems fulfilling the stringent timing requirements is a
promising study to improve the scheduling of real-time applications.

Parallelism frameworks, for instance, OpenMP, provide parallel design pattern interfaces
which provide programmers to parallelize applications using the interfaces, wherein a parallel
task is broken down into small fragments and is then executed on a run time environment
that consists of a scheduler that dispatches these fragments onto a thread pool consisting of
worker threads for execution. This procedure was adapted to real-time systems as well [53]
[51].

Figure 1.1.: Example DAG created using Parallel Frameworks API

1

1. Introduction

A code snippet that utilizes the parallelism APIs provided by a parallel framework is shown
at Listing 1.1. spawn creates a node or a subtask to be executed on a thread pool. sync allows
creating dependencies between tasks, i.e., waits for the execution of subtasks that are passed
as arguments. The resulting outcome is a Directed Acyclic Graph as shown in Figure 1.1.

Listing 1.1: Example usage of parallel framework’s API

void TaskA() {
// Create Source
subtaskA1();
// Create children of source
Subtask A2 = spawn(subtaskA1);
Subtask A3 = spawn(subtaskA3);
// Wait for subtasks A2 and A3
sync(A2, A3);
Subtask A4 = spawn(subtaskA4);
// Wait for A4
sync(A4);
// Create Sink
subtaskA5();

}

Real-time application tasks can be categorized into periodic and sporadic tasks. Two
consecutive activations of the same task are separated by a specific time known as the period.
However, in the current state-of-the-art methods, the sporadic tasks are integrated by treating
them as periodic tasks by considering the minimum distance between two activations as the
period itself, i.e., maximum arrival frequency [51].

Parallel real-time applications are possible to be modelled using Directed Acyclic Graph,
the state of the art methods show a safe upper bound for the response time of a DAG task
[24] [51] [5] [38]. When scheduling a parallel DAG task, at some time point, many nodes of
the task are eligible for execution and are to be executed on a multi-core system. Existing
state of the art methods [20] [39] [45] [29] [6] [51] do not consider the order in which the
execution of the nodes must take place.

1.1. Use case scenario

Considering a real-world real-time application example, the Figure 1.2 shows an optical
navigation system for a spacecraft [22], which is a part of the Autonomous Terrain-based
Optical Navigation (ATON) project at the German Aerospace Center (DLR). The analysis of
the optical sensor data and a trigger on the system’s estimated position are done in real-time.
Cameras are periodically triggered, and once all the input camera data is received, the image
analyzer is executed, i.e., a combination of a periodic and a sporadic task. As shown in
Figure 1.2 two cameras are triggered periodically using a timer, and then the camera data

2

1. Introduction

is sent to the analyzer components. The feature tracking component estimates a relative
movement in the camera data, whereas the crater navigation matches the craters on the moon
in the camera data images. Both components’ output is then sent to the navigation filter,
which estimates an output position, then sent to the logger and the flight controller.

Figure 1.2.: Optical navigation sub-system

The optical navigation system can be modeled as a Directed Acyclic Graph as shown in
Figure 1.3 wherein the source of the DAG is the timer task which is a periodic task, camTask1
and camTask2 are dependent on the timer task, i.e., only after execution of timerTask,
camTask1 and camTask2 can start their execution. Similarly, featureTask and CraterTask
can start their execution only after the completion of camTask2 and camTask1, respectively.
navTask must wait for the execution of both featureTask and craterTask for its execution and
the same execution model is followed for the rest of the tasks. The last task, i.e., sinkTask, is
added as a dummy node to ensure the DAG single source-sink model is maintained (detailed
explanation in chapter 4). The dummy node is just added to maintain the model, and it does
not contain any instructions to be executed. It takes zero time to complete.

Figure 1.3.: Optical navigation sub-system modeled as a DAG

3

1. Introduction

1.2. Contribution and Structure

The thesis aims to prove that the execution order of eligible nodes on a multi-core system
significantly impacts the upper bound of the response time. An algorithm is introduced to
compute response time when the order is assigned, i.e., nodes with priorities. Moreover,
methods to assign a specific execution order by assigning intra-task priorities are illustrated.
Finally, a function is described to model sporadic tasks using the actual arrival frequencies.
The contributions made in the thesis can be summarized as follows:

• Firstly, the chapter 2 provides a real-world use case as to where the findings of the
thesis can be applied to.

• The work done in the thesis is an extension of a work that already exists, which is
explained in the chapter 3. Furthermore, it provides an analysis of other existing
research that solves a similar problem.

• The chapter 4 is where the contribution begins. This chapter introduces a real-time
task model comprising multiple subtasks, which are then dispatched and executed
among the worked threads of the thread pool in a non-preemptive way. This chapter
also explains how a preemptive global fixed-priority scheduler schedules a task set on a
multi-core platform.

• After the explanation of the task model, the model is used across the thesis and the
chapter 5 explains the motivation for the usage of sporadic tasks in real-time applications
and also provides a function to handle the arrival frequencies of the sporadic DAG
tasks in a less pessimistic approach.

• The chapter 6 begins with providing motivation that an order of execution, results in a
shorter response time upper bound. Moreover, this chapter is completed by deriving a
method to compute a new response time bound for a single DAG task.

• The chapter 7 illustrates algorithms to assign intra-task priorities to the DAG task.

• The chapter 8 explains the implementation of all the designs explained above. In
addition, random Directed Acyclic Graph generators are described, which are used in
the chapter 9 to experiment with multiple random DAG designs and configurations to
prove the findings of the thesis.

• The chapter 9 shows experiments that investigate the usage of assigning priorities by
comparing the response time bound for randomly generated Directed Acyclic Graph
tasks and then proves that the new response time bound for a single Directed Acyclic
Graph task is valid and can be replaced with the current state of the art response times.

• Finally, chapter 10 and chapter 11 are used for summarizing all the chapter’s findings
and mentioning the following possible research that can be studied to extend the work
explained, respectively.

4

2. Tasking Framework

There exists a great demand for computing resources in modern space applications for
increasing computational requirements of onboard data processing and complex control
algorithms. Firstly, multi-core platforms provide high performance with low power consump-
tion compared to the uni processors with high frequencies and therefore are promising to
fulfill the computational requirements. Nevertheless, it is not straightforward to implement
applications that execute in parallel. Furthermore, sensors are slow and cannot be on par
with the computing resources. Self-suspending processes read from sensors make timing
more complicated and present high pessimism and, thus, high over-provisioning [22] [44].

"Tasking Framework is a multi-threaded execution platform and a software development
framework that is developed using abstract classes with virtual methods, which facilitates the
implementation of space applications as event-driven task graphs" [22]. Tasking Framework
splits the computations into small tasks scheduled on the input data’s availability. Real-time
applications are often described as a graph illustrating the software components and their
dependencies. The implementation of Bi-spectral Infrared Detection (BIRD) and Attitude
and Orbit Control System (AOCS) is as shown in Figure 2.2. During the BIRD mission, the
control modules were computed in a fixed order and at fixed intervals. The total computation
time was the sum of the waiting time for sensor data and the latency required to ensure
the entire data arrival before computation begins. This model caused timing problems due
to latency overestimation [1], leading to corrupted data and faulty behavior to the Attitude
and Orbit Control System (AOCS) system. The BIRD mission hence provides a need for a
conceptual framework that allows sharing of resources based on certain configurations for all
flight phases [1].

2.1. Task-Channel Model

The Tasking Framework uses the task-channel paradigm [17], to separate the data and the
functionality, which improves the re-usability of code. In the task-channel model, A task is a
stateless executable program, along with its memory and I/O ports. In contrast, a channel is
a message queue that connects the output port of a task to an input port of another task. In
Tasking Framework, a channel represents a data container managed through the task object
and can be represented by an interface that serves as an interface between tasks and between
software inputs and outputs, as illustrated in the Figure 2.1 [22].

The Tasking Framework was created to handle data-flow-oriented applications, wherein the
system’s input data must be identified and processed to produce the required outputs. Using
this approach, the application is modeled as a series of sequential operations executing in a

5

2. Tasking Framework

Figure 2.1.: Task Channel Model

particular order. The Tasking Framework employs this design pattern to create an interface
that is structural and not reliant on data availability but rather on the flow of execution [22].
The framework can be seen as an abstraction layer similar to the operating systems that
control the whole process in an abstract, generic, and deterministic way. All APIs provide a
high level of abstraction, making them independent of data’s availability and the processed
task.

2.2. Execution model

Tasking Framework consists of the execution platform and the application programming
interface (API). Using Tasking Framework, applications are implemented as a graph of tasks,
connected via channels, and each task has one or more inputs. Periodic tasks are connected to
a source of events to trigger the task periodically. In Tasking Framework, an instance of a task
τ is activated only when all its inputs are activated [22]. For instance, in the Figure 2.2, F(A)

is activated only after receiving the input 1 from the channel MsgA, which in turn receives
an input from the SensorA, the channel MsgA acts as an interface between the SensorA and
F(A). A way to execute a task immediately can be done by making one of its inputs final. If
a final task is activated, the task will run without considering the other inputs. For instance,
in the Figure 2.2, TaskE is immediately activated when the Timer activates the final input 0
regardless of the other inputs.

The Tasking Framework’s sequence diagram is illustrated in Figure 2.3. When a message
from a sensor is received, the main execution thread uses the channel class method push() to
notify the dependent inputs. In the scenario where all task inputs are activated, the Tasking
Framework will instantly inform a thread to run the task instance by invoking per f orm().
The framework’s scheduler adds the task to the queue right away. The job will begin as soon
as the required resources, such as a CPU and memory, are available; otherwise, the task will
be queued [22] [44].

6

2. Tasking Framework

Figure 2.2.: BIRD - Attitude and Orbit Control System (AOCS) and Tasking Framework
Elements

Figure 2.3.: Tasking Framework Sequence Diagram

7

2. Tasking Framework

2.3. Application Model

A data-flow application, when implemented in Tasking Framework, is modeled as a directed
graph, where data is processed by tasks and then forwarded to subsequent tasks in a pipelined
manner. The instructions of a task do not have to wait for the preceding tasks to complete
its execution but can be executed once the data are available, i.e., event-driven. The Tasking
Framework API provides abstract classes to design the applications as a directed graph of
tasks and channels. In other words, the API does not depend on any run-time data. The
Figure 2.4 represents the Figure 2.2 as a directed graph using tasks and channels [22].

Figure 2.4.: BIRD - AOCS as realized in Tasking Framework

2.4. Applications

The section highlights some applications wherein the tasking framework is used at German
Aerospace Center (DLR). Firstly, in Autonomous Terrain-based Optical Navigation (ATON)
[54], the tasking framework was used for the implementation of the functionalities that
were used for modeling the components using tasks and channels to connect tasks, wherein
the channels are activated periodically using events. ATON was developed using four
threads to execute the software on a prototype flight computer. The Scalable On-Board
Computing for Space Avionics (ScOSA) [42] which is an application that tests the onboard
computer architecture that is based on re-configurable interconnected commercial off-the-shelf
processors [1], wherein tasking framework was used as middleware by providing an API to
develop applications to execute on Scalable On-Board Computing for Space Avionics (ScOSA).
An example of such an application that is executed on Scalable On-Board Computing for
Space Avionics (ScOSA) using tasking framework is the Onboard Data Analysis, Real-time
Information System (ODARIS) [32] and Rendezvous Navigation [48] [1].

8

2. Tasking Framework

2.5. Timing analysis of Tasking Framework task chains

In order to prove the real-time capability of Tasking Framework, timing guarantees have to be
computed on the tasks using Tasking Framework. Abaza et al. proposed in [2] a worst-case
execution time analysis to compute the WCET of subtasks in Tasking Framework task chains.
This work aims to use the WCET of subtasks as input to compute the response time of tasks.

The DAG as shown in Figure 2.5 that is modeled as a DAG task model based on the tasking
framework task chains as shown in Figure 2.4. Where τ0 represents a dummy source with
zero execution time, it is added to maintain the model of the DAG. τ1, τ2, τ3 and τ4 represents
the subtasks Task1, Task2, Task3 and Task4 respectively. τ4 is dependent on both τ0 and τ2.
Finally, an extra sink is added with zero execution time to maintain the model of the DAG.

Figure 2.5.: Tasking Framework application DAG

9

3. State Of the Art

The parallelism frameworks have been extensively studied in the past years [33] [46]. However,
the literature on the usage of parallelism frameworks for real-time systems is only a few [51].
The following task models stand out in this literature for parallel real-time scheduling. Firstly,
the fork-join task model, wherein the tasks are modeled as a sequence of alternating sequential
and parallel executions. For parallel execution, all the jobs have the same worst-case execution
time [35]. The execution of the fork-join task model is the work done at [50] which generalizes
the usage of the fork-join task model by allowing a segment to have an arbitrary number
of parallel jobs with different execution times, but there is no response time analysis Global
Fixed Priority scheduling [50]. The work done at [43] provides a feasibility analysis for Global
Fixed Priority scheduling and considers the maximum interference the critical path (The path
with the longest execution time) suffers either by jobs that are not in the critical path or other
higher priority tasks. Next, for the DAG models, the tasks are modeled as Directed Acyclic
Graphs, where each node in the graph represents a sequential computation, and the edges
represent a dependency between the jobs. Response time analysis for DAG models for Global
Fixed Priority are mentioned at [39] [45] [29] [16]. However, this literature does not specify
the execution order of the nodes in the DAG. The OpenMP tasking model [52], which models
a real-time system as a single OpenMP application with multiple DAG tasks. However, the
nodes of a task cannot be preempted during their execution when using a limited preemptive
scheduler, but higher priority tasks can be executed between two nodes of a graph but do
not use thread pools for execution. Gang scheduling [31] proposes using worker threads of a
thread pool. However, all the worker threads execute for the same amount of time.

3.1. Directed Acyclic Graph task model

Apart from all the models mentioned above, the model presented in this thesis is an extension
of the model presented at [51], wherein, Directed Acyclic Graph task model consisting of
fine-grained task computation or subtasks or nodes is scheduled among the worker threads
of a thread pool and scheduling of these fine-grained parallel real-time tasks on thread
pools have limited parallelism by the number of threads in its thread pool. The model uses
two schedulers, one a real-time operating system scheduler which allows for preemptive
scheduling of threads of each task’s thread pool on the cores. Moreover, a runtime scheduler
allows integration into each task to dispatch the subtasks among the worker threads [51]. It
also provides the analysis for the safe upper bound of the response of tasks where the threads
are scheduled using a preemptive global fixed-priority scheduler while a work-conserving
scheduler dispatches the nodes or subtasks. However, in this model, for a single parallel DAG

10

3. State Of the Art

task running on a multi-core platform, there exists a case at some point during execution,
the number of eligible nodes of the task is more than one, the work done at [51] does not
specify the order in which the execution of these eligible nodes must take place, i.e., assumes
a non-deterministic execution order. However, the interference for a single task is considered
a safe upper bound, but the bound is pessimistic.

3.2. Intra-task priorities

The classic response time bound used in literature [51] [45] [29] [6] is calculated using
scheduling algorithms which executes a set of eligible node in a non-deterministic manner.
The work done at [20] does specify the order of execution, but this information is not
considered in the computation of a response time. The literature [25] and [24] do consider
intra-task priorities and also provide an analysis of the computation of a safe upper bound
response time; however, the execution model that is used is different from the model that is
used in the thesis. The execution model of the literature [25] [24] assumes that each node of
a Directed Acyclic Graph (DAG) has its very own thread in a thread pool for its execution,
and the execution of the subtasks can be preempted not only by the higher priority tasks but
also by, the higher priority subtasks of the same task, i.e., uses a preemptive scheduler for
scheduling both tasks and subtasks.

3.3. Priorities Assignment

The literature presented at [34] [30] [25] [24] provides priority assignment strategies that can
be used for the DAG task models such that the response time bound is reduced as much
as possible. However, this is not within the scope of the thesis. The most commonly used
methods are illustrated in the chapter 7.

11

4. Preliminary

The chapter introduces a Directed Acyclic Graph (DAG) task model that dispatches and
executes its fine-grained computations using the worker threads of its thread pool. The
executions are done using two different schedulers one a real-time operating system scheduler
that schedules threads of each task’s thread pool preemptively on the cores of the multi-core
system and second uses a run-time system scheduler for each thread pool that dispatches
the subtasks among the work threads of the thread pool. Each task thread pool thread is
scheduled using a preemptive global fixed priority, whereas the subtasks are dispatched by a
non-preemptive work conserving scheduler.

4.1. System Model

This section defines a system model for a real-time application executing on a multi-core
system. When executed on a multi-core system, a real-time application is executed as a single
process, consisting of N parallel real-time tasks. A parallel real-time task is modeled as a
Directed Acyclic Graph’s (DAGs). A process comprises of a task set τ = {τ1, τ2.....τN} with N
parallel real-time sporadic DAG tasks assumed to be indexed in priority order with τ1 having
the highest priority, which is scheduled on a multiprocessor system composed of m identical
processors with uniform memory access, assuming all time units are positive multiples of
the system clock. Each DAG task τi. When a task τi is executed, it releases a set of sporadic
jobs or subtasks that are dispatched among and executed by the thread pool workers in
a work-conversing environment. The number of threads in a thread pool is limited by m,
restricting the number of parallel execution at any point by the number of worker threads in
the thread pool. Moreover, at any point in time, the maximum parallelism of the DAG tasks is
limited by the number of threads in its thread pool and not by the number of processors [51].

A real-time Directed Acyclic Graph (DAG) task τi is represented as a 4-tuple τi =

(Gi, Φi, Di, Ti) where Ti is the minimum time interval between two activations of the task
(Period), Di represents a timing window by which the task must complete its execution
(Deadline). Φi represents the thread pool the task will use to execute its subtasks, and Gi
represents the task modeled as a DAG.

Definition 4.1.1. A Directed Acyclic Graph (DAG) Gi = (Vi, Ei), where Vi = {vi,1, vi,2....vi,n} is
the set of vertices and Ei ⊆ Vi ×Vi is the set of directed edges of the DAG [51].

