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H I G H L I G H T S  

• The prediction of BrO plumes is required to assess the loss of tropospheric ozone 
• We present an artificial neural network, which simulates Arctic tropospheric BrO 
• The neural network reproduces spatial patterns of many tropospheric BrO plumes 
• The trend reported in the observations is not evident in the simulations  
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A B S T R A C T   

An intriguing natural phenomenon occurs every polar spring, namely the bromine explosion, in which plumes of 
tropospheric bromine monoxide (BrO) are formed. These plumes are observed in the BrO vertical column den
sities (VCDs), retrieved from satellite sensors. Tropospheric BrO depletes tropospheric ozone and facilitates the 
deposition of mercury. Bromine molecules are mainly released from young sea ice, and meteorological param
eters determine the formation and evolution of enhanced BrO VCD plumes. Due to the complexity of the 
physicochemical processes involved in the bromine explosion, the modeling of tropospheric BrO VCDs in 
chemical transport models is challenging and not yet adequate. The first of its type, this study demonstrates the 
potential of using an artificial neural network (ANN), which uses meteorological parameters and sea ice age as 
inputs to simulate and predict tropospheric BrO VCDs in the Arctic. The ANN is trained and validated using a 22- 
year satellite remote sensing dataset of Arctic tropospheric BrO VCDs. A generally satisfactory spatial agreement 
between observed and simulated tropospheric BrO VCDs is observed. However, the magnitude of the observed 
BrO VCD plumes is underestimated. Air temperature and mean sea level pressure are the most important pa
rameters influencing the magnitude of tropospheric BrO VCD simulations. Although the changing spatial dis
tribution of tropospheric BrO VCDs over time is well captured, the trend reported in the observations of 
tropospheric BrO VCDs is not reproduced by the ANN, suggesting that additional parameters not included in the 
ANN also influence the formation of tropospheric BrO VCD plumes.   

1. Introduction 

Human activities are warming the Earth (IPCC, 2021). However, the 
Arctic is warming more rapidly than the mid-latitudes, a phenomenon 
known as Arctic Amplification (Serreze and Barry, 2011). During spring 
in the sunlit Arctic, tropospheric ozone (O3) depletion occurs (Barrie 
et al., 1988). These events are associated with elevated concentrations of 
bromine monoxide (BrO), formed in bromine explosions (Barrie and 
Platt, 1997). In recent years, the spatial patterns of Arctic BrO plumes 

have been reported to be changing in the period of Arctic Amplification 
(Bougoudis et al., 2020). 

BrO is an atmospheric free radical formed by the reaction of bromine 
with O3 and plays an important role in stratospheric and tropospheric 
chemistry. Changes in magnitude and distribution of tropospheric BrO 
lead to changes in O3 and thus in the oxidizing capacity of the atmo
sphere, as the most important tropospheric oxidizing agent, the hy
droxyl radical, OH, is generated from the photolysis of O3. Since the 
discovery of tropospheric O3 depletion events, several studies have 
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investigated bromine explosions, using observations from campaigns (e. 
g., Roscoe et al., 2014; Toohey et al., 1990; Tuckermann et al., 1997) 
satellite remote sensing (e.g., Platt and Wagner, 1998; Richter et al., 
1998; Seo et al., 2019) and ground-based remote sensing (e.g., Kreher 
et al., 1997; Van Roozendael et al., 2002). Bromine also reacts with and 
oxidizes elemental mercury, enhancing its deposition, particularly in the 
Arctic troposphere (Lu et al., 2001 and references therein). 

The exact triggering mechanism for bromine explosions is not yet 
fully understood (Jones et al., 2009). Several studies have investigated 
the surface and atmospheric conditions during which tropospheric BrO 
plumes are formed. Young sea ice (Simpson et al., 2007; Wagner et al., 
2001), cold liquid brine and frost flowers occurring under conditions of 
low temperatures (Kaleschke et al., 2004; Sander et al., 2006), blowing 
snow (Lieb-Lappen and Obbard, 2015), low wind speeds (Jones et al., 
2009) and high wind speeds (Blechschmidt et al., 2016) are identified as 
conditions required for the formation of BrO plumes. Low temperatures 
enhance the sea-salt fractionation on sea ice, and thereby the existence 
of bromine and chlorine anions on the surface or in liquid or quasi-liquid 
layers result in the release of bromine molecules (Br2) and bromine 
chloride (BrCl) in the polar atmosphere via complex and non-linear 
heterogeneous and photochemical reactions (Koop et al., 2000; Hara 
et al., 2020). The relationship between meteorological conditions and 
BrO plumes, showing that enhanced BrO forms under apparently con
tradictory meteorological conditions (e.g., both low and high wind 
speeds), was investigated by Jones et al. (2009). Seo et al. (2020) 
investigated correlations between meteorological parameters and the 
total BrO columns retrieved from satellite measurements. These studies 
show that the relationship between BrO plumes and the dominant 
physicochemical parameters is complex and non-linear. 

