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Underload city conceptual approach extending ghost city
studies
Xiuyuan Zhang1, Shihong Du 1✉, Hannes Taubenböck2,3, Yi-Chen Wang4, Shouhang Du1, Bo Liu1 and Yuning Feng 1

Global population growth and land development are highly imbalanced, marked by 43% of population increase but 150% of built-
up area expansion from 1990 to 2018. This results in the widely concerned ghost city phenomenon and runs against the sustainable
development goals. Existing studies identify ghost cities by population densities, but ignore the spatial heterogeneity of land
carrying capacities (LCC). Accordingly, this study proposes a general concept termed underload city to define cities carrying fewer
people and lower economic strength than their LCC. The underload city essentially describes imbalanced human-land relationship
and is understood in a broader context than the usually applied ghost city. In this study, very high-resolution satellite images are
analyzed to obtain land functional structures, and further combined with population and GDP data to derive LCC. We empirically
identify eight underload cities among 81 major Chinese cities, differing from previous findings of ghost cities. Accordingly, the
proposed underload city considers heterogeneous human-land relationships when assessing city loads and contributes to
sustainable city developments.
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INTRODUCTION
The United Nation sustainable development goals (SDGs; UNDP,
2015)1 closely concern sustainable cities and communities (SDG
11), requiring inclusive and sustainable urbanization with benign
human-land relationships2. Particularly the SDG 11.3.1 indicator
that compares population growth to land consumption is
addressed; thus, balanced human-land relationship plays an
important role in sustainable city development. However,
governments worldwide have difficulties in balancing urban land
expansion and population growth rates, as land development and
population growth are not always synchronized, especially during
the rapid global urbanization3,4; additionally, global urban
agglomeration development leads to population concentrations
in metropolises but population outflows in other cities5. Both can
cause imbalanced human-land supply-demand and result in
overload or underload of land resources, which deviates from
SDG 11. Prior work on urbanization related consequences has
mainly focused on land overload issues, such as overlarge
population, heat island, traffic congestion, or pollution6, but scant
attention has been paid to land underload particularly in relation
to ghost cities7–9.
Different from the traditional image of ghost towns that are

abandoned because of economic or natural resource hardship10,
ghost cities/neighborhoods are generally understood as vacant
areas that were newly built but uninhabited11–13. A number of
studies have identified ghost cities based on population-related
measures, using nightlight satellite images14,15, mobile phone
positioning16, social media vitality7, or point-of-interest data17. The
conceptual approaches towards ghost cities in these studies
mostly consider population density, but ignore the land’s spatial
heterogeneity, and thus the specific land carrying capacities (LCC)
of diverse cities for people and economy remain undifferen-
tiated18–22. In fact, cities contain distinct functional zones with
varying spatial structures, i.e., heterogeneous land functional

structures (LFS), that support variant human socioeconomic
activities and have different LCC for people and economy23–25.
Employing a unified threshold to extract ghost cities hence
abstracts the varying LCC across different cities21,26. Besides these
issues, ghost city studies have encountered another conceptual
bottleneck. Wade Shepard who proposed the widely recognized
definition of ghost cities suggested that there could be no ghost
city but only temporary ghost stages in China27. From the
perspective, ghost cities would disappear with urbanization
development and population influx5; thus, ghost city might lose
significance and partly lose popularity7. Whether or not this will
happen, we believe a more general concept rather than the
extremes of ghost cities should be developed and relevant in the
long term.
To account for the unknown effects raised above, we extend the

ghost cities and propose a concept of underload cities. These
underload cities are defined to carry fewer people and lower
economic strength than their LCC which are featured by LFS.
There are three reasons for proposing the concept: 1) underload
cities as a synthetical geographic concept consider not only
population, but also economy and LCC, which meet the
requirement of SDG 11 that highlights human-land relationship2

and are different from ghost cities that solely measure population
density; 2) underload cities as an imbalanced phenomenon always
exist in the process of land construction and human development,
which can be more common and last even longer than ghost
cities27, and thus have more profound impact on sustainable city
development; and 3) underload cities are the opposite to overload
cities which have been widely studied and represent another
imbalanced phenomenon in urbanization5,6; thus, investigating
underload cities can complement existing researches of overload
cities. Based on this concept, underload cities essentially represent
imbalanced human-land relationships17, and it can be imperative
to identify underload cities for re-integration of land resources,
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coordination of human-land relationship, and promotion of
sustainable city development28.
However, two methodological research gaps need to be