Definition 4.1.2 (Worst Case Execution Time (WCET)). Worst-case execution time is the maximum
length of time a task takes to execute on a specific hardware platform [41].

12

4. Preliminary

Each vertex vi,j ∈ Vi is a subtask of the task τi that comprises of a Job which is a sequential
computation that takes ci,j time to execute in worst case, characterised as Worst Case Execution
Time (WCET). Throughout the paper, the subscript i of the vertices is omitted for ease
and simplicity. A subtask, vertex, or node represents a job comprising of WCET and a
priority assigned to it. A priority of a subtask vi is denoted by p(vj) = {pi|0 <= pi < n},
where a subtask with the highest priority is assigned the value 0, formally vi has a higher
priority than vj if p(vi) < p(vj) . An edge Ei,j = (vi, vj) represents a precedence relation
between vi and vj, where the subtask vj is dependent on the subtask vi i.e, vj can start its
execution only when vi completes its execution, formally vi is the predecessor or ancestor
of vj or vj is the successor or descendant of vi. For a subtask vi,j the set of ancestors
are represented by ancestors(vi) = {vj ∈ Vi|(vj, vi) ∈ Ei} and the set of descendants by
descendants(vi) = {vj ∈ Vi|(vi, vj) ∈ Ei}.

The Directed Acyclic Graph (DAG) presented in this model are assumed to operate using
the AND semantic, i.e., A subtask is ready to execute only when all its ancestors have
completed their execution. Furthermore, when a subtask completes its execution, all its
descendant subtasks are ready. A vertex that does not have any incoming edges, i.e., an
empty ancestor set, is called the source (vsource) of the DAG and a vertex that does not have
any outgoing edges is called the sink (vsink), each DAG is assumed to have only one source
and sink. For real-time tasks with multiple sources or sinks, an additional single dummy
source or sink with zero WCET is added along with its corresponding edges to complete the
DAG.

The Figure 4.1 DAG shows a real-time task τi modeled as a Gi with 7 subtasks, and 8 edges,
with v1 being the source of the DAG and v7 the sink. The numbers inside the parentheses
indicate the subtasks’ WCETs. The subtask v1 has a WCET of 2 and has the highest priority.
The edge from v3 → v5, represents a dependency that v5 can start its execution only when v3

completes its execution. The ancestors of v7 are ancestors(v7) = {v4, v5, v6}, thus v7 can start
its execution only when all its ancestors have completed their execution. The subtasks v2 and
v3 have the same ancestor v1, and v2 has a higher priority than that of v3.

4.2. Execution Model

For a given DAG task τi, the subtasks of the task are dispatched among and executed by
µi = |Φi| worker threads. The worker threads in the thread pool Φi share the same priority as
that of the task τi and are preemptively scheduled on the processors by the operating system
scheduler. And these threads are scheduled on a preemptive global fixed-priority scheduler
while a non-preemptive work-conserving scheduler dispatches the subtasks, i.e., a subtask
of a task can be preempted only by a task of higher priority and cannot be preempted by a
higher priority subtask of the same task. The number of processors constrains the maximum
number of threads in each pool, i.e., ∀i : µi <= m, ensuring that there is a limit for the
number of parallel execution by the number of threads µi in the thread pool Φi and not by
the number of processors in the system. Each thread can execute only one subtask at a time,
ensuring the limit for maximum parallel execution of a task τi to µi even if subtasks are ready

13

4. Preliminary

Figure 4.1.: Example DAG

to execute with idle processors [51].

Definition 4.2.1 (Path). For a given DAG task τk, a path λ = (vsource, v1, ..., vsink) is a sequence of
subtasks vj ∈ Vi such that vsource, vsink represents the source and sink of the DAG graph respectively
and ∀vj ∈ λ\{vsink}, (vj, vj+1) ∈ Ei [16].

Informally, a path λ is a sequence of subtasks from the source to the sink of a DAG graph
in which there is a precedence constraint between any two adjacent subtasks in λ. Thus, there
is no concurrency among subtasks that belong to the same path λ.

Definition 4.2.2 (Length of a Path). The length of path λ denoted by len(λ) for a task τi is the sum
of WCET Cj of all subtasks vj ∈ λ, formally can be denoted as shown in Equation 4.1 [16].

len(λ) = ∑
∀vj∈λ

Cj (4.1)

Definition 4.2.3 (Critical Path). The critical path is the path with the longest execution path, formally
can be denoted as shown in Equation 4.2 [51].

Li = max∀λ∈Gi{len(λ)} (4.2)

In the Figure 4.1 the bold nodes represent the subtasks that belong to the critical path.

Definition 4.2.4 (Worst-case workload). The worst-case workload Wi is the time needed to execute
all subtasks of a task τi on a single core platform. It is the sum of the Worst Case Execution Time
(WCET) of all subtasks of the task τi as shown in Equation 4.3 [51].

Wi = ∑
∀vj∈Vi

Cj (4.3)

14

4. Preliminary

Table 4.1.: Summary of System Model.

Symbol Description

m Number of processors
τ Task set of a real-time application
n Total number of tasks in τ

τi DAG ith task
Ti Period of task τi
Di Relative Deadline of task τi
Φi Thread pool of task τi
Li Critical Path of task τi
Gi DAG representation of task τi
Vi Set of vertices of graph Gi
Ei Set of edges of graph Gi
vi,j jth subtask of task τi
Ci,j Worst Case Execution Time (WCET) of subtask vi,j
µi number of threads in the thread pool Φi of task τi
Rub

i Upper bound on the worst-case response time of task τi
I∗k (∆) Exact critical interference on task τk over the interval ∆
Ik(∆) Critical interference on task τk over the interval ∆
Ii,k(∆) Critical interference on task τk by the task τi over the

interval ∆
Ik,k(∆) Critical interference on task τk by other subtasks of the

same task over the interval ∆

4.2.1. Run-time Behavior

For a given single DAG task τk, assuming that the task starts at time 0. A subtask or a node is
ready to execute at a certain point only if all its ancestors in the graph have completed their
execution, and hence source can execute immediately at time 0.

Example 4.2.1. Considering the DAG shown in Figure 4.1 and assuming the the number of threads
in its thread pool Φi is µi = 3. the Figure 4.2 shows the execution sequence in the µi threads.

At time = 0 the source(v1) is ready and currently there are all three threads available, so
the source(v1) can execute on any of the three threads. At time = 2, as soon as the source(v1)
completes its execution, there are two nodes [v2, v3] that are ready to execute as v2 having a
higher priority, and again all three threads are available. As the number of subtasks ready
<= the number of available threads, there are no subtasks that have to wait; v2 and v3 can
start their execution in parallel. As WCET of v2 is 5 and the WCET of v3 is 3, v3 completes
its execution sooner. Similarly, when v3 completes its execution at time = 5 there are two
subtasks that are ready i.e, [v5, v6] and now the number of available threads = 2 as at this
point v2 is still executing on thread 1, however still number of subtask ready <= number of

15

4. Preliminary

Figure 4.2.: Execution of DAG on three threads

available threads hence v5 and v6 start their execution in parallel. At time = 6, all the three
threads execute the subtasks in parallel. At time = 7, v2 and v6 complete their execution, the
descendants of v2 are [v4] which are ready to execute as all of their ancestors have completed
their execution. However the children of v6 i.e, [v7] is not yet ready as not all of its ancestors
have completed their execution, v7 can only start its execution only when v4, v4 and v6

have completed their execution which happens at time = 10, the sink starts its execution at
time = 10 and completes at time = 12. The response time of this DAG = 12.

4.2.2. Response Time Analysis

The work done at [8], [7] and [11] propose interference based response time analysis for
the sequential and parallel task models. All the following sections will adopt the same
methodology of the thread pool model using DAG tasks [51].

For a sequential task τseq, the interference is defined as the sum of all intervals of time in
which task τseq is ready to execute but cannot due to higher priority tasks running on the
processors. Nevertheless, for a parallel task τpar, the response time of a task τpar is prolonged
if the critical path Li of τpar suffers interference from higher priority tasks as well as other
subtasks of the same task τpar [51].

Definition 4.2.5 (Critical interference). The exact critical interference over an interval ∆ on a task
τk is denoted by I∗k (∆) which is the cumulative time at which the critical path of the task τk is ready to
execute but cannot execute due to other subtasks of τk running on the thread pool or threads of higher
priority tasks running on the processors [51][8][11].

Example 4.2.2. Considering an example where a task τk with threads µk = 3 is to be executed on a
system with m = 4 processors along with other tasks τi ∈ τ. The interference occurring to the critical
path Lk during the interval ∆ as shown in Figure 4.3. During the intervals a, b, andc, the critical
path Lk suffers interference where either other tasks or subtasks that are not of the critical path Lk are
scheduled on the processors [51].

Three different scenarios lead to the interference of the critical path Lk:

1. At interval a in Figure 4.3, wherein all the processors are occupied by the other higher
priority tasks.

16

4. Preliminary

Figure 4.3.: Exact Interference suffered by Lk

2. At interval b in Figure 4.3, where not all the µk threads of task τk can be scheduled on
the processors as the other higher priority tasks occupy them.

3. At interval c in Figure 4.3, where all the µk threads of the task τk are executing some
(or no) threads of higher priority tasks on the processors. However, the tasks of τk are
executing the subtasks that are not part of the critical path.

The exact critical interference I∗k (∆) for the Example 4.2.2 is the sum of the intervals a, b
and c i.e,

I∗k (∆) = a + b + c (4.4)

As per Definition 4.2.5 and the Example 4.2.2, the critical path Lk of a task τk suffers
interference from:

1. Other tasks τi ∈ τ of the task set, which has a higher priority than that of τk running on
the processors

2. Subtasks of the same task τk,j ∈ τk that are not part of the critical path Lk

Leading to the following definitions:

Definition 4.2.6. The critical interference Ii,k(∆) imposed by task τi on the task τk over any interval
∆ on the critical path is defined as the cumulative workload executed by the threads of task τi. While
the critical path Lk is ready to execute but cannot execute [51].

Definition 4.2.7. The critical interference Ik,k(∆) imposed by subtasks of task τk over any interval ∆
on the critical path is defined as the cumulative workload executed by the subtasks that are not part of
the critical path of task τk while the critical path Lk is ready to execute but cannot execute [51].

17

4. Preliminary

As per Definition 4.2.6 Ii,k(∆) indicates the total workload of the task τi interfering with the
task τk, for understanding and calculating the interference that is imposed on the task τk by
each thread of τi, the concept of at least p-depth critical interference is used [51].

Definition 4.2.8. The at least p-depth critical interference Ip
i,k(∆) imposed by task τi on the task τk

over any interval ∆ is defined as the cumulative workload executed by the threads of task τi while the
critical path Lk is ready to execute but cannot execute while there are at least p threads of task τi are
simultaneously running on the processors [51].

As per definitions Definition 4.2.6 and Definition 4.2.8, the critical interference Ii,k(∆)
can be calculated using the p-depth critical interference during an interval ∆ as shown in
Equation 4.5 [43] [51].

Ii,k(∆) =
m

∑
p=1

Ip
i,k(∆) (4.5)

The work done at [51] proves that the critical interference I∗k (∆) can be upper bounded pes-
simistically considering the interference caused by other tasks, i.e., Inter-task interference and
the interference caused by subtasks of the same tasks, i.e., Intra-task interference separately.

Definition 4.2.9 (Inter-task interference). The critical inter-task interference Iτ
k (∆) is defined as the

interval when the interfering workload of all tasks is distributed evenly among the processors as shown
in Equation 4.6 [51]

Iτ
k (∆) =

1
m ∑
∀τi

Ii,k(∆) =
1
m ∑
∀τi

m

∑
p=1

Ip
i,k(∆) (4.6)

Definition 4.2.10 (Intra-task interference). The critical intra-task interference Iv
k (∆) is defined as

the interval when the interfering workload of all interfering subtasks is distributed evenly among the
thread pool of τk as shown in Equation 4.7 [51].

Iv
k (∆) =

1
µk

Ik,k(∆) (4.7)

The total interference suffered by a task τk can be calculated using Equation 4.8, where
Iτ
k (∆) represents the Inter-task interference and Iv

k (∆) represents the Intra-task interference
[51].

Ik(∆) = Iτ
k (∆) + Iv

k (∆) (4.8)

Ik(∆) =
1
m ∑
∀τi

m

∑
p=1

Ip
i,k(∆) +

1
µk

Ik,k(∆) (4.9)

Using the equation Equation 4.9, an upper bound for the response can be calculated using
the Equation 4.10. Conceptually, the response time in the best case would be when the

18

4. Preliminary

critical path suffers no interference, i.e., the length of the critical path itself. However, when
interference is involved, the response time can be upper bounded pessimistically considering
the inter-task interference and intra-task interference separately, as shown in Equation 4.10
[51].

Definition 4.2.11 (Response Time). The response time Ri of a task τi is the time interval between
the activation and termination of an instance of the task [21] [51].

Ri = Li + Ik(∆) (4.10)

Ri = max∀λ∈Gi{len(λ)}+ 1
m ∑
∀τi

m

∑
p=1

Ip
i,k(∆) +

1
µk

Ik,k(∆) (4.11)

Definition 4.2.12 (Worst Case Response Time). The worst-case response time R+
i of a task τi is

the longest possible response time the task may experience. Formally, it can be denoted as shown in
Equation 4.12 [21].

∀n ∈N+ : R+
i ≥ Ri (4.12)

19

5. Event Driven DAG

Real-time applications comprise periodic and sporadic tasks for their responsiveness and
determinism. Periodic tasks are generally used for process control, for instance, altitude
control in space systems. In contrast, sporadic tasks provide fast responses to external events,
for instance, some data-flow applications such as events in Tasking Framework [44]. In
periodic tasks, two consecutive activations are separated using a fixed time interval, i.e.,
Period (Ti), whereas sporadic tasks have a non-determinism behavior, where two consecutive
activations are separated by a minimum time interval (Ti) [14].

5.1. Motivation

Algorithms have been presented to handle periodic and sporadic tasks [28] [55] [40] and to
compute the response time of systems comprising of sporadic tasks [27]. The main importance
of using event-driven applications with a combination of periodic and sporadic tasks is due
to the high responsiveness and low resource consumption.

5.1.1. Event-triggered vs Time-triggered

Event-triggered and time-triggered are two fundamental principles used for controlling real-
time systems’ tasks. For event-triggered systems, tasks are activated in response to relevant
events external to the system. For example, when an event in the outside world is detected by
a sensor which then causes the activation of a real-time task. Event-triggered systems allow
for a faster response at low load but more overhead and chance of failure at high load, which
is most suitable for dynamic environments, where dynamic tasks can arrive at any time.

In time-triggered systems, all tasks are carried out at certain times, known as priori. The
advantage of using a time-triggered system is the predictable behavior of the system. Time-
triggered systems have the opposite properties and are suitable in static environments where
most system behavior is known in advance.

Studies prove that event-triggered methods can be combined with time-triggered systems
to efficiently include sporadic tasks to allow for high responsiveness and low resource
consumption [27] [14].

20

5. Event Driven DAG

5.1.2. Sporadic Tasks

Sporadic tasks handle events that are activated at arbitrary points in time but with defined
maximum frequency. They are invoked repeatedly with a (non-zero) lower bound - period
(Ti) on the duration between consecutive occurrences of the same event. Each sporadic task is
invoked repeatedly with a lower bound on the interval between consecutive invocations, i.e.,
the minimum inter-arrival time between two consecutive activations, known as the Period Ti.

Definition 5.1.1 (Sporadic Task). A sporadic task is a task that is event-driven i.e, activated by
events that occur at an unknown time such that δ+(2) = +∞ [21].

5.2. Arrival Curves

To determine the upper bound of the response time for a task set τ containing multiple
sporadic DAG tasks, the inter-task interference calculated pessimistically in [51], models the
sporadic task as periodic using the minimum inter-arrival time between two consecutive
activations as Period. This section introduces a method that computes the response time less
pessimistically than proposed in [51].

Definition 5.2.1 (Activation Trace). An activation trace ℵi of a task τk is defined as the absolute
time at which an instance of the task τk starts its execution. Formally, it can be defined as a function as
shown in Equation 5.1. ℵi(n) = t indicates that the n− th instance of the task τk begins its execution
at time t [21].

ℵi : N+ −→ R+ (5.1)

Definition 5.2.2 (Termination Trace). A termination trace iג of a task τk is defined as the absolute
time at which an instance of the task τk completes its execution. Formally, it can be defined as a function
as shown in Equation 5.2. i(n)ג = t indicates that the n− th instance of the task τk completed its
execution at time t [21].

iג : N+ −→ R+ (5.2)

Definition 5.2.3 (Arrival Curves). The maximum and minimum arrival curves η+
i (∆t) and η−i (∆t)

of a task τi are functions R+ −→N+ that indicates the maximum and minimum number of events
that occur during any half-open interval [t, t + ∆t), η+(∆t)(η−(∆t)) [21].

Informally, the function η+
i (∆t) over an interval ∆ returns the maximum number of

activations that occur in the interval ∆ of task τi, whereas the function η−i (∆t) over an interval
∆ returns the minimum number of activations that occur in the interval ∆.

η+
i : ∆T −→ n (5.3)

The Figure 5.1 shows that, the maximum number of activations in over a time interval of 1
is 2 i.e, η+

i (1) = 2, similarly the maximum number of activations over a time interval of 2

21

5. Event Driven DAG

Figure 5.1.: The maximum arrival function η+
i on an activation trace

is also 2 i.e, η+
i (2) = 2. Also, η+

i (3) = 3, η+
i (4) = 4 and η+

i (5) = 4. The Figure 5.2, shows a
summary of the arrival curves output on the activation trace as shown in Figure 5.1 which
shows that the Arrival functions are non-decreasing and are sub-additive [36][21].

Figure 5.2.: The maximum arrival function η+
i

Definition 5.2.4 (Distance Functions). The maximum and minimum distance functions δ+i (n)
and δ−i (n) of a task τi are functions N+ −→ R+ that indicates the maximum and minimum time
intervals during at which at most n events occur [21].