As many parameters play a role in generating bromine explosions 
and non-linear photochemically initiated autocatalytic cycles are 
involved, the accurate modeling of tropospheric BrO plumes and the 
quantitative assessment of the consequences for the tropospheric 
composition are challenging (Fan and Jacob, 1992; Simpson et al., 
2007). Yang et al. (2020) used a chemistry-transport and a 
chemistry-climate model with a parameterization for blowing snow and 
compared the resulting BrO fields with GOME-2 satellite retrieved col
umns and ground-based measurements. They reported correlation co
efficients of daily means between 0.1 and 0.71, while the total number of 
days investigated ranged from 33 to 117 for each case. Huang et al. 
(2020) simulated the impact of sea salt aerosols from blowing snow on 
tropospheric BrO using the GEOS-Chem chemical transport model and 
compared the modeled tropospheric BrO to retrievals from OMI and 
GOME-2A. They reported daily and monthly correlation coefficients 
between 0.22 and 0.85. They analyzed a period of three years (i.e., 2007 
to 2009), and they applied a threshold of tropospheric BrO VCDs above 
5.1 × 1013 molec/cm2 to the GEOS-Chem simulations for their com
parisons. Fernandez et al. (2019) developed the first implementation of 
polar halogen chemistry for the CAM-chemistry model, providing four 
years (2007–2011) of polar spring comparisons between GOME-2A and 
modeling results. They reported normalized mean errors between 0.5 
and 2.0 for the differences between model and observations. However, 
they did not focus on spatial and temporal modeling of satellite observed 
tropospheric BrO VCDs. Instead, they provided a statistical validation of 
surface and satellite halogen observations. Herrmann et al. (2021) 
developed 3D time-dependent simulations of BrO in the Weather 
Research and Forecasting model coupled with chemistry (WRF-Chem) 
and compared the simulations to GOME-2A satellite observations. They 
reported correlations of more than 0.6 at Utqiagvik but an 
under-prediction of modeled BrO VCDs over land and an over-prediction 
of modeled BrO VCDs over first-year ice. The extensive range of corre
lation coefficients indicates that a qualitative agreement was found in all 
studies, but the modeling of bromine explosions is not yet adequate to 
assess the impact of bromine explosions plumes or accurately project 
how this will change as global warming increases. The above stimulated 
our efforts to find an approach to resolve this issue. 

Machine learning approaches, particularly neural networks, have 
often been applied to simulate non-linear problems (Zurada, 1992). 
Applications of the use of neural networks in atmospheric research 
include weather prediction (Rasp and Lerch, 2018), remote sensing 
(Blackwell and Chen, 2005; Müller et al., 2002), ozone forecasting 
(Comrie, 1997), air quality (Hooyberghs et al., 2005) and OH modeling 
(Nicely et al., 2020). 

Here, we present the first artificial neural network (ANN) to our 
knowledge to simulate BrO plumes in the Arctic troposphere resulting 
from bromine explosions. The ANN uses meteorological parameters and 
sea ice age as inputs to predict the spatial distribution of satellite- 
derived tropospheric BrO vertical column densities (VCDs). This 
method is computationally efficient. We propose that this ANN is used as 
a parameterization tool to initiate BrO VCD plumes in chemical trans
port models and forecast BrO VCD plumes for measurement campaigns. 
It also predicts the spatial evolution of enhanced BrO VCD plumes in the 
warming Arctic. Finally, the degree to which such an ANN can repro
duce observations provides insight into the drivers of bromine explosion 
events. 

2. Data and methods 

The datasets used in this study are satellite observations of tropo
spheric BrO VCDs, satellite retrieved sea ice age, and meteorological 
parameters taken from numerical models. All data were gridded in 0.125 
x 0.125 resolution. In addition, this study focuses explicitly on polar 
spring, as it is the season when bromine explosions most frequently 
occur. 

2.1. Satellite observations of tropospheric BrO VCDs 

The Arctic tropospheric BrO VCDs dataset is described in detail in 
Bougoudis et al. (2020). It comprises a 22-year consolidated dataset 
(1996–2017) for sea ice-covered regions northwards of 70 N, derived 
from four UV-VIS satellite sensors. The Slant Column Density (SCD) 
retrieval was performed using the Differential Optical Absorption 
Spectroscopy (DOAS) method (Platt and Perner, 1983; Burrows et al., 
2011). The total BrO VCD is retrieved by dividing the BrO SCD with a 
simple stratospheric air mass factor (AMF), calculated by the forward 
radiative transfer model SCIATRAN (Rozanov et al., 2005). The latter 
simulates the stratospheric light path and considers the scattering at the 
surface and in the atmosphere, but not the dependence of the tropo
spheric light path on observation geometry and surface reflectance. 
Consequently, the total BrO VCD differs from the sum of the tropo
spheric and stratospheric columns (Bougoudis et al., 2020). The method 
proposed by Theys et al. (2009) was used to extract the tropospheric BrO 
component from the total VCDs. A tropospheric AMF was used in that 
step, which considers a surface reflectivity of 0.9. Overlapping satellite 
observations from the same days have been merged by averaging the 
corresponding grid scenes. The merged tropospheric BrO dataset was 
validated for consistency during the periods of overlapping measure
ments by different sensors (Bougoudis et al., 2020). Potential effects due 
to different instrumental attributes were shown to have a minimum 
contribution to the geophysical conclusions extracted. 