bridged for studying underload cities. On the one hand, LFS
need to be characterized. LFS represent the land’s spatial
heterogeneity and refer to land functions and their spatial
structures. These are the basic units where people undertake
different socio-economic activities, and thus are fundamental for
measuring LCC26. Three issues should be considered for
extracting LFS: 1) high spatial resolution is needed to enable
detailed representation of LFS28,29, but current uses of low and
medium-resolution land cover/use data are not sufficient for this
purpose; 2) considering land functions’ diverse representations
and abstract categories, traditional satellite image classification
methods cannot recognize land functions accurately26; and 3)
considering land structures’ spatial complexity and heterogene-
ity, existing image textures and landscape matrices cannot
measure land structures comprehensively and robustly29. To
address these challenges, this study derives very high-resolution
land functional zone maps, based on which we quantify LFS and
cluster different types to express LFS robustly.
On the other hand, LCC needs to be evaluated. LCC refers to the

population and economy that a city can carry considering its LFS.
It measures the equilibrium state of human-land relationship and
thus serves as a benchmark for identifying underload cities.
Existing LCC evaluation methods are limited, because they
consider either local land functions30,31, or mean population and
GDP as the standard17, but few consider both32–34. To address the
limitation, this study presents an evaluation method for LCC,
measuring the correlation between LFS and population/GDP in a
relational system across cities for a better benchmarking. Based on
this technique, we identify China’s underload cities by comparing
their actual populations and GDP to the estimated LCC.

The study will resolve the two methodological challenges raised
above and identify underload cities from 81 major cities in China
(Fig. 1a), including all province-level municipalities, provincial
capitals, and top 50 cities in GDP, covering a total area of
983,215km2. First, we map land functional zones using very high-
resolution (VHR) satellite images. Second, we characterize and
cluster their LFS. Third, we evaluate LCC by combining LFS and
demographic/economic data. And finally, we identify underload
cities, discuss their general patterns, and compare the results with
ghost cities and the SDG 11.3.1 indicator, respectively.

RESULTS
Mapping VHR land functional zones
We use VHR satellite images at 2.4 m resolution fused by multiple
sensors (see Data in Methods) and multilevel semantic segmenta-
tion (see Methods) to map land functional zones. According to the
codes of urban land-use classification and planning published by
the Ministry of Housing and Urban-rural Development of China,
we divided the land of 81 cities into 12 nonoverlapping categories
of land functional zones (three residential classes, commercial,
industrial, institutional, transportation, as well as undeveloped,
water, open space, farmlands, and forest and grass), and generate
very-high-resolution land functional zone maps (see Fig. 1 and
Supplementary Fig. 7). The overall mapping accuracy is 85.0%, and
a Kappa index is measured at 0.82, which are evaluated based on
25,419 test samples (see Supplementary Method). Compared to
existing land cover/use data, the generated land functional zone
map has two advantages. First, the map has relatively high
resolution so that functional zone boundaries and categories can
be more accurately represented. Second, the functional categories
are closely related to socioeconomic activities, i.e., living, working,
etc., which can be more applicable to human-land relationship
analysis and LCC evaluation.

Fig. 1 Land functional zone maps of 81 major cities across China. a Distributions of the considered 81 cities whose names and detailed
information are provided in the Supplementary Fig. 6. b Land functional zone map exemplified for Shanghai. The legend illustrates the 12
functional classes derived. c–f, Four selected regions in Shanghai to illustrate the land functional zones in details, where the maps are set at
60% transparency and overlapped with satellite images.
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Characterizing and clustering land functional structures
For quantitative representations of heterogeneous land functional
structures (LFS), we measure LFS of each city by 64 indices
(including functional, structural, and thematic ones) which can be
derived from the land functional zone maps (see Methods). These
indices are defined to characterize land functional services, spatial
structures, and socioeconomic attributes. This is done in reference
to existing studies as they find land functional and structural
indices can directly influence population distribution and
economic strength26,30,31. In this study, we also presume that the

socio-economic attributes, e.g., living environments and industrial
types29, influence or even define LCC for population and economy.
Then, we cluster LFS types at city level using these indices to
robustly express land functions and structures. As the result, we
group 81 cities into six types (T1-T6 in Fig. 2) using the density peaks
clustering algorithm (DPCA), where the type number of 6 is
detected by the DPCA considering samples’ densities and distances
in feature spaces (see Methods and Supplementary Fig. 3).
These six types differ significantly in land functions and structures