δ+i : n −→ ∆T (5.4)

Informally, the function δ+i (n) for a given number of activations of a task τi returns
the maximum time interval (distance) for n activations, whereas the function δ−i (n) for a
given number of activations of a task τi returns the minimum time interval (distance) for n
activations.

22

5. Event Driven DAG

Figure 5.3.: The minimum distance function δ−i on an activation trace

Figure 5.4.: The minimum distance function δ+i

The Figure 5.3 shows that, the minimum time required for 2 activations is 1 i.e, δ−i (2) = 1,
similarly the minimum time required for 3 activations is 3 i.e, δ−i (3) = 3. Also, δ−i (4) = 4 and
η+

i (5) = 5. The Figure 5.4 shows a summary of the minimum distance outputs for the interval
shown in Figure 5.3, which shows that minimum distance functions are non-decreasing and
super-additive.

5.2.1. Response Time Analysis

Definition 5.2.5 (Simplified p-depth workload distribution). The Simplified p-depth workload
distributionW p

i (∆) over any interval ∆ is defined as the workload the pth thread of the task τi executes
when the complete workload of the task is distributed evenly among all the threads µi in the thread pool
Φi in the interval ∆, can be denoted using the Equation 5.5 [51].

W p
i (∆) =

(⌊
∆ + Rub

i − Li

Ti
+ 1

⌋)
Wi

µi
(5.5)

23

5. Event Driven DAG

The work done at [51], uses the p-depth workload distribution to calculate the inter-task
interference, which is computed using the Equation 5.5, the equation computes the p-depth
workload distribution pessimistically using the Period Ti for sporadic tasks, the usage of
arrival curves allows computing the response time less pessimistically by not effecting any
assumptions made in the model and does not break any definitions. The value inside the
parentheses in Equation 5.5 represents the number of task releases in ∆, which is calculated
using the Period Ti, to compute the number of activations in an interval ∆, the arrival curves
calculates the maximum number of activations over the given interval. Using this, a less
pessimistic response time is computed, where the interval passed to the arrival curve is the
same as that of the Equation 5.5 as depicted in Equation 5.6.

W p
i (∆) = η+

i (∆ + Rub
i − Li)

Wi

µi
(5.6)

5.3. Synthetic Test Case Generation

For our experiments, sporadic synthetic tasks are generated, this section shows the proposed
algorithm to generate them. The algorithm generates a random trace simulating an activation
trace of the sporadic task, and the following conditions are to be followed:

1. The minimum distance between two activations is the Period Ti as shown in Equation 5.7.

δ−i (2) = Ti (5.7)

2. The maximum distance between two activations is twice the Period, i.e., 2 ∗ Ti.

3. The absolute time for an activation trace δ−i (n) is computed in the range shown in
Equation 5.8 i.e., the minimum distance required for n activations is the sum of the
minimum distance required for n− 1 activations and the Period, whereas the maximum
distance required for n activations is the sum of minimum distance required for n− 1
activations and two times the Period as shown in Equation 5.8.

δ−i (n) ≥ δ−i (n− 1) + Ti ≤ δ−i (n− 1) + (2 ∗ Ti) (5.8)

4. The above conditions ensure that the maximum distance required for n activations is
less than or equal to two times the minimum distance required for n activations as
shown in Equation 5.9.

δ+i (n) ≤ 2 ∗ δ−i (n) (5.9)

24

5. Event Driven DAG

5.3.1. Algorithm

1. A trace of length hundred is created, where the value of an index of the trace represents
the absolute time at which the an instance of the task is activated.

2. The first value of the trace being zero i.e, trace[0] = 0 which indicates that the first
activation of the task is at the time = 0

3. The second value being the Period Ti itself i.e, trace[1] = Ti, allowing to ensure that the
minimum distance between two activations is the period Ti.

4. The following trace elements are computed using the following steps:

a) As the minimum distance between two activations is the Period Ti. The new trace
element is computed using the previous trace element, the Period, and a random
uniformly distributed value in the range (0, 1), ensuring that the next activations
are in the range:

(trace[i− 1] + Ti, trace[i− 1] + (2 ∗ Ti)) (5.10)

b) Which still ensures that the minimum distance between two activations is the
Period Ti and the maximum distance between two activations is 2 ∗ Ti as shown in
Listing 5.1.

Listing 5.1: Compute trace element for index > 1

trace.append(trace[i - 1] + random.uniform(0, period) + period)

25

6. Intra-Task Priorities DAG

This chapter provides the proof that the order of execution of nodes of a Directed Acyclic
Graph i.e., intra-task priorities, allows for tightening the worst-case upper bound of the
intra-task interference, and presents the analysis and an algorithm to compute the worst-case
intra-task interference for DAGs with intra-task priorities.

6.1. Background

The current state-of-the-art methods [20] [39] [45] [29] [6] [51] calculates the upper bound
response time and intra-task interference of a single DAG task considering work-conversing
scheduling algorithms where intra-task priorities i.e, priorities at the subtask level are not
assigned. These algorithms execute an arbitrary available node and do not specify the order
of execution of the subtasks. The algorithms mentioned in [20] [39] [45] [29] [6] [51] have
different strategies to execute the eligible vertex, however the response time bound is the
same for all the algorithms [25].

Building upon the work done at [51] where it is proven that for a given DAG Task τk
executing on multi-core processors, the subtasks are consigned to and executed by the worker
threads of a thread pool with µk threads. The response time and intra-task interference for a
single task τk can be upper bounded by equations Equation Classical Upper Bound Function
and Equation 6.1 respectively.

R+
k <= Lk +

(
Wk − Lk

µk

)
(Classical Upper Bound Function)

Rub
k ←

1
µk

(Wk − Lk) (6.1)

The methods [20] [39] [45] [29] [6] and [51] do not assign priorities, thus the execution order
of nodes are unpredictable as there is no way to specify the order in which the execution
should take place, it is scheduled by the OS non-deterministically and hence the upper bound
in Equation Classical Upper Bound Function is valid for all DAGs. Therefore conceptually
the equation Equation 6.1 and Equation Classical Upper Bound Function can be considered
as a safe upper bound.

26

6. Intra-Task Priorities DAG

6.2. Motivational Example

Figure 6.1.: A DAG task

This section illustrates the reasons with an example that shows a study is required on
computing end-to-end response time for DAGs real-time task running on a multi-core
processor with intra-task priorities. Firstly, for DAG tasks with priorities assigned to their
subtasks, it can be proven that the end-to-end response time can be reduced compared to the
DAGs where intra-task priorities are not assigned. Secondly, there are real-world, real-time
applications scenarios where priorities are predetermined and assigned; for instance, in
parallel frameworks, it is feasible to use the priority clause to state the priority of a task
construct [24].

Scheduling of a DAG task τk there can be instances where the number of the eligible
subtasks are larger than the number of worker threads available µk in the thread pool, in the
algorithms where priorities are not assigned, an arbitrary subtask is chosen to execute, in
the following, it is proven that with a proper order of execution the response times can be
reduced as and allows to improve predictability of how the subtasks can be scheduled on the
threads. For the DAG as shown in the Figure 6.1, assuming that the task is being scheduled
on a thread pool with two threads, the response time computed when intra-task priorities are
not assigned, calculated using the Equation Classical Upper Bound Function [51] gives a total
16 as shown in Equation 6.2.

Lk +

(
Wk − Lk

µk

)
= 10 +

(
22− 10

2

)
= 16 (6.2)

However, there is indeed multiple possible order of executions as shown in Figure 6.2,
Figure 6.3 and Figure 6.4 when intra-task priorities are assigned; the figures prove that the
response time can be shorter than the calculated value using Equation 6.2.

27

6. Intra-Task Priorities DAG

In the Figure 6.2 the total response time is 14. Firstly, only the source is added to the priority
queue, as at the beginning, both the threads are available the source begins its execution in
any one of the threads; once the source has completed its execution, we add the children of
the source, there are three available nodes, i.e., [v2, v3, v4] that is added to the priority queue
in this particular order, at this iteration there are three available nodes and two available
threads, v2 starts its execution on Thread 1 and v3 on Thread 2. v4 cannot start its execution
as there are no available threads, v5 must wait for v2 or v3 to complete its execution, as v2

completes its execution first, we can see if the children of v2 can be added to the priority
queue, however v5 cannot be added at this point, as v5 is dependent on both v2 and v3, as
v4 is alone at this point in the priority queue, so v4 starts its execution right after v2 has
completed its execution. After v3 completes its execution, all the dependencies of v5 have
completed their execution; now v5 is added to the priority queue. As currently, only Thread 2
thread is available, v5 is executed on Thread 2. During the execution of v5, v4 has completed
its execution, and all its children [v6, v7, v8] are added to the priority queue in the given
order. Furthermore, at this stage, only one thread, Thread 1, is available; there are currently
three available nodes, and out of those, v6 is chosen for execution. During this execution, v5

completes its execution, but its children v10 cannot be added as there is another dependency
v9 that has not been executed yet. So after v5 completes, there are currently two nodes in the
priority queue, which are [v7, v8], v7 is popped and starts its execution on Thread 2. Once v6

completes its execution, v9 cannot be added as two dependencies are not executed. Hence
v8 starts its execution on Thread 1 during v8 execution, v7 completes the execution, however
as of at this stage v9 cannot be added until v8 also completes. So at this point, the thread is
available, but there is no execution. After v8 completes, now v9 can be added to the priority
queue, only v9 completes, then the sink v10 is added to the priority queue and executed.

Figure 6.2.: Execution Scenario 1

In the Figure 6.3, the total response time is 13. Like the previous execution, the source
starts its execution; when the source completes, its children are added to the priority queue
in the order [v4, v3, v2], which is different from the previous order of execution. At this stage,
there are two available threads and three available nodes; as v4 is at the top of the queue, v4

begins its execution on Thread 1 in parallel to v3, which begins its execution on Thread 2. As
in this case, both complete their execution simultaneously; now, the children of v4 and v3 can
be checked if they are ready to execute. The children of v4 are added to priority queue in
the order of [v6, v8, v7] now the priority queue is [v2, v6, v8, v7] the children of v3 are just v5

however v5 cannot be added as one of its ancestor v2 has not yet been executed. As there
are two available threads, v2 and v6 start their execution in parallel on Thread 1 and Thread

28

6. Intra-Task Priorities DAG

2, respectively. Again v2 and v6 complete their execution at the same time, now v5 can be
added to the priority queue in the order [v8, v5, v7]. But, v9 i.e, children of v6 cannot be added
until v7 and v8 have been executed. At this stage the priority queue is [v8, v5, v7]. Now as
there are two available threads; v8 and v5 start their execution in parallel, v5 completes its
execution first, however children of v5 which is v10 cannot be added to the priority queue, as
v10 ancestors are both v5 and v9. Now the priority queue is just [v7], so v7 starts its execution
right after v5. During the execution of v5, v8 completes its execution; however still v9 cannot
be added as v7 has not yet been executed. Hence this thread Thread 1 stays idle. After v7

completes its execution now, v9 can be added to the priority queue, as there are two available
threads, v9 can execute on either, and only after v9 completes its execution, now all the
ancestors of the sink have completed their execution, hence sink is added to the priority
queue and executed.

Figure 6.3.: Execution Scenario 2

Similarly, another order has the least response time in the last two execution orders, as
shown in Figure 6.4. From this example, we can see that the order of execution of subtasks
affects the response time. The response time when priorities were not assigned gave a value
of 16 as shown in Equation 6.2. In the above figures, we got the least response time of 12 in
Figure 6.4. Conceptually, the response time can be tightened when the order of execution is
managed, which is possible when priorities are assigned to the subtasks.

Figure 6.4.: Execution Scenario 3

29

6. Intra-Task Priorities DAG

6.3. Compute Intra-Task Interference Bound

The above section proves that there is a necessity for an algorithm to compute the intra-
task interference of a DAG tasks when priorities are assigned to the subtask. This section
introduces an algorithm that computes the intra-task interference for a given DAG task. The
algorithm computes the intra-task interference assuming that the priorities of the nodes do
not conflict with the topology order of the graph, i.e., a node’s priority is not higher than
any of its descendants, and the algorithm can only be used for DAGs with a single source
and sink with intra-task priorities assigned. Without priorities, the algorithm should not be
used to calculate the upper bound for a DAGs. Furthermore, for a given task where priority
is not assigned to the subtasks, in this scenario, topological priority assignment is used by
default. There are exponentially many possible priority assignments complying with the
above assumption [25]. Without loss of generality, the algorithm assumes that the whole DAG
is released at time 0.

6.3.1. Algorithm

The algorithm mainly depends on two Classes - Thread and Job; their class definition is
shown in Listing 6.2 and Listing 6.1 respectively. In the class Thread, thread_id is a unique
identifier, and the attribute time represents the total absolute time of execution of tasks or idle
time of threads at any point in time. In the class Job, accumulate is the field that represents
the absolute time at which the subtask is terminated on the thread. The algorithms required
the DagTask, for which the intra-task interference has to be calculated as an input. Following
are the steps that are used to compute the intra-task interference.

1. The algorithm creates a min heap queue[18] of the size of the number of threads of the
given DAG task. Each node in a heap stores a thread object; see Listing 6.2.

2. Creates a list parallelism which indicates a set of available nodes that can run in parallel
at any given time during the execution of the task. As the algorithm assumes a single
source and a single sink DAG graph, the source is added first to the parallelism list.

3. Until the length of the parallelism list is not zero; the following steps are executed:

a) The node with the highest priority is popped from the parallelism list.

b) For a given node pushes the node to the threads using the following steps:

• If there are no ancestors for the given node, this is the case where the node
can be executed in any of the threads at any time, as there are no ancestors.
Hence the algorithm chooses the thread with minimum time and executes the
node on this thread.

• If there are ancestors, collect all the ancestors of the node to ensure that all
the ancestors have completed their execution; if any of the ancestors has not
yet been executed, the algorithm does not add the node to the threads. If all
the node ancestors have been visited, then find the ancestor node with the

30

6. Intra-Task Priorities DAG

maximum accumulate named max_accumulate_node, which indicates that the
node can start its execution only after the accumulate of max_accumulate_node.
In the next step, the algorithm chooses a thread that satisfies one of the
following conditions: Firstly, if the thread time is greater than the accumulate
of max_accumulate_node - which indicates that all its ancestors have completed
their execution. Now the node can be executed on this thread. Secondly,
suppose the sum of the thread time and the WCET of max_accumulate_node
is greater than or equal to that of the accumulate of max_accumulate_node. In
that case, the node is to be executed on a different thread than the thread
where its ancestor max_accumulate_node was executed; this condition ensures
that the node can start its execution here as the max_accumulate_node has
completed its execution in one of the other threads.

• After the node is pushed to a thread, update the thread times by including
in the WCET of the node and also update the node accumulate to the thread
time and the node thread_id to the thread where it was executed.

c) Once the node is pushed to the threads, check if the length of parallelism is zero;
if it is zero, this condition verifies that there exists a layer in the DAG. Now the
algorithm updates the threads’ time with the maximum time of the threads. In
other words, a buffer is created in the threads where the layer was not executed.

d) Now, the algorithm collects the next layer and is added to the parallelism.

e) For each node in the new layer, the node is checked if all its ancestors are visited;
only then can a node be executed. If not, the node is still added to parallelism but
is not pushed to the threads until and unless all its ancestors have completed their
execution.

4. Finally, the maximum time of the threads represents the sum of intra-task interference
and the critical path.

5. The algorithm then computes the intra-task interference by subtracting the critical path
and returns the intra-task interference.

31

6. Intra-Task Priorities DAG

Listing 6.1: Job Class and its attributes

class Job:
def __init__(self, wcet: int, **kwargs):

self.wcet = wcet
self.relative_completion_time = wcet
self.priority = kwargs.get(’priority’) if ’priority’ in kwargs else 0
self.visited = False
self.critical = False
self.accumulate = 0
self.thread_id = -1
self.priority = 0
self.execute = True

def __lt__(self, other):
return self.priority < other.priority

Listing 6.2: Thread Class and its attributes

class Thread:
def __init__(self, thread_id):

self.time = 0
self.thread_id = thread_id

The illustration of scheduling the subtasks with intra-task priorities using the working
explained in subsection 6.3.1 is shown for the DAG Figure 6.5 at Example 6.3.1. The detailed
implementation of the algorithm to compute intra-task interference is shown at subsec-
tion 8.5.2.

Example 6.3.1. Consider a DAG task as shown in Figure 6.5 with priorities assigned as shown in
the figure, which is executing on a thread pool with µi = 2 threads in the thread pool. The intra-task
interference is calculated using the steps shown in subsection 6.3.1.

The following diagrams show the iterations to compute the response time using the
algorithm mentioned in subsection 6.3.1. The buckets show a detailed stack of how the nodes
are added to the threads, which simulates exactly as executing on a thread. The heap on the
right represents the thread’s absolute time at any point.

The value in the threads represents an end-to-end thread time which is the sum of critical
path and intra-task interference. In the figures Figure 6.5, Figure 6.6 and Figure 6.7 the
bold components are the nodes of the critical path, for the DAG shown in Figure 6.5 the
critical path is ten. After the execution of the algorithm 17 for the DAG shown in Figure 6.5
the maximum end-to-end thread time as shown in the figures Figure 6.6 and Figure 6.7 is
fourteen. Hence the intra-task interference is calculated using the following computation,

intra-task-interference = max-thread-time - critical-path

32

6. Intra-Task Priorities DAG

Figure 6.5.: Example illustrating intra-task interference computation

using the computation the intra-task interference for the DAG shown in Figure 6.5 is

intra-task-interference = 14 - 10 = 4

Whereas the intra-task priority when using the Equation 6.1 when intra-task priorities are
not assigned [51] the intra-task interference is calculated as

22− 10
2

=
12
2

= 6 (6.3)

Wherein twenty-two is the workload of the DAG shown in Figure 6.5, and the two represent
the number of threads used.