2.2. Sea ice age and meteorological data 

The 22-year sea ice age dataset used in the present study is described 
by Tschudi et al. (2019). It is retrieved from different passive microwave 
satellite remote sensing instruments and has a very high spatial resolu
tion of 12.5 × 12.5 km2, while its temporal sampling is every seven days. 
It was spatially and temporally interpolated to match the location and 
time of the satellite observations. In the present study, the presence of 
sea ice is a prerequisite for estimating bromine explosions. 

ECMWF ERA-5 (Hersbach et al., 2018) reanalysis data has been used 
as meteorological inputs for the ANN. 2 m air temperature, mean sea 
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level pressure (mslp), 10 m wind speed, 10 m wind direction, and 
boundary layer height are selected as the key meteorological parame
ters. They are available for time-steps of 3 h at a spatial resolution of 
0.25 . They were interpolated spatially and temporally to each satellite 
ground scene and observation time. 

2.3. Selection of the optimal ANN 

ANNs are computing systems inspired by biological neural networks 
similar to those in the human brain (Wang, 2003). They provide a 
mathematical representation of the human mind. An ANN comprises 
many independent processing units (neurons) connected by synapses. 
The latter are the weights, i.e., the strength of the connection between 
two neurons. ANNs are structured typically in three layers: the input 
layer (i.e., the set of independent parameters), the hidden layer (i.e., 
where the connections between the input and the output layer are per
formed to interpret complex systems), and the output layer (i.e., the set 
of dependent parameters we want to model). More complex ANNs may 
have more than one hidden layer. An ANN acquires knowledge through 
training. The outputs are calculated by providing a particular set of in
puts to the ANN, together with the quantity we want to model (targets). 
Some of the many advantages of ANNs are that they extract hidden 
knowledge from highly complex data, either by supervised or unsuper
vised learning and are generally a fast approach (Zurada, 1992). The 
selection of an adequate learning dataset and an optimal architecture for 
the ANN, comprising the number of hidden neurons, determines the 
accuracy of its output. 

This study used a simple shallow cascade forward ANN architecture 
(Warsito et al., 2018). This type of ANN is similar to feed-forward net
works (i.e., the input layer is connected to the hidden, and then the 
hidden to the output layer) but includes an additional connection from 
the input and every previous layer to the following layers. In the case of 
one hidden layer, the output layer is also connected directly with the 
input layer, besides with the hidden layer. The main advantage of this 
type of ANN is that it exploits the non-linear relationship between inputs 
and targets without neglecting the linear relationship between the two 
(Warsito et al., 2018). The number of hidden neurons was set to 30. A 

strict formula for selecting the optimal number of hidden neurons does 
not exist, but many empirical rules are applied (Masters, 1993; Statha
kis, 2009), considering the number of input parameters and instances. If 
the number of neurons is too large, the ANN will adapt its weights to the 
current training data and not perform accurate predictions on different 
datasets. If the number of neurons is too small, it will lead to 
over-simplification and make the ANN incapable of exploiting hidden 
relationships between inputs and targets. 

In this study, and considering the amount of training data (i.e., 
approximately 1 million grid scenes per year), the number of hidden 
neurons selected provides a combination of efficiency and simplicity. 
We have tested the results for selected daily ANN simulations of tropo
spheric BrO VCDs (outputs) for different numbers of neurons. Using a 
larger number of hidden neurons did not improve the results, whereas 
using a smaller number decreased the accuracy of the outputs. The 
reduction in complexity resulted in the ANN being incapable of mapping 
the relationship between inputs and targets. The settings selected in this 
study provide a fast and accurate approach. The ANN is computationally 
efficient and has low demands in processing resources. Fig. 1 shows a 
schematic of the neural network implemented in this study to simulate 
tropospheric BrO VCDs. 

Satellite observed tropospheric BrO VCDs were selected as the 
quantity we want to model. Sea ice age, 2 m air temperature, mean sea 
level pressure, 10 m wind speed, boundary layer height, and 10 m wind 
direction were selected as inputs. They were identified as key parame
ters associated with bromine explosion events and the production of 
tropospheric BrO plumes. We assume that the input parameters selected 
constrain the non-linear physicochemical mechanism, which produces 
the outputs, sufficiently. No additional spatial (e.g., latitude or longi
tude) or temporal information is used as input. In this way, the ANN 
establishes the relationships between the key parameters (inputs) and 
the observed tropospheric BrO VCDs (targets) without spatial and tem
poral information interference. In order to identify the best learning 
dataset, 22 individual ANNs were created. An ANN was trained for each 
year of data with the corresponding daily data of the year in question 
(approximately 1 million grid scenes per year). The learning dataset is 
randomly split into three datasets: 70% into the training dataset, 15% 

Fig. 1. A schematic of the neural network used in this study. Blue color denotes the input parameters, red color the hidden layer, and green color the neural 
network’s output. The line connecting the output with the inputs denotes the cascade architecture of the ANN. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 
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into the validation dataset, and 15% into the testing dataset. 
The training dataset is used to accurately adjust the weighting factors 

of each input in order to obtain a close approximation of the target. It 
computes the gradient and updates the network weights. The validation 
dataset provides an unbiased evaluation of the fit on the training data
set. The error of the validation dataset is monitored during the training 
process. It usually decreases during the training process, as does the 
error of the training dataset. When the network begins to overfit data, 
the error of the validation dataset begins to rise. Thus, the validation 
dataset is used to determine an appropriate stopping training point. In 
this way, over-fitting is avoided, and the ANN becomes more flexible in 
adapting to new datasets. The testing dataset is used to evaluate the 
performance of the ANN by comparing targets and outputs without re- 
adjusting the weighting factors. After the learning process is complete 
(i.e., training, validation, and testing), the ANN can simulate tropo
spheric BrO VCDs from other input datasets (years). The metric used to 
identify the best learning dataset is the annual correlation coefficient 
between targets and outputs (Fig. 3a). After that step, the best 1-year 
ANN (i.e., the ANN trained with data from 2007, as shown in Fig. 3a) 
was chosen to simulate the entire dataset of tropospheric BrO VCDs. 