(see Supplementary Table 2): T1 Comprehensively-developed cities

Fig. 2 Six types of cities clustered based on LFS. a Spatial distributions of the six types. b Mean population, GDP, and representative cities of
the six types. c Cities’ distributions in the LFS feature space, with structural aggregation as the x-axis and structural fractal dimension as the
y-axis to represent the 2D feature space, because of their highest information entropy. A larger font size is used to highlight the six
representative cities in the feature space. d–i Normalized land functional proportions for the six types. The normalized proportion of a
functional category in a specific type refers to its ratio to the largest proportion of the category among all types, and their standard deviations
are labeled.
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have the largest proportions for commercial, industrial, L1-
residential, L2-residential, open spaces, institutional, and transporta-
tion lands. These cities are mainly distributed in developed areas,
e.g., the Yangtze river delta, the Pearl river delta, and the Shandong
peninsula megalopolis. T2 Administrative-centered cities feature
higher proportions of institutional and residential lands. They
mainly are province-level municipalities and provincial capitals. T3
Coastal cities have the smallest undeveloped lands and are mainly
distributed in the eastern coastal areas. T4 Cities with development
potentials have the smallest farmland proportion but the highest
proportion of undeveloped lands, indicating large developmental
potentials. They are all distributed in southern China. T5 Rural-
agricultural cities have the largest proportions of the categories of
L3-residential and farmland, indicating a relatively developed first
industry and a backward urbanization level, and they are mainly
distributed in northern China. T6 Ecological cities have the smallest
proportions for most kinds of built-up lands, but the largest
proportion of relatively natural lands, e.g., forest and grass, and
provide important ecological services. Most T6 cities are located in
northwest China. The clustered six types represent LFS of diverse
cities robustly, as LFS indices are relatively homogeneous in each
type, so that we can describe LFS’s correlation with population/GDP
type by type and accurately evaluate LCC.

Evaluating LCC based on LFS
We evaluate cities’ LCC based on LFS indices, type by type,
where six LFS types generated in the prior section are

considered to reduce LFS indices’ heterogeneity and improve
the robustness of LCC estimation results29. Specifically, we
employ stacked autoencoder (see Methods) to integrate and
dimensionally reduce LFS indices, and use ordinary least
squares to estimate LCC by measuring the correlation between
LFS indices and population/GDP (see Methods) in each type of
cities (Eq. 1 and 2),

LCCPop
c ¼ LRPopu FS

�!
c

� �
c 2 typeuð Þ; (1)

LCCGDP
c ¼ LRGDPu FS

�!
c

� �
c 2 typeuð Þ; (2)

where LCCPop
c and LCCGDP

c refer to the city c’s LCC for population
and GDP respectively, and the city c belongs to u-th LFS type
(typeu). FS

�!
c denotes the LFS indices of the city c which are

integrated and dimensionally reduced by stacked auto-
encoder, LRPopu and LRGDPu are linear regression models which
are trained by cities in typeu. As presented in Fig. 3b, e, the LCC
results are highly heterogeneous. This proves that different
cities have different LCC, and thus ghost city analysis
considering a unified population threshold are limited due to
aggregation effects. According to LCC, we evaluate the cities’
land carrying conditions by two indicators, i.e., shortage in land
carrying (SLC) and land carrying rate (LCR) (see Supplementary
Table 3).
SLC of population and GDP are defined as differences from

the actual population and GDP respectively to their expected

Fig. 3 Land carrying capacity (LCC), and the computations for shortage in land carrying (SLC) and land carrying rate (LCR) for 81 major
cities. a–c the actual population of the cities, and their expected LCC for and SLC of populations. d–f the actual GDP of the cities, and their
expected LCC for and SLC of GDP. g, h LCR for population and GDP of the cities. i overall LCR of the cities where dark brown represents the
overload (high carrying rate), and light yellow the underload (low carrying rate).
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LCC. We applied the SLC to the 81 major cities (see
Supplementary Fig. 6) and their spatial distributions are shown
in Fig. 3. In terms of population, we identify Zhuhai as the most
underloaded in China. It features an extremely low SLC, i.e.,
−6.76 million people, as it has a large LCC of 8.78 million people
but only 2.02 million residents. Two further eastern cities also
have large LCC but carry much smaller populations: Taizhou in
the Jiangsu Province (SLC of population=−4.57 million) and
Jiaxing in the Zhejiang Province (−4.12 million). Even regional
central cities such as Guangzhou (−3.06 million) and Xi-an
(−2.63 million) are found to be underloaded for the population.
The former is the capital city of the Guangdong Province, which
can bear 18.36 million people considering its LCC but only
carries 15.31 million residents. The latter is the capital city of the
Shaanxi Province, whose LCC is 12.83 million, but it has only
10.20 million residents. The underpopulation of these cities
indicates a serious waste of land resources and also imbalanced
human-land relations. In terms of economy proxied by GDP,
Zhuhai is found again the most underloaded city of China (SLC
of GDP=−124.71 billion RMB). Some other cities are also weak
in SLC with respect to economy, e.g., Jiaxing (−69.22 billion),
Qinhuangdao (−42.36 billion), Tianjin (−39.53 billion), and
Weifang (−36.83 billion). The negative values relate to the
lower GDP than their inherent LCC, and thus the results for
these cities signify inefficient land utilizations.
With LCR, we aim to measure a city’s carrying rate for

population (LCRP) and GDP (LCRG), respectively. They are
calculated as follows: LCRP ¼ ActualPop