33

6. Intra-Task Priorities DAG

(i) (ii)

(iii) (iv)

Figure 6.6.: Intra-task interference computation Iterations (i) - (iv)

34

6. Intra-Task Priorities DAG

(v) (vi)

(vii) (viii)

Figure 6.7.: Intra-task interference computation Iterations (v) - (viii)

35

7. Priority Assignment DAG

As discussed in the chapter 6, it is proved that for a given task τk executed on a thread pool
of µk threads, the response time is affected based on the order of execution of subtasks, i.e.,
different priority assignment results in different response time bounds. Using a priority
assignment algorithm ensures a control in the execution order of the subtasks and allows for
tightening the intra-task interference bound. In this section, the most common algorithms are
explained that assign priorities based on the characteristics of the graph. The only assumption
is that the priority order of nodes does not conflict with the topological order of the Directed
Acyclic Graph (DAG), i.e., a subtask’s priority is not higher than any of its descendants.

7.1. Topological Priority Assignment

As the name suggests, the priorities are assigned to the subtasks per the topology order of the
DAG. For the DAG as shown in Figure 6.1, the topology order is : [v1, v2, v3, v4, v5, v6, v7, v8, v9, v10].
The priority is assigned to each node sequentially from 0 to n, such that p(v1) = 0, p(v2) =

1.....p(v10) = 9 as shown in Figure 7.1. And as the priorities are assigned based on the
topological order of the DAG, it does not break the assumption that a subtask’s priority is
not higher than any of its descendants. The detailed algorithm for assigning the priorities to
a DAG is shown in algorithm 12.

7.2. Random Priority Assignment

The algorithm assigns priorities to the nodes Layer-by-Layer i.e., A layer in a Directed Acyclic
Graph (DAG) consist of nodes or subtasks that are ready at the same time in parallel. For
instance, for a single source DAG, layer 1 consists of only the source node, layer 2 consists of
all descendants of the first layer, and this is followed until the sink.

The algorithm starts from the source with priority p(source) = 0. The next layer is collected,
i.e., all the descendants of the previous layer, and the priorities are assigned only to the nodes
that belong to this layer. This assignment is done for random nodes in a layer but sequential
priority, i.e, p(get_random_node(nodes_o f _layer)) = 1, p(get_random_node(nodes_o f _layer)) =
2...p(get_random_node(nodes_o f _layer)) = len(nodes_o f _layer) and after which the next
layer is collected and assigns the priorities in the same way. This type of assignment
ensures that if Layer A is before Layer B then p(any node at layer B) > p(any node at layer
A) hence not breaking the assumption that a subtasks’ priority is not higher than any of its
descendants.

36

7. Priority Assignment DAG

Figure 7.1.: DAG task with Topological Priority Assignment

For the DAG as shown in Figure 6.1, starting with the source v1 is assigned p(v1) = 0, now
all the children of the source is collected denoted as Layer A in Figure 7.2, now priorities
are assigned to random nodes of the layer but sequential priority i.e., a random node is
chosen between [v2, v3, v4] and assigned a priority of one, for instance p(v4) = 1, this step
is followed until priorities are assigned to all the nodes of the Layer A. After this, the next
layer is collected, i.e., all the descendants of all the nodes of Layer A, which results in Layer B
comprising of nodes - [v5, v6, v7, v8], now again priorities are assigned only to the nodes of
the Layer B. And these steps are followed until the sink is reached.

7.3. WCET Priority Assignment

Similarly as the method Random Priority Assignment explained in section 7.2, the WCET
Priority Assignment algorithm also assigns priorities to the nodes Layer-by-Layer. The
algorithm starts from the source with priority p(source) = 0, then the next layer is collected,
and the priorities are assigned only to the nodes that belong to this layer. This assignment is
done by sorting the nodes in descending order of a layer based on the WCET of the nodes.
Then priorities are assigned sequentially, i.e., for a layer, the node with the highest WCET
gets the highest possible priority. And after which, the next layer is collected and assigned
the priorities in the same way. This type of assignment ensures that if Layer A is before Layer
B then p(any node at layer B) > p(any node at layer A) hence not breaking the assumption
that a subtasks’ priority is not higher than any of its descendants.

For the DAG as shown in Figure 6.1, starting with the source v1 is assigned p(v1) = 0,

37

7. Priority Assignment DAG

Figure 7.2.: DAG task with Random Priority Assignment

Figure 7.3.: DAG task with WCET Priority Assignment

38

7. Priority Assignment DAG

now all the children of the source is collected denoted as Layer A in Figure 7.3, the nodes
in this layer are sorted in descending order based on the WCET, for the layer A the nodes
are arranged as - [v3, v4, v2] as v3 as the highest WCET and v2 the lowest. Then priorities are
assigned to these nodes of the layer A but sequentially i.e., p(v3) = 1 and p(v2) = 3, these
steps are followed until priorities are assigned to all the nodes of the Layer A. After this, the
next layer is collected, i.e., all the descendants of all the nodes of Layer A, which results in
Layer B comprising of nodes - [v5, v6, v7, v8], now again priorities are assigned only to the
nodes of the Layer B. And these steps are followed until the sink is reached.

The difference between Random and WCET Priority Assignment is based on how the
nodes of a layer are arranged. In Random Priority Assignment, the nodes of the layer are
randomly shuffled, whereas in WCET Priority Assignment, the nodes of the layer are sorted
in descending order according to their WCET.

39

8. Implementation

This chapter elaborates on the implementation of the proposed algorithms in this work. The
development, testing and experimentation were all implemented in Python 3.10 [19] and
its libraries, along with external packages. Firstly, Networkx[3] for graph manipulation,
pyCPA[12] for modeling the activation trace required for arrival curves and NumPy[47] for
generation of random gamma and uniform distribution which is required for creating random
Directed Acyclic Graph’s (DAGs).

The following sections explain the implementation of each module separately and end with
a section that combines all the modules.

8.1. System Model

Starting with the implementation that is required for the creation of a Directed Acyclic Graph
task. As illustrated in the class diagram at Figure 8.1, DagTask extends the base class Task,
wherein a single DagTask consists of a single graph that is represented by the class Dag,
period, deadline, number_o f _threads, utilization are the main attributes that are required for
the DagTask, the methods that involve the delta eta functions are explained in the section 8.2.

Most importantly, this section is about the representation and manipulation of a Directed
Acyclic Graph, the implementation uses the package Networkx [3] for the creation of a
Directed Graph [4], the methods in the class Dag are implemented such that a single Dag
object consists of n nodes, wherein each node comprises of a single Job (subtask) and the
corresponding outgoing edges from the object. These nodes are used in the creation of a
directed graph using Networkx [4]. Methods of the Dag class, allow to add a node or edge
to the graph, which in turn uses the methods provided by Networkx to manipulate the
Directed graph, compute the critical path and workload distribution as shown in Listing A.2
and Listing A.3 respectively. The methods generate_trace_uni f orm(), generate_delta() are
explained in the section 8.2.

An object of the class DagNode consists of an instance of Job and an instance of edge. An
edge which is an instance of Edge represents the outgoing edges from one source to multiple
targets which are other DagNode instances. In the Job class, which is called a subtask, consists
of a Worst Case Execution Time which is used in methods that require the scheduling of the
DagNode, for instance, response time and critical path calculation. relative_completion_time
is used for calculation of the critical path, priority which represents the priority of the subtask
in the task, visited which is a variable that is used to represent whether a subtask has been
visited or not required during the iteration of the graph for instance to get the topological
sorted graph, critical which indicates whether the subtask is a part of the critical path or not,

40

8. Implementation

accumulate which is used to represent the absolute time of execution in the thread required
for response time calculation, execute which represents whether a subtask is ready to be
executed or not, and finally, thread_id whose value represents the id of a thread in which the
subtask was executed.

8.1.1. Class Diagram

Figure 8.1.: Class Diagram: DagModel

41

8. Implementation

8.2. Event Driven DAG

This section explains the implementation of the usage of arrival curves and the distance
function i.e, eta functions η+ η− and delta functions δ+ and δ− which are required for
calculation of the inter-task interference for a sporadic task using which, a value which is less
pessimistic is computed than compared to computing inter-task interference where the task is
modeled as periodic.

8.2.1. Arrival Curves

Firstly, an activation trace is required that simulate the activations of a sporadic task, the
algorithm 1 given several activations n, generates an activation trace with n activations,
which is an array of absolute times which represent the absolute time at which an instance
of the task is activated, assuming that the first instance of the task starts at time = 0. The
algorithm generates the trace ensuring the conditions that, as shown in equations Equation 5.7,
Equation 5.9 and Equation 5.8, i.e., the minimum distance between two activations is the
period, and maximum distance between two activations is two times the period, and for three
activations, the minimum distance required for three activations is the sum of the minimum
distance of two activations and the period and the maximum distance of three activations is
the sum of the distance between two activations and two times the period and so on. The
detailed algorithm to generate a random activation trace for a sporadic task is shown in
algorithm 1 [21].

Algorithm 1: Generate Trace Uniform
Output: activation_trace

1 def generate_trace_uniform(period: int, number_of_activations: int) ->
activation_trace: list<float>:
/* The algorithm simulates an activation trace for a task using uniform

distribution for randomness */
2 activation_trace = list() // Activation Trace containing absolute times
3 activation_trace.append(0) // First activation of the task is at time = 0
4 activation_trace.append(period) // Second activation at time period, min

distance between two activations is the period
5 for i in range(2, number_of_activations):
6 activation_trace.append(trace[i - 1] + random.uni f orm(0, period) + period)

// The next activation can occur between period and 2*period
7 end
8 return trace
9 end

Once an activation trace has been generated, there is a need for methods that reads the entire
trace and provide the model that is required to compute the delta and eta functions. Using
an external package pyCPA [12], that provide methods to compute a pseudo-conservative

42

8. Implementation

event model from a given activation trace, the line three in the algorithm 2, invokes the
pyCPA method that retrieves a TraceEventModel delta, an TraceEventModel provide methods
delta_min and eta_plus which are the minimum distance function δ− and the maximum
arrival function η+, the usage of these methods are done in the DagTask class as shown
in Figure 8.1. The functions names are delta_minus_ f unction and eta_plus_ f unction, the
implementation is shown in Listing A.1. The TraceEventModel is different for each instance
of the class DagTask, this model is generated as soon as the task is created and is assigned to
the delta attribute of the class DagTask as shown in Figure 8.1, the methods then uses this
delta for computing the delta_min and eta_plus functions.

Algorithm 2: Generate Delta
Output: activation_trace, which is an array of absolute times

1 def generate_delta(period) -> delta:
/* The algorithm generates a model delta using which delta and eta

functions for a task can be computer */
2 activation_trace = generate_trace_uni f orm(period, 100) // Generate an

activation trace of length 100
3 delta = pyCPA.model.TraceEventModel(activation_trace) // Compute a

pseudo-conservative event model from a given trace, The algorithm will
compute delta and eta functions on the trace by evaluating all
candidates

4 return delta
5 end

Finally, these methods are used in the computation of the inter-task interference as shown
in Listing A.5. The important difference being, in the Equation 5.5 which uses the period
Ti for computation whereas in the Equation 5.6 uses the arrival curve for computation. The
amount_o f _jobs, i.e., the number of activations in the interval when the period is used, is
calculated using Listing 8.1. When the arrival curve is used, this line can be replaced using
Listing 8.2.

Listing 8.1: Amount of jobs computation using Period

amount_of_jobs = math.floor(interval + response_time - min_wcet / period) + 1

Listing 8.2: Amount of jobs computation using arrival curves

amount_of_jobs = eta_plus_function(interval + response_time - min_wcet)

43

8. Implementation

8.3. DAG Generators

Random graphs arise when the construction of a graph involves randomness. Random graphs
are a suitable choice when there is a need for modeling graphs that are inherently random
[49]. To evaluate the performance of the response time calculation algorithm, there is a need
for these random Directed Acyclic Graph that allow experimentation with random possible
designs of a DAG. This section explains and shows the implementation of two methods used
to generate random graphs.

8.3.1. Class Diagram

The class diagram of the implementation of random DAG task builders is shown in the
Figure 8.2. The abstract class DagTaskBuilders provides variables that are needed by meth-
ods required to create a random graph. For instance, number_o f _processors are used to
represent a random number of processors, minimum_wcet and maximum_wcet are used
to create Jobs or subtasks with random WCET in this range. RenyiDagTaskBuilder and
ForkJoinDagTaskBuilder extend the abstract class DagTaskBuilders. The detail working of the
methods RenyiDagTaskBuilder and ForkJoinDagTaskBuilder are shown in subsection 8.3.2
and subsection 8.3.3 respectively. If any new DagTaskBuilders are to be added, they can be
added by extending the DagTaskBuilders without having to change any other modules.

Figure 8.2.: Class Diagram: DagTaskBuilder

44

8. Implementation

8.3.2. The Erdös-Rényi method and The UUniFast method

The method uses the Erdös-Rényi [15] method for generating the graphs, and the UUniFast
method [10] is used for utilization computation for the task set.

Erdös-Rényi [15] method defines two methods to generate graphs the G(n, p) and G(n, M)

methods [13]. Where the G(n, p) uses the number of vertices n and a probability value, and
the G(n, M) method uses the number of vertices n and number of edges M.

Definition 8.3.1 (The G(n, p) method). For a given n number of nodes, the G(n, p) method
generates a random graph where each element of the (n 2) possible edges is present with independent
probability p [13].

The G(n, p) method is adapted for generating DAG task sets [29] [51]. A total utilization
value is required to generate the task set. Firstly, a random number of nodes (subtasks) are
chosen from a given range, as well as the WCET for each node is also randomly picked from
a given range. For each node(subtask) the period is computed using the Equation 8.1 [51]
until the required total utilization is exceeded, where Utot represents the total utilization of
the task set. Gamma represents the gamma distribution. And the deadline of the task is set
to be as same as the calculated Period Ti. For the last node, when the utilization exceeds the
total utilization Utot, the Period Ti is adapted such that the task utilization Ui matches the
remaining utilization to satisfy the total utilization Utot [51].

Ti =

(
Li +

Wi

0.4 ∗Utot

)
∗ (1 + 0.25 ∗ Gamma(2, 1)) (8.1)

Once the nodes are generated, for each pair of the nodes, an edge is added if a random
value within the range (0, 1) is less than a predefined threshold p_add = 0.1. The value of
p_add determines the maximum level of parallelism of the DAG, i.e., the higher the value
of p_add higher the probability of the tasks being sequential and having a longer critical
path. An example of a DAG task generated using the Erdös-Rényi method is as shown in
Figure 8.3.

The Unnifast Algorithm is used for efficiently generating task sets of n tasks with uniform
distribution. The algorithm first generates a value of the sum of n− 1 variables. Then it sets
the first utilization equal to the difference between utot and the generated utilization. The
algorithm keeps generating the random variable “sum of i uniform variables” and computing
the single utilization Ui as the difference with the previous sum [10] [9].

Definition 8.3.2 (Total Utilization). A utilization of a task τi is defined as the ratio between the total
workload to the period i.e, Ui =

Wi
Ti

. And for a task set τ comprising of n tasks the total utilization can
be calculated using the Equation 8.2 [45].

Utot =
n

∑
i=1

Ui (8.2)

For generating a task set τ, which contains multiple DAGs the Unnifast Algorithm[9] is
used to compute individual task utilization Ui for a fixed number of tasks n.

45

8. Implementation

Figure 8.3.: Example DAG generated using The Erdös-Rényi method

To generate a task set τ comprising of n tasks, the following steps are followed [23] for a
randomly chosen total utilization Utot in the range of [1, 3] :

1. Firstly, a DAG task is created using the Erdös-Rényi method using the steps given
above.

2. Utilization is calculated for each individual task using Ui =
Wi
Ti

3. The above steps are done until the required total utilization Utot is exceeded

4. Once the required total utilization Utot is exceeded, the following steps are executed to
create the last subtask:

a) Remaining utilization Urem of the subtask is calculated by subtracting the current
utilization from the total utilization.

b) The period of this task is calculated using Ti =
Wi

Urem
to satisfy the individual task

utilization.

The detailed algorithm of generating a task set τ is shown in the algorithm 3 and a few
dependent helper methods that are a part of the DagTaskBuilder are as shown in the Figure 8.2
are added to the Listing A.6.