3. Results and discussion 

3.1. Relationships between observations of tropospheric BrO VCDs and 
the input parameters 

Fig. 2 shows scatter plots where the ordinate is observations of 
tropospheric BrO VCDs, for spring (i.e., March, April, and May, MAM), 
from 1996 to 2017, and the following parameters are the abscissa: sea 
ice age, 2 m air temperature, mslp, 10 m wind speed and boundary layer 
height. Each point is a daily average. 

The salinity of sea ice decreases as it ages (Kaleschke et al., 2004). 
Thus the correlation of sea ice age with tropospheric BrO VCDs has a 
negative sign (i.e., − 0.34). Most days with enhanced tropospheric BrO 

VCDs (i.e., above 5.0 × 1013 molec/cm2) occur over first-year ice. Some 
days with tropospheric BrO VCDs above 5.0 × 1013 molec/cm2 occur 
over multi-year sea ice, especially over two years old ice. The contri
bution of multi-year sea ice to the formation of enhanced tropospheric 
BrO is reported in the literature (Peterson et al., 2019). The days with 
average sea ice age greater than two and tropospheric BrO VCDs above 
5.0 × 1013 molec/cm2 are rare. A strong anti-correlation between 
tropospheric BrO VCDs and 2 m air temperature can be observed in 
Fig. 2b (correlation coefficient of − 0.54). All days with tropospheric BrO 
VCDs above 5.0 × 1013 molec/cm2 coincide with average daily tem
peratures below 260 K. These results agree with previous studies (Hara 
et al., 2020; Sander et al., 2006). Mslp does not correlate strongly with 
tropospheric BrO VCDs, having a correlation coefficient of − 0.12. A 
reason for this low correlation may be that both low and high-pressure 
systems contribute to the formation of enhanced tropospheric BrO 
VCDs (Salawitch et al., 2010; Choi et al., 2012). 10 m wind speed has a 
weak positive correlation with tropospheric BrO VCDs (i.e., a correlation 
coefficient of +0.27). The reason may be similar to that of mslp, as both 
high and low wind speeds favor the appearance of high tropospheric BrO 
VCDs (Jones et al., 2009). An anti-correlation (i.e., a correlation coef
ficient of − 0.36) between tropospheric BrO VCDs and boundary layer 
height is shown in Fig. 2e. This is not in agreement with similar litera
ture studies (Choi et al., 2012). For almost all days having tropospheric 
BrO VCDs above 5.0 × 1013 molec/cm2, the average boundary layer 
height was below 500 m. As the scatter plots in Fig. 2 contain daily 
averages, slightly different results from previous similar studies can be 
expected. Hidden indirect correlations occur because the quantities 
discussed here correlate and interact with each other non-linearly. For 
example, in Fig. 2b, sea ice, especially first-year ice, which is thin, melts 
and finally disappears as temperature increases. This implies that the 
decrease observed in tropospheric BrO VCDs with increasing tempera
ture is also a result of a decrease in first-year sea ice extent. Nevertheless, 
Fig. 2 provides a valuable initial correlation analysis between tropo
spheric BrO VCDs and the key parameters selected in this study. 

Fig. 2. Daily MAM scatter plots between observed tropospheric BrO VCDs and: a) sea ice age, b) 2 m air temperature, c) Mslp, d) 10 m wind speed, and e) boundary 
layer height. The best-fitting line, its formula, the correlation coefficient, and the root mean square error between the line and the points are shown in all scatter plots. 
The period is from 1996 to 2017. 

I. Bougoudis et al.                                                                                                                                                                                                                              



Atmospheric Environment 276 (2022) 119032

5

3.2. Qualitative assessment of the ANNs 

Fig. 3 provides information to assess the performance of the 22 ANNs 
(Fig. 3a), the comparison between observed tropospheric BrO VCDs 
(observations) and simulated tropospheric BrO VCDs (simulations) 
produced by the best ANN (Fig. 3b), the relationships between inputs 
and observations (Fig. 3c) and the relationships between inputs and 
simulations (Fig. 3d). All time-series use MAM periods. All metrics (i.e., 
correlation coefficients and root mean square errors) are calculated 
using the corresponding grid cells of each year for the quantities of in
terest, without performing any averaging, in contrast to Fig. 2. Thus, 
spatial information is considered for the correlation coefficients, and the 
root mean square errors. 