LCCPop and LCRG ¼ ActualGDP
LCCGDP , where

ActualPop and ActualGDP refer to the actual population and GDP
of the city. Then, we calculate the overall LCR as LCR = LCRP ×
LCRG, where LCR > 100% means relative overload and LCR <
100% denotes underload. LCRP and LCRG are calculated for 81
cities. To analyze cities’ land carrying conditions and to express
the relationship between LCRP and LCRG, a LCR feature space is
drawn (Fig. 4). We find a generally linear correlation of cities’
LCRP and LCRG (Fig. 4a), with a correlation coefficient of 0.68.
This indicates that most cities are over- or underloaded for
population and GDP simultaneously, except for 17 cites (Fig.
4b). The cities with underload population but overload GDP are
located in the UO quadrant, including Taizhou (Jiangsu),
Lanzhou, Changzhou, Nanjing, Wuxi, Yangzhou, and Qingdao.
Conversely, the cities with overload population but underload
GDP are in the OU quadrant, including Harbin, Tongling,
Zhoushan, Quanzhou, Yancheng, Taizhou (Zhejiang), Jining,
Foshan, Chuzhou, and Shijiazhuang. The results demonstrate

that different cities have different LCR and even a city can have
different carrying conditions for population and economy
(LCRP vs. LCRG).

Identifying underload cities
We identify underload cities based on LCR. Cities whose
LCR < LCR� Std LCRð Þ, i.e., LCR < 71.6% in this study, are defined as
underload, where LCR denotes the average LCR of 81 cities
and Std(LCR) the standard deviation of LCR. Cities whose
LCR� Std LCRð Þ � LCR < LCR� 1

2 Std LCRð Þ, i.e., 71.6% ≤ LCR <
85.8%, are considered as slightly underload; LCR� 1

2 Std LCRð Þ �
LCRc < LCRþ 1

2 Std LCRð Þ, i.e., 85.8% ≤ LCR < 114.2%, as well-balanced;
LCRþ 1

2 Std LCRð Þ � LCRc < LCRþ Std LCRð Þ, i.e., 114.2% ≤ LCR <
128.4%, as slightly overload; LCRc � LCRþ Std LCRð Þ, i.e., LCR >
128.4%, as overload. This analysis intends to identify underload or
overload cities in a relational system across China for a better
benchmarking by comparisons. Consequently, the 81 cities are
classified into five types (Fig. 5). Eight underload and 15 slightly
underload cities are found, and identifying other three types is the
additional contribution of the study (see Supplementary Fig. 5).
In our analysis, we identify 15 cities as slightly underload:

Huizhou, Shaoxing, Guangzhou, Jinhua, Xuancheng, Nanjing,
Lanzhou, Xi-an, Changzhou, Dalian, Huzhou, Luoyang, Zhangjia-
kou, Chizhou, and Guiyang. They consist of the first to fifth tiers of
cities and are scattered across the country (Fig. 5b), indicating a
lack of association between the slightly underload cities and their
locations/city tiers. This finding is different from the common
perception about cities’ loads and development levels. For
example, Guangzhou has a large population and developed
economy, but it is found to be slightly underloaded for population
and GDP when its large LCC is taken into consideration. It is similar
for Nanjing and Xi-an, both capital cities for previous dynasties,
and now serving as capitals of Jiangsu and Shaanxi Provinces
being population hubs with advanced economies. However, they
are found to be underloaded when comparing their populations
and GDP to LCC.
We further identify eight underload cities: Zhuzhou (LCR=

67.4%), Dongying (65.4%), Haikou (57.9%), Qinhuangdao
(54.1%), Taizhou (Jiangsu) (52.4%), Jiaxing (47.3%), Ma-anshan
(46.2%), and Zhuhai (16.91%). Among these cities, Dongying,
Ma-anshan, and Jiaxing have been recognized as ghost cities in
previous studies8,15,35. The main economic activities in Dongy-
ing and Ma-anshan are petroleum and steel industries. Due to
the structural crisis of their industries, they have experienced
slow economic development and low population growth