46

8. Implementation

Algorithm 3: Generate Renyi Dag Task Set
Input: A value randomly selected total_utilization
Output: List of DagTask

1 def generate_renyi_task_set(total_utilization : float) -> list<DagTask>:
/* Generate a task set using Renyi’s and Unnifast methods until the

total utilization is reached */
2 current_utilization = 0

// A variable to keep a track of the utilization of the task set using
the Unnifast method

3 task_set = []
4 p_add = 10 // Threshold Probability to determine the number of edges in

the dag
5 while current_utilization <= total_utilization: /* Generate tasks until

the required total utilization is exceeded */
6 dag_task = generate_renyi_task(total_utilization) // Generate a dag task

using renyi method
7 if current_utilization + dag_task.get_utilization() <

total_utilization: /* Create dag task, and update utilization */
8 current_utilization += dag_task.get_utilization()
9 task_set.append(dag_task)

10 else: /* Creation of a the last task when utilization exceeds the
total utilization */

11 remaining_utilization = total_utilization - current_utilization // Use
remaining utilization to ensure the total utilization is valid

12 period = math.ceil(dag_task.workload / remaining_utilization)
13 critical_path = dag_task.critical_path
14 if period >= critical_path:
15 deadline = period
16 number_of_threads = math.ceil(dag_task.workload - critical_path /

deadline - critical_path)
17 if number_of_threads == 0:
18 number_of_threads = 1
19 modified_dag_task = DagTask(dag_task.dag, period, deadline,

number_of_threads, remaining_utilization)
20 task_set.append(modified_dag_task)
21 break // Terminate after creation of the last subtask
22 return task_set
23 end

47

8. Implementation

Algorithm 4: Generate Renyi Dag Task
Output: A newly created DagTask

1 def generate_renyi_task(total_utilization: float) -> DagTask:
/* Generate a task using Renyi’s method */

2 number_of_vertices = random.randint(10, 50) // Random number of subtasks for
a single task

3 jobs = []
4 for i in range(number_of_vertices - 2): /* Create random subtasks for a

single task */
5 wcet = random.randint(1, 50)
6 job = Job(wcet)
7 jobs.append(job)
8 dag.add_node(job) // Add the created node to the graph
9 end

10 random_edges_renyi() // Generate random edges(dependencies) between
subtasks

11 add_source_and_sink() // Add a single source and sink to the dag
12 period = random_renyi_period(workload, critical_path, total_utilization) // Random

period using renyi and unnifast methods
13 utilization = dag.calculate_workload() / period // Shown in Listing A.4
14 deadline = period
15 number_of_threads = math.ceil(workload - critical_path / deadline - critical_path)
16 return DagTask(dag, period, deadline, number_of_threads, utilization)
17 end

Algorithm 5: Random edges using Renyi

1 def random_edges_renyi(dag: Dag, jobs: list<DagNode>):
/* Generate random edges for the graph created using Renyi’s method */

2 for j1 in jobs:
3 for j2 in jobs:
4 if j1 == j2: /* Restrict self loops in dag */
5 break
6 if self.random_probability() < self.p_add: /* Generate an edge if

the random probability is less than a predefined value. Helper
methods in Listing A.6 */

7 dag.add_edge(j1, j2)
8 end
9 end

10 end

48

8. Implementation

Algorithm 6: Renyi Add Source and Sink
Input: dag: Dag

1 def add_source_and_sink(dag: Dag):
/* Add single source and sink to the DAG generated by the Renyi method

*/
2 source = Job(random.randint(1, 50)) // Create a single random source and

subtask
3 sink = Job(random.randint(1, 50)) dag.add_node(source) // Add source and sink

to the graph
4 dag.add_node(sink)
5 for node in dag.nodes: /* Add edges from source to the nodes that do not

have an incoming edge and add edges from nodes which do not have an
outgoing edge to the sink */

6 if node.job != source and node.job != sink:
7 if dag.graph.in_degree(node.job) == 0:
8 dag.add_edge(source, node.job)
9 if dag.graph.out_degree(node.job) == 0:

10 dag.add_edge(node.job, sink)
11 end
12 end

Algorithm 7: Generate Random Period
Output: Period

1 def random_renyi_period(workload: int, critical_path: int,
total_utilization: float) -> int:
/* Generate random period according to Renyi’s method */

2 first_part = (critical_path + workload) / (0.4 * total_utilization)
3 gamma = np.random.gamma(2, 1)
4 second_part = 1 + (0.25 * gamma)
5 return math.ceil(first_part * second_part)
6 end

8.3.3. Nested Fork-Join DAG and The UUniFast method

Similarly, the Erdös-Rényi and the UUniFast method as shown in subsection 8.3.2. The Nested
Fork-Join DAG and The UUniFast method uses the Nested Fork-Join DAG [16] method for
generating the graphs, and follows the UUniFast method [10] for utilization computation of
the task set.

A Nested Fork-Join DAG is a DAG comprised of two nodes connected by a single edge is
NFJ. If GA and GB are two independent NFJ-DAGs, then the DAG obtained through either of
the following operations is also a NFJ-DAG [16] [26]:

49

8. Implementation

1. Series Merge: merges the sink of GA with the source of GB.

2. Parallel Merge: merge the source of GA with the source of GB and the sink of GA with
the sink of GB.

The series merge links two NFJ-DAGs one after another sequentially, i.e., links the sink of
one NFJ-DAG to the source of the other NFJ-DAG, whereas the parallel merge juxtaposes two
NFJ-DAGs by merging their sources and sinks, i.e., a new node source and sink is created,
the newly created source is linked to the two sources of the graph, and similarly the sinks of
the two graphs are linked to the newly created sink node. Example of a DAG created using
NFJ method is as shown in Figure 8.4

Figure 8.4.: Example DAG generated using Nested Fork-Join method

A node vi is called a join-node if the number of its ancestors are larger than one i.e,
|ancestors(vi)| > 1 and a node vi is called a fork-node if the number of its descendants are
larger than one i.e., |descendants(vi)| > 1. The property that a join-node is a result of parallel
merge. Hence, for every join-node vi there exists a fork-node v f such that the sub-graph G

′

has v f as a source and vi as a sink, must hold for a NFJ-DAG [16].
Using this property, the following steps are executed to create a single random NFJ-DAG

[45] [37]:

1. The algorithm start with an empty Dag, and a randomly chosen depth.

2. For each node in a layer, the child node and the edges are generated based on the fork
probability ppar, and the number of children are determined by a uniform distribution.
This step is carried out recursively from the source, until the random depth reached,
which then creates a DAG of the required random depth. This is a sequential merge
operation.

50

8. Implementation

3. After a fork operation, join is executed to link the nodes between the layer which leads
to parallel executing node, which is a parallel merge operation.

The above algorithm is shown in detail as two method f ork and join as shown in algorithm 8
and algorithm 9 respectively.

Algorithm 8: Fork

1 def fork(dag: Dag, predecessor: Job, depth: int):
/* Recursive function for creating DAG using sequential merge until

depth */
2 children = []
3 job = Job(self.random_wcet()) // Create a job with random WCET
4 dag.add_node(job)
5 if predecessor is not None: /* If there is a predecessor, do a

sequential merge */
6 dag.add_edge(predecessor, job)
7 if depth >= 0 and self.random_probability() < self.p_par: /* Create a

dag, with random number of descendants */
8 number_of_jobs = self.random_number_of_branches() // Call fork

recursively for all the jobs and until the depth is reached
9 for i in range(number_of_jobs):

10 children.append(self.fork(dag, job, depth - 1))
11 end
12 return self.join(dag, job, children)
13 end

Similarly as explained in subsection 8.3.2, To generate a task set τ comprising of n tasks,
the following steps are followed [23] for a randomly chosen total utilization Utot in the range
of [1, 3] :

1. Firstly, a DAG task is created using the NFJ-DAG method using the steps given above.

2. Utilization is calculated for each individual task using Ui =
Wi
Ti

3. The above steps are done until the required total utilization Utot is exceeded

4. Once the required total utilization Utot is exceeded, the following steps are executed to
create the last subtask:

a) Remaining utilization Urem of the subtask is calculated by subtracting the current
utilization from the total utilization.

b) The period of this task is calculated using Ti =
Wi

Urem
to satisfy the individual task

utilization.

51

8. Implementation

Algorithm 9: Join

1 def join(dag: Dag, current: Job, children: list<Job>):
/* Algorithm for parallel merge of the DAG that was partly generated by

fork */
2 if len(children) > 0:

// If children of the fork node(current) are empty, return the fork
node(current)

3 job = Job(self.random_wcet()) // Create a job with a random WCET
4 dag.add_node(job) // Add the subtask created to the graph
5 for child in children:
6 dag.add_edge(child, job) // Add an edge from all children of the

fork node(current) to the newly created job creating node in
parallel

7 end
8 return job // Return the newly created job which have no outgoing

edges
9 return current

10 end

The detailed algorithm of generating a task set τ is showed in the algorithm 11.

Algorithm 10: Generate Fork-Join Task
Output: DagTask

1 def generate_fork_join_task() -> DagTask:
/* Generate a task using nfj method */

2 dag = Dag([]) // Create an empty Dag
3 j = fork(dag, None, depth) // Invoke forks to create a sequential merge dag
4 fork(dag, j, depth)
5 workload = dag.calculate_workload() // Shown in Listing A.4
6 critical_path = dag.get_critical_path() // Shown in Listing A.2
7 period = random_task_period(critical_path, workload) // Shown in Listing A.6
8 utilization = workload / period
9 min_number_of_threads = math.ceil(workload / period)

10 number_of_threads = random_number_of_threads(min_number_of_threads)
// Shown in Listing A.6

11 return DagTask(dag, period, number_of_threads, utilization)
12 end

52

8. Implementation

Algorithm 11: Generate Fork-Join Task Set
Input: total_utilization
Output: Set of DagTask

1 def generate_fork_join_task_set(total_utilization) -> list<DagTask>:
/* Generate a task set using nfj and Unnifast methods until the total

utilization is reached */
2 current_utilization = 0 // A variable to keep a track of the utilization of

the task set using the Unnifast method
3 task_set = []
4 while current_utilization <= total_utilization: /* Generate tasks until

the required total utilization is exceeded */
5 dag_task = self.generate_fork_join_task() // Generate a dag task using

Nested Fork-Join method
6 if current_utilization + dag_task.get_utilization() <

total_utilization: /* Create dag task, and update utilization */
7 current_utilization += dag_task.get_utilization()
8 task_set.append(dag_task)
9 else: /* Creation of a the last task when utilization exceeds the

total utilization */
10 remaining_utilization = total_utilization - current_utilization // Use

remaining utilization to ensure the total utilization is valid
11 period = math.ceil(dag_task.workload / remaining_utilization)
12 critical_path = dag_task.critical_path
13 if period >= critical_path:
14 modified_dag_task = DagTask(dag_task.dag, period,

number_of_processors, remaining_utilization)
15 task_set.append(modified_dag_task)
16 break // Terminate after creation of the last subtask
17 return task_set
18 end

53

8. Implementation

8.4. Priority Assignment

As shown in chapter 7, three algorithms Topological, Random and WCET priority assignment
have been illustrated, this section shows the detailed implementation of the algorithms.

8.4.1. Class Diagram

The class diagram of the Priority Assignment implemented is as shown in Figure 8.5, an
interface is created named PriorityAssignment, which has just a single method named assign,
which requires a DagTask as an input and returns a DagTask wherein the subtasks in the
DAG have priorities assigned, all the algorithm must implement the interface, as shown in the
Figure 8.5, the algorithms Random, Topological and WCET all implement PriorityAssignment
and have their corresponding characteristics of assigning priorities to the DAG. Any new
algorithms can be added by implementing the interface without needing to change any other
modules.

Figure 8.5.: Class Diagram: PriorityAssignment

8.4.2. Topological Priority Assignment

The detailed algorithm for assigning the priorities to a DAG is shown at algorithm 12, the
function requires a DagTask as an input. It returns the same object of DagTask with the
corresponding nodes of the DAG of the task having priorities assigned. Line 3 in the algorithm
retrieves a list of nodes in topological order of the graph using the NetworkX package [3] and
iterates over each node as done in line 5. The priorities are assigned to the nodes sequentially.
Once priorities are assigned to the nodes, the graph is updated which is required by the
NetworkX package.

54

8. Implementation

Algorithm 12: Topological Priority Assignment
Input: task: DagTask
Output: task: DagTask, where the nodes of the DAG have priorities assigned
/* Algorithm for assigning priorities to the nodes of a DAG using

topological priority assignment method */
1 class Topological:
2 def assign(task: DagTask) -> DagTask:
3 nodes = list(nx.topological_sort(task.dag.graph)) // Retrieve the nodes in a

topological order
4 priority_dict = {}
5 for i in range(len(nodes): /* Assign priority to each node and store

the priorities assigned in a dictionary */
6 nodes[i].priority = i
7 priority_dict[nodes[i]] = i
8 end
9 nx.set_node_attributes(task.dag.graph, priority_dict, "priority") // Update

graph with priorties with updated nodes
10 return task
11 end
12 end

8.4.3. Random Priority Assignment

The algorithm 13 requires a DagTask wherein priorities are not assigned to the subtasks in
the DAG and returns a DagTask with priorities assigned to the subtasks. Firstly the source
of the DAG is retrieved using the NetworkX package [3] at line 3 of algorithm 13. The
source is added to a list named parallelism and also to a set named task_set. The nodes
in the parallelism list corresponds to the nodes that exists in a layer. The first layer is just
the source alone. The next steps are carried out until the task_set is empty. Line 10 of the
algorithm 13 shuffles the list of nodes of a layer randomly, and at the next step the method
assign_priorities_layer as shown in Listing A.7 is invoked to assign priority sequentially for
a layer. After assigning the priorities for a layer the list parallelism and the set task_set are
cleared, the next layer is retrieved and added to both parallelism and task_set. The entire
algorithm is shown at algorithm 13.

55

8. Implementation

Algorithm 13: Random Priority Assignment
Input: task: DagTask
Output: task: DagTask, where the nodes of the DAG have priorities assigned

1 class Random:
2 def assign(task: DagTask) -> DagTask:

/* Algorithm for assigning priorities to the nodes of a DAG using
random priority assignment method */

3 tasks = list(nx.topological_sort(task.dag.graph)) // Retrieve the nodes in a
topological order

4 source = tasks[0] // Save the source
5 task_set = {source}
6 parallelism = [source] // parallelism at any time contains the nodes of

a layer
7 priority = 0
8 priority_dict = {}
9 while len(task_set) != 0: /* Assign priority to each layer at a time

and store the priorities assigned of all nodes in a dictionary */
10 random.shuffle(parallelism) // Shuffle the nodes of a layer randomly
11 assign_priorities_layer(parallelism) // Assign priorities sequentially

to the randomly order nodes, method implementation shown at
Listing A.7

12 get_next_layer(parallelism) // Method implementation shown at
Listing A.8

13 nx.set_node_attributes(task.dag.graph, priority_dict, "priority") // Update
graph with priorities with updated nodes

14 return task
15 end
16 end

8.4.4. WCET Priority Assignment

Similarly, as the method Random Priority Assignment explained in algorithm 13, The algo-
rithm 14 requires a DagTask as input wherein priorities are not assigned to the subtasks in
the DAG and return a DagTask with priorities assigned to the subtasks. Firstly the source of
the DAG is retrieved using the NetworkX package [3] at line 3 of algorithm 14. The source
is added to a list named parallelism and a set named task_set. The nodes in the parallelism
list correspond to the nodes in a layer. The first layer is just the source alone. The next steps
are carried out until the task_set is empty. Line 10 of the algorithm 14 sorts the nodes in
descending order of a layer based on the WCET of the nodes, and at the next step the method
assign_priorities_layer as shown in Listing A.7 is invoked to assign priority sequentially for
a layer. After assigning the priorities for a layer the list parallelism and the set task_set are
cleared, the next layer is retrieved and added to both parallelism and task_set. The entire

56

8. Implementation

algorithm is shown at algorithm 13.
The difference between Random Priority Assignment and WCET Priority Assignment is

the line 10 of both algorithm 13 and algorithm 14, in algorithm 13 the nodes of a layer are
randomly shuffled, whereas in algorithm 14 the nodes in a layer are sorted in descending
order based on their WCET.

Algorithm 14: WCET Priority Assignment
Input: task: DagTask
Output: task: DagTask, where the nodes of the DAG have priorities assigned

1 class WCET:
2 def assign(task: DagTask) -> DagTask:

/* Algorithm for assigning priorities to the nodes of a DAG using
WCET priority assignment method */

3 tasks = list(nx.topological_sort(task.dag.graph)) // Retrieve the nodes in a
topological order

4 source = tasks[0]
5 task_set = source
6 parallelism = [source] // parallelism at any time contains the nodes of

a layer
7 priority = 0
8 priority_dict = {}
9 while len(task_set) != 0: /* Assign priority to each layer at a time

and store the priorities assigned of all nodes in a dictionary */
10 parallelism.sort(key=operator.attrgetter(’wcet’), reverse=True) // Sorts the

nodes in a descending order of their WCET
11 assign_priorities_layer(parallelism) // Assign priorities sequentially

to the randomly order nodes, method implementation shown at
Listing A.7

12 get_next_layer(parallelism) // Method implementation shown at
Listing A.8

13 nx.set_node_attributes(task.dag.graph, priority_dict, "priority") // Update
graph with priorities with updated nodes

14 return task
15 end
16 end

57

8. Implementation

8.5. Intra-task interference Bound Calculation

The algorithm for computing the intra-task interference safe upper bound was mentioned in
algorithm 17, this sections shows details about the implementation of the algorithm.

8.5.1. Class Diagram

The methods for Computation Algorithms uses the interface Algorithm. This interface
provides methods to compute inter-task, intra-task interference and response time bounds.
Algorithms must implement the interface Algorithm to compute the times. Currently, two
algorithms are added as shown in Figure 8.6, SchmidMottok and ResearchAlgorithm. Other
algorithms can be added by implementing the interface without having the need to modify
any other module logic.

The algorithm uses the following modules for computation:

• Type Function: An interface that contains the methods which contain the equations to
compute the inter-task and intra-task interference currently, only a single type function
UnknownStructure is implemented. Other type functions such as KnownStructure can
be added based on the system and execution model.

• Priority Manager: For the computation of inter-task interference, tasks of a task set
can be preempted and the thread pools of the task are scheduled to the OS based on
the Priority Manager algorithm, for instance, RMS or EDF [51]. The class diagram
PriorityManager as shown in Figure 8.6 contains just a single method cmp which allows
to find the task with the higher priority based on the type of algorithm.

The algorithm SchmidMottok for calculation of inter-task interference uses the period
i.e., models the sporadic task as a periodic task and computes the intra-task interference
considering the subtasks share the same priority as that of the task.

The algorithm introduced in this thesis is the ResearchAlgorithm, which is an extension of
SchmidMottok with the difference being computation of inter-task interference is done using
arrival curves, i.e., does not model a sporadic task as periodic and achieves a less pessimistic
inter-task interference bound and the other is the computation of intra-task interference,
the ResearchAlgorithm assign priority to the subtasks using a PriorityAssignment and the
intra-task interference time is computed considering the priorities to the subtasks again
ensuring a tighter upper bound, methods used by the algorithms are mentioned in the class
diagram as shown in Figure 8.6. The computation where priority is considered uses the
Thread class for simulating the execution of the subtasks of threads.

And the algorithm also uses the following modules for testing and experimentation:

• DagTaskBuilder and DagModel, as explained in the section 8.3 provides a method to
create a random task-set. This task-set is used to experiment with computations, i.e.,
firstly, a random task-set is created and then the algorithm is invoked on this task-set to
compute the response times.

58

8. Implementation

• Info is used for the final steps after computing the response times to show if a task-set
is schedulable or not.