Fig. 3a plots the correlation coefficients between targets (i.e., all the 
gridded cells of satellite observed tropospheric BrO VCDs) and outputs 
for each of the 22 ANNs during the training processes. The correlation 
coefficients are in the range of 0.55–0.75. The ANN trained with 2007 
data achieves the highest correlation. This ANN was selected to simulate 
the entire dataset of observations, as shown in all the following figures. 
The observations for 2007 have also been discussed in Begoin et al. 
(2010). Enhanced BrO plumes have been observed in the Arctic and 
were correlated with low temperatures, high wind speeds, and 
low-pressure systems. 

Fig. 3b shows the reconstruction performance of the whole dataset of 
observations generated using the 2007 ANN. The analysis was per
formed for all the daily grid boxes of the MAM periods. The RMSEs are 
presented as a percentage of the observations. Satisfactory agreement 
(correlation coefficients of 0.4 or better and root mean square errors on 
the order of 35%) is found between observations and simulations. A 
higher correlation coefficient and smaller root mean square error for 
2007 are expected because the ANN was trained with this year’s 
observations. 

Fig. 3c shows the correlation between the six inputs and observa
tions. Although the input parameters correlate with tropospheric BrO 
VCDs and each other, these linear correlations (i.e., in Fig. 3c and d) 
provide a simple relationship between inputs and tropospheric BrO 

VCDs. The 2 m air temperature and mslp correlate negatively with the 
observations (correlation coefficients being around − 0.4 for the 2 m 
temperature, − 0.2 for mslp). Boundary layer height has the highest 
positive correlation with the observations (correlation coefficients being 
approximately +0.15). The second highest positive correlation coeffi
cient is the 10 m wind speed. Sea ice age and 10 m wind direction are 
weakly correlated with the observations (between +0.2 and 0). Similar 
findings were reported in Seo et al. (2020) but for total BrO VCDs. The 
correlations between observations and each input parameter vary 
significantly between the years (for example, in 2014, mslp has an even 
higher negative correlation than temperature, while the correlation is 
approximately 0 in 2009). Similarly, a substantial decrease in the cor
relation between boundary layer height and observations is seen in 
2004. 

The same analysis as in Fig. 3c but between inputs and simulations is 
shown in Fig. 3d. Comparison of Fig. 3c and d shows that the observa
tions and simulations are similarly correlated to the inputs. 2 m air 
temperature and mslp are negatively correlated (on the order of − 0.6 for 
the simulations for temperature and − 0.4 for mslp). 10 m wind speed 
and boundary layer height are positively correlated (on the order of 
+0.2 for the simulations), while sea ice age and wind direction show 
weak positive correlations. This indicates that the selected ANN trained 
with data from 2007 has reasonably captured the relationships between 
the inputs and observations. The differences between the correlation 
coefficients between inputs and simulations compared to those between 
inputs and observations (especially for 2 m air temperature and mslp) 
probably indicate the existence of additional parameters, which 
contribute to the production of observed tropospheric BrO VCDs. The 
stronger dependence of simulations on these two parameters may also 
result from the meteorological conditions that occurred in 2007, which 
was used as the training dataset (e.g., low air temperatures and low- 
pressure systems that contributed to the formation of enhanced tropo
spheric BrO VCD plumes). Tables 1 and 2 in the supplementary material 
provide the correlation coefficients for each year for Fig. 3c and d, 
respectively. 

Fig. 3. Plots of the correlation coefficients between the observed tropospheric BrO VCDs, those simulated by the ANN, and the input parameters for the MAM period 
of each year: a) Correlation coefficients between targets and outputs for the 22 ANNs, b) Correlation coefficients and root mean square errors (RMSE) between 
observations and simulations produced by the ANN trained with data from 2007, c) Correlation coefficients between observations and inputs, d) Correlation co
efficients between simulations and inputs. 
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3.3. Exemplary simulations of bromine explosion events 

In late March and early April of 2011, a bromine explosion was 
observed in the Arctic, linked to cyclone activity. This bromine explo
sion case and its link to meteorology were investigated thoroughly in 
Blechschmidt et al. (2016). In Fig. 4, the simulation map for the April 1, 
2011 is presented and compared to the observation map and the sea ice 
age and meteorological conditions of that day. 

The comparison of the maps of observations and simulations in
dicates that the spatial extent of the large BrO VCD plume over the 
Beaufort Sea is well represented by the ANN. The same applies to the 
smaller BrO VCD plumes over East Siberian and the Kara Sea. This is a 
remarkable result considering that the ANN was trained with data from 
another year, and the input comprised only meteorological and sea ice 
age data. However, the simulations are smaller in magnitude than the 
observations (Fig. 4c). Sea ice age, being relatively static, does not 
provide any meaningful information regarding the plumes. According to 
Blechschmidt et al. (2016), the bromine explosion event was associated 
with frontal lifting by a polar cyclone, in agreement with the spatial 

patterns of meteorological parameters (high wind speeds, low pressure, 
low temperature, high boundary layer) shown in Fig. 4. The ANN 
correctly attributes such distinct spatial patterns of meteorological pa
rameters to tropospheric bromine explosions. Similar successful spatial 
reproductions of observations are found in every year. 

However, the neural network does not always spatially identify and 
reproduce enhanced tropospheric BrO VCD plumes. Such a case is found 
on the April 8, 2017, shown in Fig. 5. 