Fig. 4 Distribution of cities in LCR feature space. a Points represent the 81 cities in the LCR feature space, x-axis shows LCR for population
(LCRP), and y-axis is LCR for GDP (LCRG). UO means underload population but overload GDP, while OU means the opposite; OO denotes
overload for both, while UU is underload for both. b A close-up view of cities distributed in the UO and OU quadrants with city names, LCRP,
and LCRG labeled.
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recently8. Leichtle et al. (2019) revealed the ghost city
phenomenon in Dongying with a considerable mismatch
between its estimated population capacity and residential
number8; Jin et al. (2017) profiled Ma-anshan with low urban
vitality as a ghost city15. Additionally, an influential report
“Ranking list of ghost city index in China mainland (2014)”
ranked Jiaxing high as a potential ghost city35. Our findings
corroborate this, as Jiaxing has a low LCRP of 53.4% and a low
LCRG of 88.6%, indicating that the city is underloaded for both
population and GDP. These comparisons reflect the close
relationship between underload and ghost cities, and verify the
rationality of the detected underload cities. The remaining five
underload cities however have not been noticed in prior work,
and they are identified because our approach accounts for
heterogeneous LCC.

Analyzing general patterns of the underload cities
We find three general patterns of these underload cities. Firstly,
the cities whose original industries are experiencing structural
crisis can have slow development or even declines in population
and GDP, resulting in LCC surpluses and underload cities, such
as Dongying and Ma-anshan. The phenomenon is very common
worldwide and occurred in many international cities, e.g.,
Detroit in the U.S., Hashima in Japan, and Fordlandia in Brazil15.
This underload condition is often irreversible, unless new
industries develop.
Secondly, the cities on the edge of urban agglomerations can

be influenced by neighboring metropolises, as their population
and GDP are affected by the siphon effect from surrounding cities.
In this case, we find Qinghuangdao in Beijing-Tianjin-Hebei36,
Zhuzhou in Changsha-Zhuzhou-Xiangtan37, Jiaxing and Taizhou
(Jiangsu) in Yangtze River Delta as underload cities. Similarly, small
or medium-sized cities around metropolises, e.g., New York,
London, and Tokyo, can also face the same problem38.

Thirdly, the cities supported by major national policies can
have fast land development with high urban expansion rates;
thus, their LCC skyrocket, but their populations and economy will
not rise rapidly in the short term. In this case, two Special
Economic Zones of China including Zhuhai and Haikou39 are
found as underload cities. This underload condition is essentially
a temporary product of the construction phase, as Brasilia in
1960s and Sejong in 2010s, and can be alleviated with population
influx and economic growth. Taking Zhuhai as an example, the
population increase in Zhuhai has speeded up at a rate of 7%
annually since 2017 and may soon catch up with that of built-up
expansion40, so that the extremely underload phenomenon in
Zhuhai may thus be alleviated in the future, according to the
current development trend.

Comparing underload cities with ghost cities
We compare the alternative concept of underload cities with the
often-used concept of ghost cities41,42, to demonstrate the
significance of the broader conceptual approach. First of all, these
two concepts have significant differences in definition, as ghost
cities mostly consider population density, but underload cities
measure population, GDP, and LCC; thus, underload cities cannot
be directly related to ghost cities. If we compare both concepts in
an empirical manner, we find the following: we calculate
population density (PD; the ratio of population to built-up area)
to identify the top ten ghost cities (see Supplementary Table 4),
and examine the differences between these ten ghost cities and
the findings of this study (Fig. 6). Consequently, the ten ghost
cities based on low PD are: Lhasa (PD= 0.29 thousand people
km−2), Dongying (0.97), Urumqi (1.00), Chizhou (1.11), Zhangjia-
kou (1.14), Xuancheng (1.33), Nanning (1.60), Chongqing (1.60),
Qianghuangdao (1.92), and Jinhua (1.94). Six out of these ten
ghost cities are detected in this study as underload or slightly
underload cities, including Dongying, Qinghuangdao, Chizhou,
Zhangjiakou, Xuancheng, and Jinhua.

Fig. 5 Cities classified into five types in reference to land carrying rate (LCR), i.e., underload, slightly underload, well-balanced, slightly
overload, and overload. a Cities’ LCR which are ranked in descending order. b Spatial distributions of the five types of cities.
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Conversely, the remaining four ghost cities, i.e., Lhasa, Urumqi,
Nanning, and Chongqing, are not identified as underload. These
cities are located in outlying areas in western China. Due to
rugged terrains and harsh natural environments, their LCC are
limited. Although their low PD characterize them as ghost cities,
the populations of these cities may have depleted their limited
LCC, resulting in the categorization of them as non-underload.
Identifying ghost or underload cities thus has implications and
divergences in city planning. Let us take Nanning as an example:
based on the underload city concept, Nanning has a high LCR at
133.8% (Fig. 6e), and could be considered overloaded, needing
population outflow and incentives for land developments; from
the ghost city viewpoint, however, a different suggestion such as
more population influx and reduced land constructions could be
made due to the low population density of Nanning.
In addition, among the eight underload cities identified in this