Figure 8.6.: Class Diagram: Algorithm

Figure 8.7.: Class Diagram: PriorityManager and Info

59

8. Implementation

8.5.2. Algorithm

The implementation of the algorithm that is used for calculating the upper bound intra-task in-
terference is shown at algorithm 17. The function requires a DAG task with intra-task priorities
assigned as input, and the function returns the intra-task interference that occurs for the DAG.
The function at algorithm 17 i.e, calculate_intra_task_interference is the main function that is
called for computation, the function also uses the helper methods heap_push(algorithm 15)
and update_threads(algorithm 16). The function calculate_intra_task_interference works by
scheduling the nodes layer by layer. Firstly, the first layer i.e, only the source is scheduled and
after that the next layer is scheduled and so on. After collection of a layer, the function uses
the helper method heap_push to add the highest priority node in the layer to the most ap-
propriate thread. The threads are implemented using heap queue, where each heap contains
the absolute times, simulating the execution of nodes on threads. The detailed explanation
and illustration of the working of the algorithm is shown at subsection 6.3.1 and Figure 6.6
respectively.

60

9. Experiments

This chapter shows the testing and the experiments done to prove the findings of the
thesis. Firstly, comparing intra-task interference for random DAGs with and without intra-
task priorities shows if assigning priorities has a significant impact. Second, it compares
interferences between three types of priority assignment algorithms.

9.1. Subtasks with Priority vs. Subtasks with No Priority

This section illustrates the experiments done to compare random DAGs where subtasks
have priorities assigned vs. where subtasks have no priority assigned as shown in chapter 6.
The calculation of intra-task interference for subtasks where priorities are assigned follows
the algorithm 17 using three priority assignments methods as explained in chapter 7 and
calculation of intra-task interference where no priorities are assigned is calculated using the
Equation 6.1.

9.1.1. Using The Erdös-Rényi method

Experiments are performed using random graphs created by The Erdös-Rényi method as
shown in algorithm 4 with the following constraints:

• Single source and sink DAG

• p_add = 10, which is used for random edges in the Erdös-Rényi method

• total_utilization = 8, which restricts the number of threads to 8

• WCET in the interval range(1, 50)

Experiment 9.1.1. The experiment is done using random DAG tasks created using The Erdös-
Rényi method as shown in subsection 8.3.2 with the restrictions mentioned above, the charts
shown in Figure 9.1.1 compares the intra-task interference where one line "Without Priority"
represents the calculation of intra-task interference using Equation 6.1 and the other three
"Random, Topological, and WCET" are computed using algorithm 17. The x-axis represents
the Test case number, and the y-axis represents the intra-task interference. Each test case
is different, where the number of nodes is picked at random in the interval range(50, 100),
similarly the number of threads in the interval range(1, 8), and WCET in the range of (1, 50).
The results of the calculations are sorted using the computations of "without priority" as a
reference.

61

9. Experiments

(i) Number of tests cases = 20 (ii) Numberof tests cases = 50

(iii) Number of tests cases = 100 (iv) Number of tests cases = 150

Figure 9.1.: With vs. Without Priority for random DAG generated using Erdös-Rényi method

Result: As shown in the Figure 9.1.1 there are four charts with a fixed number of test cases,
where chart (i) contains 20 random tests DAG and similarly (iv) includes 150 random tests.
These tests are executed to cover all types of design and configuration of DAG that can be
created using Erdös-Rényi method. The impact of the charts illustrated in shows that the safe
upper bounds of the intra-task interference can be tightened by assigning priorities, i.e., with
intra-task priorities. There are instances in the charts where intra-interference is the same for
all methods; this happens in a scenario where the number of threads is one.

62

9. Experiments

Experiment 9.1.2. As shown in Experiment 9.1.1, the safe upper bound of the intra-task
interference can be tightened by assigning priorities. This experiment compares the same
computation methods as the Experiment 9.1.1 but shows the effects on the intra-task in-
terference when the number of threads is kept constant for a variable number of nodes.
For the chart illustrated in Figure 9.2, the x-axis represents a test case and the number of
nodes. For instance, 10 on the x-axis means the 10th random test case with a DAG randomly
generated using 10 nodes. The y-axis represents the intra-task interference. The experiments
are executed keeping a fixed number of threads. And the maximum possible number of
nodes is 50, i.e., the range of the x-axis begins with a DAG with 3 nodes to a DAG with 50
nodes.

(i) Number of threads = 2 (ii) Number of threads = 3

(iii) Number of threads = 4 (iv) Number of threads = 5

Figure 9.2.: With vs. Without Priority for random DAG generated using Erdös-Rényi method
using a fixed number of threads and 50 nodes

63

9. Experiments

Result: This experiment’s result again shows that the upper bound intra-task interference
can be tightened by assigning priorities. In addition, as the number of threads increases, the
charts illustrate that the average difference between the results of the computation methods
also increases. Again proving that assigning intra-task priorities allows for a lower response
time.

Experiment 9.1.3. Extending the Experiment 9.1.2, with an increment in the number of nodes
from 50 to 150. Again, the number on the x-axis represents a test case and the number of
nodes. For instance, the value 120 in the x-axis of the graphs represents a DAG with 120
nodes and the 120th random test case.

(i) Number of threads = 2 (ii) Number of threads = 3

(iii) Number of threads = 4 (iv) Number of threads = 5

Figure 9.3.: With vs. Without Priority for random DAG generated using Erdös-Rényi method
using a fixed number of threads and 120 nodes

64

9. Experiments

Result: The result of this experiment again shows that the upper bound of the intra-task
interference can be tightened by assigning priorities. And also, as the number of threads
increases, the average difference between the intra-interference with priority vs. without
priority increases as same as the results of Experiment 9.1.2.

Experiment 9.1.4. As shown in Experiment 9.1.1, the upper bound of the intra-task interfer-
ence can be tightened by assigning priorities. This experiment shows the effects of increasing
the threads for the same number of nodes. The charts shown in Figure 9.4 compares the intra-
task interference where one line "Without Priority" represents the calculation of intra-task
interference using Equation 6.1 and the other three "Random, Topological, and WCET" are
computed using algorithm 17. The x-axis in the Figure 9.4 represents the number of threads,
and the y-axis represents the computation of the intra-task interference. There are eight test
cases where each number on the x-axis represents the test case and the number of threads.
The number five on the x-axis represents a random DAG created using Erdös-Rényi method
for a fixed number of nodes when scheduled using five threads.

(i) Number of nodes = 50 (ii) Number of nodes = 100

65

9. Experiments

(iii) Number of nodes = 200

Figure 9.4.: With vs. Without Priority for random DAG generated using Erdös-Rényi method
with a fixed number of nodes

Result: This experiment again confirms that using intra-task priorities allows us to tighten
the intra-task interference.

9.1.2. Nested Fork-Join

The section now uses the Nested Fork-Join method to conduct experiments, using the same
comparisons as shown in subsection 9.1.1. Experiments are performed using random graphs
created by Nested Fork-Join method as shown in algorithm 10 with the following constraints:

• Single source and sink DAG

• p_par = 50, which is used for creating random number branches with the range of
possible branches in the interval (2, 5)

• Number of threads in the interval range(1, 8)

Experiment 9.1.5. The experiment is done using random DAG tasks created using the Nested
Fork-Join method as shown in subsection 8.3.3 with the restrictions mentioned above, the
charts shown in Figure 9.5 compares the intra-task interference where one line "Without
Priority" represents the calculation of intra-task interference using Equation 6.1 and the
other three "Random, Topological, and WCET" are computed using algorithm 17. The x-axis
represents the Test case number, and the y-axis represents the intra-task interference. Each test
case is different, where the depth of the DAG required by NFJ method is set to 5. The results
of the calculations are sorted using the computations of "without priority" as a reference.

66

9. Experiments

(i) Number of test cases = 20 (ii) Number of test cases = 50

(iii) Number of test cases = 100

Figure 9.5.: With vs. Without Priority for random DAG generated using Nested Fork-Join
method

Result: As shown in the Figure 9.5 there are three charts with a fixed number of test cases,
where chart (i) contains 20 random tests DAG and similarly (iii) includes 100 random tests.
These tests are executed to cover all types of design and configuration of DAG that can be
created using Nested Fork-Join method. The charts illustrated in Figure 9.5 show that the safe
upper bounds of the intra-task interference can be tightened by assigning priorities, i.e., with
intra-task priorities. There are instances in the charts where intra-interference is the same for
all methods; this happens in a scenario where the number of threads is one. The results of
this experiment prove the same result as that of the Experiment 9.1.1.

67

9. Experiments

Experiment 9.1.6. As shown in Experiment 9.1.5, the safe upper bound of the intra-task
interference can be tightened by assigning priorities. This experiment compares the same
computation methods as the Experiment 9.1.5 but shows the effects on the intra-task interfer-
ence when the number of threads and the depth are kept constant. For the charts illustrated
in Figure 9.6, the x-axis represents a test case. The y-axis represents the intra-task interference.
The experiments are executed keeping a fixed number of threads. Each test case is different,
where the depth of the DAG required by NFJ method is set to 3. The results of the calculations
are sorted using the computations of "without priority" as a reference.

(i) Number of threads = 2 (ii) Number of threads = 3

(iii) Number of threads = 4

Figure 9.6.: With vs. Without Priority for random DAG generated usingNested Fork-Join
method with a fixed number of threads and depth 3

68

9. Experiments

Result: This experiment’s result again shows that the upper bound intra-task interference
can be tightened by assigning priorities. In addition, as the number of threads increases, the
charts illustrate that the average difference between the results of the computation methods
also increases. Again proving that assigning intra-task priorities ensures a lower response
time.

Experiment 9.1.7. Extending the Experiment 9.1.6 with an increment in the depth from 3 to 5.

(i) Number of threads = 3 (ii) Number of threads = 4

(i) Number of threads = 5 (ii) Number of threads = 8

Figure 9.7.: With vs. Without Priority for random DAG generated usingNested Fork-Join
method with a fixed number of threads and depth 5

Result: This experiment again shows that the upper bound of the intra-task interference
can be tightened by assigning priorities as same as the results of the Experiment 9.1.6.

69

9. Experiments

9.2. Comparing Priority Assignments

This section contains experiments that specifically demonstrate the difference between the
intra-task priority assignments. The previous experiments shown at section 9.1 mainly
pinpoints the difference between the computations with and without intra-task priorities.
However, the charts in the experiments do not show a clear-cut difference between the three
priority assignment algorithms. As shown in the charts at section 9.1, the real difference
between Random, Topological, and WCET cannot be figured out.

9.2.1. Using The Erdös-Rényi method

Experiment 9.2.1. This experiment is done to understand if there is a priority assignment
that constantly achieves a tighter upper bound intra-task interference compared to others. As
shown in Experiment 9.1.1, the upper bound of the intra-task interference can be tightened
by assigning priorities. This experiment only compares the intra-task interference where
subtasks have priority using three methods mentioned in chapter 7. The x-axis represents
the Test case number, and the y-axis represents the intra-task interference. Each test case is
different, with a random number of nodes in the range of (50, 100), a random number of
threads in the range of (1, 8), and WCET in the range of (1, 50). The results of the calculations
are sorted, keeping the result of "without priority" as a reference but not displayed in the
graph.

(i) Number of test cases = 10 (ii) Number of test cases = 50

70

9. Experiments

(iii) Number of test cases = 100 (iv) Number of test cases = 150

Figure 9.8.: Compare Priority assignments for random DAG generated using Erdös-Rényi
method

Result: The experiment results show that no priority assignment algorithm can guarantee
a shorter intra-task interference compared to other priority assignment algorithms. These
graphs also prove that the average difference between each priority assignment is +-5 time
units. In general, there are specific designs of DAG for which an algorithm gives a better
result. However, this is not in this thesis’s scope and represents future work to find which
algorithm can always result in shorted intra-task interference.

Experiment 9.2.2. This experiment only compares the intra-task interference where subtasks
have priority using three methods mentioned in chapter 7. As shown in Experiment 9.1.2,
the difference between the upper bounds of with priority vs. without priority intra-task
interference increases as the number of threads increases. For the graphs shown in Figure 9.9,
the x-axis represents a test case and the number of nodes. For instance, the number 10 on the
x-axis represents the 10th random test case with a DAG generated using 10 nodes. The y-axis
represents the intra-task interference. The experiments are executed keeping a fixed number
of threads. And the maximum possible number of nodes is 50, i.e., the axis range is from a
DAG with 3 nodes to a DAG with 50 nodes.

71

9. Experiments

(i) Number of threads = 2 (ii) Number of threads = 3

(iii) Number of threads = 4 (iv) Number of threads = 5

Figure 9.9.: Compare Priority assignments for random DAG generated using Erdös-Rényi
method with fixed number of threads

Result: The experiment’s results show again that no priority assignment algorithm can
guarantee a shorter intra-task interference compared to other priority assignment algorithms.
These graphs also prove that the average difference between each priority assignment is +-5
time units. There is no pattern found as the number of threads increases.

Experiment 9.2.3. Extending the Experiment 9.2.2, this experiment shows by incrementing
the nodes from 50 to 100. Again, the number on the x-axis represents a test case and the
number of nodes. For instance, the value 80 in the x-axis of the graphs represents a DAG
with 80 nodes and the 80th random test case.

72

9. Experiments

(i) Number of threads = 2 (ii) Number of threads = 3

(iii) Number of threads = 4 (iv) Number of threads = 5

Figure 9.10.: Compare Priority assignments for random DAG generated using Erdös-Rényi
method with fixed number of threads

Result: The results of the graphs is as same as the results of the Experiment 9.2.2.

Experiment 9.2.4. This experiment shows the effects of increasing the threads for the same
number of nodes. The charts shown in Figure 9.11 compares the intra-task interference of
three priority assignments namely "Random, Topological, and WCET" that are computed
using algorithm 17. The x-axis in the Figure 9.11 represents the number of threads, and the
y-axis represents the intra-task interference computation. There are eight test cases where
each number on the x-axis represents the test case and the number of threads. The number
five on the x-axis represents a random DAG created using NFJ method for a fixed number of
nodes when scheduled using five threads.

73

9. Experiments

(i) Number of nodes = 10 (ii) Number of nodes = 20

(iii) Number of nodes = 50 (iii) Number of nodes = 100

Figure 9.11.: Compare Priority assignments for random DAG generated using Erdös-Rényi
method with fixed number of nodes

Result: The experiment results show that no priority assignment algorithm can always
guarantee a shorter intra-task interference compared to other priority assignment algorithms.
There is no visible pattern that allows one to confirm if an algorithm is better compared to
the others or not.

74

10. Conclusion

The proposed model allows the scheduling of a task set comprising of sporadic DAG tasks
using thread pools on a preemptive global fixed priority system, wherein the subtasks of
the DAG task with intra-task priorities are scheduled to the worker threads of the thread
pool in a non-preemptive manner. The study proves that a tighter response time bound can
be achieved for a DAG task model by assigning intra-task priorities, i.e., priorities to the
subtasks or nodes of the DAG. This bound is derived using an algorithm that computes a
safe upper bound worst-case intra-task interference that uses the limited task parallelism
provided by the thread pools. Along with the arrival curves, the inter-task interference can
be computed less pessimistically by not modeling a sporadic task to be periodic. These are
confirmed by experiments conducted using random DAG generators that illustrate that the
proposed analysis outperforms the state-of-the-art methods.

75

11. Future Work

Modern real-time systems contain tasks wherein, for instance, a subtask is dependent on
multiple inputs. There are cases when the subtask can execute if any of the inputs are ready,
i.e., the system model of the Directed Acyclic Graph (DAG) must allow for the OR semantic.
In other words, investigating the task interference when a subtask or a node can execute if
any one of its ancestors has completed its execution is a future work that can be examined to
cover more real-world scenarios of real-time systems as the model mentioned in this work is
used for DAG with AND semantics.

In addition, the system model introduced in this work, a DAG with multiple sources and
having the same period, in such a scenario, a dummy source is added; however, in the case
of multiple sources with different periods, a dummy source cannot be just added, which is,
therefore, another improvement that can be investigated in the system model.

The intra-task priority assignment algorithms illustrated in this thesis restrict nodes’ priority
order such that the priorities do not conflict with the topological order of the Directed Acyclic
Graph (DAG). Some studies provide improved priority assignment algorithms where a few
algorithms remove this restriction which is mentioned in state of the art; the studies of the
literature provide the investigation of a safe upper bound but for a different system model,
applying these algorithms to the model presented in this thesis is another improvement that
can be made to tighten the upper bound of the worst case response time even further.

An analysis of an execution model in which the subtasks of a DAG are grouped based on
priority, and for each priority group, a set of threads are assigned in which the subtasks can
be dispatched and executed, which represents a new execution model that can be investigated
to check if the response time can be made shorter.

The model presented uses global scheduler for the task-set. An analysis can be made to
check if partitioned scheduler can improve the response times.

In recent years, studies have been increasingly conducted for the computation of the
response time for scheduling a DAG task on a multi-core processor using different system
models, different execution models, and with or without priority assignments; using these
studies, a timing analysis toolchain can be developed which combines the result of all
literature making it easier for researchers to understand the work done in the years.

76

A. Appendix: Helper Methods Implementation

Listing A.1: DagTask Class

class DagTask(Task):
def __init__(self, dag: Dag, period: int, number_of_threads: int,

↪→ utilization, **kwargs):
deadline = kwargs.get(’deadline’) if ’deadline’ in kwargs else period
workload_distribution = kwargs.get(’workload_distribution’) \

if ’workload_distribution’ in kwargs else dag.
↪→ calculate_workload_distribution()

super().__init__(period, deadline, dag.calculate_workload(), dag.
↪→ get_critical_path(), number_of_threads)

self.dag = dag
self.workload_distribution = workload_distribution
self.utilization = utilization
self.delta = self.dag.generate_delta(period)

def get_maximum_parallelism(self):
max_parallelism = 0
for segment in self.workload_distribution:

if max_parallelism < segment.height:
max_parallelism = segment.height

return max_parallelism

def delta_minus_function(self, number_of_activations):
return self.delta.delta_min(number_of_activations)

def eta_plus_function(self, time_interval):
return self.delta.eta_plus(time_interval)

77

A. Appendix: Helper Methods Implementation

Listing A.2: Compute Critical Path

def get_critical_path(self):
""" Function to compute the critical path of the given dag, works only for

↪→ a dag with single source and sink
"""
critical_path = 0
nodes = list(nx.topological_sort(self.graph))
for node in nodes:

in_edges = self.graph.in_edges(nbunch=node)
longest_relative_completion_time = 0
for (source, target) in in_edges:

if longest_relative_completion_time < source.
↪→ relative_completion_time:
longest_relative_completion_time = source.