In the observations, an enhanced tropospheric BrO VCD plume ex
tends from the East Siberian Sea to the Arctic Ocean (Fig. 5a). The neural 
network could not predict this BrO VCD plume (Fig. 5b). This can also be 
seen from the difference between observations and simulations (Fig. 5c). 
By examining sea ice age and meteorological parameters on that day, a 
high mslp over the region where the enhanced tropospheric BrO VCD 
was observed is found (i.e., around 1020 hPa, Fig. 5f). This value is much 
higher than the one observed over the tropospheric BrO VCD plume on 
April 01, 2011 (i.e., 982 hPa, Fig. 4f). 2 m air temperature was also 
higher than on April 01, 2011 (257 K in Fig. 5d, compared to 248 K in 
Fig. 4d). 

Fig. 4. Daily polar plots of observations, simulations, relative differences between them, and inputs for a bromine explosion event on April 01, 2011 a) observations, 
b) simulations, c) relative differences between observations and simulations (i.e., (observations-simulations)/observations), d) sea ice age, e) 2 m air temperature, f) 
mslp, g) boundary layer height, h) 10 m wind speed. 
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Salawitch et al. (2010) suggested that high satellite-derived BrO 
VCDs can be the product of stratospheric air extending to lower altitudes 
above high-pressure surface systems. As the observations do not provide 
the vertical distribution of BrO (i.e., the altitude of the plume), plumes 
that occur at higher altitudes are not directly related to the surface pa
rameters chosen as inputs to the neural network and cannot be spatially 
reproduced by it. Differences between observations and simulations can 
be attributed to geophysical processes and parameters not included in 
this study (e.g., the occurrence of blowing snow and sea-salt aerosols, 
which can transport and recycle bromine molecules far away from their 
initial release site). Similar results occur for the April 8, 2017, even by 
training the neural network with 2017 data. Such days appear in every 
year of the dataset. A discussion on the potential reasons for the dif
ferences observed in such days follows in section 3.6. 

3.4. Impact of meteorology and sea ice age on the magnitude of the 
simulations 

A limited sensitivity analysis has been undertaken to investigate the 

impact of each input parameter on the simulations’ magnitude. The 
values of the selected input parameter varied over the range of the daily 
mean values of the 22-year dataset, while all other input parameters 
were kept constant at their 2007 mean MAM value. The simulations 
were then plotted as a function of the selected input parameter (Fig. 6). 

The maximum simulated tropospheric BrO VCD occurs over first- 
year ice. We attribute this to the higher salinity of first-year ice 
(Jacobi et al., 2006). This impact on the magnitude of the simulations is 
not as important as that of the change of 2 m air temperature. A rapid 
decrease of the simulations from 9.0 × 1013 molec/cm2 to 5.0 × 1013 

molec/cm2 occurs as 2 m air temperature increases from 240 K to 247 K. 
Above 247 K, the magnitude of the simulations continues to decrease, 
after a small increase around 250 K, but with a smaller gradient. Seo 
et al. (2020), Kaleschke et al. (2004), and Frieβ et al. (2011) reported 
that bromine explosions often occur at temperatures below 250 K, 
consistent with Sander et al. (2006) and the sensitivity tests reported in 
this study. Although the ANN does not consider any information on 
parameters, which have been identified to influence bromine release at 
low temperatures, such as liquid brine, carbonate precipitation (Sander 

Fig. 5. Daily polar plots of observations, simulations, relative differences between them, and inputs for a bromine explosion event on April 08, 2017 a) observations, 
b) simulations, c) relative differences between observations and simulations (i.e., (observations-simulations)/observations), d) sea ice age, e) 2 m air temperature, f) 
mslp, g) boundary layer height, h) 10 m wind speed. 
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et al., 2006), or sea salt fractionation on sea ice (Hara et al., 2020), it still 
identifies the relationship between enhanced tropospheric BrO VCDs 
and low temperatures. 

Mslp also has a significant impact on the magnitude of the simula
tions. Several studies reported that low-pressure systems favor the for
mation of tropospheric BrO VCD plumes (Seo et al., 2020; Jones et al., 
2010). Choi et al. (2012) and Blechschmidt et al. (2016) reported that 
low-pressure systems, coupled with a high boundary layer and high 
wind speeds, favor the formation of tropospheric BrO VCD plumes. 
Similar meteorological conditions also occurred during the training 
period of 2007 and resulted in the bromine explosion event described by 
Begoin et al. (2010). This contributed to the strong sensitivity of the 
simulations to mslp. The positive correlation between boundary layer 
height and simulations is explained using the same reasoning. 

A surprising relationship between 10 m wind speed and simulations 
was found. A positive correlation can be observed up to 9 m/s, followed 
by a negative correlation for wind speeds above this value. This is in 
contrast to other studies suggesting that high wind speeds contribute to 
the formation of enhanced tropospheric BrO VCD plumes (Blechschmidt 
et al., 2016; Jones et al., 2009). The reason for this may be that the 
enhancement of tropospheric BrO through heterogeneous reactions 
occurring on blowing snow and sea-salt aerosols, which can be released 
from sea ice surfaces under the presence of strong winds (Hara et al., 
2018; Frey et al., 2020) is not accounted for in the ANN. The 10 m wind 
speed impact on the simulations does not appear to be as pronounced as 
that of 2 m air temperature and mslp. The air mass may be more rapidly 
diluted at higher wind speeds. In addition, all other meteorological 
parameters are kept at their 2007 MAM mean values, which may not be 
realistic for high wind speeds. 