study, only two are found among the ten ghost cities; while the
other six have ordinary PD and are not recognized as ghost cities.
These six cities have large LCC which greatly exceed their
population and GDP, and thus are classified as underload. Based
on the underload city concept, these six cities should increase
population and limit land constructions. In contrast, from the
ghost city viewpoint, the six cities can continue land constructions,
which potentially exacerbates the cities’ underload conditions. The
comparisons above underscore the conceptual and in conse-
quence differences for underload and ghost cities. Employing the
ghost city viewpoint could have adverse impacts on human-land
relationship, for its negligence in LCC. Therefore, more conceptual
approaches besides ghost cities are needed to assess land
carrying conditions for sustainable city planning, and thus
underload cities in synopsis allow a complementary perspective
and improved analysis.

Comparing LCR to the SDG 11.3.1 indicator
SDG 11.3.1 refers to the ratio of land consumption rate to
population growth rate, which measures land use efficiency5

and also concerns the human-land relationship43,44. Here, we
compare LCR with SDG 11.3.1 to demonstrate the significance of
this study to SDG.
Existing studies on SDG 11.3.1 measure land consumptions by

impervious surface or artificial land45,46, but they mostly ignore
heterogeneous land functions and structures inside impervious
surface which however can greatly influence population growth47.
In consequence, previous measurements of land consumption
rates are limited, resulting in aggregated information on SDG
11.3.1. Differently, this study models diverse land functions and
their structures (LFS) within cities to measure land consumption
from socioeconomic and spatial-structural perspectives, based on
which LCR can be estimated to quantify the relationship between
land consumption and population with more comprehensive and
detailed information. Although SDG 11.3.1 and LCR both produce

aggregated evaluations at the city scale, LCR however considers
intracity land-function heterogeneity and generates more mean-
ingful results to explain the human-land relationship. Accordingly,
LCR can be regarded as a complement to SDG 11.3.1 and an
important indicator for evaluating sustainable city development.
Furthermore, using LCR can identify two unsustainable city
development modes, i.e., underload and overload cities (see
Supplementary Fig. 5); thus, the concept, approaches, and findings
of this study provide a different perspective for understanding the
imbalanced human-land relationship and unsustainable develop-
ment modes, potentially contributing to SDG.

DISCUSSION
This study demonstrates the use of VHR satellite data and derived
LFS (including land functions and structural types) to evaluate the
LCC of cities, and the importance of considering LCC to identify
underload cities. This study is distinct from prior works on ghost
cities and the SDG 11.3.1 which mainly considers population
density but does not relate to the LCC.
This study identifies eight major underload cities across China,

among which five cities would not have been detected had the
conventional ghost city concept been applied. We also find three
general patterns of these underload cities, whose original
industries are experiencing structural crisis, whose population
and GDP are affected by the siphon effect from surrounding cities,
and whose land development is too fast supported by major
national policies. Among those, the first pattern of underload cities
can be irreversible, but the third is basically a temporary
construction phase and can be alleviated with population influx
and economic growth.
This study also finds 15 slightly underload cities. Different from

the common perceptions that big cities are over developed and
congested by large populations, some big cities can be recognized
as slightly underload in the study, because they could carry more
people and GDP when their LFS and LCC are considered. It is
suggested that these underload cities need population and GDP
influx and limit further land developments, so as to best use their
LCC. The findings of this study provide new insights into human-
land relationships, potentially contributing to a more sustainable
city development.
However, the empirical verification in this study has two

limitations. Firstly, the study focuses on evaluating land loads at
the scale of prefecture-level cities but ignores the heterogeneity
within them. Prefecture-level cities are essentially administrative
units and are usually composed of multiple county-level cities
which however may have different land load conditions11.
Accordingly, a local evaluation, such as underload counties/
neighborhoods, should be developed to reveal heterogeneous
human-land relations within cities. Secondly, this study considers a
part of Chinese cities, but not include international cities in other

Fig. 6 Comparison between land carrying rate (LCR) and population density (PD), highlighting the differences between underload and
ghost cities. a, b LCR and PD of 81 cities. c–f Urumqi, Lhasa, Nanning, and Chongqing which are identified as ghost cities according to PD but
nonunderload by LCR.
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countries, owing to the limitation of acquiring very high-resolution
satellite data. In the future, international evaluations on underload
cities can be conducted to find the differences in human-land
relation among different nations and international cities.
In summary, we hope to work together with other scholars to

resolve these limitations, and enrich the conceptual approach by
studying underload cities/counties/neighborhoods and supple-
menting the international verification cases.