↪→ relative_completion_time

node.relative_completion_time = longest_relative_completion_time + node.
↪→ wcet

critical_path = node.relative_completion_time

return critical_path

Listing A.3: Compute Workload Distribution

def calculate_workload_distribution(self):
""" Function to retrieve segments of workload distribution the given dag
"""
critical_path = self.get_critical_path()
segments = []
segment_duration = 0
segment_height = 1
for t in range(critical_path):

current_height = 0
for node in self.nodes:

job = node.job
if job.relative_completion_time - job.wcet <= t < job.

↪→ relative_completion_time:
current_height += 1

if current_height == segment_height:
segment_duration += 1

else:
segments.append(Segment(segment_duration, segment_height))

78

A. Appendix: Helper Methods Implementation

segment_duration = 1
segment_height = current_height

segments.append(Segment(segment_duration, segment_height))
return segments

Listing A.4: Compute Workload

def calculate_workload(self):
workload = 0
for node in self.nodes:

workload += node.job.wcet

return workload

Listing A.5: Inter-task interference computation

def calculate_inter_task_interference(self, task: DagTask, response_time,
↪→ interval, parallelism,

use_arrival_curves=False):
min_wcet = task.critical_path
period = task.period

amount_of_jobs = math.floor(interval + response_time - min_wcet /
↪→ period) + 1

if use_arrival_curves:
amount_of_jobs = task.eta_plus_function(interval + response_time -

↪→ min_wcet)

workload = 0

for segment in task.workload_distribution:
number_of_threads = task.number_of_threads
if number_of_threads >= parallelism:

workload += (segment.height * segment.width) / number_of_threads

interference = amount_of_jobs * workload
return interference

79

A. Appendix: Helper Methods Implementation

Listing A.6: Snippets of DagTaskBuilder

class DagTaskBuilder:
number_of_processors = 8
minimum_wcet = 1
maximum_wcet = 100
max_number_of_branches = 5
max_number_of_threads = number_of_processors
depth = 2
p_par = 40
p_add = 10

def random_probability(self):
Default distribution for randInt is Uniform Distribution
return random.randint(0, 100)

def get_beta(self):
return 0.035 * self.number_of_processors

def random_number_of_branches(self):
return random.randint(2, self.max_number_of_branches)

def random_wcet(self):
return random.randint(self.minimum_wcet, self.maximum_wcet)

def random_task_period(self, critical_path: int, workload: int):
return random.randint(critical_path, int(workload/self.get_beta()))

def random_number_of_threads(self, min_number_of_threads):
return random.randint(min_number_of_threads, self.max_number_of_threads)

↪→

Listing A.7: Assign Priorities for a given Layer

def assign_priorities_layer(parallelism):
""" parallelism at any time contains the nodes of a layer, and assign

↪→ priorities to the nodes of a layer
"""
for i in range(len(parallelism)):

Assign priorities sequentially node by node
assign_priority_job = parallelism[i]
assign_priority_job.priority = priority
priority_dict[assign_priority_job] = priority
priority += 1

80

A. Appendix: Helper Methods Implementation

Listing A.8: Retrieve next layer

def get_next_layer(parallelism):
""" Creates the next layer of the dag and is appended to parallelism and

↪→ task_set
"""
parallelism.clear()
children = []
Extract all the descendants from the current layer, available at task_set
for node in task_set:

Set visited of the current layer nodes as True
node.visited = True
children.extend(list(nx.neighbors(task.dag.graph, node)))

task_set.clear()
For each child, check if the child node is ready or not, and add to the

↪→ parallelism and task_set
for child in children:

Check if all the ancestor of the child are visited
ancestors = list(task.dag.graph.predecessors(child))
add_child = True
for ancestor in ancestors:

if not ancestor.visited:
If a child is not ready
add_child = False
break

if add_child:
Add children to the new layer if they are ready
if child not in parallelism:

parallelism.append(child)
task_set.add(child)

81

B. Appendix: Intra-task interference Upper
Bound Calculation Implementation

Algorithm 15: Heap Push
Input: task: DagTask, node, threads

1 def heap_push(task: DagTask, node, threads):
/* Insert the given node to one of the threads, i.e., execute the node

on a thread */
2 ancestors = predecessors(node) // Check if the node can be added to the

threads
3 add_node = True
4 max_accumulate = -1
5 max_accumulate_node = None
6 for ancestor in ancestors: Comment*[f]Add node to threads only if all its

ancestors have finished their execution
7 if not ancestor.visited:
8 add_node = False
9 break

10 end
11 if add_node: // If the node is ready to be added to the threads
12 node.visited = True // Indicate that the node has been visited
13 for ancestor in ancestors: // Find the ancestor that completed its

execution the latest, which indicates that the child can start
running only after all its ancestor have completed their execution
or check the ancestor that was executed last i.e., having the max
accumulate

14 if ancestor.accumulate >= max_accumulate:
15 max_accumulate_node = ancestor
16 end

82

B. Appendix: Intra-task interference Upper Bound Calculation Implementation

17

18 if add_node:
19 if max_accumulate_node is None: // If a node has no ancestor, can be

added to the thread with min time
20 thread = heapq.heappop(threads) // Heapq pop gives the thread with

the least time
21 thread.time += node.wcet
22 heapq.heappush(threads, thread) // Using heapq, push the node to the

popped thread
23 node.accumulate = thread.time

// Accumulate is the thread time at which the node completes its
execution

24 node.thread_id = thread.thread_id
25 else: // If a node has ancestors, i.e., it has dependencies
26 min_value = 99999
27 min_thread_id = -1
28 cond = None
29 for thread in threads: // Select the thread that the node can be

added to
30 if thread.time >= max_accumulate_node.accumulate: // This is

the case which ensures that a thread time has exceeded the
max accumulate so the node can be added to this thread

31 if min_value > thread.time: // Choose a thread from the set
of accepted threads which has min time, work conserving

32 min_value = thread.time
33 min_thread_id = thread.thread_id

34 if thread.time < max_accumulate_node.accumulate: // This is the
case for the threads where the time is still less than the
max accumulate

35 if thread.time + max_accumulate_node.wcet <=
max_accumulate_node.accumulate: // Check if the max
accumulate node has been executed on the other threads by
adding the wcet

36 if min_value > thread.time + max_accumulate_node.wcet:
// Choose a thread from the set of accepted threads
which has min time, work conserving

37 min_value = thread.time + max_accumulate_node.wcet
38 min_thread_id = thread.thread_id
39 cond = True

40 update_threads(threads, node) // Update the threads by adding the
node to the thread that was selected

41 end

83

B. Appendix: Intra-task interference Upper Bound Calculation Implementation

Algorithm 16: Update Threads

1 def update_threads(threads, node):
/* Update thread which includes an addition of a node to the threads */

2 for thread in threads: // Update the threads with the times that
includes the node wcet

3 if thread.thread_id == min_thread_id:
4 if cond:
5 thread.time += node.wcet + max_accumulate_node.wcet
6 else:
7 thread.time += node.wcet
8 node.accumulate = thread.time
9 node.thread_id = thread.thread_id

10 end
11 end

Algorithm 17: Intra-task interference calculation
Input: task: DagTask
Output: response_time: int

1 def calculate_intra_task_interference(task: DagTask) : int:
/* The function computes the intra-task interference for a given dag

with priorities assigned to the subtask */
2 subtasks = task.dag.topological_sort() // Using networkx retrieve the nodes

in a topological order
3 source = tasks[0]
4 parallelism = [source]

84

B. Appendix: Intra-task interference Upper Bound Calculation Implementation

5

6 while len(parallelism) != 0: // Pop the highest priority node from
parallelism

7 parallelism.sort() // Sort the subtasks according to priorities
8 for node in parallelism:
9 if node.execute: // Pop the first highest priority node which is

ready
10 parallelism.remove(node)
11 break
12 else:
13 node = None
14 end
15 heap_push(task, node, threads) // Push the node to the threads i.e.,

node executes on a thread
16 if len(parallelism) == 0: // When a layer exists, create a buffer on

the threads that do not have max time of threads
17 max_time = max(max_time, threads.time)
18 foreach thread in threadsdo thread.time = max_time
19 for child in neighbors(node): // Find the ready children of the node

that was executed
20 ancestors = predecessors(child) // Check all the ancestors of the

child
21 add_child = True for ancestor in ancestors: // A child is ready only

if all its ancestors are visited
22 if ! ancestor.visited:
23 add_child = False
24 break
25 end
26 if ! add_child: // Indicates if a child is ready to execute or

not
27 child.execute = False
28 else:
29 child.execute = True
30 if child not in parallelism: // Add all children to parallelism
31 parallelism.append(child)
32 end
33 max_time = max(max_time, thread.time) // Find the max time of all the

threads return max_time - critical_path
34 end

85

List of Figures

1.1. Example DAG created using Parallel Frameworks API 1
1.2. Optical navigation sub-system . 3
1.3. Optical navigation sub-system modeled as a DAG 3

2.1. Task Channel Model . 6
2.2. BIRD - Attitude and Orbit Control System (AOCS) and Tasking Framework

Elements . 7
2.3. Tasking Framework Sequence Diagram . 7
2.4. BIRD - AOCS as realized in Tasking Framework 8
2.5. Tasking Framework application DAG . 9

4.1. Example DAG . 14
4.2. Execution of DAG on three threads . 16
4.3. Exact Interference suffered by Lk . 17

5.1. The maximum arrival function η+
i on an activation trace 22

5.2. The maximum arrival function η+
i . 22

5.3. The minimum distance function δ−i on an activation trace 23
5.4. The minimum distance function δ−i . 23

6.1. A DAG task . 27
6.2. Execution Scenario 1 . 28
6.3. Execution Scenario 2 . 29
6.4. Execution Scenario 3 . 29
6.5. Example illustrating intra-task interference computation 33
6.6. Intra-task interference computation Iterations (i) - (iv) 34
6.7. Intra-task interference computation Iterations (v) - (viii) 35

7.1. DAG task with Topological Priority Assignment 37
7.2. DAG task with Random Priority Assignment . 38
7.3. DAG task with WCET Priority Assignment . 38

8.1. Class Diagram: DagModel . 41
8.2. Class Diagram: DagTaskBuilder . 44
8.3. Example DAG generated using The Erdös-Rényi method 46
8.4. Example DAG generated using Nested Fork-Join method 50
8.5. Class Diagram: PriorityAssignment . 54
8.6. Class Diagram: Main . 59

86

List of Figures

8.7. Class Diagram: PriorityManager and Info . 59

9.1. With vs. Without Priority for random DAG generated using Erdös-Rényi method 62
9.2. With vs. Without Priority for random DAG generated using Erdös-Rényi

method using a fixed number of threads and 50 nodes 63
9.3. With vs. Without Priority for random DAG generated using Erdös-Rényi

method using a fixed number of threads and 120 nodes 64
9.4. With vs. Without Priority for random DAG generated using Erdös-Rényi

method with a fixed number of nodes . 66
9.5. With vs. Without Priority for random DAG generated using Nested Fork-Join

method . 67
9.6. With vs. Without Priority for random DAG generated usingNested Fork-Join

method with a fixed number of threads and depth 3 68
9.7. With vs. Without Priority for random DAG generated usingNested Fork-Join

method with a fixed number of threads and depth 5 69
9.8. Compare Priority assignments for random DAG generated using Erdös-Rényi

method . 71
9.9. Compare Priority assignments for random DAG generated using Erdös-Rényi

method with fixed number of threads . 72
9.10. Compare Priority assignments for random DAG generated using Erdös-Rényi

method with fixed number of threads . 73
9.11. Compare Priority assignments for random DAG generated using Erdös-Rényi

method with fixed number of nodes . 74

87

List of Tables

4.1. System Model . 15

88

List of Algorithms

1. Generate Trace Uniform . 42
2. Generate Delta . 43
3. Generate Renyi Dag Task Set . 47
4. Generate Renyi Dag Task . 48
5. Random edges using Renyi . 48
6. Renyi Add Source and Sink . 49
7. Generate Random Period . 49
8. Fork . 51
9. Join . 52
10. Generate Fork-Join Task . 52
11. Generate Fork-Join Task Set . 53
12. Topological Priority Assignment . 55
13. Random Priority Assignment . 56
14. WCET Priority Assignment . 57

15. Heap Push . 82
16. Update Threads . 84
17. Intra-task interference calculation . 84

89

Listings

1.1. Example usage of parallel framework’s API . 2

5.1. Compute trace element for index > 1 . 25

6.1. Job Class and its attributes . 32
6.2. Thread Class and its attributes . 32

8.1. Amount of jobs computation using Period . 43
8.2. Amount of jobs computation using arrival curves 43

A.1. DagTask Class . 77
A.2. Compute Critical Path . 78
A.3. Compute Workload Distribution . 78
A.4. Compute Workload . 79
A.5. Inter-task interference computation . 79
A.6. Snippets of DagTaskBuilder . 80
A.7. Assign Priorities for a given Layer . 80
A.8. Retrieve next layer . 81

90

Glossary

DagTask Class name used in implementation which denotes a task modeled as a DAG. 30,
40, 54–56

fixed-priority scheduler task priorities that do not change at any point during execution, the
schedulers schedule first the highest priority task of all those tasks. 4

global One scheduler manages the spatial and temporal dimensions of the scheduling for all
cores. 4, 76

layer A layer in a Directed Acyclic Graph (DAG) consist of nodes or subtasks that are ready
at the same time in parallel. For instance, for a single source DAG, layer 1 consists of
only the source node, in layer 2 consists of all descendants of the first layer. Generally
layer n consists of all descendants of all nodes in layer n - 1. 36, 37, 39, 55–57

OpenMP (Open Multi-Processing) is an application programming interface (API) that sup-
ports multi-platform shared-memory multiprocessing programming [56]. 1

partitioned Each core is managed by one scheduler which is responsible only for the time
scheduling. 76

91

Acronyms

AOCS Attitude and Orbit Control System. 5

ATON Autonomous Terrain-based Optical Navigation. 2, 8

BIRD Bi-spectral Infrared Detection. 5

DAG Directed Acyclic Graph. iii–v, 2–4, 9–16, 21, 26, 27, 30–33, 36, 37, 40, 44–46, 49–51, 54–57,
60–69, 71–76, 86, 87, 91

NFJ Nested Fork-Join. v, 49–51, 53, 66–69, 73, 86, 87

ODARIS Onboard Data Analysis, Real-time Information System. 8

ScOSA Scalable On-Board Computing for Space Avionics. 8

WCET Worst Case Execution Time. v, 9, 12–15, 31, 37–40, 44, 45, 51, 52, 54, 56, 57, 61, 70, 86,
89

92

Bibliography

[1] H. Abaza. “Worst-Case Execution Time Analysis for C++ based Real-Time On-Board
Software Systems”. MA thesis. Technische Universität Hamburg, Apr. 2021. url: https:
//elib.dlr.de/141634/.

[2] H. Abaza, Z. A. H. Hammadeh, and D. Lüdtke. “DELOOP: Automatic Flow Facts
Computation using Dynamic Symbolic Execution”. In: 20th International Workshop on
Worst-Case Execution Time Analysis. Ed. by C. Ballabriga. Vol. 103. OpenAccess Series in
Informatics. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022, 3:1–3:12. url:
https://elib.dlr.de/186919/.

[3] D. S. Aric Hagberg Pieter Swart. NetworkX. url: https://networkx.org/ (visited on
08/25/2022).

[4] D. S. Aric Hagberg Pieter Swart. NetworkX. url: https://networkx.org/documentation/
stable/reference/classes/digraph.html (visited on 08/25/2022).

[5] S. Baruah. “The federated scheduling of systems of conditional sporadic DAG tasks”.
In: 2015 International Conference on Embedded Software (EMSOFT). 2015, pp. 1–10. doi:
10.1109/EMSOFT.2015.7318254.

[6] S. Baruah, V. Bonifaci, and A. Marchetti-Spaccamela. “The Global EDF Scheduling of
Systems of Conditional Sporadic DAG Tasks”. In: 2015 27th Euromicro Conference on
Real-Time Systems. 2015, pp. 222–231. doi: 10.1109/ECRTS.2015.27.

[7] M. Bertogna, M. Cirinei, and G. Lipari. “Improved schedulability analysis of EDF on
multiprocessor platforms”. In: 17th Euromicro Conference on Real-Time Systems (ECRTS’05).
2005, pp. 209–218. doi: 10.1109/ECRTS.2005.18.

[8] M. Bertogna and M. Cirinei. “Response-Time Analysis for Globally Scheduled Symmet-
ric Multiprocessor Platforms”. In: 28th IEEE International Real-Time Systems Symposium
(RTSS 2007). 2007, pp. 149–160. doi: 10.1109/RTSS.2007.31.

[9] E. Bini and G. Buttazzo. “Biasing effects in schedulability measures”. In: Proceedings.
16th Euromicro Conference on Real-Time Systems, 2004. ECRTS 2004. 2004, pp. 196–203.
doi: 10.1109/EMRTS.2004.1311021.

[10] E. Bini and G. C. Buttazzo. “Measuring the Performance of Schedulability Tests”. In:
Real-Time Syst. 30.1–2 (May 2005), pp. 129–154. issn: 0922-6443. doi: 10.1007/s11241-
005-0507-9. url: https://doi.org/10.1007/s11241-005-0507-9.

[11] H. S. Chwa, J. Lee, K.-M. Phan, A. Easwaran, and I. Shin. “Global EDF Schedulability
Analysis for Synchronous Parallel Tasks on Multicore Platforms”. In: 2013 25th Euromicro
Conference on Real-Time Systems. 2013, pp. 25–34. doi: 10.1109/ECRTS.2013.14.