The highest magnitude of the simulations occurs with the wind 
blowing from the North, North-East, and East direction, as cold air 
masses are transported from sea ice regions. Seo et al. (2020) reported 
that the highest total BrO VCDs were observed at northerly and 
north-westerly winds. However, the sensitivity of the simulations to 
wind direction is comparatively small. 

3.5. Long-term comparisons between observations and simulations 

In Fig. 7, mean MAM maps of observations and simulations are 
compared from 1996 to 2017. 

These mean maps show that the largest observed tropospheric BrO 
VCDs in the region of the East Siberian Sea occurred between 1996 and 
2004. 2004 is the first year that enhanced observations are identified 
over the Beaufort Sea. Until 2009, the simulations are spatially in good 
agreement with the observations. For almost all years (i.e., 1999 is the 
only exception), the regions of enhanced observations are reproduced 
successfully by the ANN simulations. A decrease in performance of the 
ANN can be seen from 2009 onwards. In 2009, multi-year ice extent 
decreased significantly, giving its place to first-year ice (Bougoudis 
et al., 2020). Since that year, the observations indicate that the number 
of bromine explosions has increased, and they may appear over almost 
the entire Arctic region. The annual mean values of mslp usually show 
high pressure over the Beaufort Sea (Serreze and Barrett, 2010). The 
simulations could not reproduce the enhanced observations in this re
gion for some years (e.g., 2009, 2013, and 2015). It is inferred from 
Fig. 3c that in 2009 the correlation coefficient between mslp and ob
servations was almost 0 and continued to be insignificant over the 
following years. This might also explain the decline of the performance 
of the ANN from 2009 onwards. This is unclear but may imply that the 
temperatures are not as low in the low-pressure regions as previously. 
Thus the non-linearity of the bromine explosion mechanism and its 
dependence on the physicochemical behavior of the cryosphere require 
additional constraints for the ANN to predict more accurately the 
tropospheric BrO VCDs under all conditions. 

Fig. 8 plots the mean MAM time-series for observations and simu
lations of tropospheric BrO VCDs. The 1σ error bars are also plotted for 
the observations. 

Bougoudis et al. (2020) reported an increasing trend in spring ob
servations over the Arctic from 1996 to 2017 of 1.5% per year, with an 
error of 0.2% per year. The mean ANN simulated BrO VCDs agree 
reasonably well with the observed when considering the errors in the 
observations. However, the identified positive trend is not evident in the 
simulations, as they are higher than the observations from 1996 to 2003 

Fig. 6. Simulated BrO VCDs plotted as a function of a) sea ice age, b) 2 m air temperature, c) mslp, d) boundary layer height, e) 10 m wind speed, and f) 10 m wind 
direction. In each case, all other input parameters are set to the MAM average value of 2007. 
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Fig. 7. Comparisons of Arctic tropospheric BrO VCDs MAM maps between observations and simulations. Columns indicate years, odd-numbered rows the obser
vations, and even-numbered rows the simulations. 
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and lower from 2010 to 2017. The main strength of the neural network is 
the spatial reproduction of daily enhanced tropospheric BrO plumes. 
From days similar to April 01, 2011 (i.e., Fig. 4), the magnitude of the 
enhanced tropospheric BrO modeled by the neural network is also 
acceptable. The differences between observations and simulations are 
considerable for days similar to the one in Fig. 5 (i.e., April 07, 2017), 
especially over high-pressure systems. Such differences may cause the 
deviations that we see in Fig. 8. The agreement in the time-series does 
not necessarily verify the successful spatial reproduction of enhanced 
tropospheric BrO plumes. For example, in 2009 and 2014, the averaged 
simulated MAM value is similar to the observed MAM average. How
ever, the comparison of the corresponding maps in Fig. 7 shows poor 
spatial agreement for these two years. 

3.6. Discussion 

In the following, we discuss some additional parameters that may 
improve the ANN’s accuracy. The best explanation for the absence of the 
trend in the ANN simulated BrO VCDs may be that some tropospheric 
BrO sources are not influenced by changes in the inputs currently used in 
the ANN. This indicates that other parameters than those considered 
thus far also impact the formation of enhanced tropospheric BrO VCD 
plumes. 

Aerosol, cloud, snow, or ice particles covered with sufficient brine 
are known to play an important role in the heterogeneous chemistry of 
the bromine explosions (Choi et al., 2018; Hara et al., 2018; Frey et al., 
2020). The transport of aerosol and snow from snowpack by strong 
winds can result in brine being transported, enabling bromine explo
sions to generate BrO VCD plumes potentially far from their source re
gion (Peterson et al., 2017). Observations of suitable aerosol optical 
thickness are not yet available for potential use in the ANN. Although 
wind speed is used as input, this bromine source mechanism may require 
additional parameters, which better constrain this behavior, to simulate 
tropospheric BrO VCDs more accurately. Potential contribution that is at 
a distance from the ignition location of the surface bromine source is not 
yet addressed by the ANN input parameters. 