METHODS
Data
For demographic and economic data, population and GDP data are
retrieved from the “China city construction statistical yearbook in 2019”
(https://www.mohurd.gov.cn/gongkai/fdzdgknr/sjfb/tjxx/jstjnj/index.html),
where GDP represents the gross domestic product, and population refers
to the resident population including both permanent (registered) and
temporary residents who live there for more than six months in one year.
For land observation, satellite images covering 81 major cities are

acquired by splicing and resampling images from different sensors,
including SPOT-6, GF-1, and ZY-3. The image product was acquired in 2019
and basically contained three visible bands (i.e., red, green, and blue) with
a very high resolution of 2.4 meters. The images have been ortho-rectified
and thus provide accurate image features for mapping land functional
zones. In addition, built-up area of each city is obtained from “China city
construction statistical yearbook in 2019”, where built-up area refers to the
developed land that carries intensive human activities.

Multilevel semantic segmentation to map land functional
zone
We employ a multilevel semantic segmentation (MSS) proposed by our
previous study48 to map land functional zones. MSS consists of a semantic
segmentation at object level and a neighborhood optimization at block
level. For the object-level semantic segmentation, it excels in classifying
complex structures with strong internal heterogeneity, confusing bound-
aries, and multiscale representations48,49; thus, it can recognize diverse
land functions. It generally has three processes, i.e., object segmentation,
deep feature encoding, and semantic prediction (see Supplementary
Method). For object segmentation, a multiresolution segmentation
approach50 is used to segment satellite images into objects. For deep
feature encoding, objects are processed by a densely connected
convolutional network (DenseNet)51 and four dilated convolutions52 with
different convolution kernels (1 × 1, 3 × 3, 3 × 3, 3 × 3) and dilated rates (1,
6, 12, 18). For semantic prediction, multiple deep feature maps generated
by DenseNet and dilated convolutions are stacked, convoluted, and up-
sampled to predict land function categories for objects. In addition, MSS
considers a neighborhood optimization at block level, which uses
conditional random field to model the neighboring relationship among
land functional zones and eliminates the wrong classification results within
roadblocks. Technical details of MSS see the reference48.
For training the model, we manually delineated and labeled 84,730 sam-

ples of land functional zones based on visual interpretations and field
investigations, 70% of which are clipped into 94,306 non-overlapped
patches of 512 × 512 pixels and fed into the model, where the pixels hit by
manually labeled samples are set as their categories, and others are null
values. The hyperparameters set in the training process are illustrated as
follows. The TensorFlow system is generally used for implementation; the
segmentation scale of multiresolution segmentation is set to 50; a L2-
regularization is considered to avoid overfitting; an Adam optimizer with a
learning rate of 2 × 10−4 is employed for training53; and cross entropy is
used as loss function, i.e., CELoss ¼ 1

N

PN
i¼1

PM
j¼1 �byij log yij

� �
, where N

denotes the number of samples, M the number of land function categories,
yij represents the probability that i-th sample belonging to the j-th
category, and byij represents the real class with one-hot encoding; the
semantic segmentation structure will be trained for 50,000 iterations. The
hyperparameter tuning is demonstrated in our previous study48.
For evaluating mapping results, we utilize the remaining 30% samples

(25,419) and measure the pixel-wise confusion matrix54. Overall accuracy,
OA = NT/N, is calculated to assess mapping accuracy, where N denotes the
pixel number of test samples and NT the number of accurately recognized
pixels. In addition, Kappa index of mapping result is also measured

Kapppa ¼ OA�P
1�P , where P ¼

PM

i¼1
Ai ´ Bi

N ´N , M refers to the number of functional

categories, Ai the pixel number of the i-th category in test samples, Bi the
pixel number of the i-th category in mapping results54.

Index system for characterizing LFS
For quantitatively expressing LFS per city, we integrate indices related to
land use, urban planning, and landscape pattern to propose an index
system55–57, which includes functional, structural, and thematic indices
(see Supplementary Table 1). Functional indices describe functional types
and services, e.g., functional proportion, area, abundance and dominance;
structural indices measure spatial structures of diverse land functions, e.g.,
structural fragmentation, minimum distance, aggregation; and thematic
indices characterize socio-economic attributes, e.g., industrial type, living
environment, public and ecological service. These indices have been
verified effective to characterize land functions and structures55,56 and
closely related to LCC evaluation29–31. All these indices can be derived from
the generated land functional zone maps.