93

https://elib.dlr.de/141634/
https://elib.dlr.de/141634/
https://elib.dlr.de/186919/
https://networkx.org/
https://networkx.org/documentation/stable/reference/classes/digraph.html
https://networkx.org/documentation/stable/reference/classes/digraph.html
https://doi.org/10.1109/EMSOFT.2015.7318254
https://doi.org/10.1109/ECRTS.2015.27
https://doi.org/10.1109/ECRTS.2005.18
https://doi.org/10.1109/RTSS.2007.31
https://doi.org/10.1109/EMRTS.2004.1311021
https://doi.org/10.1007/s11241-005-0507-9
https://doi.org/10.1007/s11241-005-0507-9
https://doi.org/10.1007/s11241-005-0507-9
https://doi.org/10.1109/ECRTS.2013.14

Bibliography

[12] I. of Computer Network Engineering at TU Braunschweig (IDA-TUBS). pyCPA: Composi-
tional Performance Analysis in Python. url: https://pycpa.readthedocs.io/en/latest/
(visited on 08/25/2022).

[13] D. Cordeiro, G. Mounié, S. Perarnau, D. Trystram, J.-M. Vincent, and F. Wagner. “Ran-
dom Graph Generation for Scheduling Simulations”. In: Proceedings of the 3rd Interna-
tional ICST Conference on Simulation Tools and Techniques. SIMUTools ’10. Torremolinos,
Malaga, Spain: ICST (Institute for Computer Sciences, Social-Informatics and Telecom-
munications Engineering), 2010. isbn: 9789639799875.

[14] M. Coutinho, J. Rufino, and C. Almeida. “Response Time Analysis of Asynchronous
Periodic and Sporadic Tasks Sheduled by a Fixed Priority Preemptive Algorithm”. In:
2008 Euromicro Conference on Real-Time Systems. 2008, pp. 156–167. doi: 10.1109/ECRTS.
2008.30.

[15] P. Erdös and A. Rényi. “On Random Graphs I”. In: Publicationes Mathematicae Debrecen
6 (1959), p. 290.

[16] J. Fonseca, G. Nelissen, and V. Nélis. “Improved Response Time Analysis of Sporadic
DAG Tasks for Global FP Scheduling”. In: Proceedings of the 25th International Conference
on Real-Time Networks and Systems. RTNS ’17. Grenoble, France: Association for Comput-
ing Machinery, 2017, pp. 28–37. isbn: 9781450352864. doi: 10.1145/3139258.3139288.
url: https://doi.org/10.1145/3139258.3139288.

[17] I. Foster. Designing and Building Parallel Programs: Concepts and Tools for Parallel Soft-
ware Engineering. USA: Addison-Wesley Longman Publishing Co., Inc., 1995. isbn:
0201575949.

[18] P. S. Foundation. Heap queue algorithm. url: https://docs.python.org/3/library/
heapq.html (visited on 08/25/2022).

[19] P. S. Foundation. Python. url: https://www.python.org/ (visited on 08/25/2022).

[20] R. L. Graham. “Bounds on Multiprocessing Timing Anomalies”. In: SIAM J. Appl.
Math. 17.2 (Mar. 1969), pp. 416–429. issn: 0036-1399. doi: 10.1137/0117039. url:
https://doi.org/10.1137/0117039.

[21] Z. A. Haj Hammadeh. “Deadline Miss Models for Temporarily Overloaded Systems”.
PhD thesis. Sept. 2019. doi: 10.24355/dbbs.084-201909020857-0. url: http://uri.
gbv.de/document/opac-de-84:ppn:1678285706.

[22] Z. A. H. Hammadeh, T. Franz, O. Maibaum, A. Gerndt, and D. Lüdtke. “Event-Driven
Multithreading Execution Platform for Real-Time On-Board Software Systems”. In: 15th
annual workshop on Operating Systems Platforms for Embedded Real-Time applications. July
2019, pp. 29–34. url: https://elib.dlr.de/128249/.

[23] M. Han, N. Guan, J. Sun, Q. He, Q. Deng, and W. Liu. “Response Time Bounds for Typed
DAG Parallel Tasks on Heterogeneous Multi-Cores”. In: IEEE Transactions on Parallel
and Distributed Systems 30.11 (2019), pp. 2567–2581. doi: 10.1109/TPDS.2019.2916696.

94

https://pycpa.readthedocs.io/en/latest/
https://doi.org/10.1109/ECRTS.2008.30
https://doi.org/10.1109/ECRTS.2008.30
https://doi.org/10.1145/3139258.3139288
https://doi.org/10.1145/3139258.3139288
https://docs.python.org/3/library/heapq.html
https://docs.python.org/3/library/heapq.html
https://www.python.org/
https://doi.org/10.1137/0117039
https://doi.org/10.1137/0117039
https://doi.org/10.24355/dbbs.084-201909020857-0
http://uri.gbv.de/document/opac-de-84:ppn:1678285706
http://uri.gbv.de/document/opac-de-84:ppn:1678285706
https://elib.dlr.de/128249/
https://doi.org/10.1109/TPDS.2019.2916696

Bibliography

[24] Q. He, M. Lv, and N. Guan. “Response Time Bounds for DAG Tasks with Arbitrary
Intra-Task Priority Assignment”. In: 33rd Euromicro Conference on Real-Time Systems
(ECRTS 2021). Ed. by B. B. Brandenburg. Vol. 196. Leibniz International Proceedings
in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2021, 8:1–8:21. isbn: 978-3-95977-192-4. doi: 10.4230/LIPIcs.ECRTS.2021.8.
url: https://drops.dagstuhl.de/opus/volltexte/2021/13939.

[25] Q. He, x. jiang xu, N. Guan, and Z. Guo. “Intra-Task Priority Assignment in Real-
Time Scheduling of DAG Tasks on Multi-Cores”. In: IEEE Transactions on Parallel and
Distributed Systems 30.10 (2019), pp. 2283–2295. doi: 10.1109/TPDS.2019.2910525.

[26] X. He and Y. Yesha. “Parallel recognition and decomposition of two terminal series
parallel graphs”. In: Information and Computation 75.1 (1987), pp. 15–38. issn: 0890-
5401. doi: https://doi.org/10.1016/0890-5401(87)90061-7. url: https://www.
sciencedirect.com/science/article/pii/0890540187900617.

[27] D. Isovic. “Handling sporadic tasks in real-time systems : Combined offline and online
approach”. In: 2001.

[28] K. Jeffay. “Scheduling sporadic tasks with shared resources in hard-real-time systems”.
In: [1992] Proceedings Real-Time Systems Symposium. 1992, pp. 89–99. doi: 10.1109/REAL.
1992.242673.

[29] X. Jiang, N. Guan, X. Long, and W. Yi. “Semi-Federated Scheduling of Parallel Real-Time
Tasks on Multiprocessors”. In: 2017 IEEE Real-Time Systems Symposium (RTSS). 2017,
pp. 80–91. doi: 10.1109/RTSS.2017.00015.

[30] Kasahara and Narita. “Practical Multiprocessor Scheduling Algorithms for Efficient
Parallel Processing”. In: IEEE Transactions on Computers C-33.11 (1984), pp. 1023–1029.
doi: 10.1109/TC.1984.1676376.

[31] S. Kato and Y. Ishikawa. “Gang EDF Scheduling of Parallel Task Systems”. In: 2009 30th
IEEE Real-Time Systems Symposium. 2009, pp. 459–468. doi: 10.1109/RTSS.2009.42.

[32] P. Kenny, K. Schwenk, D. Herschmann, A. Lund, V. Bansal, Z. A. H. Hammadeh,
A. Gerndt, and D. Lüdtke. “Parallelizing On-Board Data Analysis Applications for
a Distributed Processing Architecture”. In: 2nd European Workshop on On-Board Data
Processing (OBDP2021). June 2021. url: https://elib.dlr.de/142860/.

[33] U. Khamdamov and. “A comparative analysis of parallel programming models for
C++”. In: (Apr. 2019), pp. 295–298.

[34] Y.-K. Kwok and I. Ahmad. “Static Scheduling Algorithms for Allocating Directed Task
Graphs to Multiprocessors”. In: ACM Comput. Surv. 31.4 (Dec. 1999), pp. 406–471. issn:
0360-0300. doi: 10.1145/344588.344618. url: https://doi.org/10.1145/344588.
344618.

[35] K. Lakshmanan, S. Kato, and R. Rajkumar. “Scheduling Parallel Real-Time Tasks on
Multi-core Processors”. In: 2010 31st IEEE Real-Time Systems Symposium. 2010, pp. 259–
268. doi: 10.1109/RTSS.2010.42.

95

https://doi.org/10.4230/LIPIcs.ECRTS.2021.8
https://drops.dagstuhl.de/opus/volltexte/2021/13939
https://doi.org/10.1109/TPDS.2019.2910525
https://doi.org/https://doi.org/10.1016/0890-5401(87)90061-7
https://www.sciencedirect.com/science/article/pii/0890540187900617
https://www.sciencedirect.com/science/article/pii/0890540187900617
https://doi.org/10.1109/REAL.1992.242673
https://doi.org/10.1109/REAL.1992.242673
https://doi.org/10.1109/RTSS.2017.00015
https://doi.org/10.1109/TC.1984.1676376
https://doi.org/10.1109/RTSS.2009.42
https://elib.dlr.de/142860/
https://doi.org/10.1145/344588.344618
https://doi.org/10.1145/344588.344618
https://doi.org/10.1145/344588.344618
https://doi.org/10.1109/RTSS.2010.42

Bibliography

[36] J.-Y. Le Boudec and P. Thiran. Network Calculus: A Theory of Deterministic Queuing Systems
for the Internet. Vol. 2050. June 2004. isbn: 3-540-42184-X. doi: 10.1007/3-540-45318-0.

[37] H. Lee, S. Cho, Y. Jang, J. Lee, and H. Woo. “A Global DAG Task Scheduler Using Deep
Reinforcement Learning and Graph Convolution Network”. In: IEEE Access 9 (2021),
pp. 158548–158561. doi: 10.1109/ACCESS.2021.3130407.

[38] J. Li, K. Agrawal, C. Lu, and C. D. Gill. “Analysis of Global EDF for Parallel Tasks”. In:
2013.

[39] J. Li, J. J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah. “Analysis of Federated and
Global Scheduling for Parallel Real-Time Tasks”. In: 2014 26th Euromicro Conference on
Real-Time Systems. 2014, pp. 85–96. doi: 10.1109/ECRTS.2014.23.

[40] G. Lipari, G. Buttazzo, and L. Abeni. “A bandwidth reservation algorithm for multi-
application systems”. In: Proceedings Fifth International Conference on Real-Time Computing
Systems and Applications (Cat. No.98EX236). 1998, pp. 77–82. doi: 10.1109/RTCSA.1998.
726354.

[41] R. S. Ltd. Discover Worst-Case Execution Time. url: https://www.rapitasystems.com/
worst-case-execution-time (visited on 08/25/2022).

[42] A. Lund, Z. A. H. Hammadeh, P. Kenny, V. Vishav, A. Kovalov, H. Watolla, A. Gerndt,
and D. Lüdtke. “ScOSA system software: the reliable and scalable middleware for a
heterogeneous and distributed on-board computer architecture”. In: CEAS Space Journal
(Mai 2021). url: https://elib.dlr.de/142681/.

[43] C. Maia, M. Bertogna, L. Nogueira, and L. M. Pinho. “Response-Time Analysis of
Synchronous Parallel Tasks in Multiprocessor Systems”. In: Proceedings of the 22nd
International Conference on Real-Time Networks and Systems. RTNS ’14. Versaille, France:
Association for Computing Machinery, 2014, pp. 3–12. isbn: 9781450327275. doi: 10.
1145/2659787.2659815. url: https://doi.org/10.1145/2659787.2659815.

[44] O. Maibaum, D. Lüdtke, and A. Gerndt. “Tasking Framework: Parallelization of Com-
putations in Onboard Control Systems”. In: ITG/GI Fachgruppentreffen Betriebssysteme.
http://www.betriebssysteme.org/Aktivitaeten/Treffen/2013-Berlin/Programm/. Nov.
2013. url: https://elib.dlr.de/87505/.

[45] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and G. C. Buttazzo.
“Response-Time Analysis of Conditional DAG Tasks in Multiprocessor Systems”. In:
2015 27th Euromicro Conference on Real-Time Systems. 2015, pp. 211–221. doi: 10.1109/
ECRTS.2015.26.

[46] P. Michailidis and K. G. Margaritis. “Scientific computations on multi-core systems
using different programming frameworks”. In: Applied Numerical Mathematics 104 (Jan.
2015). doi: 10.1016/j.apnum.2014.12.008.

[47] I. NumFOCUS. NumPy. url: https://numpy.org/ (visited on 08/25/2022).

96

https://doi.org/10.1007/3-540-45318-0
https://doi.org/10.1109/ACCESS.2021.3130407
https://doi.org/10.1109/ECRTS.2014.23
https://doi.org/10.1109/RTCSA.1998.726354
https://doi.org/10.1109/RTCSA.1998.726354
https://www.rapitasystems.com/worst-case-execution-time
https://www.rapitasystems.com/worst-case-execution-time
https://elib.dlr.de/142681/
https://doi.org/10.1145/2659787.2659815
https://doi.org/10.1145/2659787.2659815
https://doi.org/10.1145/2659787.2659815
https://elib.dlr.de/87505/
https://doi.org/10.1109/ECRTS.2015.26
https://doi.org/10.1109/ECRTS.2015.26
https://doi.org/10.1016/j.apnum.2014.12.008
https://numpy.org/

Bibliography

[48] E.-A. Risse, K. Schwenk, H. Benninghoff, and F. Rems. “Guidance, Navigation and
Control for Autonomous Close-Range-Rendezvous”. In: Deutscher Luft- und Raum-
fahrtkongress 2020. Oktober 2020. url: https://elib.dlr.de/137654/.

[49] S. Rosengren. “Random Graph and Growth Models”. In: 2020.

[50] A. Saifullah, K. Agrawal, C. Lu, and C. Gill. “Multi-core Real-Time Scheduling for
Generalized Parallel Task Models”. In: 2011 IEEE 32nd Real-Time Systems Symposium.
2011, pp. 217–226. doi: 10.1109/RTSS.2011.27.

[51] M. Schmid and J. Mottok. “Response Time Analysis of Parallel Real-Time DAG Tasks
Scheduled by Thread Pools”. In: 29th International Conference on Real-Time Networks
and Systems. RTNS’2021. NANTES, France: Association for Computing Machinery,
2021, pp. 173–183. isbn: 9781450390019. doi: 10.1145/3453417.3453419. url: https:
//doi.org/10.1145/3453417.3453419.

[52] M. A. Serrano, A. Melani, M. Bertogna, and E. Quinones. “Response-time analysis of
DAG tasks under fixed priority scheduling with limited preemptions”. In: 2016 Design,
Automation Test in Europe Conference Exhibition (DATE). 2016, pp. 1066–1071.

[53] M. Staron and D. Durisic. “AUTOSAR Standard”. In: Automotive Software Architectures:
An Introduction. Cham: Springer International Publishing, 2017, pp. 81–116. isbn: 978-
3-319-58610-6. doi: 10.1007/978-3-319-58610-6_4. url: https://doi.org/10.1007/
978-3-319-58610-6_4.

[54] S. Theil, N. A. Ammann, F. Andert, T. Franz, H. Krüger, H. Lehner, M. Lingenauber,
D. Lüdtke, B. Maass, C. Paproth, and J. Wohlfeil. “ATON (Autonomous Terrain-based
Optical Navigation) for exploration missions: recent flight test results”. In: CEAS Space
Journal (März 2018). url: https://elib.dlr.de/119557/.

[55] T.-s. Tia, J. W.-S. Liu, J. Sun, L. Jun, and R. Ha. A Linear-Time Optimal Acceptance Test for
Scheduling of Hard Real-Time Tasks. 1994.

[56] Wikipedia. OpenMP. url: https : // en . wikipedia .org / wiki /OpenMP (visited on
08/25/2022).

97

https://elib.dlr.de/137654/
https://doi.org/10.1109/RTSS.2011.27
https://doi.org/10.1145/3453417.3453419
https://doi.org/10.1145/3453417.3453419
https://doi.org/10.1145/3453417.3453419
https://doi.org/10.1007/978-3-319-58610-6_4
https://doi.org/10.1007/978-3-319-58610-6_4
https://doi.org/10.1007/978-3-319-58610-6_4
https://elib.dlr.de/119557/
https://en.wikipedia.org/wiki/OpenMP

	Abstract
	Contents
	Introduction
	Use case scenario
	Contribution and Structure

	Tasking Framework
	Task-Channel Model
	Execution model
	Application Model
	Applications
	Timing analysis of Tasking Framework task chains

	State Of the Art
	dag task model
	Intra-task priorities
	Priorities Assignment

	Preliminary
	System Model
	Execution Model
	Run-time Behavior
	Response Time Analysis

	Event Driven DAG
	Motivation
	Event-triggered vs Time-triggered
	Sporadic Tasks

	Arrival Curves
	Response Time Analysis

	Synthetic Test Case Generation
	Algorithm

	Intra-Task Priorities DAG
	Background
	Motivational Example
	Compute Intra-Task Interference Bound
	Algorithm

	Priority Assignment DAG
	Topological Priority Assignment
	Random Priority Assignment
	wcet Priority Assignment

	Implementation
	System Model
	Class Diagram

	Event Driven DAG
	Arrival Curves

	DAG Generators
	Class Diagram
	The Erdös-Rényi method and The UUniFast method
	nfj dag and The UUniFast method

	Priority Assignment
	Class Diagram
	Topological Priority Assignment
	Random Priority Assignment
	wcet Priority Assignment

	Intra-task interference Bound Calculation
	Class Diagram
	Algorithm

	Experiments
	Subtasks with Priority vs. Subtasks with No Priority
	Using The Erdös-Rényi method
	nfj

	Comparing Priority Assignments
	Using The Erdös-Rényi method

	Conclusion
	Future Work
	Appendix: Helper Methods Implementation
	Appendix: Intra-task interference Upper Bound Calculation Implementation
	List of Figures
	List of Tables
	Listings
	Glossary
	Acronyms
	Bibliography