Tropospheric BrO VCDs can be vertically lifted above the boundary 
layer (Blechschmidt et al., 2016; Frieβ et al., 2011; Peterson et al., 2017). 
This limits the VCD-based modeling approach presented here. We 
consider that including the vertical profile of tropospheric BrO plumes 
would resolve this limitation. However, as yet, relevant observations of 
the vertical profile of BrO in the Arctic do not exist in sufficient numbers. 

We note that bromine explosions are only observed under illumi
nated conditions. For this study, the variation of solar irradiation was 
not considered explicitly in the ANN input. A sufficient actinic flux of 
solar radiation photolyzing Br2 and BrCl is a prerequisite for bromine 
explosions. However, the mechanism is an autocatalytic physicochem
ical chain reaction and thus most likely has no strong dependence on the 
initial amount of Br once an actinic flux above a threshold is achieved. In 
addition, there are no suitable actinic flux data available yet to extend 
the ANN input. 

Finally, it is worth noting that when comparing observations to 
aircraft measurements, Choi et al. (2012) found that stratospheric 
variability substantially influences the total BrO VCD, with its magni
tude being comparable to the magnitude of the tropospheric signal. 
Thus, errors in the separation of the stratospheric and tropospheric BrO 
VCDs in the satellite data may influence the performance of the ANN. 

4. Summary and conclusions 

This paper presents a machine learning approach using an ANN to 
simulate Arctic tropospheric BrO VCD plumes formed during bromine 
explosions. These events are challenging to model in chemistry transport 
or chemistry-climate models. They are important because of their 
impact on tropospheric O3 and mercury and thus on tropospheric 
pollution and indirectly on climate change. This is the first study of its 
type and demonstrates the strengths and weaknesses of the ANN 
approach to simulate tropospheric BrO VCDs. 

The selection of an adequate set of inputs for the ANN is required to 
model tropospheric BrO VCDs successfully. In this ANN, the following 
inputs were used: sea ice age, 2 m air temperature, mean sea level 
pressure, 10 m wind speed, 10 m wind direction, and the boundary layer 
height. The 22-year tropospheric BrO VCD dataset, retrieved from sat
ellite remote sensing by Bougoudis et al. (2020), was used for training 
and quality assessment of the ANN. The evaluation of the ANN setups for 
different years showed that the ANN trained with data from 2007 was 
the most successful. It was then selected and used to simulate the 
tropospheric BrO VCDs for all the years between 1996 and 2017. 

This ANN reproduces well the spatial extent of the tropospheric BrO 
VCD plumes from those bromine explosions, which typically occur in 
low-pressure systems under low air temperatures and high boundary 
layer conditions. Therefore, it is not surprising that mslp and 2 m air 
temperature seem to be the most sensitive parameters for the magnitude 
of the simulations. Although data-driven and unaware of 

Fig. 8. Mean MAM time-series of BrO VCD observations and simulations.  
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physicochemical processes that trigger bromine explosions, the ANN 
identifies hidden links and relationships between tropospheric BrO 
VCDs and the input parameters used. 

The comparisons between observations and simulations during the 
available 22 MAM seasons show a satisfactory spatial agreement be
tween observed and simulated tropospheric BrO VCDs up to 2009 but a 
small underestimation in more recent years. There are some bromine 
explosions cases where the ANN underestimates the observed tropo
spheric BrO VCDs. These tropospheric BrO VCD plumes typically occur 
at higher latitudes and do not strongly correlate with the input surface 
parameters. This indicates that the observed changes in bromine ex
plosion events are not driven solely by changes in the parameters used as 
inputs for the ANN, which are typically at or close to the surface. 

The current inability of the ANN to predict specific types of bromine 
explosions and the trend in the observations is attributed to missing 
information content (e.g., the vertical distribution of tropospheric BrO 
VCD, cyclone tracks, aerosol optical depth, snow coverage, liquid brine, 
sea salt fractionation on sea ice) in the current ANN input. By including 
temporal and spatial parameters together with detailed vertical infor
mation, the ANN could recognize BrO plumes’ evolution (e.g., bromine 
emissions in one place, deposition in another, and later re-emission to 
the atmosphere at different altitudes). 

The ANN approach presented in this study to estimate tropospheric 
BrO VCD plumes is different from previous studies, which used atmo
spheric chemistry models as it is data-driven. It provides a fast and 
computationally low-cost solution to simulate tropospheric BrO VCDs 
during periods of bromine explosions. Although other modeling studies 
reported higher correlation coefficients in some cases (e.g., Herrmann 
et al., 2021), the level of spatial agreement between observations and 
simulations achieved by the ANN is higher than that of traditional 
modeling approaches. 

Overall, the ANN is a robust and fast approach to model tropospheric 
BrO VCDs using meteorological and sea ice data. It can be used for future 
short and medium-scale projections of the spatial distribution of 
tropospheric BrO plumes. The current ANN can be used as a fast and 
straightforward parameterization tool to predict tropospheric BrO VCDs 
for the planning purposes of future measurement campaigns. In addi
tion, it can be coupled to chemical transport models or chemistry- 
climate models for studies on the impact of bromine explosions on the 
tropospheric oxidizing capacity and indirect impacts or feedback on 
climate change. 
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