Density peaks clustering algorithm to detect robust LFS type
To reduce the influence of LFS’s heterogeneity on modeling human-land
relationships, we extract robust LFS types by a state-of-the-art clustering
model. We apply the density peaks clustering algorithm (DPCA)58, as DPCA
excels in overcoming outliers, explicitly selecting clustering centers, and
processing aspheric distributions59. DPCA recognizes samples with large
local densities and large distances to other high-density samples as
clustering centers, thus it mainly considers two indicators in clustering, i.e.,
local density and distance to high-density samples. On the one hand, local
density of the i-th sample ρi ¼

P
j¼1:N;j≠i τ dij � dc

� �
, where N denotes the

number of samples, dij the distance from sample i to sample j in the feature
space, dc is a threshold defining the neighborhood range, and τ(x) = 1
when x < 0; on the other hand, i-th sample’s minimum distance to the
samples with higher density is formulated by δi ¼ min

j:ρj>ρi
ðdijÞ or δi ¼

maxðdijÞ when ρi > ρj(j = 1:N,j ≠ i). Accordingly, the dij is core to DPCA, and

we define dij as dij ¼ max dfij ; d
s
ij ; d

t
ij

� �
, where dfij represents the distance

from sample i to j in functional-index space, dsij that in structural-index
space, dtij that in thematic-index space, and distances are measured by the
Euclidean distance. This definition of dij ensures clusters’ homogeneity in
all feature spaces.
As demonstrated above, we calculate the distances between cities in

feature spaces, measure ρi and δi of each city, and select six cluster centers
by ρi ≥ 7 and δi ≥ 0.5 in this study with considering the cities’ distributions
in ρ-δ space (see Supplementary Fig. 3). Other cities are assigned to the
clusters of their nearest neighbor with higher density.

Combining SAE and OLS to estimate LCC
Estimating LCC needs modeling the human-land relationship which is
essentially to measure the correlation between LFS indices and socio-
economic attributes, i.e., population and GDP in our case. However, two
technical issues arise: 1) how to fuse diverse LFS indices, and 2) how to avoid
the “curse of dimensionality“60 affecting correlation modeling. We use a
stacked auto-encoder (SAE) to resolve these two issues. SAE has been widely
used for feature fusion and dimensionality reduction61. SAE is composed of
multiple auto-encoders (AEs)62, and each AE consists of three layers: input,
hidden and output layers, where the input and hidden layers compose
encoder, hidden, and output layers compose decoder (see Supplementary
Fig. 4). For encoding, the input features ~x 2 RN are dimensionally reduced
into hidden features ~y 2 RK , where N refers to the dimension number of
input features and K that of hidden features; for decoding, the ~y 2 RK

reconstructs ~x0 2 RN . Accordingly, AE is formulated as:

~y ¼ f wx
�! �~x þ bx
� �

; (3)

~x0 ¼ f wy
�! �~y þ by
� �

; (4)

where wx
�!, wy

�!, bx, and by are parameters of encoder and decoder
respectively, and f(*) represents a sigmoid activation function63. Training
AE is essentially to minimize the reconstruction loss between ~x and ~x0 ,
RecLoss ¼ k~x �~x0k, and the hidden features are extracted as the features
after dimension reduction. Similarly, SAE is constructed by stacking
multiple AEs, with each AE trained layer by layer, and only the encoder part
is kept after training. The whole network is finally fine-tuned with
minimizing global reconstruction loss. The hyperparameters in the training
process are described as follows: three hidden layers are considered
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with their dimensional numbers set as 32, 16, and 8; the batch size is set as
16; every AE is trained for 150 iterations; and the whole SAE is fine-tuned
for 500 iterations. As a result, the LFS indices can be nonlinearly integrated
with dimensions reduced from 64 to 8, resolving the two issues
demonstrated above.
We finally use original least squares (OLS) to model the human-land

relationship and predict the land carrying capacity (LCC) of each city. For a city
ci(1 ≤ i≤ 81), it belongs to the u-th LFS type typeu(1≤ u≤ 6), and other cities of
typeu, cj∈ typeu(1≤ j≤ 81,j≠ i), are considered to train the regression model,

i.e., yPopcj ¼ FScj
��! � wPop

u

��!þ bPopu and yGDPcj ¼ FScj
��! � wGDP

u

���!þ bGDPu , where yPopcj and

yGDPcj denote the cj’‘ population and GDP respectively, FScj
��!

the LFS indices of cj

processed by SAE, and wPop
u

��!
, bPopu , wGDP

u

���!
and bGDPu are parameters of the two

regression models, which can be trained by cities in typeu and estimated by
OLS64; thus, the LCC of ci for population and GDP can be predicted by

LCCPop
ci ¼ FSci

��! � wPop
u

��!þ bPopu and LCCGDP
ci ¼ FSci

��! � wGDP
u

���!þ bGDPu .
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